WorldWideScience

Sample records for reconnection takes place

  1. Astrophysical Reconnection and Particle Acceleration

    OpenAIRE

    Lazarian, A.; G. Kowal; Pino, B. Gouveia dal

    2012-01-01

    Astrophysical reconnection takes place in a turbulent medium. The turbulence in most cases is pre-existing, not caused by the reconnection itself. The model of magnetic reconnection in Lazarian & Vishniac (1999) predicts that in the presence of turbulence the reconnection becomes fast, i.e. it is independent of resistivity, but dependent on the level of turbulence. Magnetic reconnection injects energy into plasmas through a turbulent outflow from the reconnection region and ...

  2. Is channeling of fission tracks taking place?

    CERN Document Server

    Yada, K

    1999-01-01

    A single crystal of natural zircon which is sliced to have (010) basal plane and thinned by ion thinning is electron microscopically observed after slow neutron irradiation to ascertain whether channeling of the nuclear fission fragments is taking place or not. A fairly large number of the induced fission tracks are recognized at low magnification images where a considerable number of them are parallel to low-index lattice planes such as 100, 001, 101, 301, 103 though their directions changed some time up to several degrees. High resolution images of fission tracks often show a variety of zigzag passing of the tracks along low-index lattice planes in atomistic level. The rate of the tracks which are parallel to these low-index lattice planes is fairly high as about 45%, which strongly suggests that channeling of the fission tracks is taking place.

  3. Reconnection Diffusion, Star Formation and Numerical Simulations

    OpenAIRE

    Lazarian, A.

    2013-01-01

    We consider fast magnetic reconnection that takes place within turbulent magnetic flux and show that the process results in diffusion of magnetic fields and matter, which we term reconnection diffusion. The process of reconnection diffusion is based on the model of 3D reconnection of weakly turbulent magnetic fields and is applicable to both fully ionized and partially ionized gas. The rate of reconnection diffusion does not depend on the level of ionization and therefore th...

  4. Evidence of transient reconnection in the outflow jet of primary reconnection site

    OpenAIRE

    Wang, R; Nakamura, R; T. Zhang; A. Du; Baumjohann, W.; Lu, Q; Fazakerley, A.N.

    2014-01-01

    The precise mechanism for the formation of magnetic islands in the magnetotail and the subsequent evolution are still controversial. New investigations have provided the first observational evidence of secondary reconnection in the earthward outflow jet of primary reconnection in the magnetotail. The secondary reconnection takes place 38 c/?pi earthward from the primary reconnection site and results in the birth of a magnetic island observed. This generation mechanism ...

  5. Third Place Learning Environments: Perspective Sharing and Perspective Taking

    Directory of Open Access Journals (Sweden)

    Mara Alagic

    2009-11-01

    Full Text Available In this paper we deliberate on intercultural and global communication strategies of perspective sharing and perspective taking, and potential perspective transformation. Consideration to these strategies is given within the two instances of third place learning environments: (a Role-play simulation environment in which learners develop experiment with strategies for resolving intercultural misconceptions, and (b a professional virtual learning network that may provide just-in-time support for its members encountering disorienting dilemma. The central purpose of the second environment is actually development of knowledge basis for understanding of Third Place Learning.

  6. Taking Design Games Seriously : Re-connecting Situated Power Relations of People and Materials

    DEFF Research Database (Denmark)

    Eriksen, Mette Agger; Brandt, Eva

    2014-01-01

    Using design games at Participatory Design (PD) events is well acknowledged as a fruitful way of staging participation. As PD researchers, we have many such experiences, and we have argued that design games connect participants and promote equalizing power relations. However, in this paper, we will (self) critically re-connect and reflect on how people (humans) and materials (non-humans) continually participate and intertwine in various power relations in design game situations. The analysis is of detailed situated actions with one of our recent games, UrbanTransition. Core concepts mainly from Bruno Latour’s work on Actor-Network-Theory are applied. The aim is to take design games seriously by e.g. exploring how assemblages of humans and non-humans are intertwined in tacitly-but-tactically staging participation, and opening up for or hindering negotiations and decision-making, thus starting to relate research on various PD techniques and power issues more directly.

  7. Astrophysical Implications of Turbulent Reconnection: from cosmic rays to star formation

    OpenAIRE

    Lazarian, A.

    2005-01-01

    Turbulent reconnection allows fast magnetic reconnection of astrophysical magnetic fields. This entails numerous astrophysical implications and opens new ways to approach long standing problems. I briefly discuss a model of turbulent reconnection within which the stochasticity of 3D magnetic field enables rapid reconnection through both allowing multiple reconnection events to take place simultaneously and by restricting the extension of current sheets. In fully ionized gas ...

  8. Mathematical modeling of phase interaction taking place in materials processing

    International Nuclear Information System (INIS)

    The quality of metallic products depends on their composition and structure. The composition and the structure are determined by various physico-chemical and technological factors. One of the most important and complicated problems in the modern industry is to obtain materials with required composition, structure and properties. For example, deep refining is a difficult task by itself, but the problem of obtaining the material with the required specific level of refining is much more complicated. It will take a lot of time and will require a lot of expanses to solve this problem empirically and the result will be far from the optimal solution. The most effective way to solve such problems is to carry out research in two parallel direction. Comprehensive analysis of thermodynamics, kinetics and mechanisms of the processes taking place at solid-liquid-gaseous phase interface and building of the clear well-based physico-chemical model of the above processes taking into account their interaction. Development of mathematical models of the specific technologies which would allow to optimize technological processes and to ensure obtaining of the required properties of the products by choosing the optimal composition of the raw materials. We apply the above unique methods. We developed unique methods of mathematical modeling of phase interaction at high temperatures. These methods allows us to build models taking into account: thermodynamic characteristics of the processes, iynamic characteristics of the processes, influence of the initial composition and temperature on the equilibrium state of the reactions, kinetics of homogeneous and heterogeneous processes, influence of the temperature, composition, speed of the gas flows, hydrodynamic and thermal factors on the velocity of the chemical and diffusion processes. The models can be implemented in optimization of various metallurgical processes in manufacturing of steels and non-ferrous alloys as well as in materials refining, alloying with special additives, removing of non-metallic inclusions, welding, surfacing etc

  9. Out in the Pinwheel Galaxy, a rare event takes place

    Science.gov (United States)

    Grinnell, Max

    2011-09-16

    Astronomers forgo sleep; eyes fixed on star's explosionhttp://www.usatoday.com/tech/science/space/story/2011-09-07/Astronomers-forgo-sleep-eyes-fixed-on-stars-explosion/50303380/1#.TmjMWp9vWhAHow to See a Supernova From Your Backyard this Weekendhttp://www.universetoday.com/88617/how-to-see-a-supernova-from-your-backyard-this-weekend/A Stellar Explosion In The Big Dipperhttp://www.npr.org/2011/09/03/140163733/a-stellar-explosion-in-the-big-dippers-handleThe Hubble Space Telescopehttp://hubble.nasa.gov/The Pinwheel Galaxyhttp://www.ing.iac.es/PR/press/m101.htmlWhite Dwarfshttp://imagine.gsfc.nasa.gov/docs/science/know_l2/dwarfs.htmlAstronomers and others who peer into the night sky are getting quite excited about a rather rare event this Friday. A supernova (an exploding star) out in the Pinwheel Galaxy is expected to peak in brightness, and at only a mere 21 million light years away, it is the closest of its kind to be seen in 40 years. In a recent interview, Peter Nugent of the Lawrence Berkeley National Laboratory summed up the sentiments of many when he said "I'm running on adrenaline right now. A good night is four hours sleep." A number of observatories around the world are casting their telescopes out into the Pinwheel Galaxy to observe and document this rather unusual and fascinating event. This particular supernova is part of the "Type 1a" group, born from a runaway thermonuclear combustion from a white dwarf star. While the blast is quite "close" (cosmically speaking), if it had occurred in the Milky Way galaxy, the light from such an event would be visible during the daytime. Those individuals without their own personal high-end space observatory should not dismay, as a 6-inch telescope or a powerful set of binoculars will let them see part of this magnificent event. The first link will take visitors to a piece from Thursday's USA TODAY about this rather unusual and rare event. The second link will whisk users away to a great video clip from Universe Today that features astrophysicist Peter Nugent talking about how amateur astronauts can best view this event. Moving along, the third link will take users to a nice piece from NPR's Weekend Edition that provides a bit more insight into this supernova. The fourth link leads to NASA's homepage for the Hubble Space Telescope. Here visitors can learn about this technological triumph, and also read about its work examining the Pinwheel Galaxy. The fifth link leads to an amazing photograph of the Pinwheel Galaxy, courtesy of the Isaac Newton Telescope. The last link will take users to a page created by NASA's Goddard Space Flight Center that provides some background on white dwarfs.

  10. Key European Grid event to take place in Geneva

    CERN Multimedia

    2006-01-01

    EGEE'06 is the main conference of the EGEE project, which is co-funded by the European Union and hosted by CERN. More than 90 partners all over Europe and beyond are working together in EGEE to provide researchers in both academia and industry with access to major computing resources, independent of their geographic location. The largest user community of the EGEE Grid is the High-Energy Physics community and in particular the LHC experiments, which are already making heavy use of the infrastructure to prepare for data taking. However, with the many new challenges faced by EGEE in its second phase that started in April this year, an even broader audience than at previous EGEE conferences is expected. In particular, a large number of related Grid projects will feature prominently in both plenary and parallel sessions during the 5 days of this event. Industry will also be well represented, highlighting the EGEE project's commitment to technology transfer to industry. CERN is the host of the conference, which i...

  11. Magnetic reconnection under anisotropic magnetohydrodynamic approximation

    International Nuclear Information System (INIS)

    We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless MHD codes based on the double adiabatic approximation and the Landau closure model. We bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observations. Our results showed that once magnetic reconnection takes place, a firehose-sense (p?>p?) pressure anisotropy arises in the downstream region, and the generated slow shocks are quite weak comparing with those in an isotropic MHD. In spite of the weakness of the shocks, however, the resultant reconnection rate is 10%–30% higher than that in an isotropic case. This result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere

  12. Collisionless Magnetic Reconnection in Space Plasmas

    Directory of Open Access Journals (Sweden)

    RudolfA.Treumann

    2013-12-01

    Full Text Available Magnetic reconnection, the merging of oppositely directed magnetic fields that leads to field reconfiguration, plasma heating, jetting and acceleration, is one of the most celebrated processes in collisionless plasmas. It requires the violation of the frozen-in condition which ties gyrating charged particles to the magnetic field inhibiting diffusion. Ongoing reconnection has been identified in near-Earth space as being responsible for the excitation of substorms, magnetic storms, generation of field aligned currents and their consequences, the wealth of auroral phenomena. Its theoretical understanding is now on the verge of being completed. Reconnection takes place in thin current sheets. Analytical concepts proceeded gradually down to the microscopic scale, the scale of the electron skin depth or inertial length, recognizing that current layers that thin do preferentially undergo spontaneous reconnection. Thick current layers start reconnecting when being forced by plasma inflow to thin. For almost half a century the physical mechanism of reconnection has remained a mystery. Spacecraft in situ observations in combination with sophisticated numerical simulations in two and three dimensions recently clarified the mist, finding that reconnection produces a specific structure of the current layer inside the electron inertial (also called electron diffusion region around the reconnection site, the X line. Onset of reconnection is attributed to pseudo-viscous contributions of the electron pressure tensor aided by electron inertia and drag, creating a complicated structured electron current sheet, electric fields, and an electron exhaust extended along the current layer. We review the general background theory and recent developments in numerical simulation on collisionless reconnection. It is impossible to cover the entire field of reconnection in a short space-limited review. The presentation necessarily remains cursory, determined by our taste, preferences, and kn

  13. MAGNETIC RECONNECTION BETWEEN SMALL-SCALE LOOPS OBSERVED WITH THE NEW VACUUM SOLAR TELESCOPE

    International Nuclear Information System (INIS)

    Using the high tempo-spatial resolution H? images observed with the New Vacuum Solar Telescope, we report solid observational evidence of magnetic reconnection between two sets of small-scale, anti-parallel loops with an X-shaped topology. The reconnection process contains two steps: a slow step with a duration of more than several tens of minutes, and a rapid step lasting for only about three minutes. During the slow reconnection, two sets of anti-parallel loops gradually reconnect, and new loops are formed and stacked together. During the rapid reconnection, the anti-parallel loops approach each other quickly, and then rapid reconnection takes place, resulting in the disappearance of the former loops. In the meantime, new loops are formed and separate. The region between the approaching loops is brightened, and the thickness and length of this region are determined to be about 420 km and 1.4 Mm, respectively. During the rapid reconnection process, obvious brightenings at the reconnection site and apparent material ejections outward along reconnected loops are observed. These observed signatures are consistent with predictions by reconnection models. We suggest that the successive slow reconnection changes the conditions around the reconnection site and triggers instabilities, thus leading to the rapid approach of the anti-parallel loops and resulting in the rapid reconnection

  14. Fast Collisionless Reconnection Condition and Self-Organization of Solar Coronal Heating

    CERN Document Server

    Uzdensky, Dmitri A

    2007-01-01

    I propose that solar coronal heating is a self-regulating process that keeps the coronal plasma roughly marginally collisionless. The self-regulating mechanism is based on the interplay of two effects. First, plasma density controls coronal energy release via the transition between the slow collisional Sweet--Parker regime and the fast collisionless reconnection regime. This transition takes place when the Sweet--Parker layer becomes thinner than the characteristic collisionless reconnection scale. I present a simple criterion for this transition in terms of the upstream plasma density and magnetic field and the global length of the reconnection layer. Second, coronal energy release by reconnection raises the ambient plasma density via chromospheric evaporation and this, in turn, temporarily inhibits subsequent reconnection involving the newly-reconnected loops. Over time, however, radiative cooling gradually lowers the density again below the critical value and fast reconnection again becomes possible. As a ...

  15. 49 CFR 40.41 - Where does a urine collection for a DOT drug test take place?

    Science.gov (United States)

    2010-10-01

    ...urine collection for a DOT drug test take place? 40.41 Section...urine collection for a DOT drug test take place? (a) A urine collection for a DOT drug test must take place in a collection...e.g., water faucets, soap dispensers) and providing...

  16. Social Reconnection Revisited: The Effects of Social Exclusion Risk on Reciprocity, Trust, and General Risk-Taking

    Science.gov (United States)

    Derfler-Rozin, Rellie; Pillutla, Madan; Thau, Stefan

    2010-01-01

    We hypothesize that people at risk of exclusion from groups will engage in actions that can socially reconnect them with others and test the hypothesis in four studies. We show that participants at risk of exclusion reciprocated the behavior of an unknown person (Study 1a) and a potential excluder (Study 1b) more compared to two control groups…

  17. Magnetic reconnection: dynamics and particle acceleration

    International Nuclear Information System (INIS)

    A significant fraction of the magnetic energy released during magnetic reconnection in solar flares appears as energetic electrons and protons and the observations suggest a common acceleration mechanism. How this conversion of magnetic energy takes place so efficiently has been a scientific topic of great interest. Recent developments in our understanding of reconnection have important implications for understanding energetic particle production. The onset of fast reconnection occurs only after sufficiently narrow current sheets develop. It has been suggested that the coronae of stars and accretions discs naturally evolve to a critical state close to fast reconnection onset. In flares the classical picture of the formation of a single large x-line does not seem to be viable: the narrow current layers that develop near the reconnection sites break up into secondary magnetic islands whose dynamics and size spectrum are likely to control particle acceleration. Energetic electrons are produced though the Fermi-like reflection in contracting magnetic islands rather than by parallel electric fields. Their energy gain is linked to the release of magnetic energy. The Fermi mechanism is viable only for super-Alfvenic ions so a seed mechanism for ions is required. Ion pickup in reconnection outflow exhausts is proposed as the seed mechanism. This seed model has the property that low Q/M ions gain energy faster than protons, which is consistent with observed enhancements of low Q/M ions in impulsive flares. Ion and electron acceleration in a multi-island environment remains poorly understood. (author)

  18. Waste Disposal: Processes Taking Place (on the way) from the Repository to the Biosphere

    International Nuclear Information System (INIS)

    The main objective of SCK-CEN's R and D programme on the processes taking place on the way from the repository to the biosphere is to provide reliable and defensible models and parameters on the migration of dissolved radionuclides and gases through the host formation (Boom Clay) and the backfill materials of a deep geological repository for high level radioactive waste. The programme and main achievements in this topical area in 1999 are summarised

  19. Mechanisms of impulsive magnetic reconnection: Global and local aspects

    International Nuclear Information System (INIS)

    The global and local aspects of mechanisms of impulsive magnetic reconnection are discussed focusing on results from a dedicated laboratory experiment, MRX (Magnetic Reconnection Experiment), as well as fusion experiments. Possible application of the present analysis to reconnection phenomena in solar and space plasmas is also discussed. An external force which drives internal current in a fusion plasma causes magnetic flux to accumulate in a core section of the plasma (flux build-up). When the flux build-up generates a magnetic profile that satisfies a condition for a global magnetohydrodynamic instability to develop, reconnection takes place in an induced current layer generated by the instability leading to a global self-organization of the plasma. Generally the flux build-up phase is significantly longer than the reconnection time, ?H >> ?Rec, thus making the waveform of flux evolution or other plasma parameters sawtooth shaped. In the reconnection layer of collisionless plasmas, the two fluid dynamics would lead to the formation of a narrow electron current channel which tends to become unstable against micro-instabilities, leading to an unsteady or impulsive reconnection. A common feature of impulsive reconnection after flux build-up is presented.

  20. Collisionless driven reconnection in an open system

    International Nuclear Information System (INIS)

    Particle simulation studies of collisionless driven reconnection in an open system are presented. Collisionless reconnection evolves in two steps in accordance with the formation of two current layers, i.e., an ion current layer in the early ion phase and an electron current layer in the late electron phase. After the electron current layer is formed inside the ion current layer, the system relaxes gradually to a steady state when convergent plasma flow is driven by an external electric field with a narrow input window. On the other hand, when the convergent plasma flow is driven from the wide input window, magnetic reconnection takes place in an intermittent manner, due to the frequent formation of magnetic islands in the vicinity of neutral sheet. (author)

  1. Particle simulation study of driven magnetic reconnection in a collisionless plasma

    International Nuclear Information System (INIS)

    Driven magnetic reconnection in a collisionless plasma, 'collisionless driven reconnection', is investigated by means of a 2.5 dimensional particle simulation. Magnetic reconnection develops in two steps, i.e., slow reconnection which takes place in the early stage of the compression when the current layer is compressed as thin as the orbit amplitude of an ion meandering motion (ion current layer), and subsequent fast reconnection which takes place in the late stage when the electron current is concentrated into the narrow region with spatial scale comparable to the orbit amplitude of an electron meandering motion (electron current layer). The global dynamic evolution of magnetic reconnection is controlled by the physics of the ion current layer. The maximum reconnection rate is roughly in proportion to the driving electric field. It is also found that both ion heating and electron heating take place in accordance with the formation of two current layers and the ion temperature becomes two or more times as high as the electron temperature. (author)

  2. Particle simulation study of driven magnetic reconnection in a collisionless plasma

    International Nuclear Information System (INIS)

    Driven magnetic reconnection in a collisionless plasma, ''collisionless driven reconnection,'' is investigated by means of two-and-one-half-dimensional particle simulation. Magnetic reconnection develops in two steps, i.e., slow reconnection, which takes place in the early stage of the compression when the current layer is compressed as thin as the orbit amplitude of an ion meandering motion (ion current layer), and subsequent fast reconnection, which takes place in the late stage when the electron current is concentrated into the narrow region with a spatial scale comparable to the orbit amplitude of an electron meandering motion (electron current layer). The global dynamic evolution of magnetic reconnection is controlled by the physics of the ion current layer. The maximum reconnection rate is roughly in proportion to the driving electric field. It is also found that both ion heating and electron heating take place in accordance with the formation of two current layers and the ion temperature becomes two or more times as high as the electron temperature

  3. Solar wind interaction with the Earth's magnetosphere: the role of reconnection in the presence of a large scale sheared flow

    OpenAIRE

    Califano, F.; Faganello, M.; Pegoraro, F.; Valentini, F.

    2009-01-01

    The Earth's magnetosphere and solar wind environment is a laboratory of excellence for the study of the physics of collisionless magnetic reconnection. At low latitude magnetopause, magnetic reconnection develops as a secondary instability due to the stretching of magnetic field lines advected by large scale Kelvin-Helmholtz vortices. In particular, reconnection takes place in the sheared magnetic layer that forms between adjacent vortices during vortex pairing. The process generates mag...

  4. Taking Place: The Social Construction of Place, Time and Space, and the (Re)making of Distances in Distance Education.

    Science.gov (United States)

    Evans, Terry

    1989-01-01

    Discusses the notions of distance and place in relation to distance education, using social scientific theories of distance. A selection of the work of geographers, historians, and sociologists concerning theories of distance and place are critically related to the administration, management, and practices of distance education. (20 references)…

  5. Magnetic reconnection under anisotropic magnetohydrodynamic approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hirabayashi, K.; Hoshino, M. [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo (Japan)

    2013-11-15

    We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless MHD codes based on the double adiabatic approximation and the Landau closure model. We bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observations. Our results showed that once magnetic reconnection takes place, a firehose-sense (p{sub ?}>p{sub ?}) pressure anisotropy arises in the downstream region, and the generated slow shocks are quite weak comparing with those in an isotropic MHD. In spite of the weakness of the shocks, however, the resultant reconnection rate is 10%–30% higher than that in an isotropic case. This result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere.

  6. Self-organized Te Redistribution during Driven Reconnection Processes in High Temperature Plasmas

    International Nuclear Information System (INIS)

    Two-dimensional (2-D) images of electron temperature fluctuations with a high temporal and spatial resolution were employed to study the sawtooth oscillation in TEXTOR tokamak plasmas. The new findings are: (1) 2-D images revealed that the reconnection is localized and permitted the determination of the physical dimensions of the reconnection zone in the poloidal and toroidal planes. (2) The combination of a pressure driven mode and a kink instability leads to an 'X-point' reconnection process. (3) Reconnection can take place anywhere along the q?1 rational magnetic surface (both high and low field sides). (4) Heat flow from the core to the outside of the inversion radius during the reconnection time is highly asymmetric and the behavior is collective. These new findings are compared with the characteristics of various theoretical models and experimental results for the study of the sawtooth oscillation in tokamak plasmas

  7. NEW SOLAR TELESCOPE OBSERVATIONS OF MAGNETIC RECONNECTION OCCURRING IN THE CHROMOSPHERE OF THE QUIET SUN

    International Nuclear Information System (INIS)

    Magnetic reconnection is a process in which field-line connectivity changes in a magnetized plasma. On the solar surface, it often occurs with the cancellation of two magnetic fragments of opposite polarity. Using the 1.6 m New Solar Telescope, we observed the morphology and dynamics of plasma visible in the H? line, which is associated with a canceling magnetic feature (CMF) in the quiet Sun. The region can be divided into four magnetic domains: two pre-reconnection and two post-reconnection. In one post-reconnection domain, a small cloud erupted, with a plane-of-sky speed of 10 km s-1, while in the other one, brightening began at points and then tiny bright loops appeared and subsequently shrank. These features support the notion that magnetic reconnection taking place in the chromosphere is responsible for CMFs.

  8. A magnetic reconnection origin for the soft X-ray excess in AGN

    OpenAIRE

    Zhong, Xiaogu; Wang, Jiancheng

    2013-01-01

    We present a new scenario to explain the soft X-ray excess in Active Galactic Nucleus. The magnetic reconnection could happen in a thin layer on the surface of accretion disk. Electrons are accelerated by shock wave and turbulence triggered by magnetic reconnection, then they take place inverse Compton scattering above accretion disk which contributes soft X-rays. Based on standard disk model, we estimate the magnetic field strength and the energy released by magnetic reconn...

  9. Reconnection current sheet structure in a turbulent medium

    Directory of Open Access Journals (Sweden)

    E. T. Vishniac

    2012-11-01

    Full Text Available In the presence of turbulence, magnetic field lines lose their dynamical identity and particles entrained on field lines diffuse through space at a rate determined by the amplitude of the turbulence. In previous work (Lazarian and Vishniac, 1999; Kowal et al., 2009; Eyink et al., 2011 we showed that this leads to reconnection speeds which are independent of resistivity. In particular, in Kowal et al. (2009 we showed that numerical simulations were consistent with the predictions of this model. Here we examine the structure of the current sheet in simulations of turbulent reconnection. Laminar flows consistent with the Sweet-Parker reconnection model produce very thin and well ordered currents sheets. On the other hand, the simulations of Kowal et al. (2009 show a strongly disordered state even for relatively low levels of turbulence. Comparing data cubes with and without reconnection, we find that large scale field reversals are the cumulative effect of many individual eddies, each of which has magnetic properties which are not very different from turbulent eddies in a homogeneous background. This implies that the properties of stationary and homogeneous MHD turbulence are a reasonable guide to understanding turbulence during large scale magnetic reconnection events. In addition, dissipation and high energy particle acceleration during reconnection events take place over a macroscopic volume, rather than being confined to a narrow zone whose properties depend on microscopic transport coefficients.

  10. DSC studies of retrogradation and amylose-lipid transition taking place in gamma-irradiated wheat starch

    International Nuclear Information System (INIS)

    It has been already shown that degradation resulting from gamma irradiation induces a decrease in order of starch granules and influences gelatinisation taking place during heating of starch and flour suspensions. In presented paper, DSC (differential scanning calorimetry) studies were carried out for wheat starch, non-irradiated and irradiated using doses in the range from 5 to 30 kGy. The influence of the conditions applied during DSC measurements on the possibility to observe differences between the amylose-lipid complex transition and retrogradation taking place in the non-irradiated and particularly irradiated starch samples was checked. The better differentiation between the amylose-lipid complex transition taking place in particular samples accompanied by the better reproducity were obtained in the case of dense suspensions as compared to the watery suspensions as well as during the first analysis performed for the recrystallised gels

  11. Magnetic reconnection between small-scale loops observed with the New Vacuum Solar Telescope

    CERN Document Server

    Yang, Shuhong; Xiang, Yongyuan

    2014-01-01

    Using the high tempo-spatial resolution H$\\alpha$ images observed with the New Vacuum Solar Telescope, we report the solid observational evidence of magnetic reconnection between two sets of small-scale anti-parallel loops with an X-shaped topology. The reconnection process contains two steps: a slow step with the duration of more than several tens of minutes, and a rapid step lasting for only about three minutes. During the slow reconnection, two sets of anti-parallel loops reconnect gradually, and new loops are formed and stacked together. During the rapid reconnection, the anti-parallel loops approach each other quickly, and then the rapid reconnection takes place, resulting in the disappearance of former loops. In the meantime, new loops are formed and separate. The region between the approaching loops is brightened, and the thickness and length of this region are determined to be about 420 km and 1.4 Mm, respectively. During the rapid reconnection process, obvious brightenings at the reconnection site an...

  12. Magnetic reconnection

    International Nuclear Information System (INIS)

    The fundamental physics of magnetic reconnection in laboratory and space plasmas is reviewed by discussing results from theory, numerical simulations, observations from space satellites, and recent results from laboratory plasma experiments. After a brief review of the well-known early work, representative recent experimental and theoretical works are discussed and the essence of significant modern findings are interpreted. In the area of local reconnection physics, many findings have been made with regard to two-fluid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and microturbulence are discussed to understand the fundamental processes in a local reconnection layer in both space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also discussed.

  13. Taking back place-names – from dusty library to digital life

    DEFF Research Database (Denmark)

    Knudsen, Bo Nissen

    Danish place-names have been under publication since 1922 in the scientific series Danmarks Stednavne (Place-Names of Denmark) but only recently the huge project of a digitization of the series has been undertaken. Around 120,000 name articles are now on their way to the web as part of the Digital atlas of the Danish historical-administrative geography. Digitization and presentation of a scientific place-names edition poses many interesting problems in itself, especially regarding the variation over time in both the selection of names and the build-up of scholarly knowledge. How are we to convey to end users the understanding of the limitations of the early volumes compared to the newer ones, and how are we to avoid confusion due to the uneven distribution of the names selected for publication – even in neighbouring parishes? And, furthermore, how can we transfer the advantage of the physical mobility of the book format into a digital context – by making the content available as an application for mobile devices such as smart phones and iPads? Adding geocodes to the name articles could open up the possibility of a digital place-name lexicon allowing the end user to move around in a place-name environment with a very close connection between place, place-name – and scholarly knowledge of the name.

  14. Magnetic reconnection during magnetospheric substorms

    Science.gov (United States)

    Baker, Daniel N.

    1996-01-01

    The near earth reconnection model of substorms represents an attempt to place a broad range of observations into a consistent framework. The roles and requirements of reconnection are discussed. High speed plasma sheet flows, thin current sheet instability, substorm triggering, plasmoids and flux ropes in the distant tail, and magnetohydrodynamic simulations are discussed. Substorms are global, coherent sequences of processes involving solar wind/magnetosphere/ionosphere interaction. Magnetic reconnection is required to explain different dayside and polar cap phenomena, which required nightside reconnection. The modification and expansion of the standard near earth neutral line (NENL) model can integrate breakup arcs, current disruption, current wedge features, and localized plasma flows into the magnetic reconnection framework.

  15. Separatrices: The crux of reconnection

    Science.gov (United States)

    Lapenta, Giovanni; Markidis, Stefano; Divin, Andrey; Newman, David; Goldman, Martin

    2015-01-01

    Magnetic reconnection is one of the key processes in astrophysical and laboratory plasmas: it is the opposite of a dynamo. Looking at energy, a dynamo transforms kinetic energy in magnetic energy while reconnection takes magnetic energy and returns it to its kinetic form. Most plasma processes at their core involve first storing magnetic energy accumulated over time and then releasing it suddenly. We focus here on this release. A key concept in analysing reconnection is that of the separatrix, a surface (line in 2D) that separates the fresh unperturbed plasma embedded in magnetic field lines not yet reconnected with the hotter exhaust embedded in reconnected field lines. In kinetic physics, the separatrices become a layer where many key processes develop. We present here new results relative to the processes at the separatrices that regulate the plasma flow, the energization of the species, the electromagnetic fields and the instabilities developing at the separatrices.

  16. To take or not to take phraseology into account. The place of multi-word sequences in corpus data and experimental data

    OpenAIRE

    Gilquin, Gaëtanelle; Phraseology 2005 Conference

    2005-01-01

    The aim of this study is to determine the place of multi-word sequences in two types of linguistic data, namely corpus data and experimental data. The focus will be on two High frequency verbs, give and take, and their use in collocations and idioms. By comparing the phraseological usage of these two verbs in the corpus and experimental data, it will be possible to determine whether, as is commonly assumed, (recurrent) multi-word sequences are stored holistically in the mental lexicon.

