WorldWideScience

Sample records for reliability comparative analysis

  1. Comparative Study of Reliability Analysis Methods for Discrete Bimodal Information

    International Nuclear Information System (INIS)

    The distribution of a response usually depends on the distribution of a variable. When the distribution of a variable has two different modes, the response also follows a distribution with two different modes. In most reliability analysis methods, the number of modes is irrelevant, but not the type of distribution. However, in actual problems, because information is often provided with two or more modes, it is important to estimate the distributions with two or more modes. Recently, some reliability analysis methods have been suggested for bimodal distributions. In this paper, we review some methods such as the Akaike information criterion (Aic) and maximum entropy principle (Me) and compare them with the Monte Carlo simulation (MRCS) using mathematical examples with two different modes

  2. Comparative Study of Reliability Analysis Methods for Discrete Bimodal Information

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Woochul; Jang, Junyong; Lee, Taehee [Hanyang Univ., Seoul (Korea, Republic of)

    2013-07-15

    The distribution of a response usually depends on the distribution of a variable. When the distribution of a variable has two different modes, the response also follows a distribution with two different modes. In most reliability analysis methods, the number of modes is irrelevant, but not the type of distribution. However, in actual problems, because information is often provided with two or more modes, it is important to estimate the distributions with two or more modes. Recently, some reliability analysis methods have been suggested for bimodal distributions. In this paper, we review some methods such as the Akaike information criterion (Aic) and maximum entropy principle (Me) and compare them with the Monte Carlo simulation (MRCS) using mathematical examples with two different modes.

  3. Analysis of reliability AAN laboratory with comparative method

    International Nuclear Information System (INIS)

    The AAN method is an analysis method which has good accuracy and precision. The samples of SRM 1646a Estuary sediment, SRM 1648 Urban particulate, SRM 1573 a Tomato leaves, and CRM No. 3 Chlorella was analyzed with AAN method in the AAN Laboratory at P2TRR. The analyzed method result show the 10 % relation of the element contain with long life time, if considered with certificate. These mean the result of the analysis done by the NAA in P2TRR is good

  4. Reliability on Intra-Laboratory and Inter-Laboratory Data of Hair Mineral Analysis Comparing with Blood Analysis

    OpenAIRE

    Namkoong, Sun; Hong, Seung Phil; Kim, Myung Hwa; Park, Byung Cheol

    2013-01-01

    Background Nowadays, although its clinical value remains controversial institutions utilize hair mineral analysis. Arguments about the reliability of hair mineral analysis persist, and there have been evaluations of commercial laboratories performing hair mineral analysis. Objective The objective of this study was to assess the reliability of intra-laboratory and inter-laboratory data at three commercial laboratories conducting hair mineral analysis, compared to serum mineral analysis. Method...

  5. Small nuclear power reactor emergency electric power supply system reliability comparative analysis

    International Nuclear Information System (INIS)

    This work presents an analysis of the reliability of the emergency power supply system, of a small size nuclear power reactor. Three different configurations are investigated and their reliability analyzed. The fault tree method is used as the main tool of analysis. The work includes a bibliographic review of emergency diesel generator reliability and a discussion of the design requirements applicable to emergency electrical systems. The influence of common cause failure influences is considered using the beta factor model. The operator action is considered using human failure probabilities. A parametric analysis shows the strong dependence between the reactor safety and the loss of offsite electric power supply. It is also shown that common cause failures can be a major contributor to the system reliability. (author)

  6. A Comparative Analysis of Methods of Polynomial Coefficients Determination for Reliability Indices of Ilorin Distribution Systems

    OpenAIRE

    Ganiyu A. Ajenikoko,; Anthony A. Olaomi

    2014-01-01

    Distribution system delivers the transmitted energy to the end users which are customers. This paper develops a generalized polynomial model and compares the coefficients for the assessment of reliability indices of Ilorin distribution system feeders. The results of the coefficients obtained were validated by subjecting the polynomial model to three methods namely: Lagrange Polynomial, Newton and Chebychev Polynomial function methods. The results of the work showed...

  7. A Comparative Analysis of Methods of Polynomial Coefficients Determination for Reliability Indices of Ilorin Distribution Systems

    Directory of Open Access Journals (Sweden)

    Ganiyu A. Ajenikoko,

    2014-01-01

    Full Text Available Distribution system delivers the transmitted energy to the end users which are customers. This paper develops a generalized polynomial model and compares the coefficients for the assessment of reliability indices of Ilorin distribution system feeders. The results of the coefficients obtained were validated by subjecting the polynomial model to three methods namely: Lagrange Polynomial, Newton and Chebychev Polynomial function methods. The results of the work showed that average values of -7x10-4 , 0.00212, -0.0256, 0.1549, - 0.4865 and 0.7049 were obtained as the coefficient values from the Lagrange, Newton and Chebychev polynomial function methods which compare favourably well with the coefficient values of -7x10-4 , 0.0021, -0.0257, 0.1549, -0.4865 and 0.7048 obtained from the simulation results. The knowledge of these coefficients will form a basis for adequate planning and management of power distribution systems.

  8. Orbiter Autoland reliability analysis

    Science.gov (United States)

    Welch, D. Phillip

    1993-01-01

    The Space Shuttle Orbiter is the only space reentry vehicle in which the crew is seated upright. This position presents some physiological effects requiring countermeasures to prevent a crewmember from becoming incapacitated. This also introduces a potential need for automated vehicle landing capability. Autoland is a primary procedure that was identified as a requirement for landing following and extended duration orbiter mission. This report documents the results of the reliability analysis performed on the hardware required for an automated landing. A reliability block diagram was used to evaluate system reliability. The analysis considers the manual and automated landing modes currently available on the Orbiter. (Autoland is presently a backup system only.) Results of this study indicate a +/- 36 percent probability of successfully extending a nominal mission to 30 days. Enough variations were evaluated to verify that the reliability could be altered with missions planning and procedures. If the crew is modeled as being fully capable after 30 days, the probability of a successful manual landing is comparable to that of Autoland because much of the hardware is used for both manual and automated landing modes. The analysis indicates that the reliability for the manual mode is limited by the hardware and depends greatly on crew capability. Crew capability for a successful landing after 30 days has not been determined yet.

  9. Comparative reliability studies and analysis of Au, Pd-coated Cu and Pd-doped Cu wire in microelectronics packaging.

    Science.gov (United States)

    Chong Leong, Gan; Uda, Hashim

    2013-01-01

    This paper compares and discusses the wearout reliability and analysis of Gold (Au), Palladium (Pd) coated Cu and Pd-doped Cu wires used in fineline Ball Grid Array (BGA) package. Intermetallic compound (IMC) thickness measurement has been carried out to estimate the coefficient of diffusion (Do) under various aging conditions of different bonding wires. Wire pull and ball bond shear strengths have been analyzed and we found smaller variation in Pd-doped Cu wire compared to Au and Pd-doped Cu wire. Au bonds were identified to have faster IMC formation, compared to slower IMC growth of Cu. The obtained weibull slope, ? of three bonding wires are greater than 1.0 and belong to wearout reliability data point. Pd-doped Cu wire exhibits larger time-to-failure and cycles-to-failure in both wearout reliability tests in Highly Accelerated Temperature and Humidity (HAST) and Temperature Cycling (TC) tests. This proves Pd-doped Cu wire has a greater potential and higher reliability margin compared to Au and Pd-coated Cu wires. PMID:24244344

  10. Power electronics reliability analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Mark A.; Atcitty, Stanley

    2009-12-01

    This report provides the DOE and industry with a general process for analyzing power electronics reliability. The analysis can help with understanding the main causes of failures, downtime, and cost and how to reduce them. One approach is to collect field maintenance data and use it directly to calculate reliability metrics related to each cause. Another approach is to model the functional structure of the equipment using a fault tree to derive system reliability from component reliability. Analysis of a fictitious device demonstrates the latter process. Optimization can use the resulting baseline model to decide how to improve reliability and/or lower costs. It is recommended that both electric utilities and equipment manufacturers make provisions to collect and share data in order to lay the groundwork for improving reliability into the future. Reliability analysis helps guide reliability improvements in hardware and software technology including condition monitoring and prognostics and health management.

  11. Comparative Reliability Studies and Analysis of Au, Pd-Coated Cu and Pd-Doped Cu Wire in Microelectronics Packaging

    OpenAIRE

    Chong Leong, Gan; Uda, Hashim

    2013-01-01

    This paper compares and discusses the wearout reliability and analysis of Gold (Au), Palladium (Pd) coated Cu and Pd-doped Cu wires used in fineline Ball Grid Array (BGA) package. Intermetallic compound (IMC) thickness measurement has been carried out to estimate the coefficient of diffusion (Do) under various aging conditions of different bonding wires. Wire pull and ball bond shear strengths have been analyzed and we found smaller variation in Pd-doped Cu wire compared to Au and Pd-doped Cu...

  12. Human reliability analysis

    International Nuclear Information System (INIS)

    The authors present a treatment of human reliability analysis incorporating an introduction to probabilistic risk assessment for nuclear power generating stations. They treat the subject according to the framework established for general systems theory. Draws upon reliability analysis, psychology, human factors engineering, and statistics, integrating elements of these fields within a systems framework. Provides a history of human reliability analysis, and includes examples of the application of the systems approach

  13. Introduction to reliability analysis

    International Nuclear Information System (INIS)

    Reliability analysis is concerned with the analysis of devices and systems whose individual components are prone to failure. This textbook presents an introduction to reliability analysis of repairable and nonrepairable systems. It is based on courses given to both undergraduate and graduate students of engineering and statistics as well as in workshops for professional engineers and scientists. The book concentrates on the methodology of the subject and on understanding theoretical results rather than on its theoretical development. An intrinsic aspect of reliability analysis is that the failure of components is best modelled using techniques drawn from probability and statistics. The author covers all the basic concepts required from these subjects and covers the main modern reliability analysis techniques thoroughly. These include: the graphical analysis of life data, maximum likelihood estimation, and Bayesian estimation. Throughout, the emphsis is on the practicalities of the subject with numerous examples drawn from industrial and engineering settings. (orig.) With 50 figs

  14. Comparing the treatment of uncertainty in Bayesian networks and fuzzy expert systems used for a human reliability analysis application

    International Nuclear Information System (INIS)

    The use of expert systems can be helpful to improve the transparency and repeatability of assessments in areas of risk analysis with limited data available. In this field, human reliability analysis (HRA) is no exception, and, in particular, dependence analysis is an HRA task strongly based on analyst judgement. The analysis of dependence among Human Failure Events refers to the assessment of the effect of an earlier human failure on the probability of the subsequent ones. This paper analyses and compares two expert systems, based on Bayesian Belief Networks and Fuzzy Logic (a Fuzzy Expert System, FES), respectively. The comparison shows that a BBN approach should be preferred in all the cases characterized by quantifiable uncertainty in the input (i.e. when probability distributions can be assigned to describe the input parameters uncertainty), since it provides a satisfactory representation of the uncertainty and its output is directly interpretable for use within PSA. On the other hand, in cases characterized by very limited knowledge, an analyst may feel constrained by the probabilistic framework, which requires assigning probability distributions for describing uncertainty. In these cases, the FES seems to lead to a more transparent representation of the input and output uncertainty. - Highlights: • We analyse treatment of uncertainty in two expert systems. • We compare a Bayesian Belief Network (BBN) and a Fuzzy Expert System (FES). • We focus on the input assessment, inference engines and output assessment. • We focus on an application problem of interest for human reliability analysis. • We emphasize the application rather than math to reach non-BBN or FES specialists

  15. Multidisciplinary System Reliability Analysis

    Science.gov (United States)

    Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  16. Stochastic reliability analysis

    International Nuclear Information System (INIS)

    It is well known that the so-called independent failure analysis can produce meaningless results for redundancy structures. Apart from exhausting possibilities of modelling e.g., shared components explicitly, to date the preferred solution to overcome this drawback is to apply parametric common cause failure (CCF) models. Recently an alternative class of approaches has been proposed. This type of stochastic approach allows to elicit definitions, concepts and models of conventional CCF analysis. This paper reviews the generalized binomial distribution model for the reliability analysis of redundancy structures. Furthermore, procedures for data evaluation in order to determine the parameters of this approach are proposed

  17. Human reliability analysis methods

    International Nuclear Information System (INIS)

    After outlining the purpose of human reliability analysis, the paper concentrates on the analysis of recognized and approved operator actions while following procedures or in response to external initiating events. The analysis is split into qualitative and quantitative components. Under the qualitative heading, the process of information collection and evaluation and error analysis are discussed. Under the quantitative reading, the modelling or representation of errors and the assignment of human error probabilities to these errors are discussed. It is concluded that although many methods are available, none have been comprehensively validated and so the results must be treated with caution. Nevertheless the technique is useful and can be used for assigning priorities. (U.K.)

  18. Risk analysis and reliability

    International Nuclear Information System (INIS)

    Mathematical foundations of risk analysis are addressed. The importance of having the same probability space in order to compare different experiments is pointed out. Then the following topics are discussed: consequences as random variables with infinite expectations; the phenomenon of rare events; series-parallel systems and different kinds of randomness that could be imposed on such systems; and the problem of consensus of estimates of expert opinion

  19. Integrating reliability analysis and design

    International Nuclear Information System (INIS)

    This report describes the Interactive Reliability Analysis Project and demonstrates the advantages of using computer-aided design systems (CADS) in reliability analysis. Common cause failure problems require presentations of systems, analysis of fault trees, and evaluation of solutions to these. Results have to be communicated between the reliability analyst and the system designer. Using a computer-aided design system saves time and money in the analysis of design. Computer-aided design systems lend themselves to cable routing, valve and switch lists, pipe routing, and other component studies. At EG and G Idaho, Inc., the Applicon CADS is being applied to the study of water reactor safety systems

  20. Reliability Estimation in Interaction Analysis.

    Science.gov (United States)

    Weider-Hatfield, Deborah; Hatfield, John D.

    1984-01-01

    Evaluation approaches to measuring reliabilty in interaction analysis by (1) presenting criteria for a sound reliability estimate, (2) evaluating currently used tests against these criteria, and (3) discussing application of appropriate tests to interaction data. (PD)

  1. Reliability analysis of shutdown system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, C. Senthil [Aerb-Safety Research Institute, IGCAR Campus, Kalpakkam 603102 (India)]. E-mail: cskumar@igcar.ernet.in; John Arul, A. [Indira Gandhi Centre For Atomic Research, Kalpakkam 603102 (India); Pal Singh, Om [Atomic Energy Regulatory Board, Niyamak Bhavan, Anushaktinagar, Mumbai 400094 (India); Suryaprakasa Rao, K. [Industrial Engineering Division, Anna University, Chennai 60025 (India)

    2005-01-01

    This paper presents the results of reliability analysis of Shutdown System (SDS) of Indian Prototype Fast Breeder Reactor. Reliability analysis carried out using Fault Tree Analysis predicts a value of 3.5 x 10{sup -8}/de for failure of shutdown function in case of global faults and 4.4 x 10{sup -8}/de for local faults. Based on 20 de/y, the frequency of shutdown function failure is 0.7 x 10{sup -6}/ry, which meets the reliability target, set by the Indian Atomic Energy Regulatory Board. The reliability is limited by Common Cause Failure (CCF) of actuation part of SDS and to a lesser extent CCF of electronic components. The failure frequency of individual systems is <1 x 10{sup -3}/ry, which also meets the safety criteria. Uncertainty analysis indicates a maximum error factor of 5 for the top event unavailability.

  2. Reliability analysis of shutdown system

    International Nuclear Information System (INIS)

    This paper presents the results of reliability analysis of Shutdown System (SDS) of Indian Prototype Fast Breeder Reactor. Reliability analysis carried out using Fault Tree Analysis predicts a value of 3.5 x 10-8/de for failure of shutdown function in case of global faults and 4.4 x 10-8/de for local faults. Based on 20 de/y, the frequency of shutdown function failure is 0.7 x 10-6/ry, which meets the reliability target, set by the Indian Atomic Energy Regulatory Board. The reliability is limited by Common Cause Failure (CCF) of actuation part of SDS and to a lesser extent CCF of electronic components. The failure frequency of individual systems is -3/ry, which also meets the safety criteria. Uncertainty analysis indicates a maximum error factor of 5 for the top event unavailability

  3. Reliability analysis of containment strength

    International Nuclear Information System (INIS)

    The Sequoyah and McGuire ice condenser containment vessels were designed to withstand pressures in the range of 12 to 15 psi. Since pressures of the order of 28 psi were recorded during the Three Mile Island incident, a need exists to more accurately define the strength of these vessels. A best estimate and uncertainty assessment of the strength of the containments were performed by applying the second moment reliability method. Material and geometric properties were supplied by the plant owners. A uniform static internal pressure was assumed. Gross deformation was taken as the failure criterion. Both approximate and finite element analyses were performed on the axisymmetric containment structure and the penetrations. The predicted strength for the Sequoyah vessel is 60 psi with a standard deviation of 8 psi. For McGuire, the mean and standard deviations are 84 psi and 12 psi, respectively. In an Addendum, results by others are summarized and compared and a preliminary dynamic analysis is presented

  4. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sřrensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states...... consideres are in the ultimate limit state (ULS) extreme conditions in the standstill position and extreme conditions during operating. For wind turbines, where the magnitude of the loads is influenced by the control system, the ultimate limit state can occur in both cases. In the fatigue limit state (FLS......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined...

  5. Reliability analysis of Angra I safety systems

    International Nuclear Information System (INIS)

    An extensive reliability analysis of some safety systems of Angra I, are presented. The fault tree technique, which has been successfully used in most reliability studies of nuclear safety systems performed to date is employed. Results of a quantitative determination of the unvailability of the accumulator and the containment spray injection systems are presented. These results are also compared to those reported in WASH-1400. (E.G.)

  6. Reliability analysis of phased missions

    International Nuclear Information System (INIS)

    In a phased mission the relevant system configuration (block diagram or fault tree) changes during consecutive time periods (phases). Many systems are required to perform phased missions. A classic example is a space vehicle. A reliability analysis for a phased mission encounters complexities not present with just one phase, but can be transformed into an analysis of a synthetic single phase case. The transformation has a potential for direct application, or can be used to study various computational algorithms and approximations

  7. Analysis tools for reliability databases

    International Nuclear Information System (INIS)

    This report outlines the work performed at Risoe, under contract with the Swedish Nuclear Power Inspectorate, with the goal to develop analysis tools for reliability databases, that can suit the information needs of the users of the TUD (Reliability/Maintenance/Operation) database, used at 12 nuclear power plants in Sweden and 2 in Finland. The TUD database stores operating experience data from the failure reports, that describe failures and repair on a large part of the equipment of the plants. Furthermore, the TUD contains background data on operating conditions, design, maintenance and test programs on the equipment and registers the changes in operating modes of each plant. Since 1993 the TUD is structured as a multi-user relational database. The analysis tools developed in this work are the result of the following analysis steps: 1. Investigate and select data 2. Make simple plots of the data 3. Analyze the data with statistical methods, including analysis of trend and dependency 4. Combine and implement these three steps in a prototype RDB with a simple user-interface. The resulting user-interface of the prototype RDB developed in the work, guides the user through the following steps: 4a. Build a population of sockets (sub-components or component level), 4b. Select the time-window and the failure events, 4c. Select the analysis tools to be incorporated in the report, 4d. Adjust the default report and print the report. The prototype RDB developed in this work, shows that when the proper analysis tool is installed, the TUD database can help its users in identifying possible common cause failures and trends in reliability and costs of a population of component sockets

  8. Computational methods for efficient structural reliability and reliability sensitivity analysis

    Science.gov (United States)

    Wu, Y.-T.

    1993-01-01

    This paper presents recent developments in efficient structural reliability analysis methods. The paper proposes an efficient, adaptive importance sampling (AIS) method that can be used to compute reliability and reliability sensitivities. The AIS approach uses a sampling density that is proportional to the joint PDF of the random variables. Starting from an initial approximate failure domain, sampling proceeds adaptively and incrementally with the goal of reaching a sampling domain that is slightly greater than the failure domain to minimize over-sampling in the safe region. Several reliability sensitivity coefficients are proposed that can be computed directly and easily from the above AIS-based failure points. These probability sensitivities can be used for identifying key random variables and for adjusting design to achieve reliability-based objectives. The proposed AIS methodology is demonstrated using a turbine blade reliability analysis problem.

  9. RELIABILITY ANALYSIS USING SIMULATION MODELLING

    Directory of Open Access Journals (Sweden)

    S.J. Claasen

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The reliability analysis of complex systems may often become unmanageable. especially when state or time dependent failure rate~, repair facilities and standby operations are present in a system. This paper describes the possible use of a simulation approach and the development of a reliability. availability and maintainability simulator which may be used to alleviate some of the disadvantages inherent in the traditional analytical approach.

    AFRIKAANSE OPSOMMING: Die analise van die betroubaarheid van 'n komplekse stelsel mag 50ms onhanteerbaar raak veral indien die stelsel toestand- of tydafhanklike falingsternpo's, herstelfasiliteite en bystandtoerusting insluit. Hierdieartikel beskryf die moontlike toepassing van 'n simulas.iebenadering asook die ontwikkeling van 'n betroubaarheid-. beskikbaarhe.id- en instandhoubaarheidsimulator wat gebruik mag word om sommige van die nadele, inherent aan die tradisionele analitiese benadering, te oorkern.

  10. Analysis on reliability aspects of wind power

    Energy Technology Data Exchange (ETDEWEB)

    Mabel, M. Carolin [Department of Electrical and Electronics Engineering, St. Xavier' s Catholic College of Engineering, Chunkankadai, Tamilnadu 629003 (India); Raj, R. Edwin [Department of Mechanical Engineering, St. Xavier' s Catholic College of Engineering, Chunkankadai, Tamilnadu 629003 (India); Fernandez, E. [Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttranchal 247667 (India)

    2011-02-15

    The analysis on reliability aspects of wind power finds more significance as compared to that in conventional power generation systems. In spite of the intermittent and variable nature of wind energy, it can be usefully tapped to generate electrical power for meeting part of the energy demand of the population. The present paper undertakes an analysis on the reliable aspects of wind energy conversion system and applies to seven wind farms in Muppandal region in India. For the purpose of analysis, two reliability indices are used; one is coined as the period during which the expected wind energy is not supplied and the other one is the loss of load expectation index which analyzes the degree of matching of wind farm power generation with the load model. The study also investigates the effect of increasing the hub height of wind energy conversion systems. (author)

  11. Reliability analysis of reactor emergency shutdown system

    International Nuclear Information System (INIS)

    The reliability analysis of emergency shutdown system was made for the nuclear power reacter. Fault Tree Analysis was adopted to this analysis. The failure data of WASH-1400 report were applied to calculation of system failure probability, and it was assumed that the deficiency for emergency shutdown requirement corresponded to the failure of insertion of two or more control rods. The interval of emergency shutdown test was assumed to be once a year. The result of this analysis is compared with several other typical examples. (author)

  12. Human Reliability Analysis: session summary

    International Nuclear Information System (INIS)

    The use of Human Reliability Analysis (HRA) to identify and resolve human factors issues has significantly increased over the past two years. Today, utilities, research institutions, consulting firms, and the regulatory agency have found a common application of HRA tools and Probabilistic Risk Assessment (PRA). The ''1985 IEEE Third Conference on Human Factors and Power Plants'' devoted three sessions to the discussion of these applications and a review of the insights so gained. This paper summarizes the three sessions and presents those common conclusions that were discussed during the meeting. The paper concludes that session participants supported the use of an adequately documented ''living PRA'' to address human factors issues in design and procedural changes, regulatory compliance, and training and that the techniques can produce cost effective qualitative results that are complementary to more classical human factors methods

  13. Software reliability analysis in probabilistic risk analysis

    International Nuclear Information System (INIS)

    Probabilistic Risk Analysis (PRA) is a tool which can reveal shortcomings of the NPP design in general. PRA analysts have not had sufficient guiding principles in modelling particular digital components malfunctions. Digital I and C systems are mostly analysed simply and the software reliability estimates are engineering judgments often lacking a proper justification. The OECD/NEA Working Group RISK's task DIGREL develops a taxonomy of failure modes of digital I and C systems. The EU FP7 project HARMONICS develops software reliability estimation method based on an analytic approach and Bayesian belief network. (author)

  14. Reliability Analysis and Reliability-Based Design Optimization of Circular Composite Cylinders Under Axial Compression

    Science.gov (United States)

    Rais-Rohani, Masoud

    2001-01-01

    This report describes the preliminary results of an investigation on component reliability analysis and reliability-based design optimization of thin-walled circular composite cylinders with average diameter and average length of 15 inches. Structural reliability is based on axial buckling strength of the cylinder. Both Monte Carlo simulation and First Order Reliability Method are considered for reliability analysis with the latter incorporated into the reliability-based structural optimization problem. To improve the efficiency of reliability sensitivity analysis and design optimization solution, the buckling strength of the cylinder is estimated using a second-order response surface model. The sensitivity of the reliability index with respect to the mean and standard deviation of each random variable is calculated and compared. The reliability index is found to be extremely sensitive to the applied load and elastic modulus of the material in the fiber direction. The cylinder diameter was found to have the third highest impact on the reliability index. Also the uncertainty in the applied load, captured by examining different values for its coefficient of variation, is found to have a large influence on cylinder reliability. The optimization problem for minimum weight is solved subject to a design constraint on element reliability index. The methodology, solution procedure and optimization results are included in this report.

  15. Reliability Analysis of Adhesive Bonded Scarf Joints

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Toft, Henrik Stensgaard; Lund, Erik; Thomsen, Ole Thybo; Sřrensen, John Dalsgaard

    2012-01-01

    A probabilistic model for the reliability analysis of adhesive bonded scarfed lap joints subjected to static loading is developed. It is representative for the main laminate in a wind turbine blade subjected to flapwise bending. The structural analysis is based on a three dimensional (3D) finite element analysis (FEA). For the reliability analysis a design equation is considered which is related to a deterministic code-based design equation where reliability is secured by partial safety factors ...

  16. On Bayesian System Reliability Analysis

    International Nuclear Information System (INIS)

    The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person's state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs

  17. On Bayesian System Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen Ringi, M.

    1995-05-01

    The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person`s state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs.

  18. Power system reliability analysis using fault trees

    International Nuclear Information System (INIS)

    The power system reliability analysis method is developed from the aspect of reliable delivery of electrical energy to customers. The method is developed based on the fault tree analysis, which is widely applied in the Probabilistic Safety Assessment (PSA). The method is adapted for the power system reliability analysis. The method is developed in a way that only the basic reliability parameters of the analysed power system are necessary as an input for the calculation of reliability indices of the system. The modeling and analysis was performed on an example power system consisting of eight substations. The results include the level of reliability of current power system configuration, the combinations of component failures resulting in a failed power delivery to loads, and the importance factors for components and subsystems. (author)

  19. Reliability Analysis of Money Habitudes

    Science.gov (United States)

    Delgadillo, Lucy M.; Bushman, Brittani S.

    2015-01-01

    Use of the Money Habitudes exercise has gained popularity among various financial professionals. This article reports on the reliability of this resource. A survey administered to young adults at a western state university was conducted, and each Habitude or "domain" was analyzed using Cronbach's alpha procedures. Results showed all six…

  20. Reliability analysis of VHTR reserve shutdown system

    International Nuclear Information System (INIS)

    A reliability analysis of the reserve shutdown system of the VHTR (Very High Temperature Reactor) has been carried out by means of the fault tree method. The reserve shutdown system investigated in this paper is a rupture disc type. In this analysis, logic failure (the initiation signal system failure for the reserve shutdown system) and hardware failure are considered. Through this reliability analysis, the high reliability of the reserve shutdown system of the VHTR was verified. Furthermore we have obtained valuable information concerning how to improve the reliability of the reserve shutdown system of the VHTR. (author)

  1. Reliability Analysis of High Rockfill Dam Stability

    OpenAIRE

    Ping Yi; Jun Liu; Chunlei Xu

    2015-01-01

    A program 3DSTAB combining slope stability analysis and reliability analysis is developed and validated. In this program, the limit equilibrium method is utilized to calculate safety factors of critical slip surfaces. The first-order reliability method is used to compute reliability indexes corresponding to critical probabilistic surfaces. When derivatives of the performance function are calculated by finite difference method, the previous iteration’s critical slip surface is saved and used. ...

  2. Reliability analysis of software based safety functions

    International Nuclear Information System (INIS)

    The methods applicable in the reliability analysis of software based safety functions are described in the report. Although the safety functions also include other components, the main emphasis in the report is on the reliability analysis of software. The check list type qualitative reliability analysis methods, such as failure mode and effects analysis (FMEA), are described, as well as the software fault tree analysis. The safety analysis based on the Petri nets is discussed. The most essential concepts and models of quantitative software reliability analysis are described. The most common software metrics and their combined use with software reliability models are discussed. The application of software reliability models in PSA is evaluated; it is observed that the recent software reliability models do not produce the estimates needed in PSA directly. As a result from the study some recommendations and conclusions are drawn. The need of formal methods in the analysis and development of software based systems, the applicability of qualitative reliability engineering methods in connection to PSA and the need to make more precise the requirements for software based systems and their analyses in the regulatory guides should be mentioned. (orig.). (46 refs., 13 figs., 1 tab.)

  3. How to assess and compare inter-rater reliability, agreement and correlation of ratings: an exemplary analysis of mother-father and parent-teacher expressive vocabulary rating pairs

    Directory of Open Access Journals (Sweden)

    MargaritaStolarova

    2014-06-01

    Full Text Available This report has two main purposes. First, we combine well-known analytical approaches to conduct a comprehensive assessment of agreement and correlation of rating-pairs and to dis-entangle these often confused concepts, providing a best-practice example on concrete data and a tutorial for future reference. Second, we explore whether a screening questionnaire deve-loped for use with parents can be reliably employed with daycare teachers when assessing early expressive vocabulary. A total of 53 vocabulary rating pairs (34 parent-teacher and 19 mother-father pairs collected for two-year-old children (12 bilingual are evaluated. First, inter-rater reliability both within and across subgroups is assessed using the intra-class correlation coefficient (ICC. Next, based on this analysis of reliability and on the test-retest reliability of the employed tool, inter-rater agreement is analyzed, magnitude and direction of rating differences are considered. Finally, Pearson correlation coefficients of standardized vocabulary scores are calculated and compared across subgroups. The results underline the necessity to distinguish between reliability measures, agreement and correlation. They also demonstrate the impact of the employed reliability on agreement evaluations. This study provides evidence that parent-teacher ratings of children’s early vocabulary can achieve agreement and correlation comparable to those of mother-father ratings on the assessed vocabulary scale. Bilingualism of the evaluated child decreased the likelihood of raters’ agreement. We conclude that future reports of agree-ment, correlation and reliability of ratings will benefit from better definition of terms and stricter methodological approaches. The methodological tutorial provided here holds the potential to increase comparability across empirical reports and can help improve research practices and knowledge transfer to educational and therapeutic settings.

  4. A comparative method for improving the reliability of brittle components

    International Nuclear Information System (INIS)

    Calculating the absolute reliability built in a product is often an extremely difficult task because of the complexity of the physical processes and physical mechanisms underlying the failure modes, the complex influence of the environment and the operational loads, the variability associated with reliability-critical design parameters and the non-robustness of the prediction models. Predicting the probability of failure of loaded components with complex shape for example is associated with uncertainty related to: the type of existing flaws initiating fracture, the size distributions of the flaws, the locations and the orientations of the flaws and the microstructure and its local properties. Capturing these types of uncertainty, necessary for a correct prediction of the reliability of components is a formidable task which does not need to be addressed if a comparative reliability method is employed, especially if the focus is on reliability improvement. The new comparative method for improving the resistance to failure initiated by flaws proposed here is based on an assumed failure criterion, an equation linking the probability that a flaw will be critical with the probability of failure associated with the component and a finite element solution for the distribution of the principal stresses in the loaded component. The probability that a flaw will be critical is determined directly, after a finite number of steps equal to the number of finite elements into which the component is divided. An advantage of the proposed comparative method for improving the resistance to failure initiated by flaws is that it does not rely on a Monte Carlo simulation and does not depend on knowledge of the size distribution of the flaws and the material properties. This essentially eliminates uncertainty associated with the material properties and the population of flaws. On the basis of a theoretical analysis we also show that, contrary to the common belief, in general, for non-interacting flaws randomly located in a stressed volume, the distribution of the minimum failure stress is not necessarily described by a Weibull distribution. For the simple case of a single group of flaws all of which become critical beyond a particular threshold value for example, the Weibull distribution fails to predict correctly the probability of failure. If in a particular load range, no new critical flaws are created by increasing the applied stress, the Weibull distribution also fails to predict correctly the probability of failure of the component. In these cases however, the probability of failure is correctly predicted by the suggested alternative equation. The suggested equation is the correct mathematical formulation of the weakest-link concept related to random flaws in a stressed volume. The equation does not require any assumption concerning the physical nature of the flaws and the physical mechanism of failure and can be applied in any situation of locally initiated failure by non-interacting entities

  5. Integrated Methodology for Software Reliability Analysis

    Directory of Open Access Journals (Sweden)

    Marian Pompiliu CRISTESCU

    2012-01-01

    Full Text Available The most used techniques to ensure safety and reliability of the systems are applied together as a whole, and in most cases, the software components are usually overlooked or to little analyzed. The present paper describes the applicability of fault trees analysis software system, analysis defined as Software Fault Tree Analysis (SFTA, fault trees are evaluated using binary decision diagrams, all of these being integrated and used with help from Java library reliability.

  6. Reliability Generalization (RG) Analysis: The Test Is Not Reliable

    Science.gov (United States)

    Warne, Russell

    2008-01-01

    Literature shows that most researchers are unaware of some of the characteristics of reliability. This paper clarifies some misconceptions by describing the procedures, benefits, and limitations of reliability generalization while using it to illustrate the nature of score reliability. Reliability generalization (RG) is a meta-analytic method…

  7. Analysis of information security reliability: A tutorial

    International Nuclear Information System (INIS)

    This article presents a concise reliability analysis of network security abstracted from stochastic modeling, reliability, and queuing theories. Network security analysis is composed of threats, their impacts, and recovery of the failed systems. A unique framework with a collection of the key reliability models is presented here to guide the determination of the system reliability based on the strength of malicious acts and performance of the recovery processes. A unique model, called Attack-obstacle model, is also proposed here for analyzing systems with immunity growth features. Most computer science curricula do not contain courses in reliability modeling applicable to different areas of computer engineering. Hence, the topic of reliability analysis is often too diffuse to most computer engineers and researchers dealing with network security. This work is thus aimed at shedding some light on this issue, which can be useful in identifying models, their assumptions and practical parameters for estimating the reliability of threatened systems and for assessing the performance of recovery facilities. It can also be useful for the classification of processes and states regarding the reliability of information systems. Systems with stochastic behaviors undergoing queue operations and random state transitions can also benefit from the approaches presented here. - Highlights: • A concise survey and tutorial in model-based reliability analysis applicable to information security. • A framework of key modeling approaches for assessing reliability of networked systems. • The framework facilitates quantitative risk assessment tasks guided by stochastic modeling and queuing theory. • Evaluation of approaches and models for modeling threats, failures, impacts, and recovery analysis of information systems

  8. Space Mission Human Reliability Analysis (HRA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to extend current ground-based Human Reliability Analysis (HRA) techniques to a long-duration, space-based tool to more effectively...

  9. Production Facility System Reliability Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Crystal Buchanan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-06

    This document describes the reliability, maintainability, and availability (RMA) modeling of the Los Alamos National Laboratory (LANL) design for the Closed Loop Helium Cooling System (CLHCS) planned for the NorthStar accelerator-based 99Mo production facility. The current analysis incorporates a conceptual helium recovery system, beam diagnostics, and prototype control system into the reliability analysis. The results from the 1000 hr blower test are addressed.

  10. Integrating Reliability Analysis with a Performance Tool

    Science.gov (United States)

    Nicol, David M.; Palumbo, Daniel L.; Ulrey, Michael

    1995-01-01

    A large number of commercial simulation tools support performance oriented studies of complex computer and communication systems. Reliability of these systems, when desired, must be obtained by remodeling the system in a different tool. This has obvious drawbacks: (1) substantial extra effort is required to create the reliability model; (2) through modeling error the reliability model may not reflect precisely the same system as the performance model; (3) as the performance model evolves one must continuously reevaluate the validity of assumptions made in that model. In this paper we describe an approach, and a tool that implements this approach, for integrating a reliability analysis engine into a production quality simulation based performance modeling tool, and for modeling within such an integrated tool. The integrated tool allows one to use the same modeling formalisms to conduct both performance and reliability studies. We describe how the reliability analysis engine is integrated into the performance tool, describe the extensions made to the performance tool to support the reliability analysis, and consider the tool's performance.

  11. Reliability analysis method in probabilistic risk assessment

    International Nuclear Information System (INIS)

    Technical adequacy of probabilistic risk assessment is a prerequisite for risk-informed applications for the nuclear power plants. One of the elements for assuring the adequacy is reliability parameter estimation for the inputs to risk analysis. In the U.S., where the PRA technique was originally developed, Bayesian statistics has been used for uncertainty analysis and periodical update for the reliability parameters in the each plant. In contrast, the Japanese PRAs do not adopt Bayesian method and still rely on the obsolete U.S. generic data developed in 1980s instead of reflecting the domestic component reliability performance. The reason is considered to be that Bayesian statistics is a minor discipline and little references for Bayesian reliability analysis are available in Japan. In this study, Bayesian reliability analysis methods were investigated to point out unfamiliar and misunderstood aspects of the methods. In addition, trial estimation of reliability parameters using the Japanese component failure data in NUCIA was implemented to identify issues to be resolved. (author)

  12. Multi-Disciplinary System Reliability Analysis

    Science.gov (United States)

    Mahadevan, Sankaran; Han, Song

    1997-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code developed under the leadership of NASA Lewis Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multi-disciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  13. Reliability graph with general gates (RGGG). A novel method for reliability analysis

    International Nuclear Information System (INIS)

    There are several methods for system reliability analysis such as reliability graphs, fault tree analyses, Markov chains, and Monte Carlo simulations. Among the existing methods, the reliability graphs are the most intuitive modeling method, but they are not widely used due to their limited expression power. In this paper, an intuitive and practical method for system reliability analysis named the reliability graph with general gates (RGGG) is reviewed. The proposed method introduces general gates to the conventional reliability graph method, which creates a one-to-one match from the actual structure of the system to the reliability graph of the system. A quantitative evaluation method is proposed by transforming the RGGG to an equivalent Bayesian network without losing the intuitiveness of the model. In addition, a method of analyzing the dynamic systems and repairable systems which uses the RGGG is introduced, and appropriate algorithms for the quantitative analyses are explained. It is concluded that the RGGG method is intuitive and easy-to-use in the analyses of static, dynamic, and repairable systems compared with other methods while its analysis results are the same as those of other methods. (author)

  14. Comparing two reliable multicast protocols for mobile computing

    Scientific Electronic Library Online (English)

    Mateus de Freitas, Ribeiro; Markus, Endler.

    2003-04-01

    Full Text Available As networks with mobile devices becorne commonplace, many new applications for those networks arisc, including some that require coordination among groups of mobile clients. One basic tool for implementing coordination is reliable multicast, where delivery of a multicast message is atomic, i.e. cith [...] er all or none of the group members deliver the message. While several multicast protocols have been proposed for mobile networks, only a few works have considered reliable multicats. In this paper we present and compare two protocols based on Two-Phase-Commit that implement reliable multicast for structured mobile networks. Protocol iAM˛C is a variant of protocol AM2C that employs a two-level hierarchical location management scheme to locate and route messages to the mobile hosts addressed by a multicast. Although hierarchical location management is not new in the context of mobile and cellular networks, we are unaware of any other work which combines hierarchical location management with protocols for reliable multicast. We have prototyped, simulated and evaluated both protocols using the MobiCS simulation enviromment. Our experiments indicate that despite some overhead incurred by the location management and the additional level of message redirection, iAM2C is more efficient than the AM˛ C protocol and scales well with the size of the wired network infra-structure.

  15. RHR system reliability analysis of Krsko NPP

    International Nuclear Information System (INIS)

    In this paper Systems reliability analysis is applied to residual heat Removal System in Krsko NPP. Fault tree method is used. Qualitative analysis of the fault tree was made using FTAP-2 computer code, and quantitative using IMPORT code. results are evaluated and their possible application is given. (author)

  16. Reliability modelling and analysis of thermal MEMS

    International Nuclear Information System (INIS)

    This paper presents a MEMS reliability study methodology based on the novel concept of 'virtual prototyping'. This methodology can be used for the development of reliable sensors or actuators and also to characterize their behaviour in specific use conditions and applications. The methodology is demonstrated on the U-shaped micro electro thermal actuator used as test vehicle. To demonstrate this approach, a 'virtual prototype' has been developed with the modeling tools MatLab and VHDL-AMS. A best practice FMEA (Failure Mode and Effect Analysis) is applied on the thermal MEMS to investigate and assess the failure mechanisms. Reliability study is performed by injecting the identified defaults into the 'virtual prototype'. The reliability characterization methodology predicts the evolution of the behavior of these MEMS as a function of the number of cycles of operation and specific operational conditions

  17. Culture Representation in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Gertman; Julie Marble; Steven Novack

    2006-12-01

    Understanding human-system response is critical to being able to plan and predict mission success in the modern battlespace. Commonly, human reliability analysis has been used to predict failures of human performance in complex, critical systems. However, most human reliability methods fail to take culture into account. This paper takes an easily understood state of the art human reliability analysis method and extends that method to account for the influence of culture, including acceptance of new technology, upon performance. The cultural parameters used to modify the human reliability analysis were determined from two standard industry approaches to cultural assessment: Hofstede’s (1991) cultural factors and Davis’ (1989) technology acceptance model (TAM). The result is called the Culture Adjustment Method (CAM). An example is presented that (1) reviews human reliability assessment with and without cultural attributes for a Supervisory Control and Data Acquisition (SCADA) system attack, (2) demonstrates how country specific information can be used to increase the realism of HRA modeling, and (3) discusses the differences in human error probability estimates arising from cultural differences.

  18. Reliability Analysis of a Steel Frame

    Directory of Open Access Journals (Sweden)

    M. Sýkora

    2002-01-01

    Full Text Available A steel frame with haunches is designed according to Eurocodes. The frame is exposed to self-weight, snow, and wind actions. Lateral-torsional buckling appears to represent the most critical criterion, which is considered as a basis for the limit state function. In the reliability analysis, the probabilistic models proposed by the Joint Committee for Structural Safety (JCSS are used for basic variables. The uncertainty model coefficients take into account the inaccuracy of the resistance model for the haunched girder and the inaccuracy of the action effect model. The time invariant reliability analysis is based on Turkstra's rule for combinations of snow and wind actions. The time variant analysis describes snow and wind actions by jump processes with intermittencies. Assuming a 50-year lifetime, the obtained values of the reliability index b vary within the range from 3.95 up to 5.56. The cross-profile IPE 330 designed according to Eurocodes seems to be adequate. It appears that the time invariant reliability analysis based on Turkstra's rule provides considerably lower values of b than those obtained by the time variant analysis.

  19. Discrete event simulation versus conventional system reliability analysis approaches

    DEFF Research Database (Denmark)

    Kozine, Igor

    Discrete Event Simulation (DES) environments are rapidly developing and appear to be promising tools for building reliability and risk analysis models of safety-critical systems and human operators. If properly developed, they are an alternative to the conventional human reliability analysis models...... and systems analysis methods such as fault and event trees and Bayesian networks. As one part, the paper describes briefly the author’s experience in applying DES models to the analysis of safety-critical systems in different domains. The other part of the paper is devoted to comparing conventional...

  20. Event/Time/Availability/Reliability-Analysis Program

    Science.gov (United States)

    Viterna, L. A.; Hoffman, D. J.; Carr, Thomas

    1994-01-01

    ETARA is interactive, menu-driven program that performs simulations for analysis of reliability, availability, and maintainability. Written to evaluate performance of electrical power system of Space Station Freedom, but methodology and software applied to any system represented by block diagram. Program written in IBM APL.

  1. A reliability analysis for the grinding process

    OpenAIRE

    Tolvanen, Pekka

    2011-01-01

    This Bachelor’s thesis was made in collaboration with the Service Product Center Espoo of Outotec (Finland) Oy during the spring semester 2011. The main objectives of this thesis were to create a reliability analysis of the mineral enrichment process grinding circuit and to examine the possibilities for the analysis as a company’s new service product. The scope for this thesis was limited by the mandator. As the machinery of the process industry is getting older, the role of maintenance ...

  2. Reliability Analysis of Structural Timber Systems

    DEFF Research Database (Denmark)

    SŘrensen, John Dalsgaard; Hoffmeyer, P.

    2000-01-01

    Structural systems like timber trussed rafters and roof elements made of timber can be expected to have some degree of redundancy and nonlinear/plastic behaviour when the loading consists of for example snow or imposed load. In this paper this system effect is modelled and the statistic characteristics of the load-bearing capacity is estimated in the form of a characteristic value and a coefficient of variation. These two values are of primary importance for codes of practice based on the partial safety factor format since the partial safety factor is closely related to the coefficient of variation. In the paper a stochastic model is described for the strength of a single piece of timber taking into account the stochastic variation of the strength and stiffness with length. Also stochastic models for different types of loads are formulated. First, simple representative systems with different types of redundancy and non-linearity are considered. The statistical characteristics of the load bearing capacity are determined by reliability analysis. Next, more complex systems are considered modelling the mechanical behaviour of timber roof elements I stressed skin panels made of timber. Using the above stochastic models, statistical characteristics (distribution function, 5% quantile and coefficient of variation) are determined. Generally, the results show that taking the system effects into account the characteristic load bearing capacity can be increased and the partial safety factor decreased compared to the values obtained if the system effects are not considered.

  3. Reflections on the perspectives of reliability analysis

    International Nuclear Information System (INIS)

    Current reliability technology and availability of reliability data enable meaningful analyses to be carried out for the quantified reliability and safety values of many types of systems. This does not necessarily mean that precise numeric values can be obtained and interpreted. It rather means that answers can be produced within an acceptable degree of accuracy and used as a basis for decision making. Improvements in existing techniques and data are still required and further validation is necessary. However, there appears to be problems in the grey area between deterministic analysis and statistically meaningful probabilistic analysis. These problems relate to what may be described as 'rare' events. Such events may require important considerations both within and outside the practical systems being studied. Three main facets seem to need further attention: methods for recognizing rare events of significance, techniques for describing and enumerating the patterns of rare event occurrences and means for communicating the results of such enumerations. Even with current techniques it is often the lessons learnt about system behaviour which arise from the attempt to quantify reliability and the discipline of thought which comes out of the process of analysis which are more important than the attainment of a precise numeric answer at the end of the day

  4. Reliability Analysis of High Temperature Reactor Fuels

    International Nuclear Information System (INIS)

    This paper presents the results of reliability analysis of the TRISO -coated fuel particles for the High Temperature Test Reactor (HTTR), Japan. The reliability of fuel particle was evaluated based on the failure probability of each coating layer, and only the failure due to internal gas pressure and shrinkage of pyrolytic carbon (PyC) layer was considered The analysis results show that, no significant failure occurs up to about 45 MWd/kgU for the first core fuel particle and up to about 75 MWd/kgU for the reload core fuel particle. The fuel particle is predicted to fail completely at about 50 MWd/kgU for the first core fuel particle and at about 85 MWd/kgU for the reload core fuel particle. This results show that the TRISO -coated fuel particle for the HTTR to have high reliability. No failure occurs up to the maximum burnup design level, i.e. 33 MWd/kgU for the first core fuel particle and 60 MWd/kgU for the reload core fuel particle. The analysis results show also that the fuel particle reliability (coating layers) depends on the irradiation temperature. The failure occurs at lower burnup if the irradiation temperature increases. (author)

  5. Reliability and risk analysis methods research plan

    International Nuclear Information System (INIS)

    This document presents a plan for reliability and risk analysis methods research to be performed mainly by the Reactor Risk Branch (RRB), Division of Risk Analysis and Operations (DRAO), Office of Nuclear Regulatory Research. It includes those activities of other DRAO branches which are very closely related to those of the RRB. Related or interfacing programs of other divisions, offices and organizations are merely indicated. The primary use of this document is envisioned as an NRC working document, covering about a 3-year period, to foster better coordination in reliability and risk analysis methods development between the offices of Nuclear Regulatory Research and Nuclear Reactor Regulation. It will also serve as an information source for contractors and others to more clearly understand the objectives, needs, programmatic activities and interfaces together with the overall logical structure of the program

  6. Human reliability analysis of control room operators

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac J.A.L.; Carvalho, Paulo Victor R.; Grecco, Claudio H.S. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Human reliability is the probability that a person correctly performs some system required action in a required time period and performs no extraneous action that can degrade the system Human reliability analysis (HRA) is the analysis, prediction and evaluation of work-oriented human performance using some indices as human error likelihood and probability of task accomplishment. Significant progress has been made in the HRA field during the last years, mainly in nuclear area. Some first-generation HRA methods were developed, as THERP (Technique for human error rate prediction). Now, an array of called second-generation methods are emerging as alternatives, for instance ATHEANA (A Technique for human event analysis). The ergonomics approach has as tool the ergonomic work analysis. It focus on the study of operator's activities in physical and mental form, considering at the same time the observed characteristics of operator and the elements of the work environment as they are presented to and perceived by the operators. The aim of this paper is to propose a methodology to analyze the human reliability of the operators of industrial plant control room, using a framework that includes the approach used by ATHEANA, THERP and the work ergonomics analysis. (author)

  7. Advances in human reliability analysis in Mexico

    International Nuclear Information System (INIS)

    Human Reliability Analysis (HRA) is a very important part of Probabilistic Risk Analysis (PRA), and constant work is dedicated to improving methods, guidance and data in order to approach realism in the results as well as looking for ways to use these to reduce accident frequency at plants. Further, in order to advance in these areas, several HRA studies are being performed globally. Mexico has participated in the International HRA Empirical study with the objective of -benchmarking- HRA methods by comparing HRA predictions to actual crew performance in a simulator, as well as in the empirical study on a US nuclear power plant currently in progress. The focus of the first study was the development of an understanding of how methods are applied by various analysts, and characterize the methods for their capability to guide the analysts to identify potential human failures, and associated causes and performance shaping factors. The HRA benchmarking study has been performed by using the Halden simulator, 14 European crews, and 15 HRA equipment s (NRC, EPRI, and foreign HRA equipment s using different HRA methods). This effort in Mexico is reflected through the work being performed on updating the Laguna Verde PRA to comply with the ASME PRA standard. In order to be considered an HRA with technical adequacy, that is, be considered as a capability category II, for risk-informed applications, the methodology used for the HRA in the original PRA is not considered sufficiently detailed, and the methodology had to upgraded. The HCR/CBDT/THERP method was chosen, since this is used in many nuclear plants with similar design. The HRA update includes identification and evaluation of human errors that can occur during testing and maintenance, as well as human errors that can occur during an accident using the Emergency Operating Procedures. The review of procedures for maintenance, surveillance and operation is a necessary step in HRA and provides insight into the possible mechanisms for human error at the plant. (Author)

  8. Sensitivity analysis in a structural reliability context

    International Nuclear Information System (INIS)

    This thesis' subject is sensitivity analysis in a structural reliability context. The general framework is the study of a deterministic numerical model that allows to reproduce a complex physical phenomenon. The aim of a reliability study is to estimate the failure probability of the system from the numerical model and the uncertainties of the inputs. In this context, the quantification of the impact of the uncertainty of each input parameter on the output might be of interest. This step is called sensitivity analysis. Many scientific works deal with this topic but not in the reliability scope. This thesis' aim is to test existing sensitivity analysis methods, and to propose more efficient original methods. A bibliographical step on sensitivity analysis on one hand and on the estimation of small failure probabilities on the other hand is first proposed. This step raises the need to develop appropriate techniques. Two variables ranking methods are then explored. The first one proposes to make use of binary classifiers (random forests). The second one measures the departure, at each step of a subset method, between each input original density and the density given the subset reached. A more general and original methodology reflecting the impact of the input density modification on the failure probability is then explored. The proposed methods are then applied on the CWNR case, which motivates this thesis. (author)

  9. Human reliability analysis using event trees

    International Nuclear Information System (INIS)

    The shut-down procedure of a technologically complex installation as a nuclear power plant consists of a lot of human actions, some of which have to be performed several times. The procedure is regarded as a chain of modules of specific actions, some of which are analyzed separately. The analysis is carried out by making a Human Reliability Analysis event tree (HRA event tree) of each action, breaking down each action into small elementary steps. The application of event trees in human reliability analysis implies more difficulties than in the case of technical systems where event trees were mainly used until now. The most important reason is that the operator is able to recover a wrong performance; memory influences play a significant role. In this study these difficulties are dealt with theoretically. The following conclusions can be drawn: (1) in principle event trees may be used in human reliability analysis; (2) although in practice the operator will recover his fault partly, theoretically this can be described as starting the whole event tree again; (3) compact formulas have been derived, by which the probability of reaching a specific failure consequence on passing through the HRA event tree after several times of recovery is to be calculated. (orig.)