  17. A MAGNETIC RECONNECTION ORIGIN FOR THE SOFT X-RAY EXCESS IN AN ACTIVE GALACTIC NUCLEUS

    International Nuclear Information System (INIS)

    We present a new scenario to explain the soft X-ray excess in an active galactic nucleus (AGN). Magnetic reconnection could happen in a thin layer on the surface of an accretion disk. Electrons are accelerated by a shock wave and turbulence is triggered by magnetic reconnection. Inverse Compton scattering then takes place above the accretion disk, producing soft X-rays. Based on the standard disk model, we estimate the magnetic field strength and the energy released by magnetic reconnection along the accretion disk and find that the luminosity arising from magnetic reconnection is mostly emitted in the inner disk, which is dominated by radiation pressure. We then apply the model to fit the spectra of AGNs with strong soft X-ray excess

  18. Hall MHD Modeling of Two-dimensional Reconnection: Application to MRX Experiment

    International Nuclear Information System (INIS)

    Two-dimensional resistive Hall magnetohydrodynamics (MHD) code is used to investigate the dynamical evolution of driven reconnection in the Magnetic Reconnection Experiment (MRX). The initial conditions and dimensionless parameters of the simulation are set to be similar to the experimental values. We successfully reproduce many features of the time evolution of magnetic configurations for both co- and counter-helicity reconnection in MRX. The Hall effect is shown to be important during the early dynamic X-phase of MRX reconnection, while effectively negligible during the late ''steady-state'' Y-phase, when plasma heating takes place. Based on simple symmetry considerations, an experiment to directly measure the Hall effect in MRX configuration is proposed and numerical evidence for the expected outcome is given

  19. Comparison of test particle acceleration in torsional spine and fan reconnection regimes

    International Nuclear Information System (INIS)

    Magnetic reconnection is a common phenomenon taking place in astrophysical and space plasmas, especially in solar flares which are rich sources of highly energetic particles. Torsional spine and fan reconnections are important mechanisms proposed for steady-state three-dimensional null-point reconnection. By using the magnetic and electric fields for these regimes, we numerically investigate the features of test particle acceleration in both regimes with input parameters for the solar corona. By comparison, torsional spine reconnection is found to be more efficient than torsional fan reconnection in an acceleration of a proton to a high kinetic energy. A proton can gain as high as 100?MeV of relativistic kinetic energy within only a few milliseconds. Moreover, in torsional spine reconnection, an accelerated particle can escape either along the spine axis or on the fan plane depending on its injection position. However, in torsional fan reconnection, the particle is only allowed to accelerate along the spine axis. In addition, in both regimes, the particle's trajectory and final kinetic energy depend on the injection position but adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory

  20. Comparison of test particle acceleration in torsional spine and fan reconnection regimes

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinpour, M., E-mail: hosseinpour@tabrizu.ac.ir; Mehdizade, M.; Mohammadi, M. A. [Plasma Physics Department, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2014-10-15

    Magnetic reconnection is a common phenomenon taking place in astrophysical and space plasmas, especially in solar flares which are rich sources of highly energetic particles. Torsional spine and fan reconnections are important mechanisms proposed for steady-state three-dimensional null-point reconnection. By using the magnetic and electric fields for these regimes, we numerically investigate the features of test particle acceleration in both regimes with input parameters for the solar corona. By comparison, torsional spine reconnection is found to be more efficient than torsional fan reconnection in an acceleration of a proton to a high kinetic energy. A proton can gain as high as 100?MeV of relativistic kinetic energy within only a few milliseconds. Moreover, in torsional spine reconnection, an accelerated particle can escape either along the spine axis or on the fan plane depending on its injection position. However, in torsional fan reconnection, the particle is only allowed to accelerate along the spine axis. In addition, in both regimes, the particle's trajectory and final kinetic energy depend on the injection position but adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory.

  1. The auroral and ionospheric flow signatures of dual lobe reconnection

    Directory of Open Access Journals (Sweden)

    S. M. Imber

    2006-11-01

    Full Text Available We present the first substantial evidence for the occurrence of dual lobe reconnection from ionospheric flows and auroral signatures. The process of dual lobe reconnection refers to an interplanetary magnetic field line reconnecting with lobe field lines in both the northern and southern hemispheres. Two bursts of sunward plasma flow across the noon portion of the open/closed field line boundary (OCB, indicating magnetic flux closure at the dayside, were observed in SuperDARN radar data during a period of strongly northward IMF. The OCB is identified from spacecraft, radar backscatter, and auroral observations. In order for dual lobe reconnection to take place, we estimate that the interplanetary magnetic field clock angle must be within ±10° of zero (North. The total flux crossing the OCB during each burst is small (1.8% and 0.6% of the flux contained within the polar cap for the two flows. A brightening of the noon portion of the northern auroral oval was observed as the clock angle passed through zero, and is thought to be due to enhanced precipitating particle fluxes due to the occurrence of reconnection at two locations along the field line. The number of solar wind protons captured by the flux closure process was estimated to be ~2.5×1030 (4 tonnes by mass, sufficient to populate the cold, dense plasma sheet observed following this interval.

  2. Magnetic Reconnection

    International Nuclear Information System (INIS)

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two-fluid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also briefly discussed.

  3. Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Masaaki Yamada, Russell Kulsrud and Hantao Ji

    2009-09-17

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

  4. Magnetic reconnection in the interior of interplanetary coronal mass ejections.

    Science.gov (United States)

    Fermo, R L; Opher, M; Drake, J F

    2014-07-18

    Recent in situ observations of interplanetary coronal mass ejections (ICMEs) found signatures of reconnection exhausts in their interior or trailing edge. Whereas reconnection on the leading edge of an ICME would indicate an interaction with the coronal or interplanetary environment, this result suggests that the internal magnetic field reconnects with itself. In light of this data, we consider the stability properties of flux ropes first developed in the context of astrophysics, then further elaborated upon in the context of reversed field pinches (RFPs). It was shown that the lowest energy state of a flux rope corresponds to ? × B = ?B with ? a constant, the so-called Taylor state. Variations from this state will result in the magnetic field trying to reorient itself into the Taylor state solution, subject to the constraints that the toroidal flux and magnetic helicity are invariant. In reversed field pinches, this relaxation is mediated by the reconnection of the magnetic field, resulting in a sawtooth crash. If we likewise treat the ICME as a flux rope, any deviation from the Taylor state will result in reconnection within the interior of the flux tube, in agreement with the observations by Gosling et al. Such a departure from the Taylor state takes place as the flux tube cross section expands in the latitudinal direction, as seen in magnetohydrodynamic (MHD) simulations of flux tubes propagating through the interplanetary medium. We show analytically that this elongation results in a state which is no longer in the minimum energy Taylor state. We then present magnetohydrodynamic simulations of an elongated flux tube which has evolved away from the Taylor state and show that reconnection at many surfaces produces a complex stochastic magnetic field as the system evolves back to a minimum energy state configuration. PMID:25083630

  5. Magnetic reconnection

    International Nuclear Information System (INIS)

    A review is given of the theory of magnetic reconnection in the framework of resistive magnetohydrodynamics (MHD). While most of the material refers to two-dimensional systems, the final sections give a brief outlook of problems arising in fully three-dimensional configurations. (orig.)

  6. Modelling Magnetic Reconnection and Nano-flare Heating in the Solar Corona

    Science.gov (United States)

    Biggs, George; Asgari-Targhi, Mahboubeh

    2015-01-01

    Current models describing magnetic reconnection in the solar corona assume single reconnection events occurring at random crossings between magnetic flux tubes. However, in the avalanche model of magnetic reconnection, multiple reconnections are expected to occur. The purpose of this research is to first, calculate the point of the greatest stress between magnetic flux tubes and then to allow for dynamic evolution utilising the avalanche model. This represents a significant increase in sophistication over previous models. This undertaking is not purely theoretical since we compare the results of our modelling with HI-C data. Using key inputs from the HIC and AIA observations such as loop length and magnetic field strength, we predict the number of reconnection events likely to take place. As a single reconnection event cannot currently be directly observed, the distribution of flare events are recorded instead. The power law fit yielded as a result of our simulations is within the expected range given the observational evidence of flare distributions and temperature values in the corona. This provides further evidence to support the role of Nano-flares in the heating of the corona.

  7. Plasmoid-Induced-Reconnection and Fractal Reconnection

    OpenAIRE

    Shibata, Kazunari; Tanuma, Syuniti

    2000-01-01

    As a key to undertanding the basic mechanism for fast reconnection in solar flares, plasmoid-induced-reconnection and fractal reconnection are proposed and examined. We first briefly summarize recent solar observations that give us hints on the role of plasmoid (flux rope) ejections in flare energy release. We then discuss the plasmoid-induced-reconnection model, which is an extention of the classical two-ribbon-flare model which we refer to as the CSHKP model. An essential ...

  8. Human mitochondrial RNA decay mediated by PNPase-hSuv3 complex takes place in distinct foci.

    Science.gov (United States)

    Borowski, Lukasz S; Dziembowski, Andrzej; Hejnowicz, Monika S; Stepien, Piotr P; Szczesny, Roman J

    2013-01-01

    RNA decay is usually mediated by protein complexes and can occur in specific foci such as P-bodies in the cytoplasm of eukaryotes. In human mitochondria nothing is known about the spatial organization of the RNA decay machinery, and the ribonuclease responsible for RNA degradation has not been identified. We demonstrate that silencing of human polynucleotide phosphorylase (PNPase) causes accumulation of RNA decay intermediates and increases the half-life of mitochondrial transcripts. A combination of fluorescence lifetime imaging microscopy with Förster resonance energy transfer and bimolecular fluorescence complementation (BiFC) experiments prove that PNPase and hSuv3 helicase (Suv3, hSuv3p and SUPV3L1) form the RNA-degrading complex in vivo in human mitochondria. This complex, referred to as the degradosome, is formed only in specific foci (named D-foci), which co-localize with mitochondrial RNA and nucleoids. Notably, interaction between PNPase and hSuv3 is essential for efficient mitochondrial RNA degradation. This provides indirect evidence that degradosome-dependent mitochondrial RNA decay takes place in foci. PMID:23221631

  9. Human mitochondrial RNA decay mediated by PNPase–hSuv3 complex takes place in distinct foci

    Science.gov (United States)

    Borowski, Lukasz S.; Dziembowski, Andrzej; Hejnowicz, Monika S.; Stepien, Piotr P.; Szczesny, Roman J.

    2013-01-01

    RNA decay is usually mediated by protein complexes and can occur in specific foci such as P-bodies in the cytoplasm of eukaryotes. In human mitochondria nothing is known about the spatial organization of the RNA decay machinery, and the ribonuclease responsible for RNA degradation has not been identified. We demonstrate that silencing of human polynucleotide phosphorylase (PNPase) causes accumulation of RNA decay intermediates and increases the half-life of mitochondrial transcripts. A combination of fluorescence lifetime imaging microscopy with Förster resonance energy transfer and bimolecular fluorescence complementation (BiFC) experiments prove that PNPase and hSuv3 helicase (Suv3, hSuv3p and SUPV3L1) form the RNA-degrading complex in vivo in human mitochondria. This complex, referred to as the degradosome, is formed only in specific foci (named D-foci), which co-localize with mitochondrial RNA and nucleoids. Notably, interaction between PNPase and hSuv3 is essential for efficient mitochondrial RNA degradation. This provides indirect evidence that degradosome-dependent mitochondrial RNA decay takes place in foci. PMID:23221631

  10. DSC studies of retrogradation and amylose-lipid complex transition taking place in gamma irradiated wheat starch

    International Nuclear Information System (INIS)

    The effect of gamma irradiation (60Co) with doses of 5-30 kGy on the amylose-lipid complex transition and retrogradation occurring in gels containing ca. 50% and ca. 20% wheat starch was studied by differential scanning calorimetry (DSC) during heating-cooling-heating cycles (up to three cycles). Transition of the amylose-lipid complex occurs in all the irradiated samples at a lower temperature as compared to the non-irradiated starch. That effect was larger when the radiation dose was higher. A further thermal treatment causes a decrease of the transition temperature in the irradiated samples, with no effect or increase of that temperature observed for the non-irradiated ones. Irradiation hinders retrogradation taking place in 50% gels but facilitates the process occurring in 20% gels. The differences between the irradiated and the non-irradiated samples are more evident in the every next heating or cooling cycle as well as after storage and in the case of ca. 50% suspensions as compared to ca. 20% suspensions. The results point out to the deterioration of the structure of the complexes formed in the irradiated starch as compared to the non-irradiated one

  11. How the Dynamics of Flare Ribbons Can Help Us Understand the Three-dimensional Structure of Reconnection

    Science.gov (United States)

    Qiu, Jiong

    2015-04-01

    Magnetic reconnection occurs in magnetized plasmas in space and astrophysical environment and fusion experiments. It rapidly changes magnetic field converting magnetic energy into other forms. Energy release in solar flares is believed to be governed by reconnection taking place in the Sun's outer atmosphere, the corona. However, the corona is not always the easiest place to measure magnetic field and its change. During a flare, we also observe what happens at the boundary between the Sun's corona and interior, the chromosphere, to learn about reconnection process in the corona. Magnetic field in the Sun's outer atmosphere is line-tied at this boundary; energy flux is largely streamlined by magnetic field to where the field is rooted at this boundary, and quickly heats up the chromosphere, in a way similar to how auroras are produced by charged particles reaching the Earth's atmosphere at geomagnetic poles. Therefore, observing the impacted chromosphere during the flare allows us to track how much and how quickly magnetic flux is reconnected. Whereas probes in fusion experiments or spacecrafts in the Earth's magnetosphere usually sample multiple points for direct in-situ measurements, all reconnection events in the Sun's corona resulting in significant atmosphere heating can be mapped at the boundary with imaging observations of the Sun. From this mapping, we seek to reconstruct the geometry and evolution of reconnection, to understand the dual property of reconnection that is both sporadic and organizable in a flare, and to find out how much energy is released by each burst of reconnection. This talk will discuss recent results and challenges in this practice, inspired by observations of ribbons and loops of solar flares obtained from the Solar Dynamic Observatory and Interface Region Imaging Spectrograph.

  12. Solar flare mechanism based on magnetic arcade reconnection and island merging

    Energy Technology Data Exchange (ETDEWEB)

    C.Z. Chen; G.S. Choe

    2000-06-15

    The authors propose a model describing physical processes of solar flares based on resistive reconnection of magnetic field subject to continuous increase of magnetic shear in the arcade. The individual flaring process consists of magnetic reconnection of arcade field lines, generation of magnetic islands in the magnetic arcade, and coalescence of magnetic islands. When a magnetic arcade is sheared (either by foot point motion or by flux emergence), a current sheet is formed and magnetic reconnection can take place to form a magnetic island. A continuing increase of magnetic shear can trigger a new reconnection process and create a new island in the under lying arcade below the magnetic island. The new born island rises faster than the preceding island and merges with it to form one island. Before completing the island merging process, the new born island exhibits two phases of rising motion: a first phase with a slower rising speed and a second phase with a faster rising speed. The flare plasma heating occurs mainly due to magnetic reconnection in the current sheet under the new born island. The new born island represents the X-ray plasma ejecta which shows two phases of rising motion observed by Yohkoh [Ohyama and Shibata (1997)]. The first phase with slower new born island rising speed corresponds to the early phase of reconnection of line-tied field in the underlying current sheet and is considered as the preflare phase. In the second phase, the island coalescence takes place, and the underlying current sheet is elongated so that the line-tied arcade field reconnection rate is enhanced. This phase is interpreted as the impulsive phase or the flash phase of flares. The obtained reconnection electric field is large enough to accelerate electrons to an energy level higher than 10 keV, which is necessary for observed hard X-ray emissions. After merging of the islands is completed, magnetic reconnection continues in the current sheet under the integrated island for a longer period, which is considered as the main phase of flares. The sequence of all these processes is repeated with some time interval while a shear-increasing motion continues. The authors propose that these repetitive flaring processes constitute a set of homologous flares.

  13. Solar wind interaction with the Earth's magnetosphere: the role of reconnection in the presence of a large scale sheared flow

    Directory of Open Access Journals (Sweden)

    F. Califano

    2009-01-01

    Full Text Available The Earth's magnetosphere and solar wind environment is a laboratory of excellence for the study of the physics of collisionless magnetic reconnection. At low latitude magnetopause, magnetic reconnection develops as a secondary instability due to the stretching of magnetic field lines advected by large scale Kelvin-Helmholtz vortices. In particular, reconnection takes place in the sheared magnetic layer that forms between adjacent vortices during vortex pairing. The process generates magnetic islands with typical size of the order of the ion inertial length, much smaller than the MHD scale of the vortices and much larger than the electron inertial length. The process of reconnection and island formation sets up spontaneously, without any need for special boundary conditions or initial conditions, and independently of the initial in-plane magnetic field topology, whether homogeneous or sheared.

  14. Theoretical studies of magnetic field line reconnection and its application to solar flares and magnetospheric dynamics. Final report, 1 Jun 1974--31 May 1975

    International Nuclear Information System (INIS)

    This report contains two articles by Tyan Yeh. The first is entitled 'A Composite Solution of Field Line Reconnection'. In this article a solution of the MHD equations is presented which describes field line reconnection by stagnant diffusion in the middle of a piecewise-uniform convective hydromagnetic flow. This composite solution demonstrates that the diffusion region adjusts its shape and size in accommodation to the incident merging fluids. The second article is entitled 'Dayside Reconnection Between a Dipolar Geomagnetic Field and a Uniform Interplanetary Field'. This article describes how field line reconnection on the dayside magnetopause is assumed to take place along the separator of field line connectivity in the magnetic topology resulting from the interpermeation of a dipolar geomagnetic field and a uniform interplanetary field. The induced voltage is calculated to show its dependence on the magnitude and direction of the incident magnetic field

  15. PLASMOID EJECTIONS AND LOOP CONTRACTIONS IN AN ERUPTIVE M7.7 SOLAR FLARE: EVIDENCE OF PARTICLE ACCELERATION AND HEATING IN MAGNETIC RECONNECTION OUTFLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wei [Lockheed Martin Solar and Astrophysics Laboratory, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Chen Qingrong; Petrosian, Vahe [Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2013-04-20

    Where particle acceleration and plasma heating take place in relation to magnetic reconnection is a fundamental question for solar flares. We report analysis of an M7.7 flare on 2012 July 19 observed by SDO/AIA and RHESSI. Bi-directional outflows in forms of plasmoid ejections and contracting cusp-shaped loops originate between an erupting flux rope and underlying flare loops at speeds of typically 200-300 km s{sup -1} up to 1050 km s{sup -1}. These outflows are associated with spatially separated double coronal X-ray sources with centroid separation decreasing with energy. The highest temperature is located near the nonthermal X-ray loop-top source well below the original heights of contracting cusps near the inferred reconnection site. These observations suggest that the primary loci of particle acceleration and plasma heating are in the reconnection outflow regions, rather than the reconnection site itself. In addition, there is an initial ascent of the X-ray and EUV loop-top source prior to its recently recognized descent, which we ascribe to the interplay among multiple processes including the upward development of reconnection and the downward contractions of reconnected loops. The impulsive phase onset is delayed by 10 minutes from the start of the descent, but coincides with the rapid speed increases of the upward plasmoids, the individual loop shrinkages, and the overall loop-top descent, suggestive of an intimate relation of the energy release rate and reconnection outflow speed.

  16. Explosive turbulent magnetic reconnection.

    Science.gov (United States)

    Higashimori, K; Yokoi, N; Hoshino, M

    2013-06-21

    We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconnection jets. This fast turbulent reconnection is achieved by the localization of turbulent diffusion. Additionally, localized structure forms through the interaction of the mean field and turbulence. PMID:23829741

  17. Magnetic reconnection in astrophysics

    International Nuclear Information System (INIS)

    Magnetic reconnection has been invoked to explain important transport phenomena and the activity of space and astrophysical plasmas. Two major classes of reconnection are generally distinguished. If time dependence is not essential, steady state reconnection schemes may be applicable. The time-dependent reconnection may either be predominantly spontaneous or predominantly driven. A few aspects that are essential in current research in this field are mentioned and the general trend in favour of the time-dependent reconnection is emphasized. The key role of in-situ space probe measurements is accounted for. A satisfactory theoretical understanding of reconnection requires a deeper insight into collective dissipation processes. (J.U.)

  18. Explosive Turbulent Magnetic Reconnection

    OpenAIRE

    Higashimori, Katsuaki; Yokoi, Nobumitsu; Hoshino, Masahiro

    2013-01-01

    We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconn...

  19. Magnetic reconnection in solar atmosphere observed by Hinode

    International Nuclear Information System (INIS)

    Complete text of publication follows. The Hinode spacecraft was launched on 2006 September 22 UT. It is a Japanese mission collaborating with US and UK with three instruments on board; the Solar Optical Telescope (SOT), the X-Ray Telescope (XRT) and EUV Imaging Spectrometer (EIS). Hinode reveals the three-dimensional structure and dynamics in the various activities of the Sun. One of the most interesting topics in solar physics is magnetic reconnection, because magnetic reconnection is one of the rapidest processes of energy conversion from stored magnetic energy to thermal energy and kinetic energy or non-thermal particle energy. In this talk, we present Hinode observation related to magnetic reconnection. One of the most interesting/astonishing Hinode's findings is that the magnetic reconnection can be taken place everywhere in solar atmosphere. We can clearly see the observational evidence of magnetic reconnection in not only solar corona but also chromosphere. SOT can observe the photospheric/chromospheric dynamics, and XRT/EIS can observe coronal dynamics. With those three telescopes, we can discuss magnetic reconnections from photosphere to upper corona. Generally the physical conditions of plasma are quite different between solar corona and chromosphere (for example, temperature, density, and so on). Thus, we can compare the magnetic reconnection in different physical condition and discuss the fundamental characteristics of magnetic reconnection with Hinode. Wes of magnetic reconnection with Hinode. We will discuss the major difference of the magnetic reconnection in the solar corona and photosphere/chromosphere in this talk.

  20. Reversible collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    Reversible magnetic reconnection is demonstrated for the first time by means of gyrokinetic numerical simulations of a collisionless magnetized plasma. Growth of a current-driven instability in a sheared magnetic field is accompanied by magnetic reconnection due to electron inertia effects. Following the instability growth, the collisionless reconnection is accelerated with development of a cross-shaped structure of current density, and then all field lines are reconnected. The fully reconnected state is followed by the secondary reconnection resulting in a weakly turbulent state. A time-reversed simulation starting from the turbulent state manifests that the collisionless reconnection process proceeds inversely leading to the initial state. During the reversed reconnection, the kinetic energy is reconverted into the original magnetic field energy. In order to understand the stability of reversed process, an external perturbation is added to the fully reconnected state, and it is found that the accelerated reconnection is reversible when the deviation of the E × B streamlines due to the perturbation is comparable with or smaller than a current layer width

  1. Stuck between a ROC and a hard place? Barriers to the take up of green energy in the UK

    International Nuclear Information System (INIS)

    This paper examines the UK mechanisms for ensuring future investment in renewable energy through consumer adoption of green energy tariffs and the Renewable Obligation Certificate (ROC) system. Using a national survey and focus groups the stated willingness by UK customers to pay a premium for renewable or green energy and actual take up of such tariffs is assessed. Substantial differences between willingness to pay for and the adoption of green energy tariffs are reported. This disparity is linked to a range of factors including consumer confusion, lack of supply, complexities of constructing 'green source' tariffs under the ROC system and a lack of customer trust. It is concluded that the re-definition of the green energy market in favour of 'green source' tariffs, greater direct compliance with the Renewable Obligation by addressing supply constraints, and efforts in providing clearer information and choices for consumers via a compulsory green energy accreditation scheme are required if willing consumers' are to contribute to investment in renewable energy. (author)

  2. Magnetic reconnection in space

    International Nuclear Information System (INIS)

    Models of magnetic reconnection in space plasmas generally consider only a segment of the magnetic field lines. The consideration of only a segment of the lines is shown to lead to paradoxical results in which reconnection can be impossible even in a magnetic field constrained to be curl free or can be at an Alfvén rate even when the plasma is a perfect conductor. A model of reconnecting magnetic fields is developed which shows the smallness of the interdiffusion distance ?d of magnetic field lines does not limit the speed of reconnection but does provide a reconnection trigger. When the reconnection region has a natural length Lr, the spatial scale of the gradient of magnetic field across the magnetic field lines must reach Lg?0.3Lr/ln(Lr/?d) for fast reconnection to be triggered, which implies a current density j?B/?0Lg that is far lower than that usually thought required for fast reconnection. The relation between magnetic reconnection in space and in toroidal laboratory plasmas is also discussed.

  3. Fast Reconnection and Reconnection Diffusion: Implications for Star Formation

    OpenAIRE

    Lazarian, A.

    2011-01-01

    Fast reconnection of magnetic field in turbulent fluids allows magnetic field to change its topology and connections. As a result, the traditional concept of magnetic fields being frozen into the plasma is no longer applicable. The diffusion of plasmas and magnetic field is enabled by reconnection and therefore is termed "reconnection diffusion". We explore the consequences of reconnection diffusion for star formation. In the paper we explain the physics of reconnection diff...

  4. Two dimensional MHD model for magnetic field line reconnection in an incompressible and inviscid plasma

    International Nuclear Information System (INIS)

    The work presented here is a study of the process from a point of view different from the previous MHD models. A two-dimensional field line reconnection mechanism is proposed which can be generalized into a time-dependent model. The special case of a stationary hyperbolic magnetic field configuration is studied in detail. The corresponding flow pattern for an inviscid and incompressible plasma is found from solving Ohm's law and the continuity equation in two regions of space, the convection region where the conductivity is practically infinite and where the field lines are still frozen to the plasma, and the diffusion region surrounding the neutral point where the conductivity is finite allowing reconnection to take place. In the convection region, the streamlines are essentially straight lines which stretch out radially from the origin. Discontinuities occur in the velocity field only along the separatrix. Furthermore, in the diffusion region, it is shown that the solution for constant conductivity is not compatible with the requirement that the origin be a stagnation point in the flow, nor does the velocity field match the outer region solution. However, once spatial variations in the conductivity are taken into account, a rectangular hyperbolic flow can take place in the diffusion region together with hyperbolic field line reconnection at the neutral point. The type of solution obtained can in principle be extrapolated to the radially directed streamlines at far dthe radially directed streamlines at far distances. The magnetic field line reconnection mechanism proposed in this model leads to one physically acceptable solution that satisfies the coupled MHD equations. Unlike other models, no a priori assumptions have been made for the existence of shocks or discontinuities in the flow. The discontinuities arise naturally from the solution and coincide with the separatrix in the convection region

  5. Phase Diagrams of Forced Magnetic Reconnection in Taylor's Model

    CERN Document Server

    Comisso, L; Waelbroeck, F L

    2015-01-01

    Recent progress in the understanding of how externally driven magnetic reconnection evolves is organized in terms of parameter space diagrams. These diagrams are constructed using four pivotal dimensionless parameters: the Lundquist number $S$, the magnetic Prandtl number $P_m$, the amplitude of the boundary perturbation $\\hat \\Psi_0$, and the perturbation wave number $\\hat k$. This new representation highlights the parameters regions of a given system in which the magnetic reconnection process is expected to be distinguished by a specific evolution. Contrary to previously proposed phase diagrams, the diagrams introduced here take into account the dynamical evolution of the reconnection process and are able to predict slow or fast reconnection regimes for the same values of $S$ and $P_m$, depending on the parameters that characterize the external drive, never considered so far. These features are important to understand the onset and evolution of magnetic reconnection in diverse physical systems

  6. Asymmetric Magnetic Reconnection in Weakly Ionized Chromospheric Plasmas

    CERN Document Server

    Murphy, Nicholas A

    2015-01-01

    Realistic models of magnetic reconnection in the solar chromosphere must take into account that the plasma is partially ionized and that plasma conditions within any two magnetic flux bundles undergoing reconnection may not be the same. Asymmetric reconnection in the chromosphere may occur when newly emerged flux interacts with pre-existing, overlying flux. We present 2.5D simulations of asymmetric reconnection in weakly ionized, reacting plasmas where the magnetic field strengths, ion and neutral densities, and temperatures are different in each upstream region. The plasma and neutral components are evolved separately to allow non-equilibrium ionization. As in previous simulations of chromospheric reconnection, the current sheet thins to the scale of the neutral-ion mean free path and the ion and neutral outflows are strongly coupled. However, the ion and neutral inflows are asymmetrically decoupled. In cases with magnetic asymmetry, a net flow of neutrals through the current sheet from the weak field (high ...

  7. Three-dimensional steady-state magnetic reconnection

    International Nuclear Information System (INIS)

    A family of three-dimensional models of reconnection is presented in which the different members of the family are characterized by the vorticity with which plasma flows towards the reconnection site. The nature of this inflow also determines the size and speed of the outflow jet that carries reconnected field lines away from the reconnection site, and the shape of the MHD shocks that bound it. Flows with positive vorticity are of a flux pile-up type, for which the outflow jet is fastest and narrowest. Among those with negative vorticity is the three-dimensional analogue of Petschek reconnection. Not all combinations of vorticity and reconnection rate are possible; for those solutions with negative vorticity, there is a maximum reconnection rate. As the magnetic Reynolds number Rme or the current density is increased, this maximum is reduced and the possible types of solution become more polarized towards the two extremes of flux pile-up and slow compression regimes. Given a distribution of vorticities and inflow speeds, these models give the corresponding distribution of possible steady-state reconnection rates. As an illustrative example, we take Gaussian distributions of both to show that the resulting distribution is dominated by the flux pile-up regime. (author)

  8. Magnetic Reconnection in Astrophysical Environments

    CERN Document Server

    Lazarian, A; Vishniac, E; Kowal, G

    2014-01-01

    Magnetic reconnection is a process that changes magnetic field topology in highly conducting fluids. Traditionally, magnetic reconnection was associated mostly with solar flares. In reality, the process must be ubiquitous as astrophysical fluids are magnetized and motions of fluid elements necessarily entail crossing of magnetic frozen in field lines and magnetic reconnection. We consider magnetic reconnection in realistic 3D geometry in the presence of turbulence. This turbulence in most astrophysical settings is of pre-existing nature, but it also can be induced by magnetic reconnection itself. In this situation turbulent magnetic field wandering opens up reconnection outflow regions, making reconnection fast. We discuss Lazarian \\& Vishniac (1999) model of turbulent reconnection, its numerical and observational testings, as well as its connection to the modern understanding of the Lagrangian properties of turbulent fluids. We show that the predicted dependences of the reconnection rates on the level of...

  9. Model of Hall reconnection.

    Science.gov (United States)

    Malyshkin, Leonid M

    2008-11-28

    The rate of quasistationary, two-dimensional magnetic reconnection is calculated in the framework of incompressible Hall magnetohydrodynamics, which includes the Hall and electron pressure terms in Ohm's law. The Hall-magnetohydrodynamics equations are solved in a local region across the reconnection electron layer, including only the upstream region and the layer center. In the case when the ion inertial length di is larger than the Sweet-Parker reconnection layer thickness, the dimensionless reconnection rate is found to be independent of the electrical resistivity and equal to di/L, where L is the scale length of the external magnetic field in the upstream region outside the electron layer and the ion layer thickness is found to be di. PMID:19113486

  10. Transport of thermal energy and its relation to magnetic reconnection and to the spontaneous rotation phenomenon

    International Nuclear Information System (INIS)

    The high-temperature theory of the collisional drift-tearing mode is presented. In the regimes relevant to present day experiments the parallel electron thermal conductivity plays a key role and the novel analysis that is presented shows that the structure of the mode as well as the characteristics of the region where reconnection takes place differ significantly from the ones described in the original work where the regime with relatively high collisionality was considered. A brief description is given of the 'accretion' theory of the 'spontaneous' rotation phenomenon and of the associated toroidal plasma collective modes that produce an inflow of angular momentum towards the center of the plasma column. (author)

  11. Fast Turbulent Reconnection

    OpenAIRE

    Lazarian, A.; E. Vishniac

    2000-01-01

    Reconnection is the process by which magnetic fields in a conducting fluid change their topology. This process is essential for understanding a wide variety of astrophysical processes, including stellar and galactic dynamos and astrophysical turbulence. To account for solar flares, solar cycles and the structure of the galactic magnetic field reconnection must be fast, propagating with a speed close to the Alfven speed. We show that the presence of a random magnetic field co...

  12. Magnetic Reconnection in Astrophysical Environments

    OpenAIRE

    Lazarian, A.; Eyink, G.; E. Vishniac; G. Kowal

    2014-01-01

    Magnetic reconnection is a process that changes magnetic field topology in highly conducting fluids. Traditionally, magnetic reconnection was associated mostly with solar flares. In reality, the process must be ubiquitous as astrophysical fluids are magnetized and motions of fluid elements necessarily entail crossing of magnetic frozen in field lines and magnetic reconnection. We consider magnetic reconnection in realistic 3D geometry in the presence of turbulence. This turb...

  13. THE COLLAPSE OF TURBULENT CORES AND RECONNECTION DIFFUSION

    Energy Technology Data Exchange (ETDEWEB)

    Leão, M. R. M.; De Gouveia Dal Pino, E. M.; Santos-Lima, R. [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, R. do Matão, 1226, São Paulo, SP 05508-090 (Brazil); Lazarian, A., E-mail: mleao@ime.unicamp.br, E-mail: dalpino@astro.iag.usp.br, E-mail: rlima@astro.iag.usp.br, E-mail: alazarian@facstaff.wisc.edu [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States)

    2013-11-01

    In order for a molecular cloud clump to form stars, some transport of magnetic flux is required from the denser internal regions to the outer regions; otherwise, this can prevent the gravitational collapse. Fast magnetic reconnection, which takes place in the presence of turbulence, can induce a process of reconnection diffusion that has been elaborated on in earlier theoretical works. We have named this process turbulent reconnection diffusion, or simply RD. This paper continues our numerical study of this process and its implications. In particular, we extend our studies of RD in cylindrical clouds and consider more realistic clouds with spherical gravitational potentials (from embedded stars); we also account for the effects of the gas self-gravity. We demonstrate that, within our setup reconnection, diffusion is efficient. We have also identified the conditions under which RD becomes strong enough to make an initially subcritical cloud clump supercritical and induce its collapse. Our results indicate that the formation of a supercritical core is regulated by a complex interplay between gravity, self-gravity, the magnetic field strength, and nearly transonic and trans-Alfvénic turbulence; therefore, it is very sensitive to the initial conditions of the system. In particular, self-gravity helps RD and, as a result, the magnetic field decoupling from the collapsing gas becomes more efficient compared with the case of an external gravitational field. Our simulations confirm that RD can transport magnetic flux from the core of collapsing clumps to the envelope, but only a few of them become nearly critical or supercritical sub-Alfvénic cores, which is consistent with the observations. Furthermore, we have found that the supercritical cores built up in our simulations develop a predominantly helical magnetic field geometry that is also consistent with recent observations. Finally, we have also evaluated the effective values of the turbulent RD coefficient in our simulations and found that they are much larger than the numerical diffusion coefficient, especially for initially trans-Alfvénic clouds, thus ensuring that the detected magnetic flux removal is due to the action of turbulent RD rather than numerical diffusivity.

  14. Mathematical Modeling of a Cs(I – Sr(II – Bentonite – Magnetite Sorption System, Simulating the Processes Taking Place in a Deep Geological Repository

    Directory of Open Access Journals (Sweden)

    H. Filipská

    2005-01-01

    Full Text Available The derivation of mathematical models of systems consisting of Cs(I or Sr(II and of bentonite (B, magnetite (M or their mixtures (B+M are described. The paper deals especially with modeling of the protonation and sorption processes occurring on the functional groups of the solid phase, namely on so called edge sites and layer sites. The two types of sites have different properties and, as a result, three types of Surface Complexation Models (SCM are used for edge sites, viz. two electrostatic SCMs: the Constant Capacitance Model (CCM and the Diffusion Double Layer Model (DLM, and one without electrostatic correction: the Chemical Model (CEM. The processes taking place on the layer sites are described by means of the Ion Exchange Model (IExM. In the course of modeling, the speciation of the given metal in the liquid (aqueous phase has to be taken into account. In principle, the model of protonation or sorption processes is based on the reactions occurring in the aqueous phase and on the surface of the solid phase, and comprises not only the equations of the equilibrium constants of the individual reactions, but also the mass and charge balance equations. The algorithm of the numerical solution is compatible with FAMULUS 3.5 (a Czech software product quite extensively used at Czech universities in the last decade, the bookcase codes of which are utilized. 

  15. Experimental Investigation of the Neutral sheet Profile During Magnetic Reconnection

    International Nuclear Information System (INIS)

    During magnetic reconnection, a ''neutral sheet'' current is induced, heating the plasma. The resultant plasma thermal pressure forms a stationary equilibrium with the opposing magnetic fields. The reconnection layer profile holds significant clues about the physical mechanisms which control reconnection. On the Magnetic Reconnection Experiment [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)], a quasi steady-state and axisymmetric neutral sheet profile has been measured precisely using a magnetic probe array with spatial resolution equal to one quarter of the ion gyro-radius. It was found that the reconnecting field profile fits well with a Harris-type profile [E. G. Harris, Il Nuovo Cimento 23, 115 (1962)], B(x) approximately tanh(x/delta). This agreement is remarkable since the Harris theory does not take into account reconnection and associated electric fields and dissipation. An explanation for this agreement is presented. The sheet thickness delta is found to be approximately 0.4 times the ion skin depth, which agrees with a generalized Harris theory incorporating non-isothermal electron and ion temperatures and finite electric field. The detailed study of additional local features of the reconnection region is also presented

  16. Externally driven magnetic reconnection

    International Nuclear Information System (INIS)

    A model is presented in which externaly driven reconnection is simulated by solving the MHD equations in an initially plane current sheet. Magnetic reconnection in the earth's magnetotail is widely believed to be the direct cause of magnetospheric substorms. Both 2-D and 3-D versions of the model have been developed. It is postulated that connection in the tail is triggered by a local compression of the plasma sheet which results from an invasion of the solar wind into the magnetotail. Thus, the simulation is started by introducing flow from the lobes normal to the plasma sheet. When resistivity is generated in a local region of the neutral sheet, reconnection develops and magnetic energy is converted into plasma bulk flow. Although the driven reconnection model is highly simplified, it can aid in understanding many features of substorms in the tail; in particular, results show that rapid flows both earthward and tailward of the neutral line and the nightside substorm current system are natural consequences of driven magnetic reconnection. 34 references

  17. Model for Incomplete Reconnection in Sawtooth Crashes

    OpenAIRE

    Beidler, Matthew T.; Cassak, Paul A.

    2011-01-01

    A model for incomplete reconnection in sawtooth crashes is presented. The reconnection inflow during the crash phase of sawteeth self-consistently convects the high pressure core toward the reconnection site, raising the pressure gradient there. Reconnection shuts off if the diamagnetic drift speed at the reconnection site exceeds a threshold, which may explain incomplete reconnection. The relaxation of magnetic shear after reconnection stops may explain the destabilization ...

  18. Reconnection in Turbulent Astrophysical Fluids

    Science.gov (United States)

    Lazarian, A.; Eyink, G.; Vishniac, E.; Kowal, G.

    2014-09-01

    Magnetic reconnection is a fundamental process of magnetic field topology change. We analyze the connection of this process with turbulence which is ubiquitous in astrophysical environments. We show how Lazarian & Vishniac (1999) model of turbulent reconnection is connected to the experimentally proven concept of Richardson diffusion and discuss how turbulence violates the generally accepted notion of magnetic flux freezing. We note that in environments that are laminar initially turbulence can develop as a result of magnetic reconnection and this can result in flares of magnetic reconnection in magnetically dominated media. In particular, magnetic reconnection can initially develop through tearing, but the transition to the turbulent state is expected for astrophysical systems.

  19. Forced magnetic reconnection

    International Nuclear Information System (INIS)

    By studying a simple model problem, we examine the time evolution of magnetic field islands which are induced by perturbing the boundary surrounding an incompressible plasma with a resonant surface inside. We find that for sufficiently small boundary perturbations, the reconnection and island formation process occurs on the tearing mode time scale defined by Furth, Killeen, and Rosenbluth. For larger perturbations the time scale is that defined by Rutherford. The resulting asymptotic equilibrium is such that surface currents in the resonant region vanish. A detailed analytical picture of this reconnection process is presented

  20. Modulation of Bmp4 signalling in the epithelial-mesenchymal interactions that take place in early thymus and parathyroid development in avian embryos.

    Science.gov (United States)

    Neves, Hélia; Dupin, Elisabeth; Parreira, Leonor; Le Douarin, Nicole M

    2012-01-15

    Epithelial-mesenchymal interactions are crucial for the development of the endoderm of the pharyngeal pouches into the epithelia of thymus and parathyroid glands. Here we investigated the dynamics of epithelial-mesenchymal interactions that take place at the earliest stages of thymic and parathyroid organogenesis using the quail-chick model together with a co-culture system capable of reproducing these early events in vitro. The presumptive territories of thymus and parathyroid epithelia were identified in three-dimensionally preserved pharyngeal endoderm of embryonic day 4.5 chick embryos on the basis of the expression of Foxn1 and Gcm2, respectively: the thymic rudiment is located in the dorsal domain of the third and fourth pouches, while the parathyroid rudiment occupies a more medial/anterior pouch domain. Using in vitro quail-chick tissue associations combined with in ovo transplantations, we show that the somatopleural but not the limb bud mesenchyme, can mimic the role of neural crest-derived pharyngeal mesenchyme to sustain development of these glands up to terminal differentiation. Furthermore, mesenchymal-derived Bmp4 appears to be essential to promote early stages of endoderm development during a short window of time, irrespective of the mesenchymal source. In vivo studies using the quail-chick system and implantation of growth factor soaked-beads further showed that expression of Bmp4 by the mesenchyme is necessary during a 24 h-period of time. After this period however, Bmp4 is no longer required and another signalling factor produced by the mesenchyme, Fgf10, influences later differentiation of the pouch endoderm. These results show that morphological development and cell differentiation of thymus and parathyroid epithelia require a succession of signals emanating from the associated mesenchyme, among which Bmp4 plays a pivotal role for triggering thymic epithelium specification. PMID:22057081

  1. Interchange Reconnection Alfven Wave Generation

    CERN Document Server

    Lynch, B J; Li, Y

    2014-01-01

    Given recent observational results of interchange reconnection processes in the solar corona and the theoretical development of the S-Web model for the slow solar wind, we present further analysis of the 3D MHD simulation of interchange reconnection by Edmondson et al. (Astrophys. J. 707, 1427, 2009). Specifically, we analyze the consequences of the dynamic streamer belt jump that corresponds to flux opening by interchange reconnection. Information about the magnetic field restructuring by interchange reconnection is carried throughout the system by Alfven waves propagating away from the reconnection region, distributing the shear and twist imparted by the driving flows, including shedding the injected stress-energy and accumulated magnetic helicity along newly-open field lines. We quantify the properties of the reconnection-generated wave activity in the simulation. There is a localized high frequency component associated with the current sheet/reconnection site and an extended low frequency component associ...

  2. Reconnection in tokamaks

    International Nuclear Information System (INIS)

    Calculations with several different computer codes based on the resistive MHD equations have shown that (m = 1, n = 1) tearing modes in tokamak plasmas grow by magnetic reconnection. The observable behavior predicted by the codes has been confirmed in detail from the waveforms of signals from x-ray detectors and recently by x-ray tomographic imaging

  3. Turbulent General Magnetic Reconnection

    Science.gov (United States)

    Eyink, G. L.

    2015-07-01

    Plasma flows with a magnetohydrodynamic (MHD)-like turbulent inertial range, such as the solar wind, require a generalization of general magnetic reconnection (GMR) theory. We introduce the slip velocity source vector per unit arclength of field line, the ratio of the curl of the non-ideal electric field in the generalized Ohm’s Law and magnetic field strength. It diverges at magnetic nulls, unifying GMR with null-point reconnection. Only under restrictive assumptions is the slip velocity related to the gradient of quasi-potential (which is the integral of parallel electric field along magnetic field lines). In a turbulent inertial range, the non-ideal field becomes tiny while its curl is large, so that line slippage occurs even while ideal MHD becomes accurate. The resolution is that ideal MHD is valid for a turbulent inertial range only in a weak sense that does not imply magnetic line freezing. The notion of weak solution is explained in terms of renormalization group (RG) type theory. The weak validity of the ideal Ohm’s law in the inertial range is shown via rigorous estimates of the terms in the generalized Ohm’s Law. All non-ideal terms are irrelevant in the RG sense and large-scale reconnection is thus governed solely by ideal dynamics. We discuss the implications for heliospheric reconnection, in particular for deviations from the Parker spiral model. Solar wind observations show that reconnection in a turbulence-broadened heliospheric current sheet, which is consistent with Lazarian–Vishniac theory, leads to slip velocities that cause field lines to lag relative to the spiral model.

  4. Como ocorrem as inovações em serviços? um estudo exploratório de empresas no Brasil / Understanding how innovation takes place in service companies - an exploratory study of companies in Brazil

    Scientific Electronic Library Online (English)

    Luís Henrique Rigato, Vasconcellos; Roberto, Marx.

    Full Text Available O objetivo deste artigo é o de buscar uma melhor compreensão sobre o fenômeno da inovação nas empresas de serviços. Procurou-se seguir uma linha de abordagem segundo a qual, para se estudar e compreender o funcionamento do processo inovativo nestas empresas, se faz necessário um estudo com maior pro [...] fundidade nas organizações, investigando como ocorreram - em detalhes - as inovações. Para essa finalidade foram conduzidos estudos de casos em cinco diferentes organizações de serviços no setor de telecomunicações e atividades de informática no Brasil. Para melhor descrever o processo de inovação foi empregado o conceito de cadeia de inovação proposto por Hansen e Birkinshaw (2007), isto é, uma visão expandida do fenômeno da inovação que forma uma espécie de cadeia composta pelas seguintes fases: geração de ideias (intradepartamental, interdepartamental e interinstitucional); a conversão (seleção de ideias, incluindo a triagem, o financiamento e o desenvolvimento) e a difusão (sua disseminação na organização e no mercado). Por meio dos casos percebeu-se também que a inovação em serviços segue uma lógica similar em relação às inovações encontradas na literatura para bens físicos, sobretudo no que se refere ao uso da metodologia dos Stage-Gates proposto por Cooper (1993). Abstract in english The main objective of this paper is to improve the understanding of the phenomenon of innovation in service companies. It focuses on the idea that in order to study and understand how innovation processes take place, a more in depth study of these companies was required. Several case studies were co [...] nducted in five different service enterprises in the sector of telecommunications and computer-related activities. To describe the innovation process, the concept of "Chain of Innovation" proposed by Hansen and Birkinshaw (2007) was applied, i.e. an expanded view of the phenomenon of innovation that forms a type of chain composed by the following phases: generation of ideas; conversion (selection of ideas, including the selection, financing, and development), and diffusion. Through the cases studied, it can be seen that innovation in services follows a similar logic to that found in the literature for physical goods, especially concerning the use of the Stage-Gates' classic model proposed by Cooper (1993).

  5. Como ocorrem as inovações em serviços? um estudo exploratório de empresas no Brasil Understanding how innovation takes place in service companies - an exploratory study of companies in Brazil

    Directory of Open Access Journals (Sweden)

    Luís Henrique Rigato Vasconcellos

    2011-01-01

    Full Text Available O objetivo deste artigo é o de buscar uma melhor compreensão sobre o fenômeno da inovação nas empresas de serviços. Procurou-se seguir uma linha de abordagem segundo a qual, para se estudar e compreender o funcionamento do processo inovativo nestas empresas, se faz necessário um estudo com maior profundidade nas organizações, investigando como ocorreram - em detalhes - as inovações. Para essa finalidade foram conduzidos estudos de casos em cinco diferentes organizações de serviços no setor de telecomunicações e atividades de informática no Brasil. Para melhor descrever o processo de inovação foi empregado o conceito de cadeia de inovação proposto por Hansen e Birkinshaw (2007, isto é, uma visão expandida do fenômeno da inovação que forma uma espécie de cadeia composta pelas seguintes fases: geração de ideias (intradepartamental, interdepartamental e interinstitucional; a conversão (seleção de ideias, incluindo a triagem, o financiamento e o desenvolvimento e a difusão (sua disseminação na organização e no mercado. Por meio dos casos percebeu-se também que a inovação em serviços segue uma lógica similar em relação às inovações encontradas na literatura para bens físicos, sobretudo no que se refere ao uso da metodologia dos Stage-Gates proposto por Cooper (1993.The main objective of this paper is to improve the understanding of the phenomenon of innovation in service companies. It focuses on the idea that in order to study and understand how innovation processes take place, a more in depth study of these companies was required. Several case studies were conducted in five different service enterprises in the sector of telecommunications and computer-related activities. To describe the innovation process, the concept of "Chain of Innovation" proposed by Hansen and Birkinshaw (2007 was applied, i.e. an expanded view of the phenomenon of innovation that forms a type of chain composed by the following phases: generation of ideas; conversion (selection of ideas, including the selection, financing, and development, and diffusion. Through the cases studied, it can be seen that innovation in services follows a similar logic to that found in the literature for physical goods, especially concerning the use of the Stage-Gates' classic model proposed by Cooper (1993.

  6. Three-dimensional magnetic reconnection

    International Nuclear Information System (INIS)

    Complete text of publication follows. Three-dimensional reconnection is much more diverse than two-dimensional reconnection. In deed, the characteristics of these two types of reconnection are very different. For instance, three-dimensional reconnection can occur both in the vicinity of null points, as well as in the absence of null points. It occurs continuously and continually throughout a diffusion region, as opposed to at a single point, as it does in two dimensions. This means that in three-dimensions field lines do not reconnect in pairs of lines or even in sets of surfaces making understanding three-dimensional reconnection difficult. One important location for three-dimensional reconnection is at separators, special field lines that connect pairs of null points and lie along the intersection of the two separatrix surfaces emanating from the null points. By focussing on a series of three-dimensional resistive MHD experiments involving separator reconnection I reveal the local requirements and nature of reconnection along separators, as well as describing some of the global consequences of reconnection at multiple separators.

  7. Asymmetric Magnetic Reconnection in Weakly Ionized Chromospheric Plasmas

    Science.gov (United States)

    Murphy, Nicholas A.; Lukin, Vyacheslav S.

    2015-06-01

    Realistic models of magnetic reconnection in the solar chromosphere must take into account that the plasma is partially ionized and that plasma conditions within any two magnetic flux bundles undergoing reconnection may not be the same. Asymmetric reconnection in the chromosphere may occur when newly emerged flux interacts with pre-existing, overlying flux. We present 2.5D simulations of asymmetric reconnection in weakly ionized, reacting plasmas where the magnetic field strengths, ion and neutral densities, and temperatures are different in each upstream region. The plasma and neutral components are evolved separately to allow non-equilibrium ionization. As in previous simulations of chromospheric reconnection, the current sheet thins to the scale of the neutral–ion mean free path and the ion and neutral outflows are strongly coupled. However, the ion and neutral inflows are asymmetrically decoupled. In cases with magnetic asymmetry, a net flow of neutrals through the current sheet from the weak-field (high-density) upstream region into the strong-field upstream region results from a neutral pressure gradient. Consequently, neutrals dragged along with the outflow are more likely to originate from the weak-field region. The Hall effect leads to the development of a characteristic quadrupole magnetic field modified by asymmetry, but the X-point geometry expected during Hall reconnection does not occur. All simulations show the development of plasmoids after an initial laminar phase.

  8. The Role of Compressibility in Energy Release by Magnetic Reconnection

    Science.gov (United States)

    Birn, J.; Borovosky, J. E.; Hesse, M.

    2012-01-01

    Using resistive compressible magnetohydrodynamics, we investigate the energy release and transfer by magnetic reconnection in finite (closed or periodic) systems. The emphasis is on the magnitude of energy released and transferred to plasma heating in configurations that range from highly compressible to incompressible, based on the magnitude of the background beta (ratio of plasma pressure over magnetic pressure) and of a guide field in two-dimensional reconnection. As expected, the system becomes more incompressible, and the role of compressional heating diminishes, with increasing beta or increasing guide field. Nevertheless, compressional heating may dominate over Joule heating for values of the guide field of 2 or 3 (in relation to the reconnecting magnetic field component) and beta of 5-10. This result stems from the strong localization of the dissipation near the reconnection site, which is modeled based on particle simulation results. Imposing uniform resistivity, corresponding to a Lundquist number of 10(exp 3) to 10(exp 4), leads to significantly larger Ohmic heating. Increasing incompressibility greatly reduces the magnetic flux transfer and the amount of energy released, from approx. 10% of the energy associated with the reconnecting field component, for zero guide field and low beta, to approx. 0.2%-0.4% for large values of the guide field B(sub y0) > 5 or large beta. The results demonstrate the importance of taking into account plasma compressibility and localization of dissipation in investigations of heating by turbulent reconnection, possibly relevant for solar wind or coronal heating.

  9. The role of lateral magnetic reconnection in solar eruptive events

    Directory of Open Access Journals (Sweden)

    A. Soenen

    2009-10-01

    Full Text Available On 10–11 December 2005 a slow CME occurred in between two coronal streamers in the Western Hemisphere. SOHO/MDI magnetograms show a multipolar magnetic configuration at the photosphere consisting of a complex of active regions located at the CME source and two bipoles at the base of the lateral coronal streamers. White light observations reveal that the expanding CME affects both of the lateral streamers and induces the release of plasma within or close to them. These transient phenomena are possibly due to magnetic reconnections induced by the CME expansion that occurs either inside the streamer current sheet or between the CME flanks and the streamer. Our observations show that CMEs can be associated to not only a single reconnection process at a single location in the corona, but also to many reconnection processes occurring at different times and locations around the flux rope. Numerical simulations are used to demonstrate that the observed lateral reconnections can be reproduced. The observed secondary reconnections associated to CMEs may facilitate the CME release by globally decreasing the magnetic tension of the corona. Future CME models should therefore take into account the lateral reconnection effect.

  10. Reconnection in turbulent astrophysical fluids

    CERN Document Server

    Lazarian, A; Vishniac, E; Kowal, G

    2014-01-01

    Magnetic reconnection is a fundamental process of magnetic field topology change. We analyze the connection of this process with turbulence which is ubiquitous in astrophysical environments. We show how Lazarian & Vishniac (1999) model of turbulent reconnection is connected to the experimentally proven concept of Richardson diffusion and discuss how turbulence violates the generally accepted notion of magnetic flux freezing. We note that in environments that are laminar initially turbulence can develop as a result of magnetic reconnection and this can result in flares of magnetic reconnection in magnetically dominated media. In particular, magnetic reconnection can initially develop through tearing, but the transition to the turbulent state is expected for astrophysical systems. We show that turbulent reconnection predictions corresponds to the Solar and solar wind data.

  11. Plasmoid Ejections and Loop Contractions in an Eruptive M7.7 Solar Flare: Evidence of Particle Acceleration and Heating in Magnetic Reconnection Outflows

    CERN Document Server

    Liu, Wei; Petrosian, Vahe'

    2013-01-01

    Where particle acceleration and plasma heating take place in relation to magnetic reconnection is a fundamental question for solar flares. We report analysis of an M7.7 flare on 2012 July 19 observed by SDO/AIA and RHESSI. Bi-directional outflows in forms of plasmoid ejections and contracting cusp-shaped loops originate between an erupting flux rope and underlying flare loops at speeds of typically 200-300 km/s up to 1050 km/s. These outflows are associated with spatially separated double coronal X-ray sources with centroid separation decreasing with energy. The highest temperature is located near the nonthermal X-ray loop-top source well below the original heights of contracting cusps near the inferred reconnection site. These observations suggest that the primary loci of particle acceleration and plasma heating are in the reconnection outflow regions, rather than the reconnection site itself. In addition, there is an initial ascent of the X-ray and EUV loop-top source prior to its recently recognized descen...

  12. Reconnection Diffusion and Star Formation

    OpenAIRE

    Lazarian, A.; Santos-Lima, R.; Pino, E. de Gouveia Dal

    2010-01-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology or reconnect in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as the magnetic reconnection is concerned. This makes it m...

  13. Interchange Reconnection Alfven Wave Generation

    OpenAIRE

    Lynch, B. J.; Edmondson, J. K.; Li, Y.

    2014-01-01

    Given recent observational results of interchange reconnection processes in the solar corona and the theoretical development of the S-Web model for the slow solar wind, we extend the analysis of the 3D MHD simulation of interchange reconnection by Edmondson et al. (Astrophys. J. 707, 1427, 2009). Specifically, we analyze the consequences of the dynamic streamer-belt jump that corresponds to flux opening by interchange reconnection. Information about the magnetic field restru...

  14. Colour reconnection in Herwig

    Energy Technology Data Exchange (ETDEWEB)

    Roehr, Christian; Gieseke, Stefan [Karlsruhe Institute of Technology, Karlsruhe (Germany); Siodmok, Andrzej [The University of Manchester, Manchester (United Kingdom)

    2012-07-01

    As the LHC's quick step-up in luminosity necessarily comes with increasing pile-up activity accompanying every event of interest, the Monte Carlo event generators have to come up with proper models of soft inclusive hadron collisions. Moreover, an irreducible background of hadronic activity, the underlying event, is adherent to the single hard hadron collisions themselves. We report on colour reconnection in Herwig, which provides improvements in these two fields of current research.

  15. Reconnecting to the Biosphere

    OpenAIRE

    Folke, Carl; Jansson, Åsa; Rockström, Johan; Olsson, Per; Carpenter, Stephen R.; Chapin, F. Stuart, III; Crépin, Anne-Sophie; Daily, Gretchen; Danell, Kjell; Ebbesson, Jonas; Elmqvist, Thomas; Galaz, Victor; Moberg, Fredrik; Nilsson, Måns; Österblom, Henrik

    2011-01-01

    Humanity has emerged as a major force in the operation of the biosphere, with a significant imprint on the Earth System, challenging social–ecological resilience. This new situation calls for a fundamental shift in perspectives, world views, and institutions. Human development and progress must be reconnected to the capacity of the biosphere and essential ecosystem services to be sustained. Governance challenges include a highly interconnected and faster world, cascading social–ecological...

  16. Magnetic Reconnection in Astrophysical Environments

    Science.gov (United States)

    Lazarian, Alex; Eyink, Gregory L.; Vishniac, Ethan T.; Kowal, Grzegorz

    Magnetic reconnection is a process that changes magnetic field topology in highly conducting fluids. Traditionally, magnetic reconnection was associated mostly with solar flares. In reality, the process must be ubiquitous as astrophysical fluids are magnetized and motions of fluid elements necessarily entail crossing of magnetic frozen in field lines and magnetic reconnection. We consider magnetic reconnection in realistic 3D geometry in the presence of turbulence. This turbulence in most astrophysical settings is of pre-existing nature, but it also can be induced by magnetic reconnection itself. In this situation turbulent magnetic field wandering opens up reconnection outflow regions, making reconnection fast. We discuss Lazarian and Vishniac (1999) model of turbulent reconnection, its numerical and observational testings, as well as its connection to the modern understanding of the Lagrangian properties of turbulent fluids. We show that the predicted dependences of the reconnection rates on the level of MHD turbulence make the generally accepted Goldreich and Sridhar (1995) model of turbulence self-consistent. Similarly, we argue that the well-known Alfvén theorem on flux freezing is not valid for the turbulent fluids and therefore magnetic fields diffuse within turbulent volumes. This is an element of magnetic field dynamics that was not accounted by earlier theories. For instance, the theory of star formation that was developing assuming that it is only the drift of neutrals that can violate the otherwise perfect flux freezing, is affected and we discuss the consequences of the turbulent diffusion of magnetic fields mediated by reconnection. Finally, we briefly address the first order Fermi acceleration induced by magnetic reconnection in turbulent fluids.

  17. Energetic particles in magnetotail reconnection

    Science.gov (United States)

    Peng, Ivy Bo; Vencels, Juris; Lapenta, Giovanni; Divin, Andrey; Vaivads, Andris; Laure, Erwin; Markidis, Stefano

    2015-04-01

    We carried out a 3D fully kinetic simulation of Earth's magnetotail magnetic reconnection to study the dynamics of energetic particles. We developed and implemented a new relativistic particle mover in iPIC3D, an implicit Particle-in-Cell code, to correctly model the dynamics of energetic particles. Before the onset of magnetic reconnection, energetic electrons are found localized close to current sheet and accelerated by lower hybrid drift instability. During magnetic reconnection, energetic particles are found in the reconnection region along the x-line and in the separatrices region. The energetic electrons are first present in localized stripes of the separatrices and finally cover all the separatrix surfaces. Along the separatrices, regions with strong electron deceleration are found. In the reconnection region, two categories of electron trajectory are identified. First, part of the electrons are trapped in the reconnection region, bouncing a few times between the outflow jets. Second, part of the electrons pass the reconnection region without being trapped. Different from electrons, energetic ions are localized on the reconnection fronts of the outflow jets.

  18. Observations of Colliding Reconnection Jets in the Solar Wind

    Science.gov (United States)

    Eriksson, S.; Newman, D. L.; Lapenta, G.; Angelopoulos, V.; Goldman, M. V.

    2013-12-01

    The existence of multiple X-lines in a single current sheet is believed to generate flux ropes which appear as topological O-line regions (magnetic islands) in a 2D cross-section. The O-line region is also considered a place where the reconnection jets from two X-lines collide. We present the first multi-spacecraft observations at asymmetric current sheets in the solar wind which are in agreement with kinetic reconnection simulations of colliding jets. Current sheets in the solar wind thus support the formation of multiple X-lines and flux ropes.

  19. Radiative Magnetic Reconnection in Astrophysics

    Science.gov (United States)

    Uzdensky, Dmitri

    2014-10-01

    Traditional magnetic reconnection has mostly focused on relatively tenuous solar-system environments, where radiation can be ignored. In contrast, in many astrophysical situations the energy density in the reconnection region is so high that radiation becomes important. I will give an overview of our recent progress in understanding radiative magnetic reconnection -- a new frontier in plasma astrophysics. I will describe how the key radiative effects, such as radiative cooling, radiation pressure, and Compton drag, affect reconnection dynamics and particle acceleration. I will illustrate these ideas with specific astrophysical examples, including magnetar flares; black-hole accretion-disk coronae; reconnection powering high-energy emission in pulsar magnetospheres; and GeV-range gamma-ray flares in the Crab Nebula. Work supported by DoE and NASA.

  20. Numerical Studies of Weakly Stochastic Magnetic Reconnection

    OpenAIRE

    G. Kowal; Lazarian, A.; E. T. Vishniac; Otmianowska-Mazur, K.

    2008-01-01

    We study the effects of turbulence on magnetic reconnection using three-dimensional numerical simulations. This is the first attempt to test a model of fast magnetic reconnection proposed by Lazarian & Vishniac (1999), which assumes the presence of weak, small-scale magnetic field structure near the current sheet. This affects the rate of reconnection by reducing the transverse scale for reconnection flows and by allowing many independent flux reconnection events to occur si...