  10. Comparative reliability of cheiloscopy and palatoscopy in human identification

    Directory of Open Access Journals (Sweden)

    Sharma Preeti

    2009-01-01

    Full Text Available Background: Establishing a person?s identity in postmortem scenarios can be a very difficult process. Dental records, fingerprint and DNA comparisons are probably the most common techniques used in this context, allowing fast and reliable identification processes. However, under certain circumstances they cannot always be used; sometimes it is necessary to apply different and less known techniques. In forensic identification, lip prints and palatal rugae patterns can lead us to important information and help in a person?s identification. This study aims to ascertain the use of lip prints and palatal rugae pattern in identification and sex differentiation. Materials and Methods: A total of 100 subjects, 50 males and 50 females were selected from among the students of Subharti Dental College, Meerut. The materials used to record lip prints were lipstick, bond paper, cellophane tape, a brush for applying the lipstick, and a magnifying lens. To study palatal rugae, alginate impressions were taken and the dental casts analyzed for their various patterns. Results: Statistical analysis (applying Z-test for proportion showed significant difference for type I, I?, IV and V lip patterns (P < 0.05 in males and females, while no significant difference was observed for the same in the palatal rugae patterns (P > 0.05. Conclusion: This study not only showed that palatal rugae and lip prints are unique to an individual, but also that lip prints is more reliable for recognition of the sex of an individual.

  11. Bridging Resilience Engineering and Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring

    2010-06-01

    There has been strong interest in the new and emerging field called resilience engineering. This field has been quick to align itself with many existing safety disciplines, but it has also distanced itself from the field of human reliability analysis. To date, the discussion has been somewhat one-sided, with much discussion about the new insights afforded by resilience engineering. This paper presents an attempt to address resilience engineering from the perspective of human reliability analysis (HRA). It is argued that HRA shares much in common with resilience engineering and that, in fact, it can help strengthen nascent ideas in resilience engineering. This paper seeks to clarify and ultimately refute the arguments that have served to divide HRA and resilience engineering.

  12. Structural reliability analysis and seismic risk assessment

    International Nuclear Information System (INIS)

    This paper presents a reliability analysis method for safety evaluation of nuclear structures. By utilizing this method, it is possible to estimate the limit state probability in the lifetime of structures and to generate analytically the fragility curves for PRA studies. The earthquake ground acceleration, in this approach, is represented by a segment of stationary Gaussian process with a zero mean and a Kanai-Tajimi Spectrum. All possible seismic hazard at a site represented by a hazard curve is also taken into consideration. Furthermore, the limit state of a structure is analytically defined and the corresponding limit state surface is then established. Finally, the fragility curve is generated and the limit state probability is evaluated. In this paper, using a realistic reinforced concrete containment as an example, results of the reliability analysis of the containment subjected to dead load, live load and ground earthquake acceleration are presented and a fragility curve for PRA studies is also constructed

  13. A comparative study on the reliability of open cluster parameters

    CERN Document Server

    Netopil, M; Carraro, G

    2015-01-01

    Open clusters are known as excellent tracers of the structure and chemical evolution of the Galactic disk, however, the accuracy and reliability of open cluster parameters is poorly known. In recent years, several studies aimed to present homogeneous open cluster parameter compilations, which are based on some different approaches and photometric data. These catalogues are excellent sources to facilitate testing of the actual accuracy of open cluster parameters. We compare seven cluster parameter compilations statistically and with an external sample, which comprises the mean results of individual studies. Furthermore, we selected the objects IC 4651, NGC 2158, NGC 2383, NGC 2489, NGC 2627, NGC 6603, and Trumpler 14, with the main aim to highlight differences in the fitting solutions. We derived correction terms for each cluster parameter, using the external calibration sample. Most results by the compilations are reasonable scaled, but there are trends or constant offsets of different degree. We also identif...

  14. Small nuclear power reactor emergency electric power supply system reliability comparative analysis; Analise da confiabilidade do sistema de suprimento de energia eletrica de emergencia de um reator nuclear de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Bonfietti, Gerson

    2003-07-01

    This work presents an analysis of the reliability of the emergency power supply system, of a small size nuclear power reactor. Three different configurations are investigated and their reliability analyzed. The fault tree method is used as the main tool of analysis. The work includes a bibliographic review of emergency diesel generator reliability and a discussion of the design requirements applicable to emergency electrical systems. The influence of common cause failure influences is considered using the beta factor model. The operator action is considered using human failure probabilities. A parametric analysis shows the strong dependence between the reactor safety and the loss of offsite electric power supply. It is also shown that common cause failures can be a major contributor to the system reliability. (author)

  15. Comparative risk analysis

    International Nuclear Information System (INIS)

    In this paper, the risks of various energy systems are discussed considering severe accidents analysis, particularly the probabilistic safety analysis, and probabilistic safety criteria, and the applications of these criteria and analysis. The comparative risk analysis has demonstrated that the largest source of risk in every society is from daily small accidents. Nevertheless, we have to be more concerned about severe accidents. The comparative risk analysis of five different energy systems (coal, oil, gas, LWR and STEC (Solar)) for the public has shown that the main sources of risks are coal and oil. The latest comparative risk study of various energy has been conducted in the USA and has revealed that the number of victims from coal is 42 as many than victims from nuclear. A study for severe accidents from hydro-dams in United States has estimated the probability of dam failures at 1 in 10,000 years and the number of victims between 11,000 and 260,000. The average occupational risk from coal is one fatal accident in 1,000 workers/year. The probabilistic safety analysis is a method that can be used to assess nuclear energy risks, and to analyze the severe accidents, and to model all possible accident sequences and consequences. The 'Fault tree' analysis is used to know the probability of failure of the different systems at each point of accident sequences and to calculate the probability of risks. After calculating the probability of failure, the criteria for judging the numerical results have to be developed, that is the quantitative and qualitative goals. To achieve these goals, several systems have been devised by various countries members of AIEA. The probabilistic safety ana-lysis method has been developed by establishing a computer program permit-ting to know different categories of safety related information. 19 tabs. (author)

  16. Sensitivity analysis in optimization and reliability problems

    International Nuclear Information System (INIS)

    The paper starts giving the main results that allow a sensitivity analysis to be performed in a general optimization problem, including sensitivities of the objective function, the primal and the dual variables with respect to data. In particular, general results are given for non-linear programming, and closed formulas for linear programming problems are supplied. Next, the methods are applied to a collection of civil engineering reliability problems, which includes a bridge crane, a retaining wall and a composite breakwater. Finally, the sensitivity analysis formulas are extended to calculus of variations problems and a slope stability problem is used to illustrate the methods

  17. Infusing Reliability Techniques into Software Safety Analysis

    Science.gov (United States)

    Shi, Ying

    2015-01-01

    Software safety analysis for a large software intensive system is always a challenge. Software safety practitioners need to ensure that software related hazards are completely identified, controlled, and tracked. This paper discusses in detail how to incorporate the traditional reliability techniques into the entire software safety analysis process. In addition, this paper addresses how information can be effectively shared between the various practitioners involved in the software safety analyses. The author has successfully applied the approach to several aerospace applications. Examples are provided to illustrate the key steps of the proposed approach.

  18. Sensitivity analysis in optimization and reliability problems

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Enrique [Department of Applied Mathematics and Computational Sciences, University of Cantabria, Avda. Castros s/n., 39005 Santander (Spain)], E-mail: castie@unican.es; Minguez, Roberto [Department of Applied Mathematics, University of Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: roberto.minguez@uclm.es; Castillo, Carmen [Department of Civil Engineering, University of Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: mariacarmen.castillo@uclm.es

    2008-12-15

    The paper starts giving the main results that allow a sensitivity analysis to be performed in a general optimization problem, including sensitivities of the objective function, the primal and the dual variables with respect to data. In particular, general results are given for non-linear programming, and closed formulas for linear programming problems are supplied. Next, the methods are applied to a collection of civil engineering reliability problems, which includes a bridge crane, a retaining wall and a composite breakwater. Finally, the sensitivity analysis formulas are extended to calculus of variations problems and a slope stability problem is used to illustrate the methods.

  19. The quantitative failure of human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C.T.

    1995-07-01

    This philosophical treatise argues the merits of Human Reliability Analysis (HRA) in the context of the nuclear power industry. Actually, the author attacks historic and current HRA as having failed in informing policy makers who make decisions based on risk that humans contribute to systems performance. He argues for an HRA based on Bayesian (fact-based) inferential statistics, which advocates a systems analysis process that employs cogent heuristics when using opinion, and tempers itself with a rational debate over the weight given subjective and empirical probabilities.

  20. Reliability Analysis of Brittle, Thin Walled Structures

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan A Salem and Lynn Powers

    2007-02-09

    One emerging application for ceramics is diesel particulate filters being used order to meet EPA regulations going into effect in 2008. Diesel particulates are known to be carcinogenic and thus need to be minimized. Current systems use filters made from ceramics such as mullite and corderite. The filters are brittle and must operate at very high temperatures during a burn out cycle used to remove the soot buildup. Thus the filters are subjected to thermal shock stresses and life time reliability analysis is required. NASA GRC has developed reliability based design methods and test methods for such applications, such as CARES/Life and American Society for Testing and Materials (ASTM) C1499 “Standard Test Method for Equibiaxial Strength of Ceramics.”

  1. Subset simulation for structural reliability sensitivity analysis

    International Nuclear Information System (INIS)

    Based on two procedures for efficiently generating conditional samples, i.e. Markov chain Monte Carlo (MCMC) simulation and importance sampling (IS), two reliability sensitivity (RS) algorithms are presented. On the basis of reliability analysis of Subset simulation (Subsim), the RS of the failure probability with respect to the distribution parameter of the basic variable is transformed as a set of RS of conditional failure probabilities with respect to the distribution parameter of the basic variable. By use of the conditional samples generated by MCMC simulation and IS, procedures are established to estimate the RS of the conditional failure probabilities. The formulae of the RS estimator, its variance and its coefficient of variation are derived in detail. The results of the illustrations show high efficiency and high precision of the presented algorithms, and it is suitable for highly nonlinear limit state equation and structural system with single and multiple failure modes

  2. Reliability analysis of the diesel generators

    International Nuclear Information System (INIS)

    The Operating Experience of the Diesel generators of the Italian Nuclear Power Plants has been analysed, in order to evaluate their quality level in comparison with the requirements defined in the design and to identify possible improving measures to be implemented both on operating and under construction plants. The collected data have been classified and elaborated, with the purpose to evaluate availability on demand and reliability in operation for each diesel. A comparison between the calculated reliability parameters and the corresponding international ones was also performed. Recurring failure modes were specifically analysed. In addition, an analysis of homogeneity for the diesels of the same plant and of all the plants is reported as well. In such a way, some critical subsystems of DGs has been identified. Moreover hardware modifications and surveillance program improvements have been found out, such to ensure better performance of the on-site electric power system

  3. System reliability analysis with natural language and expert's subjectivity

    International Nuclear Information System (INIS)

    This paper introduces natural language expressions and expert's subjectivity to system reliability analysis. To this end, this paper defines a subjective measure of reliability and presents the method of the system reliability analysis using the measure. The subjective measure of reliability corresponds to natural language expressions of reliability estimation, which is represented by a fuzzy set defined on [0,1]. The presented method deals with the dependence among subsystems and employs parametrized operations of subjective measures of reliability which can reflect expert 's subjectivity towards the analyzed system. The analysis results are also expressed by linguistic terms. Finally this paper gives an example of the system reliability analysis by the presented method

  4. ZERBERUS - the code for reliability analysis of crack containing structures

    International Nuclear Information System (INIS)

    Brief description of the First- and Second Order Reliability Methods, being the theoretical background of the code, is given. The code structure is described in detail, with special emphasis to the new application fields. The numerical example investigates failure probability of steam generator tubing affected by stress corrosion cracking. The changes necessary to accommodate this analysis within the ZERBERUS code are explained. Analysis results are compared to different Monte Carlo techniques. (orig./HP)

  5. Probability techniques for reliability analysis of composite materials

    Science.gov (United States)

    Wetherhold, Robert C.; Ucci, Anthony M.

    1994-01-01

    Traditional design approaches for composite materials have employed deterministic criteria for failure analysis. New approaches are required to predict the reliability of composite structures since strengths and stresses may be random variables. This report will examine and compare methods used to evaluate the reliability of composite laminae. The two types of methods that will be evaluated are fast probability integration (FPI) methods and Monte Carlo methods. In these methods, reliability is formulated as the probability that an explicit function of random variables is less than a given constant. Using failure criteria developed for composite materials, a function of design variables can be generated which defines a 'failure surface' in probability space. A number of methods are available to evaluate the integration over the probability space bounded by this surface; this integration delivers the required reliability. The methods which will be evaluated are: the first order, second moment FPI methods; second order, second moment FPI methods; the simple Monte Carlo; and an advanced Monte Carlo technique which utilizes importance sampling. The methods are compared for accuracy, efficiency, and for the conservativism of the reliability estimation. The methodology involved in determining the sensitivity of the reliability estimate to the design variables (strength distributions) and importance factors is also presented.

  6. Reliability analysis of containment isolation systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelto, P.J.; Ames, K.R.; Gallucci, R.H.

    1985-06-01

    This report summarizes the results of the Reliability Analysis of Containment Isolation System Project. Work was performed in five basic areas: design review, operating experience review, related research review, generic analysis and plant specific analysis. Licensee Event Reports (LERs) and Integrated Leak Rate Test (ILRT) reports provided the major sources of containment performance information used in this study. Data extracted from LERs were assembled into a computer data base. Qualitative and quantitative information developed for containment performance under normal operating conditions and design basis accidents indicate that there is room for improvement. A rough estimate of overall containment unavailability for relatively small leaks which violate plant technical specifications is 0.3. An estimate of containment unavailability due to large leakage events is in the range of 0.001 to 0.01. These estimates are dependent on several assumptions (particularly on event duration times) which are documented in the report.

  7. Reliability analysis of containment isolation systems

    International Nuclear Information System (INIS)

    This report summarizes the results of the Reliability Analysis of Containment Isolation System Project. Work was performed in five basic areas: design review, operating experience review, related research review, generic analysis and plant specific analysis. Licensee Event Reports (LERs) and Integrated Leak Rate Test (ILRT) reports provided the major sources of containment performance information used in this study. Data extracted from LERs were assembled into a computer data base. Qualitative and quantitative information developed for containment performance under normal operating conditions and design basis accidents indicate that there is room for improvement. A rough estimate of overall containment unavailability for relatively small leaks which violate plant technical specifications is 0.3. An estimate of containment unavailability due to large leakage events is in the range of 0.001 to 0.01. These estimates are dependent on several assumptions (particularly on event duration times) which are documented in the report

  8. Enertech High Reliability prototype vibration analysis

    Science.gov (United States)

    Sexton, J. H.

    Modal analysis techniques were experimentally applied to study the dynamic interaction between a wind turbine generator and its support tower. Details of the techniques applied and corresponding results are discussed. Results of vibration tests indicate the Enertech High-Reliability wind turbine generator (WTG/support structure) second mode bending was 13.2 Hz, while the blade's first mode bending frequencies were 12.4 Hz for blade two and 14.6 Hz for blade one. Significant WTG/tower response was observed and recorded during WTG operation which was traced to this system response characteristic.

  9. Human reliability analysis under fire condition

    International Nuclear Information System (INIS)

    It is identified in the fire probabilistic safety assessment (PSA) of nuclear power plants that human action has important effect on the risk of plant under fire condition. So it's necessary to assess human error probability under fire condition by the systemic methodology. The HCR/ORE and CBDTM models and specific considerations under fire condition were described in this paper. The combination of HCR/ORE, CBDTM and THERP was applied to human reliability analysis (HRA) under fire condition with an example given for demonstration. The basement of setting up the more practical fire PSA models for engineering is established. (authors)

  10. Bayesian networks with applications in reliability analysis

    OpenAIRE

    Langseth, Helge

    2002-01-01

    A common goal of the papers in this thesis is to propose, formalize and exemplify the use of Bayesian networks as a modelling tool in reliability analysis. The papers span work in which Bayesian networks are merely used as a modelling tool (Paper I), work where models are specially designed to utilize the inference algorithms of Bayesian networks (Paper II and Paper III), and work where the focus has been on extending the applicability of Bayesian networks to very large domains (Paper IV and ...

  11. RELAV - RELIABILITY/AVAILABILITY ANALYSIS PROGRAM

    Science.gov (United States)

    Bowerman, P. N.

    1994-01-01

    RELAV (Reliability/Availability Analysis Program) is a comprehensive analytical tool to determine the reliability or availability of any general system which can be modeled as embedded k-out-of-n groups of items (components) and/or subgroups. Both ground and flight systems at NASA's Jet Propulsion Laboratory have utilized this program. RELAV can assess current system performance during the later testing phases of a system design, as well as model candidate designs/architectures or validate and form predictions during the early phases of a design. Systems are commonly modeled as System Block Diagrams (SBDs). RELAV calculates the success probability of each group of items and/or subgroups within the system assuming k-out-of-n operating rules apply for each group. The program operates on a folding basis; i.e. it works its way towards the system level from the most embedded level by folding related groups into single components. The entire folding process involves probabilities; therefore, availability problems are performed in terms of the probability of success, and reliability problems are performed for specific mission lengths. An enhanced cumulative binomial algorithm is used for groups where all probabilities are equal, while a fast algorithm based upon "Computing k-out-of-n System Reliability", Barlow & Heidtmann, IEEE TRANSACTIONS ON RELIABILITY, October 1984, is used for groups with unequal probabilities. Inputs to the program include a description of the system and any one of the following: 1) availabilities of the items, 2) mean time between failures and mean time to repairs for the items from which availabilities are calculated, 3) mean time between failures and mission length(s) from which reliabilities are calculated, or 4) failure rates and mission length(s) from which reliabilities are calculated. The results are probabilities of success of each group and the system in the given configuration. RELAV assumes exponential failure distributions for reliability calculations and infinite repair resources for availability calculations. No more than 967 items or groups can be modeled by RELAV. If larger problems can be broken into subsystems of 967 items or less, the subsystem results can be used as item inputs to a system problem. The calculated availabilities are steady-state values. Group results are presented in the order in which they were calculated (from the most embedded level out to the system level). This provides a good mechanism to perform trade studies. Starting from the system result and working backwards, the granularity gets finer; therefore, system elements that contribute most to system degradation are detected quickly. RELAV is a C-language program originally developed under the UNIX operating system on a MASSCOMP MC500 computer. It has been modified, as necessary, and ported to an IBM PC compatible with a math coprocessor. The current version of the program runs in the DOS environment and requires a Turbo C vers. 2.0 compiler. RELAV has a memory requirement of 103 KB and was developed in 1989. RELAV is a copyrighted work with all copyright vested in NASA.

  12. Comparative availability and reliability assessment of design options for the secondary sodium loops of the EFR

    International Nuclear Information System (INIS)

    The EFR (European Fast Reactor) project has entered a conceptual study period where different design alternatives are compared concerning feasibility, safety and economic aspects. This paper describes a comparative probabilistic availability and reliability assessment of alternative design options for the secondary sodium loops. These loops will provide heat transfer from the reactor pool to the water-steam (power generating) side. So a high operational availability of the secondary loops during plant lifetime is essential for economic power generation. Additionally a high reliability is required to fulfill the operational decay heat removal function in case of a reactor trip. Availabilities and reliabilities of the different options were assessed using failure mode and effect analysis and the fault tree method. (orig.)

  13. CRAX/Cassandra Reliability Analysis Software

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, D.

    1999-02-10

    Over the past few years Sandia National Laboratories has been moving toward an increased dependence on model- or physics-based analyses as a means to assess the impact of long-term storage on the nuclear weapons stockpile. These deterministic models have also been used to evaluate replacements for aging systems, often involving commercial off-the-shelf components (COTS). In addition, the models have been used to assess the performance of replacement components manufactured via unique, small-lot production runs. In either case, the limited amount of available test data dictates that the only logical course of action to characterize the reliability of these components is to specifically consider the uncertainties in material properties, operating environment etc. within the physics-based (deterministic) model. This not only provides the ability to statistically characterize the expected performance of the component or system, but also provides direction regarding the benefits of additional testing on specific components within the system. An effort was therefore initiated to evaluate the capabilities of existing probabilistic methods and, if required, to develop new analysis methods to support the inclusion of uncertainty in the classical design tools used by analysts and design engineers at Sandia. The primary result of this effort is the CMX (Cassandra Exoskeleton) reliability analysis software.

  14. Advancing Usability Evaluation through Human Reliability Analysis

    International Nuclear Information System (INIS)

    This paper introduces a novel augmentation to the current heuristic usability evaluation methodology. The SPAR-H human reliability analysis method was developed for categorizing human performance in nuclear power plants. Despite the specialized use of SPAR-H for safety critical scenarios, the method also holds promise for use in commercial off-the-shelf software usability evaluations. The SPAR-H method shares task analysis underpinnings with human-computer interaction, and it can be easily adapted to incorporate usability heuristics as performance shaping factors. By assigning probabilistic modifiers to heuristics, it is possible to arrive at the usability error probability (UEP). This UEP is not a literal probability of error but nonetheless provides a quantitative basis to heuristic evaluation. When combined with a consequence matrix for usability errors, this method affords ready prioritization of usability issues

  15. Structural reliability analysis of laminated CMC components

    Science.gov (United States)

    Duffy, Stephen F.; Palko, Joseph L.; Gyekenyesi, John P.

    1991-01-01

    For laminated ceramic matrix composite (CMC) materials to realize their full potential in aerospace applications, design methods and protocols are a necessity. The time independent failure response of these materials is focussed on and a reliability analysis is presented associated with the initiation of matrix cracking. A public domain computer algorithm is highlighted that was coupled with the laminate analysis of a finite element code and which serves as a design aid to analyze structural components made from laminated CMC materials. Issues relevant to the effect of the size of the component are discussed, and a parameter estimation procedure is presented. The estimation procedure allows three parameters to be calculated from a failure population that has an underlying Weibull distribution.

  16. Integrated Reliability and Risk Analysis System (IRRAS)

    International Nuclear Information System (INIS)

    The Integrated Reliability and Risk Analysis System (IRRAS) is a state-of-the-art, microcomputer-based probabilistic risk assessment (PRA) model development and analysis tool to address key nuclear plant safety issues. IRRAS is an integrated software tool that gives the user the ability to create and analyze fault trees and accident sequences using a microcomputer. This program provides functions that range from graphical fault tree construction to cut set generation and quantification. Version 1.0 of the IRRAS program was released in February of 1987. Since that time, many user comments and enhancements have been incorporated into the program providing a much more powerful and user-friendly system. This version has been designated IRRAS 4.0 and is the subject of this Reference Manual. Version 4.0 of IRRAS provides the same capabilities as Version 1.0 and adds a relational data base facility for managing the data, improved functionality, and improved algorithm performance

  17. Integrated Reliability and Risk Analysis System (IRRAS)

    Energy Technology Data Exchange (ETDEWEB)

    Russell, K D; McKay, M K; Sattison, M.B. Skinner, N.L.; Wood, S T [EG and G Idaho, Inc., Idaho Falls, ID (United States); Rasmuson, D M [Nuclear Regulatory Commission, Washington, DC (United States)

    1992-01-01

    The Integrated Reliability and Risk Analysis System (IRRAS) is a state-of-the-art, microcomputer-based probabilistic risk assessment (PRA) model development and analysis tool to address key nuclear plant safety issues. IRRAS is an integrated software tool that gives the user the ability to create and analyze fault trees and accident sequences using a microcomputer. This program provides functions that range from graphical fault tree construction to cut set generation and quantification. Version 1.0 of the IRRAS program was released in February of 1987. Since that time, many user comments and enhancements have been incorporated into the program providing a much more powerful and user-friendly system. This version has been designated IRRAS 4.0 and is the subject of this Reference Manual. Version 4.0 of IRRAS provides the same capabilities as Version 1.0 and adds a relational data base facility for managing the data, improved functionality, and improved algorithm performance.

  18. Advancing Usability Evaluation through Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; David I. Gertman

    2005-07-01

    This paper introduces a novel augmentation to the current heuristic usability evaluation methodology. The SPAR-H human reliability analysis method was developed for categorizing human performance in nuclear power plants. Despite the specialized use of SPAR-H for safety critical scenarios, the method also holds promise for use in commercial off-the-shelf software usability evaluations. The SPAR-H method shares task analysis underpinnings with human-computer interaction, and it can be easily adapted to incorporate usability heuristics as performance shaping factors. By assigning probabilistic modifiers to heuristics, it is possible to arrive at the usability error probability (UEP). This UEP is not a literal probability of error but nonetheless provides a quantitative basis to heuristic evaluation. When combined with a consequence matrix for usability errors, this method affords ready prioritization of usability issues.

  19. SURE reliability analysis: Program and mathematics

    Science.gov (United States)

    Butler, Ricky W.; White, Allan L.

    1988-01-01

    The SURE program is a new reliability analysis tool for ultrareliable computer system architectures. The computational methods on which the program is based provide an efficient means for computing accurate upper and lower bounds for the death state probabilities of a large class of semi-Markov models. Once a semi-Markov model is described using a simple input language, the SURE program automatically computes the upper and lower bounds on the probability of system failure. A parameter of the model can be specified as a variable over a range of values directing the SURE program to perform a sensitivity analysis automatically. This feature, along with the speed of the program, makes it especially useful as a design tool.

  20. A comparative study on the reliability of open cluster parameters

    Science.gov (United States)

    Netopil, M.; Paunzen, E.; Carraro, G.

    2015-10-01

    Context. Open clusters are known as excellent tracers of the structure and chemical evolution of the Galactic disk, however, the accuracy and reliability of open cluster parameters is poorly known. Aims: In recent years, several studies aimed to present homogeneous open cluster parameter compilations, which are based on some different approaches and photometric data. These catalogues are excellent sources to facilitate testing of the actual accuracy of open cluster parameters. Methods: We compare seven cluster parameter compilations statistically and with an external sample, which comprises the mean results of individual studies. Furthermore, we selected the objects IC 4651, NGC 2158, NGC 2383, NGC 2489, NGC 2627, NGC 6603, and Trumpler 14, with the main aim to highlight differences in the fitting solutions. Results: We derived correction terms for each cluster parameter, using the external calibration sample. Most results by the compilations are reasonable scaled, but there are trends or constant offsets of different degree. We also identified one data set, which appears too erroneous to allow adjustments. After the correction, the mean intrinsic errors amount to about 0.2 dex for the age, 0.08 mag for the reddening, and 0.35 mag for the distance modulus. However, there is no study that characterises the cluster morphologies of all test cases in a correct and consistent manner. Furthermore, we found that the largest compilations probably include at least 20 percent of problematic objects, for which the parameters differ significantly. These could be among others doubtful or unlikely open clusters that do not facilitate an unambiguous fitting solution.

  1. Safety and reliability assessment by using dynamic reliability analysis method

    International Nuclear Information System (INIS)

    DYLAM and its related applications are reviewed in detail and found to have many favorable characteristics. Concerning human factor analysis, the study demonstrates that DYLAM methodology represents and appropriate tool to study man-machine behavior provided that DYLAM is used to model machine behavior and an appropriate operator interface human factor model is included. A hybrid model which is a synthesis of the DYLAM model, a system thermodynamic simulation model and a neutral network predicative model, is implemented and used to analyze dynamically the CANDU pressurizer system

  2. Estimating Reliability of Power Factor Correction Circuits: A Comparative Study

    Directory of Open Access Journals (Sweden)

    P.Srinivas

    2015-04-01

    Full Text Available Reliability plays an important role in power supplies, as every power supply is the very heart of every electronics equipment. For other electronic equipment, a certain failure mode, at least for a part of the total system, can often be tolerated without serious (critical after effects. However, for the power supply no such condition can be accepted, since very high demands on the reliability must be achieved. At higher power levels, the CCM boost converter is preferred topology for implementation a front end with PFC. As a result significant efforts have been made to improve the performance of high boost converter. This paper is one the effort for improving the performance of the converter from the reliability point of view. In this paper a boost power factor correction converter is simulated with single switch and interleaving technique in CCM, DCM and CRM modes under different output power ratings and the reliability. Results of the converter are explored from reliability point of view.

  3. Reliability analysis of NAPP liquid rods shutdown system

    International Nuclear Information System (INIS)

    A reliability analysis has been conducted for the liquid rod shut off system of the reactor at Narora atomic power plant. The liquid rod system is described. The reliability analysis takes into account component failure rates, unavailabilities, failure modes and probabilities. The importance of reliability analysis in the design of a system is pointed out. (A.K.)

  4. Reliability analysis of pipe whip impacts

    International Nuclear Information System (INIS)

    A probability-based approach is presented as the integration of probabilistic methods and deterministic modelling based on the finite element method. An existing finite element software package was linked to an existing probabilistic package to analyse the complex mechanics that occur during the transient non-linear analysis of impact problems. This methodology is applied to a pipe whip analysis of a group-distribution-header, which results from a guillotine break, and subsequent impact with the adjacent building wall; this is a postulated accident for the Ignalina Nuclear Power Plant RBMK-1500 reactors. The uncertainties of material properties, component geometry data and loads were taken into consideration. The probabilities of failure of the impacted header and of the header support-wall were estimated given uncertainties in material properties, geometrical parameters and loading. The software ProFES was used for the probabilistic analysis and the finite element software NEPTUNE for deterministic structural integrity evaluation. The Monte Carlo Simulation, First Order Reliability method and Response Surface method were used in the probabilistic analysis

  5. Structural reliability analysis based on the cokriging technique

    International Nuclear Information System (INIS)

    Approximation methods are widely used in structural reliability analysis because they are simple to create and provide explicit functional relationships between the responses and variables in stead of the implicit limit state function. Recently, the kriging method which is a semi-parameter interpolation technique that can be used for deterministic optimization and structural reliability has gained popularity. However, to fully exploit the kriging method, especially in high-dimensional problems, a large number of sample points should be generated to fill the design space and this can be very expensive and even impractical in practical engineering analysis. Therefore, in this paper, a new method-the cokriging method, which is an extension of kriging, is proposed to calculate the structural reliability. cokriging approximation incorporates secondary information such as the values of the gradients of the function being approximated. This paper explores the use of the cokriging method for structural reliability problems by comparing it with the Kriging method based on some numerical examples. The results indicate that the cokriging procedure described in this work can generate approximation models to improve on the accuracy and efficiency for structural reliability problems and is a viable alternative to the kriging.

  6. Reliability analysis for seismically isolated FBR system

    International Nuclear Information System (INIS)

    In recent years base isolation system has been applied for important structures such as those of nuclear facilities, and introducing the isolation system to FBR system to be constructed in seismically active region is planned. And for those structures evaluation of reliability for earthquakes is emerging as a matter of concern. For non-isolated LWR systems extensive studies have been conducted and the methodology regarding to seismic PSA has been developed so far. However, for the isolated structures with natural period considerably longer than that of non-isolated structure and isolators behaving inelastically under design earthquake motion, the method developed for non-isolated structure can not be applied directly. In this paper a simplified method for the evaluation of fragility of the isolated structure is presented, and the result of fragility analysis is shown

  7. HUMAN RELIABILITY ANALYSIS FOR COMPUTERIZED PROCEDURES

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; David I. Gertman; Katya Le Blanc

    2011-09-01

    This paper provides a characterization of human reliability analysis (HRA) issues for computerized procedures in nuclear power plant control rooms. It is beyond the scope of this paper to propose a new HRA approach or to recommend specific methods or refinements to those methods. Rather, this paper provides a review of HRA as applied to traditional paper-based procedures, followed by a discussion of what specific factors should additionally be considered in HRAs for computerized procedures. Performance shaping factors and failure modes unique to computerized procedures are highlighted. Since there is no definitive guide to HRA for paper-based procedures, this paper also serves to clarify the existing guidance on paper-based procedures before delving into the unique aspects of computerized procedures.

  8. Structural reliability analysis of spillway gates

    International Nuclear Information System (INIS)

    Concerns regarding the deterioration and the need to rehabilitate several of the major components of aging concrete dams in southern Quebec are discussed. Most of the dams were built before 1960 and are reaching their design life. This paper described an analytical procedure for determining if spillway gates need to be replaced or how much longer they can be expected to last. The procedure is based on reliability analysis and incorporates a model to predict the rate of corrosion of the gates. The procedure accounts for the variability in loads, deterioration processes and the geometrical and mechanical properties of the gates. Bayesian statistics are included to allow the model to be adjusted as new data becomes available. 16 refs., 2 tabs., 7 figs

  9. Human Reliability Analysis for Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; David I. Gertman

    2012-06-01

    Because no human reliability analysis (HRA) method was specifically developed for small modular reactors (SMRs), the application of any current HRA method to SMRs represents tradeoffs. A first- generation HRA method like THERP provides clearly defined activity types, but these activity types do not map to the human-system interface or concept of operations confronting SMR operators. A second- generation HRA method like ATHEANA is flexible enough to be used for SMR applications, but there is currently insufficient guidance for the analyst, requiring considerably more first-of-a-kind analyses and extensive SMR expertise in order to complete a quality HRA. Although no current HRA method is optimized to SMRs, it is possible to use existing HRA methods to identify errors, incorporate them as human failure events in the probabilistic risk assessment (PRA), and quantify them. In this paper, we provided preliminary guidance to assist the human reliability analyst and reviewer in understanding how to apply current HRA methods to the domain of SMRs. While it is possible to perform a satisfactory HRA using existing HRA methods, ultimately it is desirable to formally incorporate SMR considerations into the methods. This may require the development of new HRA methods. More practicably, existing methods need to be adapted to incorporate SMRs. Such adaptations may take the form of guidance on the complex mapping between conventional light water reactors and small modular reactors. While many behaviors and activities are shared between current plants and SMRs, the methods must adapt if they are to perform a valid and accurate analysis of plant personnel performance in SMRs.

  10. Comparative assessment of selected PWR auxiliary feedwater system reliability analyses

    International Nuclear Information System (INIS)

    This paper presents a sample of results obtained in reviewing utility submittals of Auxiliary Feedwater System reliability studies. These results are then used to illustrate a few general points regarding such studies. The submittals and reviews for operating license applications are quite significant in that they represent an application of probabilistic risk assessment techniques in the licensing process

  11. Reliability analysis of nonlinear MDOF dynamic systems

    International Nuclear Information System (INIS)

    One of the more practical approximations that are currently used by the nuclear power profession for the purpose of design s well as analysis consists of utilizing the response modification factor (RMF). This factor was originally developed for single-degree-of-freedom systems for their nonlinear response analysis and design. Use of RMF is not effective, however, for multiple-degree-of-freedom (MDOF) systems because the nonlinear deformation usually concentrates at certain part of the systems. In this context, the present authors recently developed a method of optimum design which minimizes the spatial concentration of nonlinear deformation within each building, regardless of its specific dynamic characteristics. This paper demonstrates a method of reliability analysis for MDOF buildings thus optimally designed. In this paper, nonlinear MDOF shear-type systems designed optimally are subjected to seismic motions idealized as a nonstationary stochastic process. With the aids of the established RMF-ductility factor relationship for the optimum system, RMF can be used to develop the limit state in the equivalent linear systems

  12. Task Decomposition in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory; Joe, Jeffrey Clark [Idaho National Laboratory

    2014-06-01

    In the probabilistic safety assessments (PSAs) used in the nuclear industry, human failure events (HFEs) are determined as a subset of hardware failures, namely those hardware failures that could be triggered by human action or inaction. This approach is top-down, starting with hardware faults and deducing human contributions to those faults. Elsewhere, more traditionally human factors driven approaches would tend to look at opportunities for human errors first in a task analysis and then identify which of those errors is risk significant. The intersection of top-down and bottom-up approaches to defining HFEs has not been carefully studied. Ideally, both approaches should arrive at the same set of HFEs. This question remains central as human reliability analysis (HRA) methods are generalized to new domains like oil and gas. The HFEs used in nuclear PSAs tend to be top-down— defined as a subset of the PSA—whereas the HFEs used in petroleum quantitative risk assessments (QRAs) are more likely to be bottom-up—derived from a task analysis conducted by human factors experts. The marriage of these approaches is necessary in order to ensure that HRA methods developed for top-down HFEs are also sufficient for bottom-up applications.

  13. Development of design framework based on reliability analysis using MATLAB

    International Nuclear Information System (INIS)

    The aim of this research is to implement a design framework based on reliability analysis and make it possibly used for a reliable and robust design under uncertainties. Different types of reliability methods and algorithms are programmed to explore their characteristics. In our work, RIA and the PMA are employed for formulating the reliability analysis problems. A number of reliability methods are introduced in this program such as FORM, AMV/AMV+ and MCS. Reliability analysis can be easily performed with this tool box only if a drive file is ready to run. Users need to select random design variables and define their distributions and correlation

  14. Models of network reliability analysis, combinatorics, and Monte Carlo

    CERN Document Server

    Gertsbakh, Ilya B

    2009-01-01

    Unique in its approach, Models of Network Reliability: Analysis, Combinatorics, and Monte Carlo provides a brief introduction to Monte Carlo methods along with a concise exposition of reliability theory ideas. From there, the text investigates a collection of principal network reliability models, such as terminal connectivity for networks with unreliable edges and/or nodes, network lifetime distribution in the process of its destruction, network stationary behavior for renewable components, importance measures of network elements, reliability gradient, and network optimal reliability synthesis

  15. Reliability & Sensitivity Analysis of IKR Regional power Network

    Directory of Open Access Journals (Sweden)

    Asso Raouf Majeed

    2011-12-01

    Full Text Available This paper presents a developed algorithm for reliability sensitivity analysis of engineering networks. . Reliability Modeling is proposed for the Iraqi Kurdistan Regional Power Network (IKRPN using Symbolic Reliability function of the model. The written Pascal code for the developed algorithm finds efficiently path sets and cut sets of the model. Reliability and Unreliability indices are found. The sensitivity of these indices are found with respect to the variation of the network’s elements reliabilities

  16. Comparative reliability of cheiloscopy and palatoscopy in human identification

    OpenAIRE

    Sharma Preeti; Saxena Susmita; Rathod Vanita

    2009-01-01

    Background: Establishing a person?s identity in postmortem scenarios can be a very difficult process. Dental records, fingerprint and DNA comparisons are probably the most common techniques used in this context, allowing fast and reliable identification processes. However, under certain circumstances they cannot always be used; sometimes it is necessary to apply different and less known techniques. In forensic identification, lip prints and palatal rugae patterns can lead us to import...

  17. Travel time Reliability Analysis Using Entropy

    OpenAIRE

    Neveen Shlayan; Vidhya Kumaresan; Pushkin Kachroo; Brian Hoeft

    2013-01-01

    Travel time reliability is a measure that is commonly extracted from travel time measurements. It has served as a vital indicator of the transportation system’s performance making the concept of obtaining reliability from travel time data very useful. Travel time is a good indicator of the performance of a particular highway segment. However, it does not convey all aspects of the overall performance of the transportation system. Travel Time Reliability is defined as the consistency of traffic...

  18. Analysis of reliability parameters for complicated information measurement systems

    OpenAIRE

    Sydor, Andriy

    2012-01-01

    A method of analysis of reliability parameters for complicated systems by means of generating functions is developed taking account of aging of the systems output elements. Main reliability parameters of complicated information measurement systems are examined in this paper.

  19. Comparison of Methods for Dependency Determination between Human Failure Events within Human Reliability Analysis

    International Nuclear Information System (INIS)

    The human reliability analysis (HRA) is a highly subjective evaluation of human performance, which is an input for probabilistic safety assessment, which deals with many parameters of high uncertainty. The objective of this paper is to show that subjectivism can have a large impact on human reliability results and consequently on probabilistic safety assessment results and applications. The objective is to identify the key features, which may decrease subjectivity of human reliability analysis. Human reliability methods are compared with focus on dependency comparison between Institute Jozef Stefan human reliability analysis (IJS-HRA) and standardized plant analysis risk human reliability analysis (SPAR-H). Results show large differences in the calculated human error probabilities for the same events within the same probabilistic safety assessment, which are the consequence of subjectivity. The subjectivity can be reduced by development of more detailed guidelines for human reliability analysis with many practical examples for all steps of the process of evaluation of human performance

  20. Comparison of methods for dependency determination between human failure events within human reliability analysis

    International Nuclear Information System (INIS)

    The Human Reliability Analysis (HRA) is a highly subjective evaluation of human performance, which is an input for probabilistic safety assessment, which deals with many parameters of high uncertainty. The objective of this paper is to show that subjectivism can have a large impact on human reliability results and consequently on probabilistic safety assessment results and applications. The objective is to identify the key features, which may decrease of subjectivity of human reliability analysis. Human reliability methods are compared with focus on dependency comparison between Institute Jozef Stefan - Human Reliability Analysis (IJS-HRA) and Standardized Plant Analysis Risk Human Reliability Analysis (SPAR-H). Results show large differences in the calculated human error probabilities for the same events within the same probabilistic safety assessment, which are the consequence of subjectivity. The subjectivity can be reduced by development of more detailed guidelines for human reliability analysis with many practical examples for all steps of the process of evaluation of human performance. (author)

  1. Probabilistic risk assessment course documentation. Volume 3. System reliability and analysis techniques, Session A - reliability

    International Nuclear Information System (INIS)

    This course in System Reliability and Analysis Techniques focuses on the quantitative estimation of reliability at the systems level. Various methods are reviewed, but the structure provided by the fault tree method is used as the basis for system reliability estimates. The principles of fault tree analysis are briefly reviewed. Contributors to system unreliability and unavailability are reviewed, models are given for quantitative evaluation, and the requirements for both generic and plant-specific data are discussed. Also covered are issues of quantifying component faults that relate to the systems context in which the components are embedded. All reliability terms are carefully defined. 44 figs., 22 tabs

  2. Reliability test and failure analysis of high power LED packages

    Science.gov (United States)

    Zhaohui, Chen; Qin, Zhang; Kai, Wang; Xiaobing, Luo; Sheng, Liu

    2011-01-01

    A new type application specific light emitting diode (LED) package (ASLP) with freeform polycarbonate lens for street lighting is developed, whose manufacturing processes are compatible with a typical LED packaging process. The reliability test methods and failure criterions from different vendors are reviewed and compared. It is found that test methods and failure criterions are quite different. The rapid reliability assessment standards are urgently needed for the LED industry. 85 °C/85 RH with 700 mA is used to test our LED modules with three other vendors for 1000 h, showing no visible degradation in optical performance for our modules, with two other vendors showing significant degradation. Some failure analysis methods such as C-SAM, Nano X-ray CT and optical microscope are used for LED packages. Some failure mechanisms such as delaminations and cracks are detected in the LED packages after the accelerated reliability testing. The finite element simulation method is helpful for the failure analysis and design of the reliability of the LED packaging. One example is used to show one currently used module in industry is vulnerable and may not easily pass the harsh thermal cycle testing.

  3. Reliability test and failure analysis of high power LED packages

    International Nuclear Information System (INIS)

    A new type application specific light emitting diode (LED) package (ASLP) with freeform polycarbonate lens for street lighting is developed, whose manufacturing processes are compatible with a typical LED packaging process. The reliability test methods and failure criterions from different vendors are reviewed and compared. It is found that test methods and failure criterions are quite different. The rapid reliability assessment standards are urgently needed for the LED industry. 85 0C/85 RH with 700 mA is used to test our LED modules with three other vendors for 1000 h, showing no visible degradation in optical performance for our modules, with two other vendors showing significant degradation. Some failure analysis methods such as C-SAM, Nano X-ray CT and optical microscope are used for LED packages. Some failure mechanisms such as delaminations and cracks are detected in the LED packages after the accelerated reliability testing. The finite element simulation method is helpful for the failure analysis and design of the reliability of the LED packaging. One example is used to show one currently used module in industry is vulnerable and may not easily pass the harsh thermal cycle testing. (semiconductor devices)

  4. Individual Differences in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. Joe; Ronald L. Boring

    2014-06-01

    While human reliability analysis (HRA) methods include uncertainty in quantification, the nominal model of human error in HRA typically assumes that operator performance does not vary significantly when they are given the same initiating event, indicators, procedures, and training, and that any differences in operator performance are simply aleatory (i.e., random). While this assumption generally holds true when performing routine actions, variability in operator response has been observed in multiple studies, especially in complex situations that go beyond training and procedures. As such, complexity can lead to differences in operator performance (e.g., operator understanding and decision-making). Furthermore, psychological research has shown that there are a number of known antecedents (i.e., attributable causes) that consistently contribute to observable and systematically measurable (i.e., not random) differences in behavior. This paper reviews examples of individual differences taken from operational experience and the psychological literature. The impact of these differences in human behavior and their implications for HRA are then discussed. We propose that individual differences should not be treated as aleatory, but rather as epistemic. Ultimately, by understanding the sources of individual differences, it is possible to remove some epistemic uncertainty from analyses.

  5. Space Mission Human Reliability Analysis (HRA) Project

    Science.gov (United States)

    Boyer, Roger

    2014-01-01

    The purpose of the Space Mission Human Reliability Analysis (HRA) Project is to extend current ground-based HRA risk prediction techniques to a long-duration, space-based tool. Ground-based HRA methodology has been shown to be a reasonable tool for short-duration space missions, such as Space Shuttle and lunar fly-bys. However, longer-duration deep-space missions, such as asteroid and Mars missions, will require the crew to be in space for as long as 400 to 900 day missions with periods of extended autonomy and self-sufficiency. Current indications show higher risk due to fatigue, physiological effects due to extended low gravity environments, and others, may impact HRA predictions. For this project, Safety & Mission Assurance (S&MA) will work with Human Health & Performance (HH&P) to establish what is currently used to assess human reliabiilty for human space programs, identify human performance factors that may be sensitive to long duration space flight, collect available historical data, and update current tools to account for performance shaping factors believed to be important to such missions. This effort will also contribute data to the Human Performance Data Repository and influence the Space Human Factors Engineering research risks and gaps (part of the HRP Program). An accurate risk predictor mitigates Loss of Crew (LOC) and Loss of Mission (LOM).The end result will be an updated HRA model that can effectively predict risk on long-duration missions.

  6. Human reliability analysis in Third Qinshan nuclear power plant

    International Nuclear Information System (INIS)

    Human reliability analysis (HRA) is an important component of probabilistic safety assessment (PSA). The design HRA was conducted by AECL and the technique was oversimplified. In order to make HRA represent the operational state of Third Qinshan Nuclear Power Plant more realistically, HRA was re-analyzed, to which dependence between events was added. On the basis of a comparison on internationally prevailing HRA techniques, a standardized THERP+HCR technique was adopted. Compared with AECL results, the updated is basically consistent with AECL analysis, while rationality and accuracy are obviously improved and results are more truthful. (authors)

  7. Reliability analysis of the combined district heating systems

    Science.gov (United States)

    Sharapov, V. I.; Orlov, M. E.; Kunin, M. V.

    2015-12-01

    Technologies that improve the reliability and efficiency of the combined district heating systems in urban areas are considered. The calculation method of reliability of the CHP combined district heating systems is proposed. The comparative estimation of the reliability of traditional and combined district heating systems is performed.

  8. Meta-Analysis of Scale Reliability Using Latent Variable Modeling

    Science.gov (United States)

    Raykov, Tenko; Marcoulides, George A.

    2013-01-01

    A latent variable modeling approach is outlined that can be used for meta-analysis of reliability coefficients of multicomponent measuring instruments. Important limitations of efforts to combine composite reliability findings across multiple studies are initially pointed out. A reliability synthesis procedure is discussed that is based on…

  9. Statistical analysis and modelling of small satellite reliability

    Science.gov (United States)

    Guo, Jian; Monas, Liora; Gill, Eberhard

    2014-05-01

    This paper attempts to characterize failure behaviour of small satellites through statistical analysis of actual in-orbit failures. A unique Small Satellite Anomalies Database comprising empirical failure data of 222 small satellites has been developed. A nonparametric analysis of the failure data has been implemented by means of a Kaplan-Meier estimation. An innovative modelling method, i.e. Bayesian theory in combination with Markov Chain Monte Carlo (MCMC) simulations, has been proposed to model the reliability of small satellites. An extensive parametric analysis using the Bayesian/MCMC method has been performed to fit a Weibull distribution to the data. The influence of several characteristics such as the design lifetime, mass, launch year, mission type and the type of satellite developers on the reliability has been analyzed. The results clearly show the infant mortality of small satellites. Compared with the classical maximum-likelihood estimation methods, the proposed Bayesian/MCMC method results in better fitting Weibull models and is especially suitable for reliability modelling where only very limited failures are observed.

  10. Mathematical Methods in Survival Analysis, Reliability and Quality of Life

    CERN Document Server

    Huber, Catherine; Mesbah, Mounir

    2008-01-01

    Reliability and survival analysis are important applications of stochastic mathematics (probability, statistics and stochastic processes) that are usually covered separately in spite of the similarity of the involved mathematical theory. This title aims to redress this situation: it includes 21 chapters divided into four parts: Survival analysis, Reliability, Quality of life, and Related topics. Many of these chapters were presented at the European Seminar on Mathematical Methods for Survival Analysis, Reliability and Quality of Life in 2006.

  11. Key Reliability Drivers of Liquid Propulsion Engines and A Reliability Model for Sensitivity Analysis

    Science.gov (United States)

    Huang, Zhao-Feng; Fint, Jeffry A.; Kuck, Frederick M.

    2005-01-01

    This paper is to address the in-flight reliability of a liquid propulsion engine system for a launch vehicle. We first establish a comprehensive list of system and sub-system reliability drivers for any liquid propulsion engine system. We then build a reliability model to parametrically analyze the impact of some reliability parameters. We present sensitivity analysis results for a selected subset of the key reliability drivers using the model. Reliability drivers identified include: number of engines for the liquid propulsion stage, single engine total reliability, engine operation duration, engine thrust size, reusability, engine de-rating or up-rating, engine-out design (including engine-out switching reliability, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction), propellant specific hazards, engine start and cutoff transient hazards, engine combustion cycles, vehicle and engine interface and interaction hazards, engine health management system, engine modification, engine ground start hold down with launch commit criteria, engine altitude start (1 in. start), Multiple altitude restart (less than 1 restart), component, subsystem and system design, manufacturing/ground operation support/pre and post flight check outs and inspection, extensiveness of the development program. We present some sensitivity analysis results for the following subset of the drivers: number of engines for the propulsion stage, single engine total reliability, engine operation duration, engine de-rating or up-rating requirements, engine-out design, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction, and engine health management system implementation (basic redlines and more advanced health management systems).

  12. Reliability analysis of pipe whip impacts

    International Nuclear Information System (INIS)

    A probabilistic analysis of a group distribution header (GDH) guillotine break and the damage resulting from the failed GDH impacting against a neighbouring wall was carried out for the Ignalita RBMK-1500 reactor. The NEPTUNE software system was used for the deterministic transient analysis of a GDH guillotine break. Many deterministic analyses were performed using different values of the random variables that were specified by ProFES software. All the deterministic results were transferred to the ProFES system, which then performed probabilistic analyses of piping failure and wall damage. The Monte Carlo Simulation (MCS) method was used to study the sensitivity of the response variables and the effect of uncertainties of material properties and geometry parameters to the probability of limit states. The First Order Reliability Method (FORM) was used to study the probability of failure of the impacted-wall and the support-wall. The Response Surface (RS/MCS) method was used in order to express failure probability as function and to investigate the dependence between impact load and failure probability. The results of the probability analyses for a whipping GDH impacting onto an adjacent wall show that: (i) there is a 0.982 probability that after a GDH guillotine break contact between GDH and wall will occur; (ii) there is a probability of 0.013 that the ultimate tensile strength of concrete at the impact location will be reached, and a through-crack may open; (iii) there is a probability of 0.0126 that the ultimate compressive strength of concrete at the GDH support location will be reached, and the concrete may fail; (iv) at the impact location in the adjacent wall, there is a probability of 0.327 that the ultimate tensile strength of the rebars in the first layer will be reached and the rebars will fail; (v) at the GDH support location, there is a probability of 0.11 that the ultimate stress of the rebars in the first layer will be reached and the rebars will fail. It can be concluded that after a GDH guillotine break, the GDH reinforced concrete support-wall and the impacted wall will develop a through-crack or crush with a probability about 0.013. Only the first layer of rebars, however, will fail in either the impacted-wall or the support-wall with probabilities of 0.327 and 0.11, respectively

  13. Mechanical Properties for Reliability Analysis of Structures in Glassy Carbon

    CERN Document Server

    Garion, Cédric

    2014-01-01

    Despite its good physical properties, the glassy carbon material is not widely used, especially for structural applications. Nevertheless, its transparency to particles and temperature resistance are interesting properties for the applications to vacuum chambers and components in high energy physics. For example, it has been proposed for fast shutter valve in particle accelerator [1] [2]. The mechanical properties have to be carefully determined to assess the reliability of structures in such a material. In this paper, mechanical tests have been carried out to determine the elastic parameters, the strength and toughness on commercial grades. A statistical approach, based on the Weibull’s distribution, is used to characterize the material both in tension and compression. The results are compared to the literature and the difference of properties for these two loading cases is shown. Based on a Finite Element analysis, a statistical approach is applied to define the reliability of a structural component in gl...