  1. Effect of interchange instability on magnetic reconnection

    OpenAIRE

    Lyatsky, W.; M. L. Goldstein

    2013-01-01

    We present here the results of a study of interacting magnetic fields that involves a force normal to the reconnection layer. In the presence of such force, the reconnection layer becomes unstable to interchange disturbances. The interchange instability results in formation of tongues of heated plasma that leaves the reconnection layer through its wide surface rather than through its narrow ends, as is the case in traditional magnetic reconnection models. This plasma flow out of the reconnect...

  2. Effect of interchange instability on magnetic reconnection

    Directory of Open Access Journals (Sweden)

    W. Lyatsky

    2013-06-01

    Full Text Available We present here the results of a study of interacting magnetic fields that involves a force normal to the reconnection layer. In the presence of such force, the reconnection layer becomes unstable to interchange disturbances. The interchange instability results in formation of tongues of heated plasma that leaves the reconnection layer through its wide surface rather than through its narrow ends, as is the case in traditional magnetic reconnection models. This plasma flow out of the reconnection layer facilitates the removal of plasma from the layer and leads to fast reconnection. The proposed mechanism provides fast reconnection of interacting magnetic fields and does not depend on the thickness of the reconnection layer. This instability explains the strong turbulence and bidirectional streaming of plasma that is directed toward and away from the reconnection layer that is observed frequently above reconnection layers. The force normal to the reconnection layer also accelerates the removal of plasma islands appearing in the reconnection layer during turbulent reconnection. In the presence of this force normal to the reconnection layer, these islands are removed from the reconnection layer by the "buoyancy force", as happens in the case of interchange instability that arises due to the polarization electric field generated at the boundaries of the islands.

  3. Intuitive approach to magnetic reconnection

    International Nuclear Information System (INIS)

    Two reconnection problems are considered. The first problem concerns global physics. The plasma in the global reconnection region is in magnetostatic equilibrium. It is shown that this equilibrium can be uniquely characterized by a set of constraints. During reconnection and independently of the local reconnection physics, these constraints can be uniquely evolved from any initial state. The second problem concerns Petschek reconnection. Petschek's model for fast reconnection, which is governed by resistive MHD equations with constant resistivity is not validated by numerical simulations. Malyshkin et al.[Phys. Plasmas 12, 102920 (2005)], showed that the reason for the discrepancy is that Petschek did not employ Ohm's law throughout the local diffusion region, but only at the X-point. A derivation of Petschek reconnection, including Ohm's law throughout the entire diffusion region, removes the discrepancy. This derivation is based largely on Petschek's original 1964 calculation [in AAS-NASA Symposium on Solar Flares (National Aeronautics and Space Administration, Washington, D.C., 1964), NASA SP50, p. 425]. A useful physical interpretation of the role which Ohm's law plays in the diffusion region is presented.

  4. Intuitive approach to magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Kulsrud, Russell M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08544 (United States)

    2011-11-15

    Two reconnection problems are considered. The first problem concerns global physics. The plasma in the global reconnection region is in magnetostatic equilibrium. It is shown that this equilibrium can be uniquely characterized by a set of constraints. During reconnection and independently of the local reconnection physics, these constraints can be uniquely evolved from any initial state. The second problem concerns Petschek reconnection. Petschek's model for fast reconnection, which is governed by resistive MHD equations with constant resistivity is not validated by numerical simulations. Malyshkin et al.[Phys. Plasmas 12, 102920 (2005)], showed that the reason for the discrepancy is that Petschek did not employ Ohm's law throughout the local diffusion region, but only at the X-point. A derivation of Petschek reconnection, including Ohm's law throughout the entire diffusion region, removes the discrepancy. This derivation is based largely on Petschek's original 1964 calculation [in AAS-NASA Symposium on Solar Flares (National Aeronautics and Space Administration, Washington, D.C., 1964), NASA SP50, p. 425]. A useful physical interpretation of the role which Ohm's law plays in the diffusion region is presented.

  5. Intuitive approach to magnetic reconnection

    Science.gov (United States)

    Kulsrud, Russell M.

    2011-11-01

    Two reconnection problems are considered. The first problem concerns global physics. The plasma in the global reconnection region is in magnetostatic equilibrium. It is shown that this equilibrium can be uniquely characterized by a set of constraints. During reconnection and independently of the local reconnection physics, these constraints can be uniquely evolved from any initial state. The second problem concerns Petschek reconnection. Petschek's model for fast reconnection, which is governed by resistive MHD equations with constant resistivity is not validated by numerical simulations. Malyshkin et al. [Phys. Plasmas 12, 102920 (2005)], showed that the reason for the discrepancy is that Petschek did not employ Ohm's law throughout the local diffusion region, but only at the X-point. A derivation of Petschek reconnection, including Ohm's law throughout the entire diffusion region, removes the discrepancy. This derivation is based largely on Petschek's original 1964 calculation [in AAS-NASA Symposium on Solar Flares (National Aeronautics and Space Administration, Washington, D.C., 1964), NASA SP50, p. 425]. A useful physical interpretation of the role which Ohm's law plays in the diffusion region is presented.

  6. Turbulent General Magnetic Reconnection

    CERN Document Server

    Eyink, Gregory L

    2014-01-01

    Plasma flows with an MHD-like turbulent inertial range, such as the solar wind, require a generalization of General Magnetic Reconnection (GMR) theory. We introduce the slip-velocity source vector, which gives the rate of development of slip velocity per unit arc length of field line. The slip source vector is the ratio of the curl of the non ideal electric field in the Generalized Ohm's Law and the magnetic field strength. It diverges at magnetic nulls, unifying GMR with magnetic null-point reconnection. Only under restrictive assumptions is the slip velocity related to the gradient of the quasi potential (integral of parallel electric field along field lines). In a turbulent inertial range the curl becomes extremely large while the parallel component is tiny, so that line slippage occurs even while ideal MHD becomes accurate. The resolution of this paradox is that ideal MHD is valid for a turbulent inertial-range only in a weak sense which does not imply magnetic line freezing. The notion of weak solution i...

  7. Magnetic reconnection launcher

    Science.gov (United States)

    Cowan, Maynard (Albuquerque, NM)

    1989-01-01

    An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in synchrony with the passage of a projectile. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile by magnetic reconnection as the gap portion of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile at both the rear vertical surface of the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils and fit loosely within the gap between the opposing coils.

  8. NS [Nuclear Safety] update. Current safety and security activities and developments taking place in the Department of Nuclear Safety and Security, Issue no. 8, September 2008

    International Nuclear Information System (INIS)

    The current issue presents information about the following activities: 1) International Workshops on Denial of Shipments raise awareness of suppliers, recipients, regulators, carriers/consignors and international organizations of the problems relating to denials of radioactive shipments to determine effective measures to prevent or reduce the instances of shipment denials and delays. 2) Communication and knowledge Management in the Department of Nuclear Safety and Security (NS). 3) Nuclear Security at the Beijing Olympics - an excellent example of the IAEA's work in protecting large scale public events. 4) The Incident and Emergency Centre's Participation in the ConvEx 3 Exercise, 9-10 July 2008, which took place at the Laguna Verde nuclear power plant in Mexico. During the 43 hour long exercise, the Incident and Emergency Centre (IEC) was fully activated. Staff members participating in the exercise represented different departments within the IAEA and the diversity of their knowledge and experience ensured an effective response

  9. NS [Nuclear Safety] update. Current safety and security activities and developments taking place in the Department of Nuclear Safety and Security, Issue no. 6, March 2008

    International Nuclear Information System (INIS)

    The current issue presents information about the following activities: 1) International Conference on Illicit Nuclear Trafficking which took place in November 2007 in Edinburgh. The principal aim of the conference was to examine the threat and context of illicit nuclear trafficking of radioactive material, specifically, what is being done to combat such trafficking and where more needs to be done. The conference was also to consider how the obligations and commitments of the legally binding and non-binding international instruments could be and are being implemented by various States. 2) INSAG Message on Nuclear Safety Infrastructure in which the INSAG Chairman Richard Meserve addressed nuclear safety in the current context and various issues that warrant special attention. 3) approved for publication the Safety Requirements publication on Safety of Nuclear Fuel Cycle Facilities. 4) The Asian Nuclear Safety Network (ANSN)

  10. Observational Signatures of Magnetic Reconnection

    Science.gov (United States)

    Savage, Sabrina

    2014-01-01

    Magnetic reconnection is often referred to as the primary source of energy release during solar flares. Directly observing reconnection occurring in the solar atmosphere, however, is not trivial considering that the scale size of the diffusion region is magnitudes smaller than the observational capabilities of current instrumentation, and coronal magnetic field measurements are not currently sufficient to capture the process. Therefore, predicting and studying observationally feasible signatures of the precursors and consequences of reconnection is necessary for guiding and verifying the simulations that dominate our understanding. I will present a set of such observations, particularly in connection with long-duration solar events, and compare them with recent simulations and theoretical predictions.

  11. Reconnection Rate in Collisionless Magnetic Reconnection under Open Boundary Conditions

    International Nuclear Information System (INIS)

    Collisionless magnetic reconnection is studied by using two-dimensional Darwin particle-in-cell simulations with different types of open boundary conditions. The simulation results indicate that reconnection rates are strongly dependent on the imposed boundary conditions of the magnetic field Bx in the inward side. Under the zero- gradient Bx boundary condition, the reconnection rate quickly decreases after reaching its maximum and no steady-state is found. Under both electromagnetic and magnetosonic boundary conditions, the system can reach a quasi-steady state. However, the reconnection rate Er ? 0.08 under the electromagnetic boundary condition is weaker than Er ? 0.13 under the magnetosonic boundary condition. (physics of gases, plasmas, and electric discharges)

  12. Three species collisionless reconnection: Effect of O+ on magnetotail reconnection

    OpenAIRE

    Shay, M. A.; Swisdak, M.

    2004-01-01

    The nature of collisionless reconnection in a three-species plasma composed of a heavy species, protons, and electrons is examined. Besides the usual two length scales present in two-species reconnection, there are two additional larger length scales in the system: one associated with a "heavy whistler" which produces a large scale quadrupolar out-of-plane magnetic field, and one associated with the "heavy Alfven" wave which can slow the outflow speed and thus the reconnecti...

  13. Comparison of secondary islands in collisional reconnection to Hall reconnection

    OpenAIRE

    Shepherd, L. S.; Cassak, P. A.

    2010-01-01

    Large-scale resistive Hall-magnetohydrodynamic (Hall-MHD) simulations of the transition from Sweet-Parker (collisional) to Hall (collisionless) magnetic reconnection are presented, the first to separate effects of secondary islands from collisionless effects. Three main results are described. There exists a regime in which secondary islands occur without collisionless effects when the thickness of the dissipation regions exceed ion gyroscales. The reconnection rate with seco...

  14. Analysis of the chemical stability of the 1% sodium hypochlorite solution taking in consideration the place of storage and the amount of present solution in the bottle

    Directory of Open Access Journals (Sweden)

    Graziele BORIN

    2008-12-01

    Full Text Available Introduction and objective: This study had as objective to analyze theloss of the chlorine text of the 1% sodium hypochlorite solution stored in coolant and ambient temperature and in bottles of plastic amber and cloudy white plastic, leading in consideration the amount of existing solution in the bottles. Material and methods: 24 liters of solution had been used, which had been divided in two groups: group 1 (6 bottles of plastic amber and 6 white plastic bottles filled with 1.000 mL of the 1% sodium hypochlorite solution and group 2 (6 bottles of plastic amber and 6 white plastic bottles filled with 800 mL of solution.In the second group had been removed 50 mL of solution of each bottle on each week, while the bottles of group 1 had always remained full. The analysis of the chlorine text was carried through in the beginning and in the final period of 10 weeks through the method of titulometria of oxi-reduction or iodometria. Results and conclusion:For the analysis statistics it was used analysis of the variance (Anovafollowed by the test of Tukey, to the level of significance of 5%, where it can be verified that the amount of present solution in the interior of the bottles contributed for the instability of the solution, whatever the place and the bottle of storage, and the full bottles had kept the chlorinetext of the solutions higher.

  15. NS [Nuclear Safety] update. Current safety and security activities and developments taking place in the Department of Nuclear Safety and Security. Issue no. 2, January 2007

    International Nuclear Information System (INIS)

    This newsletter reports on the training of cardiologists in radiation protection, IAEA's safety review services and the operational safety assessment review team (OSART), the international conference on management of spent fuel and the recent INSAG (International Nuclear Safety Group) publications. The IAEA has begun a major international initiative to train interventional cardiologists in radiation protection. Starting with the first course in May 2004, so far 6 regional and 3 national training courses have been conducted with the participation of over 400 health professionals putting the IAEA in a leading role in this area. A programme of two days' training has been developed, covering possible and observed radiation effects among patients and staff, international standards, dose management techniques, examples of good and bad practice and examples indicating prevention of possible injuries as a result of good practice in radiation protection. The training material is freely available on CD and will be placed on the Radiological Protection of Patients website at http://rpop.iaea.org/

  16. Effects of proton irradiation on a gas phase in which condensation takes place. I Negative Mg-26 anomalies and Al-26. [applied to solar and meteoritic composition

    Science.gov (United States)

    Heymann, D.; Dziczkaniec, M.; Walker, A.; Huss, G.; Morgan, J. A.

    1978-01-01

    In the present paper, isotopic effects in magnesium generated in a proton-irradiated gas phase are examined, taking only (p,n), (p,d), and (p, alpha) reactions in magnesium, aluminum, and silicon into consideration. In the presence of proton radiation, the three elements are 'removed' from the gas phase by condensation. It is required that a value of Al-26/Al-27 greater than 6 times 10 to the -5th must be reached, consistent with the value deduced by Lee Papanastassiou, and Wasserburg (1976) from their studies of the Allende meteorite. The calculations show that fast aluminum condensation reduces the required proton fluence substantially, that a significant fraction of aluminum remains uncondensed when the above value of the Al-26/Al-27 ratio is reached, that a detectable MG-24 excess is very likely to occur, that detectable negative MG-28 anomalies can be generated, and that proton fluxes and irradiation times can be varied simultaneously, and over a wide range of values, without significant changes in the required proton fluence.

  17. Turbulent Reconnection and Its Implications

    CERN Document Server

    Lazarian, Alex; Vishniac, Ethan T; Kowal, Grzegorz

    2015-01-01

    Magnetic reconnection is a process of magnetic field topology change, which is one of the most fundamental processes in magnetized plasmas. In most astrophysical environments the Reynolds numbers are large and therefore the transition to turbulence is inevitable. This turbulence must be taken into account for any theory of magnetic reconnection, since the initially laminar configurations can transit to the turbulence state, what is demonstrated by 3D high resolution numerical simulations. We discuss ideas of how turbulence can modify reconnection with the focus on the Lazarian & Vishniac (1999) reconnection model and present numerical evidence supporting the model and demonstrate that it is closely connected to the concept of Richardson diffusion and compatible with the Lagrangian dynamics of magnetized fluids. We point out that the Generalized Ohm's Law, that accounts for turbulent motion, predicts the subdominance of the microphysical plasma effects for a realistically turbulent media. We show that on o...

  18. Plasma Instabilities in Large Scale Magnetic Reconnection Associated with Eruptive Solar Coronal Events

    Science.gov (United States)

    Guo, Lijia

    Magnetic reconnection is a process responsible for the conversion of magnetic energy into plasma kinetic and thermal energy in laboratory, space, and astrophysical plasmas. The typical time scales of solar dynamic events indicate the existence of fast reconnection. In recent years, there have been significant new developments in reconnection theory that provide alternative and more convincing mechanisms for fast reconnection. One of them is the plasmoid instability. The plasmoid instability takes place in an extended current sheet when the Lundquist number exceeds a critical value (Loureiro et al. 2007, Bhattacharjee et al. 2009). The fragmentation of a current sheet in the high-Lundquist-number regime caused by the plasmoid instability has been proposed as a possible mechanism for fast reconnection scenario by comparing the distribution of plasmoids obtained from the Large Angle and Spectrometric Coronagraph (LASCO) observational data of a coronal mass ejection event with a resistive magnetohydrodynamic simulation of a similar event. The observational data are analyzed using visual inspection, whereas the numerical data are analyzed using both visual inspection and a more precise topological method. Contrasting the observational data with numerical data analyzed with both methods, we identify a major limitation of the visual inspection method, due to the difficulty in resolving smaller plasmoids. This result raises questions about reports of log-normal distributions of plasmoids and other coherent features in the recent literature. Based on nonlinear scaling relations of the plasmoid instability, we infer a lower bound on the current sheet width, assuming the underlying mechanism of current sheet broadening is the resistive diffusion. Supra-arcade downflows (SADs) used to be confused with plasmoids, but unlike plasmoids they are in fact low-emission, elongated, finger-like features usually observed in coronal active regions above post-eruption flare arcades. Observations exhibit downward-moving SADs intertwined with upward-moving spikes. Whereas SADs are dark voids, spikes are brighter, denser structures. Although SADs have been studied intensively during the last decade, the mechanism for the formation of SADs remains unclear. In our three-dimensional resistive MHD simulations, we demonstrate that secondary ballooning/Rayleigh-Taylor instabilities develop in the downstream region of a reconnecting current sheet. The instabilities result in the formation of low-density coherent structures that resemble SADs, and high-density structures that appear to be spike-like. Comparisons between the simulation results and observations suggest that secondary ballooning/Rayleigh-Taylor instabilities of reconnecting current sheets provide a plausible mechanism for SADs and spikes. The first chapter of this thesis is the introduction of the coronal mass ejection, the plasmoid instability, the Rayleigh-Taylor instability and supra-arcade downflows. The second chapter introduces the study of the plasrnoid instability in post-eruption current sheets. The third chapter demonstrates the study of ballooning/Rayleigh-Taylor instabilities as a mechanism for supra-arcade downflows (SADs). The last chapter contains summary and discussion of future works.

  19. Particle interactions with single or multiple 3D solar reconnecting current sheets

    CERN Document Server

    Anastasiadis, A; Efthymiopoulos, C

    2008-01-01

    The acceleration of charged particles (electrons and protons) in flaring solar active regions is analyzed by numerical experiments. The acceleration is modelled as a stochastic process taking place by the interaction of the particles with local magnetic reconnection sites via multiple steps. Two types of local reconnecting topologies are studied: the Harris-type and the X-point. A formula for the maximum kinetic energy gain in a Harris-type current sheet, found in a previous work of ours, fits well the numerical data for a single step of the process. A generalization is then given approximating the kinetic energy gain through an X-point. In the case of the multiple step process, in both topologies the particles' kinetic energy distribution is found to acquire a practically invariant form after a small number of steps. This tendency is interpreted theoretically. Other characteristics of the acceleration process are given, such as the mean acceleration time and the pitch angle distributions of the particles.

  20. Spontaneous current-layer fragmentation and cascading reconnection in solar flares: I. Model and analysis

    CERN Document Server

    Bárta, Miroslav; Karlický, Marian; Skála, Jan

    2010-01-01

    Magnetic reconnection is commonly considered as a mechanism of solar (eruptive) flares. A deeper study of this scenario reveals, however, a number of open issues. Among them is the fundamental question, how the magnetic energy is transferred from large, accumulation scales to plasma scales where its actual dissipation takes place. In order to investigate this transfer over a broad range of scales we address this question by means of high-resolution MHD simulation. The simulation results indicate, that the magnetic-energy transfer to small scales is realized via a cascade of consecutive smaller and smaller flux-ropes (plasmoids), in analogy with the vortex-tube cascade in (incompressible) fluid dynamics. Both tearing and (driven) coalescence processes are equally important for the consecutive fragmentation of the magnetic field (and associated current density) to smaller elements. At the later stages a dynamic balance between tearing and coalescence processes reveals a steady (power-law) scaling typical for ca...

  1. Coupling between reconnection and Kelvin-Helmholtz instabilities in collisionless plasmas

    Science.gov (United States)

    Grasso, D.; Borgogno, D.; Pegoraro, F.; Tassi, E.

    2009-04-01

    In a collisionless plasma, when reconnection instability takes place, strong shear flows may develop. Under appropriate conditions these shear flows become unstable to the Kelvin-Helmholtz instability. Here, we investigate the coupling between these instabilities in the framework of a four-field model. Firstly, we recover the known results in the low ? limit, ? being the ratio between the plasma and the magnetic pressure. We concentrate our attention on the dynamical evolution of the current density and vorticity sheets which evolve coupled together according to a laminar or a turbulent regime. A three-dimensional extension in this limit is also discussed. Secondly, we consider finite values of the ? parameter, allowing for compression of the magnetic and velocity fields along the ignorable direction. We find that the current density and vorticity sheets now evolve separately. The Kelvin-Helmholtz instability involves only the vorticity field, which ends up in a turbulent regime, while the current density maintains a laminar structure.

  2. Reconnection in turbulent astrophysical fluids

    OpenAIRE

    Lazarian, A.; Eyink, G.; E. Vishniac; G. Kowal

    2014-01-01

    Magnetic reconnection is a fundamental process of magnetic field topology change. We analyze the connection of this process with turbulence which is ubiquitous in astrophysical environments. We show how Lazarian & Vishniac (1999) model of turbulent reconnection is connected to the experimentally proven concept of Richardson diffusion and discuss how turbulence violates the generally accepted notion of magnetic flux freezing. We note that in environments that are laminar init...

  3. Magnetic reconnection via current sheets

    International Nuclear Information System (INIS)

    A general picture of magnetic reconnection in the frame work of 2D incompressible resistive magnetohydrodynamic theory is presented. Numerical studies of (quasi-) steady state driven reconnection reveal current sheet formation for Mach numbers M = u/vA exceeding the Sweet-Parker reconnection rate MSP = ?/LvA)1/2. Since the thickness ? of the current sheet is found to be invariant to a change of the resistivity ?, its length ? increases rapidly with decreasing ? or increasing M, which can be written in the form ? ? (M/MSP)4, so that ? reaches the global system size L within a short range of the parameter M/MSP. The reconnection process is therefore rather slow. This picture agrees in essence with Syrovatsky's theory of current sheets and disproves Petschek's mechanism of fast magnetic reconnection. A theory of the solution in the external and in the diffusion region is developed and analytical expressions in agreement with the simulation results are obtained by means of a variational principle. For sufficiently long current sheets the tearing mode becomes unstable in spite of the stabilizing effect of the inhomogeneous flow. The tearing mode contributes to the overall reconnection process, but a general assessment of this effect in the asymptotic regime of almost vanishing ? is difficult

  4. Designated Places

    California Department of Resources — Census 2000 Place Names provides a seamless statewide GIS layer of places, including census designated places (CDP), consolidated cities, and incorporated places,...

  5. Diagnostics of solar flare reconnection

    Directory of Open Access Journals (Sweden)

    M. Karlický

    2004-01-01

    Full Text Available We present new diagnostics of the solar flare reconnection, mainly based on the plasma radio emission. We propose that the high-frequency (600-2000 MHz slowly drifting pulsating structures map the flare magnetic field reconnection. These structures correspond to the radio emission from plasmoids which are formed in the extended current sheet due to tearing and coalescence processes. An increase of the frequency drift of the drifting structures is interpreted as an increase of the reconnection rate. Using this model, time scales of slowly drifting pulsating structure observed during the 12 April 2001 flare by the Trieste radiopolarimeter with high time resolution (1 ms are interpreted as a radio manifestation of electron beams accelerated in the multi-scale reconnection process. For short periods Fourier spectra of the observed structure have a power-law form with power-law indices in the 1.3-1.6 range. For comparison the 2-D MHD numerical modeling of the multi-scale reconnection is made and it is shown that Fourier spectrum of the reconnection dissipation power has also a power-law form, but with power-law index 2. Furthermore, we compute a time evolution of plasma parameters (density, magnetic field etc in the 2-D MHD model of the reconnection. Then assuming a plasma radio emission from locations, where the 'double-resonance' instability generates the upper-hybrid waves due to unstable distribution function of suprathermal electrons, we model radio spectra. Effects of the MHD turbulence are included. The resulting spectra are compared with those observed. It is found, that depending on model parameters the lace bursts and the decimetric spikes can be reproduced. Thus, it is shown that the model can be used for diagnostics of the flare reconnection process. We also point out possible radio signatures of reconnection outflow termination shocks. They are detected as type II-like herringbone structures in the 200-700 MHz frequency range. Finally, we mention H? spectra of the 18 September 1995 eruptive prominence which indicate the bi-directional plasma flow as expected in the reconnection process.

  6. The scaling of reconnection rate in relativistic collisionless magnetic reconnection

    Science.gov (United States)

    Liu, Yi-Hsin; Daughton, William; Guo, Fan; Li, Hui; Hesse, Michael

    2014-10-01

    Relativistic reconnection is suggested to play a crucial role in the energy release and non-thermal particle acceleration in pulsar winds, gamma-ray burst and astrophysical jets from active galactic nuclei or black holes. While there has been significant progress in understanding the particle spectrum generated during reconnection, the scaling of the reconnection in relativistic regimes remains unclear. Several numerical studies suggest that the reconnection rate is only enhanced mildly from ~ 0 . 1 in the non-relativistic regime up to ~ 0 . 3 in the strongly relativistic regime, which appears to be consistent with the prediction of Lyubarsky. In this work, first-principle fully kinetic simulations are systematically conducted to explore this issue. In particular, scaling-studies of reconnection rate as function of various parameters, such as the magnetization parameter, upstream pressure and guide field, are performed. Relativistic Ohm's law is analyzed to identify the mechanism of flux-breaking. Theoretical models are derived and compared against the observed scaling.

  7. Fast reconnection does not explain internal disruption

    International Nuclear Information System (INIS)

    It is shown that a fast reconnection in non viscous plasmas converts a significant part of the liberated magnetic energy into kinetic eddies: such a process cannot persist long enough to allow complete reconnection

  8. Relation of Astrophysical Turbulence and Magnetic Reconnection

    OpenAIRE

    Lazarian, A.; Eyink, G.; E. Vishniac

    2011-01-01

    Astrophysical fluids are generically turbulent and this must be taken into account for most transport processes. We discuss how the preexisting turbulence modifies magnetic reconnection and how magnetic reconnection affects the MHD turbulent cascade. We show the intrinsic interdependence and interrelation of magnetic turbulence and magnetic reconnection, in particular, that strong magnetic turbulence in 3D requires reconnection and 3D magnetic turbulence entails fast reconne...

  9. Reconnection in a Weakly Stochastic Field

    OpenAIRE

    Lazarian, A.; E. T. Vishniac

    1998-01-01

    We examine the effect of weak, small scale magnetic field structure on the rate of reconnection in a strongly magnetized plasma. This affects the rate of reconnection by reducing the transverse scale for reconnection flows, and by allowing many independent flux reconnection events to occur simultaneously. Allowing only for the first effect and using Goldreich and Sridhar's model of strong turbulence in a magnetized plasma with negligible intermittency, we find that the lower...

  10. Outflow structure and reconnection rate of the self-similar evolution model of fast magnetic reconnection

    OpenAIRE

    Nitta, Shin-ya

    2004-01-01

    In order to understand the nature of magnetic reconnection in ``free space'' which is free from any influence of external circumstances, I have studied the structure of spontaneous reconnection outflow using a shock tube approximation. The reconnection system of this case continues to expand self-similarly. This work aims 1) to solve the structure of reconnection outflow and 2) to clarify the determination mechanism of reconnection rate of the ``self-similar evolution model'...

  11. A review of astrophysical reconnection

    Science.gov (United States)

    Uzdensky, Dmitri

    Magnetic reconnection is a basic plasma process involving rapid rearrangement of magnetic field topology. It often leads to violent release of magnetic energy and its conversion to the plasma thermal and kinetic energy as well as nonthermal particle acceleration. It is thus believed to power numerous types of explosive phenomena both inside and outside the Solar system, including various kinds of high-energy flares. In this talk I will first give an overview of astrophysical systems where reconnection is believed to play an important role. Examples include pulsed high-energy emission in pulsar magnetospheres; gamma-ray flares in pulsar wind nebulae and AGN/blazar jets; Gamma-Ray Bursts; and giant flares in magnetar systems. I will also analyze the physical conditions of the plasma in some of these astrophysical systems and will discuss the fundamental physical differences between various astrophysical instances of magnetic reconnection and the more familiar solar and space examples of reconnection. In particular, I will demonstrate the importance of including radiative effects in order to understand astrophysical magnetic reconnection and in order to connect our theoretical models with the observed radiation signatures.

  12. Magnetic reconnection via current sheets

    International Nuclear Information System (INIS)

    A general picture of magnetic reconnection in the framework of 2-D incompressible resistive magnetohydrodynamic theory is presented. Numerical studies of (quasi-) steady-state driven reconnection reveal current sheet formation for Mach numbers M = u/v/sub A/ exceeding the Sweet--Parker reconnection rate M/sub SP/ = (eta/Lv/sub A/)1/sup //2. Since the thickness delta of the current sheet is found to be invariant to a change of the resistivity eta, its length ? increases rapidly with decreasing eta or increasing M, which can be written in the form ?approx.(M/M/sub SP/)4, so that ? reaches the global system size L within a short range of the parameter M/M/sub SP/. The results are rather insensitive to the particular choice of boundary conditions. Because of the presence of a current sheet, the overall reconnection process is quite slow. This picture essentially agrees with Syrovatsky's [Sov. Phys. JETP 33, 933 (1971)] theory and disproves Petschek's [AAS/NASA Symposium on the Physics of Solar Flares, (NASA, Washington, DC, 1964) p. 425] mechanism of fast magnetic reconnection. A theory of the solution in the external and in the diffusion region is developed and analytical expressions in agreement with the simulation results are obtained by means of a variational principle

  13. Major growth in coke production takes place

    International Nuclear Information System (INIS)

    U.S. petroleum coke production has increased 64% during the 10-year period from 1980 to 1990. This dramatic rise makes it timely to discuss the history and future of U.S. coking capacity, production, and processing. The article covers the properties and uses of the various grades of petroleum coke, as well as pricing and market trends

  14. Can amorphization take place in nanoscale interconnects?

    International Nuclear Information System (INIS)

    The trend of miniaturization has highlighted the problems of heat dissipation and electromigration in nanoelectronic device interconnects, but not amorphization. While amorphization is known to be a high pressure and/or temperature phenomenon, we argue that defect density is the key factor, while temperature and pressure are only the means. For nanoscale interconnects carrying modest current density, large vacancy concentrations may be generated without the necessity of high temperature or pressure due to the large fraction of grain boundaries and triple points. To investigate this hypothesis, we performed in situ transmission electron microscope (TEM) experiments on 200 nm thick (80 nm average grain size) aluminum specimens. Electron diffraction patterns indicate partial amorphization at modest current density of about 105 A cm?2, which is too low to trigger electromigration. Since amorphization results in drastic decrease in mechanical ductility as well as electrical and thermal conductivity, further increase in current density to about 7 × 105 A cm?2 resulted in brittle fracture failure. Our molecular dynamics (MD) simulations predict the formation of amorphous regions in response to large mechanical stresses (due to nanoscale grain size) and excess vacancies at the cathode side of the thin films. The findings of this study suggest that amorphization can precede electromigration and thereby play a vital role in the rnd thereby play a vital role in the reliability of micro/nanoelectronic devices. (paper)

  15. 2D Numerical Simulation of the Resistive Reconnection Layer

    OpenAIRE

    Uzdensky, Dmitri A.; Kulsrud, Russell M.