  14. Issues in benchmarking human reliability analysis methods: A literature review

    International Nuclear Information System (INIS)

    There is a diversity of human reliability analysis (HRA) methods available for use in assessing human performance within probabilistic risk assessments (PRA). Due to the significant differences in the methods, including the scope, approach, and underlying models, there is a need for an empirical comparison investigating the validity and reliability of the methods. To accomplish this empirical comparison, a benchmarking study comparing and evaluating HRA methods in assessing operator performance in simulator experiments is currently underway. In order to account for as many effects as possible in the construction of this benchmarking study, a literature review was conducted, reviewing past benchmarking studies in the areas of psychology and risk assessment. A number of lessons learned through these studies is presented in order to aid in the design of future HRA benchmarking endeavors.

  15. Failure analysis and reliability improvement of small turbine engine blades

    Science.gov (United States)

    Shee, H. K.; Chen, H. Y.; Yang, T. W.

    1992-07-01

    Analysis and testing procedures for small turbine engines are presented which are aimed at verifying the critical failure modes and improving the performance, reliability, and safety of operating engine blades. These procedures include metallographic examination; chemical ingredient, vibration, modal, and stress analyses; fatigue life prediction; and modal testing with and without coating. It is demonstrated that, for small turbine engine under consideration, the most probable failure mode is the fatigue fracture rather than the creep fracture. An approach based on the reduction of the number of stators from 17 to 14 is found to be the most beneficial for improving the fatigue performance and reliability of engine blades as compared to the surface coating and high strength material approaches. This approach removes vibrational frequencies of the turbine engine from the operating frequencies, thus significantly reducing the vibrational level of engine blades.

  16. Optimization Based Efficiencies in First Order Reliability Analysis

    Science.gov (United States)

    Peck, Jeffrey A.; Mahadevan, Sankaran

    2003-01-01

    This paper develops a method for updating the gradient vector of the limit state function in reliability analysis using Broyden's rank one updating technique. In problems that use commercial code as a black box, the gradient calculations are usually done using a finite difference approach, which becomes very expensive for large system models. The proposed method replaces the finite difference gradient calculations in a standard first order reliability method (FORM) with Broyden's Quasi-Newton technique. The resulting algorithm of Broyden updates within a FORM framework (BFORM) is used to run several example problems, and the results compared to standard FORM results. It is found that BFORM typically requires fewer functional evaluations that FORM to converge to the same answer.

  17. Issues in benchmarking human reliability analysis methods : a literature review.

    Energy Technology Data Exchange (ETDEWEB)

    Lois, Erasmia (US Nuclear Regulatory Commission); Forester, John Alan; Tran, Tuan Q. (Idaho National Laboratory, Idaho Falls, ID); Hendrickson, Stacey M. Langfitt; Boring, Ronald L. (Idaho National Laboratory, Idaho Falls, ID)

    2008-04-01

    There is a diversity of human reliability analysis (HRA) methods available for use in assessing human performance within probabilistic risk assessment (PRA). Due to the significant differences in the methods, including the scope, approach, and underlying models, there is a need for an empirical comparison investigating the validity and reliability of the methods. To accomplish this empirical comparison, a benchmarking study is currently underway that compares HRA methods with each other and against operator performance in simulator studies. In order to account for as many effects as possible in the construction of this benchmarking study, a literature review was conducted, reviewing past benchmarking studies in the areas of psychology and risk assessment. A number of lessons learned through these studies are presented in order to aid in the design of future HRA benchmarking endeavors.

  18. Probabilistic safety analysis and human reliability analysis. Proceedings. Working material

    International Nuclear Information System (INIS)

    An international meeting on Probabilistic Safety Assessment (PSA) and Human Reliability Analysis (HRA) was jointly organized by Electricite de France - Research and Development (EDF DER) and SRI International in co-ordination with the International Atomic Energy Agency. The meeting was held in Paris 21-23 November 1994. A group of international and French specialists in PSA and HRA participated at the meeting and discussed the state of the art and current trends in the following six topics: PSA Methodology; PSA Applications; From PSA to Dependability; Incident Analysis; Safety Indicators; Human Reliability. For each topic a background paper was prepared by EDF/DER and reviewed by the international group of specialists who attended the meeting. The results of this meeting provide a comprehensive overview of the most important questions related to the readiness of PSA for specific uses and areas where further research and development is required. Refs, figs, tabs

  19. Reliability Analysis of Uniaxially Ground Brittle Materials

    Science.gov (United States)

    Salem, Jonathan A.; Nemeth, Noel N.; Powers, Lynn M.; Choi, Sung R.

    1995-01-01

    The fast fracture strength distribution of uniaxially ground, alpha silicon carbide was investigated as a function of grinding angle relative to the principal stress direction in flexure. Both as-ground and ground/annealed surfaces were investigated. The resulting flexural strength distributions were used to verify reliability models and predict the strength distribution of larger plate specimens tested in biaxial flexure. Complete fractography was done on the specimens. Failures occurred from agglomerates, machining cracks, or hybrid flaws that consisted of a machining crack located at a processing agglomerate. Annealing eliminated failures due to machining damage. Reliability analyses were performed using two and three parameter Weibull and Batdorf methodologies. The Weibull size effect was demonstrated for machining flaws. Mixed mode reliability models reasonably predicted the strength distributions of uniaxial flexure and biaxial plate specimens.

  20. Bypassing BDD Construction for Reliability Analysis

    DEFF Research Database (Denmark)

    Williams, Poul Frederick; Nikolskaia, Macha; Rauzy, Antoine

    In this note, we propose a Boolean Expression Diagram (BED)-based algorithm to compute the minimal p-cuts of boolean reliability models such as fault trees. BEDs make it possible to bypass the Binary Decision Diagram (BDD) construction, which is the main cost of fault tree assessment.......In this note, we propose a Boolean Expression Diagram (BED)-based algorithm to compute the minimal p-cuts of boolean reliability models such as fault trees. BEDs make it possible to bypass the Binary Decision Diagram (BDD) construction, which is the main cost of fault tree assessment....

  1. Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues

    International Nuclear Information System (INIS)

    This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.

  2. Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Laurids Boring

    2010-11-01

    This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.

  3. System reliability analysis techniques and their relationship to mechanical/structural reliability problems

    International Nuclear Information System (INIS)

    The paper gives a brief review of the techniques used in the reliability analysis of functional systems. It also considers some of the aspects arising in applying similar techniques to the reliability analysis of mechanical and structural components. The paper concludes that further data acquisition is of prime importance. Additionally, it is suggested that it may be worthwhile to pay increased attention to the on-line monitoring of deterioration in mechanical and structural elements. (orig.)

  4. Reliability and availability analysis for robot subsystem in automotive assembly plant: a case study

    Science.gov (United States)

    Fudzin, A. F.; Majid, M. A. A.

    2015-12-01

    The automotive assembly plant in a manufacturing environment consists of conveying systems and robots. Robots with high reliability will ensure no interruption during production. This study is to analyze the individual robot reliability compared to reliability of robots subsystem in series configuration. Availability was computed based on individual robots breakdown data. Failures due to robots breakdown often occurred during the operations. Actual maintenance data for a period of seven years were used for the analysis. Incorporation of failures rate and mean time between failures yield the reliability computation with the assumption of constant failure rate. Result from the analysis based on 5000 operating hours indicated reliability of series configuration of robots in a subsystem decreased to 2.8% in comparison to 38% reliability of the individual robot with the lowest reliability. The calculated lowest availability of the robots is 99.41%. The robot with the lowest reliability and availability should be considered for replacement.

  5. Reliability estimation in a multilevel confirmatory factor analysis framework.

    Science.gov (United States)

    Geldhof, G John; Preacher, Kristopher J; Zyphur, Michael J

    2014-03-01

    Scales with varying degrees of measurement reliability are often used in the context of multistage sampling, where variance exists at multiple levels of analysis (e.g., individual and group). Because methodological guidance on assessing and reporting reliability at multiple levels of analysis is currently lacking, we discuss the importance of examining level-specific reliability. We present a simulation study and an applied example showing different methods for estimating multilevel reliability using multilevel confirmatory factor analysis and provide supporting Mplus program code. We conclude that (a) single-level estimates will not reflect a scale's actual reliability unless reliability is identical at each level of analysis, (b) 2-level alpha and composite reliability (omega) perform relatively well in most settings, (c) estimates of maximal reliability (H) were more biased when estimated using multilevel data than either alpha or omega, and (d) small cluster size can lead to overestimates of reliability at the between level of analysis. We also show that Monte Carlo confidence intervals and Bayesian credible intervals closely reflect the sampling distribution of reliability estimates under most conditions. We discuss the estimation of credible intervals using Mplus and provide R code for computing Monte Carlo confidence intervals. PMID:23646988

  6. Design Parameters Influencing Reliability of CCGA Assembly: A Sensitivity Analysis

    Science.gov (United States)

    Tasooji, Amaneh; Ghaffarian, Reza; Rinaldi, Antonio

    2006-01-01

    Area Array microelectronic packages with small pitch and large I/O counts are now widely used in microelectronics packaging. The impact of various package design and materials/process parameters on reliability has been studied through extensive literature review. Reliability of Ceramic Column Grid Array (CCGA) package assemblies has been evaluated using JPL thermal cycle test results (-50(deg)/75(deg)C, -55(deg)/100(deg)C, and -55(deg)/125(deg)C), as well as those reported by other investigators. A sensitivity analysis has been performed using the literature da to study the impact of design parameters and global/local stress conditions on assembly reliability. The applicability of various life-prediction models for CCGA design has been investigated by comparing model's predictions with the experimental thermal cycling data. Finite Element Method (FEM) analysis has been conducted to assess the state of the stress/strain in CCGA assembly under different thermal cycling, and to explain the different failure modes and locations observed in JPL test assemblies.

  7. Reliability analysis of redundant disk arrays ?????? ??????????? ?????????? ?????????? ???????? ????????

    Directory of Open Access Journals (Sweden)

    ?. ?. ???????

    2013-07-01

    Full Text Available Redundant disk arrays for fault-tolerant data storages and reliability models of repairable systems are discussed. Simplified formulas for mean time to data loss (MTTDL assessment with taking into consideration fault and repair specificity and calculation examples are also provided.??????????????? ??????????? ?????????? ???????? ???????, ?????????????? ???????????????? ???????? ??????, ? ????? ?????? ?????????? ????????????????? ?????? ? ??????? ?????????? ?????? ??? ??????? ???????? ??????? ????????? ?? ?????????? ????????? ??????? ? ??????? ?????? ? ?????? ????????? ??????? ? ?????????????? ?????????? ?? ????????? ?????? ? ???????.

  8. Optimum structural design based on reliability analysis

    Science.gov (United States)

    Heer, E.; Shinozuka, M.; Yang, J. N.

    1970-01-01

    Proof-load test improves statistical confidence in the estimate of reliability, numerical examples indicate a definite advantage of the proof-load approach in terms of savings in structural weight. The cost of establishing the statistical distribution of strength of the structural material is also introduced into the cost formulation

  9. Reliability Analysis of an Offshore Structure

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle; Rackwitz, R.; Bryla, P.

    A jacket type offshore structure from the North Sea is considered. The time variant reliability is estimated for failure defined as brittie fradure and crack through the tubular roerober walls. The stochastic modeiling is described. The hot spot stress speetral moments as fundion of the stochasti...

  10. Reliability Analysis of an Offshore Structure

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Rackwitz, R.; Thoft-Christensen, Palle; Lebas, G.

    For an offshore structure in the North Sea it is assumed that information from measurements and inspections is available. As illustrations measurements of the significant wave height and the marine growth and different inspection and repair results are considered. It is shown how the reliability ...

  11. A methodology to incorporate organizational factors into human reliability analysis

    International Nuclear Information System (INIS)

    A new holistic methodology for Human Reliability Analysis (HRA) is proposed to model the effects of the organizational factors on the human reliability. Firstly, a conceptual framework is built, which is used to analyze the causal relationships between the organizational factors and human reliability. Then, the inference model for Human Reliability Analysis is built by combining the conceptual framework with Bayesian networks, which is used to execute the causal inference and diagnostic inference of human reliability. Finally, a case example is presented to demonstrate the specific application of the proposed methodology. The results show that the proposed methodology of combining the conceptual model with Bayesian Networks can not only easily model the causal relationship between organizational factors and human reliability, but in a given context, people can quantitatively measure the human operational reliability, and identify the most likely root causes or the prioritization of root causes caused human error. (authors)

  12. Reliability analysis of RC containment structures under combined loads

    International Nuclear Information System (INIS)

    This paper discusses a reliability analysis method and load combination design criteria for reinforced concrete containment structures under combined loads. The probability based reliability analysis method is briefly described. For load combination design criteria, derivations of the load factors for accidental pressure due to a design basis accident and safe shutdown earthquake (SSE) for three target limit state probabilities are presented

  13. Bayesian reliability analysis to heat transfer tube of steam generator

    International Nuclear Information System (INIS)

    The author completes a Bayesian analysis to the reliability of heat transfer tube of steam generator on the basis of 1987?1991 worldwide statistical data of plugged tube in PWR steam generator. The result indicates that Bayesian statistics is more valuable than traditional method in reliability analysis of heat transfer tube in steam generator

  14. Network reliability analysis based on percolation theory

    International Nuclear Information System (INIS)

    In this paper, we propose a new way of looking at the reliability of a network using percolation theory. In this new view, a network failure can be regarded as a percolation process and the critical threshold of percolation can be used as network failure criterion linked to the operational settings under control. To demonstrate our approach, we consider both random network models and real networks with different nodes and/or edges lifetime distributions. We study numerically and theoretically the network reliability and find that the network reliability can be solved as a voting system with threshold given by percolation theory. Then we find that the average lifetime of random network increases linearly with the average lifetime of its nodes with uniform life distributions. Furthermore, the average lifetime of the network becomes saturated when system size is increased. Finally, we demonstrate our method on the transmission network system of IEEE 14 bus. - Highlights: • Based on percolation theory, we address questions of practical interest such as “how many failed nodes/edges will break down the whole network?” • The percolation threshold naturally gives a network failure criterion. • The approach based on percolation theory is suited for calculations of large-scale networks

  15. POSSIBILITY AND EVIDENCE-BASED RELIABILITY ANALYSIS AND DESIGN OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    Hong-Zhong Huang

    2013-01-01

    Full Text Available Engineering design under uncertainty has gained considerable attention in recent years. A great multitude of new design optimization methodologies and reliability analysis approaches are put forth with the aim of accommodating various uncertainties. Uncertainties in practical engineering applications are commonly classified into two categories, i.e., aleatory uncertainty and epistemic uncertainty. Aleatory uncertainty arises because of unpredictable variation in the performance and processes of systems, it is irreducible even adding more data or knowledge. On the other hand, epistemic uncertainty stems from lack of knowledge of the system due to limited data, measurement limitations, or simplified approximations in modeling system behavior and it can be reduced by obtaining more data or knowledge. More specifically, aleatory uncertainty is naturally represented by a statistical distribution and its associated parameters can be characterized by sufficient data. If, however, the data is limited and can be quantified in a statistical sense, epistemic uncertainty can be considered as an alternative tool in such a situation. Of the several optional treatments for epistemic uncertainty, possibility theory and evidence theory have proved to be the most computationally efficient and stable for reliability analysis and engineering design optimization. This study first attempts to provide a better understanding of uncertainty in engineering design by giving a comprehensive overview of its classifications, theories and design considerations. Then a review is conducted of general topics such as the foundations and applications of possibility theory and evidence theory. This overview includes the most recent results from theoretical research, computational developments and performance improvement of possibility theory and evidence theory with an emphasis on revealing the capability and characteristics of quantifying uncertainty from different perspectives. Possibility and evidence theory-based reliability methods have many advantages for practical engineering when compared with traditional probability-based reliability methods. They can work well under limited data while the latter need large amounts of information, more than possible in engineering practice due to aleatory and epistemic uncertainties. The possible directions for future work are summarized.

  16. Reliability block diagram with general gates and its application to system reliability analysis

    International Nuclear Information System (INIS)

    Highlights: ? Conventional reliability block diagram is extended to enhance the expression power. ? The mathematical definition of the proposed method is provided. ? For quantitative analysis, how to develop an equivalent Bayesian network is provided. ? The usefulness of the proposed method is demonstrated with two examples. - Abstract: For those systems that can be modeled with perfect nodes and unreliable arcs such as communication systems, a reliability graph with general gates (RGGG) was developed. Similarly, for more efficient system reliability analysis of those systems that can be modeled with unreliable nodes and perfect arcs, a reliability block diagram with general gates (RBDGG) was developed as an intuitive and easy-to-use method for system reliability analysis. One of the unique characteristics of RBDGG is to allow node connection relations of general gates such as the AND gate and the k-out-of-n gate other than the OR gate connection relation of the conventional reliability block diagram (RBD). Mathematical formulations for RBDGG and a method of mapping a RBDGG model into an equivalent Bayesian network model without losing the one-to-one matching characteristic of the RBDGG for quantitative analysis is also provided. With the application to two example systems, the usefulness of the proposed RBDGG is demonstrated.

  17. Reliability analysis of PLC safety equipment

    International Nuclear Information System (INIS)

    FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system

  18. Ringhals 2 steam control system reliability/thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    This paper evaluates the reliability of the proposed Westinghouse Distributed Processing Family (WDPF) control system and compares it to the reliability of the existing mechanical/ hydraulic control system at the Ringhals 2 nuclear power plant. The probabilities of the postulated failures in the existing control system are contrasted to those that would exist for the WDPF enhanced control and protection system. This paper is limited to a discussion about the reliability that relates to failures that have the potential to cause an overpressure in the moisture separator/reheaters (MSRs) of the Ringhals 2 plant. This power plant was built at a time when the requirements (in Sweden) did not include overpressure relief valves in the MSR. When the plant was originally constructed, the mechanical/ hydraulic control system was designed to be, and was used as, a method to prevent an overpressure condition in the MSR. The control system response time was fast enough to close the MSR inlet lines in the event that one or more discharge line valves was closed or failed closed. The authors also include a thermal-hydraulic analysis of some of the postulated (very low probability) secondary-side transients

  19. Data base on NPP reliability analysis

    International Nuclear Information System (INIS)

    The paper poses some software requirements for the Local Data Base (LDB) intended to collect, process and analyze data about NPP equipment reliability. Five specific conditions for the software have been formulated and on their basis the system REVELATION, an MC adaptation of PRIME INFORMATION, has been pointed out as more suitable than previously implemented DBASE 3+. The file structure of the LDB based on REVELATION is described. The LDB will be used in the Kozloduy NPP by all operation and management levels. 1 fig, 7 refs

  20. Development of Reliability Analysis Toolkit for Analysing Plant Maintenance Data

    Directory of Open Access Journals (Sweden)

    Hussin Hilmi

    2014-07-01

    Full Text Available Plant failure and maintenance data can be found in abundance, however, their utilization as a basis for improvement action is not fully optimized. This happens because many reliability analyses based on plant data are tedious and time consuming due to non-standardized nature of the data being recorded. To overcome this issue, this study aims to develop a computer based reliability analysis toolkit to facilitate proper analysis of plant data. The toolkit can be used to perform both exploratory and inferential analysis. The developed toolkit has been demonstrated capable of assisting data gathering and analysis as well producing estimation of reliability measures.

  1. Reliability Analysis Using Fault Tree Analysis: A Review

    Directory of Open Access Journals (Sweden)

    Ahmed Ali Baig

    2013-06-01

    Full Text Available This paper reviews the literature published on the recent modifications made in the field of risk assessment using Fault Tree Analysis (FTAin the last decade. This method was developed in 1960’s for the evaluation and estimation of system reliability and safety. In this paper we have presented the general procedure for FTA, its application in various fields and the modifications that have been made through the time to overcome the inadequacies of the method. In the last section some of the future wok is also discussed with a simplified methodology.

  2. Digital Processor Module Reliability Analysis of Nuclear Power Plant

    International Nuclear Information System (INIS)

    The system used in plant, military equipment, satellite, etc. consists of many electronic parts as control module, which requires relatively high reliability than other commercial electronic products. Specially, Nuclear power plant related to the radiation safety requires high safety and reliability, so most parts apply to Military-Standard level. Reliability prediction method provides the rational basis of system designs and also provides the safety significance of system operations. Thus various reliability prediction tools have been developed in recent decades, among of them, the MI-HDBK-217 method has been widely used as a powerful tool for the prediction. In this work, It is explained that reliability analysis work for Digital Processor Module (DPM, control module of SMART) is performed by Parts Stress Method based on MIL-HDBK-217F NOTICE2. We are using the Relex 7.6 of Relex software corporation, because reliability analysis process requires enormous part libraries and data for failure rate calculation

  3. Strength Reliability Analysis of Turbine Blade Using Surrogate Models

    OpenAIRE

    Wei Duan; Liqiang An; Zhangqi Wang

    2014-01-01

    There are many stochastic parameters that have an effect on the reliability of steam turbine blades performance in practical operation. In order to improve the reliability of blade design, it is necessary to take these stochastic parameters into account. In this study, a variable cross-section twisted blade is investigated and geometrical parameters, material parameters and load parameters are considered as random variables. A reliability analysis method as a combination of a Finite Element M...

  4. Non-intrusive finite element reliability analysis methods

    OpenAIRE

    Papaioannou, Iason

    2014-01-01

    This thesis focuses on the modeling of uncertainties in structural systems and on strategies for the reliability assessment of structures analysed by finite element programs. New concepts are introduced for the numerical treatment of spatially varied uncertain quantities through the discretization of the relevant random fields as well as for robust and efficient finite element reliability analysis and updating of the reliability in light of new information. The methods have been implemented i...

  5. Design and Analysis for Reliability of Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Yongxian Song

    2012-12-01

    Full Text Available Reliability is an important performance indicator of wireless sensor network, to some application fields, which have high demands in terms of reliability, it is particularly important to ensure reliability of network. At present, the reliability research findings of wireless sensor network are much more at home and abroad, but they mainly improve network reliability from the networks topology, reliable protocol and application layer fault correction and so on, and reliability of network is comprehensive considered from hardware and software aspects is much less. This paper adopts bionic hardware to implement bionic reconfigurable of wireless sensor network nodes, so as to the nodes have able to change their structure and behavior autonomously and dynamically, in the cases of the part hardware are failure, and the nodes can realize bionic self-healing. Secondly, Markov state diagram and probability analysis method are adopted to realize solution of functional model for reliability, establish the relationship between reliability and characteristic parameters for sink nodes, analyze sink nodes reliability model, so as to determine the reasonable parameters of the model and ensure reliability of sink nodes.

  6. Reliability analysis of self-actuated shutdown system

    International Nuclear Information System (INIS)

    An analytical study was performed for the reliability of a self-actuated shutdown system (SASS) under the unprotected loss of flow (ULOF) event in a typical loop-type liquid metal fast breeder reactor (LMFBR) by the use of the response surface Monte Carlo analysis method. Dominant parameters for the SASS, such as Curie point characteristics, subassembly outlet coolant temperature, electromagnetic surface condition, etc., were selected and their probability density functions (PDFs) were determined by the design study information and experimental data. To get the response surface function (RSF) for the maximum coolant temperature, transient analyses of ULOF were performed by utilizing the experimental design method in the determination of analytical cases. Then, the RSF was derived by the multi-variable regression analysis. The unreliability of the SASS was evaluated as a probability that the maximum coolant temperature exceeded an acceptable level, employing the Monte Carlo calculation using the above PDFs and RSF. In this study, sensitivities to the dominant parameter were compared. The dispersion of subassembly outlet coolant temperature near the SASS-was found to be one of the most sensitive parameters. Fault tree analysis was performed using this value for the SASS in order to evaluate the shutdown system reliability. As a result of this study, the effectiveness of the SASS on the reliability improvement in the LMFBR shutdown system was analytically confirmed. This study has been performed as a part of joint research and development projects for DFBR under the sponsorship of the nine Japanese electric power companies, Electric Power Development Company and the Japan Atomic Power Company. (author)

  7. Development of a probabilistic analysis methodology for structural reliability estimation

    Science.gov (United States)

    Torng, T. Y.; Wu, Y.-T.

    1991-01-01

    The novel probabilistic analysis method for assessment of structural reliability presented, which combines fast-convolution with an efficient structural reliability analysis, can after identifying the most important point of a limit state proceed to establish a quadratic-performance function. It then transforms the quadratic function into a linear one, and applies fast convolution. The method is applicable to problems requiring computer-intensive structural analysis. Five illustrative examples of the method's application are given.

  8. A software tool for advanced reliability and safety analysis

    International Nuclear Information System (INIS)

    A knowledge based approach to systems safety and reliability analysis to be implemented in an intelligent software bool (STARS: Software Tool for Advanced Reliability and Safety) is presented. The tool will offer intelligent and power ful support in performing qualitative hazard analysis, logic modelling (fault tree, event tree construction) and probabilistic analysis for large and complex systems as found in chemical process plant and nuclear industy. (author)

  9. The PAWS and STEM reliability analysis programs

    Science.gov (United States)

    Butler, Ricky W.; Stevenson, Philip H.

    1988-01-01

    The PAWS and STEM programs are new design/validation tools. These programs provide a flexible, user-friendly, language-based interface for the input of Markov models describing the behavior of fault-tolerant computer systems. These programs produce exact solutions of the probability of system failure and provide a conservative estimate of the number of significant digits in the solution. PAWS uses a Pade approximation as a solution technique; STEM uses a Taylor series as a solution technique. Both programs have the capability to solve numerically stiff models. PAWS and STEM possess complementary properties with regard to their input space; and, an additional strength of these programs is that they accept input compatible with the SURE program. If used in conjunction with SURE, PAWS and STEM provide a powerful suite of programs to analyze the reliability of fault-tolerant computer systems.

  10. ETARA - EVENT TIME AVAILABILITY, RELIABILITY ANALYSIS

    Science.gov (United States)

    Viterna, L. A.

    1994-01-01

    The ETARA system was written to evaluate the performance of the Space Station Freedom Electrical Power System, but the methodology and software can be modified to simulate any system that can be represented by a block diagram. ETARA is an interactive, menu-driven reliability, availability, and maintainability (RAM) simulation program. Given a Reliability Block Diagram representation of a system, the program simulates the behavior of the system over a specified period of time using Monte Carlo methods to generate block failure and repair times as a function of exponential and/or Weibull distributions. ETARA can calculate availability parameters such as equivalent availability, state availability (percentage of time at a particular output state capability), continuous state duration and number of state occurrences. The program can simulate initial spares allotment and spares replenishment for a resupply cycle. The number of block failures are tabulated both individually and by block type. ETARA also records total downtime, repair time, and time waiting for spares. Maintenance man-hours per year and system reliability, with or without repair, at or above a particular output capability can also be calculated. The key to using ETARA is the development of a reliability or availability block diagram. The block diagram is a logical graphical illustration depicting the block configuration necessary for a function to be successfully accomplished. Each block can represent a component, a subsystem, or a system. The function attributed to each block is considered for modeling purposes to be either available or unavailable; there are no degraded modes of block performance. A block does not have to represent physically connected hardware in the actual system to be connected in the block diagram. The block needs only to have a role in contributing to an available system function. ETARA can model the RAM characteristics of systems represented by multilayered, nesting block diagrams. There are no restrictions on the number of total blocks or on the number of blocks in a series, parallel, or M-of-N parallel subsystem. In addition, the same block can appear in more than one subsystem if such an arrangement is necessary for an accurate model. ETARA 3.3 is written in APL2 for IBM PC series computers or compatibles running MS-DOS and the APL2 interpreter. Hardware requirements for the APL2 system include 640K of RAM, 2Mb of extended memory, and an 80386 or 80486 processor with an 80x87 math co-processor. The standard distribution medium for this package is a set of two 5.25 inch 360K MS-DOS format diskettes. A sample executable is included. The executable contains licensed material from the APL2 for the IBM PC product which is program property of IBM; Copyright IBM Corporation 1988 - All rights reserved. It is distributed with IBM's permission. The contents of the diskettes are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. ETARA was developed in 1990 and last updated in 1991.

  11. Systems reliability analysis for the national ignition facility

    International Nuclear Information System (INIS)

    A Reliability, Availability and Maintainability (RAM) analysis was initiated for the National Ignition Facility (NIF). The NIF is an inertial confinement fusion research facility designed to achieve controlled thermonuclear reaction; the preferred site for the NIF is the Lawrence Livermore National Laboratory (LLNL). The NIF RAM analysis has three purposes: (1) to allocate top level reliability and availability goals for the systems, (2) to develop an operability model for optimum maintainability, and (3) to determine the achievability of the allocated goals of the RAM parameters for the NIF systems and the facility operation as a whole. An allocation model assigns the reliability and availability goals for front line and support systems by a top-down approach; reliability analysis uses a bottom-up approach to determine the system reliability and availability from component level to system level

  12. Affordable reliability engineering life-cycle cost analysis for sustainability & logistical support

    CERN Document Server

    Wessels, William R

    2015-01-01

    How Can Reliability Analysis Impact Your Company's Bottom Line?While reliability investigations can be expensive, they can also add value to a product that far exceeds its cost. Affordable Reliability Engineering: Life-Cycle Cost Analysis for Sustainability & Logistical Support shows readers how to achieve the best cost for design development testing and evaluation and compare options for minimizing costs while keeping reliability above specifications. The text is based on the premise that all system sustainment costs result from part failure. It examines part failure in the design and sustain

  13. Reliability-Based Analysis of Concrete Dams

    OpenAIRE

    Fouhy, David; Ríos Bayona, Francisco

    2014-01-01

    Dams are designed and assessed based on traditional factor of safety methodology. Several drawbacks of this approach exist; for example varying failure probability for structures where the factor of safety is the same. This traditional factor of safety methodology imposes conservative assumptions in terms of both design and analysis. A probability-based analysis has been suggested to account for the omission of uncertainties and provide a less conservative analysis (Westberg & Johansson, ...

  14. Application of Support Vector Machine to Reliability Analysis of Engine Systems

    OpenAIRE

    Zhang Xinfeng; Zhao Yan

    2013-01-01

    Reliability analysis plays a very important role for assessing the performance and making maintenance plans of engine systems. This research presents a comparative study of the predictive performances of support vector machines (SVM) , least square support vector machine (LSSVM) and neural network time series models for forecasting failures and reliability in engine systems. Further, the reliability indexes of engine systems are computed by the weibull probability paper programmed with Matlab...

  15. Reliability analysis based on a direct ship hull strength assessment

    Science.gov (United States)

    Feng, Guoqing; Wang, Dongsheng; Garbatov, Yordan; Guedes Soares, C.

    2015-12-01

    A method of reliability analysis based on a direct strength calculation employing the von Mises stress failure criterion is presented here. The short term strain distributions of ship hull structural components are identified through the statistical analysis of the wave-induced strain history and the long term distributions by the weighted summation of the short term strain distributions. The wave-induced long term strain distribution is combined with the still water strain. The extreme strain distribution of the response strain is obtained by statistical analysis of the combined strains. The limit state function of the reliability analysis is based on the von Mises stress failure criterion, including the related uncertainties due to the quality of the material and model uncertainty. The reliability index is calculated using FORM and sensitivity analysis of each variable that has effects on the reliability is also discussed.

  16. Some problems with collection, analysis and use of reliability data

    International Nuclear Information System (INIS)

    Typical problems with the collection, analysis and use of reliability data are discussed. It is argued that the collection of reliability data has to be selective, and that insufficient attention to this selectiveness is responsible for the majority of problems with the collection of data. The collection of reliability data must be carefully planned and undertaken by dedicated, well-trained and well-motivated staff. The reliability data must be analyzed, tested and used as carefully and cautiously, and under the same discipline, as other engineering parameters. (author)

  17. Analysis of MAC Protocol for Reliable Broadcast

    Directory of Open Access Journals (Sweden)

    Savita Savita

    2013-02-01

    Full Text Available In wireless communication It is important to find a reliable broadcasting protocol that is especially designed for an optimum performance of public-safety and data travelling related applications. Using RSU and OBU, there are four novel ideas presented in this research work, namely choosing the nearest following node as the network probe node, headway-based segmentation, non-uniform segmentation and application adaptive. The integration of these ideas results in a protocol that possesses minimum latency, minimum probability of collision in the acknowledgment messages and unique robustness at different speeds and traffic volumes. Wireless communications are becoming the dominant form of transferring information,and the most active research field. In this dissertation, we will present one of the most applicable forms of Ad-Hoc networks; the Vehicular Ad-Hoc Networks (VANETs. VANET is the technology of building a robust Ad-Hoc network between mobile vehicles and each other, besides, between mobile vehicles and roadside units.

  18. Analysis of MAC Protocol for Reliable Broadcast

    Directory of Open Access Journals (Sweden)

    Savita Savita

    2013-03-01

    Full Text Available In wireless communication It is important to find a reliable broadcasting protocol that is especially designed for an optimum performance of public-safety and data travelling related applications. Using RSU and OBU, there are four novel ideas presented in this research work, namely choosing the nearest following node as the network probe node, headway-based segmentation, non-uniform segmentation and application adaptive. The integration of these ideas results in a protocol that possesses minimum latency, minimum probability of collision in the acknowledgment messages and unique robustness at different speeds and traffic volumes. Wireless communications are becoming the dominant form of transferring information,and the most active research field. In this dissertation, we will present one of the most applicable forms of Ad-Hoc networks; the Vehicular Ad-Hoc Networks (VANETs. VANET is the technology of building a robust Ad-Hoc network between mobile vehicles and each other, besides, between mobile vehicles and roadside units.

  19. Simulation Approach to Mission Risk and Reliability Analysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop and demonstrate an integrated total-system risk and reliability analysis approach that is based on dynamic, probabilistic simulation. This...

  20. Reliability analysis of digital safety systems at nuclear power plants

    International Nuclear Information System (INIS)

    Reliability analysis of digital reactor protection systems built on the basis of TELEPERM XS is described, and experience gained by the Slovak RELKO company during the past 20 years in this domain is highlighted. (orig.)

  1. Reliability analysis of digital I and C systems at KAERI

    International Nuclear Information System (INIS)

    This paper provides an overview of the ongoing research activities on a reliability analysis of digital instrumentation and control (I and C) systems of nuclear power plants (NPPs) performed by the Korea Atomic Energy Research Institute (KAERI). The research activities include the development of a new safety-critical software reliability analysis method by integrating the advantages of existing software reliability analysis methods, a fault coverage estimation method based on fault injection experiments, and a new human reliability analysis method for computer-based main control rooms (MCRs) based on human performance data from the APR-1400 full-scope simulator. The research results are expected to be used to address various issues such as the licensing issues related to digital I and C probabilistic safety assessment (PSA) for advanced digital-based NPPs. (author)

  2. The Reliability of Content Analysis of Computer Conference Communication

    Science.gov (United States)

    Rattleff, Pernille

    2007-01-01

    The focus of this article is the reliability of content analysis of students' computer conference communication. Content analysis is often used when researching the relationship between learning and the use of information and communications technology in educational settings. A number of studies where content analysis is used and classification…

  3. Discrete Event Simulation and Petri net Modeling for Reliability Analysis

    Directory of Open Access Journals (Sweden)

    Behrooz Safarinejadian 1

    2012-05-01

    Full Text Available Analytical methods in reliability analysis are useful for studying simple problems. For complex networks with cross-linked (non-series/parallel component configurations, it is difficult to use mathematical reliability analysis. Powerful methods for reliability analysis of such systems have been developed using discrete event simulation. The main drawback of these methods is that they are computer time intensive. In this paper, the main idea behind these methods is further explored and modified in order to reduce the computational loads. The modified approach presented here leads to a great time saving which is very important for reliability analysis of large scale systems. This modified method is then modeled by Petri net, which is a powerful modeling tool. The network reliability modeling technique developed in the paper has two main advantages. First, it can be easily implemented through a systematic and standard approach. Second, the developed model will greatly help solving the reliability analysis problem since it is simple and graphical.

  4. Reliability, Validity, Comparability and Practical Utility of Cybercrime-Related Data, Metrics, and Information

    Directory of Open Access Journals (Sweden)

    Nir Kshetri

    2013-02-01

    Full Text Available With an increasing pervasiveness, prevalence and severity of cybercrimes, various metrics, measures and statistics have been developed and used to measure various aspects of this phenomenon. Cybercrime-related data, metrics, and information, however, pose important and difficult dilemmas regarding the issues of reliability, validity, comparability and practical utility. While many of the issues of the cybercrime economy are similar to other underground and underworld industries, this economy also has various unique aspects. For one thing, this industry also suffers from a problem partly rooted in the incredibly broad definition of the term “cybercrime”. This article seeks to provide insights and analysis into this phenomenon, which is expected to advance our understanding into cybercrime-related information.

  5. Phased-mission system reliability analysis. Volume 1: methodology

    International Nuclear Information System (INIS)

    Phased missions analysis is a method for reliability analysis of dyanmic engineered systems such as those found in the nuclear power industry. This report presents new, practical methods for analysis of phased missions. Specifically, techniques for calculating system reliability, availability, and expected number of failures are given. Demonstration of the methods is carried out through an analysis of an Emergency Core Cooling System of a Pressurized Water Reactor during a loss of coolant accident. While this example problem is realistically modelled, the input failure and repair data are hypothetical

  6. Reliability and risk analysis of large systems with ageing components

    Energy Technology Data Exchange (ETDEWEB)

    Kolowrocki, K. [Gdynia Maritime University, 81-962 Gdynia (Poland)], E-mail: katmatkk@am.gdynia.pl; Kwiatuszewska-Sarnecka, B. [Gdynia Maritime University, 81-962 Gdynia (Poland)

    2008-12-15

    Applications of limit reliability functions to the reliability evaluation of large multi-state systems composed of independent components are considered. The main emphasis is on multi-state systems with ageing components because of the importance of such an approach in safety analysis, assessment and prediction, and analysing the effectiveness of operation processes of real technical systems. The results concerned with multi-state series systems are applied to the reliability evaluation and risk function determination of a homogeneous bus transportation system. Results on limit reliability functions of a homogeneous multi-state 'm out of n' system are applied to durability evaluation of a steel rope. A non-homogeneous series-parallel pipeline systems composed of several lines of pipe segments is estimated as well. Moreover, the reliability evaluation of the model homogeneous parallel-series electrical energy distribution system is performed.

  7. Reliability and risk analysis of large systems with ageing components

    International Nuclear Information System (INIS)

    Applications of limit reliability functions to the reliability evaluation of large multi-state systems composed of independent components are considered. The main emphasis is on multi-state systems with ageing components because of the importance of such an approach in safety analysis, assessment and prediction, and analysing the effectiveness of operation processes of real technical systems. The results concerned with multi-state series systems are applied to the reliability evaluation and risk function determination of a homogeneous bus transportation system. Results on limit reliability functions of a homogeneous multi-state 'm out of n' system are applied to durability evaluation of a steel rope. A non-homogeneous series-parallel pipeline systems composed of several lines of pipe segments is estimated as well. Moreover, the reliability evaluation of the model homogeneous parallel-series electrical energy distribution system is performed

  8. Multistep reliability analysis and optimization of complex systems

    International Nuclear Information System (INIS)

    The paper describes an approach for reliability analysis and optimization of complex systems. The approach is based on event-tree representation, cut sets analysis, bound approximation and sensitivity analysis. Reference is made to the methods and computer programs developed for the various steps of the analysis. In particular, details are given for the sensitivity analysis and optimization. Examples of application to reactor scram systems and electrical supply systems are reported

  9. Quantitative characterization of the reliability of simplex buses and stars to compare their benefits in fieldbuses

    International Nuclear Information System (INIS)

    Fieldbuses targeted to highly dependable distributed embedded systems are shifting from bus to star topologies. Surprisingly, despite the efforts into this direction, engineers lack of analyses that quantitatively characterize the system reliability achievable by buses and stars. Thus, to guide engineers in developing adequate bus and star fieldbuses, this work models, quantifies and compares the system reliability provided by simplex buses and stars for the case of the Controller Area Network (CAN). It clarifies how relevant dependability-related aspects affect reliability, refuting some intuitive ideas, and revealing some previously unknown bus and star benefits. - Highlights: • SANs models that quantify the reliability of simplex buses/stars in fieldbuses. • Models cover system relevant dependability-related features abstracted in the literature. • Results refute intuitive ideas about buses and stars and show some unexpected effects. • Models and results can guide the design of reliable simplex bus/stars fieldbuses

  10. Application of system reliability analysis feedback to improve system availability

    International Nuclear Information System (INIS)

    Though all the perceived operational and maintenance requirement are normally well taken care-of at design stage itself, still the scope for improvement either in system design or in operational/maintenance practices, never ends in order to further improve the system's performance/reliability. This paper brings out a case study as to how Reliability Analysis feedback has been gainfully utilized in identification of and reduction of individual component maintenance down time, which was indirectly degrading the reliability of one of the Reactor Shutdown system (namely Secondary Shutdown System-Sass), at KAPS. (author)

  11. Reliability analysis of a BWR decay heat removal system

    International Nuclear Information System (INIS)

    The reliability of an additional low pressure heat removal system, installed in Leibstadt Nuclear Power Station, has been analysed using probabilistic risk analysis techniques. Leibstadt is a General Electric boiling water reactor of the BWR/6 product line with a Mark-III containment. The need for the additional system is discussed in terms of the Licensing Criteria applicable to nuclear power plants in Switzerland. As a result of the concern in the U.S. over the reliability of decay heat al capability of LWR's, further analyses have been undertaken to determine the effect of this additional system on the reliability of decay heat function of Leibstadt

  12. Architecture based Reliability Analysis of Continuously Running Concurrent Software Applications

    OpenAIRE

    Rehab A. El Kharboutly; Reda. Ammar; Swapna S. Gokhale

    2008-01-01

    The objective of this paper is to describe a reliability and availability analysis methodology for a continuously running, concurrent application. We propose a state space approach to represent the architecture of a concurrent application, which is then mapped to an irreducible discrete time Markov chain (DTMC) to obtain architectural statistics. We discuss how the application architecture can be extracted from profile data to facilitate the use of our methodology to analyze the reliability o...

  13. Architecture based Reliability Analysis of Continuously Running Concurrent Software Applications

    OpenAIRE

    Rehab A. El Kharboutly; Reda. Ammar; Swapna S. Gokhale

    2008-01-01

    The objective of this paper is to describe a reliability and availability analysis methodology for a continuously running, concurrent application. We propose a state space approach to epresent the architecture of a concurrent application, which is then mapped to an irreducible discrete time Markov chain (DTMC) to obtain architectural statistics. We discuss how the application architecture can be extracted from profile data to facilitate the use of our methodology to analyze the reliability of...

  14. Application of Bayesian Methods for Age-dependent Reliability Analysis

    OpenAIRE

    Alzbutas, Robertas; Iešmantas, Tomas

    2012-01-01

    In this paper authors present a general methodology for age dependent reliability analysis of degrading or ageing systems, structures and components.The methodology is based on Bayesian methods and inference, its ability to incorporate prior information and on idea that ageing can be thought as age dependent change of believes about reliability parameters, when change of belief occurs not just due to new failure data or other information which becomes available in time, but also it continuous...

  15. Register File Reliability Analysis Through Cycle-Accurate Thermal Emulation

    OpenAIRE

    Ayala Rodrigo, José Luis; Garcia del Valle, Pablo; Atienza Alonso, David

    2008-01-01

    Continuous transistor scaling due to improvements in CMOS devices and manufacturing technologies is increasing processor power densities and temperatures; thus, creating challenges when trying to maintain manufacturing yield rates and devices which will be reliable throughout their lifetime. New microarchitectures require new reliability-aware design methods that can face these challenges without significantly increasing cost and performance. In this paper we present a complete analysis of re...

  16. Reliability analysis framework for computer-assisted medical decision systems

    International Nuclear Information System (INIS)

    We present a technique that enhances computer-assisted decision (CAD) systems with the ability to assess the reliability of each individual decision they make. Reliability assessment is achieved by measuring the accuracy of a CAD system with known cases similar to the one in question. The proposed technique analyzes the feature space neighborhood of the query case to dynamically select an input-dependent set of known cases relevant to the query. This set is used to assess the local (query-specific) accuracy of the CAD system. The estimated local accuracy is utilized as a reliability measure of the CAD response to the query case. The underlying hypothesis of the study is that CAD decisions with higher reliability are more accurate. The above hypothesis was tested using a mammographic database of 1337 regions of interest (ROIs) with biopsy-proven ground truth (681 with masses, 656 with normal parenchyma). Three types of decision models, (i) a back-propagation neural network (BPNN), (ii) a generalized regression neural network (GRNN), and (iii) a support vector machine (SVM), were developed to detect masses based on eight morphological features automatically extracted from each ROI. The performance of all decision models was evaluated using the Receiver Operating Characteristic (ROC) analysis. The study showed that the proposed reliability measure is a strong predictor of the CAD system's case-specific accuracy. Specifically, the ROC area index for CAD predictions with high reliability was significantly better than for those with low reliability values. This result was consistent across all decision models investigated in the study. The proposed case-specific reliability analysis technique could be used to alert the CAD user when an opinion that is unlikely to be reliable is offered. The technique can be easily deployed in the clinical environment because it is applicable with a wide range of classifiers regardless of their structure and it requires neither additional training nor building multiple decision models to assess the case-specific CAD accuracy

  17. Development of the go-flow reliability analysis support system

    International Nuclear Information System (INIS)

    The paper describes a support system for the GO-FLOW reliability analysis. The authors have developed the GO-FLOW methodology and performed many kinds of system reliability analysis by the GO-FLOW methodology. If an engineering system becomes large, the analysis procedure requires a great effort, especially to construct a GO-FLOW chart and to produce input data for the GO-FLOW analysis program. The GO-FLOW analysis support system is a fully integrated personal computer based, menu driven analysis system. The detailed explanation for the GO-FLOW chart editor and the GO-FLOW chart plotting program is given. By this support system, the GO-FLOW analysis is performed as if it were done only on a personal computer placed on the analyst's own desk. This support system makes the GO-FLOW methodology a powerful tool in a living PSA. (author). 5 refs, 7 figs

  18. Recent advances in computational structural reliability analysis methods

    Science.gov (United States)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-01-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  19. On reliability analysis of multi-categorical forecasts

    Directory of Open Access Journals (Sweden)

    J. Bröcker

    2008-08-01

    Full Text Available Reliability analysis of probabilistic forecasts, in particular through the rank histogram or Talagrand diagram, is revisited. Two shortcomings are pointed out: Firstly, a uniform rank histogram is but a necessary condition for reliability. Secondly, if the forecast is assumed to be reliable, an indication is needed how far a histogram is expected to deviate from uniformity merely due to randomness. Concerning the first shortcoming, it is suggested that forecasts be grouped or stratified along suitable criteria, and that reliability is analyzed individually for each forecast stratum. A reliable forecast should have uniform histograms for all individual forecast strata, not only for all forecasts as a whole. As to the second shortcoming, instead of the observed frequencies, the probability of the observed frequency is plotted, providing and indication of the likelihood of the result under the hypothesis that the forecast is reliable. Furthermore, a Goodness-Of-Fit statistic is discussed which is essentially the reliability term of the Ignorance score. The discussed tools are applied to medium range forecasts for 2 m-temperature anomalies at several locations and lead times. The forecasts are stratified along the expected ranked probability score. Those forecasts which feature a high expected score turn out to be particularly unreliable.

  20. RELIABILITY ANALYSIS OF RING, AGENT AND CLUSTER BASED DISTRIBUTED SYSTEMS

    Directory of Open Access Journals (Sweden)

    R.SEETHALAKSHMI

    2011-08-01

    Full Text Available The introduction of pervasive devices and mobile devices has led to immense growth of real time distributed processing. In such context reliability of the computing environment is very important. Reliability is the probability that the devices, links, processes, programs and files work efficiently for the specified period of time and in the specified condition. Distributed systems are available as conventional ring networks, clusters and agent based systems. Reliability of such systems is focused. These networks are heterogeneous and scalable in nature. There are several factors, which are to be considered for reliability estimation. These include the application related factors like algorithms, data-set sizes, memory usage pattern, input-output, communication patterns, task granularity and load-balancing. It also includes the hardware related factors like processor architecture, memory hierarchy, input-output configuration and network. The software related factors concerning reliability are operating systems, compiler, communication protocols, libraries and preprocessor performance. In estimating the reliability of a system, the performance estimation is an important aspect. Reliability analysis is approached using probability.

  1. Reliability analysis for Atucha II reactor protection system signals

    International Nuclear Information System (INIS)

    Atucha II is a 745 MW Argentine Power Nuclear Reactor constructed by ENACE SA, Nuclear Argentine Company for Electrical Power Generation and SIEMENS AG KWU, Erlangen, Germany. A preliminary modular logic analysis of RPS (Reactor Protection System) signals was performed by means of the well known Swedish professional risk and reliability software named Risk-Spectrum taking as a basis a reference signal coded as JR17ER003 which command the two moderator loops valves. From the reliability and behavior knowledge for this reference signal follows an estimation of the reliability for the other 97 RPS signals. Because the preliminary character of this analysis Main Important Measures are not performed at this stage. Reliability is by the statistic value named unavailability predicted. The scope of this analysis is restricted from the measurement elements to the RPS buffer outputs. In the present context only one redundancy is analyzed so in the Instrumentation and Control area there no CCF (Common Cause Failures) present for signals. Finally those unavailability values could be introduced in the failure domain for the posterior complete Atucha II reliability analysis which includes all mechanical and electromechanical features. Also an estimation of the spurious frequency of RPS signals defined as faulty by no trip is performed

  2. IEEE guide for the analysis of human reliability

    International Nuclear Information System (INIS)

    The Institute of Electrical and Electronics Engineers (IEEE) working group 7.4 of the Human Factors and Control Facilities Subcommittee of the Nuclear Power Engineering Committee (NPEC) has released its fifth draft of a Guide for General Principles of Human Action Reliability Analysis for Nuclear Power Generating Stations, for approval of NPEC. A guide is the least mandating in the IEEE hierarchy of standards. The purpose is to enhance the performance of an human reliability analysis (HRA) as a part of a probabilistic risk assessment (PRA), to assure reproducible results, and to standardize documentation. The guide does not recommend or even discuss specific techniques, which are too rapidly evolving today. Considerable maturation in the analysis of human reliability in a PRA context has taken place in recent years. The IEEE guide on this subject is an initial step toward bringing HRA out of the research and development arena into the toolbox of standard engineering practices

  3. Reliability analysis of cluster-based ad-hoc networks

    International Nuclear Information System (INIS)

    The mobile ad-hoc wireless network (MAWN) is a new and emerging network scheme that is being employed in a variety of applications. The MAWN varies from traditional networks because it is a self-forming and dynamic network. The MAWN is free of infrastructure and, as such, only the mobile nodes comprise the network. Pairs of nodes communicate either directly or through other nodes. To do so, each node acts, in turn, as a source, destination, and relay of messages. The virtue of a MAWN is the flexibility this provides; however, the challenge for reliability analyses is also brought about by this unique feature. The variability and volatility of the MAWN configuration makes typical reliability methods (e.g. reliability block diagram) inappropriate because no single structure or configuration represents all manifestations of a MAWN. For this reason, new methods are being developed to analyze the reliability of this new networking technology. New published methods adapt to this feature by treating the configuration probabilistically or by inclusion of embedded mobility models. This paper joins both methods together and expands upon these works by modifying the problem formulation to address the reliability analysis of a cluster-based MAWN. The cluster-based MAWN is deployed in applications with constraints on networking resources such as bandwidth and energy. This paper presents the problem's formulation, a discussion of applicable reliability metrics for the MAWN, and illustration of a Monte Carlo simulation method through the analysis of several example networks

  4. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Science.gov (United States)

    2010-01-01

    ...Flammability Exposure and Reliability Analysis N Appendix N TO Part...Flammability Exposure and Reliability Analysis N25.1General. ...time period assumed in the reliability analysis (60 flight hours must...

  5. 78 FR 45447 - Revisions to Modeling, Data, and Analysis Reliability Standard

    Science.gov (United States)

    2013-07-29

    ...to Modeling, Data, and Analysis Reliability Standard AGENCY: Federal...approves Modeling, Data, and Analysis (MOD) Reliability Standard MOD- 028-2...to Modeling, Data, and Analysis Reliability Standard, Notice of...