    1999-01-01

    In this paper we present a two-dimensional numerical simulation of a reconnection current layer in incompressible resistive magnetohydrodynamics with uniform resistivity in the limit of very large Lundquist numbers. We use realistic boundary conditions derived consistently from the outside magnetic field, and we also take into account the effect of the backpressure from the flow into the separatrix region. We find that within a few Alfven times the system reaches a steady st...

  16. Magnetopause reconnection and interlinked flux tubes

    Directory of Open Access Journals (Sweden)

    F. R. Cardoso

    2013-10-01

    Full Text Available Magnetic reconnection can be a continuous or a transient process. Global magnetohydrodynamics (MHD simulations are important tools to understand the relevant magnetic reconnection mechanisms and the resulting magnetic structures. We have studied magnetopause reconnection using a global 3-D MHD simulation in which the interplanetary magnetic field (IMF has been set to large positive By and large negative Bz components, i.e., a south-duskward direction. Flux tubes have been observed even during these constant solar wind conditions. We have focused on the interlinked flux tubes event resulting from time-dependent, patchy and multiple reconnection. At the event onset, two reconnection modes seem to occur simultaneously: a time-dependent, patchy and multiple reconnection for the subsolar region; and, a steady and large-scale reconnection for the regions far from the subsolar site.

  17. Empirical Modeling of Magnetotail Reconnection

    Science.gov (United States)

    Genestreti, K. J.; Fuselier, S.; Goldstein, J.; Nagai, T.; Eastwood, J. P.

    2014-12-01

    We present results of an empirical model of magnetotail reconnection, and examine empirical evidence constraining its cross-tail scale size. An empirical model for the location and rate of occurrence of the nightside near-Earth reconnection site is calculated as a function of both XGSM and YGSM from Cluster and Geotail observations. We find that the rate of occurrence of the ion-electron decoupling region is localized in YGSM and biased towards dusk. We update our empirical model to reflect the updated predicted ephemeris for the upcoming NASA Magnetospheric MultiScale (MMS) mission. Despite the recent change in the launch date of MMS, the predicted number of instances where MMS will encounter the reconnection region does not change from our previously determined value of 11±4. To lay the groundwork for further empirical modeling that accounts for the shape of the YGSM-dependent occurrence rate and estimates the cross-tail scale size, we analyze in situ observations of the reconnection region. Initial results constraining the cross-tail scale of an extended X-line, and the driving conditions that govern it, are presented.

  18. On phase diagrams of magnetic reconnection

    International Nuclear Information System (INIS)

    Recently, “phase diagrams” of magnetic reconnection were developed to graphically organize the present knowledge of what type, or phase, of reconnection is dominant in systems with given characteristic plasma parameters. Here, a number of considerations that require caution in using the diagrams are pointed out. First, two known properties of reconnection are omitted from the diagrams: the history dependence of reconnection and the absence of reconnection for small Lundquist number. Second, the phase diagrams mask a number of features. For one, the predicted transition to Hall reconnection should be thought of as an upper bound on the Lundquist number, and it may happen for considerably smaller values. Second, reconnection is never “slow,” it is always “fast” in the sense that the normalized reconnection rate is always at least 0.01. This has important implications for reconnection onset models. Finally, the definition of the relevant Lundquist number is nuanced and may differ greatly from the value based on characteristic scales. These considerations are important for applications of the phase diagrams. This is demonstrated by example for solar flares, where it is argued that it is unlikely that collisional reconnection can occur in the corona

  19. OBSERVATIONAL ANALYSIS OF MAGNETIC RECONNECTION SEQUENCE

    International Nuclear Information System (INIS)

    We conduct comprehensive analysis of an X2.0 flare to derive quantities indicative of magnetic reconnection in solar corona by following temporally and spatially resolved flare ribbon evolution in the lower atmosphere. The analysis reveals a macroscopically distinctive two-stage reconnection marked by a clear division in the morphological evolution, reconnection rate, and energy release rate. During the first stage, the flare brightening starts at and primarily spreads along the polarity inversion line (PIL) with the maximum apparent speed comparable to the local Alfven speed. The second stage is dominated by ribbon expansion perpendicular to the PIL at a fraction of the local Alfven speed. We further develop a data analysis approach, namely reconnection sequence analysis, to determine the connectivity and reconnection flux during the flare between a dozen magnetic sources defined from partitioning the photospheric magnetogram. It is found that magnetic reconnection proceeds sequentially between magnetic cells, and the observationally measured reconnection flux in major cells compare favorably with computations by a topological model of magnetic reconnection. The three-dimensional evolution of magnetic reconnection is discussed with respect to its implication on helicity transfer and energy release through reconnection.

  20. NUMERICAL STUDIES OF WEAKLY STOCHASTIC MAGNETIC RECONNECTION

    Directory of Open Access Journals (Sweden)

    G. Kowal

    2009-01-01

    Full Text Available We study the e ects of turbulence on magnetic reconnection using three-dimensional numerical simulations.This is the rst attempt to test the model of fast magnetic reconnection proposed by Lazarian & Vishniac (1999, which assumes the presence of weak, small-scale magnetic eld structure near the current sheet. This a ects the rate of reconnection by reducing the transverse scale for reconnection ows and by allowing many independent ux reconnection events to occur simultaneously. We performed a number of simulations to test the dependencies of the reconnection speed, de ned as the ratio of the in ow velocity to the Alfv n speed, on the turbulence power, the injection scale and resistivity. Our results show that turbulence signi cantly a ects the topology of magnetic eld near the di usion region and increases the thickness of the out ow region. We con rm the predictions of the Lazarian & Vishniac model. In particular, we report the growth of the reconnection speed proportional to V 2 l , where Vl is the amplitude of velocity at the injection scale. It depends on the injection scale linj as (linj=L2=3, where L is the size of the system, which is somewhat faster but still roughly consistent with the theoretical expectations. We also show that for 3D reconnection the Ohmic resistivity is important in the local reconnection events only, and the global reconnection rate in the presence of turbulence does not depend on it.

  1. Observed signatures of reconnection in the magnetotail

    International Nuclear Information System (INIS)

    Plasma and magnetic field data from Imp 6 are examined statistically to study the occurrence of reconnection in the near-earth region (within approx.20 R/sub E/) of the magnetotail. It is confirmed that the southward polarity of the magnetic field observed in the low-latitude magnetotail (within a few R/sub E/ of the estimated neutral sheet position) is strongly coupled to a tailward flow of plasma, as expected from the near-earth reconnection model. It is noted, however, that reconnection is not the unique source of the tailward flow, and plasma is seen to be flowing back and forth regardless of the occurrence of near-earth reconnection. It is fast tailward flow having speeds greater than about 400 km/s that is mostly due to near-earth reconnection. There is an indication that detectability of an associated signature in the auroral zone magnetic field is related to the reconnection rate

  2. Whistler dominated quasi-collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    A theory of fast quasi-collisionless reconnection is presented. For spatial scales smaller than the ion inertia length the electrons decouple from the ions and the dynamics is described by electron magnetohydrodynamics (EMHD). A qualitative analysis of the reconnection region is obtained, which is corroborated by numerical simulations. The main results are that in contrast to resistive reconnection no macroscopic current sheet is generated, and the reconnection rate is independent of the smallness parameters of the system, i.e. the electron inertia length and the dissipation coefficients. At larger scales the coupling to the ions is important, which, however, does not change the small-scale dynamics. The reconnection rate is only limited by ion inertia being independent of the electron inertia scale and the dissipation coefficients. Reconnection is much faster than in the absence of the whistler mode. (orig.)

  3. On the Rate of Spontaneous Magnetic Reconnection

    CERN Document Server

    Beresnyak, Andrey

    2013-01-01

    Magnetic reconnection is a topological rearrangement of the magnetic field lines, leading to the release of magnetic energy, which is thought to be associated with solar flares, coronal mass ejections and magnetospheric storms. Despite magnetic field lines are supposed to be frozen into the well-conducting plasma, the reconnection observed in nature is, typically, fast, so that the rate of convergence of the magnetic field lines is the fraction of the Alfven speed, v_A. The Sweet-Parker solution predicts reconnection rates which are negligible for the solar or astrophysical conditions, this have prompted research into collisionless reconnection. The stochasticity of magnetic field lines due to ambient turbulence leads to fast reconnection and the rate was predicted to be proportional to kinetic energy density of ambient turbulence. Also, tearing instability of the thin current sheet was proposed as a driver of resistivity-independent reconnection, which was shown to be consistent with two-dimensional simulati...

  4. Patchy Reconnection in the Solar Corona

    CERN Document Server

    Guidoni, Silvina E

    2011-01-01

    Supra-arcade downflows (SADs) and supra-arcade downflowing loops (SADLs) descending from reconnection regions toward solar post-flare arcades seem to be two different observational signatures of retracting, isolated reconnected flux tubes with irreducible three-dimensional geometries. This dissertation describes work in refining and improving a novel model of patchy reconnection, where only a small bundle of field lines is reconnected across a current sheet and forms a reconnected thin flux tube. Traditional models have not been able to explain why some of the observed SADs appear to be hot and relatively devoid of plasma. The present work shows that plasma depletion naturally occurs in flux tubes that are reconnected across nonuniform current sheets and slide trough regions of decreasing magnetic field magnitude. Moreover, through a detailed theoretical analysis of generalized thin flux tube equations, we show that the addition to the model of pressure-driven parallel dynamics, as well as temperature-depende...

  5. Particle acceleration at a reconnecting magnetic separator

    CERN Document Server

    Threlfall, J; Parnell, C E; Oskoui, S Eradat

    2014-01-01

    While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. The effect upon particle behaviour of initial position, pitch angle and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains ...

  6. Driven reconnection and bursty bulk flows

    OpenAIRE

    B. P. Pandey; G. S. Lakhina

    2001-01-01

    The energetics of driven magnetic reconnections induced by the deformation of the magnetopause boundary due to the solar wind-magnetosphere interaction are studied. The bursty type reconnection ensues due to the forcing of the magnetopause boundary by the solar wind. For typical plasma parameters in the inner central plasma sheet (ICPS), the magnetic energy release during the reconnection is estimated and it is found that the available free energy is comparable to the observed kinetic ...

  7. Solar flares: an extremum of reconnection

    International Nuclear Information System (INIS)

    Three points are emphasized: that the solar flare is that particular astrophysical phenomenon that is the extremum of reconnection, no other phenomenon demands as rapid magnetic flux annihilation as is seen in the solar flare; that plasma physics experiments can and should be performed in the laboratory that model reconnection as we observe it in astrophysics; and that stochastic field lines derived from something similar to Alfven wave turbulence are a necessary part of reconnection

  8. Rates of reconnection in pulsar winds

    OpenAIRE

    Lyutikov, Maxim

    2002-01-01

    Using the formulation of relativistic reconnection by Lyutikov & Uzdensky (2002) we estimate the upper possible rates of reconnection in pulsar winds using Bohm prescription for resistivity. We find that the velocity of plasma inflow into the reconnection layer may be relativistic, of the order of the speed of light in the plasma rest-frame. This in principle may allow efficient dissipation of the magnetic field energy in the wind and/or destruction of the toroidal magnetic ...

  9. On the cessation of magnetic reconnection

    OpenAIRE

    Hesse, M.; Birn, J.

    2004-01-01

    Kinetic simulations of collisionless magnetic reconnection are used to study the effect on the reconnection rate of ion density enhancements in the inflow region. The goal of the investigation is to study a candidate mechanism for the slow-down of magnetic reconnection. The calculations involve either proton or oxygen additions in the inflow region, initially located at two distances from the current sheet. Protons are found to be much more tightly coupled into the evolution of the reconnecti...

  10. Fast Magnetic Reconnection and Energetic Particle Acceleration

    OpenAIRE

    Lazarian, A.; G. Kowal; E. Vishniac; Pino, E. de Gouveia Dal

    2010-01-01

    Our numerical simulations show that the reconnection of magnetic field becomes fast in the presence of weak turbulence in the way consistent with the Lazarian and Vishniac (1999) model of fast reconnection. We trace particles within our numerical simulations and show that the particles can be efficiently accelerated via the first order Fermi acceleration. We discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyag...

  11. Magnetic Reconnection in a Compressible MHD Plasma

    Science.gov (United States)

    Hesse, Michael; Birn, Joachim; Zenitani, Seiji

    2011-01-01

    Using steady-state resistive MHD, magnetic reconnection is reinvestigated for conditions of high resistivity/low magnetic Reynolds number, when the thickness of the diffusion region is no longer small compared to its length. Implicit expressions for the reconnection rate and other reconnection parameters are derived based on the requirements of mass, momentum, and energy conservation. These expressions are solved via simple iterative procedures. Implications specifically for low Reynolds number/high resistivity are being discussed

  12. Dissipation in Relativistic Pair-Plasma Reconnection

    Science.gov (United States)

    Hesse, Michael; Zenitani, Seiji

    2007-01-01

    We present an investigation of the relativistic dissipation in magnetic reconnection. The investigated system consists of an electron-positron plasma. A relativistic generalization of Ohm's law is derived. We analyze a set of numerical simulations, composed of runs with and without guide magnetic field, and of runs with different species temperatures. The calculations indicate that the thermal inertia-based dissipation process survives in relativistic plasmas. For anti-parallel reconnection, it is found that the pressure tensor divergence remains the sole contributor to the reconnection electric field, whereas relativistic guide field reconnection exhibits a similarly important role of the bulk inertia terms.

  13. Stellarator studies of magnetic reconnection

    Science.gov (United States)

    Boozer, Allen

    2006-10-01

    Vacuum magnetic fields in a stellarator can be controlled to give a magnetic island of desired width on any selected rational magnetic surface, which makes stellarators uniquely suitable for reconnection experiments. In a pressureless ideal plasma, a delta function current arises to prevent changes in the island width. The magnetic field produced by this current can be measured outside of the plasma. As the current decays due to plasma dissipation, the time and spatial structure of the resulting field give a non-invasive diagnostic of reconnection. Important parameters include the Alfvén speed, the ion gyroradius using the sound speed, the electron collisionless skin depth, the plasma rotation, which can give a trigger-like phenomenon, and the width of the saturated, or vacuum, island. Plasmas can be produced in a given stellarator device over a broad range of densities, temperatures, and species types, and the saturated island width can be adjusted to any size up to a large fraction of the plasma radius without causing a plasma disruption. Consequently, various regimes of magnetic reconnection can be systematically studied.

  14. Interchange Reconnection Forced by the Filament Eruption Inside a Pseudo-streamer

    Science.gov (United States)

    Yang, Jiayan; Jiang, Yunchun; Xu, Zhe; Bi, Yi; Hong, Junchao

    2015-04-01

    We present rare observational signatures of interchange reconnection (IR) forced by the filament eruption inside a pseudo-streamer (PS). The PS was centered above a positive-polarity region bounded by two negative-polarity coronal holes (CHs), and thus its base contained two polarity inversion lines and a pair of loop arcades where two filaments were harbored. In white-light coronagraph data from two different views, it showed up as a fan-shaped structure consisting of fine rays and a coronal streamer. Followed by a two-ribbon flare and a coronal mass ejection, one of the filaments and its overlying arcade erupted away from the nearby CH and flew over the other arcade to interact with the PS's remote CH. As a result, distinct ribbon-like remote brightenings formed along the remote CH boundary and were connected to the positive-polarity flare ribbon by a loop system, but the nearby open-field region largely remained unchanged except that compact brightenings and a following small coronal dimming appeared close to one end of the erupted filament. In combination with the coronal magnetic configuration that derived from the potential-field source-surface model, these observations can be interpreted as follows: the erupting field was first deflected and guided by the nearby CH's open field and then reconnected with the oppositely oriented open field of the remote CH, during which both the closed field bridging the erupted filament and the remoter CH's open field were transported in the opposite direction. The observations thus supported the idea that PSs provide favorable environments for IR to take place and remote brightenings along their CH boundaries represent a credible IR signature on the solar surface.

  15. Magnetic reconnection with space and time varying reconnection rates in a compressible plasma

    International Nuclear Information System (INIS)

    Fast magnetic reconnection of Petschek-type including moving shock waves and discontinuities in a compressible plasma is studied. Magnetic flux tubes of finite size are reconnected by a localized dissipative electric field pulse. This process generates nonlinear perturbations propagating along the initial current surface. The linear wave problem in the outer regions is solved analytically in terms of the reconnection induced sources which move in different directions and with different speeds along the surface. The time-coordinate representation of the solution is given in form of convolution integrals over the reconnection initializing electric field. As an example, reconnection of flux tubes in a sheared magnetic field geometry is analyzed

  16. Magnetic reconnection between colliding magnetized laser-produced plasma plumes.

    Science.gov (United States)

    Fiksel, G; Fox, W; Bhattacharjee, A; Barnak, D H; Chang, P-Y; Germaschewski, K; Hu, S X; Nilson, P M

    2014-09-01

    Observations of magnetic reconnection between colliding plumes of magnetized laser-produced plasma are presented. Two counterpropagating plasma flows are created by irradiating oppositely placed plastic (CH) targets with 1.8-kJ, 2-ns laser beams on the Omega EP Laser System. The interaction region between the plumes is prefilled with a low-density background plasma and magnetized by an externally applied magnetic field, imposed perpendicular to the plasma flow, and initialized with an X-type null point geometry with B=0 at the midplane and B=8??T at the targets. The counterflowing plumes sweep up and compress the background plasma and the magnetic field into a pair of magnetized ribbons, which collide, stagnate, and reconnect at the midplane, allowing the first detailed observations of a stretched current sheet in laser-driven reconnection experiments. The dynamics of current sheet formation are in good agreement with first-principles particle-in-cell simulations that model the experiments. PMID:25238366

  17. Relation of astrophysical turbulence and magnetic reconnection

    International Nuclear Information System (INIS)

    Astrophysical fluids are generically turbulent and this must be taken into account for most transport processes. We discuss how the preexisting turbulence modifies magnetic reconnection and how magnetic reconnection affects the MHD turbulent cascade. We show the intrinsic interdependence and interrelation of magnetic turbulence and magnetic reconnection, in particular, that strong magnetic turbulence in 3D requires reconnection and 3D magnetic turbulence entails fast reconnection. We follow the approach in Eyink et al.[Astrophys. J. 743, 51 (2011)] to show that the expressions of fast magnetic reconnection in A. Lazarian and E. T. Vishniac [Astrophys. J. 517, 700 (1999)] can be recovered if Richardson diffusion of turbulent flows is used instead of ordinary Ohmic diffusion. This does not revive, however, the concept of magnetic turbulent diffusion which assumes that magnetic fields can be mixed up in a passive way down to a very small dissipation scales. On the contrary, we are dealing the reconnection of dynamically important magnetic field bundles which strongly resist bending and have well defined mean direction weakly perturbed by turbulence. We argue that in the presence of turbulence the very concept of flux-freezing requires modification. The diffusion that arises from magnetic turbulence can be called reconnection diffusion as it based on reconnection of magnetic field lines. The reconnection diffusion has important implications for the continuous transport prplications for the continuous transport processes in magnetized plasmas and for star formation. In addition, fast magnetic reconnection in turbulent media induces the First order Fermi acceleration of energetic particles, can explain solar flares and gamma ray bursts. However, the most dramatic consequence of these developments is the fact that the standard flux freezing concept must be radically modified in the presence of turbulence.

  18. Energy partition in magnetic reconnection outflows

    Science.gov (United States)

    Eastwood, J. P.; Phan, T.; Drake, J. F.; Shay, M. A.

    2012-12-01

    The basic plasma process of magnetic reconnection plays an important role in plasma dynamics in a variety of solar, space, and astrophysical environments. In particular, it converts stored magnetic energy into directed jets and particle heating. An important issue is therefore to understand how magnetic reconnection distributes the released energy into different forms. The partition of energy in reconnection outflows has mainly been investigated in the context of the Earth's magnetotail and solar flares using single fluid simulations. However, the recent discovery of significant Poynting flux associated with kinetic Alfven wave structure emanating from the diffusion region along and near the separatrices means that a re-assessment of the energy partition in reconnection outflows is required, particularly from the experimental point of view. Here we present new measurements of plasma energetics in the vicinity of the diffusion region. Using data from Cluster and examining a series of reconnection events observed in the Earth's magnetotail, we present an analysis of the statistical properties of plasma in the ion diffusion region associated with the magnetic reconnection X-line. In particular, we investigate the partition of energy between the enthalpy, kinetic energy and Poynting fluxes, and the spatial structure of these fluxes relative to the geometry of the diffusion region. The Poynting flux, dominated by Hall electric and magnetic fields created by differential ion and electron motion is surprisingly large. This has significant implications for our understanding of reconnection energetics, because this signal propagates away from the reconnection site at speeds significantly greater than the Alfven speed.

  19. Magnetic reconnection in partially ionized plasmas

    International Nuclear Information System (INIS)

    We review the theory of magnetic reconnection in weakly ionized gases. The theory is relevant to reconnection in the interstellar medium, protostellar and protoplanetary disks, the outer envelopes of cool stars, and a new laboratory experiment. In general, partial ionization introduces three effects beyond the obvious one: increased resistivity due to electron-neutral collisions. First, magnetic neutral sheets are steepened by plasma-neutral drift, setting up the conditions for reconnection. Second, when ion-neutral friction is strong, the effective ion mass is increased by ?/?i, the ratio of total to plasma mass density. This reduces the Alfven speed vA by a factor of ?(?/?i) and increases the ion skin depth ?i by ?(?/?i). As a result, entrainment of neutrals slows MHD reconnection but permits the onset of fast collisionless reconnection at a larger Lundquist number S, or for a longer current sheet, than in the fully ionized plasma case. These effects, taken together, promote fast collisionless reconnection when the ionization fraction is of order 10% to 1%, but reconnection is slowed down for much smaller ionization fractions. Finally, ion-neutral friction can be a strong heating mechanism throughout the inflow and outflow regions. These effects are under study at the Magnetic Reconnection Experiment (MRX).

  20. On the cessation of magnetic reconnection

    Directory of Open Access Journals (Sweden)

    M. Hesse

    2004-01-01

    Full Text Available Kinetic simulations of collisionless magnetic reconnection are used to study the effect on the reconnection rate of ion density enhancements in the inflow region. The goal of the investigation is to study a candidate mechanism for the slow-down of magnetic reconnection. The calculations involve either proton or oxygen additions in the inflow region, initially located at two distances from the current sheet. Protons are found to be much more tightly coupled into the evolution of the reconnecting system and, therefore, they effect an immediate slowdown of the reconnection process, as soon as the flux tubes they reside on become involved. Oxygen, on the other hand, has, within the limits of the calculations, a much less pronounced effect on the reconnection electric field. The difference is attributed to the lack of tight coupling to the magnetic field of the oxygen populations. Last, a study of proton and oxygen acceleration finds that protons respond primarily to the reconnection electric field, whereas the main oxygen electric field is achieved by Hall-type electric fields at the plasma sheet boundary.

    Key words. Space plasma physics (magnetic reconnection; numerical simulation studies; numerical simulation studies

  1. Magnetic reconnection from a multiscale instability cascade.

    Science.gov (United States)

    Moser, Auna L; Bellan, Paul M

    2012-02-16

    Magnetic reconnection, the process whereby magnetic field lines break and then reconnect to form a different topology, underlies critical dynamics of magnetically confined plasmas in both nature and the laboratory. Magnetic reconnection involves localized diffusion of the magnetic field across plasma, yet observed reconnection rates are typically much higher than can be accounted for using classical electrical resistivity. It is generally proposed that the field diffusion underlying fast reconnection results instead from some combination of non-magnetohydrodynamic processes that become important on the 'microscopic' scale of the ion Larmor radius or the ion skin depth. A recent laboratory experiment demonstrated a transition from slow to fast magnetic reconnection when a current channel narrowed to a microscopic scale, but did not address how a macroscopic magnetohydrodynamic system accesses the microscale. Recent theoretical models and numerical simulations suggest that a macroscopic, two-dimensional magnetohydrodynamic current sheet might do this through a sequence of repetitive tearing and thinning into two-dimensional magnetized plasma structures having successively finer scales. Here we report observations demonstrating a cascade of instabilities from a distinct, macroscopic-scale magnetohydrodynamic instability to a distinct, microscopic-scale (ion skin depth) instability associated with fast magnetic reconnection. These observations resolve the full three-dimensional dynamics and give insight into the frequently impulsive nature of reconnection in space and laboratory plasmas. PMID:22337058

  2. Recent Progress in Understanding Solar Magnetic Reconnection

    Science.gov (United States)

    Lee, Jeongwoo

    2015-06-01

    Magnetic reconnection is a fundamental process occurring in a wide range of astrophysical, heliospheric and laboratory plasmas. This process alters magnetic topology and triggers rapid conversion of magnetic energy into thermal heating and nonthermal particle acceleration. Efforts to understand the physics of magnetic reconnection have been made across multiple disciplines using remote observations of solar flares and in-situ measurements of geomagnetic storms and substorms as well as laboratory and numerical experiments. This review focuses on the progress achieved with solar flare observations in which most reconnection-related signatures could be resolved in both space and time. The emphasis is on various observable emission features in the low solar atmosphere which manifest the coronal magnetic reconnection because these two regions are magnetically connected to each other. The research and application perspectives of solar magnetic reconnection are briefly discussed and compared with those in other plasma environments.

  3. Self-generated turbulence in magnetic reconnection

    CERN Document Server

    Oishi, Jeffrey S; Collins, David C; Tamura, Moeko

    2015-01-01

    Classical Sweet-Parker models of reconnection predict that reconnection rates depend inversely on the resistivity, usually parameterized using the dimensionless Lundquist number ($\\Lund$). We describe magnetohydrodynamic (MHD) simulations using a static, nested grid that show the development of a three-dimensional instability in the plane of a current sheet between reversing field lines without a guide field. The instability leads to rapid reconnection of magnetic field lines at a rate independent of $\\Lund$ over at least the range $3.2\\times 10^3 \\lesssim \\Lund \\lesssim 3.2 \\times 10^5$ resolved by the simulations. We find that this instability occurs even for cases with $\\Lund \\lesssim 10^4$ that in our models appear stable to the recently described, two-dimensional, plasmoid instability. Our results suggest that three-dimensional, MHD processes alone produce fast (resistivity independent) reconnection without recourse to kinetic effects or external turbulence. The unstable reconnection layers provide a sel...

  4. Magnetic reconnection in space and laboratory plasmas

    International Nuclear Information System (INIS)

    An important kind of plasma instabilities is the magnetic reconnection, when the topology of magnetic field lines changes suddenly, new field lines occur and reconnect. This phenomenon is often accompanied with fast variation of the magnetic field strength, burst-like acceleration of charged particles and fast plasma heating effects. The energy of magnetic field is transformed into heat and kinetic energy. The physical conditions of magnetic reconnection instability are investigated in detail. If the condition of freezing in of the magnetic field lines are not valid, the resistive diffusion of field lines can lead to the magnetic reconnection. The formation and explosive instability of current sheets are in close connection with magnetic reconnection processes. This phenomenon is important in laboratory, e.g. in fusion plasma experiments, and in the astrophysics, as the possible mechanism of solar flares. (D.Gy.)

  5. Scaling of the magnetic reconnection rate with symmetric shear flow

    International Nuclear Information System (INIS)

    The scaling of the reconnection rate during (fast) Hall magnetic reconnection in the presence of an oppositely directed bulk shear flow parallel to the reconnecting magnetic field is studied using two-dimensional numerical simulations of Hall reconnection with two different codes. Previous studies noted that the reconnection rate falls with increasing flow speed and shuts off entirely for super-Alfvenic flow, but no quantitative expression for the reconnection rate in sub-Alfvenic shear flows is known. An expression for the scaling of the reconnection rate is presented.

  6. Taking Medication

    Medline Plus

    Full Text Available ... taking and help them understand how your medications work. They can demonstrate how to inject insulin or explain how diabetes pills work and when to take them. Effective drug therapy ...

  7. The Onset of Magnetic Reconnection

    Science.gov (United States)

    Daldorff, Lars K. S.; Klimchuk, James A.; van der Holst, Bart

    2015-04-01

    A fundamental question concerning magnetic energy release on the Sun is why the release occurs only after substantial stresses have been built up in the field. If reconnection were to occur readily, the released energy would be insufficient to explain coronal heating, CMEs, flares, jets, spicules, etc. How can we explain this switch-on property? What is the physical nature of the onset conditions? One idea involves the "secondary instability" of current sheets, which switches on when the rotation of the magnetic field across a current sheet reaches a critical angle. Such conditions would occur at the boundaries of flux tubes that become tangled and twisted by turbulent photospheric convection, for example. Other ideas involve a critical thickness for the current sheet. We report here on the preliminary results of our investigation of reconnect onset. Unlike our earlier work on the secondary instability (Dahlburg, Klimchuk, and Antiochos 2005), we treat the coupled chromosphere-corona system. Using the BATS-R-US MHD code, we simulate a single current sheet in a sheared magnetic field that extends from the chromosphere into the corona. Driver motions are applied at the base of the model. The configuration and chromosphere are both idealized, but capture the essential physics of the problem. The advantage of this unique approach is that it resolves the current sheet to the greatest extent possible while maintaining a realistic solar atmosphere. It thus bridges the gap between "reconnection in a box" studies and studies of large-scale systems such as active regions. One question we will address is whether onset conditions are met first in the chromosphere or corona. We will report on the work done on the project.

  8. 2D numerical simulation of the resistive reconnection layer

    International Nuclear Information System (INIS)

    In this paper the authors present a two-dimensional numerical simulation of a reconnection current layer in incompressible resistive magnetohydrodynamics with uniform resistivity in the limit of very large Lundquist numbers. They use realistic boundary conditions derived consistently from the outside magnetic field, and they also take into account the effect of the backpressure from flow into the separatrix region. They find that within a few Alfven times the system reaches a steady state consistent with the Sweet-Parker model, even if the initial state is Petschek-like

  9. The Acceleration of Ions in Solar Flares During Magnetic Reconnection

    OpenAIRE

    Knizhnik, Kalman; Swisdak, Marc; Drake, James F.

    2011-01-01

    The acceleration of solar flare ions during magnetic reconnection is explored via particle-in-cell simulations that self-consistently follow the motions of both protons and $\\alpha$ particles. We demonstrate that the dominant ion heating during reconnection with a guide field (a magnetic component perpendicular to the reconnection plane) results from pickup behavior during the entry into reconnection exhausts. In contrast with anti-parallel reconnection, the temperature incr...

  10. Physics of Reconnection and MMS Mission

    Science.gov (United States)

    Kuznetsova, M. M.; Hesse, M.; Gombosi, T.

    2009-01-01

    Reconnection is the most important process driving the Earth's magnetosphere. Key to the success of the MMS science plan is the coupling of theory and observation. Determining the kinetic processes occurring in the diffusion region and physical parameters that control the rate of magnetic reconnection are among primary objectives of the MMS mission. Analysis of the role played by particle inertial effects in the diffusion region where the plasma is unmagnetized will be presented. The reconnection electric field in he diffusion region is supported primarily by particle non-gyrotropic effects. At the quasi-steady stage the reconnection electric field serves to accelerate and heat the incoming plasma population to maintain the current flow in the diffusion region the pressure balance. The primary mechanism controlling the dissipation in the vicinity of the reconnection site is incorporated into the fluid description in terms of non-gyrotropic corrections to the. induction and energy equations. The results of kinetic and fluid simulations illustrating the physics of magnetic reconnection will be presented. We will dem:tistrate that kinetic nongyrotropic effects can significantly alter the global magnetosphere evolution and location of reconnection sites.