  6. Some Aspects in High Quality Reliability Data Collection and Analysis

    International Nuclear Information System (INIS)

    Living probabilistic safety assessment of nuclear power plant requires quantitative reliability parameters. To obtain high quality reliability data in complicated systems such as nuclear power plant, there needs to understand hardware such as plant, systems, and components, and to consider software such as culture, human, management, organization, and to understand plant life cycles such as design, installation, operation and maintenance in a wholly integrated manner. Now we are in a situation to set up of a new establishment of reliability database systems in Korea for living PSA in near future. A few but not less important cases to be reminded which I have experienced during the very initial phase of reliability data collection and analysis for the sample plant and components are introduced here. (author)

  7. Distribution-level electricity reliability: Temporal trends using statistical analysis

    International Nuclear Information System (INIS)

    This paper helps to address the lack of comprehensive, national-scale information on the reliability of the U.S. electric power system by assessing trends in U.S. electricity reliability based on the information reported by the electric utilities on power interruptions experienced by their customers. The research analyzes up to 10 years of electricity reliability information collected from 155 U.S. electric utilities, which together account for roughly 50% of total U.S. electricity sales. We find that reported annual average duration and annual average frequency of power interruptions have been increasing over time at a rate of approximately 2% annually. We find that, independent of this trend, installation or upgrade of an automated outage management system is correlated with an increase in the reported annual average duration of power interruptions. We also find that reliance on IEEE Standard 1366-2003 is correlated with higher reported reliability compared to reported reliability not using the IEEE standard. However, we caution that we cannot attribute reliance on the IEEE standard as having caused or led to higher reported reliability because we could not separate the effect of reliance on the IEEE standard from other utility-specific factors that may be correlated with reliance on the IEEE standard. - Highlights: ? We assess trends in electricity reliability based on the information reported by the electric utilities. ? We use rigorous statistical techniques to account for utility-specific differences. ? We find modest declines in reliability analyzing interruption duration and frequency experienced by utility customers. ? Installation or upgrade of an OMS is correlated to an increase in reported duration of power interruptions. ? We find reliance in IEEE Standard 1366 is correlated with higher reported reliability.

  8. Comparison of Methods for Dependency Determination between Human Failure Events within Human Reliability Analysis

    Directory of Open Access Journals (Sweden)

    Marko ?epin

    2008-07-01

    Full Text Available The human reliability analysis (HRA is a highly subjective evaluation of human performance, which is an input for probabilistic safety assessment, which deals with many parameters of high uncertainty. The objective of this paper is to show that subjectivism can have a large impact on human reliability results and consequently on probabilistic safety assessment results and applications. The objective is to identify the key features, which may decrease subjectivity of human reliability analysis. Human reliability methods are compared with focus on dependency comparison between Institute JoĂ…Âľef Stefan human reliability analysis (IJS-HRA and standardized plant analysis risk human reliability analysis (SPAR-H. Results show large differences in the calculated human error probabilities for the same events within the same probabilistic safety assessment, which are the consequence of subjectivity. The subjectivity can be reduced by development of more detailed guidelines for human reliability analysis with many practical examples for all steps of the process of evaluation of human performance.

  9. Reactor protection system reliability analysis of Daya Bay NPP

    International Nuclear Information System (INIS)

    Based on the reliability analysis methods of FMEA and FTA, according to the result of ETA of PRA in Daya by NPP, the top events of the fault trees of reactor protection system and the success criteria were established. By using RISK-SPECTRUM procedure, the unavailability and the minimal cut-sets (MCS) of the fault trees were obtained. The results of analysis was put into the visual risk analysis software of Daya bay NPP as the support of data

  10. Notes on numerical reliability of several statistical analysis programs

    Science.gov (United States)

    Landwehr, J.M.; Tasker, Gary D.

    1999-01-01

    This report presents a benchmark analysis of several statistical analysis programs currently in use in the USGS. The benchmark consists of a comparison between the values provided by a statistical analysis program for variables in the reference data set ANASTY and their known or calculated theoretical values. The ANASTY data set is an amendment of the Wilkinson NASTY data set that has been used in the statistical literature to assess the reliability (computational correctness) of calculated analytical results.

  11. How to assess and compare inter-rater reliability, agreement and correlation of ratings: an exemplary analysis of mother-father and parent-teacher expressive vocabulary rating pairs

    OpenAIRE

    Stolarova, Margarita; Wolf, Corinna; Rinker, Tanja; Brielmann, Aenne

    2014-01-01

    This report has two main purposes. First, we combine well-known analytical approaches to conduct a comprehensive assessment of agreement and correlation of rating-pairs and to dis-entangle these often confused concepts, providing a best-practice example on concrete data and a tutorial for future reference. Second, we explore whether a screening questionnaire developed for use with parents can be reliably employed with daycare teachers when assessing early expressive vocabulary. A total of 53 ...

  12. How to assess and compare inter-rater reliability, agreement and correlation of ratings: an exemplary analysis of mother-father and parent-teacher expressive vocabulary rating pairs

    OpenAIRE

    MargaritaStolarova; TanjaRinker

    2014-01-01

    This report has two main purposes. First, we combine well-known analytical approaches to conduct a comprehensive assessment of agreement and correlation of rating-pairs and to dis-entangle these often confused concepts, providing a best-practice example on concrete data and a tutorial for future reference. Second, we explore whether a screening questionnaire deve-loped for use with parents can be reliably employed with daycare teachers when assessing early expressive vocabulary. A total of 53...

  13. Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis

    Science.gov (United States)

    Dezfuli, Homayoon; Kelly, Dana; Smith, Curtis; Vedros, Kurt; Galyean, William

    2009-01-01

    This document, Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis, is intended to provide guidelines for the collection and evaluation of risk and reliability-related data. It is aimed at scientists and engineers familiar with risk and reliability methods and provides a hands-on approach to the investigation and application of a variety of risk and reliability data assessment methods, tools, and techniques. This document provides both: A broad perspective on data analysis collection and evaluation issues. A narrow focus on the methods to implement a comprehensive information repository. The topics addressed herein cover the fundamentals of how data and information are to be used in risk and reliability analysis models and their potential role in decision making. Understanding these topics is essential to attaining a risk informed decision making environment that is being sought by NASA requirements and procedures such as 8000.4 (Agency Risk Management Procedural Requirements), NPR 8705.05 (Probabilistic Risk Assessment Procedures for NASA Programs and Projects), and the System Safety requirements of NPR 8715.3 (NASA General Safety Program Requirements).

  14. Architecture based Reliability Analysis of Continuously Running Concurrent Software Applications

    Directory of Open Access Journals (Sweden)

    Rehab A. El Kharboutly

    2008-01-01

    Full Text Available The objective of this paper is to describe a reliability and availability analysis methodology for a continuously running, concurrent application. We propose a state space approach to represent the architecture of a concurrent application, which is then mapped to an irreducible discrete time Markov chain (DTMC to obtain architectural statistics. We discuss how the application architecture can be extracted from profile data to facilitate the use of our methodology to analyze the reliability of practical software applications. We illustrate the methodology using a case study of a MRSS news ticker application. The state space explosion issue which may arise in the practical application of the methodology is then discussed and methods to alleviate the issue are suggested. To the best of our knowledge, this research is one of the first steps in pushing the state of the art in architecturebased software reliability analysis from sequential to concurrent software applications.

  15. BANK RATING. A COMPARATIVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Batrancea Ioan

    2015-07-01

    Full Text Available Banks in Romania offers its customers a wide range of products but which involves both risk taking. Therefore researchers seek to build rating models to help managers of banks to risk of non-recovery of loans and interest. In the following we highlight rating Raiffeisen Bank, BCR-ERSTE Bank and Transilvania Bank, based on the models CAAMPL and Stickney making a comparative analysis of the two rating models.

  16. Reliability analysis - systematic approach based on limited data

    International Nuclear Information System (INIS)

    The initial approaches required for reliability analysis are outlined. These approaches highlight the system boundaries, examine the conditions under which the system is required to operate, and define the overall performance requirements. The discussion is illustrated by a simple example of an automatic protective system for a nuclear reactor. It is then shown how the initial approach leads to a method of defining the system, establishing performance parameters of interest and determining the general form of reliability models to be used. The overall system model and the availability of reliability data at the system level are next examined. An iterative process is then described whereby the reliability model and data requirements are systematically refined at progressively lower hierarchic levels of the system. At each stage, the approach is illustrated with examples from the protective system previously described. The main advantages of the approach put forward are the systematic process of analysis, the concentration of assessment effort in the critical areas and the maximum use of limited reliability data. (author)

  17. Reliability analysis - a systematic approach based on limited data

    International Nuclear Information System (INIS)

    The initial approaches required for reliability analysis are outlined. These approaches highlight the system boundaries, examine the conditions under which the system is required to operate and define the overall performance requirements. The discussion is illustrated by a simple example of an automatic protective system for a nuclear reactor. It is then shown how the initial approach leads to a method of defining the system, establishing performance parameters of interest and determining the general form of reliability models to be used. The overall system model and the availability of reliability data at the system level are next examined. An iterative process is then described whereby the reliability model and data requirements are systematically refined at progressively lower hierarchic levels of the system. At each stage, the approach is illustrated with examples from the protective system previously described. The main advantages of the approach put forward are the systematic process of analysis, the concentration of assessment effort in the critical areas, and the maximum use of limited reliability data. (author)

  18. Failures Analysis and Reliability Calculation for Power Transformers

    Directory of Open Access Journals (Sweden)

    M. Mirzai

    2006-03-01

    Full Text Available Failures of transformers in sub-transmission systems not only reduce reliability of power system but also have significant effects on power quality since one of the important components of any system quality is reliability of that system. To enhance utility reliability, failure analysis and its rates, failure origin and physical damage causes must be studied. This paper describes a case study of the reliability of sub-transmission transformers (63/20 KV installed in Mazandaran province, operated in sub-transmission system. The information obtained from Meandering Regional Electric Company. The results of study and analysis on 60 substation including more than 110 transformers installed in sub-transmission system show that the failure modes of transformers can be represented by Weibull distribution. Weibull statistics have been widely used and accepted as a successful mathematical method to predict the remaining life time of any equipment. Useful conclusions are presented both for power systems operators and manufactures for improving the reliability of transformers.

  19. Reliability analysis - a systematic approach based on limited data

    International Nuclear Information System (INIS)

    The paper outlines the initial approaches required for reliability analysis. These approaches highlight the system boundaries, examine the conditions under which the system is required to operate and define the overall performance requirements. The discussion is illustrated by a simple example of an automatic protective system for a nuclear reactor. It is shown how the initial approach leads to a method of defining the system, establishing performance parameters of interest and determining the general form of reliability models to be used. The paper next examines the overall system model and the availability of reliability data at the system level. An iterative process is then described whereby the reliability model and data requirements are systematically refined at progressively lower hierarchic levels of the system. At each stage, the approach is illustrated with examples from the protective system previously described. The main advantages of the approach are the systematic process of analysis, the concentration of assessment effort in the critical areas and the maximum use of limited reliability data

  20. Intra-rater reliability of the posture analysis tool kit

    Scientific Electronic Library Online (English)

    Ronette, Hough; Riette, Nel.

    2013-04-01

    Full Text Available BACKGROUND: Health care professionals mainly assess posture through qualitative observation of the relationship between a plumb line and specified anatomical landmarks. However, quantitative assessments of spinal alignment are mostly done by biophotogrammetry and are limited to laboratory environmen [...] ts. The Posture Analysis Toolkit (PAT), a photogrammetric measurement instrument was developed in 2009 to assess standing posture. AIM: The aim of this study was to test the intra-rater reliability of the Posture Analysis Toolkit. METHODOLOGY: A prospective, cross-sectional study design was conducted. Fourteen participants were required to do three measurements of the posture of a single subject using the PAT. Photographs of the anterior and left lateral upright standing posture were taken once, and imported three times for computerised analysis. Reliability was determined using descriptive statistics per session, confidence interval for the median difference between sessions, 95% limits of agreement and Spearman correlations. RESULTS: In this study the intra-rater reliability of PAT between sessions was good. CONCLUSION: The Posture Analysis Toolkit was tested and proved to be reliable for use as an instrument for the assessment of standing postural alignment. Recommendations are suggested for the development of the PAT.

  1. Reliability-Based Robustness Analysis for a Croatian Sports Hall

    DEFF Research Database (Denmark)

    ?izmar, Dean; Kirkegaard, Poul Henning; Sřrensen, John Dalsgaard; Raj?i?, Vlatka

    2011-01-01

    complex timber structure with a large number of failure modes is modelled with only a few dominant failure modes. First, a component based robustness analysis is performed based on the reliability indices of the remaining elements after the removal of selected critical elements. The robustness is...

  2. Human reliability analysis of Lingao Nuclear Power Station

    International Nuclear Information System (INIS)

    The necessity of human reliability analysis (HRA) of Lingao Nuclear Power Station are analyzed, and the method and operation procedures of HRA is briefed. One of the human factors events (HFE) is analyzed in detail and some questions of HRA are discussed. The authors present the analytical results of 61 HFEs, and make a brief introduction of HRA contribution to Lingao Nuclear Power Station

  3. Reliability analysis of the WWER-440 Type 213 safety systems

    International Nuclear Information System (INIS)

    The design and function of two systems included in the localization of design basis accidents in the Czechoslovak nuclear power plant at Mochovce (four WWER-440 units of type 213) are described. These accidents are represented by LOCA (I.D. 500) with loss of in-site power and maximum rated earthquake (6 balls on the MSK-64 scale). The passive pressure accumulator system and the low pressure injection system of ECCS (LPIS) were chosen for the reliability analysis (fault tree); attention was centered primarily on the effect of human error. Uncertainty analysis of the two systems was carried out as the next step. The results of the reliability analysis are presented in graphical and tabulated forms. The analysis revealed a great importance of correct and verified selection of the top event of the fault tree (the passive system) and stressed the need for periodical testing during the refueling on the LPIS system. (author). 14 figs., 1 tab., 3 refs

  4. Risk Analysis for Critical Systems with Reliability Block Diagrams

    OpenAIRE

    Weyns, Kim; Höst, Martin

    2012-01-01

    Governmental organisations are becoming more critically dependant on IT systems such as communication systems or patient data systems, both for their everyday tasks and their role in crisis relief activities. Therefore it is important for the organisation to analyse the reliability of these systems as part of the organisation’s risk and vulnerability analysis process. This paper presents a practical risk analysis method for critical, large-scale IT systems in an organisation. The method is ba...

  5. Reliable analysis for pressure vessel based on ANSYS

    International Nuclear Information System (INIS)

    With the PDS of ANSYS procedure, the ramdomicity of the actually structure design parameters is simulated, by taking the wall thickness, pressure load and elastic module as input random variables. Based on the reliability analysis of the pressure vessel by Monte-Carlo procedure, the stress probability distribution of this finite element analysis model and the sensitivity of the design parameters such as the pressure load and wall thickness to the stress distribution are obtained. (authors)

  6. Human Reliability Analysis for Digital Human-Machine Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring

    2014-06-01

    This paper addresses the fact that existing human reliability analysis (HRA) methods do not provide guidance on digital human-machine interfaces (HMIs). Digital HMIs are becoming ubiquitous in nuclear power operations, whether through control room modernization or new-build control rooms. Legacy analog technologies like instrumentation and control (I&C) systems are costly to support, and vendors no longer develop or support analog technology, which is considered technologically obsolete. Yet, despite the inevitability of digital HMI, no current HRA method provides guidance on how to treat human reliability considerations for digital technologies.

  7. Comparing the Reliability of Regular Topologies on a Backbone Network. A Case Study

    DEFF Research Database (Denmark)

    Cecilio, Sergio Labeage; Gutierrez Lopez, Jose Manuel

    2009-01-01

    The aim of this paper is to compare the reliability of regular topologies on a backbone network. The study is focused on a large-scale fiberoptic network. Different regular topological solutions as single ring, double ring or 4-Regular grid are applied to the case study, and compared in terms of degree, diameter, average distance, economical cost and availability. Furthermore, other non-quantitative parameters such as expandability, embeddability and algorithmic support are introduced.

  8. Accident Sequence Evaluation Program: Human reliability analysis procedure

    International Nuclear Information System (INIS)

    This document presents a shortened version of the procedure, models, and data for human reliability analysis (HRA) which are presented in the Handbook of Human Reliability Analysis With emphasis on Nuclear Power Plant Applications (NUREG/CR-1278, August 1983). This shortened version was prepared and tried out as part of the Accident Sequence Evaluation Program (ASEP) funded by the US Nuclear Regulatory Commission and managed by Sandia National Laboratories. The intent of this new HRA procedure, called the ''ASEP HRA Procedure,'' is to enable systems analysts, with minimal support from experts in human reliability analysis, to make estimates of human error probabilities and other human performance characteristics which are sufficiently accurate for many probabilistic risk assessments. The ASEP HRA Procedure consists of a Pre-Accident Screening HRA, a Pre-Accident Nominal HRA, a Post-Accident Screening HRA, and a Post-Accident Nominal HRA. The procedure in this document includes changes made after tryout and evaluation of the procedure in four nuclear power plants by four different systems analysts and related personnel, including human reliability specialists. The changes consist of some additional explanatory material (including examples), and more detailed definitions of some of the terms. 42 refs

  9. Strength Reliability Analysis of Turbine Blade Using Surrogate Models

    Directory of Open Access Journals (Sweden)

    Wei Duan

    2014-05-01

    Full Text Available There are many stochastic parameters that have an effect on the reliability of steam turbine blades performance in practical operation. In order to improve the reliability of blade design, it is necessary to take these stochastic parameters into account. In this study, a variable cross-section twisted blade is investigated and geometrical parameters, material parameters and load parameters are considered as random variables. A reliability analysis method as a combination of a Finite Element Method (FEM, a surrogate model and Monte Carlo Simulation (MCS, is applied to solve the blade reliability analysis. Based on the blade finite element parametrical model and the experimental design, two kinds of surrogate models, Polynomial Response Surface (PRS and Artificial Neural Network (ANN, are applied to construct the approximation analytical expressions between the blade responses (including maximum stress and deflection and random input variables, which act as a surrogate of finite element solver to drastically reduce the number of simulations required. Then the surrogate is used for most of the samples needed in the Monte Carlo method and the statistical parameters and cumulative distribution functions of the maximum stress and deflection are obtained by Monte Carlo simulation. Finally, the probabilistic sensitivities analysis, which combines the magnitude of the gradient and the width of the scatter range of the random input variables, is applied to evaluate how much the maximum stress and deflection of the blade are influenced by the random nature of input parameters.

  10. Reliability analysis of rotor blades of tidal stream turbines

    International Nuclear Information System (INIS)

    Tidal stream turbines are used for converting kinetic energy of tidal currents into electricity. There are a number of uncertainties involved in the design of such devices and their components. To ensure safety of the turbines these uncertainties must be taken into account. The paper shows how this may be achieved for the design of rotor blades of horizontal-axis tidal stream turbines in the context of bending failure due to extreme loading. Initially, basic characteristics of such turbines in general and their blades in particular are briefly described. A probabilistic model of tidal current velocity fluctuations, which are the main source of load uncertainty, is then presented. This is followed by the description of reliability analysis of the blades, which takes into account uncertainties associated with tidal current speed, the blade resistance and the model used to calculate bending moments in the blades. Finally, the paper demonstrates how results of the reliability analysis can be applied to set values of the partial factors for the blade design. - Highlights: • A probabilistic model of the maximum of tidal current velocity fluctuations is proposed. • Reliability analysis of rotor blades of a tidal stream turbine is described. • Influence of pitch control system on the blade reliability is investigated. • Partial safety factors for the design of tidal turbine rotor blades are calibrated

  11. Accident Sequence Evaluation Program: Human reliability analysis procedure

    Energy Technology Data Exchange (ETDEWEB)

    Swain, A.D.

    1987-02-01

    This document presents a shortened version of the procedure, models, and data for human reliability analysis (HRA) which are presented in the Handbook of Human Reliability Analysis With emphasis on Nuclear Power Plant Applications (NUREG/CR-1278, August 1983). This shortened version was prepared and tried out as part of the Accident Sequence Evaluation Program (ASEP) funded by the US Nuclear Regulatory Commission and managed by Sandia National Laboratories. The intent of this new HRA procedure, called the ''ASEP HRA Procedure,'' is to enable systems analysts, with minimal support from experts in human reliability analysis, to make estimates of human error probabilities and other human performance characteristics which are sufficiently accurate for many probabilistic risk assessments. The ASEP HRA Procedure consists of a Pre-Accident Screening HRA, a Pre-Accident Nominal HRA, a Post-Accident Screening HRA, and a Post-Accident Nominal HRA. The procedure in this document includes changes made after tryout and evaluation of the procedure in four nuclear power plants by four different systems analysts and related personnel, including human reliability specialists. The changes consist of some additional explanatory material (including examples), and more detailed definitions of some of the terms. 42 refs.

  12. On Reliability Analysis of Fault-tolerant Multistage Interconnection Networks

    Directory of Open Access Journals (Sweden)

    Rinkle Aggarwal

    2008-11-01

    Full Text Available The design of a suitable interconnection network for inter-processor communication is one of the key issues of the system performance. The reliability of these networks and their ability to continue operating despite failures are major concerns in determining the overall system performance. In this paper a new irregular network IABN has been proposed modifying existing ABN network. ABN is a regular multipath network with limited fault tolerance. The reliabilities of the IABN and ABN multi-stage interconnection networks have been calculated and compared in terms of the Upper and Lower bounds of Mean time to failure (MTTF.The IABN is a network that provides much better fault-tolerance by providing three time more paths between any pair of source-destination and better reliability at the expanse of little more cost than ABN.

  13. Reliability analysis of two unit parallel repairable industrial system

    Directory of Open Access Journals (Sweden)

    Mohit Kumar Kakkar

    2015-09-01

    Full Text Available The aim of this work is to present a reliability and profit analysis of a two-dissimilar parallel unit system under the assumption that operative unit cannot fail after post repair inspection and replacement and there is only one repair facility. Failure and repair times of each unit are assumed to be uncorrelated. Using regenerative point technique various reliability characteristics are obtained which are useful to system designers and industrial managers. Graphical behaviors of mean time to system failure (MTSF and profit function have also been studied. In this paper, some important measures of reliability characteristics of a two non-identical unit standby system model with repair, inspection and post repair are obtained using regenerative point technique.

  14. Reliability Analysis of Free Jet Scour Below Dams

    Directory of Open Access Journals (Sweden)

    Chuanqi Li

    2012-12-01

    Full Text Available Current formulas for calculating scour depth below of a free over fall are mostly deterministic in nature and do not adequately consider the uncertainties of various scouring parameters. A reliability-based assessment of scour, taking into account uncertainties of parameters and coefficients involved, should be performed. This paper studies the reliability of a dam foundation under the threat of scour. A model for calculating the reliability of scour and estimating the probability of failure of the dam foundation subjected to scour is presented. The Maximum Entropy Method is applied to construct the probability density function (PDF of the performance function subject to the moment constraints. Monte Carlo simulation (MCS is applied for uncertainty analysis. An example is considered, and there liability of its scour is computed, the influence of various random variables on the probability failure is analyzed.

  15. Maintenance management of railway infrastructures based on reliability analysis

    International Nuclear Information System (INIS)

    Railway infrastructure maintenance plays a crucial role for rail transport. It aims at guaranteeing safety of operations and availability of railway tracks and related equipment for traffic regulation. Moreover, it is one major cost for rail transport operations. Thus, the increased competition in traffic market is asking for maintenance improvement, aiming at the reduction of maintenance expenditures while keeping the safety of operations. This issue is addressed by the methodology presented in the paper. The first step of the methodology consists of a family-based approach for the equipment reliability analysis; its purpose is the identification of families of railway items which can be given the same reliability targets. The second step builds the reliability model of the railway system for identifying the most critical items, given a required service level for the transportation system. The two methods have been implemented and tested in practical case studies, in the context of Rete Ferroviaria Italiana, the Italian public limited company for railway transportation.

  16. A comparative analysis of reliability, maintainability and availability for two alternatives of the production submarine systems: ANM and submarine ducts versus BOP and a subsea well testing tree; Analise comparativa da confiabilidade, mantenabilidade e disponibilidade para duas alternativas de sistemas submarino de producao: ANM e dutos submarinos versus BOP e arvore submarina de teste

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Arlindo Antonio de; Polillo Filho, Adolfo; Santos, Otto Luiz Alcantara [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    This technical article presents a study using the concepts of the Engineering of the Reliability and Risk Analysis with the objective of doing a comparative evaluation of the reliability of two alternative production systems for a marine well: one composed by a wet christmas tree (ANM) producing through underwater ducts (flow lines) and other, usually used in tests of long duration, using a subsea BOP and a subsea well testing tree (AST). The central point of the work was the evaluation of the probability of happening an event considered as critic, denominated 'critical flaw', during the well production life. The work uses one of the procedures and methodologies adopted in the Well Construction Engineering, GERISK, together with four computer applications for data treatment, generation of flaw distribution curves and times of repair, modelling and Monte Carlo simulations. The adopted strategy was the one of starting from the existent report, to assume an interval for the possible real value of the relevant parameters and then to establish the scenarios (more probable, optimist and pessimist). Based on those sceneries, the considered premises, the modelling and the reliabilities obtained for each one of the variables, the simulations have been made. As results, are presented the medium readiness, MTTFF (Mean Time To First Failure), the number of flaws and the expected costs. The work also displays the sensibility analysis in respect to the time of production of the well. (author)

  17. Improvement in check valve reliability by integrity analysis of internals

    International Nuclear Information System (INIS)

    The Electric Power Research Institute (EPRI) reports that valve unreliability is a major cause of plant downtime. The Institute of Nuclear Power Operations (INPO) issued a Significant Operating Experience Report (SOER) No. 86-03 that provides the plant owner guidance on check valve surveillance (inspection and testing) to improve reliability. The material condition of internal parts plays a key role in assuring reliability. The Service Water System at Comanche Peak operated to meet system functional needs for approximately seven years before the plant received an operating license. The failure of a cast 17-4 PH stainless steel disc pin hinge (swing arm) in a valve installed in this system resulted in recently issued NRC Information Notice 90-03. This paper summarizes work completed to assure the reliability of similar swing check valves at TU Electric's Comanche Peak Steam Electric Station (CPSES). Suitability for corrosive service was evaluated. Linear elastic fracture mechanics established acceptance criteria, surface inspection and in-place metallography were employed to screen defective cast material. Retrospective statistical analysis of inspection results was used to quantify success of the inspection and estimate improvement in valve reliability. Check valves having the same material with similar operating conditions have been installed at other plants. Other components having sand cast 17-4 PH stainless steel parts also may be affected. A strategy is proposed for minimizing impact of material defects and age-related degradation on valve reliability

  18. A framework for intelligent reliability centered maintenance analysis

    International Nuclear Information System (INIS)

    To improve the efficiency of reliability-centered maintenance (RCM) analysis, case-based reasoning (CBR), as a kind of artificial intelligence (AI) technology, was successfully introduced into RCM analysis process, and a framework for intelligent RCM analysis (IRCMA) was studied. The idea for IRCMA is based on the fact that the historical records of RCM analysis on similar items can be referenced and used for the current RCM analysis of a new item. Because many common or similar items may exist in the analyzed equipment, the repeated tasks of RCM analysis can be considerably simplified or avoided by revising the similar cases in conducting RCM analysis. Based on the previous theory studies, an intelligent RCM analysis system (IRCMAS) prototype was developed. This research has focused on the description of the definition, basic principles as well as a framework of IRCMA, and discussion of critical techniques in the IRCMA. Finally, IRCMAS prototype is presented based on a case study

  19. Reliability analysis of service water system under earthquake

    International Nuclear Information System (INIS)

    Service water system is one of the important safety systems in nuclear power plant, whose failure probability is always gained by system reliability analysis. The probability of equipment failure under the earthquake is the function of the peak acceleration of earthquake motion, while the occurrence of earthquake is of randomicity, thus the traditional fault tree method in current probability safety assessment is not powerful enough to deal with such case of conditional probability problem. An analysis frame was put forward for system reliability evaluation in seismic condition in this paper, in which Monte Carlo simulation was used to deal with conditional probability problem. Annual failure probability of service water system was calculated, and failure probability of 1.46X10-4 per year was obtained. The analysis result is in accordance with the data which indicate equipment seismic resistance capability, and the rationality of the model is validated. (authors)

  20. The practical approach to the reliability analysis of the software architecture of a complex company control system

    Science.gov (United States)

    Kovalev, I. V.; Zelenkov, P. V.; Ognerubov, S.

    2015-10-01

    The practical aspects of the implementation of reliability analysis of the architecture of a complex control system of a company are considered in this article. The comparative analysis for two variants of software architecture using different factors is presented, the relations between the reliability characteristics and the amount of system architecture components and their connections with each other are defined.

  1. SARA - SURE/ASSIST RELIABILITY ANALYSIS WORKSTATION (VAX VMS VERSION)

    Science.gov (United States)

    Butler, R. W.

    1994-01-01

    SARA, the SURE/ASSIST Reliability Analysis Workstation, is a bundle of programs used to solve reliability problems. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. The Systems Validation Methods group at NASA Langley Research Center has created a set of four software packages that form the basis for a reliability analysis workstation, including three for use in analyzing reconfigurable, fault-tolerant systems and one for analyzing non-reconfigurable systems. The SARA bundle includes the three for reconfigurable, fault-tolerant systems: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), and PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920). As indicated by the program numbers in parentheses, each of these three packages is also available separately in two machine versions. The fourth package, which is only available separately, is FTC, the Fault Tree Compiler (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree which describes a non-reconfigurable system. PAWS/STEM and SURE are analysis programs which utilize different solution methods, but have a common input language, the SURE language. ASSIST is a preprocessor that generates SURE language from a more abstract definition. ASSIST, SURE, and PAWS/STEM are described briefly in the following paragraphs. For additional details about the individual packages, including pricing, please refer to their respective abstracts. ASSIST, the Abstract Semi-Markov Specification Interface to the SURE Tool program, allows a reliability engineer to describe the failure behavior of a fault-tolerant computer system in an abstract, high-level language. The ASSIST program then automatically generates a corresponding semi-Markov model. A one-page ASSIST-language description may result in a semi-Markov model with thousands of states and transitions. The ASSIST program also includes model-reduction techniques to facilitate efficient modeling of large systems. The semi-Markov model generated by ASSIST is in the format needed for input to SURE and PAWS/STEM. The Semi-Markov Unreliability Range Evaluator, SURE, is an analysis tool for reconfigurable, fault-tolerant systems. SURE provides an efficient means for calculating accurate upper and lower bounds for the death state probabilities for a large class of semi-Markov models, not just those which can be reduced to critical-pair architectures. The calculated bounds are close enough (usually within 5 percent of each other) for use in reliability studies of ultra-reliable computer systems. The SURE bounding theorems have algebraic solutions and are consequently computationally efficient even for large and complex systems. SURE can optionally regard a specified parameter as a variable over a range of values, enabling an automatic sensitivity analysis. SURE output is tabular. The PAWS/STEM package includes two programs for the creation and evaluation of pure Markov models describing the behavior of fault-tolerant reconfigurable computer systems: the Pade Approximation with Scaling (PAWS) and Scaled Taylor Exponential Matrix (STEM) programs. PAWS and STEM produce exact solutions for the probability of system failure and provide a conservative estimate of the number of significant digits in the solution. Markov models of fault-tolerant architectures inevitably lead to numerically stiff differential equations. Both PAWS and STEM have the capability to solve numerically stiff models. These complementary programs use separate methods to determine the matrix exponential in the solution of the model's system of differential equations. In general, PAWS is better suited to evaluate small and dense models. STEM operates at lower precision, but works faster than PAWS for larger models. The programs that comprise the SARA package were originally developed for use on DEC VAX series computers running VMS and were later ported for use on Sun series computers running

  2. SARA - SURE/ASSIST RELIABILITY ANALYSIS WORKSTATION (UNIX VERSION)

    Science.gov (United States)

    Butler, R. W.

    1994-01-01

    SARA, the SURE/ASSIST Reliability Analysis Workstation, is a bundle of programs used to solve reliability problems. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. The Systems Validation Methods group at NASA Langley Research Center has created a set of four software packages that form the basis for a reliability analysis workstation, including three for use in analyzing reconfigurable, fault-tolerant systems and one for analyzing non-reconfigurable systems. The SARA bundle includes the three for reconfigurable, fault-tolerant systems: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), and PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920). As indicated by the program numbers in parentheses, each of these three packages is also available separately in two machine versions. The fourth package, which is only available separately, is FTC, the Fault Tree Compiler (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree which describes a non-reconfigurable system. PAWS/STEM and SURE are analysis programs which utilize different solution methods, but have a common input language, the SURE language. ASSIST is a preprocessor that generates SURE language from a more abstract definition. ASSIST, SURE, and PAWS/STEM are described briefly in the following paragraphs. For additional details about the individual packages, including pricing, please refer to their respective abstracts. ASSIST, the Abstract Semi-Markov Specification Interface to the SURE Tool program, allows a reliability engineer to describe the failure behavior of a fault-tolerant computer system in an abstract, high-level language. The ASSIST program then automatically generates a corresponding semi-Markov model. A one-page ASSIST-language description may result in a semi-Markov model with thousands of states and transitions. The ASSIST program also includes model-reduction techniques to facilitate efficient modeling of large systems. The semi-Markov model generated by ASSIST is in the format needed for input to SURE and PAWS/STEM. The Semi-Markov Unreliability Range Evaluator, SURE, is an analysis tool for reconfigurable, fault-tolerant systems. SURE provides an efficient means for calculating accurate upper and lower bounds for the death state probabilities for a large class of semi-Markov models, not just those which can be reduced to critical-pair architectures. The calculated bounds are close enough (usually within 5 percent of each other) for use in reliability studies of ultra-reliable computer systems. The SURE bounding theorems have algebraic solutions and are consequently computationally efficient even for large and complex systems. SURE can optionally regard a specified parameter as a variable over a range of values, enabling an automatic sensitivity analysis. SURE output is tabular. The PAWS/STEM package includes two programs for the creation and evaluation of pure Markov models describing the behavior of fault-tolerant reconfigurable computer systems: the Pade Approximation with Scaling (PAWS) and Scaled Taylor Exponential Matrix (STEM) programs. PAWS and STEM produce exact solutions for the probability of system failure and provide a conservative estimate of the number of significant digits in the solution. Markov models of fault-tolerant architectures inevitably lead to numerically stiff differential equations. Both PAWS and STEM have the capability to solve numerically stiff models. These complementary programs use separate methods to determine the matrix exponential in the solution of the model's system of differential equations. In general, PAWS is better suited to evaluate small and dense models. STEM operates at lower precision, but works faster than PAWS for larger models. The programs that comprise the SARA package were originally developed for use on DEC VAX series computers running VMS and were later ported for use on Sun series computers running

  3. A Most Probable Point-Based Method for Reliability Analysis, Sensitivity Analysis and Design Optimization

    Science.gov (United States)

    Hou, Gene J.-W.; Gumbert, Clyde R.; Newman, Perry A.

    2004-01-01

    A major step in a most probable point (MPP)-based method for reliability analysis is to determine the MPP. This is usually accomplished by using an optimization search algorithm. The optimal solutions associated with the MPP provide measurements related to safety probability. This study focuses on two commonly used approximate probability integration methods; i.e., the Reliability Index Approach (RIA) and the Performance Measurement Approach (PMA). Their reliability sensitivity equations are first derived in this paper, based on the derivatives of their respective optimal solutions. Examples are then provided to demonstrate the use of these derivatives for better reliability analysis and Reliability-Based Design Optimization (RBDO).

  4. Analysis on Reliability of Wine Tasters’ Evaluation Results Based on the Analysis of Variance

    Directory of Open Access Journals (Sweden)

    Wang Yufei

    2013-10-01

    Full Text Available Based on the data related to the evaluation score of wine taster provided in 2012 CUMCM, this study firstly adopts confidence interval method to eliminate the effect of wine tasters’ personal differences. Then, by using analysis of variance, we make a test of significance on evaluation results of wine tasters from Group A and B at the significance level of 0.05. Results show that there is no significant difference in the sensory evaluation results of wine tasters from the two groups. By comparing the variance of comprehensive scores given by wine tasters from the two groups, we confirm the evaluation results of wine tasters from which group are more reliable. Results of the model shows that variances of evaluation results given by wine tasters from Group B are all smaller than that of Group A, which prove that evaluation result of wine tasters from Group B is more reliable.

  5. Reliability analysis attempt for point mutations in DNA replication

    Directory of Open Access Journals (Sweden)

    Adrian MIHALA

    2015-06-01

    Full Text Available A reliability analysis attempt is hereby presented for point mutations in Escherichia coli DNA replication without considering the postreplicative correction by the DNA mismatch repair system. Rates for correct and false enzymatic and mechanochemical processes are considered for calculation of probabilities for false primary inclusion of deoxynucleotides in the growing DNA chain and for defective verification of the new formed base pair in this chain by the DNA polymerase complex. Formulae for obtaining correct new synthesized DNA strand are given. The probability of no false insertion in the entire helix of length N in a correct new DNA strand is calculated to 0.63 with the 10-5 and 10-2 figures for the probabilities of defective base inclusion and escape rate and 4.6?106 bp length of the K12 strain E. coli chromosome. Perspectives of reliability analysis for mechanism concerning specificity in biologic processes are discussed.

  6. Analysis of Gumbel Model for Software Reliability Using Bayesian Paradigm

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2012-12-01

    Full Text Available In this paper, we have illustrated the suitability of Gumbel Model for software reliability data. The model parameters are estimated using likelihood based inferential procedure: classical as well as Bayesian. The quasi Newton-Raphson algorithm is applied to obtain the maximum likelihood estimates and associated probability intervals. The Bayesian estimates of the parameters of Gumbel model are obtained using Markov Chain Monte Carlo(MCMC simulation method in OpenBUGS(established software for Bayesian analysis using Markov Chain Monte Carlo methods. The R functions are developed to study the statistical properties, model validation and comparison tools of the model and the output analysis of MCMC samples generated from OpenBUGS. Details of applying MCMC to parameter estimation for the Gumbel model are elaborated and a real software reliability data set is considered to illustrate the methods of inference discussed in this paper.

  7. Reliability analysis of maintenance operations for railway tracks

    International Nuclear Information System (INIS)

    Railway engineering is confronted with problems due to degradation of the railway network that requires important and costly maintenance work. However, because of the lack of knowledge on the geometrical and mechanical parameters of the track, it is difficult to optimize the maintenance management. In this context, this paper presents a new methodology to analyze the behavior of railway tracks. It combines new diagnostic devices which permit to obtain an important amount of data and thus to make statistics on the geometric and mechanical parameters and a non-intrusive stochastic approach which can be coupled with any mechanical model. Numerical results show the possibilities of this methodology for reliability analysis of different maintenance operations. In the future this approach will give important informations to railway managers to optimize maintenance operations using a reliability analysis

  8. Reliability Analysis of Metro Door System Based on FMECA

    OpenAIRE

    Xiaoqing Cheng; Zongyi Xing; Yong Qin; Yuan Zhang; Shaohuang Pang; Jun Xia

    2013-01-01

    The metro door system is one of the high failure rate subsystems of metro trains. The Failure Mode, Effects and Criticality Analysis (FMECA) method is applied to analyze the reliability of metro door system in this paper. Firstly, failure components of the door are statistically analyzed, and the major failure components are determined. Secondly, failures are classified according to their impacts on operation, and methods of calculating failure mode criticality and the related coefficients ar...

  9. Evaluation of the reliability of computerized profile cephalometric analysis

    OpenAIRE

    Ferreira José Tarcísio Lima; Telles Carlos de Souza

    2002-01-01

    The use of computers as an auxiliary instrument for case evaluation and procedures in health sciences is not new, and their advantages are well known. A growing number of orthodontists are using computerized systems for cephalometric analysis. Thus, this study evaluated the reliability of both computerized and manual methods used for creating profile cephalograms. Fifty profile radiographs were selected from the files of the Post-Graduate Course in Orthodontics at the Dental School of the Fed...

  10. Reliability Analysis of Car Maintenance Forecast and Performance

    OpenAIRE

    Owhor, Sampson Chisa,; Abdul Alim Ibrahim Gambo; Ojo, Victor Kayode; Dan’azumi Daniel

    2015-01-01

    In reliability analysis of car maintenance forecast and performance, researchers have mostly dealt with problems either without maintenance or with deterministic maintenance when no failure can occur. This can be unrealistic in practical settings. In this work, a statistical model is developed to evaluate the effect of predictive and preventive maintenance schemes on car performance in the presence of system failure where the forecasting objective is to minimize schedule duration. It was s...

  11. Reliability analysis of the ventilation control system in CEFR

    International Nuclear Information System (INIS)

    This paper describes the function and structure of airiness control system in CEFR. In this paper, based on FMEA and FTA, the reliability of the ventilation control system of CEFR was analyzed. The quantitative analysis and calculation about the fault tree, with the failure rate of fault tree and minimal cut sets are obtained. The data obtained are useful to support the management of the ventilation system of CEFR. (author)

  12. Beyond reliability, multi-state failure analysis of satellite subsystems: A statistical approach

    International Nuclear Information System (INIS)

    Reliability is widely recognized as a critical design attribute for space systems. In recent articles, we conducted nonparametric analyses and Weibull fits of satellite and satellite subsystems reliability for 1584 Earth-orbiting satellites launched between January 1990 and October 2008. In this paper, we extend our investigation of failures of satellites and satellite subsystems beyond the binary concept of reliability to the analysis of their anomalies and multi-state failures. In reliability analysis, the system or subsystem under study is considered to be either in an operational or failed state; multi-state failure analysis introduces 'degraded states' or partial failures, and thus provides more insights through finer resolution into the degradation behavior of an item and its progression towards complete failure. The database used for the statistical analysis in the present work identifies five states for each satellite subsystem: three degraded states, one fully operational state, and one failed state (complete failure). Because our dataset is right-censored, we calculate the nonparametric probability of transitioning between states for each satellite subsystem with the Kaplan-Meier estimator, and we derive confidence intervals for each probability of transitioning between states. We then conduct parametric Weibull fits of these probabilities using the Maximum Likelihood Estimation (MLE) approach. After validating the results, we compare the reliability versus multi-state failure analyses of three satellite subsystems: the thruster/fuel; the telemetry, tracking, and control (TTC); and the gyro/sensor/reaction wheel subsystems. The results are particularly revealing of the insights that can be gleaned from multi-state failure analysis and the deficiencies, or blind spots, of the traditional reliability analysis. In addition to the specific results provided here, which should prove particularly useful to the space industry, this work highlights the importance of conducting, beyond the traditional reliability analysis, multi-state failure analysis of any engineering system when seeking to understand its failure behavior.

  13. Comparative analysis of collaboration networks

    International Nuclear Information System (INIS)

    In this paper we carry out a comparative analysis of the word network as the collaboration network based on the novel by M. Bulgakov 'Master and Margarita', the synonym network of the Russian language as well as the Russian movie actor network. We have constructed one-mode projections of these networks, defined degree distributions for them and have calculated main characteristics. In the paper a generation algorithm of collaboration networks has been offered which allows one to generate networks statistically equivalent to the studied ones. It lets us reveal a structural correlation between word network, synonym network and movie actor network. We show that the degree distributions of all analyzable networks are described by the distribution of q-type.

  14. Comparative Analysis of Classifier Fusers

    Directory of Open Access Journals (Sweden)

    Marcin Zmyslony

    2012-05-01

    Full Text Available There are many methods of decision making by an ensemble of classifiers. The most popular are methods that have their origin in voting method, where the decision of the common classifier is a combination of individual classifiers’ outputs. This work presents comparative analysis of some classifier fusion methods based on weighted voting of classifiers’ responses and combination of classifiers’ discriminant functions. We discus different methods of producing combined classifiers based on weights. We show that it is not possible to obtain classifier better than an abstract model of committee known as an Oracle if it is based only on weighted voting but models based on discriminant function or classifier using feature values and class numbers could outperform the Oracle as well. Delivered conclusions are confirmed by the results of computer experiments carried out on benchmark and computer generated data.

  15. Comparative Analysis of Classifier Fusers

    Directory of Open Access Journals (Sweden)

    Marcin Zmyslony

    2012-06-01

    Full Text Available There are many methods of decision making by an ensemble of classifiers. The most popular are methods that have their origin in voting method, where the decision of the common classifier is a combination of individual classifiers’ outputs. This work presents comparative analysis of some classifier fusion methods based on weighted voting of classifiers’ responses and combination of classifiers’ discriminant functions. We discus different methods of producing combined classifiers based on weights. We show that it is notpossible to obtain classifier better than an abstract model of committee known as an Oracle if it is based only on weighted voting but models based on discriminant function or classifier using feature values and class numbers could outperform the Oracle as well. Delivered conclusions are confirmed by the results of computer experiments carried out on benchmark and computer generated data.

  16. Reliability and Comparability of Psychosis Patients’ Retrospective Reports of Childhood Abuse

    OpenAIRE

    Fisher, Helen L.; Craig, Thomas K.; FEARON, PAUL; Morgan, Kevin; Dazzan, Paola; Lappin, Julia; Hutchinson, Gerard; Doody, Gillian A.; Jones, Peter B.; McGuffin, Peter; Murray, Robin M; Leff, Julian; Morgan, Craig

    2009-01-01

    An increasing number of studies are demonstrating an association between childhood abuse and psychosis. However, the majority of these rely on retrospective self-reports in adulthood that may be unduly influenced by current psychopathology. We therefore set out to explore the reliability and comparability of first-presentation psychosis patients’ reports of childhood abuse. Psychosis case subjects were drawn from the Aetiology and Ethnicity of Schizophrenia and Other Psychoses (ĆSOP) epidemio...

  17. Reliability, Validity, Comparability and Practical Utility of Cybercrime-Related Data, Metrics, and Information

    OpenAIRE

    Nir Kshetri

    2013-01-01

    With an increasing pervasiveness, prevalence and severity of cybercrimes, various metrics, measures and statistics have been developed and used to measure various aspects of this phenomenon. Cybercrime-related data, metrics, and information, however, pose important and difficult dilemmas regarding the issues of reliability, validity, comparability and practical utility. While many of the issues of the cybercrime economy are similar to other underground and underworld industries, this economy ...

  18. Reliability analysis of crack propagation behavior of reactor components

    International Nuclear Information System (INIS)

    A reliability analysis was carried out on a circumferential weld in the main coolant loop of a PWR with the aim of estimating the probability of a leak or break occurring in the planned life cycle of the plant. To get a basis for the reliability analysis the following influence factors were more closely examined: initial crack extent, load spectrum including the emergency 'earthquake' situation and crack growth characteristics. For the actual reliability analysis a computer program was developed, which took the individual input data, in accordance with their statistical parameter, into account in a simulation calculation in line with the Monte Carlo Method. The Forman Formula was used to estimate the fatigue crack growth caused by the sequence of load events. The result was, that the fatigue crack growth, even in the case of large initial cracks, was negligibly small. The probability, that, in the case of very deep initial cracks, one-off high quasi-static load, e.g. during an earthquake, could cause a locally limited crack-through, was estimated to be about 5x10-6 in forty years. (orig./HP)

  19. Fiber Access Networks: Reliability Analysis and Swedish Broadband Market

    Science.gov (United States)

    Wosinska, Lena; Chen, Jiajia; Larsen, Claus Popp

    Fiber access network architectures such as active optical networks (AONs) and passive optical networks (PONs) have been developed to support the growing bandwidth demand. Whereas particularly Swedish operators prefer AON, this may not be the case for operators in other countries. The choice depends on a combination of technical requirements, practical constraints, business models, and cost. Due to the increasing importance of reliable access to the network services, connection availability is becoming one of the most crucial issues for access networks, which should be reflected in the network owner's architecture decision. In many cases protection against failures is realized by adding backup resources. However, there is a trade off between the cost of protection and the level of service reliability since improving reliability performance by duplication of network resources (and capital expenditures CAPEX) may be too expensive. In this paper we present the evolution of fiber access networks and compare reliability performance in relation to investment and management cost for some representative cases. We consider both standard and novel architectures for deployment in both sparsely and densely populated areas. While some recent works focused on PON protection schemes with reduced CAPEX the current and future effort should be put on minimizing the operational expenditures (OPEX) during the access network lifetime.

  20. Solid Rocket Booster Large Main and Drogue Parachute Reliability Analysis

    Science.gov (United States)

    Clifford, Courtenay B.; Hengel, John E.

    2009-01-01

    The parachutes on the Space Transportation System (STS) Solid Rocket Booster (SRB) are the means for decelerating the SRB and allowing it to impact the water at a nominal vertical velocity of 75 feet per second. Each SRB has one pilot, one drogue, and three main parachutes. About four minutes after SRB separation, the SRB nose cap is jettisoned, deploying the pilot parachute. The pilot chute then deploys the drogue parachute. The drogue chute provides initial deceleration and proper SRB orientation prior to frustum separation. At frustum separation, the drogue pulls the frustum from the SRB and allows the main parachutes that are mounted in the frustum to unpack and inflate. These chutes are retrieved, inspected, cleaned, repaired as needed, and returned to the flight inventory and reused. Over the course of the Shuttle Program, several improvements have been introduced to the SRB main parachutes. A major change was the replacement of the small (115 ft. diameter) main parachutes with the larger (136 ft. diameter) main parachutes. Other modifications were made to the main parachutes, main parachute support structure, and SRB frustum to eliminate failure mechanisms, improve damage tolerance, and improve deployment and inflation characteristics. This reliability analysis is limited to the examination of the SRB Large Main Parachute (LMP) and drogue parachute failure history to assess the reliability of these chutes. From the inventory analysis, 68 Large Main Parachutes were used in 651 deployments, and 7 chute failures occurred in the 651 deployments. Logistic regression was used to analyze the LMP failure history, and it showed that reliability growth has occurred over the period of use resulting in a current chute reliability of R = .9983. This result was then used to determine the reliability of the 3 LMPs on the SRB, when all must function. There are 29 drogue parachutes that were used in 244 deployments, and no in-flight failures have occurred. Since there are no observed drogue chute failures, Jeffreys Prior was used to calculate a reliability of R =.998. Based on these results, it is concluded that the LMP and drogue parachutes on the Shuttle SRB are suited to their mission and changes made over their life have improved the reliability of the parachute.

  1. High-Reliable PLC RTOS Development and RPS Structure Analysis

    International Nuclear Information System (INIS)

    One of the KNICS objectives is to develop a platform for Nuclear Power Plant(NPP) I and C(Instrumentation and Control) system, especially plant protection system. The developed platform is POSAFE-Q and this work supports the development of POSAFE-Q with the development of high-reliable real-time operating system(RTOS) and programmable logic device(PLD) software. Another KNICS objective is to develop safety I and C systems, such as Reactor Protection System(RPS) and Engineered Safety Feature-Component Control System(ESF-CCS). This work plays an important role in the structure analysis for RPS. Validation and verification(V and V) of the safety critical software is an essential work to make digital plant protection system highly reliable and safe. Generally, the reliability and safety of software based system can be improved by strict quality assurance framework including the software development itself. In other words, through V and V, the reliability and safety of a system can be improved and the development activities like software requirement specification, software design specification, component tests, integration tests, and system tests shall be appropriately documented for V and V.

  2. Reliability engineering analysis of ATLAS data reprocessing campaigns

    International Nuclear Information System (INIS)

    During three years of LHC data taking, the ATLAS collaboration completed three petascale data reprocessing campaigns on the Grid, with up to 2 PB of data being reprocessed every year. In reprocessing on the Grid, failures can occur for a variety of reasons, while Grid heterogeneity makes failures hard to diagnose and repair quickly. As a result, Big Data processing on the Grid must tolerate a continuous stream of failures, errors and faults. While ATLAS fault-tolerance mechanisms improve the reliability of Big Data processing in the Grid, their benefits come at costs and result in delays making the performance prediction difficult. Reliability Engineering provides a framework for fundamental understanding of the Big Data processing on the Grid, which is not a desirable enhancement but a necessary requirement. In ATLAS, cost monitoring and performance prediction became critical for the success of the reprocessing campaigns conducted in preparation for the major physics conferences. In addition, our Reliability Engineering approach supported continuous improvements in data reprocessing throughput during LHC data taking. The throughput doubled in 2011 vs. 2010 reprocessing, then quadrupled in 2012 vs. 2011 reprocessing. We present the Reliability Engineering analysis of ATLAS data reprocessing campaigns providing the foundation needed to scale up the Big Data processing technologies beyond the petascale.

  3. Analysis of emergency diesel generators for improved reliability

    International Nuclear Information System (INIS)

    Nuclear generating station emergency diesel generators are among the most critical safeguards systems because of their need to operate as designed in the event of a loss of off-site power and to be operational to permit nuclear unit operation. This paper will detail the need for analysis of diesel engines to ensure reliability, performance, and availability of the diesel generator and nuclear unit. The requirements for a state-of-the-art analysis program will be given, showing the benefits derived from digital data collection and computer aided diagnostics. These benefits include more frequent analysis, improved scheduling of tests and historical comparison and trending of data. Commonwealth Edison operates twenty-four emergency diesel generators at six nuclear generating stations. Case studies of actual malfunctions detected will be used to illustrate analysis methods and the capabilities of their engine analysis program

  4. Some developments in human reliability analysis approaches and tools

    International Nuclear Information System (INIS)

    Since human actions have been recognized as an important contributor to safety of operating plants in most industries, research has been performed to better understand and account for the way operators interact during accidents through the control room and equipment interface. This paper describes the integration of a series of research projects sponsored by the Electric Power Research Institute to strengthen the methods for performing the human reliability analysis portion of the probabilistic safety studies. It focuses on the analytical framework used to guide the analysis, the development of the models for quantifying time-dependent actions, and simulator experiments used to validate the models. (author)

  5. Design and Analysis for Reliability of Wireless Sensor Network

    OpenAIRE

    Yongxian Song; Ting Chen; Juanli Ma; Yuan Feng; Xianjin Zhang

    2012-01-01

    Reliability is an important performance indicator of wireless sensor network, to some application fields, which have high demands in terms of reliability, it is particularly important to ensure reliability of network. At present, the reliability research findings of wireless sensor network are much more at home and abroad, but they mainly improve network reliability from the networks topology, reliable protocol and application layer fault correction and so on, and reliability of network is co...

  6. Structural Reliability Analysis and Optimization: Use of Approximations

    Science.gov (United States)

    Grandhi, Ramana V.; Wang, Liping

    1999-01-01

    This report is intended for the demonstration of function approximation concepts and their applicability in reliability analysis and design. Particularly, approximations in the calculation of the safety index, failure probability and structural optimization (modification of design variables) are developed. With this scope in mind, extensive details on probability theory are avoided. Definitions relevant to the stated objectives have been taken from standard text books. The idea of function approximations is to minimize the repetitive use of computationally intensive calculations by replacing them with simpler closed-form equations, which could be nonlinear. Typically, the approximations provide good accuracy around the points where they are constructed, and they need to be periodically updated to extend their utility. There are approximations in calculating the failure probability of a limit state function. The first one, which is most commonly discussed, is how the limit state is approximated at the design point. Most of the time this could be a first-order Taylor series expansion, also known as the First Order Reliability Method (FORM), or a second-order Taylor series expansion (paraboloid), also known as the Second Order Reliability Method (SORM). From the computational procedure point of view, this step comes after the design point identification; however, the order of approximation for the probability of failure calculation is discussed first, and it is denoted by either FORM or SORM. The other approximation of interest is how the design point, or the most probable failure point (MPP), is identified. For iteratively finding this point, again the limit state is approximated. The accuracy and efficiency of the approximations make the search process quite practical for analysis intensive approaches such as the finite element methods; therefore, the crux of this research is to develop excellent approximations for MPP identification and also different approximations including the higher-order reliability methods (HORM) for representing the failure surface. This report is divided into several parts to emphasize different segments of the structural reliability analysis and design. Broadly, it consists of mathematical foundations, methods and applications. Chapter I discusses the fundamental definitions of the probability theory, which are mostly available in standard text books. Probability density function descriptions relevant to this work are addressed. In Chapter 2, the concept and utility of function approximation are discussed for a general application in engineering analysis. Various forms of function representations and the latest developments in nonlinear adaptive approximations are presented with comparison studies. Research work accomplished in reliability analysis is presented in Chapter 3. First, the definition of safety index and most probable point of failure are introduced. Efficient ways of computing the safety index with a fewer number of iterations is emphasized. In chapter 4, the probability of failure prediction is presented using first-order, second-order and higher-order methods. System reliability methods are discussed in chapter 5. Chapter 6 presents optimization techniques for the modification and redistribution of structural sizes for improving the structural reliability. The report also contains several appendices on probability parameters.

  7. An improved radial basis function network for structural reliability analysis

    International Nuclear Information System (INIS)

    Approximation methods such as response surface method and artificial neural network (ANN) method are widely used to alleviate the computation costs in structural reliability analysis. However most of the ANN methods proposed in the literature suffer various drawbacks such as poor choice of parameter setting, poor generalization and local minimum. In this study, a support vector machine-based radial basis function (RBF) network method is proposed, in which the improved RBF model is used to approximate the limit state function and then is connected to a reliability method to estimate failure probability. Since the learning algorithm of RBF network is replaced by the support vector algorithm, the advantage of the latter, such as good generalization ability and global optimization are propagated to the former, thus the inherent drawback of RBF network can be defeated. Numerical examples are given to demonstrate the applicability of the improved RBF network method in structural reliability analysis, as well as to illustrate the validity and effectiveness of the proposed method

  8. Modeling of seismic hazards for dynamic reliability analysis

    International Nuclear Information System (INIS)

    This paper investigates the appropriate indices of seismic hazard curves (SHCs) for seismic reliability analysis. In the most seismic reliability analyses of structures, the seismic hazards are defined in the form of the SHCs of peak ground accelerations (PGAs). Usually PGAs play a significant role in characterizing ground motions. However, PGA is not always a suitable index of seismic motions. When random vibration theory developed in the frequency domain is employed to obtain statistics of responses, it is more convenient for the implementation of dynamic reliability analysis (DRA) to utilize an index which can be determined in the frequency domain. In this paper, we summarize relationships among the indices which characterize ground motions. The relationships between the indices and the magnitude M are arranged as well. In this consideration, duration time plays an important role in relating two distinct class, i.e. energy class and power class. Fourier and energy spectra are involved in the energy class, and power and response spectra and PGAs are involved in the power class. These relationships are also investigated by using ground motion records. Through these investigations, we have shown the efficiency of employing the total energy as an index of SHCs, which can be determined in the time and frequency domains and has less variance than the other indices. In addition, we have proposed the procedure of DRA based on total energy. (author)

  9. Probabilistic Life and Reliability Analysis of Model Gas Turbine Disk

    Science.gov (United States)

    Holland, Frederic A.; Melis, Matthew E.; Zaretsky, Erwin V.

    2002-01-01

    In 1939, W. Weibull developed what is now commonly known as the "Weibull Distribution Function" primarily to determine the cumulative strength distribution of small sample sizes of elemental fracture specimens. In 1947, G. Lundberg and A. Palmgren, using the Weibull Distribution Function developed a probabilistic lifing protocol for ball and roller bearings. In 1987, E. V. Zaretsky using the Weibull Distribution Function modified the Lundberg and Palmgren approach to life prediction. His method incorporates the results of coupon fatigue testing to compute the life of elemental stress volumes of a complex machine element to predict system life and reliability. This paper examines the Zaretsky method to determine the probabilistic life and reliability of a model gas turbine disk using experimental data from coupon specimens. The predicted results are compared to experimental disk endurance data.

  10. Review of the treat upgrade reactor scram system reliability analysis

    International Nuclear Information System (INIS)

    In order to resolve some key LMFBR safety issues, ANL personnel are modifying the TREAT reactor to handle much larger experiments. As a result of these modifications, the upgraded Treat reactor will not always operate in a self-limited mode. During certain experiments in the upgraded TREAT reactor, it is possible that the fuel could be damaged by overheating if, once the computer systems fail, the reactor scram system (RSS) fails on demand. To help ensure that the upgraded TREAT reactor is shut down when required, ANL personnel have designed a triply redundant RSS for the facility. The RSS is designed to meet three reliability goals: (1) a loss of capability failure probability of 10-9/demand (independent failures only); (2) an inadvertent shutdown probability of 10-3/experiment; and (3) protection agaist any known potential common cause failures. According to ANL's reliability analysis of the RSS, this system substantially meets these goals

  11. Reliability analysis of neutron flux monitoring system for PFBR

    International Nuclear Information System (INIS)

    The Neutron Flux Monitoring System (NFMS) measures reactor power, rate of change of power and reactivity changes in the core in all states of operation and shutdown. The system consists of instrument channels that are designed and built to have high reliability. All channels are required to have a Mean Time Between Failures (MTBF) of 150000 hours minimum. Failure Mode and Effects Analysis (FMEA) and failure rate estimation of NFMS channels has been carried out. FMEA is carried out in compliance with MIL-STD-338B. Reliability estimation of the channels is done according to MIL-HDBK-217FN2. Paper discusses the methodology followed for FMEA and failure rate estimation of two safety channels and results. (author)

  12. Time-dependent reliability analysis of ceramic engine components

    Science.gov (United States)

    Nemeth, Noel N.

    1993-01-01

    The computer program CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program. CARES/LIFE accounts for the phenomenon of subcritical crack growth (SCG) by utilizing either the power or Paris law relations. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled using either the principle of independent action (PIA), the Weibull normal stress averaging method (NSA), or the Batdorf theory. Inert strength and fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded in static, dynamic, or cyclic fatigue. Two example problems demonstrating proof testing and fatigue parameter estimation are given.

  13. Commingled Samples: A Neglected Source of Bias in Reliability Analysis

    Science.gov (United States)

    Waller, Niels G.

    2008-01-01

    Reliability is a property of test scores from individuals who have been sampled from a well-defined population. Reliability indices, such as coefficient and related formulas for internal consistency reliability (KR-20, Hoyt's reliability), yield lower bound reliability estimates when (a) subjects have been sampled from a single population and when…

  14. Limits of reliability of optical properties of commercial glass in Mexico, a comparative analysis with experimental results; Limites de confiabilidad de propiedades opticas de vidrios comerciales en mexico, analisis comparativo con resultados experimentales

    Energy Technology Data Exchange (ETDEWEB)

    Barrios Rodriguez, Pilar; Dorantes Rodriguez, Ruben J. [Universidad Autonoma Metropolitana Azcapotzalco, Mexico, D.F. (Mexico)

    2000-07-01

    The heat transfer through the buildings has been increased by the intensive use of glass in the building's covering; this situation has demanded more electrical energy for compensate the heat's gain or loss. Energy use in buildings is responsible for some 50% of CO{sub 2} emissions in many countries, so it's necessary a building's thermal design for a rational use of energy. The glass is an important material in the building's encircling, so it's essential to count on precise values of the glass's properties for design building's covering. Experimental evaluation on optical properties in some building's glasses to compare the experimental values with manufacturer's reported values inside tolerance limits. [Spanish] La ganancia de calor solar al interior de las edificaciones se ha visto incrementada por la tendencia actual en el uso intensivo y extensivo del vidrio en la envolvente, lo que ha aumentado la necesidad del uso de energia electrica para compensar con climatizacion artificial las ganancias y/o perdidas termicas en los espacios interiores de las edificaciones. El gasto energetico en edificios es responsable de cerca del 50% de emision de CO{sub 2} en varios paises, por lo que es necesario un diseno termico de la envolvente que contempla un uso racional de la energia. Por la importancia termica que el vidrio tiene en la envolvente de las edificaciones y la necesidad de contar con el valor de las propiedades lo mas preciso posible para su diseno, se planteo evaluar en forma experimental el comportamiento termico de algunos vidrios que tuviesen uso tanto real como potencial en las edificaciones de nuestro pais y comparar los valores obtenidos con los valores reportados por los fabricantes dentro de limites de tolerancia o confiabilidad.

  15. Improvement of human reliability analysis method for PRA

    International Nuclear Information System (INIS)

    It is required to refine human reliability analysis (HRA) method by, for example, incorporating consideration for the cognitive process of operator into the evaluation of diagnosis errors and decision-making errors, as a part of the development and improvement of methods used in probabilistic risk assessments (PRAs). JNES has been developed a HRA method based on ATHENA which is suitable to handle the structured relationship among diagnosis errors, decision-making errors and operator cognition process. This report summarizes outcomes obtained from the improvement of HRA method, in which enhancement to evaluate how the plant degraded condition affects operator cognitive process and to evaluate human error probabilities (HEPs) which correspond to the contents of operator tasks is made. In addition, this report describes the results of case studies on the representative accident sequences to investigate the applicability of HRA method developed. HEPs of the same accident sequences are also estimated using THERP method, which is most popularly used HRA method, and comparisons of the results obtained using these two methods are made to depict the differences of these methods and issues to be solved. Important conclusions obtained are as follows: (1) Improvement of HRA method using operator cognitive action model. Clarification of factors to be considered in the evaluation of human errors, incorporation of degraded plant safety condition into HRA and investigation of HEPs which are affected by the contents of operator tasks were made to improve the HRA method which can integrate operator cognitive action model into ATHENA method. In addition, the detail of procedures of the improved method was delineated in the form of flowchart. (2) Case studies and comparison with the results evaluated by THERP method. Four operator actions modeled in the PRAs of representative BWR5 and 4-loop PWR plants were selected and evaluated as case studies. These cases were also evaluated using THERP method to compare the results with the improved method. In general, HEPs evaluated by the improved method are greater than HEPs evaluated by THERP method. (3) Characteristics of the improved HRA method. As many reference tables which can be applied for various cases are prepared in the improved HRA method, the prospect of realization of reproducibility, i.e. similar results are obtained independently to analysis, and traceability, i.e. process to the final results is clear and is also to be shared among analysts, can be said to be achieved. (author)

  16. The reliability of an instrumented start block analysis system.

    Science.gov (United States)

    Tor, Elaine; Pease, David L; Ball, Kevin A

    2015-02-01

    The swimming start is highly influential to overall competition performance. Therefore, it is paramount to develop reliable methods to perform accurate biomechanical analysis of start performance for training and research. The Wetplate Analysis System is a custom-made force plate system developed by the Australian Institute of Sport--Aquatic Testing, Training and Research Unit (AIS ATTRU). This sophisticated system combines both force data and 2D digitization to measure a number of kinetic and kinematic parameter values in an attempt to evaluate start performance. Fourteen elite swimmers performed two maximal effort dives (performance was defined as time from start signal to 15 m) over two separate testing sessions. Intraclass correlation coefficients (ICC) were used to determine each parameter's reliability. The kinetic parameters all had ICC greater than 0.9 except the time of peak vertical force (0.742). This may have been due to variations in movement initiation after the starting signal between trials. The kinematic and time parameters also had ICC greater than 0.9 apart from for the time of maximum depth (0.719). This parameter was lower due to the swimmers varying their depth between trials. Based on the high ICC scores for all parameters, the Wetplate Analysis System is suitable for biomechanical analysis of swimming starts. PMID:25268512

  17. Nuclear power plant emergency core cooling system reliability analysis - reliability estimation for small LOCA

    International Nuclear Information System (INIS)

    System performance reliability depends not only on its own availability but also on requirements which are placed the system. This paper shows a way of system performance reliability estimation for a NPP Emergency Core Cooling System in case of small LOCA. The event scenario and requirements for systems are determined with event tree. Finally, the ECCS reliability estimation is performed on the basis of system requirements. (author)

  18. Validity and reliability of free software for bidimensional gait analysis

    CERN Document Server

    Quixadá, Ana Paula; Peña, Norberto; Miranda, José Garcia Vivas; Sá, Katia Nunes

    2016-01-01

    Despite the evaluation systems of human movement that have been advancing in recent decades, their use are not feasible for clinical practice because it has a high cost and scarcity of trained operators to interpret their results. An ideal videogrammetry system should be easy to use, low cost, with minimal equipment, and fast realization. The CvMob is a free tool for dynamic evaluation of human movements that express measurements in figures, tables, and graphics. This paper aims to determine if CvMob is a reliable tool for the evaluation of two dimensional human gait. This is a validity and reliability study. The sample was composed of 56 healthy individuals who walked on a 9-meterlong walkway and were simultaneously filmed by CvMob and Vicon system cameras. Linear trajectories and angular measurements were compared to validate the CvMob system, and inter and intrarater findings of the same measurements were used to determine reliability. A strong correlation (rs mean = 0.988) of the linear trajectories betwe...

  19. A Research Roadmap for Computation-Based Human Reliability Analysis

    International Nuclear Information System (INIS)

    The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is often secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.

  20. Reliability and risk analysis using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, D.G. [Sandia National Labs., Albuquerque, NM (United States)

    1995-12-31

    This paper discusses preliminary research at Sandia National Laboratories into the application of artificial neural networks for reliability and risk analysis. The goal of this effort is to develop a reliability based methodology that captures the complex relationship between uncertainty in material properties and manufacturing processes and the resulting uncertainty in life prediction estimates. The inputs to the neural network model are probability density functions describing system characteristics and the output is a statistical description of system performance. The most recent application of this methodology involves the comparison of various low-residue, lead-free soldering processes with the desire to minimize the associated waste streams with no reduction in product reliability. Model inputs include statistical descriptions of various material properties such as the coefficients of thermal expansion of solder and substrate. Consideration is also given to stochastic variation in the operational environment to which the electronic components might be exposed. Model output includes a probabilistic characterization of the fatigue life of the surface mounted component.

  1. A Bayesian Framework for Reliability Analysis of Spacecraft Deployments

    Science.gov (United States)

    Evans, John W.; Gallo, Luis; Kaminsky, Mark

    2012-01-01

    Deployable subsystems are essential to mission success of most spacecraft. These subsystems enable critical functions including power, communications and thermal control. The loss of any of these functions will generally result in loss of the mission. These subsystems and their components often consist of unique designs and applications for which various standardized data sources are not applicable for estimating reliability and for assessing risks. In this study, a two stage sequential Bayesian framework for reliability estimation of spacecraft deployment was developed for this purpose. This process was then applied to the James Webb Space Telescope (JWST) Sunshield subsystem, a unique design intended for thermal control of the Optical Telescope Element. Initially, detailed studies of NASA deployment history, "heritage information", were conducted, extending over 45 years of spacecraft launches. This information was then coupled to a non-informative prior and a binomial likelihood function to create a posterior distribution for deployments of various subsystems uSing Monte Carlo Markov Chain sampling. Select distributions were then coupled to a subsequent analysis, using test data and anomaly occurrences on successive ground test deployments of scale model test articles of JWST hardware, to update the NASA heritage data. This allowed for a realistic prediction for the reliability of the complex Sunshield deployment, with credibility limits, within this two stage Bayesian framework.

  2. A Research Roadmap for Computation-Based Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Groth, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is often secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.

  3. Failure and Reliability Analysis for the Master Pump Shutdown System

    Energy Technology Data Exchange (ETDEWEB)

    BEVINS, R.R.

    2000-09-05

    The Master Pump Shutdown System (MPSS) will be installed in the 200 Areas of the Hanford Site to monitor and control the transfer of liquid waste between tank farms and between the 200 West and 200 East areas through the Cross-Site Transfer Line. The Safety Function provided by the MPSS is to shutdown any waste transfer process within or between tank farms if a waste leak should occur along the selected transfer route. The MPSS, which provides this Safety Class Function, is composed of Programmable Logic Controllers (PLCs), interconnecting wires, relays, Human to Machine Interfaces (HMI), and software. These components are defined as providing a Safety Class Function and will be designated in this report as MPSS/PLC. Input signals to the MPSS/PLC are provided by leak detection systems from each of the tank farm leak detector locations along the waste transfer route. The combination of the MPSS/PLC, leak detection system, and transfer pump controller system will be referred to as MPSS/SYS. The components addressed in this analysis are associated with the MPSS/SYS. The purpose of this failure and reliability analysis is to address the following design issues of the Project Development Specification (PDS) for the MPSS/SYS (HNF 2000a): (1) Single Component Failure Criterion, (2) System Status Upon Loss of Electrical Power, (3) Physical Separation of Safety Class cables, (4) Physical Isolation of Safety Class Wiring from General Service Wiring, and (5) Meeting the MPSS/PLC Option 1b (RPP 1999) Reliability estimate. The failure and reliability analysis examined the system on a component level basis and identified any hardware or software elements that could fail and/or prevent the system from performing its intended safety function.

  4. Fifty Years of THERP and Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring

    2012-06-01

    In 1962 at a Human Factors Society symposium, Alan Swain presented a paper introducing a Technique for Human Error Rate Prediction (THERP). This was followed in 1963 by a Sandia Laboratories monograph outlining basic human error quantification using THERP and, in 1964, by a special journal edition of Human Factors on quantification of human performance. Throughout the 1960s, Swain and his colleagues focused on collecting human performance data for the Sandia Human Error Rate Bank (SHERB), primarily in connection with supporting the reliability of nuclear weapons assembly in the US. In 1969, Swain met with Jens Rasmussen of Risø National Laboratory and discussed the applicability of THERP to nuclear power applications. By 1975, in WASH-1400, Swain had articulated the use of THERP for nuclear power applications, and the approach was finalized in the watershed publication of the NUREG/CR-1278 in 1983. THERP is now 50 years old, and remains the most well known and most widely used HRA method. In this paper, the author discusses the history of THERP, based on published reports and personal communication and interviews with Swain. The author also outlines the significance of THERP. The foundations of human reliability analysis are found in THERP: human failure events, task analysis, performance shaping factors, human error probabilities, dependence, event trees, recovery, and pre- and post-initiating events were all introduced in THERP. While THERP is not without its detractors, and it is showing signs of its age in the face of newer technological applications, the longevity of THERP is a testament of its tremendous significance. THERP started the field of human reliability analysis. This paper concludes with a discussion of THERP in the context of newer methods, which can be seen as extensions of or departures from Swain’s pioneering work.

  5. IDHEAS – A NEW APPROACH FOR HUMAN RELIABILITY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    G. W. Parry; J.A Forester; V.N. Dang; S. M. L. Hendrickson; M. Presley; E. Lois; J. Xing

    2013-09-01

    This paper describes a method, IDHEAS (Integrated Decision-Tree Human Event Analysis System) that has been developed jointly by the US NRC and EPRI as an improved approach to Human Reliability Analysis (HRA) that is based on an understanding of the cognitive mechanisms and performance influencing factors (PIFs) that affect operator responses. The paper describes the various elements of the method, namely the performance of a detailed cognitive task analysis that is documented in a crew response tree (CRT), and the development of the associated time-line to identify the critical tasks, i.e. those whose failure results in a human failure event (HFE), and an approach to quantification that is based on explanations of why the HFE might occur.

  6. Human Performance Modeling for Dynamic Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory; Joe, Jeffrey Clark [Idaho National Laboratory; Mandelli, Diego [Idaho National Laboratory

    2015-08-01

    Part of the U.S. Department of Energy’s (DOE’s) Light Water Reac- tor Sustainability (LWRS) Program, the Risk-Informed Safety Margin Charac- terization (RISMC) Pathway develops approaches to estimating and managing safety margins. RISMC simulations pair deterministic plant physics models with probabilistic risk models. As human interactions are an essential element of plant risk, it is necessary to integrate human actions into the RISMC risk framework. In this paper, we review simulation based and non simulation based human reliability analysis (HRA) methods. This paper summarizes the founda- tional information needed to develop a feasible approach to modeling human in- teractions in RISMC simulations.

  7. Application of CBDTM and AP1000 human reliability analysis

    International Nuclear Information System (INIS)

    To carry out the AP1000 post-accident Human Reliability Analysis (HRA) and model the operator performance shaping factors (PSF) in a proper way, the Cause-based Decision Tree Method (CBDTM) is selected as one of the methods to calculate the probability of diagnostic errors in the AP1000 HRA. The PSFs related to the working load, signal displays, operation procedures and panel design are considered in the CBDTM model, thus the relation among the plant information, operators and procedures can be properly addressed to obtain more reasonable results of AP1000 HRA. (authors)

  8. Reliability Analysis of Systems Subject to First-Passage Failure

    Science.gov (United States)

    Lutes, Loren D.; Sarkani, Shahram

    2009-01-01

    An obvious goal of reliability analysis is the avoidance of system failure. However, it is generally recognized that it is often not feasible to design a practical or useful system for which failure is impossible. Thus it is necessary to use techniques that estimate the likelihood of failure based on modeling the uncertainty about such items as the demands on and capacities of various elements in the system. This usually involves the use of probability theory, and a design is considered acceptable if it has a sufficiently small probability of failure. This report contains findings of analyses of systems subject to first-passage failure.

  9. Bayesian networks inference algorithm to implement Dempster Shafer theory in reliability analysis

    OpenAIRE

    Simon, Christophe; Weber, Philippe; Evsukoff, Alexandre

    2008-01-01

    This paper deals with the use of Bayesian networks to compute system reliability. The reliability analysis problem is described and the usual methods for quantitative reliability analysis are presented within a case study. Some drawbacks that justify the use of Bayesian networks are identified. The basic concepts of the Bayesian networks application to reliability analysis are introduced and a model to compute the reliability for the case study is presented. Dempster Shafer theory to treat ep...

  10. Tailoring a Human Reliability Analysis to Your Industry Needs

    Science.gov (United States)

    DeMott, D. L.

    2016-01-01

    Companies at risk of accidents caused by human error that result in catastrophic consequences include: airline industry mishaps, medical malpractice, medication mistakes, aerospace failures, major oil spills, transportation mishaps, power production failures and manufacturing facility incidents. Human Reliability Assessment (HRA) is used to analyze the inherent risk of human behavior or actions introducing errors into the operation of a system or process. These assessments can be used to identify where errors are most likely to arise and the potential risks involved if they do occur. Using the basic concepts of HRA, an evolving group of methodologies are used to meet various industry needs. Determining which methodology or combination of techniques will provide a quality human reliability assessment is a key element to developing effective strategies for understanding and dealing with risks caused by human errors. There are a number of concerns and difficulties in "tailoring" a Human Reliability Assessment (HRA) for different industries. Although a variety of HRA methodologies are available to analyze human error events, determining the most appropriate tools to provide the most useful results can depend on industry specific cultures and requirements. Methodology selection may be based on a variety of factors that include: 1) how people act and react in different industries, 2) expectations based on industry standards, 3) factors that influence how the human errors could occur such as tasks, tools, environment, workplace, support, training and procedure, 4) type and availability of data, 5) how the industry views risk & reliability, and 6) types of emergencies, contingencies and routine tasks. Other considerations for methodology selection should be based on what information is needed from the assessment. If the principal concern is determination of the primary risk factors contributing to the potential human error, a more detailed analysis method may be employed versus a requirement to provide a numerical value as part of a probabilistic risk assessment. Industries involved with humans operating large equipment or transport systems (ex. railroads or airlines) would have more need to address the man machine interface than medical workers administering medications. Human error occurs in every industry; in most cases the consequences are relatively benign and occasionally beneficial. In cases where the results can have disastrous consequences, the use of Human Reliability techniques to identify and classify the risk of human errors allows a company more opportunities to mitigate or eliminate these types of risks and prevent costly tragedies.

  11. Inclusion of fatigue effects in human reliability analysis

    International Nuclear Information System (INIS)

    The effect of fatigue on human performance has been observed to be an important factor in many industrial accidents. However, defining and measuring fatigue is not easily accomplished. This creates difficulties in including fatigue effects in probabilistic risk assessments (PRA) of complex engineering systems that seek to include human reliability analysis (HRA). Thus the objectives of this paper are to discuss (1) the importance of the effects of fatigue on performance, (2) the difficulties associated with defining and measuring fatigue, (3) the current status of inclusion of fatigue in HRA methods, and (4) the future directions and challenges for the inclusion of fatigue, specifically sleep deprivation, in HRA. - Highlights: ?We highlight the need for fatigue and sleep deprivation effects on performance to be included in human reliability analysis (HRA) methods. Current methods do not explicitly include sleep deprivation effects. ? We discuss the difficulties in defining and measuring fatigue. ? We review sleep deprivation research, and discuss the limitations and future needs of the current HRA methods.

  12. Reliability analysis of single crystal NiAl turbine blades

    Science.gov (United States)

    Salem, Jonathan; Noebe, Ronald; Wheeler, Donald R.; Holland, Fred; Palko, Joseph; Duffy, Stephen; Wright, P. Kennard

    1995-01-01

    As part of a co-operative agreement with General Electric Aircraft Engines (GEAE), NASA LeRC is modifying and validating the Ceramic Analysis and Reliability Evaluation of Structures algorithm for use in design of components made of high strength NiAl based intermetallic materials. NiAl single crystal alloys are being actively investigated by GEAE as a replacement for Ni-based single crystal superalloys for use in high pressure turbine blades and vanes. The driving force for this research lies in the numerous property advantages offered by NiAl alloys over their superalloy counterparts. These include a reduction of density by as much as a third without significantly sacrificing strength, higher melting point, greater thermal conductivity, better oxidation resistance, and a better response to thermal barrier coatings. The current drawback to high strength NiAl single crystals is their limited ductility. Consequently, significant efforts including the work agreement with GEAE are underway to develop testing and design methodologies for these materials. The approach to validation and component analysis involves the following steps: determination of the statistical nature and source of fracture in a high strength, NiAl single crystal turbine blade material; measurement of the failure strength envelope of the material; coding of statistically based reliability models; verification of the code and model; and modeling of turbine blades and vanes for rig testing.

  13. Inclusion of fatigue effects in human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Candice D. [Vanderbilt University, Nashville, TN (United States); Mahadevan, Sankaran, E-mail: sankaran.mahadevan@vanderbilt.edu [Vanderbilt University, Nashville, TN (United States)

    2011-11-15

    The effect of fatigue on human performance has been observed to be an important factor in many industrial accidents. However, defining and measuring fatigue is not easily accomplished. This creates difficulties in including fatigue effects in probabilistic risk assessments (PRA) of complex engineering systems that seek to include human reliability analysis (HRA). Thus the objectives of this paper are to discuss (1) the importance of the effects of fatigue on performance, (2) the difficulties associated with defining and measuring fatigue, (3) the current status of inclusion of fatigue in HRA methods, and (4) the future directions and challenges for the inclusion of fatigue, specifically sleep deprivation, in HRA. - Highlights: >We highlight the need for fatigue and sleep deprivation effects on performance to be included in human reliability analysis (HRA) methods. Current methods do not explicitly include sleep deprivation effects. > We discuss the difficulties in defining and measuring fatigue. > We review sleep deprivation research, and discuss the limitations and future needs of the current HRA methods.

  14. Reliability analysis and prediction of mixed mode load using Markov Chain Model

    International Nuclear Information System (INIS)

    The aim of this paper is to present the reliability analysis and prediction of mixed mode loading by using a simple two state Markov Chain Model for an automotive crankshaft. The reliability analysis and prediction for any automotive component or structure is important for analyzing and measuring the failure to increase the design life, eliminate or reduce the likelihood of failures and safety risk. The mechanical failures of the crankshaft are due of high bending and torsion stress concentration from high cycle and low rotating bending and torsional stress. The Markov Chain was used to model the two states based on the probability of failure due to bending and torsion stress. In most investigations it revealed that bending stress is much serve than torsional stress, therefore the probability criteria for the bending state would be higher compared to the torsion state. A statistical comparison between the developed Markov Chain Model and field data was done to observe the percentage of error. The reliability analysis and prediction was derived and illustrated from the Markov Chain Model were shown in the Weibull probability and cumulative distribution function, hazard rate and reliability curve and the bathtub curve. It can be concluded that Markov Chain Model has the ability to generate near similar data with minimal percentage of error and for a practical application; the proposed model provides a good accuracy in determining the reliability for the crankshaft under mixed mode loading

  15. Reliability analysis and prediction of mixed mode load using Markov Chain Model

    Energy Technology Data Exchange (ETDEWEB)

    Nikabdullah, N. [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia and Institute of Space Science (ANGKASA), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (Malaysia); Singh, S. S. K.; Alebrahim, R.; Azizi, M. A. [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (Malaysia); K, Elwaleed A. [Institute of Space Science (ANGKASA), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (Malaysia); Noorani, M. S. M. [School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (Malaysia)

    2014-06-19

    The aim of this paper is to present the reliability analysis and prediction of mixed mode loading by using a simple two state Markov Chain Model for an automotive crankshaft. The reliability analysis and prediction for any automotive component or structure is important for analyzing and measuring the failure to increase the design life, eliminate or reduce the likelihood of failures and safety risk. The mechanical failures of the crankshaft are due of high bending and torsion stress concentration from high cycle and low rotating bending and torsional stress. The Markov Chain was used to model the two states based on the probability of failure due to bending and torsion stress. In most investigations it revealed that bending stress is much serve than torsional stress, therefore the probability criteria for the bending state would be higher compared to the torsion state. A statistical comparison between the developed Markov Chain Model and field data was done to observe the percentage of error. The reliability analysis and prediction was derived and illustrated from the Markov Chain Model were shown in the Weibull probability and cumulative distribution function, hazard rate and reliability curve and the bathtub curve. It can be concluded that Markov Chain Model has the ability to generate near similar data with minimal percentage of error and for a practical application; the proposed model provides a good accuracy in determining the reliability for the crankshaft under mixed mode loading.

  16. Current Human Reliability Analysis Methods Applied to Computerized Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring

    2012-06-01

    Computerized procedures (CPs) are an emerging technology within nuclear power plant control rooms. While CPs have been implemented internationally in advanced control rooms, to date no US nuclear power plant has implemented CPs in its main control room (Fink et al., 2009). Yet, CPs are a reality of new plant builds and are an area of considerable interest to existing plants, which see advantages in terms of enhanced ease of use and easier records management by omitting the need for updating hardcopy procedures. The overall intent of this paper is to provide a characterization of human reliability analysis (HRA) issues for computerized procedures. It is beyond the scope of this document to propose a new HRA approach or to recommend specific methods or refinements to those methods. Rather, this paper serves as a review of current HRA as it may be used for the analysis and review of computerized procedures.

  17. Boiler reliability

    International Nuclear Information System (INIS)

    Reliability is an important factor when investors evaluate economics for power plant and boiler proposals. Consequently, more advanced methods are needed for analyzing and reporting boiler reliability. Availability analysis methods need proper initial data in order to attain the objectives of analysis. Possible data sources are international databases and plant operation feedback data but for CFB boilers general databases do not exist and plant's records on operating experience are in many cases incomplete. FWE Oy has developed an internal system to collect, report and analyze the reliability of CFB boilers. The retrieved data is further analyzed for marketing and sales purposes. The idea is to be able to determine the reliability of a new plant on the basis of operating disturbances experienced in existing power plants. The data will also be used in product development and in preparing comparative and follow-up reports for the power plants participating in the reliability monitoring. (orig.)

  18. Transient Reliability Analysis Capability Developed for CARES/Life

    Science.gov (United States)

    Nemeth, Noel N.

    2001-01-01

    The CARES/Life software developed at the NASA Glenn Research Center provides a general-purpose design tool that predicts the probability of the failure of a ceramic component as a function of its time in service. This award-winning software has been widely used by U.S. industry to establish the reliability and life of a brittle material (e.g., ceramic, intermetallic, and graphite) structures in a wide variety of 21st century applications.Present capabilities of the NASA CARES/Life code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code can compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth failure conditions CARES/Life can handle sustained and linearly increasing time-dependent loads, whereas in cyclic fatigue applications various types of repetitive constant-amplitude loads can be accounted for. However, in real applications applied loads are rarely that simple but vary with time in more complex ways such as engine startup, shutdown, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. A methodology has now been developed to allow the CARES/Life computer code to perform reliability analysis of ceramic components undergoing transient thermal and mechanical loading. This means that CARES/Life will be able to analyze finite element models of ceramic components that simulate dynamic engine operating conditions. The methodology developed is generalized to account for material property variation (on strength distribution and fatigue) as a function of temperature. This allows CARES/Life to analyze components undergoing rapid temperature change in other words, components undergoing thermal shock. In addition, the capability has been developed to perform reliability analysis for components that undergo proof testing involving transient loads. This methodology was developed for environmentally assisted crack growth (crack growth as a function of time and loading), but it will be extended to account for cyclic fatigue (crack growth as a function of load cycles) as well.

  19. CARES - CERAMICS ANALYSIS AND RELIABILITY EVALUATION OF STRUCTURES

    Science.gov (United States)

    Nemeth, N. N.

    1994-01-01

    The beneficial properties of structural ceramics include their high-temperature strength, light weight, hardness, and corrosion and oxidation resistance. For advanced heat engines, ceramics have demonstrated functional abilities at temperatures well beyond the operational limits of metals. This is offset by the fact that ceramic materials tend to be brittle. When a load is applied, their lack of significant plastic deformation causes the material to crack at microscopic flaws, destroying the component. CARES calculates the fast-fracture reliability or failure probability of macroscopically isotropic ceramic components. These components may be subjected to complex thermomechanical loadings. The program uses results from a commercial structural analysis program (MSC/NASTRAN or ANSYS) to evaluate component reliability due to inherent surface and/or volume type flaws. A multiple material capability allows the finite element model reliability to be a function of many different ceramic material statistical characterizations. The reliability analysis uses element stress, temperature, area, and volume output, which are obtained from two dimensional shell and three dimensional solid isoparametric or axisymmetric finite elements. CARES utilizes the Batdorf model and the two-parameter Weibull cumulative distribution function to describe the effects of multi-axial stress states on material strength. The shear-sensitive Batdorf model requires a user-selected flaw geometry and a mixed-mode fracture criterion. Flaws intersecting the surface and imperfections embedded in the volume can be modeled. The total strain energy release rate theory is used as a mixed mode fracture criterion for co-planar crack extension. Out-of-plane crack extension criteria are approximated by a simple equation with a semi-empirical constant that can model the maximum tangential stress theory, the minimum strain energy density criterion, the maximum strain energy release rate theory, or experimental results. For comparison, Griffith's maximum tensile stress theory, the principle of independent action, and the Weibull normal stress averaging models are also included. Weibull material strength parameters, the Batdorf crack density coefficient, and other related statistical quantities are estimated from four-point bend bar or uniform uniaxial tensile specimen fracture strength data. Parameter estimation can be performed for single or multiple failure modes by using the least-squares analysis or the maximum likelihood method. A more limited program, CARES/PC (COSMIC number LEW-15248) runs on a personal computer and estimates ceramic material properties from three-point bend bar data. CARES/PC does not perform fast fracture reliability estimation. CARES is written in FORTRAN 77 and has been implemented on DEC VAX series computers under VMS and on IBM 370 series computers under VM/CMS. On a VAX, CARES requires 10Mb of main memory. Five MSC/NASTRAN example problems and two ANSYS example problems are provided. There are two versions of CARES supplied on the distribution tape, CARES1 and CARES2. CARES2 contains sub-elements and CARES1 does not. CARES is available on a 9-track 1600 BPI VAX FILES-11 format magnetic tape (standard media) or in VAX BACKUP format on a TK50 tape cartridge. The program requires a FORTRAN 77 compiler and about 12Mb memory. CARES was developed in 1990. DEC, VAX and VMS are trademarks of Digital Equipment Corporation. IBM 370 is a trademark of International Business Machines. MSC/NASTRAN is a trademark of MacNeal-Schwendler Corporation. ANSYS is a trademark of Swanson Analysis Systems, Inc.

  20. Sociological analysis and comparative education

    Science.gov (United States)

    Woock, Roger R.

    1981-12-01

    It is argued that comparative education is essentially a derivative field of study, in that it borrows theories and methods from academic disciplines. After a brief humanistic phase, in which history and philosophy were central for comparative education, sociology became an important source. In the mid-50's and 60's, sociology in the United States was characterised by Structural Functionalism as a theory, and Social Survey as a dominant methodology. Both were incorporated into the development of comparative education. Increasingly in the 70's, and certainly today, the new developments in sociology are characterised by an attack on Positivism, which is seen as the philosophical position underlying both functionalism and survey methods. New or re-discovered theories with their attendant methodologies included Marxism, Phenomenological Sociology, Critical Theory, and Historical Social Science. The current relationship between comparative education and social science is one of uncertainty, but since social science is seen to be returning to its European roots, the hope is held out for the development of an integrated social theory and method which will provide a much stronger basis for developments in comparative education.

  1. Productivity enhancement and reliability through AutoAnalysis

    Science.gov (United States)

    Garetto, Anthony; Rademacher, Thomas; Schulz, Kristian

    2015-09-01

    The decreasing size and increasing complexity of photomask features, driven by the push to ever smaller technology nodes, places more and more challenges on the mask house, particularly in terms of yield management and cost reduction. Particularly challenging for mask shops is the inspection, repair and review cycle which requires more time and skill from operators due to the higher number of masks required per technology node and larger nuisance defect counts. While the measurement throughput of the AIMS™ platform has been improved in order to keep pace with these trends, the analysis of aerial images has seen little advancement and remains largely a manual process. This manual analysis of aerial images is time consuming, dependent on the skill level of the operator and significantly contributes to the overall mask manufacturing process flow. AutoAnalysis, the first application available for the FAVOR® platform, offers a solution to these problems by providing fully automated analysis of AIMS™ aerial images. Direct communication with the AIMS™ system allows automated data transfer and analysis parallel to the measurements. User defined report templates allow the relevant data to be output in a manner that can be tailored to various internal needs and support the requests of your customers. Productivity is significantly improved due to the fast analysis, operator time is saved and made available for other tasks and reliability is no longer a concern as the most defective region is always and consistently captured. In this paper the concept and approach of AutoAnalysis will be presented as well as an update to the status of the project. The benefits arising from the use of AutoAnalysis will be discussed in more detail and a study will be performed in order to demonstrate.

  2. Deductive tree analysis for evaluating the reliability of construction operations

    International Nuclear Information System (INIS)

    The importance of structural and construction safety is associated with the adverse consequences that may result from a structural failure and a construction accident. One of the most important objectives of any construction team is to minimize and control the risk levels of failure and accident of construction operations, as well as to determine the various critical factors which might lead to the increase of the probability of failure and accident of the operations. There are several uncertainty events and factors that contribute to the failure and accident of construction operations. The factors are associated with random, human-based or system uncertainty. Some of these factors include the level of engineering knowledge and experience, level of workmanship and attitude, level of communication procedures, methods and sequence of construction. Most of these factors are subjective, vague, and imprecisely defined, and therefore, they are expressed in semantic terms rather than mathematical measures. The subjectivity of the factors needs to be incorporated into the reliability estimation processes. The objective of this paper is to present a reliability evaluation methodology for construction operations that considers the effect of the factors and their uncertainties on the estimation of the risk measures for construction operations. The methodology is based on a deductive tree analysis approach which involves identifying a possible condition of the construction system and determining the various events and combination of the factors that contribute to the occurrence of that condition

  3. Flow cytometry reliability analysis and variations in sugarcane DNA content.

    Science.gov (United States)

    Oliveira, A C L; Pasqual, M; Bruzi, A T; Pio, L A S; Mendonça, P M S; Soares, J D R

    2015-01-01

    The aim of this study was to evaluate the reliability of flow cytometry analysis and the use of this technique to differentiate species and varieties of sugarcane (Saccharum spp) according to their relative DNA content. We analyzed 16 varieties and three species belonging to this genus. To determine a reliable protocol, we evaluated three extraction buffers (LB01, Marie, and Tris·MgCl2), the presence and absence of RNase, six doses of propidium iodide (10, 15, 20, 25, and 30 ?g), four periods of exposure to propidium iodide (0, 5, 10, and 20 min), and seven external reference standards (peas, beans, corn, radish, rye, soybean, and tomato) with reference to the coefficient of variation and the DNA content. For statistical analyses, we used the programs Sisvar(®) and Xlstat(®). We recommend using the Marie extraction buffer and at least 15 ?g propidium iodide. The samples should not be analyzed immediately after the addition of propidium iodide. The use of RNase is optional, and tomato should be used as an external reference standard. The results show that sugarcane has a variable genome size (8.42 to 12.12 pg/2C) and the individuals analyzed could be separated into four groups according to their DNA content with relative equality in the genome sizes of the commercial varieties. PMID:26125928

  4. Collocation Dictionaries: A Comparative Analysis

    OpenAIRE

    Buendía Castro, Miriam; Faber, Pamela

    2014-01-01

    The importance of phraseological information in lexicographic resources is experiencing an exponential growth. This is evident in the publication in recent years of a wide variety of combinatorial or collocation dictionaries. This paper describes and compares the main monolingual collocation dictionaries for English and Spanish in regards to the following: (i) types of collocation encoded; (ii) kinds of collocational information offered; (iii) place for collocations in the micro or macrostruc...

  5. Probabilistic structural analysis methods for improving Space Shuttle engine reliability

    Science.gov (United States)

    Boyce, L.

    1989-01-01

    Probabilistic structural analysis methods are particularly useful in the design and analysis of critical structural components and systems that operate in very severe and uncertain environments. These methods have recently found application in space propulsion systems to improve the structural reliability of Space Shuttle Main Engine (SSME) components. A computer program, NESSUS, based on a deterministic finite-element program and a method of probabilistic analysis (fast probability integration) provides probabilistic structural analysis for selected SSME components. While computationally efficient, it considers both correlated and nonnormal random variables as well as an implicit functional relationship between independent and dependent variables. The program is used to determine the response of a nickel-based superalloy SSME turbopump blade. Results include blade tip displacement statistics due to the variability in blade thickness, modulus of elasticity, Poisson's ratio or density. Modulus of elasticity significantly contributed to blade tip variability while Poisson's ratio did not. Thus, a rational method for choosing parameters to be modeled as random is provided.

  6. Application of human reliability analysis methodology of second generation

    International Nuclear Information System (INIS)

    The human reliability analysis (HRA) is a very important part of probabilistic safety analysis. The main contribution of HRA in nuclear power plants is the identification and characterization of the issues that are brought together for an error occurring in the human tasks that occur under normal operation conditions and those made after abnormal event. Additionally, the analysis of various accidents in history, it was found that the human component has been a contributing factor in the cause. Because of need to understand the forms and probability of human error in the 60 decade begins with the collection of generic data that result in the development of the first generation of HRA methodologies. Subsequently develop methods to include in their models additional performance shaping factors and the interaction between them. So by the 90 mid, comes what is considered the second generation methodologies. Among these is the methodology A Technique for Human Event Analysis (ATHEANA). The application of this method in a generic human failure event, it is interesting because it includes in its modeling commission error, the additional deviations quantification to nominal scenario considered in the accident sequence of probabilistic safety analysis and, for this event the dependency actions evaluation. That is, the generic human failure event was required first independent evaluation of the two related human failure events . So the gathering of the new human error probabilities involves the nominal scenario quantification and cases of significant deviations considered by the potential impact on analyzed human failure events. Like probabilistic safety analysis, with the analysis of the sequences were extracted factors more specific with the highest contribution in the human error probabilities. (Author)

  7. Forecasting methods: a comparative analysis

    OpenAIRE

    Iqbal, Javed

    2001-01-01

    Forecasting is an important tool for management, planning and administration in various fields. In this paper forecasting performance of different methods is considered using time series data of Pakistan's export to United Sates and money supply. It is found that, like other studies of this nature, no single forecasting method provides better forecast for both the series. The techniques considered are ARIMA, Regression Analysis, Vector Autoregression (VAR), Error Correction Model (ECM) and AR...

  8. Evaluation of Reliability Coefficients for Two-Level Models via Latent Variable Analysis

    Science.gov (United States)

    Raykov, Tenko; Penev, Spiridon

    2010-01-01

    A latent variable analysis procedure for evaluation of reliability coefficients for 2-level models is outlined. The method provides point and interval estimates of group means' reliability, overall reliability of means, and conditional reliability. In addition, the approach can be used to test simple hypotheses about these parameters. The…

  9. Towards a non-wired simulator for reliability analysis

    International Nuclear Information System (INIS)

    This paper outlines the objectives and preliminary results of a research programme aiming to increase the advantages of electronic simulators used for reliability studies of complex systems. Research work has resulted in the design of a device based on an electronic simulator capable of carrying out all types of simulation without the drawback of wiring, as is currently the case. Its performance levels as regards speed are comparable to those of wired simulators and this is its main advantage over studies made on a computer. In addition, the simulator is connected to a computer which greatly increases system flexibility and user-friendliness. The first results obtained illustrate what characteristics can be expected of such a system, both as regards the anticipated computation time and the extended processing capabilities (such as the study of common cause failures). (author)

  10. Reliability analysis of diesel generators of Wolsung Unit 1

    International Nuclear Information System (INIS)

    As a maintenance optimization project to improve the safety of Wolsung NPP (Nuclear Power Plant), reliability of diesel generators are estimated based on the operating experience, and improvement options are suggested. A reliability measure is suggested for the estimation of reliability for standby safety systems to reflect availability. It is assessed that the reliability of diesel generators can be much improved if the suggested improvement options are implemented

  11. A Fault Analysis based Model for Software Reliability Estimation

    OpenAIRE

    Garima Chawla,; Santosh Kr Thakur,

    2013-01-01

    When a software system is designed, the major concern is the software quality. The quality of software depends on different factors such as software reliability, efficiency, cost etc. In this paper, we have defined the software reliability as the measure of software quality. There are different available models that estimate the reliability of software based on type of faults, fault density etc. In this paper, a study on different aspects related to software reliability are discussed..

  12. A new response surface approach for structural reliability analysis

    Science.gov (United States)

    Thacker, B. H.; Wu, X.-T.

    1992-01-01

    This paper describes a new approach for computing structural reliability by post-processing previously computed probabilistic results for stress and strength. The objective is to provide an accurate method whereby independent probabilistic analyses for stress and strength functions can be performed independently and combined at a later time to compute probability of failure. The method provides a capability for testing different strength measures without the need for re-computing the probabilistic stress response. The proposed approach takes full account of the basic random variables effecting both stress and strength, and the failure region in the variable space identified during separate stress/strength probabilistic analyses. A simple closed-form example and a more complex analysis of a turbine blade subject to creep rupture is used to illustrate the method.

  13. An Application of Graph Theory in Markov Chains Reliability Analysis

    Directory of Open Access Journals (Sweden)

    Pavel Skalny

    2014-01-01

    Full Text Available The paper presents reliability analysis which was realized for an industrial company. The aim of the paper is to present the usage of discrete time Markov chains and the flow in network approach. Discrete Markov chains a well-known method of stochastic modelling describes the issue. The method is suitable for many systems occurring in practice where we can easily distinguish various amount of states. Markov chains are used to describe transitions between the states of the process. The industrial process is described as a graph network. The maximal flow in the network corresponds to the production. The Ford-Fulkerson algorithm is used to quantify the production for each state. The combination of both methods are utilized to quantify the expected value of the amount of manufactured products for the given time period.

  14. Events analysis of the main generator using reliability block diagram

    International Nuclear Information System (INIS)

    Generator failure events at overseas and Japanese nuclear power plants were analyzed in detail through a reliability block diagram. This analysis not only took note of the total number of component failure and part failures but also focused on age-related degradation phenomena. Components or parts that were found to have failed most frequently included stator cooling system pipes, stator cooling system valves, automatic voltage regulators, and alternating-current exciters. Event reports on these components or parts were reexamined one by one. Because these components or parts have been adequately inspected, it was confirmed that there are no additional maintenance measures that should be reflected in Japanese pressurized water reactor (PWR) power plants. A comparison of the frequency of failures between Japanese and American power plants revealed that Japanese power plants suffered approximately one-tenth of the frequency of failures experienced in American plants, suggesting that higher levels of maintenance work are achieved at Japanese plants. (author)

  15. Time-dependent reliability analysis and condition assessment of structures

    International Nuclear Information System (INIS)

    Structures generally play a passive role in assurance of safety in nuclear plant operation, but are important if the plant is to withstand the effect of extreme environmental or abnormal events. Relative to mechanical and electrical components, structural systems and components would be difficult and costly to replace. While the performance of steel or reinforced concrete structures in service generally has been very good, their strengths may deteriorate during an extended service life as a result of changes brought on by an aggressive environment, excessive loading, or accidental loading. Quantitative tools for condition assessment of aging structures can be developed using time-dependent structural reliability analysis methods. Such methods provide a framework for addressing the uncertainties attendant to aging in the decision process

  16. Time-dependent reliability analysis and condition assessment of structures

    Energy Technology Data Exchange (ETDEWEB)

    Ellingwood, B.R. [Johns Hopkins Univ., Baltimore, MD (United States)

    1997-01-01

    Structures generally play a passive role in assurance of safety in nuclear plant operation, but are important if the plant is to withstand the effect of extreme environmental or abnormal events. Relative to mechanical and electrical components, structural systems and components would be difficult and costly to replace. While the performance of steel or reinforced concrete structures in service generally has been very good, their strengths may deteriorate during an extended service life as a result of changes brought on by an aggressive environment, excessive loading, or accidental loading. Quantitative tools for condition assessment of aging structures can be developed using time-dependent structural reliability analysis methods. Such methods provide a framework for addressing the uncertainties attendant to aging in the decision process.