  11. Magnetic reconnection as an element of turbulence

    Directory of Open Access Journals (Sweden)

    S. Servidio

    2011-10-01

    Full Text Available In this work, recent advances on the study of reconnection in turbulence are reviewed. Using direct numerical simulations of decaying incompressible two-dimensional magnetohydrodynamics (MHD, it was found that in fully developed turbulence complex processes of reconnection locally occur (Servidio et al., 2009, 2010a. In this complex scenario, reconnection is spontaneous but locally driven by the fields, with the boundary conditions provided by the turbulence. Matching classical turbulence analysis with a generalized Sweet-Parker theory, the statistical features of these multiple-reconnection events have been identified. A discussion on the accuracy of our algorithms is provided, highlighting the necessity of adequate spatial resolution. Applications to the study of solar wind discontinuities are reviewed, comparing simulations to spacecraft observations. New results are shown, studying the time evolution of these local reconnection events. A preliminary study on the comparison between MHD and Hall MHD is reported. Our new approach to the study of reconnection as an element of turbulence has broad applications to space plasmas, shedding a new light on the study of magnetic reconnection in nature.

  12. Magnetic reconnection and magnetic activity

    International Nuclear Information System (INIS)

    A large-scale magnetic field extending through a highly conducting tenuous fluid may become distorted on a small scale as a consequence of slow small-scale shuffling of the magnetic lines of force at the boundaries of the tenuous fluid. Any slow wrapping and winding introduced at the boundaries is distributed along the field (at the Alfven speed). It is a curious and little-known fact that such wrapping and winding possesses no static equilibrium (except for a set of solutions of extreme symmetry). The result is neutral-point reconnection of the strains in the field, rapidly dissipating the wrapping and winding. It is suggested that this is the principal cause of the extreme heating that produces the active corona of the sun and other stars. The shuffling of the footpoints of the magnetic field in the photospheric turbulence introduces small-scale wrapping and twisting into the coronal loops. The work done by the turbulence in twisting the fields is dissipated within a matter 10-20 hours by neutral-point reconnection, introducing heat into the corona at a rate of about 10 Mergs/sq cm sec for photospheric turbulence of 0.5 km/sec. It is suggested that this is the basic cause of the X-ray corona. 32 references

  13. Magnetic reconnection in a weakly ionized plasma

    International Nuclear Information System (INIS)

    Magnetic reconnection in partially ionized plasmas is a ubiquitous phenomenon spanning the range from laboratory to intergalactic scales, yet it remains poorly understood and relatively little studied. Here, we present results from a self-consistent multi-fluid simulation of magnetic reconnection in a weakly ionized reacting plasma with a particular focus on the parameter regime of the solar chromosphere. The numerical model includes collisional transport, interaction and reactions between the species, and optically thin radiative losses. This model improves upon our previous work in Leake et al.[“Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” Astrophys. J. 760, 109 (2012)] by considering realistic chromospheric transport coefficients, and by solving a generalized Ohm's law that accounts for finite ion-inertia and electron-neutral drag. We find that during the two dimensional reconnection of a Harris current sheet with an initial width larger than the neutral-ion collisional coupling scale, the current sheet thins until its width becomes less than this coupling scale, and the neutral and ion fluids decouple upstream from the reconnection site. During this process of decoupling, we observe reconnection faster than the single-fluid Sweet-Parker prediction, with recombination and plasma outflow both playing a role in determining the reconnection rate. As the current sheet thins further and elongates, it becomes unstable to the secondary tearing instability, and plasmoids are seen. The reconnection rate, outflows, and plasmoids observed in this simulation provide evidence that magnetic reconnection in the chromosphere could be responsible for jet-like transient phenomena such as spicules and chromospheric jets

  14. Evolution of magnetic helicity under kinetic magnetic reconnection: Part II B ? 0 reconnection

    OpenAIRE

    Wiegelmann, T.; Büchner, J.

    2002-01-01

    We investigate the evolution of magnetic helicity under kinetic magnetic reconnection in thin current sheets. We use Harris sheet equilibria and superimpose an external magnetic guide field. Consequently, the classical 2D magnetic neutral line becomes a field line here, causing a B ? 0 reconnection. While without a guide field, the Hall effect leads to a quadrupolar structure in the perpendicular magnetic field and the helicity density, this effect vanishes in the B ? 0 reconnect...

  15. Evolution of magnetic helicity under kinetic magnetic reconnection: Part II B != 0 reconnection

    OpenAIRE

    Wiegelmann, T.; Büchner, J.

    2002-01-01

    We investigate the evolution of magnetic helicity under kinetic magnetic reconnection in thin current sheets. We use Harris sheet equilibria and superimpose an external magnetic guide field. Consequently, the classical 2D magnetic neutral line becomes a field line here, causing a B != 0 reconnection. While without a guide field, the Hall effect leads to a quadrupolar structure in the perpendicular magnetic field and the helicity density, this effect vanishes in the B != 0 reconnection. The re...

  16. Magnetic reconnection in the terrestrial magnetosphere

    International Nuclear Information System (INIS)

    An overview is given of quantitative comparisons between measured phenomena in the terrestrial magnetosphere thought to be associated with magnetic reconnection, and related theoretical predictions based on Petschek's simple model. Although such a comparison cannot be comprehensive because of the extended nature of the process and the relatively few in situ multipoint measurements made to date, the agreement is impressive where comparisons have been possible. This result leaves little doubt that magnetic reconnection does indeed occur in the terrestrial magnetosphere. The maximum reconnection rate, expressed in terms of the inflow Mach number, M/sub A/, is measured to be M/sub A/ = 0.2 +- 0.1

  17. Transient Magnetic Reconnection and Unstable Shear Layers

    International Nuclear Information System (INIS)

    We study three-dimensional magnetic reconnection caused by the Kelvin-Helmholtz (KH) instability and differential rotation in subsonic and sub-Alfvenic flows. The flows, which are modeled by the resistive magnetohydrodynamic equations with constant resistivity, are stable in the direction of the magnetic field but unstable perpendicular to the magnetic field. Localized transient reconnection is observed on the KH time scale, and kinetic energy increases with decreasing resistivity. As in flux-transfer events in the Earth's magnetopause boundary layer, bipolar structures in the normal flux and bidirectional jetting away from reconnection zones are observed

  18. Transient Magnetic Reconnection and Unstable Shear Layers

    Science.gov (United States)

    Brackbill, J. U.; Knoll, D. A.

    2001-03-01

    We study three-dimensional magnetic reconnection caused by the Kelvin-Helmholtz (KH) instability and differential rotation in subsonic and sub-Alfvenic flows. The flows, which are modeled by the resistive magnetohydrodynamic equations with constant resistivity, are stable in the direction of the magnetic field but unstable perpendicular to the magnetic field. Localized transient reconnection is observed on the KH time scale, and kinetic energy increases with decreasing resistivity. As in flux-transfer events in the Earth's magnetopause boundary layer, bipolar structures in the normal flux and bidirectional jetting away from reconnection zones are observed.

  19. Transient Magnetic Reconnection and Unstable Shear Layers

    Energy Technology Data Exchange (ETDEWEB)

    Brackbill, J. U.; Knoll, D. A.

    2001-03-12

    We study three-dimensional magnetic reconnection caused by the Kelvin-Helmholtz (KH) instability and differential rotation in subsonic and sub-Alfvenic flows. The flows, which are modeled by the resistive magnetohydrodynamic equations with constant resistivity, are stable in the direction of the magnetic field but unstable perpendicular to the magnetic field. Localized transient reconnection is observed on the KH time scale, and kinetic energy increases with decreasing resistivity. As in flux-transfer events in the Earth's magnetopause boundary layer, bipolar structures in the normal flux and bidirectional jetting away from reconnection zones are observed.

  20. Collisionless magnetic reconnection via Alfvén eigenmodes.

    Science.gov (United States)

    Dai, Lei

    2009-06-19

    We propose an analytic approach to the problem of collisionless magnetic reconnection formulated as a process of Alfvén eigenmodes' generation and dissipation. Alfvén eigenmodes are confined by the current sheet in the same way that quantum mechanical waves are confined by the tanh;{2} potential. The dynamical time scale of reconnection is the system scale divided by the eigenvalue propagation velocity of the n = 1 mode. The prediction of the n = 1 mode shows good agreement with the in situ measurement of the reconnection-associated Hall fields. PMID:19659017

  1. New electric field in asymmetric magnetic reconnection.

    Science.gov (United States)

    Malakit, K; Shay, M A; Cassak, P A; Ruffolo, D

    2013-09-27

    We present a theory and numerical evidence for the existence of a previously unexplored in-plane electric field in collisionless asymmetric magnetic reconnection. This electric field, dubbed the "Larmor electric field," is associated with finite Larmor radius effects and is distinct from the known Hall electric field. Potentially, it could be an important indicator for the upcoming Magnetospheric Multiscale mission to locate reconnection sites as we expect it to appear on the magnetospheric side, pointing earthward, at the dayside magnetopause reconnection site. PMID:24116786

  2. New expression for collisionless magnetic reconnection rate

    Science.gov (United States)

    Klimas, Alex

    2015-04-01

    For 2D, symmetric, anti-parallel, collisionless magnetic reconnection, new expressions for the reconnection rate in the electron diffusion region are introduced. It is shown that these expressions can be derived in just a few simple steps from a physically intuitive starting point; the derivations are given in their entirety, and the validity of each step is confirmed. The predictions of these expressions are compared to the results of several long-duration, open-boundary particle-in-cell reconnection simulations to demonstrate excellent agreement.

  3. Collisionless Magnetic Reconnection via Alfven Eigenmodes

    CERN Document Server

    Dai, Lei

    2009-01-01

    We propose an analytic approach to the problem of collisionless magnetic reconnection formulated as a process of Alfven eigenmodes' generation and dissipation. Alfven eigenmodes are confined by the current sheet in the same way that quantum mechanical waves are confined by the tanh^2 potential. The dynamical time scale of reconnection is the system scale divided by the eigenvalue propagation velocity of the n=1 mode. The prediction of the n=1 mode shows good agreement with the in situ measurement of the reconnection-associated Hall fields.

  4. Magnetic Reconnection in Extreme Astrophysical Environments

    CERN Document Server

    Uzdensky, Dmitri A

    2011-01-01

    Magnetic reconnection is a basic plasma process of dramatic rearrangement of magnetic topology, often leading to a violent release of magnetic energy. It is important in magnetic fusion and in space and solar physics --- areas that have so far provided the context for most of reconnection research. Importantly, these environments consist just of electrons and ions and the dissipated energy always stays with the plasma. In contrast, in this paper I introduce a new direction of research, motivated by several important problems in high-energy astrophysics --- reconnection in high energy density (HED) radiative plasmas, where radiation pressure and radiative cooling become dominant factors in the pressure and energy balance. I identify the key processes distinguishing HED reconnection: special-relativistic effects; radiative effects (radiative cooling, radiation pressure, and Compton resistivity); and, at the most extreme end, QED effects, including pair creation. I then discuss the main astrophysical application...

  5. Forcing continuous reconnection in hybrid simulations

    International Nuclear Information System (INIS)

    We have performed hybrid simulations of driven continuous reconnection with open boundary conditions. Reconnection is started by a collision of two subsonic plasma fronts with opposite magnetic fields, without any specified magnetic field configuration as initial condition. Due to continued forced plasma inflow, a current sheet co-located with a dense and hot plasma sheet develops. The translational symmetry of the current sheet is broken by applying a spatial gradient in the inflow speed. We compare runs with and without localized resistivity: reconnection is initiated in both cases, but localized resistivity stabilizes it and enhances its efficiency. The outflow speed reaches about half of Alfvén speed. We quantify the conversion of magnetic energy to kinetic energy of protons and to Joule heating and show that with localized resistivity, kinetic energy of protons is increased on average five-fold in the reconnection in our simulation case

  6. The Role of Geometry in Magnetic Reconnection

    Science.gov (United States)

    Hesse, Michael; Aunai, Nicholas; Birn, Joachim; Zenitani, Seiji

    2012-01-01

    Magnetic reconnection is arguably the most effective energy conversion and transport process in plasmas. Reconnection is subject to topological considerations in two ways. First, the process itself involves a change in topology of the combined plasma-magnetic field system. This change in topology transcends that of the magnetic field alone and accounts for flux transport relative to the motion of the plasma in the system under investigation. The second way topology is important to magnetic reconnection is through modifications of the diffUSion/dissipation physics brought about by the structure of the reconnecting system. This presentation will present an overview and summary of both past and recent results pertaining to both aspects.

  7. The Dissipation Mechanism of Magnetic Reconnection

    Science.gov (United States)

    Hesse, Michael

    2008-01-01

    Magnetic reconnection is arguably the most efficient transport and energy conversion mechanism in almost ideal plasmas. Reconnection controls the overall dynamics in space and astrophysics plasmas, as well as in many laboratory plasma systems. Reconnection operates by means of a localized diffusion region, where deviations from the plasma idealness condition generate electric fields and permit plasma transport even far away from the diffusion region itself. Recent advances in analytic theory and computer modeling have begun to shed light on the internal dynamics of the diffusion region. In particular, we begin to understand the delicate nature of the force balance in the inner diffusion region, where particles can become unmagnetized and where electric field forces are important. This presentation will provide a brief introduction of the reconnection process and its applications. This introduction will be followed by a detailed analysis of the current understanding of dissipation region physics, and by an outlook toward future research.

  8. The Inner Workings of Magnetic Reconnection

    Science.gov (United States)

    Hesse, Michael; Zenitani, S.

    2007-01-01

    Magnetic reconnection is arguably the most efficient transport and energy conversion mechanism in almost ideal plasmas. Reconnection controls the overall dynamics in space and astrophysics plasmas, as well as in many laboratory plasma systems. Reconnection operates by means of a localized diffusion region, where deviations from the plasma idealness condition generate electric fields and permit plasma transport even far away from the diffusion region itself. Recent advances in analytic theory and computer modeling have begun to shed light on the internal dynamics of the diffusion region. In particular, we begin to understand the delicate nature of the force balance in the inner diffusion region, where particles can become unmagnetized and where electric field forces are important. This presentation will provide a brief introduction of the reconnection process and its applications. This introduction will be followed by a detailed analysis of the current understanding of dissipation region physics, and by an outlook toward future research.

  9. Magnetic reconnection in Z-pinch plasmas

    International Nuclear Information System (INIS)

    Effects of magnetic reconnection on coronal plasma acceleration and energy balance have been discussed. Acceleration of coronal plasma to the array axis can be divided into two stages. Firstly, coronal plasma is pushed radially inward the array axis mainly by global magnetic force or thermal force, depending on the wire number. Secondly, plasma jets are accelerated to Alfven speed by magnetic reconnection, eventually reaching the array axis as precursor pinch. The thickness of the reconnection layer that is comparable to the ion inertial length indicates the motions of electrons and ions are decoupled in the current sheet. Strong radial electric field produced by charge separation converts magnetic energy to axial kinetic energy of plasmas, and thermalization of radial and axial kinetic energy accounts for radiation yield. For facilities with 1 MA drive level, the energy of electromagnetic pulse produced by magnetic reconnection can reach 1 kJ. (authors)

  10. Magnetic Reconnection in the Earth's Magnetosphere

    Science.gov (United States)

    Tsurutani, B. T.; Lakhina, G. S.

    1997-01-01

    The process of magnetic reconnection plays an important role during the interaction of the solar wind with the Earth's magnetosphere which leads to the exchange of mass, momentum, and energy between these two highly conducting plasmas.

  11. Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection

    Science.gov (United States)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-01-01

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv enic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  12. Reconnection of Vortex Bundles Lines with Sinusoidally

    Directory of Open Access Journals (Sweden)

    Sultan Z. Alamri

    2013-06-01

    Full Text Available Using the vortex filament model with the full Biot-Savart law, we show that non-straight bundles of quantized vortex lines in HeII are structurally robust and can reconnect with each other maintaining their identity. We discuss vortex stretching in superfluid turbulence in many cases. We show that, during the bundle reconnection process, Kelvin waves of large amplitude are generated, in agreement with previous work and with the finding that helicity is produced by nearly singular vortex interactions in classical Euler flows. The reconnection events lead to changes in velocities, radius, number of points and total length. The existence of reconnections was confirmed by other authors using the model of nonlinear Schrödinger equation (NLSE. Our results are agreed with the finding of other authors and extension to our numerical experiments.

  13. Healthy Places

    Centers for Disease Control (CDC) Podcasts

    2007-04-10

    Every person has a stake in environmental public health. As the environment deteriorates, so does the physical and mental health of the people within it. Healthy places are those designed and built to improve the quality of life for all people who live, work, worship, learn, and play within their borders -- where every person is free to make choices amid a variety of healthy, available, accessible, and affordable options. The CDC recognizes significant health issues and places that are vital in developing the Healthy Places program and provides examples in this report.  Created: 4/10/2007 by CDC National Center for Environmental Health.   Date Released: 4/13/2007.

  14. Taking Medication

    Medline Plus

    Full Text Available ... NETWORK AADE 7 System My Learning My Purchases Open Invoices ... you to the right place. Did you click to the link from an email or other source outside of the AADE site? Please try our ...

  15. Coupling between reconnection and Kelvin-Helmholtz instabilities in collisionless plasmas

    Directory of Open Access Journals (Sweden)

    D. Grasso

    2009-04-01

    Full Text Available In a collisionless plasma, when reconnection instability takes place, strong shear flows may develop. Under appropriate conditions these shear flows become unstable to the Kelvin-Helmholtz instability. Here, we investigate the coupling between these instabilities in the framework of a four-field model. Firstly, we recover the known results in the low ? limit, ? being the ratio between the plasma and the magnetic pressure. We concentrate our attention on the dynamical evolution of the current density and vorticity sheets which evolve coupled together according to a laminar or a turbulent regime. A three-dimensional extension in this limit is also discussed. Secondly, we consider finite values of the ? parameter, allowing for compression of the magnetic and velocity fields along the ignorable direction. We find that the current density and vorticity sheets now evolve separately. The Kelvin-Helmholtz instability involves only the vorticity field, which ends up in a turbulent regime, while the current density maintains a laminar structure.

  16. Magnetic reconnection: Acceleration, heating, and shock formation

    International Nuclear Information System (INIS)

    Numerical analysis of two-dimensional compressible MHD magnetic reconnection has shown that (1) the reconnection process is strongly dependent on boundary conditions but weakly dependent on internal conditions, (2) a slow mode shock layer is formed on the downstream side of the magnetic separatrix, and (3) plasma is heated up to considerable degree near the X type neutral line and is accelerated up to the Alfven speed by the slow mode shock

  17. Sound emission due to superfluid vortex reconnections

    OpenAIRE

    Leadbeater, M.; Winiecki, T.; Samuels, D. C.; Barenghi, C. F.; Adams, C. S.

    2000-01-01

    By performing numerical simulations of superfluid vortex ring collisions we make direct quantitative measurements of the sound energy released due to vortex reconnections. We show that the energy radiated expressed in terms of the loss of vortex line length is a simple function of the reconnection angle. In addition, we study the temporal and spatial distribution of the radiation and show that energy is emitted in the form of a rarefaction pulse. The pulse evolves into a sou...

  18. Proton deflectometry of a magnetic reconnection geometry

    OpenAIRE

    Willingale, L.; Nilson, Pm; Kaluza, Mc; Dangor, Ae; Evans, Rg; Fernandes, P.; Haines, Mg; Kamperidis, C.; Kingham, Rj; Ridgers, Cp; Sherlock, M.; Thomas, Agr; Wei, Ms; Najmudin, Z.; Krushelnick, K.

    2010-01-01

    Laser-driven magnetic reconnection is investigated using proton deflectometry. Two laser beams of nanosecond duration were focused in close proximity on a solid target to intensities of I?1× 1015 W cm-2. Through the well known ? ne ×? Te mechanism, azimuthal magnetic fields are generated around each focal spot. During the expansion of the two plasmas, oppositely oriented field lines are brought together resulting in magnetic reconnection in the region between the two focal spots. The ...

  19. The Diffusion Region in Collisionless Magnetic Reconnection

    Science.gov (United States)

    Hesse, Michael; Neukirch, Thomas; Schindler, Karl; Kuznetsova, Masha; Zenitani, Seiji

    2011-01-01

    A review of present understanding of the dissipation region in magnetic reconnection is presented. The review focuses on results of the thermal inertia-based dissipation mechanism but alternative mechanisms are mentioned as well. For the former process, a combination of analytical theory and numerical modeling is presented. Furthermore, a new relation between the electric field expressions for anti-parallel and guide field reconnection is developed.

  20. Magnetic Reconnection: Sweet-Parker Versus Petschek

    OpenAIRE

    Kulsrud, Russell M.

    2000-01-01

    The two theories for magnetic reconnection, one of Sweet and Parker, and the other of Petschek, are reconciled by exhibiting an extra condition in that of Petschek which reduces his theory to that of Sweet and Parker, provided that the resistivity is constant in space. On the other hand, if the resistivity is enhanced by instabilities, then the reconnection rate of both theories is increased substantially, but Petschek's rate can be faster. A different formula from the usual...

  1. Collisionless Magnetic Reconnection via Alfven Eigenmodes

    OpenAIRE

    Dai, Lei

    2009-01-01

    We propose an analytic approach to the problem of collisionless magnetic reconnection formulated as a process of Alfven eigenmodes' generation and dissipation. Alfven eigenmodes are confined by the current sheet in the same way that quantum mechanical waves are confined by the tanh^2 potential. The dynamical time scale of reconnection is the system scale divided by the eigenvalue propagation velocity of the n=1 mode. The prediction of the n=1 mode shows good agreement with t...

  2. Turbulent Magnetic Reconnection in Two Dimensions

    OpenAIRE

    Loureiro, NF; Uzdensky, DA; Schekochihin, AA; Cowley, SC; Yousef, TA

    2009-01-01

    Two-dimensional numerical simulations of the effect of background turbulence on 2D resistive magnetic reconnection are presented. For sufficiently small values of the resistivity ($\\eta$) and moderate values of the turbulent power ($\\epsilon$), the reconnection rate is found to have a much weaker dependence on $\\eta$ than the Sweet-Parker scaling of $\\eta^{1/2}$ and is even consistent with an $\\eta-$independent value. For a given value of $\\eta$, the dependence of the reconn...

  3. Achieving fast reconnection in resistive MHD models via turbulent means

    Directory of Open Access Journals (Sweden)

    G. Lapenta

    2012-04-01

    Full Text Available Astrophysical fluids are generally turbulent and this preexisting turbulence must be taken into account for models of magnetic reconnection in astrophysical, solar or heliospheric environments. In addition, reconnection itself induces turbulence which provides an important feedback on the reconnection process. In this paper we discuss both the theoretical model and numerical evidence that magnetic reconnection becomes fast in the approximation of resistive MHD. We consider the relation between the Lazarian and Vishniac turbulent reconnection theory and Lapenta's numerical experiments testifying of the spontaneous onset of turbulent reconnection in systems which are initially laminar.

  4. Test particle acceleration in torsional fan reconnection

    Science.gov (United States)

    Hosseinpour, M.

    2014-12-01

    Magnetic reconnection is understood to be a potential mechanism for particle acceleration in astrophysical and space plasmas, especially in solar flares. Torsional fan reconnection is one of the proposed mechanisms for steady-state three-dimensional (3D) magnetic reconnection. By using the magnetic and electric fields for `torsional fan reconnection', the features of test particle acceleration with input parameters for the solar corona are investigated numerically. We show that torsional fan reconnection is potentially an efficient particle accelerator and a proton can gain up to tens of MeV of kinetic energy within only a few milliseconds. Although the final kinetic energy of the accelerated particle depends on the injection position but there exists only one scenario for the particle's trajectory with different initial positions in which the particle is accelerated on the fan plane. Moreover, adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory. These results are compared with those of torsional spine reconnection.

  5. Driven magnetic reconnection near the Dreicer limit

    International Nuclear Information System (INIS)

    The influence of Coulomb collisions on the dynamics of driven magnetic reconnection in geometry mimicking the Magnetic Reconnection eXperiment (MRX) [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)] is investigated using two-dimensional (2D) fully kinetic simulations with a Monte Carlo treatment of the collision operator. For values of collisionality typical of MRX, the reconnection mechanism is shown to be a combination of collisionless effects, represented by off-diagonal terms in the electron stress tensor, and collisional momentum exchange between electrons and ions. The ratio of the reconnection electric field ER to the critical runaway field Ecrit provides a convenient measure of the relative importance of these two mechanisms. The structure of electron-scale reconnection layers in the presence of collisions is investigated in light of the previously reported [S. Dorfman et al., Phys. Plasmas 15, 102107 (2008)] discrepancy in the width of the electron reconnection layers between collisionless simulations and experimental observations. It is demonstrated that the width of the layer increases in the presence of collisions, but does not substantially deviate from its collisionless values, given by the electron crossing orbit width, unless ERcrit. Comparison with MRX observations demonstrates that the layer width in 2D simulations with Coulomb collisions is substantially smaller than the value observed in the low-densitythan the value observed in the low-density experiments with ER crit, indicating that physical mechanisms beyond those included in the simulations control the structure of the electron layers in these experiments.

  6. Collisionless magnetic reconnection in a plasmoid chain

    Directory of Open Access Journals (Sweden)

    S. Markidis

    2012-02-01

    Full Text Available The kinetic features of plasmoid chain formation and evolution are investigated by two dimensional Particle-in-Cell simulations. Magnetic reconnection is initiated in multiple X points by the tearing instability. Plasmoids form and grow in size by continuously coalescing. Each chain plasmoid exhibits a strong out-of plane core magnetic field and an out-of-plane electron current that drives the coalescing process. The disappearance of the X points in the coalescence process are due to anti-reconnection, a magnetic reconnection where the plasma inflow and outflow are reversed with respect to the original reconnection flow pattern. Anti-reconnection is characterized by the Hall magnetic field quadrupole signature. Two new kinetic features, not reported by previous studies of plasmoid chain evolution, are here revealed. First, intense electric fields develop in-plane normally to the separatrices and drive the ion dynamics in the plasmoids. Second, several bipolar electric field structures are localized in proximity of the plasmoid chain. The analysis of the electron distribution function and phase space reveals the presence of counter-streaming electron beams, unstable to the two stream instability, and phase space electron holes along the reconnection separatrices.

  7. Self-generated Turbulence in Magnetic Reconnection

    Science.gov (United States)

    Oishi, Jeffrey S.; Mac Low, Mordecai-Mark; Collins, David C.; Tamura, Moeko

    2015-06-01

    Classical Sweet–Parker models of reconnection predict that reconnection rates depend inversely on the resistivity, usually parameterized using the dimensionless Lundquist number (S). We describe magnetohydrodynamic (MHD) simulations using a static, nested grid that show the development of a three-dimensional (3D) instability in the plane of a current sheet between reversing field lines without a guide field. The instability leads to rapid reconnection of magnetic field lines at a rate independent of S over at least the range 3.2× {{10}3}? S? 3.2× {{10}5} resolved by the simulations. We find that this instability occurs even for cases with S? {{10}4} that in our models appear stable to the recently described, two-dimensional, plasmoid instability. Our results suggest that 3D, MHD processes alone produce fast (resistivity independent) reconnection without recourse to kinetic effects or external turbulence. The unstable reconnection layers provide a self-consistent environment in which the extensively studied turbulent reconnection process can occur.

  8. Multiscale Modeling of Solar Coronal Magnetic Reconnection

    Science.gov (United States)

    Antiochos, Spiro K.; Karpen, Judith T.; DeVore, C. Richard

    2010-01-01

    Magnetic reconnection is widely believed to be the primary process by which the magnetic field releases energy to plasma in the Sun's corona. For example, in the breakout model for the initiation of coronal mass ejections/eruptive flares, reconnection is responsible for the catastrophic destabilizing of magnetic force balance in the corona, leading to explosive energy release. A critical requirement for the reconnection is that it have a "switch-on' nature in that the reconnection stays off until a large store of magnetic free energy has built up, and then it turn on abruptly and stay on until most of this free energy has been released. We discuss the implications of this requirement for reconnection in the context of the breakout model for CMEs/flares. We argue that it imposes stringent constraints on the properties of the flux breaking mechanism, which is expected to operate in the corona on kinetic scales. We present numerical simulations demonstrating how the reconnection and the eruption depend on the effective resistivity, i.e., the effective Lundquist number, and propose a model for incorporating kinetic flux-breaking mechanisms into MHO calculation of CMEs/flares.

  9. Taking Stock.

    Science.gov (United States)

    Merriam, Sharan B.

    1993-01-01

    A complete theory of adult learning must take into consideration the learner, learning process, and context. Andragogy, self-directed learning, consciousness, critical theory, feminism, transformational learning, and situated cognition contribute to understanding of this complex phenomenon. (SK)

  10. Taking Medication

    Medline Plus

    Full Text Available ... Taking Medication Problem Solving Reducing Risks Healthy Coping Education & Career Webinars Upcoming Webinars Recorded Webinars Live Courses CORE Concepts Course DSME Workshop Online Courses Course Catalog CORE Concepts Course Online Books ...

  11. Self-generated Three Dimensional Turbulence in Magnetic Reconnection Layers Sharply Increases Reconnection Rates

    Science.gov (United States)

    Oishi, Jeffrey S.; Mac Low, M.; Collins, D. C.

    2014-01-01

    Magnetic reconnection is a fundamental plasma process in which magnetic field lines change topology and rapidly convert magnetic energy into thermal energy, which is often directly radiated and thus astrophysically observable. However, the rate at which this process occurs in the classical picture is orders of magnitude too slow to explain solar flares. The recent identification of the plasmoid instability, a super-Alfvenic, high wavenumber instability has fundamentally altered our understanding of reconnection theory by providing a mechanism to greatly speed up reconnection. However, the majority of the work done to date has focused on 2D reconnection layers, assuming symmetry in the plane of the current sheet itself. The plasmoid instability is inherently multi-scale, with a large separation between the global scale of the reconnection layer and the resistive length where the instability grows, making 3D simulations impractical before now. We have begun to use the 3D adaptive mesh refinement code Enzo to resolve the reconnection layer. We show the growth of a secondary instability in the plane of the current sheet that drives a huge increase in the rate of reconnection. Understanding how the saturation of this instability controls the global, 3D structure of reconnection regions is required to predict the observable properties of flares, the mass loading of coronal mass ejections, and the acceleration of charged particles in the corona. This research was partly supported by NSF grant AST10-09802, and used computational resources provided under XSEDE grant TG-AST120045.