  17. Steps of the reliability analysis of NPP-piping

    International Nuclear Information System (INIS)

    The various steps of the reliability analysis of nuclear power plant piping are: definition and classification of safety-related leakages, determination of damage mechanism, definition of leak classes, subdivision of the system, definition of relevant elements with respect to the damage mechanisms acting and their population by using general as well as special operating experience and by differentiating in pipe elements and connections, determination of the plants and systems which are relevant for the evaluation of operating experience, determination of leak areas and their frequencies by referring to the leak-related locations, and determination of the frequency for different leak areas in the systems under investigation. Examples are given. 4 figs., 3 tabs

  18. Reliability Analysis Using Dimension Reduction Method with Variable Sampling Points

    International Nuclear Information System (INIS)

    This study provides how the Dimension Reduction (DR) method as an efficient technique for reliability analysis can acquire its increased efficiency when it is applied to highly nonlinear problems. In the highly nonlinear engineering systems, 4N+1 (N: number of random variables) sampling is generally recognized to be appropriate. However, there exists uncertainty concerning the standard for judgment of non-linearity of the system as well as possibility of diverse degrees of non-linearity according to each of the random variables. In this regard, this study judged the linearity individually on each random variable after 2N+1 sampling. If high non-linearity appeared, 2 additional sampling was administered on each random variable to apply the DR method. The applications of the proposed sampling to the examples produced the constant results with increased efficiency

  19. Asymptotic Sampling for Reliability Analysis of Adhesive Bonded Stepped Lap Composite Joints

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Lund, Erik; Thomsen, Ole Thybo; Sřrensen, John Dalsgaard

    Reliability analysis coupled with finite element analysis (FEA) of composite structures is computationally very demanding and requires a large number of simulations to achieve an accurate prediction of the probability of failure with a small standard error. In this paper Asymptotic Sampling, which...... used to predict failure in the composite and adhesive layers, respectively, and the results are compared with the target reliability level implicitly used in the wind turbine standard IEC 61400-1. The accuracy and efficiency of Asymptotic Sampling is investigated by comparing the results with...... predictions obtained using the Monte Carlo simulation technique. Finally, the partial safety factors are calibrated, and it is shown that the methodology can be further applied to general calibration of partial safety factors to be used in deterministic design....

  20. Reliability analysis of nuclear power plant bus systems arrangement based on GO methodology

    International Nuclear Information System (INIS)

    In this paper the GO method is used for analyzing the reliability of NPP bus system arrangement. Focusing on the typical one and a half breakers bus system, the detailed GO chart of typical work/failure(maintenance) two or three-state-component system is given, and the qualitative and quantitative analysis is conducted. Compared with the FTA results,the correctness and advantage of the GO methodology is verified. (authors)

  1. Analysis of Mobile Phone Reliability Based on Active Disassembly Using Smart Materials

    OpenAIRE

    Zhifeng Liu; Liuxian Zhao; Jun Zhong; Xinyu Li; Huanbo Cheng

    2011-01-01

    When using shape memory materials into active disassembly of actual electronic products, because the elastic modulus of shape memory materials is affected by the temperature is relatively large, therefore, the main difference of environmental reliability between active disassembly products and common products is the impact of collision and vibration under different temperature. Establishing three-dimensional analysis model, comparing the impact of collision and vibration of mobile phone shell...

  2. Models and data requirements for human reliability analysis

    International Nuclear Information System (INIS)

    It has been widely recognised for many years that the safety of the nuclear power generation depends heavily on the human factors related to plant operation. This has been confirmed by the accidents at Three Mile Island and Chernobyl. Both these cases revealed how human actions can defeat engineered safeguards and the need for special operator training to cover the possibility of unexpected plant conditions. The importance of the human factor also stands out in the analysis of abnormal events and insights from probabilistic safety assessments (PSA's), which reveal a large proportion of cases having their origin in faulty operator performance. A consultants' meeting, organized jointly by the International Atomic Energy Agency (IAEA) and the International Institute for Applied Systems Analysis (IIASA) was held at IIASA in Laxenburg, Austria, December 7-11, 1987, with the aim of reviewing existing models used in Probabilistic Safety Assessment (PSA) for Human Reliability Analysis (HRA) and of identifying the data required. The report collects both the contributions offered by the members of the Expert Task Force and the findings of the extensive discussions that took place during the meeting. Refs, figs and tabs

  3. A Monte Carlo simulation method for system reliability analysis

    International Nuclear Information System (INIS)

    Bases of Monte Carlo simulation are briefly described. Details of the application of Excel software to Monte Carlo simulation are shown with an analysis example. Three-component system is taken up and analysis is performed with the consideration of repair actions. Finally, it is shown that loop structure can be solved by Monte Carlo simulation method, which is realized by Excel software. The simulation results are compared with the analytical calculation results and good agreement is confirmed. (author)

  4. Bayesian networks inference algorithm to implement Dempster Shafer theory in reliability analysis

    International Nuclear Information System (INIS)

    This paper deals with the use of Bayesian networks to compute system reliability. The reliability analysis problem is described and the usual methods for quantitative reliability analysis are presented within a case study. Some drawbacks that justify the use of Bayesian networks are identified. The basic concepts of the Bayesian networks application to reliability analysis are introduced and a model to compute the reliability for the case study is presented. Dempster Shafer theory to treat epistemic uncertainty in reliability analysis is then discussed and its basic concepts that can be applied thanks to the Bayesian network inference algorithm are introduced. Finally, it is shown, with a numerical example, how Bayesian networks' inference algorithms compute complex system reliability and what the Dempster Shafer theory can provide to reliability analysis

  5. Bayesian networks inference algorithm to implement Dempster Shafer theory in reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Simon, C. [Centre de Recherche en Automatique de Nancy (CRAN-UMR 7039), Nancy University, CNRS, 2 Rue Jean Lamour, 54509 Vandoeuvre (France)], E-mail: christophe.simon@cran.uhp-nancy.fr; Weber, P. [Centre de Recherche en Automatique de Nancy (CRAN-UMR 7039), Nancy University, CNRS, 2 Rue Jean Lamour, 54509 Vandoeuvre (France)], E-mail: philippe.weber@cran.uhp-nancy.fr; Evsukoff, A. [COPPE/Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ, Brazil, P.O. Box 68506, 21941-972 Rio de Janeiro, RJ (Brazil)], E-mail: alexandre.evsukoff@coc.ufrj.br

    2008-07-15

    This paper deals with the use of Bayesian networks to compute system reliability. The reliability analysis problem is described and the usual methods for quantitative reliability analysis are presented within a case study. Some drawbacks that justify the use of Bayesian networks are identified. The basic concepts of the Bayesian networks application to reliability analysis are introduced and a model to compute the reliability for the case study is presented. Dempster Shafer theory to treat epistemic uncertainty in reliability analysis is then discussed and its basic concepts that can be applied thanks to the Bayesian network inference algorithm are introduced. Finally, it is shown, with a numerical example, how Bayesian networks' inference algorithms compute complex system reliability and what the Dempster Shafer theory can provide to reliability analysis.

  6. Reliability improvement of robotics systems: Analysis, design and real time supervision

    International Nuclear Information System (INIS)

    Reliability improvement of Robotics Systems is a key issue in automation and autonomy in maintenance and intervention tasks in Hostile Environment. Constraints in hostile environment require different way of using and programming of robots when compared with industrial application. To take maximum benefit of robot technology, the level of Confidence in the robotics tool must be much higher than in classical production world. To increase this level of confidence, application of Reliability Engineering in combination with strong knowledge of robot technology leads to such an objective. In this paper, three different aspects are considered and developed as tools to be used in different stage of this improvement. The first one is the Analysis of reliability of robotics and in remote handling systems in general to identify failure modes, effects on the system, sensitive components and needs of redundancy. Tools as the Failure Modes, Effects and Criticality Analysis are presented as well as the Fault Tree Analysis. The second one deals with design criteria for new robot systems or improvement of existing one using reliability and safety driven design concepts. Such concepts are applicable on mechanical design, electrical design and electronic design including the computer controller of the robot. The last aspect is the control in real time of availability of functions, safety level as well as failure detection in the various subsystems composing a robot device. Techniques of supervision by use of safety check subroutines are considered. Experiences of such improvement process of robotics for maintenance of Fusion machines is discussed. (author). Figs

  7. Reliability Engineering

    International Nuclear Information System (INIS)

    This book is about reliability engineering, which describes definition and importance of reliability, development of reliability engineering, failure rate and failure probability density function about types of it, CFR and index distribution, IFR and normal distribution and Weibull distribution, maintainability and movability, reliability test and reliability assumption in index distribution type, normal distribution type and Weibull distribution type, reliability sampling test, reliability of system, design of reliability and functionality failure analysis by FTA.

  8. The reliability of mercury analysis in environmental materials

    International Nuclear Information System (INIS)

    Mercury occurs in nature in its native elemental as well as in different mineral forms. It has been mined for centuries and is used in many branches of industry, agriculture and medicine. Mercury is very toxic to man and reports of poisoning due to the presence of the element in fish and shellfish caught at Minamata and Niigata, Japan have led not only to local investigations but to multi-national research into the sources and the levels of mercury in the environment. The concentrations at which the element has to be determined in these studies are extremely small, usually of the order of a few parts in 109 parts of environmental material. Few analytical techniques provide the required sensitivity for analysis at such low concentrations, and only two are normally used for mercury: neutron activation analysis and atomic absorption photometry. They are also the most convenient end points of various separation schemes for different organic mercury compounds. Mercury analysis at the ppb-level is beset with many problems: volatility of the metal and its compounds, impurity of reagents, interference by other elements and many other analytical difficulties may influence the results. To be able to draw valid conclusions from the analyses it is necessary to know the reliability attached to the values obtained. To assist laboratories in the evaluation of their analytical performance, the International Atomic Energy Agency through its own laboratory at Seibersdorf already organised in 1967 an intercomparison of mercury analysis in flour. Based on the results obtained at that time, a whole series of intercomparisons of mercury determinations in nine different environmental materials was undertaken in 1971. The materials investigated included corn and wheat flour, spray-dried animal blood serum, fish solubles, milk powder, saw dust, cellulose, lacquer paint and coloric material

  9. Rent control: a comparative analysis

    Scientific Electronic Library Online (English)

    S, Maass.

    Full Text Available Recent case law shows that vulnerable, previously disadvantaged private sector tenants are currently facing eviction orders - and consequential homelessness - on the basis that their leases have expired. In terms of the case law it is evident that once their leases have expired, these households do [...] not have access to alternative accommodation. In terms of the Constitution, this group of marginalised tenants have a constitutional right of access to adequate housing and a right to occupy land with legally secure tenure. The purpose of this article is to critically analyse a number of legislative interventions, and specifically rent control, that were imposed in various jurisdictions in order to provide strengthened tenure protection for tenants. The rationale for this analysis is to determine whether the current South African landlord-tenant regime is able to provide adequate tenure protection for vulnerable tenants and therefore in the process of transforming in line with the Constitution. The legal construction of rent control was adopted in pre-1994 South Africa, England and New York City to provide substantive tenure protection for tenants during housing shortages. These statutory interventions in the different private rental markets were justified on the basis that there was a general need to protect tenants against exploitation by landlords. However, the justification for the persistent imposition of rent control in New York City is different since it protects a minority group of financially weak tenants against homelessness. The English landlord-tenant regime highlights the importance of a well-structured social sector that can provide secure, long-term housing options for low-income households who are struggling to access the private rental sector. Additionally, the English rental housing framework shows that if the social sector is functioning as a "safety net" for low-income households, the private sector would be able to uphold deregulation. In light of these comparisons and the fact that the South African social sector is not functioning optimally yet, the question is whether the South African private sector is able to provide the required level of tenure protection for struggling tenants. Recent case law shows that tenants are at liberty to lodge unfair practice complaints with the Rental Housing Tribunals on the basis that the landlords' ground for termination of the lease constitutes an unfair practice. The Court defined an unfair practice as a practice that unreasonably prejudices the tenants' rights or interests. This judicial development signifies some transformation in the private sector since it allows the Tribunals to scrutinise landlords' reasons for termination of tenancies in light of tenants' personal and socioeconomic circumstances. The Tribunals are therefore empowered to weigh the interests of both parties and decide whether to confirm termination of the lease or set aside such termination. In light of this recent development, the Tribunals can provide strengthened tenure protection for destitute tenants on a case by case basis, which incorporates a flexible context-sensitive approach to the provision of secure housing rights in the landlord-tenant framework. This methodology is similar to the German approach. Even though this judicial development is welcomed, it raises some concerns with regard to landlords' property rights and specifically landlords' constitutional property rights since Tribunals are now at liberty to set aside contractually agreed grounds for termination of leases without any statutory guidance. The legislation fails to provide any information regarding legitimate grounds for termination, which might have to be rectified in future. The grounds listed in the rent control legislation should serve as a starting point to determine which grounds for termination of a lease should generally be upheld. However, German landlord-tenant law shows that a statutory ground for termination of a lease should not be imposed in an absolutist fashion but rather place a

  10. RENT CONTROL: A COMPARATIVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Sue-Mari Maass

    2012-11-01

    Full Text Available Recent case law shows that vulnerable, previously disadvantaged private sector tenants are currently facing eviction orders – and consequential homelessness – on the basis that their leases have expired. In terms of the case law it is evident that once their leases have expired, these households do not have access to alternative accommodation. In terms of the Constitution, this group of marginalised tenants have a constitutional right of access to adequate housing and a right to occupy land with legally secure tenure. The purpose of this article is to critically analyse a number of legislative interventions, and specifically rent control, that were imposed in various jurisdictions in order to provide strengthened tenure protection for tenants. The rationale for this analysis is to determine whether the current South African landlord-tenant regime is able to provide adequate tenure protection for vulnerable tenants and therefore in the process of transforming in line with the Constitution. The legal construction of rent control was adopted in pre-1994 South Africa, England and New York City to provide substantive tenure protection for tenants during housing shortages. These statutory interventions in the different private rental markets were justified on the basis that there was a general need to protect tenants against exploitation by landlords. However, the justification for the persistent imposition of rent control in New York City is different since it protects a minority group of financially weak tenants against homelessness. The English landlord-tenant regime highlights the importance of a well-structured social sector that can provide secure, long-term housing options for low-income households who are struggling to access the private rental sector. Additionally, the English rental housing framework shows that if the social sector is functioning as a "safety net" for low-income households, the private sector would be able to uphold deregulation. In light of these comparisons and the fact that the South African social sector is not functioning optimally yet, the question is whether the South African private sector is able to provide the required level of tenure protection for struggling tenants. Recent case law shows that tenants are at liberty to lodge unfair practice complaints with the Rental Housing Tribunals on the basis that the landlords' ground for termination of the lease constitutes an unfair practice. The Court defined an unfair practice as a practice that unreasonably prejudices the tenants' rights or interests. This judicial development signifies some transformation in the private sector since it allows the Tribunals to scrutinise landlords' reasons for termination of tenancies in light of tenants' personal and socio-economic circumstances. The Tribunals are therefore empowered to weigh the interests of both parties and decide whether to confirm termination of the lease or set aside such termination. In light of this recent development, the Tribunals can provide strengthened tenure protection for destitute tenants on a case by case basis, which incorporates a flexible context-sensitive approach to the provision of secure housing rights in the landlord-tenant framework. This methodology is similar to the German approach. Even though this judicial development is welcomed, it raises some concerns with regard to landlords' property rights and specifically landlords' constitutional property rights since Tribunals are now at liberty to set aside contractually agreed grounds for termination of leases without any statutory guidance. The legislation fails to provide any information regarding legitimate grounds for termination, which might have to be rectified in future. The grounds listed in the rent control legislation should serve as a starting point to determine which grounds for termination of a lease should generally be upheld. However, German landlord-tenant law shows that a statutory ground for termination of a lease should not be imposed in an absolutist fashion but rather place a

  11. Failure Analysis towards Reliable Performance of Aero-Engines

    Directory of Open Access Journals (Sweden)

    T. Jayakumar

    1999-10-01

    Full Text Available Aero-engines are critical components whose reliable performance decides the primary safety of anaircrafthelicopter. This is met by rigorous maintenance schedule with periodic inspection/nondestructive testingof various engine components. In spite of these measures, failure of areo-engines do occur rather frequentlyin comparison to failure of other components. Systematic failure analysis helps one to identify root causeof the failure, thus enabling remedial measures to prevent recurrence of such failures. Turbine blades madeof nickel or cobalt-based alloys are used in aero-engines. These blades are subjected to complex loadingconditions at elevated temperatures. The main causes of failure of blades are attributed to creep, thermalfatigue and hot corrosion. Premature failure of blades in the combustion zone was reported in one of theaero-engines. The engine had both the compressor and the free-turbine in a common shaft. Detailedfailure analysis revealed the presence of creep voids in the blades that failed. Failure of turbine bladeswas also detected in another aero-engine operating in a coastal environment. In this failure, the protectivecoating on the blades was cracked at many locations. Grain boundary spikes were observed on these locations.The primary cause of this failure was the hot corrosion followed by creep damage

  12. Adjoint sensitivity analysis of dynamic reliability models based on Markov chains - II: Application to IFMIF reliability assessment

    International Nuclear Information System (INIS)

    In Part II of this work, the adjoint sensitivity analysis procedure developed in Part I is applied to perform sensitivity analysis of several dynamic reliability models of systems of increasing complexity, culminating with the consideration of the International Fusion Materials Irradiation Facility (IFMIF) accelerator system. Section II presents the main steps of a procedure for the automated generation of Markov chains for reliability analysis, including the abstraction of the physical system, construction of the Markov chain, and the generation and solution of the ensuing set of differential equations; all of these steps have been implemented in a stand-alone computer code system called QUEFT/MARKOMAG-S/MCADJSEN. This code system has been applied to sensitivity analysis of dynamic reliability measures for a paradigm '2-out-of-3' system comprising five components and also to a comprehensive dynamic reliability analysis of the IFMIF accelerator system facilities for the average availability and, respectively, the system's availability at the final mission time. The QUEFT/MARKOMAG-S/MCADJSEN has been used to efficiently compute sensitivities to 186 failure and repair rates characterizing components and subsystems of the first-level fault tree of the IFMIF accelerator system. (authors)

  13. Qualitative human reliability analysis for spent fuel handling

    International Nuclear Information System (INIS)

    Human reliability analysis (HRA) methods have been developed primarily to provide information for use in probabilistic risk assessments (PRAs) that analyze nuclear power plant (NPP) operations. Given the original emphasis of these methods, it is understandable that many HRAs have not ventured far from NPP control room applications. Despite this historical focus on the control room, there has been growing interest and discussion regarding the application of HRA methods to other NPP activities such as spent fuel handling (SFH) or operations in different types of facilities. One recently developed HRA method, 'A Technique for Human Event Analysis' (ATHEANA) has been proposed as a promising candidate for diverse applications due to its particular approach for systematically uncovering the dynamic, contextual conditions influencing human performance. This paper describes one successful test of this proposition by presenting portions of a recently completed project in which a scoping study was performed to accomplish the following goals: (1) investigate what should be included in a qualitative HRA for spent fuel and cask handling operations; and (2) demonstrate that the ATHEANA HRA technique can be usefully applied to these operations. The preliminary, scoping qualitative HRA examined, in a generic manner, how human performance of SFH and dry cask storage operations (DCSOs) can plausibly lead to radiological consequences that impact the public and the environment. The study involved the performance of typical, qualitative HRA tasks such as collecting relevant information and the preliminary identification of human failure events or unsafe actions, relevant influences (e.g., performance shaping factors, other contextual factors), event scenario development and categorization of human failure event (HFE) scenario groupings. Information from relevant literature sources was augmented with subject matter expert interviews and analysis of an edited video of selected operations. Elements of NUREG-1792, Good Practices for Implementing Human Reliability Analyses (HRA) and NUREG-1624, Rev. 1, Technical Basis and Implementation Guidelines for A Technique for Human Event Analysis (ATHEANA) formed critical parts of the technical basis for the preliminary analysis. Mis-loading of spent fuel into a cask and dropping of a loaded cask were the two human failure event groupings of primary interest, although all human performance aspects of DCSOs were considered to some extent. Of important note is that HRA is typically performed in the context of a plant-specific PRA study. This analysis was performed without the benefit of the context provided by a larger PRA study, nor was it plant specific, and so it investigated only generic HRA issues relevant to SFH. However, the improved understanding of human performance issues provided by the study will likely enhance the ability to carry out a detailed qualitative HRA for a specific NPP at some point in the future. Furthermore, support was obtained regarding the potential for applying ATHEANA beyond NPP settings. This paper provides a description of the process followed during the analysis, a description of the HFE scenario groupings, discussion regarding general human performance vulnerabilities, and a detailed examination of one HFE scenario developed in the study. (authors)

  14. Reliability analysis and its application in the Loviisa nuclear power plant project

    International Nuclear Information System (INIS)

    A reliability analysis was performed consisting of the following stages: the failure mode and effects analysis, the common mode failure analysis, reliability models and numerical calculations. The obtained results were applied in the LOVIISA reactor reliability analysis. A summary of analyses carried out until 1974 and the future stages of the research programme with regard to the selection of objects for the reliability analysis are given. The analysis of the reactor protection system, radiation monitoring system, after-heat removal system and a consequence diagram related to a loss of coolant accident are described as examples. In quantitative analysis, fault-tree techniques and Monte Carlo simulation were primarily used. (J.P.)

  15. Structural reliability analysis for the NPP-WWER-440 system

    International Nuclear Information System (INIS)

    Available methods for calculation of complex structure reliability and conditions of their application are briefly described. Four criteria of failure of NPP unit with WWER-440 with respect to fixed values of available capacity are suggested. Results of analyzing structural reliability of NPP unit with WWER-440 with application of RATS program realizing fault free method are presented. Individual and complex indicators of unit reliability were obtained with allowance for functional and structural significance of separate types of equipment

  16. Gradual Reliability Sensitivity Analysis of Mechanical Part Considering Preventive Maintenance

    OpenAIRE

    Li Changyou; Liu Haiyang; Guo Song; Zhang Yimin; Li Zhenyuan

    2014-01-01

    A lot of mechanical parts are subject to failure due to the deterioration. Usually the preventive maintenance is taken to ensure the safety and reliability. Therefore, it is very important to study the gradual reliability design of the mechanical part for improving the gradual reliability of the mechanical system under the condition of considering the preventive maintenance. Beta distribution is employed to describe the randomness of the mechanical part state after the preventive maintenance....

  17. The reliability analysis of cutting tools in the HSM processes

    OpenAIRE

    Lin, W S

    2008-01-01

    Purpose: This article mainly describe the reliability of the cutting tools in the high speed turning by normaldistribution model.Design/methodology/approach: A series of experimental tests have been done to evaluate the reliabilityvariation of the cutting tools. From experimental results, the tool wear distribution and the tool life are determined,and the tool life distribution and the reliability function of cutting tools are derived. Further, the reliability ofcutting tools at anytime for h...

  18. Reliability analysis based on losses from failure Modelling

    OpenAIRE

    Dr. Amit Gupta , Renu Garg

    2013-01-01

    As the cost of software application failures grows andas these failures increasingly impact business performance,software reliability will become progressively more important.Employing effective software reliability engineering techniquesto improve product and process reliability would be theindustry’s best interests as well as major challenges. As softwarecomplexity and software quality are highly related to softwarereliability, the measurements of software complexity and qualityattributes h...

  19. Reliability and risk analysis data base development: an historical perspective

    International Nuclear Information System (INIS)

    Collection of empirical data and data base development for use in the prediction of the probability of future events has a long history. Dating back at least to the 17th century, safe passage events and mortality events were collected and analyzed to uncover prospective underlying classes and associated class attributes. Tabulations of these developed classes and associated attributes formed the underwriting basis for the fledgling insurance industry. Much earlier, master masons and architects used design rules of thumb to capture the experience of the ages and thereby produce structures of incredible longevity and reliability (Antona, E., Fragola, J. and Galvagni, R. Risk based decision analysis in design. Fourth SRA Europe Conference Proceedings, Rome, Italy, 18-20 October 1993). These rules served so well in producing robust designs that it was not until almost the 19th century that the analysis (Charlton, T.M., A History Of Theory Of Structures In The 19th Century, Cambridge University Press, Cambridge, UK, 1982) of masonry voussoir arches, begun by Galileo some two centuries earlier (Galilei, G. Discorsi e dimostrazioni mathematiche intorno a due nuove science, (Discourses and mathematical demonstrations concerning two new sciences, Leiden, The Netherlands, 1638), was placed on a sound scientific basis. Still, with the introduction of new materials (such as wrought iron and steel) and the lack of theoretical knowledge and computational facilities, approximate methods of structural design abounded well into the second half of the 20th century. To this day structural designers account for material variations and gaps in theoretical knowledge by employing factors of safety (Benvenuto, E., An Introduction to the History of Structural Mechanics, Part II: Vaulted Structures and Elastic Systems, Springer-Verlag, NY, 1991) or codes of practice (ASME Boiler and Pressure Vessel Code, ASME, New York) originally developed in the 19th century (Antona, E., Fragola, J. and Galvagni, R. Risk based decision analysis in design. Fourth SRA Europe Conference Proceedings, Rome, Italy, 18-20 October 1993). These factors, although they continue to be heuristically based, attempt to account for uncertainties in the design environment (e.g., the load spectra) and residual materials defects (Fragola, J.R. et al., Investigation of the risk implications of space shuttle solid rocket booster chamber pressure excursions. SAIC Document No. SAIC/NY 95-01-10, New York, NY). Although the approaches may appear different, at least at first glance, the intention in both the insurance and design arenas was to establish an 'infrastructure of confidence' to enable rational decision making for future endeavours. Maturity in the design process of conventional structures such as bridges, buildings, boilers, and highways has led to the loss of recognition of the role that robustness plays in these designs to qualify them against their normal failure environment. So routinely do we expect these designs to survive that we tend to think of the individual failures (which do occur on occasion) as isolated 'freak' accidents. Attempts to uncover potential underlying classes and document associated attributes are rare, and even when they are undertaken 'human error' or 'one-of-a-kind accidents' is often cited as the major cause which somehow seems to absolve the analyst from the responsibility of further data collection (Levy, M. and Salvadori, M., Why Buildings Fall Down, W.W. Norton and Co., New York, NY, 1992; Pecht, M., Nash, F.R. and Long, J.H., Understanding and solving the real reliability assurance problems. 1995 Proceedings of Annual RAMS Symposium, IEEE, New York, NY, 1995). The confusion has proliferated to the point where legitimate calls for scepticism regarding the scant data resources available (Evans, R.A., Bayes paradox. IEEE Trans. Reliab., R-31 (1982) 321) have given way to cries that some data sources be abandoned altogether (Cushing, M. et al., Comparison of electronics-reliability assessment approaches. Trans. Reliab., 42 (1993) 542-546 Wat son,

  20. Wind energy Computerized Maintenance Management System (CMMS) : data collection recommendations for reliability analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Valerie A.; Ogilvie, Alistair; Veers, Paul S.

    2009-09-01

    This report addresses the general data requirements for reliability analysis of fielded wind turbines and other wind plant equipment. The report provides a list of the data needed to support reliability and availability analysis, and gives specific recommendations for a Computerized Maintenance Management System (CMMS) to support automated analysis. This data collection recommendations report was written by Sandia National Laboratories to address the general data requirements for reliability analysis of fielded wind turbines. This report is intended to help the reader develop a basic understanding of what data are needed from a Computerized Maintenance Management System (CMMS) and other data systems, for reliability analysis. The report provides: (1) a list of the data needed to support reliability and availability analysis; and (2) specific recommendations for a CMMS to support automated analysis. Though written for reliability analysis of wind turbines, much of the information is applicable to a wider variety of equipment and a wider variety of analysis and reporting needs.

  1. Reliability analysis of the service water system of Angra 1 reactor

    International Nuclear Information System (INIS)

    A reliability analysis of the service water system is done aiming to use in the evaluation of the non reliability of the component cooling system (SRC) for great loss of cooling accidents in nuclear power plants. (E.G.)

  2. Reliability analysis of the service water system of Angra 1 reactor

    International Nuclear Information System (INIS)

    A reliability analysis of the service water system is done aiming to use in the evaluation of the non reliability of the Component Cooling System (SRC) for great loss of cooling accidents in nuclear power plants. (E.G.)

  3. Comparing Between Maximum Likelihood and Least Square Estimators for Gompertz Software Reliability Model

    OpenAIRE

    Lutfiah Ismail Al turk

    2014-01-01

    Software reliability models (SRMs) are very important for estimating and predicting software reliability in the testing/debugging phase. The contributions of this paper are as follows. First, a historical review of the Gompertz SRM is given. Based on several software failure data, the parameters of the Gompertz software reliability model are estimated using two estimation methods, the traditional maximum likelihood and the least square. The methods of estimation are evaluated u...

  4. Evaluation of ATHEANA methodology a second generation human reliability analysis

    International Nuclear Information System (INIS)

    Incidents and accidents at nuclear power plants (NPP) have been and always will be considered as undesired occurrences. Human error (REASON, 1990) is probably the major contributor to serious accidents as those that occurred at Three Mile Island NPP, Unit 2 (TMI-2), in 1979, and Chernobyl, Unit 4, in 1986, and (AEOD/E95-01, 1995 at others NPPs. Reviews and analysis of those accidents and others near-misses have shown operators performing actions that are not required for the accident response and, in fact, worsen the plant's condition. This action, where a person does something that it's not supposed to do, believing that it was the right thing to do, resulting in changes in the plant that may be worse than if he had done nothing, is called Error of Commission (EOC). These inappropriate actions are rightly affected (NUREG-1624, Rev.1, 2000) by the off-normal context (i.e., the combination of plant conditions and performance shaping factors) of the event scenario that virtually forces the operator to fail. Considering that this kind of human intervention could be an important failure mode and precursor to more serious events, aggravated by the fact that actual probabilistic risk assessment (PRA), does not consider this kind of error, a new methodology (NUREG-1624, Rev.1, 2000) was developed of Human Reliability Analysis (HRA), called 'A Technique for Human Event Analysis' (ATHEANA). ATHEANA is a multidisciplinary second-generation HRA method and provides an HRA quantification process and PRA modeling interface that can accommodate and represent human performance in real nuclear power plant accidents. This paper presents this new methodology in order to identified its weak and strong points, to evaluate its advantages and disadvantages and its benefits to safety, and finally, to analyze its application to Angra NPP. (author)

  5. Reliability Analysis and Modeling of ZigBee Networks

    Science.gov (United States)

    Lin, Cheng-Min

    The architecture of ZigBee networks focuses on developing low-cost, low-speed ubiquitous communication between devices. The ZigBee technique is based on IEEE 802.15.4, which specifies the physical layer and medium access control (MAC) for a low rate wireless personal area network (LR-WPAN). Currently, numerous wireless sensor networks have adapted the ZigBee open standard to develop various services to promote improved communication quality in our daily lives. The problem of system and network reliability in providing stable services has become more important because these services will be stopped if the system and network reliability is unstable. The ZigBee standard has three kinds of networks; star, tree and mesh. The paper models the ZigBee protocol stack from the physical layer to the application layer and analyzes these layer reliability and mean time to failure (MTTF). Channel resource usage, device role, network topology and application objects are used to evaluate reliability in the physical, medium access control, network, and application layers, respectively. In the star or tree networks, a series system and the reliability block diagram (RBD) technique can be used to solve their reliability problem. However, a division technology is applied here to overcome the problem because the network complexity is higher than that of the others. A mesh network using division technology is classified into several non-reducible series systems and edge parallel systems. Hence, the reliability of mesh networks is easily solved using series-parallel systems through our proposed scheme. The numerical results demonstrate that the reliability will increase for mesh networks when the number of edges in parallel systems increases while the reliability quickly drops when the number of edges and the number of nodes increase for all three networks. More use of resources is another factor impact on reliability decreasing. However, lower network reliability will occur due to network complexity, more resource usage and complex object relationship.

  6. Reliability Analysis of Bearing Capacity of Large-Diameter Piles under Osterberg Test

    OpenAIRE

    Lei Nie; Yuan Guo; Lina Xu

    2013-01-01

    This study gives the reliability analysis of bearing capacity of large-diameter piles under osterberg test. The limit state equation of dimensionless random variables is utilized in the reliability analysis of vertical bearing capacity of large-diameter piles based on Osterberg loading tests. And the reliability index and the resistance partial coefficient under the current specifications are calculated using calibration method. The results show: the reliable index of large-diameter piles is ...

  7. Operator reliability analysis during NPP small break LOCA

    International Nuclear Information System (INIS)

    To assess the human factor characteristic of a NPP main control room (MCR) design, the MCR operator reliability during a small break LOCA is analyzed, and some approaches for improving the MCR operator reliability are proposed based on the analyzing results

  8. Analysis of the reliability of a statistical oil spill response model.

    Science.gov (United States)

    Abascal, Ana J; Castanedo, Sonia; Medina, Raul; Liste, Maria

    2010-11-01

    A statistical oil spill response model is developed and validated by means of actual oil slick observations reported during the Prestige accident and trajectories of drifter buoys. The model is based on the analysis of a database of hypothetical oil spill scenarios simulated by means of a Lagrangian transport model. To carry out the simulations, a re-analysis database consisting of 44-year hindcast dataset of wind and waves and climatologic daily mean surface currents is used. The number of scenarios required to obtain statistically reliable results is investigated, finding that 200 scenarios provide an optimal balance between the accuracy of the results and the computational effort. The reliability of the model was analyzed by comparing the actual data with the numerical results. The agreement found between actual and numerical data shows that the developed statistical oil spill model is a valuable tool to support spill response planning. PMID:20701930

  9. Procedure for conducting a human-reliability analysis for nuclear power plants. Final report

    International Nuclear Information System (INIS)

    This document describes in detail a procedure to be followed in conducting a human reliability analysis as part of a probabilistic risk assessment when such an analysis is performed according to the methods described in NUREG/CR-1278, Handbook for Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications. An overview of the procedure describing the major elements of a human reliability analysis is presented along with a detailed description of each element and an example of an actual analysis. An appendix consists of some sample human reliability analysis problems for further study

  10. Procedure for conducting a human-reliability analysis for nuclear power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bell, B.J.; Swain, A.D.

    1983-05-01

    This document describes in detail a procedure to be followed in conducting a human reliability analysis as part of a probabilistic risk assessment when such an analysis is performed according to the methods described in NUREG/CR-1278, Handbook for Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications. An overview of the procedure describing the major elements of a human reliability analysis is presented along with a detailed description of each element and an example of an actual analysis. An appendix consists of some sample human reliability analysis problems for further study.

  11. Probabilistic Analysis of Aircraft Gas Turbine Disk Life and Reliability

    Science.gov (United States)

    Melis, Matthew E.; Zaretsky, Erwin V.; August, Richard

    1999-01-01

    Two series of low cycle fatigue (LCF) test data for two groups of different aircraft gas turbine engine compressor disk geometries were reanalyzed and compared using Weibull statistics. Both groups of disks were manufactured from titanium (Ti-6Al-4V) alloy. A NASA Glenn Research Center developed probabilistic computer code Probable Cause was used to predict disk life and reliability. A material-life factor A was determined for titanium (Ti-6Al-4V) alloy based upon fatigue disk data and successfully applied to predict the life of the disks as a function of speed. A comparison was made with the currently used life prediction method based upon crack growth rate. Applying an endurance limit to the computer code did not significantly affect the predicted lives under engine operating conditions. Failure location prediction correlates with those experimentally observed in the LCF tests. A reasonable correlation was obtained between the predicted disk lives using the Probable Cause code and a modified crack growth method for life prediction. Both methods slightly overpredict life for one disk group and significantly under predict it for the other.

  12. Wind turbine reliability : a database and analysis approach.

    Energy Technology Data Exchange (ETDEWEB)

    Linsday, James (ARES Corporation); Briand, Daniel; Hill, Roger Ray; Stinebaugh, Jennifer A.; Benjamin, Allan S. (ARES Corporation)

    2008-02-01

    The US wind Industry has experienced remarkable growth since the turn of the century. At the same time, the physical size and electrical generation capabilities of wind turbines has also experienced remarkable growth. As the market continues to expand, and as wind generation continues to gain a significant share of the generation portfolio, the reliability of wind turbine technology becomes increasingly important. This report addresses how operations and maintenance costs are related to unreliability - that is the failures experienced by systems and components. Reliability tools are demonstrated, data needed to understand and catalog failure events is described, and practical wind turbine reliability models are illustrated, including preliminary results. This report also presents a continuing process of how to proceed with controlling industry requirements, needs, and expectations related to Reliability, Availability, Maintainability, and Safety. A simply stated goal of this process is to better understand and to improve the operable reliability of wind turbine installations.

  13. An efficient phased mission reliability analysis for autonomous vehicles

    International Nuclear Information System (INIS)

    Autonomous systems are becoming more commonly used, especially in hazardous situations. Such systems are expected to make their own decisions about future actions when some capabilities degrade due to failures of their subsystems. Such decisions are made without human input, therefore they need to be well-informed in a short time when the situation is analysed and future consequences of the failure are estimated. The future planning of the mission should take account of the likelihood of mission failure. The reliability analysis for autonomous systems can be performed using the methodologies developed for phased mission analysis, where the causes of failure for each phase in the mission can be expressed by fault trees. Unmanned autonomous vehicles (UAVs) are of a particular interest in the aeronautical industry, where it is a long term ambition to operate them routinely in civil airspace. Safety is the main requirement for the UAV operation and the calculation of failure probability of each phase and the overall mission is the topic of this paper. When components or subsystems fail or environmental conditions throughout the mission change, these changes can affect the future mission. The new proposed methodology takes into account the available diagnostics data and is used to predict future capabilities of the UAV in real time. Since this methodology is based on the efficient BDD method, the quickly provided advice can be used in making decisions. When failures occur appropriate actions are required in order to preserve safety of the autonomous vehicle. The overall decision making strategy for autonomous vehicles is explained in this paper. Some limitations of the methodology are discussed and further improvements are presented based on experimental results.

  14. Constellation Ground Systems Launch Availability Analysis: Enhancing Highly Reliable Launch Systems Design

    Science.gov (United States)

    Gernand, Jeffrey L.; Gillespie, Amanda M.; Monaghan, Mark W.; Cummings, Nicholas H.

    2010-01-01

    Success of the Constellation Program's lunar architecture requires successfully launching two vehicles, Ares I/Orion and Ares V/Altair, in a very limited time period. The reliability and maintainability of flight vehicles and ground systems must deliver a high probability of successfully launching the second vehicle in order to avoid wasting the on-orbit asset launched by the first vehicle. The Ground Operations Project determined which ground subsystems had the potential to affect the probability of the second launch and allocated quantitative availability requirements to these subsystems. The Ground Operations Project also developed a methodology to estimate subsystem reliability, availability and maintainability to ensure that ground subsystems complied with allocated launch availability and maintainability requirements. The verification analysis developed quantitative estimates of subsystem availability based on design documentation; testing results, and other information. Where appropriate, actual performance history was used for legacy subsystems or comparative components that will support Constellation. The results of the verification analysis will be used to verify compliance with requirements and to highlight design or performance shortcomings for further decision-making. This case study will discuss the subsystem requirements allocation process, describe the ground systems methodology for completing quantitative reliability, availability and maintainability analysis, and present findings and observation based on analysis leading to the Ground Systems Preliminary Design Review milestone.

  15. EPRI/NRC-RES fire human reliability analysis guidelines

    International Nuclear Information System (INIS)

    During the 1990s, the Electric Power Research Institute (EPRI) developed methods for fire risk analysis to support its utility members in the preparation of responses to Generic Letter 88-20, Supplement 4, 'Individual Plant Examination - External Events' (IPEEE). This effort produced a Fire Risk Assessment methodology for operations at power that was used by the majority of U.S. nuclear power plants (NPPs) in support of the IPEEE program and several NPPs overseas. Although these methods were acceptable for accomplishing the objectives of the IPEEE, EPRI and the U.S. Nuclear Regulatory Commission (NRC) recognized that they required upgrades to support current requirements for risk-informed, performance-based (RI/PB) applications. In 2001, EPRI and the USNRC's Office of Nuclear Regulatory Research (RES) embarked on a cooperative project to improve the state-of-the-art in fire risk assessment to support a new risk-informed environment in fire protection. This project produced a consensus document, NUREG/CR-6850 (EPRI 1011989), entitled 'Fire PRA Methodology for Nuclear Power Facilities' which addressed fire risk for at power operations. NUREG/CR-6850 developed high level guidance on the process for identification and inclusion of human failure events (HFEs) into the fire PRA (FPRA), and a methodology for assigning quantitative screening values to these HFEs. It outlined the initial considerations of performance shaping factors (PSFs) and related fire effects that may need to be addressed in developing best-estimate human error probabilities (HEPs). However, NUREG/CR-6850 did not describe a methodology to develop best-estimate HEPs given the PSFs and the fire-related effects. In 2007, EPRI and RES embarked on another cooperative project to develop explicit guidance for estimating HEPs for human failure events under fire generated conditions, building upon existing human reliability analysis (HRA) methods. This document provides a methodology and guidance for conducting a fire HRA. This process includes identification and definition of post-fire human failure events, qualitative analysis, quantification, recovery, dependency, and uncertainty. This document provides three approaches to quantification: screening, scoping, and detailed HRA. Screening is based on the guidance in NUREG/CR-6850, with some additional guidance for scenarios with long time windows. Scoping is a new approach to quantification developed specifically to support the iterative nature of fire PRA quantification. Scoping is intended to provide less conservative HEPs than screening, but requires fewer resources than a detailed HRA analysis. For detailed HRA quantification, guidance has been developed on how to apply existing methods to assess post-fire fire HEPs.

  16. Reliability Analysis of Distribution Automation on Different Feeders

    Directory of Open Access Journals (Sweden)

    V. Krishna Murthy

    2011-12-01

    Full Text Available Automating a distribution system is an effective means to provide a more reliable and economical system in the fast growing technological world. This paper delivers into automating a system using two- stage restoration (partial automation and put forward a feeder automation system based on substation automation platform that can be applied to electrical distribution systems for high economic-technical efficiency. Improved reliability is evaluated when feeder automation is applied to distribution. This paper studies three different feeders and decides on the most probable reliable feeder among them.

  17. Modeling cognition dynamics and its application to human reliability analysis

    International Nuclear Information System (INIS)

    For the past two decades, a number of approaches have been proposed for the identification and estimation of the likelihood of human errors, particularly for use in the risk and reliability studies of nuclear power plants. Despite the wide-spread use of the most popular among these methods, their fundamental weaknesses are widely recognized, and the treatment of human reliability has been considered as one of the soft spots of risk studies of large technological systems. To alleviate the situation, new efforts have focused on the development of human reliability models based on a more fundamental understanding of operator response and its cognitive aspects

  18. The Validity and Reliability of a Procedure for Competition Analysis in Swimming Based on Individual Distance Measurements

    OpenAIRE

    Veiga Fernandez, Santiago; Cala Mejías, Antonio; González Frutos, Cabello; Navarro Cabello, Enrique

    2010-01-01

    In swimming, competition analyses have been frequently performed according to three segments of the nee, equal for all competitors. However, individual distance measurements during start and turn race segments have been scarcely assessed. The aim of the present study was: 1) to verify the validity and reliability of a 2D-DLT based system for competition analysis in swimming and, 2) to compare it with die commonly used technique. Higher values of accuracy (RMSE=0.05 m) and reliability (CV

  19. Comparative Study and Analysis of Variability Tools

    OpenAIRE

    Bhumula, Mahendra Reddy

    2013-01-01

    The dissertation provides a comparative analysis of a number of variability tools currently in use. It serves as a catalogue for practitioners interested in the topic. We compare a range of modelling, configuring, and management tools for product line engineering. The tools surveyed are compared against the following criteria: functional, non-functional, governance issues and Technical aspects. The outcome of the analysis is provided in tabular format.

  20. Reliability analysis of mechanical components containing random flaws

    OpenAIRE

    Iacopino, G.

    2006-01-01

    The goal of structural reliability is to assure that a structure adequately performs its intended function when operating under specified environmental conditions. The major source of unreliability is the variability that characterizes engineering structures subjected to inherent randomness in material properties, loading and geometrical parameters. A sensible approach to structural reliability must be able to evaluate and control the effects of this variability, quantifying th...

  1. Mutation Analysis Approach to Develop Reliable Object-Oriented Software

    OpenAIRE

    Monalisa Sarma

    2014-01-01

    In general, modern programs are large and complex and it is essential that they should be highly reliable in applications. In order to develop highly reliable software, Java programming language developer provides a rich set of exceptions and exception handling mechanisms. Exception handling mechanisms are intended to help developers build robust programs. Given a program with exception handling constructs, for an effective testing, we are to detect whether all possible exceptions are raised ...

  2. CARES/PC - CERAMICS ANALYSIS AND RELIABILITY EVALUATION OF STRUCTURES

    Science.gov (United States)

    Szatmary, S. A.

    1994-01-01

    The beneficial properties of structural ceramics include their high-temperature strength, light weight, hardness, and corrosion and oxidation resistance. For advanced heat engines, ceramics have demonstrated functional abilities at temperatures well beyond the operational limits of metals. This is offset by the fact that ceramic materials tend to be brittle. When a load is applied, their lack of significant plastic deformation causes the material to crack at microscopic flaws, destroying the component. CARES/PC performs statistical analysis of data obtained from the fracture of simple, uniaxial tensile or flexural specimens and estimates the Weibull and Batdorf material parameters from this data. CARES/PC is a subset of the program CARES (COSMIC program number LEW-15168) which calculates the fast-fracture reliability or failure probability of ceramic components utilizing the Batdorf and Weibull models to describe the effects of multi-axial stress states on material strength. CARES additionally requires that the ceramic structure be modeled by a finite element program such as MSC/NASTRAN or ANSYS. The more limited CARES/PC does not perform fast-fracture reliability estimation of components. CARES/PC estimates ceramic material properties from uniaxial tensile or from three- and four-point bend bar data. In general, the parameters are obtained from the fracture stresses of many specimens (30 or more are recommended) whose geometry and loading configurations are held constant. Parameter estimation can be performed for single or multiple failure modes by using the least-squares analysis or the maximum likelihood method. Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit tests measure the accuracy of the hypothesis that the fracture data comes from a population with a distribution specified by the estimated Weibull parameters. Ninety-percent confidence intervals on the Weibull parameters and the unbiased value of the shape parameter for complete samples are provided when the maximum likelihood technique is used. CARES/PC is written and compiled with the Microsoft FORTRAN v5.0 compiler using the VAX FORTRAN extensions and dynamic array allocation supported by this compiler for the IBM/MS-DOS or OS/2 operating systems. The dynamic array allocation routines allow the user to match the number of fracture sets and test specimens to the memory available. Machine requirements include IBM PC compatibles with optional math coprocessor. Program output is designed to fit 80-column format printers. Executables for both DOS and OS/2 are provided. CARES/PC is distributed on one 5.25 inch 360K MS-DOS format diskette in compressed format. The expansion tool PKUNZIP.EXE is supplied on the diskette. CARES/PC was developed in 1990. IBM PC and OS/2 are trademarks of International Business Machines. MS-DOS and MS OS/2 are trademarks of Microsoft Corporation. VAX is a trademark of Digital Equipment Corporation.

  3. Psychometric Inferences from a Meta-Analysis of Reliability and Internal Consistency Coefficients

    Science.gov (United States)

    Botella, Juan; Suero, Manuel; Gambara, Hilda

    2010-01-01

    A meta-analysis of the reliability of the scores from a specific test, also called reliability generalization, allows the quantitative synthesis of its properties from a set of studies. It is usually assumed that part of the variation in the reliability coefficients is due to some unknown and implicit mechanism that restricts and biases the…

  4. Reliability model analysis and primary experimental evaluation of laser triggered pulse trigger

    International Nuclear Information System (INIS)

    High performance pulse trigger can enhance performance and stability of the PPS. It is necessary to evaluate the reliability of the LTGS pulse trigger, so we establish the reliability analysis model of this pulse trigger based on CARMES software, the reliability evaluation is accord with the statistical results. (authors)

  5. Automated migration analysis based on cell texture: method & reliability

    Directory of Open Access Journals (Sweden)

    Chittenden Thomas W

    2005-03-01

    Full Text Available Abstract Background In this paper, we present and validate a way to measure automatically the extent of cell migration based on automated examination of a series of digital photographs. It was designed specifically to identify the impact of Second Hand Smoke (SHS on endothelial cell migration but has broader applications. The analysis has two stages: (1 preprocessing of image texture, and (2 migration analysis. Results The output is a graphic overlay that indicates the front lines of cell migration superimposed on each original image, with automated reporting of the distance traversed vs. time. Expert preference compares to manual placement of leading edge shows complete equivalence of automated vs. manual leading edge definition for cell migration measurement. Conclusion Our method is indistinguishable from careful manual determinations of cell front lines, with the advantages of full automation, objectivity, and speed.

  6. Human reliability analysis of the Tehran research reactor using the SPAR-H method

    OpenAIRE

    Barati Ramin; Setayeshi Saeed

    2012-01-01

    The purpose of this paper is to cover human reliability analysis of the Tehran research reactor using an appropriate method for the representation of human failure probabilities. In the present work, the technique for human error rate prediction and standardized plant analysis risk-human reliability methods have been utilized to quantify different categories of human errors, applied extensively to nuclear power plants. Human reliability analysis is, indeed, an integral and significant p...

  7. Radionuclides in sediments - a comparative analysis, 1981

    International Nuclear Information System (INIS)

    On behalf of the BMI (Federal German Ministry of the Interior), the BfG in 1981 again started an interlaboratory comparison (among 42 measuring points) on the topic of radionuclides in sediments. The study was intended to test the reliability of G?, G?/R? measurements in sedimentary samples under practical conditions. The comparative analyses again revealed a number of error sources, and errors could be corrected. This was achieved not least by a good cooperation among the participating laboratories who contributed a.o. very useful information and ideas. (orig./HP)

  8. Reliability analysis of an RC defense structure loaded by a dense snow avalanche pressure signal

    Science.gov (United States)

    Ousset, Isabelle; Bertrand, David; Limam, Ali; Naaďm, Mohamed

    2014-05-01

    To protect humans, roads or houses against snow avalanches, civil engineering structures are widely used. Designing these structures is still a challenge especially due to the uncertainties related to the loading developed by a snow avalanche. The case of the avalanche of Taconnaz (France), which occurred in 1999 and where important parts of the RC defense structure were destroyed, underlines the necessary to consider reliability approaches for the design of such structures. This paper proposes a reliability analysis of an L-shaped reinforced concrete (RC) protective structure subjected to a dense snow avalanche. A deterministic mechanical model, based on the finite element method, has been developed and allows describing the behavior of the structure. Next, a reliable model allows propagating uncertainties through the mechanical model and assessing the failure probability of the structure. The choices of random variables (the inputs) and their distributions, the failure criteria and the reliability methods are presented and discussed. Two criteria are considered: on the one hand, a local criterion defined in term of stress exceedence within concrete and steel, and on the other hand a global criterion defined in term of maximal displacement of the structure. Moreover, Kernel Smoothing and Monte-Carlo methods are used and compared to assess the failure probability and to derive fragility curves. These latter describe the failure probability of the structure according to the loading magnitude.

  9. Failure analysis – basic step of applying Reliability Centered Maintenance in general aviation

    OpenAIRE

    Martin BUGAJ

    2012-01-01

    Performing a reliability analysis on a product or system can actually include a number of different analyses to determine how reliable the product or system is. A reliability centered maintenance program consists of a set of scheduled tasks generated on the basis of specific reliability characteristics of the equipment they are designed to protect. Complex equipment is composed of a vast number of parts and assemblies. All these items can be expected to fail at one time or another, but some o...

  10. Preliminary analysis of shutdown system reliability of a gas graphite type reactor

    International Nuclear Information System (INIS)

    This work applies some Reliability Analysis tools the Failure Mode and Effects Analysis (FMEA), the Fault Tree, and the Reliability Block Diagram (RBD) - to study a shutdown system to a graphite reactor. The main goal of the present work is to provide means for identification of critical points of the system, and to enable a detailed study of safety analysis. (author)

  11. Software analysis handbook: Software complexity analysis and software reliability estimation and prediction

    Science.gov (United States)

    Lee, Alice T.; Gunn, Todd; Pham, Tuan; Ricaldi, Ron

    1994-01-01

    This handbook documents the three software analysis processes the Space Station Software Analysis team uses to assess space station software, including their backgrounds, theories, tools, and analysis procedures. Potential applications of these analysis results are also presented. The first section describes how software complexity analysis provides quantitative information on code, such as code structure and risk areas, throughout the software life cycle. Software complexity analysis allows an analyst to understand the software structure, identify critical software components, assess risk areas within a software system, identify testing deficiencies, and recommend program improvements. Performing this type of analysis during the early design phases of software development can positively affect the process, and may prevent later, much larger, difficulties. The second section describes how software reliability estimation and prediction analysis, or software reliability, provides a quantitative means to measure the probability of failure-free operation of a computer program, and describes the two tools used by JSC to determine failure rates and design tradeoffs between reliability, costs, performance, and schedule.

  12. Application of Metric-based Software Reliability Analysis to Example Software

    International Nuclear Information System (INIS)

    The software reliability of TELLERFAST ATM software is analyzed by using two metric-based software reliability analysis methods, a state transition diagram-based method and a test coverage-based method. The procedures for the software reliability analysis by using the two methods and the analysis results are provided in this report. It is found that the two methods have a relation of complementary cooperation, and therefore further researches on combining the two methods to reflect the benefit of the complementary cooperative effect to the software reliability analysis are recommended

  13. Space Shuttle Main Engine (SSME) Reliability and Analysis Evolution

    Science.gov (United States)

    Stephens, Walter E.; Rogers, James H.; Biggs, Robert E.

    2010-01-01

    The Space Shuttle Main Engine (SSME) is a large thrust class, reusable, staged combustion cycle rocket engine employing liquid hydrogen and liquid oxygen propellants. A cluster of three SSMEs is used on every space shuttle mission to propel the space shuttle orbiter vehicle into low earth orbit. Development of the SSME began in the early 70 s and the first flight of the space shuttle occurred in 1981. Today, the SSME has accrued over one million seconds of ground test and flight operational time, launching 129 space shuttle missions. Given that the SSME is used to launch a manned vehicle, its reliability must be commensurate for the task. At the same time, the SSME is a high performance, high power density engine which traditionally does not lend itself towards high reliability. Furthermore, throughout its history, the SSME operational envelope has been explored and expanded leading to several major test failures. Hence, assessing the reliability of the SSME throughout its history has been a challenging undertaking. This paper provides a review and discussion of SSME reliability assessment techniques and results over its history. Basic reliability drivers such as engine design, test program, major failures, redesigns and upgrades will also be discussed.

  14. RADYBAN: A tool for reliability analysis of dynamic fault trees through conversion into dynamic Bayesian networks

    International Nuclear Information System (INIS)

    In this paper, we present RADYBAN (Reliability Analysis with DYnamic BAyesian Networks), a software tool which allows to analyze a dynamic fault tree relying on its conversion into a dynamic Bayesian network. The tool implements a modular algorithm for automatically translating a dynamic fault tree into the corresponding dynamic Bayesian network and exploits classical algorithms for the inference on dynamic Bayesian networks, in order to compute reliability measures. After having described the basic features of the tool, we show how it operates on a real world example and we compare the unreliability results it generates with those returned by other methodologies, in order to verify the correctness and the consistency of the results obtained

  15. Reliability analysis of the recirculation phase of the safety injection system of Angra-1

    International Nuclear Information System (INIS)

    The calculation of several reliability parameters-failure probability, unavailability and unreliability - of the recirculation phase of the safety injection system of Angra-1, was done. This system has two distinct modes of operation (short term and long term) which were fault tree analysed both separately and as a whole. To obtain quantitative results the computer codes SAMPLE and PRET-KITT were utilized. The former was used to consider the uncertainties in the failure data (drawn integrally from WASH-1400) and the latter to obtain time dependent unreliability values. Hardware failures and common-mode failures were considered. Altough the analysis methods employed here differ somewhat from those used in WASH-1400, the results which could be compared were found to have the order of magnitude. A viability study of some suggestions of system's modifications was performed, and it has shown that some significant reliability improvements can be achieved with reasonably simple changes. (Author)

  16. Reliability Analysis of Timber Structures through NDT Data Upgrading

    DEFF Research Database (Denmark)

    Sousa, Hélder; Sřrensen, John Dalsgaard; Kirkegaard, Poul Henning

    reliability calculation. In chapter 4, updating methods are conceptualized and defined. Special attention is drawn upon Bayesian methods and its implementation. Also a topic for updating based in inspection of deterioration is provided. State of the art definitions and proposed measurement indices for...... safety reassessment procedure. For that purpose a theoretical background for structural reliability assessment including probabilistic concepts for structural systems and stochastic models are given in chapter 3. System models, both series and parallel systems, are presented as well as methods for...... robustness are dealt in chapter 5. The second part of this document begins in chapter 6, where a practical application of the premise definitions and methodologies is given through the implementation of upgraded models with NDT and MDT data. Structural life-cycle is, therefore, assessed and reliability and...

  17. Application of reliability analysis method to fusion component testing

    International Nuclear Information System (INIS)

    The term reliability here implies that a component satisfies a set of performance criteria while under specified conditions of use over a specified period of time. For fusion nuclear technology, the reliability goal to be pursued is the development of a mean time between failures (MTBF) for a component which is longer than its lifetime goal. While the component lifetime is mainly determined by the fluence limitation (i.e., damage level) which leads to performance degradation or failure, the MTBF represents an arithmetic average life of all units in a population. One method of assessing the reliability goal involves determining component availability needs to meet the goal plant availability, defining a test-analyze-fix development program to improve component reliability, and quantifying both test times and the number of test articles that would be required to ensure that a specified target MTBF is met. Statistically, constant failure rates and exponential life distributions are assumed for analyses and blanket component development is used as an example. However, as data are collected the probability distribution of the parameter of interest can be updated in a Bayesian fashion. The nuclear component testing program will be structured such that reliability requirements for DEMO can be achieved. The program shall not exclude the practice of a good design (such as reducing the complexity of the system to the minimum essential for the required operation), the execution of high quality manufacturing and inspection processes, and the implication of quality assurance and control for component development. In fact, the assurance of a high quality testing/development program is essential so that there is no question left for reliability

  18. Embedded mechatronic systems 1 analysis of failures, predictive reliability

    CERN Document Server

    El Hami, Abdelkhalak

    2015-01-01

    In operation, mechatronics embedded systems are stressed by loads of different causes: climate (temperature, humidity), vibration, electrical and electromagnetic. These stresses in components which induce failure mechanisms should be identified and modeled for better control. AUDACE is a collaborative project of the cluster Mov'eo that address issues specific to mechatronic reliability embedded systems. AUDACE means analyzing the causes of failure of components of mechatronic systems onboard. The goal of the project is to optimize the design of mechatronic devices by reliability. The projec

  19. Technical information report: Plasma melter operation, reliability, and maintenance analysis

    International Nuclear Information System (INIS)

    This document provides a technical report of operability, reliability, and maintenance of a plasma melter for low-level waste vitrification, in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. A process description is provided that minimizes maintenance and downtime and includes material and energy balances, equipment sizes and arrangement, startup/operation/maintence/shutdown cycle descriptions, and basis for scale-up to a 200 metric ton/day production facility. Operational requirements are provided including utilities, feeds, labor, and maintenance. Equipment reliability estimates and maintenance requirements are provided which includes a list of failure modes, responses, and consequences

  20. Analysis of Software Reliability Data using Exponential Power Model

    OpenAIRE

    Ashwini Kumar Srivastava; Vijay Kumar

    2011-01-01

    In this paper, Exponential Power (EP) model is proposed to analyze the software reliability data and the present work is an attempt to represent that the model is as software reliability model. The approximate MLE using Artificial Neural Network (ANN) method and the Markov chain Monte Carlo (MCMC) methods are used to estimate the parameters of the EP model. A procedure is developed to estimate the parameters of the EP model using MCMC simulation method in OpenBUGS by incorporating a module in...

  1. Technical information report: Plasma melter operation, reliability, and maintenance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W. [ed.

    1995-03-14

    This document provides a technical report of operability, reliability, and maintenance of a plasma melter for low-level waste vitrification, in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. A process description is provided that minimizes maintenance and downtime and includes material and energy balances, equipment sizes and arrangement, startup/operation/maintence/shutdown cycle descriptions, and basis for scale-up to a 200 metric ton/day production facility. Operational requirements are provided including utilities, feeds, labor, and maintenance. Equipment reliability estimates and maintenance requirements are provided which includes a list of failure modes, responses, and consequences.

  2. Reliability analysis of External Tank Attack Ring (ETA)

    Science.gov (United States)

    Putcha, Chandra S.

    1992-01-01

    The present study is restricted to External Tank Attachment Rings (ETA), but the concepts discussed are general in nature and can be applied to any structural component. The objective of this research work is to use some of the existing probabilistic methods to calculate the reliability of ETA Rings at various critical sections for the limit state of stress. This is done both in terms of the traditional probability of failure and reliability levels as well as the well known safety indices (beta) which have become a commonly accepted measure of safety.

  3. Reliability modeling and analysis of smart power systems

    CERN Document Server

    Karki, Rajesh; Verma, Ajit Kumar

    2014-01-01

    The volume presents the research work in understanding, modeling and quantifying the risks associated with different ways of implementing smart grid technology in power systems in order to plan and operate a modern power system with an acceptable level of reliability. Power systems throughout the world are undergoing significant changes creating new challenges to system planning and operation in order to provide reliable and efficient use of electrical energy. The appropriate use of smart grid technology is an important drive in mitigating these problems and requires considerable research acti

  4. Reliability engineering

    International Nuclear Information System (INIS)

    This book mentions importance and conception of reliability, product life cycle and reliability, historical background of reliability and application field of reliability. Next, it deals with basic probability distribution, criterion of reliability, function and system credulity, component importance, model in failure, analysis of failure, system analysis of repairable things, management of the best maintenance, analysis of life data and accelerated-life test. Every chapter has introduction and explanation of each theory.

  5. Exploratory factor analysis and reliability analysis with missing data: A simple method for SPSS users

    Directory of Open Access Journals (Sweden)

    Bruce Weaver

    2014-09-01

    Full Text Available Missing data is a frequent problem for researchers conducting exploratory factor analysis (EFA or reliability analysis. The SPSS FACTOR procedure allows users to select listwise deletion, pairwise deletion or mean substitution as a method for dealing with missing data. The shortcomings of these methods are well-known. Graham (2009 argues that a much better way to deal with missing data in this context is to use a matrix of expectation maximization (EM covariances(or correlations as input for the analysis. SPSS users who have the Missing Values Analysis add-on module can obtain vectors ofEM means and standard deviations plus EM correlation and covariance matrices via the MVA procedure. But unfortunately, MVA has no /MATRIX subcommand, and therefore cannot write the EM correlations directly to a matrix dataset of the type needed as input to the FACTOR and RELIABILITY procedures. We describe two macros that (in conjunction with an intervening MVA command carry out the data management steps needed to create two matrix datasets, one containing EM correlations and the other EM covariances. Either of those matrix datasets can then be used asinput to the FACTOR procedure, and the EM correlations can also be used as input to RELIABILITY. We provide an example that illustrates the use of the two macros to generate the matrix datasets and how to use those datasets as input to the FACTOR and RELIABILITY procedures. We hope that this simple method for handling missing data will prove useful to both students andresearchers who are conducting EFA or reliability analysis.

  6. Comparing Between Maximum Likelihood and Least Square Estimators for Gompertz Software Reliability Model

    Directory of Open Access Journals (Sweden)

    Lutfiah Ismail Al turk

    2014-07-01

    Full Text Available Software reliability models (SRMs are very important for estimating and predicting software reliability in the testing/debugging phase. The contributions of this paper are as follows. First, a historical review of the Gompertz SRM is given. Based on several software failure data, the parameters of the Gompertz software reliability model are estimated using two estimation methods, the traditional maximum likelihood and the least square. The methods of estimation are evaluated using the MSE and R-squared criteria. The results show that the least square estimation is an attractive method in term of predictive performance and can be used when the maximum likelihood method fails to give good prediction results.

  7. Brain Tumor Segmentation: A Comparative Analysis

    OpenAIRE

    Qadar, Muhammad Ali; Zhaowen, Yan

    2015-01-01

    Five different threshold segmentation based approaches have been reviewed and compared over here to extract the tumor from set of brain images. This research focuses on the analysis of image segmentation methods, a comparison of five semi-automated methods have been undertaken for evaluating their relative performance in the segmentation of tumor. Consequently, results are compared on the basis of quantitative and qualitative analysis of respective methods. The purpose of th...

  8. Comparative analysis of seismic risk assessment methodology

    International Nuclear Information System (INIS)

    SRA methodologies are separated into SPSA and SMM. SPSA methodology that has been widely used for seismic risk analysis has two kinds of methodologies such as Zion method and SSMRP method. SPSA methodology is suitable to interfacing with the analysis of internal event. However, the results of SPSA have uncertainties because of uncertainties in seismic hazard analysis and subjective judgement. Zion method specially developed for commercial use is less expensive and less time consuming but more uncertain than SSMRP method, since the former performs the fragility analysis less in detail than the latter. SMM is impossible to interface with the analysis of internal event but the uncertainties that are occurred during seismic hazard analysis is reduced because of the screening using RLE (review level earthquake). Therefore, if SPSA-based SMM methodology is chosen to be developed, the results of SRA will be more reliable and it requires low costs and time. In addition, the new methodology will require the development of a new evaluating code for SRA. (Author) 26 refs., 25 figs., 16 tabs

  9. Structural characterization of genomes by large scale sequence-structure threading: application of reliability analysis in structural genomics

    Directory of Open Access Journals (Sweden)

    Brunham Robert C

    2004-07-01

    Full Text Available Abstract Background We establish that the occurrence of protein folds among genomes can be accurately described with a Weibull function. Systems which exhibit Weibull character can be interpreted with reliability theory commonly used in engineering analysis. For instance, Weibull distributions are widely used in reliability, maintainability and safety work to model time-to-failure of mechanical devices, mechanisms, building constructions and equipment. Results We have found that the Weibull function describes protein fold distribution within and among genomes more accurately than conventional power functions which have been used in a number of structural genomic studies reported to date. It has also been found that the Weibull reliability parameter ? for protein fold distributions varies between genomes and may reflect differences in rates of gene duplication in evolutionary history of organisms. Conclusions The results of this work demonstrate that reliability analysis can provide useful insights and testable predictions in the fields of comparative and structural genomics.

  10. The European COPHES/DEMOCOPHES project : towards transnational comparability and reliability of human biomonitoring results

    DEFF Research Database (Denmark)

    Schindler, Birgit Karin; Esteban, Marta

    2014-01-01

    COPHES/DEMOCOPHES has its origins in the European Environment and Health Action Plan of 2004 to "develop a coherent approach on human biomonitoring (HBM) in Europe". Within this twin-project it was targeted to collect specimens from 120 mother-child-pairs in each of the 17 participating European countries. These specimens were investigated for six biomarkers (mercury in hair; creatinine, cotinine, cadmium, phthalate metabolites and bisphenol A in urine). The results for mercury in hair are described in a separate paper. Each participating member state was requested to contract laboratories, for capacity building reasons ideally within its borders, carrying out the chemical analyses. To ensure comparability of analytical data a Quality Assurance Unit (QAU) was established which provided the participating laboratories with standard operating procedures (SOP) and with control material. This material was specially prepared from native, non-spiked, pooled urine samples and was tested for homogeneity and stability.Four external quality assessment exercises were carried out. Highly esteemed laboratories from all over the world served as reference laboratories. Web conferences after each external quality assessment exercise functioned as a new and effective tool to improve analytical performance, to build capacity and to educate less experienced laboratories. Of the 38 laboratories participating in the quality assurance exercises 14 laboratories qualified for cadmium, 14 for creatinine, 9 for cotinine, 7 for phthalate metabolites and 5 for bisphenol A in urine. In the last of the four external quality assessment exercises the laboratories that qualified for DEMOCOPHES performed the determinations in urine with relative standard deviations (low/high concentration) of 18.0/2.1% for cotinine, 14.8/5.1% for cadmium, 4.7/3.4% for creatinine. Relative standard deviations for the newly emerging biomarkers were higher, with values between 13.5 and 20.5% for bisphenol A and between 18.9 and 45.3% for the phthalate metabolites. Plausibility control of the HBM results of all participating countries disclosed analytical shortcomings in the determination of Cd when using certain ICP/MS methods. Results were corrected by reanalyzes. The COPHES/DEMOCOPHES project for the first time succeeded in performing a harmonized pan-European HBM project. All data raised have to be regarded as utmost reliable according to the highest international state of the art, since highly renowned laboratories functioned as reference laboratories. The procedure described here, that has shown its success, can be used as a blueprint for future transnational, multicentre HBM projects.

  11. The European COPHES/DEMOCOPHES project : Towards transnational comparability and reliability of human biomonitoring results

    DEFF Research Database (Denmark)

    Schindler, Birgit Karin; Esteban, Marta

    2014-01-01

    COPHES/DEMOCOPHES has its origins in the European Environment and Health Action Plan of 2004 to "develop a coherent approach on human biomonitoring (HBM) in Europe". Within this twin-project it was targeted to collect specimens from 120 mother-child-pairs in each of the 17 participating European countries. These specimens were investigated for six biomarkers (mercury in hair; creatinine, cotinine, cadmium, phthalate metabolites and bisphenol A in urine). The results for mercury in hair are described in a separate paper. Each participating member state was requested to contract laboratories, for capacity building reasons ideally within its borders, carrying out the chemical analyses. To ensure comparability of analytical data a Quality Assurance Unit (QAU) was established which provided the participating laboratories with standard operating procedures (SOP) and with control material. This material was specially prepared from native, non-spiked, pooled urine samples and was tested for homogeneity and stability. Four external quality assessment exercises were carried out. Highly esteemed laboratories from all over the world served as reference laboratories. Web conferences after each external quality assessment exercise functioned as a new and effective tool to improve analytical performance, to build capacity and to educate less experienced laboratories. Of the 38 laboratories participating in the quality assurance exercises 14 laboratories qualified for cadmium, 14 for creatinine, 9 for cotinine, 7 for phthalate metabolites and 5 for bisphenol A in urine. In the last of the four external quality assessment exercises the laboratories that qualified for DEMOCOPHES performed the determinations in urine with relative standard deviations (low/high concentration) of 18.0/2.1% for cotinine, 14.8/5.1% for cadmium, 4.7/3.4% for creatinine. Relative standard deviations for the newly emerging biomarkers were higher, with values between 13.5 and 20.5% for bisphenol A and between 18.9 and 45.3% for the phthalate metabolites. Plausibility control of the HBM results of all participating countries disclosed analytical shortcomings in the determination of Cd when using certain ICP/MS methods. Results were corrected by reanalyzes. The COPHES/DEMOCOPHES project for the first time succeeded in performing a harmonized pan-European HBM project. All data raised have to be regarded as utmost reliable according to the highest international state of the art, since highly renowned laboratories functioned as reference laboratories. The procedure described here, that has shown its success, can be used as a blueprint for future transnational, multicentre HBM projects.

  12. Reliability analysis of common hazardous waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Waters, R.D. [Vanderbilt Univ., Nashville, TN (United States)

    1993-05-01

    Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption.

  13. Architecture-Based Reliability Analysis of Web Services

    Science.gov (United States)

    Rahmani, Cobra Mariam

    2012-01-01

    In a Service Oriented Architecture (SOA), the hierarchical complexity of Web Services (WS) and their interactions with the underlying Application Server (AS) create new challenges in providing a realistic estimate of WS performance and reliability. The current approaches often treat the entire WS environment as a black-box. Thus, the sensitivity…

  14. Reliability analysis of common hazardous waste treatment processes

    International Nuclear Information System (INIS)

    Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption

  15. Comparison of Methods for Dependency Determination between Human Failure Events within Human Reliability Analysis

    OpenAIRE

    Marko ?epin

    2008-01-01

    The human reliability analysis (HRA) is a highly subjective evaluation of human performance, which is an input for probabilistic safety assessment, which deals with many parameters of high uncertainty. The objective of this paper is to show that subjectivism can have a large impact on human reliability results and consequently on probabilistic safety assessment results and applications. The objective is to identify the key features, which may decrease subjectivity of human reliability analysi...

  16. Reliability analysis of secondary shutdown system of RAPS - 3 and 4: findings and solution

    International Nuclear Information System (INIS)

    The purpose of Reliability Analysis is to validate system design, demonstrate adequacy of maintenance program and testing requirements by means of comparison of reliability analysis results of various safety systems with limiting values assumed in plant safety report. Fault tree analysis is the most widely used method for developing system models. The reliability analysis of Secondary Shutdown System (SSS), done at site has revealed many important facts, which necessitated change in trip logic circuitry to increase redundancy and thus reliability of the system. Also, based on this analysis, the surveillance testing frequency has been proposed to change to reduce the chances of wear and tear of SSS components. This paper describes the methodology adopted for reliability analysis of SSS, and discusses its findings and suggested remedies. (author)

  17. Development of RBDGG Solver and Its Application to System Reliability Analysis

    International Nuclear Information System (INIS)

    For the purpose of making system reliability analysis easier and more intuitive, RBDGG (Reliability Block diagram with General Gates) methodology was introduced as an extension of the conventional reliability block diagram. The advantage of the RBDGG methodology is that the structure of a RBDGG model is very similar to the actual structure of the analyzed system, and therefore the modeling of a system for system reliability and unavailability analysis becomes very intuitive and easy. The main idea of the development of the RBDGG methodology is similar with that of the development of the RGGG (Reliability Graph with General Gates) methodology, which is an extension of a conventional reliability graph. The newly proposed methodology is now implemented into a software tool, RBDGG Solver. RBDGG Solver was developed as a WIN32 console application. RBDGG Solver receives information on the failure modes and failure probabilities of each component in the system, along with the connection structure and connection logics among the components in the system. Based on the received information, RBDGG Solver automatically generates a system reliability analysis model for the system, and then provides the analysis results. In this paper, application of RBDGG Solver to the reliability analysis of an example system, and verification of the calculation results are provided for the purpose of demonstrating how RBDGG Solver is used for system reliability analysis

  18. A Comparative Study on Error Analysis

    DEFF Research Database (Denmark)

    Wu, Xiaoli; Zhang, Chun

    2015-01-01

    Title: A Comparative Study on Error Analysis Subtitle: - Belgian (L1) and Danish (L1) learners’ use of Chinese (L2) comparative sentences in written production Xiaoli Wu, Chun Zhang Abstract: Making errors is an inevitable and necessary part of learning. The collection, classification and analysis...... occurrence of errors either in linguistic or pedagogical terms. The purpose of the current study is to demonstrate the theoretical and practical relevance of error analysis approach in CFL by investigating two cases - (1) Belgian (L1) learners’ use of Chinese (L2) comparative sentences in written production......; (2) Danish (L1) learners’ use of Chinese (L2) comparative sentences in written production. The two case studies were conducted at two universities of two countries: University of Leuven (LU), Belgium, and University of Aarhus (AU), Denmark during the academic year 2014/2015. There were altogether 87...

  19. Passive System Reliability Analysis: A Study on the Isolation Condenser

    International Nuclear Information System (INIS)

    This paper deals with the reliability assessment of passive systems that have been developed in recent years by suppliers, industries, utilities, and research organizations, aimed at plant safety improvement and substantial simplification in its implementation. The present study concerns the passive decay heat removal systems that use, for the most part, a condenser immersed in a cooling pool. The focus of the paper is a reliability study of the isolation condenser system foreseen for advanced boiling water reactors (BWRs) for the removal of the excess sensible and core decay heat from the BWR by natural circulation. Furthermore, an approach aimed at the thermal-hydraulic performance assessment (i.e., the natural circulation failure evaluation) from the probability point of view is given. The study is not plant-specific-related but pertains to the conceptual design of the foregoing system

  20. Analysis of the Component-Based Reliability in Computer Networks

    Scientific Electronic Library Online (English)

    Saulius, Minkevi< img width=12 height=19 src=" http:/fbpe/img/cubo/v12n1/img27.jpg" > ius.

    Full Text Available Desempeńo en términos de fiabilidad de redes de computador notiva este artículo. Teoremas límite sobre la duración extrema de cola y el tiempo de espera virtual extremo en redes de cola abierta en trafico pesado sao derivados y aplicados a un modelo de fiabilidad para redes de computador donde relac [...] ionamos el tiempo de falha de una red de computador al sistema de parámetros. Abstract in english Performance in terms of reliability of computer networks motivates this paper. Limit theorems on the extreme queue length and extreme virtual waiting time in open queueing networks in heavy traffic are derived and applied to a reliability model for computer networks where we relate the time of failu [...] re of a computer network to the system parameters.

  1. Reliability Analysis and Standardization of Spacecraft Command Generation Processes

    Science.gov (United States)

    Meshkat, Leila; Grenander, Sven; Evensen, Ken

    2011-01-01

    center dot In order to reduce commanding errors that are caused by humans, we create an approach and corresponding artifacts for standardizing the command generation process and conducting risk management during the design and assurance of such processes. center dot The literature review conducted during the standardization process revealed that very few atomic level human activities are associated with even a broad set of missions. center dot Applicable human reliability metrics for performing these atomic level tasks are available. center dot The process for building a "Periodic Table" of Command and Control Functions as well as Probabilistic Risk Assessment (PRA) models is demonstrated. center dot The PRA models are executed using data from human reliability data banks. center dot The Periodic Table is related to the PRA models via Fault Links.

  2. Stochastic Analysis on RAID Reliability for Solid-State Drives

    OpenAIRE

    Li, Yongkun; Lee, Patrick P. C.; Lui, John C. S.

    2013-01-01

    Solid-state drives (SSDs) have been widely deployed in desktops and data centers. However, SSDs suffer from bit errors, and the bit error rate is time dependent since it increases as an SSD wears down. Traditional storage systems mainly use parity-based RAID to provide reliability guarantees by striping redundancy across multiple devices, but the effectiveness of RAID in SSDs remains debatable as parity updates aggravate the wearing and bit error rates of SSDs. In particular...

  3. Seismic reliability analysis of nuclear power plant piping system

    International Nuclear Information System (INIS)

    The objective of the study presented was to develop a method for analyzing stochastic seismic stress of piping system subjected to multiple support excitations specified in terms of different response spectrum at all supports. Simultaneously, the cross-correlation of the modal response with close frequency is considered. Using the second moment method, the failure probability of the piping element can be given, further, the reliability of the piping system can be also found

  4. Analysis of Gumbel Model for Software Reliability Using Bayesian Paradigm

    OpenAIRE

    Raj Kumar; Ashwini Kumar Srivastava; Vijay Kumar

    2012-01-01

    In this paper, we have illustrated the suitability of Gumbel Model for software reliability data. The model parameters are estimated using likelihood based inferential procedure: classical as well as Bayesian. The quasi Newton-Raphson algorithm is applied to obtain the maximum likelihood estimates and associated probability intervals. The Bayesian estimates of the parameters of Gumbel model are obtained using Markov Chain Monte Carlo(MCMC) simulation method in OpenBUGS(established software fo...

  5. The Barthel Index: comparing inter-rater reliability between nurses and doctors in an older adult rehabilitation unit.

    LENUS (Irish Health Repository)

    Hartigan, Irene

    2011-02-01

    To ensure accuracy in recording the Barthel Index (BI) in older people, it is essential to determine who is best placed to administer the index. The aim of this study was to compare doctors\\' and nurses\\' reliability in scoring the BI.

  6. Launch and Assembly Reliability Analysis for Human Space Exploration Missions

    Science.gov (United States)

    Cates, Grant; Gelito, Justin; Stromgren, Chel; Cirillo, William; Goodliff, Kandyce

    2012-01-01

    NASA's future human space exploration strategy includes single and multi-launch missions to various destinations including cis-lunar space, near Earth objects such as asteroids, and ultimately Mars. Each campaign is being defined by Design Reference Missions (DRMs). Many of these missions are complex, requiring multiple launches and assembly of vehicles in orbit. Certain missions also have constrained departure windows to the destination. These factors raise concerns regarding the reliability of launching and assembling all required elements in time to support planned departure. This paper describes an integrated methodology for analyzing launch and assembly reliability in any single DRM or set of DRMs starting with flight hardware manufacturing and ending with final departure to the destination. A discrete event simulation is built for each DRM that includes the pertinent risk factors including, but not limited to: manufacturing completion; ground transportation; ground processing; launch countdown; ascent; rendezvous and docking, assembly, and orbital operations leading up to trans-destination-injection. Each reliability factor can be selectively activated or deactivated so that the most critical risk factors can be identified. This enables NASA to prioritize mitigation actions so as to improve mission success.

  7. Mapping Green Spaces in Bishkek—How Reliable can Spatial Analysis Be?

    Directory of Open Access Journals (Sweden)

    Peter Hofmann

    2011-05-01

    Full Text Available Within urban areas, green spaces play a critically important role in the quality of life. They have remarkable impact on the local microclimate and the regional climate of the city. Quantifying the ‘greenness’ of urban areas allows comparing urban areas at several levels, as well as monitoring the evolution of green spaces in urban areas, thus serving as a tool for urban and developmental planning. Different categories of vegetation have different impacts on recreation potential and microclimate, as well as on the individual perception of green spaces. However, when quantifying the ‘greenness’ of urban areas the reliability of the underlying information is important in order to qualify analysis results. The reliability of geo-information derived from remote sensing data is usually assessed by ground truth validation or by comparison with other reference data. When applying methods of object based image analysis (OBIA and fuzzy classification, the degrees of fuzzy membership per object in general describe to what degree an object fits (prototypical class descriptions. Thus, analyzing the fuzzy membership degrees can contribute to the estimation of reliability and stability of classification results, even when no reference data are available. This paper presents an object based method using fuzzy class assignments to outline and classify three different classes of vegetation from GeoEye imagery. The classification result, its reliability and stability are evaluated using the reference-free parameters Best Classification Result and Classification Stability as introduced by Benz et al. in 2004 and implemented in the software package eCognition (www.ecognition.com. To demonstrate the application potentials of results a scenario for quantifying urban ‘greenness’ is presented.

  8. Wind energy Computerized Maintenance Management System (CMMS) : data collection recommendations for reliability analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Valerie A.; Ogilvie, Alistair B.

    2012-01-01

    This report addresses the general data requirements for reliability analysis of fielded wind turbines and other wind plant equipment. The report provides a rationale for why this data should be collected, a list of the data needed to support reliability and availability analysis, and specific data recommendations for a Computerized Maintenance Management System (CMMS) to support automated analysis. This data collection recommendations report was written by Sandia National Laboratories to address the general data requirements for reliability analysis of operating wind turbines. This report is intended to help develop a basic understanding of the data needed for reliability analysis from a Computerized Maintenance Management System (CMMS) and other data systems. The report provides a rationale for why this data should be collected, a list of the data needed to support reliability and availability analysis, and specific recommendations for a CMMS to support automated analysis. Though written for reliability analysis of wind turbines, much of the information is applicable to a wider variety of equipment and analysis and reporting needs. The 'Motivation' section of this report provides a rationale for collecting and analyzing field data for reliability analysis. The benefits of this type of effort can include increased energy delivered, decreased operating costs, enhanced preventive maintenance schedules, solutions to issues with the largest payback, and identification of early failure indicators.

  9. Analysis of human reliability in the APS of fire. Application of NUREG-1921

    International Nuclear Information System (INIS)

    An analysis of human reliability in a probabilistic safety analysis (APS) of fire aims to identify, describe, analyze and quantify, in a manner traceable, human actions that can affect the mitigation of an initiating event produced by a fire. (Author)

  10. Using minimal spanning trees to compare the reliability of network topologies

    Science.gov (United States)

    Leister, Karen J.; White, Allan L.; Hayhurst, Kelly J.

    1990-01-01

    Graph theoretic methods are applied to compute the reliability for several types of networks of moderate size. The graph theory methods used are minimal spanning trees for networks with bi-directional links and the related concept of strongly connected directed graphs for networks with uni-directional links. A comparison is conducted of ring networks and braided networks. The case is covered where just the links fail and the case where both links and nodes fail. Two different failure modes for the links are considered. For one failure mode, the link no longer carries messages. For the other failure mode, the link delivers incorrect messages. There is a description and comparison of link-redundancy versus path-redundancy as methods to achieve reliability. All the computations are carried out by means of a fault tree program.

  11. Reliability analysis of the automatic control and power supply of reactor equipment

    International Nuclear Information System (INIS)

    Based on reliability analysis the shortcomings of nuclear facilities are discovered. Fault tree types constructed for the technology of automatic control and for power supply serve as input data of the ORCHARD 2 computer code. In order to charaterize the reliability of the system, availability, failure rates and time intervals between failures are calculated. The results of the reliability analysis of the feedwater system of the Paks Nuclear Power Plant showed that the system consisted of elements of similar reliabilities. (V.N.) 8 figs.; 3 tabs

  12. Reliability Analysis of Bearing Capacity of Large-Diameter Piles under Osterberg Test

    Directory of Open Access Journals (Sweden)

    Lei Nie

    2013-05-01

    Full Text Available This study gives the reliability analysis of bearing capacity of large-diameter piles under osterberg test. The limit state equation of dimensionless random variables is utilized in the reliability analysis of vertical bearing capacity of large-diameter piles based on Osterberg loading tests. And the reliability index and the resistance partial coefficient under the current specifications are calculated using calibration method. The results show: the reliable index of large-diameter piles is correlated with the load effect ratio and is smaller than the ordinary piles; resistance partial coefficient of 1.53 is proper in design of large-diameter piles.

  13. A comparative study of the probabilistic fracture mechanics and the stochastic Markovian process approaches for structural reliability assessment

    International Nuclear Information System (INIS)

    The two computer codes COVASTOL and RELIEF, developed for the modeling of cumulative damage processes in the framework of probabilistic structural reliability, are compared. They are based respectively on the randomisation of a differential crack growth law and on the theory of discrete Markov processes. The codes are applied for fatigue crack growth predictions using two sets of data of crack propagation curves from specimens. The results are critically analyzed and an extensive discussion follows on the merits and limitations of each code. Their transferability for the reliability assessment of real structures is investigated. (author)

  14. Reliability Block Diagram (RBD) Analysis of NASA Dryden Flight Research Center (DFRC) Flight Termination System and Power Supply

    Science.gov (United States)

    Morehouse, Dennis V.

    2006-01-01

    In order to perform public risk analyses for vehicles containing Flight Termination Systems (FTS), it is necessary for the analyst to know the reliability of each of the components of the FTS. These systems are typically divided into two segments; a transmitter system and associated equipment, typically in a ground station or on a support aircraft, and a receiver system and associated equipment on the target vehicle. This analysis attempts to analyze the reliability of the NASA DFRC flight termination system ground transmitter segment for use in the larger risk analysis and to compare the results against two established Department of Defense availability standards for such equipment.

  15. A survey on reliability and safety analysis techniques of robot systems in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Eom, H.S.; Kim, J.H.; Lee, J.C.; Choi, Y.R.; Moon, S.S

    2000-12-01

    The reliability and safety analysis techniques was surveyed for the purpose of overall quality improvement of reactor inspection system which is under development in our current project. The contents of this report are : 1. Reliability and safety analysis techniques suvey - Reviewed reliability and safety analysis techniques are generally accepted techniques in many industries including nuclear industry. And we selected a few techniques which are suitable for our robot system. They are falut tree analysis, failure mode and effect analysis, reliability block diagram, markov model, combinational method, and simulation method. 2. Survey on the characteristics of robot systems which are distinguished from other systems and which are important to the analysis. 3. Survey on the nuclear environmental factors which affect the reliability and safety analysis of robot system 4. Collection of the case studies of robot reliability and safety analysis which are performed in foreign countries. The analysis results of this survey will be applied to the improvement of reliability and safety of our robot system and also will be used for the formal qualification and certification of our reactor inspection system.

  16. A survey on reliability and safety analysis techniques of robot systems in nuclear power plants

    International Nuclear Information System (INIS)

    The reliability and safety analysis techniques was surveyed for the purpose of overall quality improvement of reactor inspection system which is under development in our current project. The contents of this report are : 1. Reliability and safety analysis techniques suvey - Reviewed reliability and safety analysis techniques are generally accepted techniques in many industries including nuclear industry. And we selected a few techniques which are suitable for our robot system. They are falut tree analysis, failure mode and effect analysis, reliability block diagram, markov model, combinational method, and simulation method. 2. Survey on the characteristics of robot systems which are distinguished from other systems and which are important to the analysis. 3. Survey on the nuclear environmental factors which affect the reliability and safety analysis of robot system 4. Collection of the case studies of robot reliability and safety analysis which are performed in foreign countries. The analysis results of this survey will be applied to the improvement of reliability and safety of our robot system and also will be used for the formal qualification and certification of our reactor inspection system

  17. Reliability analysis of time series force plate data of community dwelling older adults.

    Science.gov (United States)

    Bauer, Christoph; Gröger, Ines; Rupprecht, Roland; Meichtry, André; Tibesku, Carsten Oliver; Gassmann, Karl-Günter

    2010-01-01

    Frequency-based analysis of body sway has been used to distinguish between healthy young, healthy elderly adults and elderly adults with Huntingtons disease. Our aim was to assess the reliability of spectral-based outcomes of the centre of pressure (CoP) kinematics in order to determine if these outcomes could be tested for their capability to distinguish between elderly fallers and non-fallers in a future study. We have studied balance for 30 community dwelling healthy older adults 60 years or older. Four test conditions were used. Three successive trials were performed for each condition. CoP kinematics were estimated with a force platform with three strain gauges set in a triangular position. The frequency content of these signals was estimated. Intrasession correlation coefficients (ICC's) were then calculated for all test conditions. The reliability of the selected parameters varied between low and high (ICC 0.652-0.939). The ICC's for the narrow stance tests were higher compared to tests with normal standing conditions (0.771-0.94) to (0.652-0.865). The highest value was obtained in the high frequency band (0.939). These measures should be viewed with caution when screening geriatric patients because their reliability cannot always be assumed. PMID:20153904

  18. Mathematical modeling and reliability analysis of a 3D Li-ion battery

    Directory of Open Access Journals (Sweden)

    RICHARD HONG PENG LIANG

    2014-02-01

    Full Text Available The three-dimensional (3D Li-ion battery presents an effective solution to issues affecting its two-dimensional counterparts, as it is able to attain high energy capacities for the same areal footprint without sacrificing power density. A 3D battery has key structural features extending in and fully utilizing 3D space, allowing it to achieve greater reliability and longevity. This study applies an electrochemical-thermal coupled model to a checkerboard array of alternating positive and negative electrodes in a 3D architecture with either square or circular electrodes. The mathematical model comprises the transient conservation of charge, species, and energy together with electroneutrality, constitutive relations and relevant initial and boundary conditions. A reliability analysis carried out to simulate malfunctioning of either a positive or negative electrode reveals that although there are deviations in electrochemical and thermal behavior for electrodes adjacent to the malfunctioning electrode as compared to that in a fully-functioning array, there is little effect on electrodes further away, demonstrating the redundancy that a 3D electrode array provides. The results demonstrate that implementation of 3D batteries allow it to reliably and safely deliver power even if a component malfunctions, a strong advantage over conventional 2D batteries.

  19. Acquisition and statistical analysis of reliability data for I and C parts in plant protection system

    Energy Technology Data Exchange (ETDEWEB)

    Lim, T. J.; Byun, S. S.; Han, S. H.; Lee, H. J.; Lim, J. S.; Oh, S. J.; Park, K. Y.; Song, H. S. [Soongsil Univ., Seoul (Korea)

    2001-04-01

    This project has been performed in order to construct I and C part reliability databases for detailed analysis of plant protection system and to develop a methodology for analysing trip set point drifts. Reliability database for the I and C parts of plant protection system is required to perform the detailed analysis. First, we have developed an electronic part reliability prediction code based on MIL-HDBK-217F. Then we have collected generic reliability data for the I and C parts in plant protection system. Statistical analysis procedure has been developed to process the data. Then the generic reliability database has been constructed. We have also collected plant specific reliability data for the I and C parts in plant protection system for YGN 3,4 and UCN 3,4 units. Plant specific reliability database for I and C parts has been developed by the Bayesian procedure. We have also developed an statistical analysis procedure for set point drift, and performed analysis of drift effects for trip set point. The basis for the detailed analysis can be provided from the reliability database for the PPS I and C parts. The safety of the KSNP and succeeding NPPs can be proved by reducing the uncertainty of PSA. Economic and efficient operation of NPP can be possible by optimizing the test period to reduce utility's burden. 14 refs., 215 figs., 137 tabs. (Author)

  20. Reliability of the ATD Angle in Dermatoglyphic Analysis.

    Science.gov (United States)

    Brunson, Emily K; Hohnan, Darryl J; Giovas, Christina M

    2015-09-01

    The "ATD" angle is a dermatoglyphic trait formed by drawing lines between the triradii below the first and last digits and the most proximal triradius on the hypothenar region of the palm. This trait has been widely used in dermatoglyphic studies, but several researchers have questioned its utility, specifically whether or not it can be measured reliably. The purpose of this research was to examine the measurement reliability of this trait. Finger and palm prints were taken using the carbon paper and tape method from the right and left hands of 100 individuals. Each "ATD" angle was read twice, at different times, by Reader A, using a goniometer and a magnifying glass, and three times by a Reader B, using Adobe Photoshop. Inter-class correlation coefficients were estimated for the intra- and inter-reader measurements of the "ATD" angles. Reader A was able to quantify ATD angles on 149 out of 200 prints (74.5%), and Reader B on 179 out of 200 prints (89.5%). Both readers agreed on whether an angle existed on a print 89.8% of the time for the right hand and 78.0% for the left. Intra-reader correlations were 0.97 or greater for both readers. Inter-reader correlations for "ATD" angles measured by both readers ranged from 0.92 to 0.96. These results suggest that the "ATD" angle can be measured reliably, and further imply that measurement using a software program may provide an advantage over other methods. PMID:26898084

  1. Reliability analysis of digital instrumentation and control systems

    International Nuclear Information System (INIS)

    The NUREG-CR/6942 technical report proposed a Markov state transition model for the main feedwater valve (MFV) controller system as part of a Probabilistic Risk Assessment (PRA) of Digital Feedwater Control System (DFWCS). The proposed model extends the Markov model to allow the use of non-exponential distribution in the time to next output of the controller system responsible for maintaining the water level. This case study demonstrates the general application of semi-Markov process model for digital instrumentation and control systems. System failure probability and mission reliability measures are determined. (author)

  2. Failure Analysis Methods for Reliability Improvement of Electronic Sensors

    Directory of Open Access Journals (Sweden)

    Swajeeth Pilot. Panchangam

    2012-08-01

    Full Text Available This paper has documented the common failuremodes of electronic sensors. The effects of failure modes arestudied in detail and these are classified based on their criticalityand probability of occurrence. Methods for taking correctiveactions for eliminating the occurrence of various failure modesare also proposed. The paper also addresses FRACAS method andits effectiveness for reliability studies of sensors based on the realfailure modes observed in practice. It is understood that thedesigner has an important role in elimination of the failure modesat the design stage itself. This is expected to result in reliabilitygrowth of sensor systems used in many critical systems such asspace applications, nuclear power plants, and chemical industriesetc.

  3. Reliability and Sensitivity Analysis of Cast Iron Water Pipes for Agricultural Food Irrigation

    Directory of Open Access Journals (Sweden)

    Yanling Ni

    2014-07-01

    Full Text Available This study aims to investigate the reliability and sensitivity of cast iron water pipes for agricultural food irrigation. The Monte Carlo simulation method is used for fracture assessment and reliability analysis of cast iron pipes for agricultural food irrigation. Fracture toughness is considered as a limit state function for corrosion affected cast iron pipes. Then the influence of failure mode on the probability of pipe failure has been discussed. Sensitivity analysis also is carried out to show the effect of changing basic parameters on the reliability and life time of the pipe. The analysis results show that the applied methodology can consider different random variables for estimating of life time of the pipe and it can also provide scientific guidance for rehabilitation and maintenance plans for agricultural food irrigation. In addition, the results of the failure and reliability analysis in this study can be useful for designing of more reliable new pipeline systems for agricultural food irrigation.

  4. Comparative analysis of Carnaval II Library

    International Nuclear Information System (INIS)

    The Carnaval II cross sections library from the french fast reactor calculation system is evaluated in two ways: 10) a comparative analysis of the calculations system for fast reactors at IEN (Instituto de Engenharia Nuclear) using a 'benchmark' model is done; 20) a comparative analysis in relation to the french system itself is also done, using calculations realized with two versions of the french library: the SETR-II and the CARNAVAL IV, the first one being anterior and the second one posterior to the Carnaval II version, the one used by IEN. (Author)

  5. Neutron activation analysis-comparative (NAAC)

    International Nuclear Information System (INIS)

    A software system for the reduction of comparative neutron activation analysis data is presented. Libraries are constructed to contain the elemental composition and isotopic nuclear data of an unlimited number of standards. Ratios to unknown sample data are performed by standard calibrations. Interfering peak corrections, second-order activation-product corrections, and deconvolution of multiplets are applied automatically. Passive gamma-energy analysis can be performed with the same software. 3 figures

  6. Comparative analysis of methods of hardness assessment

    OpenAIRE

    A. Czarski

    2009-01-01

    Purpose: The aim of this paper is to show how it could utilize the statistical methods for the process management.Design/methodology/approach: The research methodology bases on a theoretical analysis and empirical researches. A practical solution is presented to compare measurements methods of hardness and to estimate capability indices of measurement system.Findings: Measurement system analysis (MSA), particularly theory of statistical tests brings correct results for the analysed case.Resea...

  7. Highly comparative time-series analysis

    OpenAIRE

    Fulcher, Benjamin D; Jones, Nick S.; Little, Max

    2012-01-01

    In this thesis, a highly comparative framework for time-series analysis is developed. The approach draws on large, interdisciplinary collections of over 9000 time-series analysis methods, or operations, and over 30 000 time series, which we have assembled. Statistical learning methods were used to analyze structure in the set of operations applied to the time series, allowing us to relate different types of scientific methods to one another, and to investigate redundancy across them. An analo...

  8. On Bayesian reliability analysis with informative priors and censoring

    International Nuclear Information System (INIS)

    In the statistical literature many methods have been presented to deal with censored observations, both within the Bayesian and non-Bayesian frameworks, and such methods have been successfully applied to, e.g., reliability problems. Also, in reliability theory it is often emphasized that, through shortage of statistical data and possibilities for experiments, one often needs to rely heavily on judgements of engineers, or other experts, for which means Bayesian methods are attractive. It is therefore important that such judgements can be elicited easily to provide informative prior distributions that reflect the knowledge of the engineers well. In this paper we focus on this aspect, especially on the situation that the judgements of the consulted engineers are based on experiences in environments where censoring has also been present previously. We suggest the use of the attractive interpretation of hyperparameters of conjugate prior distributions when these are available for assumed parametric models for lifetimes, and we show how one may go beyond the standard conjugate priors, using similar interpretations of hyper-parameters, to enable easier elicitation when censoring has been present in the past. This may even lead to more flexibility for modelling prior knowledge than when using standard conjugate priors, whereas the disadvantage of more complicated calculations that may be needed to determine posterior distributions play a minor role due to the advanced mathematical and statistical software that is widely available these days

  9. Markovian reliability analysis under uncertainty with an application on the shutdown system of the Clinch River Breeder Reactor

    International Nuclear Information System (INIS)

    A methodology for the assessment of the uncertainties about the reliability of nuclear reactor systems described by Markov models is developed, and the uncertainties about the probability of loss of coolable core geometry (LCG) of the Clinch River Breeder Reactor (CRBR) due to shutdown system failures, are assessed. Uncertainties are expressed by assuming the failure rates, the repair rates and all other input variables of reliability analysis as random variables, distributed according to known probability density functions (pdf). The pdf of the reliability is then calculated by the moment matching technique. Two methods have been employed for the determination of the moments of the reliability: the Monte Carlo simulation; and the Taylor-series expansion. These methods are adopted to Markovian problems and compared for accuracy and efficiency

  10. Markovian reliability analysis under uncertainty with an application on the shutdown system of the Clinch River Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Papazoglou, I A; Gyftopoulos, E P

    1978-09-01

    A methodology for the assessment of the uncertainties about the reliability of nuclear reactor systems described by Markov models is developed, and the uncertainties about the probability of loss of coolable core geometry (LCG) of the Clinch River Breeder Reactor (CRBR) due to shutdown system failures, are assessed. Uncertainties are expressed by assuming the failure rates, the repair rates and all other input variables of reliability analysis as random variables, distributed according to known probability density functions (pdf). The pdf of the reliability is then calculated by the moment matching technique. Two methods have been employed for the determination of the moments of the reliability: the Monte Carlo simulation; and the Taylor-series expansion. These methods are adopted to Markovian problems and compared for accuracy and efficiency.

  11. Reliability analysis of the inspection by a man and a robot for the maintenance of a nuclear power plant

    International Nuclear Information System (INIS)

    The tour inspection or the walk-around inspection is very important for safe and reliable operation of a nuclear power plant. The inspection has been mainly carried out by a man. The reliability analysis of the inspectors has, however, not been well studied compared with that of the reactor operators. The inspection has relatively passive nature in contrast with the operation. Also the probability of finding anything wrong is very low due to the low failure rate of the inspected apparatus. In this paper, the reliability of a tour inspector is analysed using probabilistic network models. Robots are being developed for the inspection. The reliability of the inspection by a robot, a man and their combination is also analysed

  12. Significance Test of Reliability Evaluation with Three-parameter Weibull Distribution Based on Grey Relational Analysis

    OpenAIRE

    Xintao Xia; Yantao Shang; Yinping Jin; Long Chen

    2013-01-01

    With the aid of the grey system theory, the grey relational analysis of the reliability with the three-parameter Weibull distribution is made for the Weibull parameter evaluation and its significance test. Via the theoretical value set and the experimental value set of the reliability relied on the lifetime data of a product, the model of the constrained optimization of the Weibull parameter evaluation based on the maximum grey relational grade. The grey significance of the reliability functi...

  13. Application of reliability analysis methods to the comparison of two safety circuits

    International Nuclear Information System (INIS)

    Two circuits of different design, intended for assuming the ''Low Pressure Safety Injection'' function in PWR reactors are analyzed using reliability methods. The reliability analysis of these circuits allows the failure trees to be established and the failure probability derived. The dependence of these results on test use and maintenance is emphasized as well as critical paths. The great number of results obtained may allow a well-informed choice taking account of the reliability wanted for the type of circuits

  14. Comparative analysis of radionuclide inventory in sediment 1995

    International Nuclear Information System (INIS)

    In order to test the reliability of methods used in environmental monitoring for radioactive substances, the Bundesanstalt fuer Gewaesserkunde in 1995 again carried out a comparative analysis ''Radionuclides in sediment'' with correspondingly labelled or conditioned samples. The primary aim of this project - independently of the method used in each instance and the measuring conditions observed - was to establish the extent to which the measuring results of the individual participants deviate from specified supposed values or likeliest contents, and also to valuate these deviations by means of illustrative quality parameters. In so far the aim of this comparative analysis differs from that of a so-called inter-laboratory experiment, where the primary objective is to obtain characteristic data for an analytical method (orig./SR)

  15. Root cause analysis in support of reliability enhancement of engineering components

    International Nuclear Information System (INIS)

    Reliability based methods have been widely used for the safety assessment of plant system, structures and components. These methods provide a quantitative estimation of system reliability but do not give insight into the failure mechanism. Understanding the failure mechanism is a must to avoid the recurrence of the events and enhancement of the system reliability. Root cause analysis provides a tool for gaining detailed insights into the causes of failure of component with particular attention to the identification of fault in component design, operation, surveillance, maintenance, training, procedures and policies which must be improved to prevent repetition of incidents. Root cause analysis also helps in developing Probabilistic Safety Analysis models. A probabilistic precursor study provides a complement to the root cause analysis approach in event analysis by focusing on how an event might have developed adversely. This paper discusses the root cause analysis methodologies and their application in the specific case studies for enhancement of system reliability. (author)

  16. Seismic elastic-plastic time history analysis and reliability study of quayside container crane

    Science.gov (United States)

    Jin, Yulong; Li, Zengguang

    2010-06-01

    Quayside container crane is a kind of huge dimension steel structure, which is the major equipment used for handling container at modern ports. With the aim to validate the safety and reliability of the crane under seismic loads, besides conventional analysis, elastic-plastic time history analysis under rare seismic intensity is carried out. An ideal finite element (FEM) elastic-plastic mechanical model of the quayside container crane is presented by using ANSYS codes. Furthermore, according to elastic-plastic time history analysis theory, deformation, stress and damage pattern of the structure under rare seismic intensity are investigated. Based on the above analysis, the established reliability model according to the reliability theory, together with seismic reliability analysis based on Monte-Carlo simulation is applied to practical analysis. The results show that the overall structure of the quayside container crane is generally unstable under rare seismic intensity, and the structure needs to be reinforced.