  12. Radiative properties of reconnection-powered minijets in blazars

    Science.gov (United States)

    Nalewajko, Krzysztof; Giannios, Dimitrios; Begelman, Mitchell C.; Uzdensky, Dmitri A.; Sikora, Marek

    2011-05-01

    We construct a numerical model of emission from minijets, localized flows driven by magnetic reconnection inside Poynting-flux-dominated jets proposed to explain the ultrafast variability of blazars. The geometrical structure of the model consists of two wedge-like regions of relativistically flowing gas, separated by a stationary shock. The dynamics is based on solutions of relativistic magnetic reconnection with a guide field from Lyubarsky. Electron distributions in each region are chosen to match the pressure and density of the local plasma. Synchrotron emission from both regions is used to calculate Compton scattering, Compton drag and photon-photon opacity effects, with exact treatment of anisotropy and the Klein-Nishina regime. Radiative effects on plasma are taken into account, including the dependence of pressure on electron radiative losses and adiabatic heating of the flow decelerating under Compton drag. The results are applied to the 2006 July flare in the BL Lac object PKS 2155-304, with the aim of matching TeV flux measurements by the High Energy Stereoscopic System (HESS) with models that satisfy the variability constraints, while keeping X-ray emission below simultaneous Chandra observations. We find that models of isolated minijets with a significant guide field overproduce X-ray emission, and that we must take into account the radiative interaction of oppositely oriented minijets in order to achieve a high enough dominance by Comptonized TeV radiation. We argue that such interactions are likely to occur in a jet where there is substantial internal reconnection, producing a large number of misaligned minijets. Finally, we show that large jet magnetizations are indeed required to satisfy all observational constraints and that the effective Lorentz factor of the minijet plasma has to be larger than 50, in agreement with earlier one-zone estimates.

  13. Magnetic Reconnection in Different Environments: Similarities and Differences

    Science.gov (United States)

    Hesse, Michael; Aunai, Nicolas; Kuznetsova, Masha; Zenitani, Seiji; Birn, Joachim

    2014-01-01

    Depending on the specific situation, magnetic reconnection may involve symmetric or asymmetric inflow regions. Asymmetric reconnection applies, for example, to reconnection at the Earth's magnetopause, whereas reconnection in the nightside magnetotail tends to involve more symmetric geometries. A combination of review and new results pertaining to magnetic reconnection is being presented. The focus is on three aspects: A basic, MHD-based, analysis of the role magnetic reconnection plays in the transport of energy, followed by an analysis of a kinetic model of time dependent reconnection in a symmetric current sheet, similar to what is typically being encountered in the magnetotail of the Earth. The third element is a review of recent results pertaining to the orientation of the reconnection line in asymmetric geometries, which are typical for the magnetopause of the Earth, as well as likely to occur at other planets.

  14. Quantitative Analytical Model for Magnetic Reconnection in Hall Magnetohydrodynamics

    International Nuclear Information System (INIS)

    Magnetic reconnection is of fundamental importance for laboratory and naturally occurring plasmas. Reconnection usually develops on time scales which are much shorter than those associated with classical collisional dissipation processes, and which are not fully understood. While such dissipation-independent (or 'fast') reconnection rates have been observed in particle and Hall magnetohydrodynamics (MHD) simulations and predicted analytically in electron MHD, a quantitative analytical theory of fast reconnection valid for arbitrary ion inertial lengths d(i) has been lacking. Here we propose such a theory without a guide field. The theory describes two-dimensional magnetic field diffusion regions, provides expressions for the reconnection rates, and derives a formal criterion for fast reconnection in terms of dissipation parameters and d(i). It also demonstrates that both open X-point and elongated diffusion regions allow dissipation-independent reconnection and reveals a possibility of strong dependence of the reconnection rates on d(i).

  15. Reconnection events in two-dimensional Hall magnetohydrodynamic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Donato, S.; Servidio, S.; Carbone, V. [Dipartimento di Fisica, Universita della Calabria, I-87036 Cosenza (Italy); Dmitruk, P. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisica de Buenos Aires, CONICET, Buenos Aires (Argentina); Shay, M. A.; Matthaeus, W. H. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Cassak, P. A. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States)

    2012-09-15

    The statistical study of magnetic reconnection events in two-dimensional turbulence has been performed by comparing numerical simulations of magnetohydrodynamics (MHD) and Hall magnetohydrodynamics (HMHD). The analysis reveals that the Hall term plays an important role in turbulence, in which magnetic islands simultaneously reconnect in a complex way. In particular, an increase of the Hall parameter, the ratio of ion skin depth to system size, broadens the distribution of reconnection rates relative to the MHD case. Moreover, in HMHD the local geometry of the reconnection region changes, manifesting bifurcated current sheets and quadrupolar magnetic field structures in analogy to laminar studies, leading locally to faster reconnection processes in this case of reconnection embedded in turbulence. This study supports the idea that the global rate of energy dissipation is controlled by the large scale turbulence, but suggests that the distribution of the reconnection rates within the turbulent system is sensitive to the microphysics at the reconnection sites.

  16. Magnetic Reconnection with Radiative Cooling. I. Optically-Thin Regime

    OpenAIRE

    Uzdensky, Dmitri A.; McKinney, Jonathan C.

    2010-01-01

    Magnetic reconnection, a fundamental plasma process associated with a rapid dissipation of magnetic energy, is believed to power many disruptive phenomena in laboratory plasma devices, the Earth magnetosphere, and the solar corona. Traditional reconnection research, geared towards these rather tenuous environments, has justifiably ignored the effects of radiation on the reconnection process. However, in many reconnecting systems in high-energy astrophysics (e.g., accretion-d...

  17. Externally driven magnetic reconnection in a collisionless plasma

    International Nuclear Information System (INIS)

    Driven magnetic reconnection in a collisionless plasma, 'collisionless driven reconnection', is investigated by means of two-and-one-half dimensional particle simulation. Magnetic reconnection develops in two steps in accordance with the formation of two current layers, i.e., an ion current layer and an electron current layer. It is found that the global dynamical evolution of magnetic reconnection is controlled by the physics of the ion current layer. (author). 5 refs, 3 figs

  18. Achieving fast reconnection in resistive MHD models via turbulent means

    OpenAIRE

    Lapenta, G.; Lazarian, A.

    2012-01-01

    Astrophysical fluids are generally turbulent and this preexisting turbulence must be taken into account for the models of magnetic reconnection which are attepmted to be applied to astrophysical, solar or heliospheric environments. In addition, reconnection itself induces turbulence which provides an important feedback on the reconnection process. In this paper we discuss both theoretical model and numerical evidence that magnetic reconnection gets fast in the approximation ...

  19. Laboratory Observation of Localized Onset of Magnetic Reconnection

    OpenAIRE

    Katz, Noam Karasov; Egedal-Pedersen, Jan; Fox, William R.; Le, Ari; Bonde, Jeffrey D.; Vrublevskis, Arturs

    2009-01-01

    Magnetic reconnection is a fundamental process in plasmas that results in the often explosive release of stored magnetic energy, but the trigger for its onset is not well understood. We explore this trigger for fast reconnection in toroidal experiments using a magnetic x-type geometry in the strong guide-field regime. We find that the onset occurs asymmetrically: the reconnection begins on one side of the torus and propagates around approximately at the Alfvén speed. The fast reconnection oc...

  20. Magnetic Reconnection in Turbulent Plasmas and Gamma Ray Bursts

    OpenAIRE

    Lazarian, A.; Yan, Huirong

    2013-01-01

    We discuss how the model of magnetic reconnection in the presence of turbulence proposed inLazarian & Vishniac 1999 makes the reconnection rate independent either of resistivity or microscopic plasma effects, but determined entirely by the magnetic field line wandering induced by turbulence. We explain that the model accounts for both fast and slow regimes of reconnection and that this property naturally induces flares of reconnection in low beta plasma environments. In addi...

  1. A catastrophe model for fast magnetic reconnection onset

    OpenAIRE

    Cassak, P. A.; Shay, M. A.; Drake, J. F.

    2005-01-01

    A catastrophe model for the onset of fast magnetic reconnection is presented that suggests why plasma systems with magnetic free energy remain apparently stable for long times and then suddenly release their energy. For a given set of plasma parameters there are generally two stable reconnection solutions: a slow (Sweet-Parker) solution and a fast (Alfv\\'enic) Hall reconnection solution. Below a critical resistivity the slow solution disappears and fast reconnection dominate...

  2. Fast magnetic reconnection in laser-produced plasma bubbles

    OpenAIRE

    Fox, W.; A. Bhattacharjee; Germaschewski, K.

    2011-01-01

    Recent experiments have observed magnetic reconnection in high-energy-density, laser-produced plasma bubbles, with reconnection rates observed to be much higher than can be explained by classical theory. Based on fully kinetic particle simulations we find that fast reconnection in these strongly driven systems can be explained by magnetic flux pile-up at the shoulder of the current sheet and subsequent fast reconnection via two-fluid, collisionless mechanisms. In the strong ...

  3. The magnetotail reconnection region in a global MHD simulation

    OpenAIRE

    Laitinen, T. V.; Pulkkinen, T. I.; Palmroth, M.; P. Janhunen; Koskinen, H. E. J.

    2005-01-01

    This work investigates the nature and the role of magnetic reconnection in a global magnetohydrodynamic simulation of the magnetosphere. We use the Gumics-4 simulation to study reconnection that occurs in the near-Earth region of the current sheet in the magnetotail. We locate the current sheet surface and the magnetic x-line that appears when reconnection starts. We illustrate the difference between quiet and active states of the reconnection region: variations in such quantities as the curr...

  4. Good Education in an Age of Measurement: On the Need to Reconnect with the Question of Purpose in Education

    Science.gov (United States)

    Biesta, Gert

    2009-01-01

    In this paper I argue that there is a need to reconnect with the question of purpose in education, particularly in the light of a recent tendency to focus discussions about education almost exclusively on the measurement and comparison of educational outcomes. I first discuss why the question of purpose should always have a place in our…

  5. Quantifying 3D Reconnection in Fragmented Current Layers

    CERN Document Server

    Wyper, Peter F

    2015-01-01

    There is growing evidence that when magnetic reconnection occurs in high Lundquist number plasmas such as in the Solar Corona or the Earth's Magnetosphere it does so within a fragmented, rather than a smooth current layer. Within the extent of these fragmented current regions the associated magnetic flux transfer and energy release occurs simultaneously in many different places. This investigation focusses on how best to quantify the rate at which reconnection occurs in such layers. An analytical theory is developed which describes the manner in which new connections form within fragmented current layers in the absence of magnetic nulls. It is shown that the collective rate at which new connections form can be characterized by two measures; a total rate which measures the true rate at which new connections are formed and a net rate which measures the net change of connection associated with the largest value of the integral of $E_{\\|}$ through all of the non-ideal regions. Two simple analytical models are pre...

  6. Reconnection and Spire Drift in Coronal Jets

    Science.gov (United States)

    Moore, Ronald; Sterling, Alphonse; Falconer, David

    2015-04-01

    It is observed that there are two morphologically-different kinds of X-ray/EUV jets in coronal holes: standard jets and blowout jets. In both kinds: (1) in the base of the jet there is closed magnetic field that has one foot in flux of polarity opposite that of the ambient open field of the coronal hole, and (2) in coronal X-ray/EUV images of the jet there is typically a bright nodule at the edge of the base. In the conventional scenario for jets of either kind, the bright nodule is a compact flare arcade, the downward product of interchange reconnection of closed field in the base with impacted ambient open field, and the upper product of this reconnection is the jet-outflow spire. It is also observed that in most jets of either kind the spire drifts sideways away from the bright nodule. We present the observed bright nodule and spire drift in an example standard jet and in two example blowout jets. With cartoons of the magnetic field and its reconnection in jets, we point out: (1) if the bright nodule is a compact flare arcade made by interchange reconnection, then the spire should drift toward the bright nodule, and (2) if the bright nodule is instead a compact flare arcade made, as in a filament-eruption flare, by internal reconnection of the legs of the erupting sheared-field core of a lobe of the closed field in the base, then the spire, made by the interchange reconnection that is driven on the outside of that lobe by the lobe’s internal convulsion, should drift away from the bright nodule. Therefore, from the observation that the spire usually drifts away from the bright nodule, we infer: (1) in X-ray/EUV jets of either kind in coronal holes the interchange reconnection that generates the jet-outflow spire usually does not make the bright nodule; instead, the bright nodule is made by reconnection inside erupting closed field in the base, as in a filament eruption, the eruption being either a confined eruption for a standard jet or a blowout eruption (as in a CME) for a blowout jet, and (2) in this respect, the conventional reconnection picture for the bright nodule in coronal jets is usually wrong for observed coronal jets of either kind.

  7. On reconnection phenomena in the standard nontwist map

    Scientific Electronic Library Online (English)

    A., Wurm; A., Apte; P.J., Morrison.

    2004-12-01

    Full Text Available Separatrix reconnection in the standard nontwist map is described, including exact methods for determining the reconnection threshold in parameter space. These methods are implemented numerically for the case of oddperiod orbit reconnection, where meanders (invariant tori that are not graphs) appear [...] . Nested meander structure is numerically demonstrated, and the idea of meander transport is discussed.

  8. Density Enhancements and Voids following Patchy Reconnection

    CERN Document Server

    Guidoni, S E

    2011-01-01

    We show, through a simple patchy reconnection model, that retracting reconnected flux tubes may present elongated regions relatively devoid of plasma, as well as long lasting, dense central hot regions. Reconnection is assumed to happen in a small patch across a Syrovatski\\'i (non-uniform) current sheet (CS) with skewed magnetic fields. The background magnetic pressure has its maximum at the center of the CS plane, and decreases toward the edges of the plane. The reconnection patch creates two V-shaped reconnected tubes that shorten as they retract in opposite directions, due to magnetic tension. One of them moves upward toward the top edge of the CS, and the other one moves downward toward the top of the underlying arcade. Rotational discontinuities (RDs) propagate along the legs of the tubes and generate parallel super-sonic flows that collide at the center of the tube. There, gas dynamics shocks that compress and heat the plasma are launched outwardly. The descending tube moves through the bottom part of t...

  9. Solar flares: an extremum of reconnection

    International Nuclear Information System (INIS)

    The author attempts to emphasize three points. (1) That the solar flare is that particular astrophysical phenomenon that is the extremum of reconnection. No other phenomenon demands as rapid magnetic flux annihilation as is seen in the solar flare. (2) Plasma physics experiments can and should be performed in the laboratory that model reconnection as we observe it in astrophysics. (3) The author believes that stochastic field lines derived from something similar to Alfven wave turbulence are a necessary part of reconnection. Experiments were performed 20 years ago at Lawrence Livermore Laboratory that gave a hint of what he believes is happening in the rapid reconnection in solar flares. In this session Biskamp has just made the point that is needed to break the topology in the third dimension to explain reconnection. The experiments that were performed in the laboratory years ago were ones of mapping the flux surfaces and showed that just this symmetry had been broken; namely, that a simple cylindrical geometry was no longer maintained but had produced a more complicated one. This is similar to what Ed Hones has seen with high energy particles in the magnetotail. 2 references, 1 figure

  10. The Dissipation Mechanism in Collisionless Magnetic Reconnection

    Science.gov (United States)

    Hesse, Michael; Kuznetsova, M.; Birn, J.; Schindler, K.

    2006-01-01

    The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. On the other hand, a second set of studies emphasizes the role of wave-particle interactions in providing anomalous resistivity in the diffusion region. In this presentation, we present analytical theory results, as well as PIC simulations of guide-field magnetic reconnection. We will show that the thermal electron inertia-based dissipation mechanism, expressed through nongyrotropic electron pressure tensors, remains viable in three dimensions. We will demonstrate the thermal inertia effect through studies of electron distribution functions. Furthermore, we will show that the reconnection electric field provides a transient acceleration on particles traversing the inner reconnection region. This inertial effect can be described as a diffusion-like term of the current density, which matches key features of electron distribution functions.

  11. Flow-turbulence interaction in magnetic reconnection

    International Nuclear Information System (INIS)

    Roles of turbulence in the context of magnetic reconnection are investigated with special emphasis on the mutual interaction between flow (large-scale inhomogeneous structure) and turbulence. In order to evaluate the effective transport due to turbulence, in addition to the intensity information of turbulence represented by the turbulent energy, the structure information represented by pseudoscalar statistical quantities (helicities) is important. On the basis of the evolution equation, mechanisms that provide turbulence with cross helicity are presented. Magnetic-flux freezing in highly turbulent media is considered with special emphasis on the spatial distribution of the turbulent cross helicity. The cross-helicity effects in the context of magnetic reconnection are also investigated. It is shown that the large-scale flow and magnetic-field configurations favorable for the cross-helicity generation is compatible with the fast reconnection. Difference between the spatial distributions of the turbulent MHD energy and cross helicity plays an essential role for localizing the reconnection region. In this sense, turbulence and large-scale structures promote magnetic reconnection mediated by the turbulent cross helicity.

  12. Places available**

    CERN Multimedia

    2003-01-01

    If you wish to participate in one of the following courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at: http://www.cern.ch/Training/ or fill in an "application for training" form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt. TECHNICAL TRAINING Monique Duval tel. 74924 technical.training@cern.ch ** The number of places available may vary. Please check our Web site to find out the current availability. Places are available in the following courses: ACCESS 2000 - niveau 1 : 13 & 14.11.03 (2 jours) C++ for Particle Physicists : 17 ? 21.11.03 (6 X 3-hour lectures) Programmation automate Schneider TSX Premium ? niveau 2 : 18 ? 21.11.03 (4 jours) JAVA 2 Enterprise Edition ? Part 1 : WEB Applications : 20 & ...

  13. Places available

    CERN Multimedia

    2004-01-01

    If you wish to participate in one of the following courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at: http://www.cern.ch/Training/ or fill in an "application for training" form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt. Places available The number of places available may vary. Please check our Web site to find out the current availability. Places are available in the following courses : Introduction à Outlook : 19.8.2004 (1 journée) Outlook (short course I) : E-mail : 31.8.2004 (2 hours, morning) Outlook (short course II) : Calendar, Tasks and Notes : 31.8.2004 (2 hours, afternoon) Instructor-led WBTechT Study or Follow-up for Microsoft Applications : 7.9.2004 (morning) Outlook (short course III) : Meetings and Delegation : 7.9.2004 (2 hours, afternoon) Introduction ...

  14. Places disponibles*/Places available **

    CERN Multimedia

    2003-01-01

    Des places sont disponibles dans les cours suivants : Places are available in the following course : Java 2 Enterprise Edition - Part 2 : Enterprise JavaBeans : 20 - 22.1.03 (3 days) Introduction to PVSS : 27.1.03 (Afternoon) free course but registration necessary Basic PVSS : 28 - 30.1.03 (3 days) MAGNE-03 - Magnétisme pour l'électrotechnique : 28 - 30.1.03 (3 jours) MAGNE-03 - Magnetism for Technical Electronics : 11 - 13.2.03 (3 days) AutoCAD 2002 - niveau 1 : 24, 25.2 et 3, 4.3.03 (4 jours) AutoCAD 2002 - niveau 2 : 10 & 11.3.03 (2 jours) C++ for Particle Physicists : 10 - 14.3.03 (6 X 3 hour lectures) AutoCAD Mechanical 6 PowerPack (F) : 12, 13, 17, 18, 24 & 25.3.03 (6 jours) * Etant donné le délai d'impression du Bulletin, ces places peuvent ne plus être disponibles au moment de sa parution. Veuillez consulter notre site Web pour avoir la dernière mise à jour. ** The number of places available may vary. Please check our Web site to find out the current availability. Si vous désirez ...

  15. Places disponibles/Places available

    CERN Multimedia

    2004-01-01

    Etant donné le délai d'impression du Bulletin, ces places peuvent ne plus être disponibles au moment de sa parution. Veuillez consulter notre site Web pour avoir la dernière mise à jour. The number of places available may vary. Please check our Web site to find out the current availability. Des places sont disponibles dans les cours suivants : / Places are available in the following courses : Introduction à Outlook : 19.8.2004 (1 journée) Outlook (short course I) : E-mail : 31.8.2004 (2 hours, morning) Outlook (short course II) : Calendar, Tasks and Notes : 31.8.2004 (2 hours, afternoon) Instructor-led WBTechT Study or Follow-up for Microsoft Applications : 7.9.2004 (morning) Outlook (short course III) : Meetings and Delegation : 7.9.2004 (2 hours, afternoon) Introduction au VHDL et utilisation du simulateur NCVHDL de CADENCE : 7 & 8.9.2004 (2 jours) Joint PVSS JCOP Framework : 13 - 17.9.2004 (5 days) AutoCAD 2002 - niveau 1 : 13, 14, 23, 24.9.2004 (4 jours) Programmation S...

  16. Effects of color reconnection on t anti t final states at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Argyropoulos, Spyros [Univ. Lund (Sweden). Dept. of Astronomy and Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Sjoestrand, Torbjoern [Univ. Lund (Sweden). Dept. of Astronomy and Theoretical Physics

    2014-07-15

    The modeling of color reconnection has become one of the dominant sources of systematic uncertainty in the top mass determination at hadron colliders. The uncertainty on the top mass due to color reconnection is conventionally estimated by taking the difference in the predictions of a model with and a model without color reconnection. We show that this procedure underestimates the uncertainty when applied to the existing models in PYTHIA 8. We introduce two new classes of color reconnection models, each containing several variants, which encompass a variety of scenarios that could be realized in nature and we study how they affect the reconstruction of the top mass. After tuning the new models to existing LHC data, the remaining spread of predictions is used to derive a more realistic uncertainty for the top mass, which is found to be around 500 MeV. We also propose how future LHC measurements with t anti t events can be used to further constrain these models and reduce the associated modeling uncertainty.

  17. Magnetic Reconnection in Extreme Astrophysical Environments

    Science.gov (United States)

    Uzdensky, Dmitri

    Magnetic reconnection is a fundamental plasma physics process of breaking ideal-MHD's frozen-in constraints on magnetic field connectivity and of dramatic rearranging of the magnetic topol-ogy, which often leads to a violent release of the free magnetic energy. Reconnection has long been acknowledged to be of great importance in laboratory plasma physics (magnetic fusion) and in space and solar physics (responsible for solar flares and magnetospheric substorms). In addition, its importance in Astrophysics has been increasingly recognized in recent years. However, due to a great diversity of astrophysical environments, the fundamental physics of astrophysical magnetic reconnection can be quite different from that of the traditional recon-nection encountered in the solar system. In particular, environments like the solar corona and the magnetosphere are characterized by relatively low energy densities, where the plasma is ad-equately described as a mixture of electrons and ions whose numbers are conserved and where the dissipated magnetic energy basically stays with the plasma. In contrast, in many high-energy astrophysical phenomena the energy density is so large that photons play as important a role as electrons and ions and, in particular, radiation pressure and radiative cooling become dominant. In this talk I focus on the most extreme case of high-energy-density astrophysical reconnec-tionreconnection of magnetar-strength (1014 - 1015 Gauss) magnetic fields, important for giant flares in soft-gamma repeaters (SGRs), and for rapid magnetic energy release in either the central engines or in the relativistic jets of Gamma Ray Bursts (GRBs). I outline the key relevant physical processes and present a new theoretical picture of magnetic reconnection in these environments. The corresponding magnetic energy density is so enormous that, when suddenly released, it inevitably heats the plasma to relativistic temperatures, resulting in co-pious production of electron-positron pairs. The pairs make the reconnection layer optically thick, efficiently trapping gamma-ray photons and ensuring a local thermodynamic equilibrium between the radiation and the plasma. The plasma pressure inside the layer is then dominated by the radiation and pair pressure. At the same time, the timescale for radiation diffusion across the layer may still be much shorter than the global Alfven transit time along the layer, and hence the effects of radiative cooling on the thermodynamics of the layer need to be taken into account. In other words, the reconnection problem in this regime necessarily becomes a radiative transfer problem. In addition, the extremely high pair density, set by the local ther-modynamic equilibrium essentially independently of the upstream plasma density, can make the reconnection layer highly collisional, thereby justifying the use of resistive MHD (with Spitzer and Compton resistivities). The presence of all these processes calls for a substantial revision of our traditional physical picture of reconnection when applied to these environments. I will de-scribe how the corresponding new theory of reconnection of magnetar-strength magnetic fields ought to be constructed and will conclude by discussing its observational consequences and the prospects for future research.

  18. Computer simulation of reconnection in planetary magnetospheres

    International Nuclear Information System (INIS)

    The earth's magnetosphere provides an ideal opportunity to model reconnection in well known geometries that are close enough to the idealized analytic models to make a comparison of the computer models with analytic theory meaningful. In addition more detailed, even three-dimensional, models can be used for a comparison with extended data from in situ observations. The computer studies have basically confirmed the reconnection picture that was based on two-dimensional steady state models and linear analytic theory. The three-dimensional models in particular have also added a lot more information on the reconnection process and the structure of flow, magnetic fields, and currents including many features that are consistent with observations and empirical models of geomagnetic substorms

  19. Particle Demagnetization in Collisionless Magnetic Reconnection

    Science.gov (United States)

    Hesse, Michael

    2006-01-01

    The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. In this presentation, we present analytical theory results, as well as 2.5 and three-dimensional PIC simulations of guide field magnetic reconnection. We will show that diffusion region scale sizes in moderate and large guide field cases are determined by electron Larmor radii, and that analytical estimates of diffusion region dimensions need to include description of the heat flux tensor. The dominant electron dissipation process appears to be based on thermal electron inertia, expressed through nongyrotropic electron pressure tensors. We will argue that this process remains viable in three dimensions by means of a detailed comparison of high resolution particle-in-cell simulations.

  20. Magnetic Reconnection in a Weakly Ionized Plasma

    CERN Document Server

    Leake, James E; Linton, Mark G

    2013-01-01

    Magnetic reconnection in partially ionized plasmas is a ubiquitous phenomenon spanning the range from laboratory to intergalactic scales, yet it remains poorly understood and relatively little studied. Here, we present results from a self-consistent multi-fluid simulation of magnetic reconnection in a weakly ionized reacting plasma with a particular focus on the parameter regime of the solar chromosphere. The numerical model includes collisional transport, interaction and reactions between the species, and optically thin radiative losses. This model improves upon our previous work in Leake et al. 2012 \\cite{Leake2012} by considering realistic chromospheric transport coefficients, and by solving a generalized Ohm's law that accounts for finite ion-inertia and electron-neutral drag. We find that during the two dimensional reconnection of a Harris current sheet with an initial width larger than the neutral-ion collisional coupling scale, the current sheet thins until its width becomes less than this coupling sca...

  1. Reconnection properties in collisionless plasma with open boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sun, H. E. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Ma, Z. W., E-mail: zwma@zju.edu.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Huang, J. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China)

    2014-07-15

    Collisionless magnetic reconnection in a Harris current sheet with different initial thicknesses is investigated using a 21/2 -D Darwin particle-in-cell simulation with the magnetosonic open boundary condition. It is found that the thicknesses of the ion dissipation region and the reconnection current sheet, when the reconnection rate E{sub r} reaches its first peak, are independent of the initial thickness of the current sheet; while the peak reconnection rate depends on it. The peak reconnection rate increases with decrease of the current sheet thickness as E{sub r}?a{sup ?1/2}, where a is the initial current sheet half-thickness.

  2. Fast Magnetic Reconnection in Laser-Produced Plasma Bubbles

    International Nuclear Information System (INIS)

    Recent experiments have observed magnetic reconnection in high-energy-density, laser-produced plasma bubbles, with reconnection rates observed to be much higher than can be explained by classical theory. Based on fully kinetic particle simulations we find that fast reconnection in these strongly driven systems can be explained by magnetic flux pileup at the shoulder of the current sheet and subsequent fast reconnection via two-fluid, collisionless mechanisms. In the strong drive regime with two-fluid effects, we find that the ultimate reconnection time is insensitive to the nominal system Alfven time.

  3. Fast magnetic reconnection in laser-produced plasma bubbles.

    Science.gov (United States)

    Fox, W; Bhattacharjee, A; Germaschewski, K

    2011-05-27

    Recent experiments have observed magnetic reconnection in high-energy-density, laser-produced plasma bubbles, with reconnection rates observed to be much higher than can be explained by classical theory. Based on fully kinetic particle simulations we find that fast reconnection in these strongly driven systems can be explained by magnetic flux pileup at the shoulder of the current sheet and subsequent fast reconnection via two-fluid, collisionless mechanisms. In the strong drive regime with two-fluid effects, we find that the ultimate reconnection time is insensitive to the nominal system Alfvén time. PMID:21699307

  4. Magnetic reconnection in a magnetohydrodynamic plasma

    International Nuclear Information System (INIS)

    Magnetic reconnection is important because of its connection with the topology of field lines. In general, a change in topology means a change of equilibrium, and a release of energy, such as occurs in solar flares. In the context of the solar flare two models for magnetic reconnection, the Sweet endash Parker and the Petschek mechanism are presented. The pros and cons of these two models are presented. The role of anomalous resistivity in the Sweet endash Parker model is discussed. The bearing of a laboratory experiment and a boundary layer analysis of the problem are described. copyright 1998 American Institute of Physics

  5. Effect of collisions and magnetic convergence on electron acceleration and transport in reconnecting twisted solar flare loops

    CERN Document Server

    Gordovskyy, M; Kontar, E P; Bian, N H

    2015-01-01

    We study a model of particle acceleration coupled with an MHD model of magnetic reconnection in unstable twisted coronal loops. The kink instability leads to the formation of helical currents with strong parallel electric fields resulting in electron acceleration. The motion of electrons in the electric and magnetic fields of the reconnecting loop is investigated using a test-particle approach taking into account collisional scattering. We discuss the effects of Coulomb collisions and magnetic convergence near loop footpoints on the spatial distribution and energy spectra of high-energy electron populations and possible implications on the hard X-ray emission in solar flares.

  6. Privileged Girls: The Place of Femininity and Femininity in Place

    Science.gov (United States)

    Fahey, Johannah

    2014-01-01

    Constructions of femininity and attendant notions of feminism are being produced in different ways in different places around the world. This is a complicated global process that cannot be reduced to analyses that take place in nation states. This paper seeks to respond to and enhance Angela McRobbie's compelling argument about understandings…

  7. Places available**

    CERN Multimedia

    2004-01-01

    If you wish to participate in one of the following courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at: http://www.cern.ch/Training/ or fill in an "application for training" form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt. TECHNICAL TRAINING Monique Duval tel. 74924 technical.training@cern.ch ** The number of places available may vary. Please check our Web site to find out the current availability. Places are available in the following courses: The JAVA Programming Language Level 1 :9 & 10.1.2004 (2 days) The JAVA Programming Language Level 2 : 11 to 13.1.2004 (3 days) Hands-on Introduction to Python Programming : 16 - 18.2.2004 (3 days - free of charge) CLEAN-2002 : Working in a Cleanroom : 10.3.2004 (afternoon - free of charge) C++ for Particle Physicists : 8 - 12.3.2004...

  8. Places available**

    CERN Multimedia

    2003-01-01

    If you wish to participate in one of the following courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at: http://www.cern.ch/Training/ or fill in an "application for training" form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt. TECHNICAL TRAINING Monique Duval Tel. 74924technical.training@cern.ch ** The number of places available may vary. Please check our Web site to find out the current availability. Places are available in the following courses: MATLAB Fundamentals and Programming Techniques (ML01) : 2 & 3.12.03 (2 days) Oracle 8i : SQL : 3 - 5.12.03 (3 days) The EDMS MTF in practice : 5.12.03 (afternoon, free of charge) Modeling Dynamic Systems with Simulink (SL01) : 8 & 9.12.03 (2 days) Signal Processing with MATLAB (SG01) : 11 & 12.12.03 (2 days) The JAVA Programming Language - l...