  17. On the reliability of powder diffraction Line Profile Analysis of plastically deformed nanocrystalline systems

    Science.gov (United States)

    Rebuffi, Luca; Troian, Andrea; Ciancio, Regina; Carlino, Elvio; Amimi, Amine; Leonardi, Alberto; Scardi, Paolo

    2016-01-01

    An iron-molybdenum alloy powder was extensively deformed by high energy milling, so to refine the bcc iron domain size to nanometer scale (~10?nm) and introduce a strong inhomogeneous strain. Both features contribute to comparable degree to the diffraction peak profile broadening, so that size and strain contributions can be easily separated by exploiting their different dependence on the diffraction angle. To assess the reliability of Line Profile Analysis, results were compared with evidence from other techniques, including scanning and transmission electron microscopy and X-ray small angle scattering. Results confirm the extent of the size broadening effect, whereas molecular dynamics simulations provide insight into the origin of the local atomic, inhomogeneous strain, pointing out the role of dislocations, domain boundaries and interactions among crystalline domains. PMID:26860471

  18. Comparative Efficiency Analysis of Referral Costs in

    OpenAIRE

    Portela, Maria; Thanassoulis, Emmanuel; Graveney, Mike

    2010-01-01

    The aim of this paper is to compare English General Practitioner (GP) units in terms of their overall referral costs through Data Envelopment Analysis (DEA). Results revealed potential cost savings and benchmark practices under 4 perspectives: ‘overall cost efficiency’, ‘technical efficiency’, ‘allocative efficiency’, and ‘price efficiency’.

  19. MycoCAP - Mycobacterium Comparative Analysis Platform.

    Science.gov (United States)

    Choo, Siew Woh; Ang, Mia Yang; Dutta, Avirup; Tan, Shi Yang; Siow, Cheuk Chuen; Heydari, Hamed; Mutha, Naresh V R; Wee, Wei Yee; Wong, Guat Jah

    2015-01-01

    Mycobacterium spp. are renowned for being the causative agent of diseases like leprosy, Buruli ulcer and tuberculosis in human beings. With more and more mycobacterial genomes being sequenced, any knowledge generated from comparative genomic analysis would provide better insights into the biology, evolution, phylogeny and pathogenicity of this genus, thus helping in better management of diseases caused by Mycobacterium spp.With this motivation, we constructed MycoCAP, a new comparative analysis platform dedicated to the important genus Mycobacterium. This platform currently provides information of 2108 genome sequences of at least 55 Mycobacterium spp. A number of intuitive web-based tools have been integrated in MycoCAP particularly for comparative analysis including the PGC tool for comparison between two genomes, PathoProT for comparing the virulence genes among the Mycobacterium strains and the SuperClassification tool for the phylogenic classification of the Mycobacterium strains and a specialized classification system for strains of Mycobacterium abscessus. We hope the broad range of functions and easy-to-use tools provided in MycoCAP makes it an invaluable analysis platform to speed up the research discovery on mycobacteria for researchers. Database URL: http://mycobacterium.um.edu.my. PMID:26666970

  20. Performance Improvement of Edge Expansion Technique for BDD-based Network Reliability Analysis

    Directory of Open Access Journals (Sweden)

    Ronggen Chen

    2013-09-01

    Full Text Available The network reliability analysis based on Binary Decision Diagram (BDD consists of three steps: edge ordering, BDD generation and BDD evaluation. The BDD generation process using edge expansion technique should recursively decompose the network and construct the edge expansion subnet in a top-down manner. There is large number of useless or redundant subnets generated in this decomposition, which causes numerous inefficient computations. Thus, it is extremely important to optimize the edge expansion technique. In this paper, the notation of useless edge expansion and redundant edge expansion is formally defined. The original reason of them being created is identified, and the improvement algorithms based on graph traversal are used to eliminate all these inefficient edge expansion. According to the experimental data, compared with the unimproved BDD generation process, our proposal can dramatically reduce the running time and memory usage and makes possible the analysis of large network.

  1. Review of the human reliability analysis performed for Empire State Electric Energy Research Corporation

    International Nuclear Information System (INIS)

    The Empire State Electric Energy Research Corporation (ESEERCO) commissioned Westinghouse to conduct a human reliability analysis to identify and quantify human error probabilities associated with operator actions for four specific events which may occur in light water reactors: loss of coolant accident, steam generator tube rupture, steam/feed line break, and stuck open pressurizer spray valve. Human Error Probabilities (HEPs) derived from Swain's Technique for Human Error Rate Prediction (THERP) were compared to data obtained from simulator exercises. A correlation was found between the HEPs derived from Swain and the results of the simulator data. The results of this study provide a unique insight into human factors analysis. The HEPs obtained from such probabilistic studies can be used to prioritize scenarios for operator training situations, and thus improve the correlation between simulator exercises and real control room experiences

  2. IEEE guide for general principles of reliability analysis of nuclear power generating station protection systems

    International Nuclear Information System (INIS)

    Presented is the Institute of Electrical and Electronics Engineers, Inc. (IEEE) guide for general principles of reliability analysis of nuclear power generating station protection systems. The document has been prepared to provide the basic principles needed to conduct a reliability analysis of protection systems. Included is information on qualitative and quantitative analysis, guides for failure data acquisition and use, and guide for establishment of intervals

  3. Asymptotic Sampling for Reliability Analysis of Adhesive Bonded Stepped Lap Composite Joints

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Lund, Erik; Thomsen, Ole Thybo; Sřrensen, John Dalsgaard

    2013-01-01

    Reliability analysis coupled with finite element analysis (FEA) of composite structures is computationally very demanding and requires a large number of simulations to achieve an accurate prediction of the probability of failure with a small standard error. In this paper Asymptotic Sampling, which is a promising and time efficient tool to calculate the probability of failure, is utilized, and a probabilistic model for the reliability analysis of adhesive bonded stepped lap composite joints, repr...

  4. Reliability analysis of discrete event dynamic systems with Petri nets

    International Nuclear Information System (INIS)

    This paper deals with dynamic reliability of embedded systems. It presents a method for deriving feared scenarios (which might lead the system to a critical situation) in Petri nets. A classical way to obtain scenarios in Petri nets is to generate the reachability graph. However, for complex systems, it leads to the state space explosion. To avoid this problem, in our approach, Petri net reachability is translated into provability of linear logic sequents. Linear logic bases are introduced and used to formally define scenarios and minimality of scenarios. These definitions allow the method to produce only pertinent scenarios. The steps of the method are described and illustrated through a landing-gear system example.

  5. Emergency diesel generator reliability analysis high flux isotope reactor

    International Nuclear Information System (INIS)

    A program to apply some of the techniques of reliability engineering to the High Flux Isotope Reactor (HFIR) was started on August 8, 1992. Part of the program was to track the conditional probabilities of the emergency diesel generators responding to a valid demand. This was done to determine if the performance of the emergency diesel generators (which are more than 25 years old) has deteriorated. The conditional probabilities of the diesel generators were computed and trended for the period from May 1990 to December 1992. The calculations indicate that the performance of the emergency diesel generators has not deteriorated in recent years, i.e., the conditional probabilities of the emergency diesel generators have been fairly stable over the last few years. This information will be one factor than may be considered in the decision to replace the emergency diesel generators

  6. COMPARATIVE ANALYSIS OF CELEBRITY AND NON-CELEBRITY ADVERTISEMENT

    Directory of Open Access Journals (Sweden)

    Ammar Asad

    2013-12-01

    Full Text Available This study is undertaken to make a comparative analysis of celebrity advertisement and non-celebrity advertisement with respect to attitude toward advertisement, attitude toward brand, purchase intentions, and advertising attributes. For this purpose, a simple random sample of 200 students studying four different disciplines was taken from the Private University in Lahore. For econometric proof, reliability analysis, descriptive analysis, and independent sample T-test was used to interpret the results. Our findings show that there is no significant difference between celebrity and non-celebrity advertisement with respect to attitude toward advertisement, attitude toward brand, purchasing intentions, and advertising attributes. The limitations and recommendations of this research are also given.

  7. Reliability analysis of a structural ceramic combustion chamber

    Science.gov (United States)

    Salem, Jonathan A.; Manderscheid, Jane M.; Freedman, Marc R.; Gyekenyesi, John P.

    1991-01-01

    The Weibull modulus, fracture toughness and thermal properties of a silicon nitride material used to make a gas turbine combustor were experimentally measured. The location and nature of failure origins resulting from bend tests were determined with fractographic analysis. The measured Weibull parameters were used along with thermal and stress analysis to determine failure probabilities of the combustor with the CARES design code. The effect of data censoring, FEM mesh refinement, and fracture criterion were considered in the analysis.

  8. Reliability Analysis Of Fire System On The Industry Facility By Use Fameca Method

    International Nuclear Information System (INIS)

    FAMECA is one of the analysis method to determine system reliability on the industry facility. Analysis is done by some procedure that is identification of component function, determination of failure mode, severity level and effect of their failure. Reliability value is determined by three combinations that is severity level, component failure value and critical component. Reliability of analysis has been done for fire system on the industry by FAMECA method. Critical component which identified is pump, air release valve, check valve, manual test valve, isolation valve, control system etc

  9. Convergence among Data Sources, Response Bias, and Reliability and Validity of a Structured Job Analysis Questionnaire.

    Science.gov (United States)

    Smith, Jack E.; Hakel, Milton D.

    1979-01-01

    Examined are questions pertinent to the use of the Position Analysis Questionnaire: Who can use the PAQ reliably and validly? Must one rely on trained job analysts? Can people having no direct contact with the job use the PAQ reliably and validly? Do response biases influence PAQ responses? (Author/KC)

  10. Reliability of three-dimensional gait analysis in cervical spondylotic myelopathy.

    LENUS (Irish Health Repository)

    McDermott, Ailish

    2010-10-01

    Gait impairment is one of the primary symptoms of cervical spondylotic myelopathy (CSM). Detailed assessment is possible using three-dimensional gait analysis (3DGA), however the reliability of 3DGA for this population has not been established. The aim of this study was to evaluate the test-retest reliability of temporal-spatial, kinematic and kinetic parameters in a CSM population.

  11. Reliability analysis of protection system of advanced pressurized water reactor - APR 1400

    International Nuclear Information System (INIS)

    Reliability analysis was carried out for the protection system of the Korean Advanced Pressurized Water Reactor - APR 1400. The main focus of this study was the reliability analysis of digital protection system, however, towards giving an integrated statement of complete protection reliability an attempt has been made to include the shutdown devices and other related aspects based on the information available to date. The sensitivity analysis has been carried out for the critical components / functions in the system. Other aspects like importance analysis and human error reliability for the critical human actions form part of this work. The framework provided by this study and the results obtained shows that this analysis has potential to be utilized as part of risk informed approach for future design / regulatory applications

  12. Method of predicting operating reliability indexes and method of reliability analysis of new power stage of WWER type nuclear power plant

    International Nuclear Information System (INIS)

    PRIS IAEA data were used for predicting operating reliability of the WWER-1000 unit as were data on the operation of the V-1 nuclear power plant in Jaslovske Bohunice drawn from regular monthly reports. The analysis of the data was oriented mainly to determining reliability indexes for partial technological assemblies, and allowed to determine operating and reliability indexes for an average nuclear power plant with 440, 500 and 1000 MW units. The results of the analysis may be used for determining the reliability of the technological equipment of the WWER-1000 unit using the Bayes formula derived assuming the applicability of total probability. (J.B.)

  13. Vibration reliability sensitivity analysis of general system with correlation failure modes

    International Nuclear Information System (INIS)

    The vibration problem of the general system is the main object of research. The material properties and geometry of general system are random parameters because of the manufacturing environment, technical conditions, manufacturing and installation errors, multiphase materials, features and other factors. According to the relation criterion that the difference between the natural frequency and the driving frequency of general systems is not beyond a specific value, the vibration reliability mode and vibration reliability of general systems are defined considering the correlation of the multi-order natural frequency and the random characteristics of structure size and material, and the vibration reliability analysis method for avoiding the resonant is carried out. The second-order joint failure probability is obtained by using the numerical integration method. Based on the reliability design theory and sensitivity analysis method, the vibration reliability sensitivity of the general system with correlation failure modes is extensively discussed and a numerical method for vibration reliability sensitivity design is presented. The variation regularities of vibration reliability sensitivity are obtained and the effects of random parameters on vibration reliability of the general system are studied. The presented method provided the theoretic basis for the reliability design of the general system. A numerical example demonstrated that the proposed method is effective

  14. Reliability analysis study of digital reactor protection system in nuclear power plant

    International Nuclear Information System (INIS)

    The Digital I and C systems are believed to improve a plant's safety and reliability generally. The reliability analysis of digital I and C system has become one research hotspot. Traditional fault tree method is one of means to quantify the digital I and C system reliability. One typical digital protection system special for advanced reactor has been developed in this paper, which reliability evaluation is necessary for design demonstration. The typical digital protection system construction is introduced in the paper, and the process of FMEA and fault tree application to the digital protection system reliability evaluation are described. Reliability data and bypass logic modeling are two points giving special attention in the paper. Because the factors about time sequence and feedback not exist in reactor protection system obviously, the dynamic feature of digital system is not discussed. (authors)

  15. Architecture for interlock systems: reliability analysis with regard to safety and availability

    International Nuclear Information System (INIS)

    For particle accelerators like LHC and other large experimental physics facilities like ITER, the machine protection relies on complex interlock systems. In the design of interlock loops for the signal exchange in machine protection systems, the choice of the hardware architecture impacts on machine safety and availability. The reliable performance of a machine stop (leaving the machine in a safe state) in case of an emergency, is an inherent requirement. The constraints in terms of machine availability on the other hand may differ from one facility to another. Spurious machine stops, lowering machine availability, may to a certain extent be tolerated in facilities where they do not cause undue equipment wear-out. In order to compare various interlock loop architectures in terms of safety and availability, the occurrence frequencies of related scenarios have been calculated in a reliability analysis, using a generic analytical model. This paper presents the results and illustrates the potential of the analysis method for supporting the choice of interlock system architectures. The results show the advantages of a 2003 (3 redundant lines with 2-out-of-3 voting) over the 6 architectures under consideration for systems with high requirements in both safety and availability

  16. Correlation analysis for screening key parameters for passive system reliability analysis

    International Nuclear Information System (INIS)

    Highlights: • A method for screening key parameters used in passive system reliability analysis. • T–H model is a relationship between output and each input. • Correlation coefficient between output and input is influenced by T–H performance. • Correlation coefficient is also affected by uncertainty of input. - Abstract: Passive systems are widely used in new generation nuclear power plants to enhance their safety. Reliability of passive system operating based on natural circulation must be assessed in terms of functional failure. The functional failure probability evaluation requires repeatedly running the thermal–hydraulic (T–H) code which simulates the system responses under different values of the input parameters. In practice, repeated running of the code is quite costly in terms of running time and artificial neural network (ANN) has been proposed to replace the T–H model. However, the number of input parameters can be too large to satisfy the requirement of the ANN. In this paper we illustrate a systematic methodology to screen the key parameters for passive system operation based on correlation analysis for reducing the number of inputs. Correlation analysis is a well-known statistical method to assess the relationships among parameters. In the case of interest for passive system reliability, we consider the T–H model as a relationship between model inputs and outputs, which can be used in correlation analysis. With this method, key parameters can be screened with limited numbers of samples. The passive containment cooling system in AP1000 is analyzed and 4 parameters are identified as important ones from 47 inputs

  17. Optimizing quality assurance program benefits through performance and reliability analysis

    International Nuclear Information System (INIS)

    Quality assurance (QA) principles have long been applied in part to many varied industrial enterprises. In general, the main emphasis in the past has been placed largely on standard management practices with the inclusion of quality control or inspection elements. The advent of commercial nuclear power brought the evolution of a more comprehensive approach to the applications of QA programs in this and related industries. However, the application philosophy was aimed almost totally at assuring the safety of the worker and the public. Recently, there has been a strong movement by industry and business in the United States and Europe to apply QA in a more general way to assure overall reliability as well as safety. The key to successfully accomplishing this is the determination of the degree of program intensity appropriate to the item or activity that is part of the total project or operation. This paper describes an approach to enable management to not only make initial determinations of how to apply the elements of a QA program, but how to continuously adjust the program to optimize the benefits that can be obtained

  18. The first Superphenix fuel load reliability analysis and validation

    International Nuclear Information System (INIS)

    The excellent behavior of PHENIX driver fuel and the burnup values currently reached suggest that the first SUPERPHENIX fuel load will meet the design lifetime. However, to ensure the reliability of the entire load, all the parameters affecting fuel behavior in reactor must be analyzed. For that purpose, we have taken into account all the results of the examination and verifications during the fabrication process of the first load subassemblies. These data concern geometrical parameters or oxide composition as well as the cladding tube and plug weld soundness tests. The objective is to determine the actual dispersion of all the parameters to ensure the absence of failure due to fabrication defects with very high statistical confidence limits. The influence of all the parameters has been investigated for the situations which can occur during power-up, steady-state operation and transients. The fabrication quality allows us to demonstrate that in all cases good behavior criteria for fuel and structure will be maintained. This demonstration is based on calculation code results as well as on validation by specific experiments

  19. DATA ANALYSIS METHODS AND THE RELIABILITY OF ANALYTIC EPIDEMIOLOGIC RESEARCH

    OpenAIRE

    PRENTICE, Ross L.

    2008-01-01

    Publications that compare randomized controlled trial and cohort study results on the effects of postmenopausal estrogen plus progestin therapy are reviewed. The 2 types of studies agree in identifying an early elevation in coronary heart disease (CHD) risk, and a later — developing elevation in breast cancer risk. Effects among women who begin hormone therapy within a few years following the menopause may be comparatively more favorable for CHD and less favorable for breast cancer. These ana...

  20. Analysis methods for structure reliability of piping components

    International Nuclear Information System (INIS)

    In the frame of the German reactor safety research program of the Federal Ministry of Economics and Labour (BMWA) GRS has started to develop an analysis code named PROST (PRObabilistic STructure analysis) for estimating the leak and break probabilities of piping systems in nuclear power plants. The long-term objective of this development is to provide failure probabilities of passive components for probabilistic safety analysis of nuclear power plants. Up to now the code can be used for calculating fatigue problems. The paper mentions the main capabilities and theoretical background of the present PROST development and presents some of the results of a benchmark analysis in the frame of the European project NURBIM (Nuclear Risk Based Inspection Methodologies for Passive Components). (orig.)

  1. Analysis methods for structure reliability of piping components

    Energy Technology Data Exchange (ETDEWEB)

    Schimpfke, T.; Grebner, H.; Sievers, J. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koeln (Germany)

    2004-07-01

    In the frame of the German reactor safety research program of the Federal Ministry of Economics and Labour (BMWA) GRS has started to develop an analysis code named PROST (PRObabilistic STructure analysis) for estimating the leak and break probabilities of piping systems in nuclear power plants. The long-term objective of this development is to provide failure probabilities of passive components for probabilistic safety analysis of nuclear power plants. Up to now the code can be used for calculating fatigue problems. The paper mentions the main capabilities and theoretical background of the present PROST development and presents some of the results of a benchmark analysis in the frame of the European project NURBIM (Nuclear Risk Based Inspection Methodologies for Passive Components). (orig.)

  2. A study in the reliability analysis method for nuclear power plant structures (I)

    International Nuclear Information System (INIS)

    Nuclear power plant structures may be exposed to aggressive environmental effects that may cause their strength and stiffness to decrease over their service life. Although the physics of these damage mechanisms are reasonably well understood and quantitative evaluation of their effects on time-dependent structural behavior is possible in some instances, such evaluations are generally very difficult and remain novel. The assessment of existing steel containment in nuclear power plants for continued service must provide quantitative evidence that they are able to withstand future extreme loads during a service period with an acceptable level of reliability. Rational methodologies to perform the reliability assessment can be developed from mechanistic models of structural deterioration, using time-dependent structural reliability analysis to take loading and strength uncertainties into account. The final goal of this study is to develop the analysis method for the reliability of containment structures. The cause and mechanism of corrosion is first clarified and the reliability assessment method has been established. By introducing the equivalent normal distribution, the procedure of reliability analysis which can determine the failure probabilities has been established. The influence of design variables to reliability and the relation between the reliability and service life will be continued second year research

  3. The Centralized Reliability Data Organization (CREDO); an advanced nuclear reactor reliability, availability, and maintainability data bank and data analysis center

    International Nuclear Information System (INIS)

    The Centralized Reliability Data Organization (CREDO) is a data bank and data analysis center, which since 1985 has been jointly sponsored by the US Department of Energy's (US DOE's) Office of Technology Support Programs and Japan's Power Reactor and Nuclear Fuel Development Corporation (PNC). It focuses on reliability, availability and maintainability (RAM) data for components (e.g. valves, pumps, etc.) operating in advanced nuclear reactor facilities. As originally intended, the purpose of the CREDO system was to provide a centralized source of accurate, up-to-date data and information for use in RAM analyses necessary for meeting DOE's data needs in the areas of advanced reactor safety assessments, design and licensing. In particular, creation of the CREDO system was considered an essential element needed to fulfill the DOE Breeder Reactor Safety Program's commitment of 'identifying and exploiting areas in which probabilistic methods can be developed and used in making reactor safety Research and Development choices and optimizing designs of safety systems'. CREDO and its operation are explained. (author)

  4. Comparative Document Analysis for Large Text Corpora

    OpenAIRE

    Ren, Xiang; Lv, Yuanhua; Wang, Kuansan; Han, Jiawei

    2015-01-01

    This paper presents a novel research problem on joint discovery of commonalities and differences between two individual documents (or document sets), called Comparative Document Analysis (CDA). Given any pair of documents from a document collection, CDA aims to automatically identify sets of quality phrases to summarize the commonalities of both documents and highlight the distinctions of each with respect to the other informatively and concisely. Our solution uses a general graph-based frame...

  5. A Comparative Analysis of Influenza Vaccination Programs

    OpenAIRE

    Bansal, Shweta; Pourbohloul, Babak; Meyers, Lauren Ancel

    2006-01-01

    The threat of avian influenza and the 2004-2005 influenza vaccine supply shortage in the United States has sparked a debate about optimal vaccination strategies to reduce the burden of morbidity and mortality caused by the influenza virus. We present a comparative analysis of two classes of suggested vaccination strategies: mortality-based strategies that target high risk populations and morbidity-based that target high prevalence populations. Applying the methods of contact...

  6. a comparative analysis through the allocation function

    OpenAIRE

    Vila Maior, Paulo

    2009-01-01

    A political-economic model largely influenced by the monetarist school inspires European Economic and Monetary Union (EMU). Accordingly, neither income redistribution nor resource allocation is the cornerstone of economic policy mix. That role is reserved to the stabilisation function. Among those scholars who discuss whether the EU is comparable to existing cases of “conventional fiscal federalism”, the analysis is frequently concentrated on allocation and redistribution. Despite macroeconom...

  7. Comparative Analysis: A Feasible Software Engineering Method

    OpenAIRE

    Maneva, Nelly

    2007-01-01

    The reasonable choice is a critical success factor for decision- making in the field of software engineering (SE). A case-driven comparative analysis has been introduced and a procedure for its systematic application has been suggested. The paper describes how the proposed method can be built in a general framework for SE activities. Some examples of experimental versions of the framework are brie y presented.

  8. Comparative analysis of the Borrelia garinii genome

    OpenAIRE

    Glöckner, G; Lehmann, R.; Romualdi, A; Pradella, S; Schulte-Spechtel, U.; Schilhabel, M. (Markus); Wilske, B.; Sühnel, J.; Platzer, M.

    2004-01-01

    Three members of the genus Borrelia (B.burgdorferi, B.garinii, B.afzelii) cause tick-borne borreliosis. Depending on the Borrelia species involved, the borreliosis differs in its clinical symptoms. Comparative genomics opens up a way to elucidate the underlying differences in Borrelia species. We analysed a low redundancy whole-genome shotgun (WGS) assembly of a B.garinii strain isolated from a patient with neuroborreliosis in comparison to the B.burgdorferi genome. This analysis reveals that...

  9. Comparative analysis of twelve Dothideomycete plant pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin; Aerts, Andrea; Salamov, Asaf; Goodwin, Stephen B.; Grigoriev, Igor

    2011-03-11

    The Dothideomycetes are one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops grown for biofuel, food or feed. Most Dothideomycetes have only a single host and related Dothideomycete species can have very diverse host plants. Twelve Dothideomycete genomes have currently been sequenced by the Joint Genome Institute and other sequencing centers. They can be accessed via Mycocosm which has tools for comparative analysis

  10. Simulation and Non-Simulation Based Human Reliability Analysis Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Lab. (INL), Idaho Falls, ID (United States); Shirley, Rachel Elizabeth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey Clark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-12-01

    Part of the U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) Program, the Risk-Informed Safety Margin Characterization (RISMC) Pathway develops approaches to estimating and managing safety margins. RISMC simulations pair deterministic plant physics models with probabilistic risk models. As human interactions are an essential element of plant risk, it is necessary to integrate human actions into the RISMC risk model. In this report, we review simulation-based and non-simulation-based human reliability assessment (HRA) methods. Chapter 2 surveys non-simulation-based HRA methods. Conventional HRA methods target static Probabilistic Risk Assessments for Level 1 events. These methods would require significant modification for use in dynamic simulation of Level 2 and Level 3 events. Chapter 3 is a review of human performance models. A variety of methods and models simulate dynamic human performance; however, most of these human performance models were developed outside the risk domain and have not been used for HRA. The exception is the ADS-IDAC model, which can be thought of as a virtual operator program. This model is resource-intensive but provides a detailed model of every operator action in a given scenario, along with models of numerous factors that can influence operator performance. Finally, Chapter 4 reviews the treatment of timing of operator actions in HRA methods. This chapter is an example of one of the critical gaps between existing HRA methods and the needs of dynamic HRA. This report summarizes the foundational information needed to develop a feasible approach to modeling human interactions in the RISMC simulations.

  11. Parametric and semiparametric models with applications to reliability, survival analysis, and quality of life

    CERN Document Server

    Nikulin, M; Mesbah, M; Limnios, N

    2004-01-01

    Parametric and semiparametric models are tools with a wide range of applications to reliability, survival analysis, and quality of life. This self-contained volume examines these tools in survey articles written by experts currently working on the development and evaluation of models and methods. While a number of chapters deal with general theory, several explore more specific connections and recent results in "real-world" reliability theory, survival analysis, and related fields.

  12. Reliability and Sensitivity Analysis of Cast Iron Water Pipes for Agricultural Food Irrigation

    OpenAIRE

    Yanling Ni

    2014-01-01

    This study aims to investigate the reliability and sensitivity of cast iron water pipes for agricultural food irrigation. The Monte Carlo simulation method is used for fracture assessment and reliability analysis of cast iron pipes for agricultural food irrigation. Fracture toughness is considered as a limit state function for corrosion affected cast iron pipes. Then the influence of failure mode on the probability of pipe failure has been discussed. Sensitivity analysis also is carried out t...

  13. NPP channel structure safety system reliability analysis. Methods and computer code SHARM-2

    International Nuclear Information System (INIS)

    Special investigations on the methods for reliability assessment of safety related systems was performed in accordance with the development of general methodology for the NPP probabilistic safety analysis (PSA) in the USSR. The methods are based on the present-day advances in the field of NPP safety systems reliability and meet the main requirements placed on system analysis in performing the PSA. The methodical principles are implemented in SHARM-2 computer package used for the RBMK system reliability assessment. The main results of methodology and computer code development are given. (author). 3 refs, 1 fig., 3 tabs

  14. Reliability analysis of hierarchical computer-based systems subject to common-cause failures

    International Nuclear Information System (INIS)

    The results from reliability modeling and analysis are key contributors to design and tuning activities for computer-based systems. Each architecture style, however, poses different challenges for which analytical approaches must be developed or modified. The challenge we address in this paper is the reliability analysis of hierarchical computer-based systems (HS) with common-cause failures (CCF). The dependencies among components introduced by CCF complicate the reliability analysis of HS, especially when components affected by a common cause exist on different hierarchical levels. We propose an efficient decomposition and aggregation (EDA) approach for incorporating CCF into the reliability evaluation of HS. Our approach is to decompose an original HS reliability analysis problem with CCF into a number of reduced reliability problems freed from the CCF concerns. The approach is represented in a dynamic fault tree by a proposed CCF gate modeled after the functional dependency gate. We present the basics of the EDA approach by working through a hypothetical analysis of a HS subject to CCF and show how it can be extended to an analysis of a hierarchical phased-mission system subject to different CCF depending on mission phases

  15. Update of the human reliability analysis for a nuclear power plant

    International Nuclear Information System (INIS)

    Human reliability analysis is a systematic framework, which includes the process of evaluation of human performance and associated impacts on structures, systems and components for a complex facility. The update of Human Reliability Analysis in Probabilistic Safety Assessment of a Nuclear Power Plant requires the development of an overall method for the human reliability analysis. The update is needed as the original human reliability analysis was performed years ago, as the methods have been improved, as the requirements for performing the analyses have changed and as the additional good practice was gained in the mean time. The method for update of human reliability analysis is developed with consideration of the current requirements and the good practice. The selected features of existing methods and the selected specific features are introduced into the method. The evaluation is performed and the preliminary results of human reliability analysis are introduced into the probabilistic safety assessment model. The preliminary results of evaluating the probabilistic safety assessment model identify the key risk contributors and the areas for possible improvement. (author)

  16. Redevelopment and reliability study of simultaneously uranium and thorium analysis automation control system

    International Nuclear Information System (INIS)

    Full-text: This project is to refurbish the Instrumental Delayed Neutron Activation Analysis System for Simultaneously Determination of Uranium and Thorium namely PAUTS. PAUTS use nuclear techniques for the quantitative determination of Uranium-235 (U-235) and Thorium-232 (Th-232)radionuclides contents in the samples. It consists of three main automation procedures namely Control sample handling, Data Acquisition for neutron counting, and data handling and analysis program. The automation control technology for this project is based on a personal computer (PC), Ethernet communication support, programmable automation control (PAC) module CFP 2220, infrared photo sensors and LabVIEW software package. The analysis samples capsule was placed in transfers containers or rabbit and will be transfer using fast pneumatic sample handling for activation by irradiate it to neutron in the reactor core. Both radionuclides as a fission product will decay and emit the delayed neutron which are count using the nuclear counting electronics module. Studies on the reliability of fast pneumatic sample handling using the statistical method shows that 95 % confidence level had been reach. Results shows the mean transfer time of the sample from the loader to the reactor core is 3251 ± 210 ms, while the mean transfer time of the samples from the core to the counter chamber is 3264 ± 407 ms. The overall system reliability has been verified using analysis of calibration standard material with known quantity of uranium and thorium IAEA-S17, the IAEA-ThO2 and the IAEA-S14 method. At the moment nuclear counting electronic based on 4 units neutron detector and the results were in line with the previous experiment. Results shows that the content of U and Th is in the average of 19:35 ppm and 432.25 ppm respectively compared with the known quantity of the sample is 29.0 ppm and 460 ppm. Studies on the effects pneumatic sample handling to the irradiation time parameter indicated that the previous experiments parameters produce optimal results of the IDNAA analysis using IAEA-S14. The results of this study show the overall reliability parameters of the PAUTs system. (author)

  17. Structured information analysis for human reliability analysis of emergency tasks in nuclear power plants

    International Nuclear Information System (INIS)

    Being supported by scarce empirical data, most of the performance influencing factors in human reliability analysis (HRA) have to be assessed on the basis of the analyst's knowledge on the human performance in given tasks and their context. Therefore, the outcome of HRA may only be warranted by a proper application of their knowledge based on sufficient information about the tasks and situations. However, most of the HRA methodologies, including the newly developed ones, focus on the provision of cognitive models, error mechanisms, error types and analysis method while leaving the information collection mostly in the hands of the analyst. This paper suggests structured information analysis (SIA), which helps HRA analysts in collecting and structuring such information on tasks and contexts. The SIA consists of three parts: the scenario analysis, the goal-means analysis, and the cognitive function analysis. An expert evaluation showed that this three-part information analysis allowed more expressiveness and hence more confidence on the error prediction than ASEP HRA

  18. Analysis of complete logical structures in system reliability assessment

    International Nuclear Information System (INIS)

    The application field of the fault-tree techniques has been explored in order to assess whether the AND-OR structures covered all possible actual binary systems. This resulted in the identification of various situations requiring the complete AND-OR-NOT structures for their analysis. We do not use the term non-coherent for such cases, since the monotonicity or not of a structure function is not a characteristic of a system, but of the particular top event being examined. The report presents different examples of complete fault-trees, which can be examined according to different degrees of approximation. In fact, the exact analysis for the determination of the smallest irredundant bases is very time consuming and actually necessary only in some particular cases (multi-state systems, incidental situations). Therefore, together with the exact procedure, the report shows two different methods of logical analysis that permit the reduction of complete fault-trees to AND-OR structures. Moreover, it discusses the problems concerning the evaluation of the probability distribution of the time to first top event occurrence, once the hypothesis of structure function monotonicity is removed

  19. An approach of HALT and Failure analysis for Product Reliability Improvement(An Application to controller for fan module)

    International Nuclear Information System (INIS)

    HALT(Highly Accelerated Life Test) is the new technology for reliability assurance. The merit of HALT is a short period of the test time(about 3 to 7 days). This paper is an application of HALT and FA(Failure analysis) to improve the reliability of the fan module. Before HALT, some environmental test results were good. But we could not assure the reliability level of the test sample. So, we choose the technique of HALT to compare the test sample with a same product of the other leading company. After HALT, we found some defects(solder crack, cut of capacitor lead, varistor burning, etc) and we applied some FA technique to improve the reliability of fan module. After HALT and FA. We suggested some methods to improve the reliability of the module. So, the manufacturer applied design change and part replacement to the new fan module. After the last HALT about the new fan module, we prove the reliability growth

  20. Reliability analysis of diverse safety logic systems of fast breeder reactor

    International Nuclear Information System (INIS)

    Safety Logic for Fast Breeder Reactor (FBR) is designed to initiate safety action against Design Basis Events. Based on the outputs of various processing circuits, Safety logic system drives the control rods of the shutdown system. So, Safety Logic system is classified as safety critical system. Therefore, reliability analysis has to be performed. This paper discusses the Reliability analysis of Diverse Safety logic systems of FBRs. For this literature survey on safety critical systems, system reliability approach and standards to be followed like IEC-61508 are discussed in detail. For Programmable Logic device based systems, Hardware Description Languages (HDL) are used. So this paper also discusses the Verification and Validation for HDLs. Finally a case study for the Reliability analysis of Safety logic is discussed. (author)

  1. A survey on the human reliability analysis methods for the design of Korean next generation reactor

    International Nuclear Information System (INIS)

    Enhanced features through applying recent domestic technologies may characterize the safety and efficiency of KNGR(Korea Next Generation Reactor). Human engineered interface and control room environment are expected to be beneficial to the human aspects of KNGR design. However, since the current method for human reliability analysis is not up to date after THERP/SHARP, it becomes hard to assess the potential of human errors due to both of the positive and negative effect of the design changes in KNGR. This is a state of the art report on the human reliability analysis methods that are potentially available for the application to the KNGR design. We surveyed every technical aspects of existing HRA methods, and compared them in order to obtain the requirements for the assessment of human error potentials within KNGR design. We categorized the more than 10 methods into the first and the second generation according to the suggestion of Dr. Hollnagel. THERP was revisited in detail. ATHEANA proposed by US NRC for an advanced design and CREAM proposed by Dr. Hollnagel were reviewed and compared. We conclude that the key requirements might include the enhancement in the early steps for human error identification and the quantification steps with considerations of more extended error shaping factors over PSFs(performance shaping factors). The utilization of the steps and approaches of ATHEANA and CREAM will be beneficial to the attainment of an appropriate HRA method for KNGR. However, the steps and data from THERP will be still maintained because of the continuity with previous PSA activities in KNGR design

  2. A survey on the human reliability analysis methods for the design of Korean next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Hee; Lee, J. W.; Park, J. C.; Kwack, H. Y.; Lee, K. Y.; Park, J. K.; Kim, I. S.; Jung, K. W

    2000-03-01

    Enhanced features through applying recent domestic technologies may characterize the safety and efficiency of KNGR(Korea Next Generation Reactor). Human engineered interface and control room environment are expected to be beneficial to the human aspects of KNGR design. However, since the current method for human reliability analysis is not up to date after THERP/SHARP, it becomes hard to assess the potential of human errors due to both of the positive and negative effect of the design changes in KNGR. This is a state of the art report on the human reliability analysis methods that are potentially available for the application to the KNGR design. We surveyed every technical aspects of existing HRA methods, and compared them in order to obtain the requirements for the assessment of human error potentials within KNGR design. We categorized the more than 10 methods into the first and the second generation according to the suggestion of Dr. Hollnagel. THERP was revisited in detail. ATHEANA proposed by US NRC for an advanced design and CREAM proposed by Dr. Hollnagel were reviewed and compared. We conclude that the key requirements might include the enhancement in the early steps for human error identification and the quantification steps with considerations of more extended error shaping factors over PSFs(performance shaping factors). The utilization of the steps and approaches of ATHEANA and CREAM will be beneficial to the attainment of an appropriate HRA method for KNGR. However, the steps and data from THERP will be still maintained because of the continuity with previous PSA activities in KNGR design.

  3. Markov Chains and reliability analysis for reinforced concrete structure service life

    Scientific Electronic Library Online (English)

    Edna, Possan; Jairo José de Oliveira, Andrade.

    2014-06-01

    Full Text Available From field studies and the literature, it was found that the degradation of concrete over time can be modelled probabilistically using homogeneous Markov Chains. To confirm this finding, this study presents an application of Markov Chains associated with the reliability analysis of experimental resu [...] lts of the degradation of concrete by chlorides. Experimental results were obtained for chloride penetration originating from non-accelerated tests in concretes in which the water/binder ratio was variable (0.40, 0.50 and 0.60) and that were produced with Pozzolanic Portland cement that was exposed for six months to the action of NaCl. Using a simulation process, the failure and safety probabilities were calculated by reliability and using Markov Chains, a service life project was estimated (a period of corrosion initiation). Compared to a concrete structure itself, the average error of service life predicted using Markov was approximately 14%. The results show a promissory methodology, in combination with the determination of concrete cover thickness, according to the required service life.

  4. Finite State Machine Based Evaluation Model for Web Service Reliability Analysis

    CERN Document Server

    M, Thirumaran; Abarna, S; P, Lakshmi

    2011-01-01

    Now-a-days they are very much considering about the changes to be done at shorter time since the reaction time needs are decreasing every moment. Business Logic Evaluation Model (BLEM) are the proposed solution targeting business logic automation and facilitating business experts to write sophisticated business rules and complex calculations without costly custom programming. BLEM is powerful enough to handle service manageability issues by analyzing and evaluating the computability and traceability and other criteria of modified business logic at run time. The web service and QOS grows expensively based on the reliability of the service. Hence the service provider of today things that reliability is the major factor and any problem in the reliability of the service should overcome then and there in order to achieve the expected level of reliability. In our paper we propose business logic evaluation model for web service reliability analysis using Finite State Machine (FSM) where FSM will be extended to analy...

  5. An Implementation of Operational Experience Analysis for Addressing Human Reliability Analysis Issues in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chih Wei; Huang, Hui Wen [Institute of Nuclear Energy Research, Atomic Energy Council, Longtan (China)

    2014-08-15

    Human reliability analysis (HRA) is an integral part of probabilistic risk assessments (PRAs). Although various approaches and methods have been proposed since the first HRA was performed almost four decades ago, the technology associated with HRA is still not fully developed. The limitations of the existing HRA approaches become particularly apparent when the role of the human is examined in the context of nuclear power plants (NPPs). HRA approaches in the cognitive perspective try to take into consideration the operator, the system and their interactions. Cognitive models can help in analyzing human mental processes that can lead to error. This study documents the implementation of operating experience analysis in nuclear domains and describes the future improvement of HRA approaches. This review provides a summary of the HRA literature in order to the field of HRA approaches. Researchers may have knowledge of the capability of the tools and an understanding of their strengths and weaknesses in variety types of nuclear reactors.

  6. An advanced human reliability analysis methodology: analysis of cognitive errors focused on

    International Nuclear Information System (INIS)

    The conventional Human Reliability Analysis (HRA) methods such as THERP/ASEP, HCR and SLIM has been criticised for their deficiency in analysing cognitive errors which occurs during operator's decision making process. In order to supplement the limitation of the conventional methods, an advanced HRA method, what is called the 2nd generation HRA method, including both qualitative analysis and quantitative assessment of cognitive errors has been being developed based on the state-of-the-art theory of cognitive systems engineering and error psychology. The method was developed on the basis of human decision-making model and the relation between the cognitive function and the performance influencing factors. The application of the proposed method to two emergency operation tasks is presented

  7. An Implementation of Operational Experience Analysis for Addressing Human Reliability Analysis Issues in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Human reliability analysis (HRA) is an integral part of probabilistic risk assessments (PRAs). Although various approaches and methods have been proposed since the first HRA was performed almost four decades ago, the technology associated with HRA is still not fully developed. The limitations of the existing HRA approaches become particularly apparent when the role of the human is examined in the context of nuclear power plants (NPPs). HRA approaches in the cognitive perspective try to take into consideration the operator, the system and their interactions. Cognitive models can help in analyzing human mental processes that can lead to error. This study documents the implementation of operating experience analysis in nuclear domains and describes the future improvement of HRA approaches. This review provides a summary of the HRA literature in order to the field of HRA approaches. Researchers may have knowledge of the capability of the tools and an understanding of their strengths and weaknesses in variety types of nuclear reactors

  8. Reliability of wind farm design tools in complex terrain : A comparative study of commercial software

    OpenAIRE

    Timander, Tobias; Westerlund, Jimmy

    2012-01-01

    A comparative study of two different approaches in wind energy simulations has been made where the aim was to investigate the performance of two commercially available tools. The study includes the linear model by WAsP and the computational fluid dynamic model of WindSim (also featuring an additional forest module). The case studied is a small wind farm located in the inland of Sweden featuring a fairly complex and forested terrain. The results showed similar estimations from both tools and i...

  9. Comparative Analysis of Hand Gesture Recognition Techniques

    Directory of Open Access Journals (Sweden)

    Arpana K. Patel

    2015-03-01

    Full Text Available During past few years, human hand gesture for interaction with computing devices has continues to be active area of research. In this paper survey of hand gesture recognition is provided. Hand Gesture Recognition is contained three stages: Pre-processing, Feature Extraction or matching and Classification or recognition. Each stage contains different methods and techniques. In this paper define small description of different methods used for hand gesture recognition in existing system with comparative analysis of all method with its benefits and drawbacks are provided.

  10. Determination of Strength for Reliability Analysis of Multilayer Ceramic Capacitors

    International Nuclear Information System (INIS)

    A NanoindenterTM equipped with a Vickers indenter was used to measure fracture toughness of Multilayer Capacitors (MLCs) and BaTiO3 blanks. Strength of blanks of 6.3 x 4.7 x 1.1 mm3 was measured by performing three-point flexure using a 4 mm support span. The size of the strength limiting pores in the flexure tests was compared to pore sizes measured on polished MLC cross sections, and it was found that much larger pores were present in the 3-point flexure specimens. Strength distributions for the MLCs were generated using the measured fracture toughness values, assuming the measured pores or second phase inclusions were strength limiting

  11. Developing a highly reliable cae analysis model of the mechanisms that cause bolt loosening in automobiles

    Directory of Open Access Journals (Sweden)

    Ken Hashimoto

    2014-10-01

    Full Text Available In this study, we developed a highly reliable CAE analysis model of the mechanisms that cause loosening of bolt fasteners, which has been a bottleneck in automobile development and design, using a technical element model for highly accurate CAE that we had previously developed, and verified its validity. Specifically, drawing on knowledge gained from our clarification of the mechanisms that cause loosening of bolt fasteners using actual machine tests, we conducted an accelerated bench test consisting of a threedimensional vibration load test of the loosening of bolt fasteners used in mounts and rear suspension arms, where interviews with personnel at an automaker indicated loosening was most pronounced, and reproduced actual machine tests with CAE analysis based on a technical element model for highly accurate CAE analysis. Based on these results, we were able to reproduce dynamic behavior in which larger screw pitches (lead angles lead to greater non-uniformity of surface pressure, particularly around the nut seating surface, causing loosening to occur in areas with the lowest surface pressure. Furthermore, we implemented highly accurate CAE analysis with no error (gap compared to actual machine tests.

  12. Three suggestions on the definition of terms for the safety and reliability analysis of digital systems

    International Nuclear Information System (INIS)

    As digital instrumentation and control systems are being progressively introduced into nuclear power plants, a growing number of related technical issues are coming to light needing to be resolved. As a result, an understanding of relevant terms and basic concepts becomes increasingly important. Under the framework of the OECD/NEA WGRISK DIGREL Task Group, the authors were involved in reviewing definitions of terms forming the supporting vocabulary for addressing issues related to the safety and reliability analysis of digital instrumentation and control (SRA of DI and C). These definitions were extracted from various standards regulating the disciplines that form the technical and scientific basis of SRA DI and C. The authors discovered that different definitions are provided by different standards within a common discipline and used differently across various disciplines. This paper raises the concern that a common understanding of terms and basic concepts has not yet been established to address the very specific technical issues facing SRA DI and C. Based on the lessons learned from the review of the definitions of interest and the analysis of dependency relationships existing between these definitions, this paper establishes a set of recommendations for the development of a consistent terminology for SRA DI and C. - Highlights: â—ŹWe reviewed definitions of terms used in reliability analysis of digital systems. â—ŹDifferent definitions are provided by different standards within a common discipline. â—ŹAcyclic and cyclic structures of dependency in defining terms are compared. â—ŹThree recommendations for the development of a consistent terminology provided

  13. Stochastic Response and Reliability Analysis of Hysteretic Structures

    DEFF Research Database (Denmark)

    MŘrk, Kim JŘrgensen

    1989-01-01

    During the last 30 years response analysis of structures under random excitation has been studied in detail. These studies are motivated by the fact that most of natures excitations, such as earthquakes, wind and wave loads exhibit randomly fluctuating characters. For safety reasons this randomness must be considered by the designers of structures like tall buildings, off-shore structures,ships etc. The response of a structure is generally uncertain due to the uncertainty of the geometrical and physical parameters determining the system, the uncertainty of the excitation and the imperfections of the adapted mathematical model from which the structural response is determined. In general emphasis will be placed on applications of the various methods introduced rather on questions concerning the excistence and uniqueness of solutions.

  14. RELIABILITY ANALYSIS OF DOUBLE-LAYER RIBBED CEILING PLATE

    Directory of Open Access Journals (Sweden)

    Cheverda P.P.

    2015-12-01

    Full Text Available The research of the stress-strain state of solid plates and slabs of ribs residential building under the action of the main communication loads. The building is modeled as a spatial finite-element frame with constant stiffness characteristics for the two study options for which using software complex Monomah defined parameters of the stress-strain state. For each option slab by using the complex SCAD specifying the calculation was performed on the effects of edges on its carrying capacity and deflections. Analysis of the study results showed that the magnitude of the stress-strain state of the two options differ significantly. Therefore, the construction of industrial and civil use of precast concrete floor slabs using reinforced edges is more economical due to improved soundproofing properties homes.

  15. Using Information from Operating Experience to Inform Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bruce P. Hallbert; David I. Gertman; Julie Marble; Erasmia Lois; Nathan Siu

    2004-06-01

    This paper reports on efforts being sponsored by the U.S. NRC and performed by INEEL to develop a technical basis and perform work to extract information from sources for use in HRA. The objectives of this work are to: 1) develop a method for conducting risk-informed event analysis of human performance information that stems from operating experience at nuclear power plants and for compiling and documenting the results in a structured manner; 2) provide information from these analyses for use in risk-informed and performance-based regulatory activities; 3) create methods for information extraction and a repository for this information that, likewise, support HRA methods and their applications.

  16. Reliability and life-cycle analysis of deteriorating systems

    CERN Document Server

    Sánchez-Silva, Mauricio

    2016-01-01

    This book compiles and critically discusses modern engineering system degradation models and their impact on engineering decisions. In particular, the authors focus on modeling the uncertain nature of degradation considering both conceptual discussions and formal mathematical formulations. It also describes the basics concepts and the various modeling aspects of life-cycle analysis (LCA).  It highlights the role of degradation in LCA and defines optimum design and operation parameters. Given the relationship between operational decisions and the performance of the system’s condition over time, maintenance models are also discussed. The concepts and models presented have applications in a large variety of engineering fields such as Civil, Environmental, Industrial, Electrical and Mechanical engineering. However, special emphasis is given to problems related to large infrastructure systems. The book is intended to be used both as a reference resource for researchers and practitioners and as an academic text ...

  17. IRRAS, Integrated Reliability and Risk Analysis System for PC

    International Nuclear Information System (INIS)

    1 - Description of program or function: IRRAS4.16 is a program developed for the purpose of performing those functions necessary to create and analyze a complete Probabilistic Risk Assessment (PRA). This program includes functions to allow the user to create event trees and fault trees, to define accident sequences and basic event failure data, to solve system and accident sequence fault trees, to quantify cut sets, and to perform uncertainty analysis on the results. Also included in this program are features to allow the analyst to generate reports and displays that can be used to document the results of an analysis. Since this software is a very detailed technical tool, the user of this program should be familiar with PRA concepts and the methods used to perform these analyses. 2 - Method of solution: IRRAS4.16 is written entirely in MODULA-2 and uses an integrated commercial graphics package to interactively construct and edit fault trees. The fault tree solving methods used are industry recognized top down algorithms. For quantification, the program uses standard methods to propagate the failure information through the generated cut sets. 3 - Restrictions on the complexity of the problem: Due to the complexity of and the variety of ways a fault tree can be defined it is difficult to define limits on the complexity of the problem solved by this software. It is, however, capable of solving a substantial fault tree due to efficient methods. At this time, the software can efficiently solve problems as large as other software currently used on mainframe computers. Does not include source code

  18. Reliability analysis of the INEL power system using fault trees and the IRRAS-PC computer code

    International Nuclear Information System (INIS)

    The Integrated Reliability and Risk Analysis System Personal Computer Version 2.0 computer code was used in a reliability analysis of the INEL Site Power System. This code was developed at the Idaho National Engineering Laboratory (INEL) as a state-of-the-art microcomputer-based probabilistic risk assessment (PRA) model and as an analysis tool for the U.S. Nuclear Regulatory Commission. IRRAS provided an efficient means for the development of a detailed and accurate fault tree model to: (a) identify the dominant causes of power outages on the site, (b) compare the performance of the system using both site-specific data and generic data, and (c) perform a sensitivity study to determine the effects of equipment unavailability caused by the ongoing preventative maintenance (PM) program. Although the final fault tree model exceeded the quantification capabilities of IRRAS, necessitating the use of the mainframe code SETS, IRRAS proved to be a valuable tool for both development of the fault tree model and preparation of the different inputs required to perform the analysis. The evaluation was performed to gain the understanding necessary to determine whether the system, under INEL Power Management control, requires improvement of its reliability. This paper provides a detailed discussion of the methodology used for development of the fault tree model and evaluation of the reliability of the INEL Site Power System

  19. Using the HRA Calculator in Human Reliability Analysis done with Methodology Described in NUREG-1921

    International Nuclear Information System (INIS)

    The HRA Calculator is a tool designed to help to the preparation and documentation of the analysis of human reliability in the probabilistic safety analysis (APS) of fire. Collect the tasks required to develop and quantify the probabilities of error in accordance with the methodology described in the NUREG-1921. The HRA Calculator is a database that includes the tasks indicated in the NUREG-1921 for the analysis of human reliability. For the task of quantitative analysis the HRA Calculator includes several methods of quantification for human actions that are performed before and after an accident, one of the main advantages of the HRA Calculator is the systematization and standardization of the analysis of human reliability of fire. It is also a tool that allows the use of criteria more objective to define and quantify human actions, so that models collected, to the extent possible, the reality of the plant as is as operated. (Author)

  20. Report on the analysis of field data relating to the reliability of solar hot water systems.

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM)

    2011-07-01

    Utilities are overseeing the installations of thousand of solar hot water (SHW) systems. Utility planners have begun to ask for quantitative measures of the expected lifetimes of these systems so that they can properly forecast their loads. This report, which augments a 2009 reliability analysis effort by Sandia National Laboratories (SNL), addresses this need. Additional reliability data have been collected, added to the existing database, and analyzed. The results are presented. Additionally, formal reliability theory is described, including the bathtub curve, which is the most common model to characterize the lifetime reliability character of systems, and for predicting failures in the field. Reliability theory is used to assess the SNL reliability database. This assessment shows that the database is heavily weighted with data that describe the reliability of SHW systems early in their lives, during the warranty period. But it contains few measured data to describe the ends of SHW systems lives. End-of-life data are the most critical ones to define sufficiently the reliability of SHW systems in order to answer the questions that the utilities pose. Several ideas are presented for collecting the required data, including photometric analysis of aerial photographs of installed collectors, statistical and neural network analysis of energy bills from solar homes, and the development of simple algorithms to allow conventional SHW controllers to announce system failures and record the details of the event, similar to how aircraft black box recorders perform. Some information is also presented about public expectations for the longevity of a SHW system, information that is useful in developing reliability goals.