  9. Places available**

    CERN Multimedia

    2003-01-01

    If you wish to participate in one of the following courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at: http://www.cern.ch/Training/ or fill in an "application for training" form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt. TECHNICAL TRAINING Monique Duval tel. 74924 technical.training@cern.ch ** The number of places available may vary. Please check our Web site to find out the current availability. Places are available in the following courses: MATLAB Fundamentals and Programming Techniques (ML01) :2 & 3.12.03 (2 days) Oracle 8i : SQL : 3 - 5.12.03 (3 days) The EDMS MTF in practice : 5.12.03 (afternoon, free of charge) Modeling Dynamic Systems with Simulink (SL01) : 8 & 9.12.03 (2 days) Signal Processing with MATLAB (SG01) : 11 & ...

  10. PLACES AVAILABLE

    CERN Multimedia

    Enseignement Technique; Tél. 74924; Technical Training; Monique Duval; Tel. 74924

    2000-01-01

    Places available Places are available in the following courses:   LabView hands-on 13.11.00 4 hours LabView Basics 1 14 - 16.11.00 3 days Nouveautés de WORD 19 et 20.10.00 2 jours ACCESS 1er niveau 30 - 31.10.00 2 jours Advanced aspects of the C language 2 - 3.11.00 2 days Introduction to Oracle SQL and PL/SQL 13 - 17.11.00 5 days C++ for Particle Physicists 20 - 24.11.00 6 lectures Develop PL/SQL Program Units 20 - 22.11.00 3 days Oracle Application Server Develop Web-Based Applications with PL/SQL 27 - 28.11.00 2 days Programmation TSX Premium 1 28.11 - 1.12.00 4 jours Programmation TSX Premium 2 12 - 15.12.00 4 jours If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : http://www.cern.ch/Training/ or fill in an ?application for training? form available from your Divisional Secretariat or from your DTO (Divisional Training Offi...

  11. Places available **

    CERN Multimedia

    2003-01-01

    Des places sont disponibles dans les cours suivants : Places are available in the following courses : DISP-2003 - Spring I Term : Introduction to Digital Signal Processing : 20, 27.2, 6, 13, 20, 27.3, 3.4.03 (7 X 2-hour lectures) AXEL-2003 - Introduction to Accelerators : 24 - 28.2.03 (10 X 1-hour lectures) AutoCAD 2002 - niveau 1 : 24, 25.2 & 3, 4.3.03 (4 jours) Introduction à Windows 2000 au CERN : 25.2.03 (1/2 journée) LabView base 2/LabView Basics 2 : 10 & 11.3.03 (2 jours/2 days) langue à définir/Language to be decided C++ for Particle Physicists : 10 - 14.3.03 (6 X 3-hour lectures) Introduction to PVSS : 10.3.03 (half day, afternoon) Basic PVSS : 11 - 13.3.03 (3 days) LabView avancé /LabView Advanced : 12 - 14.3.03 (3 jours/3days) Langue à définir/language to be decided AutoCAD Mechanical 6 PowerPack (F) : 12, 13, 17, 18, 24 & 25.3.03 (6 jours) PVSS - JCOP Framework Tutorial : 14.3.03 (1 day) CLEAN-2002 : Working in a cleanroom : 2.4.03 (half-day, afternoon, free course, regis...

  12. Places available **

    CERN Multimedia

    2003-01-01

    Des places sont disponibles dans les cours suivants : Places are available in the following course : Introduction to the CERN Engineering Data Management System : 28.1.03 (1 day) AutoCAD 2002 - niveau 1 : 24, 25.2 et 3, 4.3.03 (4 jours) AutoCAD 2002 - niveau 2 : 27 & 28.2.03 (2 jours) C++ for Particle Physicists : 10 - 14.3.03 (6 X 3 hour lectures) AutoCAD Mechanical 6 PowerPack (F) : 12, 13, 17, 18, 24 & 25.3.03 (6 jours) CLEAN-2002 : Working in a cleanroom : 25.3.03 (half-day, afternoon, free course, registration required) Formation Siemens SIMATIC /Siemens SIMATIC Training : Introduction à STEP7 /Introduction to STEP7 : 11 & 12.3.03 / 3 & 4.6.03 (2 jours/2 days) Programmation STEP7/STEP7 Programming : 31.3 - 4.4.03 / 16 - 20.6.03 (5 jours/5 days) Réseau Simatic Net /Simatic Net Network : 15 & 16.4.03 / 26 & 27.6.03 Ces cours seront donnés en français ou anglais en fonction des demandes / These courses will be given in French or English following the requests. * Etant do...

  13. Places available **

    CERN Multimedia

    2003-01-01

    Des places sont disponibles dans les cours suivants : Places are available in the following courses : C++ for Particle Physicists : 10 - 14.3.03 (6 X 3-hour lectures) Introduction to PVSS : 10.3.03 (half day, afternoon) Basic PVSS : 11 - 13.3.03 (3 days) PVSS - JCOP Framework Tutorial : 14.3.03 (1 day) CLEAN-2002 : Working in a cleanroom : 2.4.03 (half-day, afternoon, free course, registration required) LabView base 1/LabView Basics 1 : 9 - 11.4.03 (3 jours/3 days) Langue à définir/language to be decided DISP-2003 - Spring II Term : Advanced Digital Signal Processing : 30.4, 7, 14, 21.5.03 (4 X 2-hour lectures) AutoCAD 2002 - niveau 1 : 29, 30.4 et 7, 8.5.03 (4 jours) AutoCAD 2002 - niveau 2 : 5 & 6.5.03 (2 jours) AutoCAD Mechanical 6 PowerPack (F) : 12, 13, 20, 21, 27 & 28.5.03 (6 jours) Formation Siemens SIMATIC /Siemens SIMATIC Training : Introduction à STEP7 /Introduction to STEP7 : 11 & 12.3.03 / 3 & 4.6.03 (2 jours/2 days) Programmation STEP7/STEP7 Programming : 31.3 - 4.4.03 / 16...

  14. Places available **

    CERN Multimedia

    2003-01-01

    Des places sont disponibles dans les cours suivants : Places are available in the following courses : WorldFIP 2003 pour utilisateurs : 11-14.2.03 (4 jours) DISP-2003 ? Spring I Term : Introduction to Digital Signal Processing : 20, 27.2, 6, 13, 20, 27.3, 3.4.03 (7 X 2-hour lectures) AXEL-2003 - Introduction to Accelerators : 24-28.2.03 (10 X 1-hour lectures) AutoCAD 2002 - niveau 1 : 24, 25.2 & 3, 4.3.03 (4 jours) Introduction à Windows 2000 au CERN : 25.2.03 (1/2 journée) LabView base 2/LabView Basics 2 : 10 & 11.3.03 (2 jours/2 days) langue à définir/Language to be decided C++ for Particle Physicists : 10 ? 14.3.03 (6 X 3-hour lectures) Introduction to PVSS : 10.3.03 (half day, afternoon) Basic PVSS : 11 - 13.3.03 (3 days) LabView avancé /LabView Advanced : 12 - 14.3.03 (3 jours/3days) Langue à définir/language to be decided AutoCAD Mechanical 6 PowerPack (F) : 12, 13, 17, 18, 24 & 25.3.03 (6 jours) PVSS - JCOP Framework Tutorial : 14.3.03 (1 day) MAGNE-03 - Magnetism for Technical Ele...

  15. Places available **

    CERN Multimedia

    2003-01-01

    Des places sont disponibles dans les cours suivants : Places are available in the following courses : Introduction à Windows 2000 au CERN : 25.2.03 (1/2 journée) LabView base 2/LabView Basics 2 : 10 & 11.3.03 (2 jours/2 days) langue à définir/Language to be decided C++ for Particle Physicists : 10 - 14.3.03 (6 X 3-hour lectures) Introduction to PVSS : 10.3.03 (half day, afternoon) Basic PVSS : 11 - 13.3.03 (3 days) LabView avancé /LabView Advanced : 12 - 14.3.03 (3 jours/3days) Langue à définir/Language to be decided AutoCAD Mechanical 6 PowerPack (F) : 12, 13, 17, 18, 24 & 25.3.03 (6 jours) PVSS - JCOP Framework Tutorial : 14.3.03 (1 day) CLEAN-2002 : Working in a cleanroom : 2.4.03 (half-day, afternoon, free course, registration required) LabView base 1/LabView Basics 1 : 9 - 11.4.03 (3 jours/3 days) Langue à définir/Language to be decided DISP-2003 - Spring II Term : Advanced Digital Signal Processing : 30.4, 7, 14, 21.5.03 (4 X 2-hour lectures) AutoCAD 2002 - niveau 2 : 5 & 6.5.03 (...

  16. Magnetopause Reconnection Impact Parameters from Multiple Spacecraft Magnetic Field Measurements

    Science.gov (United States)

    Wendel, Deirdre E.; Reiff, Patricia H.

    2009-01-01

    We present a novel technique that exploits multiple spacecraft data to determine the impact parameters of the most general form of magnetic reconnection at the magnetopause. The method consists of a superposed epoch of multiple spacecraft magnetometer measurements that yields the instantaneous magnetic spatial gradients near a magnetopause reconnection site. The gradients establish the instantaneous positions of the spacecraft relative to the reconnection site. The analysis is well suited to evaluating the spatial scales of singular field line reconnection, which is characterized by a two-dimensional x-type topology adjacent and perpendicular to a reconnecting singular field line. Application of the method to Cluster data known to lie in the vicinity of a northward IMF reconnection site establishes a field topology consistent with singular field line reconnection and a normal magnetic field component of 20 nT. The corresponding current structure consists of a 130 km sheet possibly embedding a thinner. bifurcated sheet.

  17. Magnetic reconnection with radiative cooling. I. Optically thin regime

    International Nuclear Information System (INIS)

    Magnetic reconnection processes in many high-energy-density astrophysical and laboratory plasma systems are significantly affected by radiation; hence traditional, nonradiative reconnection models are not applicable to these systems. Motivated by this observation, the present paper develops a Sweet-Parker-like theory of resistive magnetic reconnection with strong radiative cooling. It is found that, in the case with zero guide field, intense radiative cooling leads to a strong plasma compression, resulting in a higher reconnection rate. The compression ratio and the reconnection layer temperature are determined by the balance between ohmic heating and radiative cooling. The lower temperature in a radiatively cooled layer leads to a higher Spitzer resistivity and, hence, a higher reconnection rate. Several specific radiative processes (bremsstrahlung, cyclotron, and inverse Compton) in the optically thin regime are considered for both the zero- and strong-guide-field cases, and concrete expressions for the reconnection parameters are derived, along with the applicability conditions.

  18. Magnetic Reconnection: Theoretical and Observational Perspectives: Preface

    Science.gov (United States)

    Lewis, W. S.; Antiochos, S. K,; Drake, J. F.

    2011-01-01

    Magnetic reconnection is a fundamental plasma-physical process by which energy stored in a magnetic field is converted, often explosively, into heat and the kinetic energy of the charged particles that constitute the plasma. It occurs in a variety of astrophysical settings, ranging from the solar corona to pulsar magnetospheres and winds, as well as in laboratory fusion experiments, where it is responsible for sawtooth crashes. First proposed by R.G. Giovanelli in the late I 940s as the mechanism responsible for solar flares, magnetic reconnection was invoked at the beginning of the space age to explain not just solar flares but also the transfer of energy, mass, and momentum from the solar wind to Earth's magnetosphere and the subsequent storage and release of the transferred energy in the magnetotai\\. During the half century or so that has followed the seminal theoretical works by J.W. Dungey, P.A. Sweet, E.N. Parker, and H.E. Petschek, in-situ measurements by Earth-orbiting satellites and remote-sensing observations of the solar corona have provided a growing body of evidence for the occurrence of reconnection at the Sun, in the solar wind, and in the near-Earth space environment. The last thirty years have also seen the development of laboratory reconnection experiments at a number of institutions. In parallel with the efforts of experimentalists in both space and laboratory plasma physics, theorists have investigated, analytically and with the help of increasingly powerful MHD, hybrid, and kinetic numerical simulations, the structure of the diffusion region, the factors controlling the rate, onset, and cessation of reconnection, and the detailed physics that enables the demagnetization of the ions and electrons and the topological reconfiguration of the magnetic field. Moreover, the scope of theoretical reconnection studies has been extended well beyond solar system and laboratory plasmas to include more exotic astrophysical plasma systems whose strong (10(exp 14)-10(exp 15) G) magnetic fields require that models of reconnection in these systems incorporate quantum electrodynamical, special relativistic, and radiative effects. The papers collected in this topical issue of Space Science Reviews cover different aspects of recent theoretical and observational work on magnetic reconnection in solar and space physics, astrophysics, and laboratory plasma physics. They derive from presentations given at a workshop on magnetic reconnection held in the Yosemite National Park, February 8-12,2010. The intent of the workshop was to stimulate, through a combination of tutorial talks, shorter focused talks, and extensive informal discussions, an interdisciplinary dialogue among members of the different research communities working on the problem of magnetic reconnection. One of the motivating considerations for holding the workshop was its relevance to NASA's Magnetospheric Multiscale (MMS) mission, scheduled for launch in 2014. The four identically instrumented MMS spacecraft are designed to study reconnect ion in Earth's magnetosphere and, specifically, to probe the electron diffusion region in order to determine the microphysical processes that enable the change in the topology of the magnetic field. Building on the achievements of the multi spacecraft Cluster and THEMIS missions, MMS will use the magnetosphere as an astrophysical plasma laboratory in which to test, through in-situ measurement of the plasma, energetic particles, and electric and magnetic fields, various models and theories that have emerged during the past twenty years, a period of extraordinarily productive theoretical and observational work.

  19. MAGNETIC RECONNECTION, HELICITY DYNAMICS, AND HYPER-DIFFUSION

    International Nuclear Information System (INIS)

    We examine the influence of noise and Alfvén wave turbulence on magnetic reconnection in a reduced magnetohydrodynamics model. We focus on the dynamics of magnetic helicity density. Helicity conservation is then used to calculate the global reconnection rate in terms of the helicity density flux. Two specific scenarios are explored—noisy reconnection and Alfvén wave turbulent reconnection. For noisy reconnection, the current sheet is assumed to sit in a noisy state, marginal to plasmoid formation instability. The scaling of the reconnection rate in the presence of noise is proportional to (S 20/VAL 2)1/11, where S 20/VAL 2 is the relative amplitude of the noise. We obtain this prediction using a symmetry analysis of the helicity density flux. For Alfvén wave turbulent reconnection, a mean field closure scheme is applied. A reconnection rate proportional to (2>/2)1/8 is obtained, where 2>/2 and (B) are the relative energy of Alfvén wave turbulence and the reconnecting field. The constraint on reconnection rate enforced mean-square magnetic potential conservation is reexamined. A critical magnetic Reynolds number Rm,c is identified. For Rm >> Rm,c, the reconnection rate becomes independent of Spitzer resistivity and thus can be higher than the Sweet-Parkes can be higher than the Sweet-Parker model prediction. Both cases exhibit a weak dependence of the reconnection rate on the amplitude of the turbulence. Therefore, even noise or weak turbulence can trigger fast reconnection if the system is marginally stable. The important distinction between turbulent reconnection and turbulent dissipation of magnetic energy is also discussed.

  20. Places available **

    CERN Multimedia

    2003-01-01

    Places are available in the following courses: PIPES-2003 - Pratique du Sertissage de tubes métalliques et multicouches : 26.8.03 (stage pratique) The CERN Engineering Data Management System (EDMS) for Engineers : 27.8.03 (1 day, free of charge) CLEAN-2002 : Travailler en salle blanche : 4.9.03 (une demi-journée, séminaire gratuit) The CERN Engineering Data Management System (EDMS) for Local Administrators : 24 & 25.9.03 (2 days, free of charge) Siemens SIMATIC Training : Programmation STEP7 - niveau 1 : 29 - 2.10.03 (4 jours) - ouverture des inscriptions fin août Programmation STEP7 - niveau 2 : 13 - 17.10.03 (5 jours) - ouverture des inscriptions fin août Réseau Simatic Net : 22 & 23.10.03 (2 jours) - ouverture des inscriptions fin août CLEAN-2002 : Working in a Cleanroom : 23.20.03 (half day, free of charge) These courses will be given in French or Englis...

  1. PLACES AVAILABLE

    CERN Document Server

    Technical Training; Tel. 74924

    2001-01-01

    Places are available in the following courses: Utilisation du simulateur Simplorer : 30.5 - 1.6.01 (3 jours) Contract Follow-up : 11.6.01 (1/2 journée) LabView hands-on : 11.6.01 F ou E (1/2 journée) LabView Base 1 : 12 - 14.6.01 (3 jours) Habilitation électrique : superviseurs: 2 sessions d'une demi-journée les 12 et 19.6.01 If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : http://www.cern.ch/Training/ or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt.

  2. PLACES AVAILABLE

    CERN Multimedia

    Monique Duval

    2002-01-01

    Places are available in the following courses: October 2002   Introduction to the CERN Engineering Data Management System (free of charge):  29.10.2002  (1 day) The CERN EDMS for Advanced users (free of charge):  30.10.2002  (1 day) November 2002   LabView hands-on (bilingue/bilingual): 5.11.02 (matin/morning) LabView DAQ hands-on (bilingue/bilingual):  5.11.02  (après-midi afternoon) Introduction au PC et Windows 2000 au CERN :  6 & 7.11.02  (2 jours) Oracle 8i : Access the Database with Java:  7 & 8.11.02  (2 days) AutoCAD 2002 - niveau 2 :  7 & 8.11.02  (2 jours) Introduction to PVSS (free of charge):  11.11.2002 pm  (1/2 day) Basic PVSS:  12 - 14.11.02  (3 days) EXCEL 2000 - niveau 1 :  12 & 13.11.02  (2 jours) CLEAN-2002: Working in a Cleanroom (English, free ...

  3. PLACES AVAIABLE

    CERN Multimedia

    TECHNICAL TRAINING; Tel. 74460

    2001-01-01

    Places are available in the following courses: The Java programming language (Level 1) : 8 - 9.2.01 (2 days) Architecture d'automatisme : 20 - 21.2.01 (2 jours) Programmation TSX Premium 1 (Schneider) : 26.2 - 2.3.01 (5 jours) C++ for Particle Physicists : 5 - 9.3.01 (6*3 hour lectures) The Java programming language (Level 2) : 12 - 14.3.2001 (3 days) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : http://www.cern.ch/Training/ or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt.

  4. PLACES AVAILABLE

    CERN Multimedia

    Monique Duval

    2002-01-01

    Places are available in the following courses: November 2002   Introduction to PVSS (free of charge): 11.11.02  (afternoon) EXCEL 2000 - niveau 1 :  12 & 13.11.02  (2 jours) CLEAN-2002: Working in a Cleanroom (English, free of charge):  13.11.2002  (afternoon) AutoCAD 2002 - niveau 1 :  14, 15, 21, 22.11.02  (4 jours) Hands-on Object-Oriented Design and Programming with C++:  19 - 21.11.02  (3 days)  EXCEL 2000 - niveau 2 :  25 & 26.11.02  (2 jours) FrontPage 2000 - niveau 1 :  27 & 28.11.02  (2 jours) December 2002   LabVIEW - DSC (English) :  2 - 3.12.02  (2 days) AutoCAD 2002 - niveau 2 :  2 & 3.12.02  (2 jours) FileMaker (Français) :  2 - 5.12.02  (4 jours) PCAD Schémas - Débutants :  5 & 6.12.02 ...

  5. PLACES AVAILABLE

    CERN Multimedia

    Monique Duval

    2002-01-01

    Places are available in the following courses: November 2002   Java Programming Language level 1 :  28 & 29.11.02  (2 days) December 2002   LabVIEW - DSC (English) :  2 - 3.12.02  (2 days) FileMaker (Français) :  2 - 5.12.02  (4 jours) PCAD Schémas - Débutants :  5 & 6.12.02  (2 jours) PCAD PCB - Débutants :  9 - 11.12.02  (3 jours) FrontPage 2000 - level 1:  9 & 10.12.02  (2 days) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : Technical Training or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt. Technical Training M...

  6. PLACES AVAILABLE

    CERN Multimedia

    Monique Duval

    2002-01-01

    Places are available in the following courses: November 2002   Hands-on Object-Oriented Design and Programming with C++:  19 - 21.11.02  (3 days)  December 2002   LabVIEW - DSC (English) :  2 - 3.12.02  (2 days) AutoCAD 2002 - niveau 2 :  2 & 3.12.02  (2 jours) FileMaker (Français) :  2 - 5.12.02  (4 jours) PCAD Schémas - Débutants :  5 & 6.12.02  (2 jours) PCAD PCB - Débutants :  9 - 11.12.02  (3 jours) FrontPage 2000 - level 1:  9 & 10.12.02  (2 days) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : Technical Training or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisiona...

  7. PLACES AVAILABLE

    CERN Multimedia

    Monique Duval

    2002-01-01

    Places are available in the following courses: December 2002   PCAD Schémas - Débutants :  5 & 6.12.02  (2 jours) PCAD PCB - Débutants :  9 - 11.12.02  (3 jours) FrontPage 2000 - level 1:  9 & 10.12.02  (2 days) Introduction à la CAO Cadence (cours gratuit) :  10 & 11.12.02  (2 jours) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : Technical Training or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt. Technical Training Monique Duval Tel.74924 monique.duval@cern.ch

  8. The relation between reconnected flux, the parallel electric field, and the reconnection rate in a three-dimensional kinetic simulation of magnetic reconnection

    International Nuclear Information System (INIS)

    We investigate the distribution of parallel electric fields and their relationship to the location and rate of magnetic reconnection in a large particle-in-cell simulation of 3D turbulent magnetic reconnection with open boundary conditions. The simulation's guide field geometry inhibits the formation of simple topological features such as null points. Therefore, we derive the location of potential changes in magnetic connectivity by finding the field lines that experience a large relative change between their endpoints, i.e., the quasi-separatrix layer. We find a good correspondence between the locus of changes in magnetic connectivity or the quasi-separatrix layer and the map of large gradients in the integrated parallel electric field (or quasi-potential). Furthermore, we investigate the distribution of the parallel electric field along the reconnecting field lines. We find the reconnection rate is controlled by only the low-amplitude, zeroth and first–order trends in the parallel electric field while the contribution from fluctuations of the parallel electric field, such as electron holes, is negligible. The results impact the determination of reconnection sites and reconnection rates in models and in situ spacecraft observations of 3D turbulent reconnection. It is difficult through direct observation to isolate the loci of the reconnection parallel electric field amidst the large amplitude fluctuations. However, we demonstrate that a positive slope of the running sum of the parallel electric field along the field line as a function of field line length indicates where reconnection is occurring along the field line

  9. A MAGNETIC RECONNECTION MECHANISM FOR THE GENERATION OF ANOMALOUS COSMIC RAYS

    International Nuclear Information System (INIS)

    The recent observations of the anomalous cosmic ray (ACR) energy spectrum as Voyager 1 and Voyager 2 crossed the heliospheric termination shock have called into question the conventional shock source of these energetic particles. We suggest that the sectored heliospheric magnetic field, which results from the flapping of the heliospheric current sheet, piles up as it approaches the heliopause, narrowing the current sheets that separate the sectors and triggering the onset of collisionless magnetic reconnection. Particle-in-cell simulations reveal that most of the magnetic energy is released and most of this energy goes into energetic ions with significant but smaller amounts of energy going into electrons. The energy gain of the most energetic ions results from their reflection from the ends of contracting magnetic islands, a first-order Fermi process. The energy gain of the ions in contracting islands increases their parallel (to the magnetic field B) pressure p|| until the marginal fire-hose condition is reached, causing magnetic reconnection and associated particle acceleration to shut down. Thus, the feedback of the self-consistent development of the energetic ion pressure on reconnection is a crucial element of any reconnection-based, particle-acceleration model. The model calls into question the strong scattering assumption used to derive the Parker transport equation and therefore the absence of first-order Fermi acceleration in incompressible flows.ermi acceleration in incompressible flows. A simple one-dimensional model for particle energy gain and loss is presented in which the feedback of the energetic particles on the reconnection drive is included. The ACR differential energy spectrum takes the form of a power law with a spectral index slightly above 1.5. The model has the potential to explain several key Voyager observations, including the similarities in the spectra of different ion species.

  10. Places disponibles*/Places available **

    CERN Multimedia

    2003-01-01

    Des places sont disponibles dans les cours suivants : Places are available in the following course : WorldFIP 2003 pour utilisateurs : 11 - 14.2.03 (4 jours) AutoCAD 2002 - niveau 1 : 24, 25.2 & 3, 4.3.03 (4 jours) Introduction à Windows 2000 au CERN : 25.2.03 (1/2 journée) AutoCAD 2002 - niveau 2 : 27 & 28.2.03 (2 jours) C++ for Particle Physicists : 10 - 14.3.03 (6 X 3 hour lectures) AutoCAD Mechanical 6 PowerPack (F) : 12, 13, 17, 18, 24 & 25.3.03 (6 jours) CLEAN-2002 : Working in a cleanroom : 2.4.03 (half-day, afternoon, free course, registration required) Formation Siemens SIMATIC /Siemens SIMATIC Training : Introduction à STEP7 /Introduction to STEP7 : 11 & 12.3.03 / 3 & 4.6.03 (2 jours/2 days) Programmation STEP7/STEP7 Programming : 31.3 - 4.4.03 / 16 - 20.6.03 (5 jours/5 days) Réseau Simatic Net /Simatic Net Network : 15 & 16.4.03 / 26 & 27.6.03 Ces cours seront donnés en français ou anglais en fonction des demandes / These courses will be given in French o...

  11. Reconnecting Youth. What Works Clearinghouse Intervention Report

    Science.gov (United States)

    What Works Clearinghouse, 2015

    2015-01-01

    "Reconnecting Youth" is an elective, credit-bearing course for students at risk of dropping out of school due to frequent absenteeism, low grades, or a history of dropping out. The curriculum focuses on building self-esteem, decision making, personal control, and interpersonal communication skills. The What Works Clearninghouse (WWC)…

  12. Crossed Flux Tubes Magnetic Reconnection Experiment

    Science.gov (United States)

    Tobin, Zachary; Bellan, Paul

    2012-10-01

    The dynamics of arched, plasma-filled flux tubes have been studied in experiments at Caltech. These flux tubes expand, undergo kink instabilities, magnetically reconnect, and are subject to magnetohydrodynamic forces. An upgraded experiment will arrange for two of these flux tubes to cross over each other. It is expected then that the flux tubes will undergo magnetic reconnection at the crossover point, forming one long flux tube and one short flux tube. This reconnection should also result in a half-twist in the flux tubes at the crossover point, which will propagate along each tube as Alfv'en waves. The control circuitry requires two independent floating high energy capacitor power supplies to power the plasma loops, which will be put in series when the plasma loops reconnect. Coordinating these two power supplies requires the building of new systems for controlling plasma generation. Unlike with previous designs, all timing functions are contained on a single printed circuit board, allowing the design to be easily replicated for use with each independent capacitor involved. The control circuit sequencing has been tested successfully in generating a single flux tube. The plasma gun is currently under construction, with its installation pending completion of prior experiments.

  13. Relating magnetic reconnection to coronal heating

    CERN Document Server

    Longcope, Dana W

    2015-01-01

    It is clear that the solar corona is begin heated and that coronal magnetic fields undergo reconnection all the time. Here we attempt to show that these two facts are in fact related - i.e. coronal reconnection generates heat. This attempt must address the fact that topological change of field lines does not automatically generate heat. We present one case of flux emergence where we have measured the rate of coronal magnetic reconnection and the rate of energy dissipation in the corona. The ratio of these two, $P/\\dot{\\Phi}$, is a current comparable to the amount of current expected to flow along the boundary separating the emerged flux from the pre-existing flux overlying it. We can generalize this relation to the overall corona in quiet Sun or in active regions. Doing so yields estimates for the contribution to corona heating from magnetic reconnection. These estimated rates are comparable to the amount required to maintain the corona at its observed temperature.

  14. Relating magnetic reconnection to coronal heating.

    Science.gov (United States)

    Longcope, D W; Tarr, L A

    2015-05-28

    It is clear that the solar corona is being heated and that coronal magnetic fields undergo reconnection all the time. Here we attempt to show that these two facts are related-i.e. coronal reconnection generates heat. This attempt must address the fact that topological change of field lines does not automatically generate heat. We present one case of flux emergence where we have measured the rate of coronal magnetic reconnection and the rate of energy dissipation in the corona. The ratio of these two, [Formula: see text], is a current comparable to the amount of current expected to flow along the boundary separating the emerged flux from the pre-existing flux overlying it. We can generalize this relation to the overall corona in quiet Sun or in active regions. Doing so yields estimates for the contribution to coronal heating from magnetic reconnection. These estimated rates are comparable to the amount required to maintain the corona at its observed temperature. PMID:25897089

  15. VINETA II: a linear magnetic reconnection experiment.

    Science.gov (United States)

    Bohlin, H; Von Stechow, A; Rahbarnia, K; Grulke, O; Klinger, T

    2014-02-01

    A linear experiment dedicated to the study of driven magnetic reconnection is presented. The new device (VINETA II) is suitable for investigating both collisional and near collisionless reconnection. Reconnection is achieved by externally driving magnetic field lines towards an X-point, inducing a current in the background plasma which consequently modifies the magnetic field topology. Owing to the open field line configuration of the experiment, the current is limited by the axial sheath boundary conditions. A plasma gun is used as an additional electron source in order to counterbalance the charge separation effects and supply the required current. Two drive methods are used in the device. First, an oscillating current through two parallel conductors drive the reconnection. Second, a stationary X-point topology is formed by the parallel conductors, and the drive is achieved by an oscillating current through a third conductor. In the first setup, the magnetic field of the axial plasma current dominates the field topology near the X-point throughout most of the drive. The second setup allows for the amplitude of the plasma current as well as the motion of the flux to be set independently of the X-point topology of the parallel conductors. PMID:24593355

  16. Taking Leave?

    CERN Multimedia

    2000-01-01

    Planning a holiday? Then if you're a member of the personnel, you'll need to use the Laboratory's new leave system that will be put in place on 1 October. Leave allocations don't change - you are entitled to just as much holiday as before - but instead of being credited annually, your leave will be credited on a monthly basis, and this information will be communicated on your salary slip. The reason for the change is that with the various new leave schemes such as Recruitment by Saved Leave (RSL) and the Progressive Retirement Programme (PRP), a streamlined procedure was required for dealing with all kinds of leave. In the new system, each member of the personnel will have leave accounts to which leave will be credited monthly from the payroll and debited each time an absence is registered in the CERN Electronic Document Handling system (EDH). Leave balances will appear on monthly pay slips, and full details of leave transactions and balances will be available through EDH at all times. As the leave will be c...

  17. Take heart!

    CERN Multimedia

    Alizée Dauvergne

    2010-01-01

    Recently, ten new semi-automatic defibrillators were installed at various locations around CERN. This is a preventive measure intended to provide cardiac arrest victims with the best possible response. The first responder could be you!   The Director-General has welcomed the initiative of the Medical Service and Fire Brigade for the installation of ten new semi-automatic defibrillators. You have probably seen them on your way to the restaurant, for example:  brand new semi-automatic defibrillators, ready for an emergency. Housed in a white wall-mounted case, the bright red defibrillators are marked with a white heart symbol crossed by a lightning bolt (see photo). The defibrillator is designed so that anyone can use it. “Anyone can use it, you don’t need to be a health professional,” says Dr Reymond from CERN's Medical Service. Together with the CERN Fire Brigade, he is behind the initiative to have these units put in place. And with good reason, as the unit...

  18. PLACES AVAILABLE

    CERN Multimedia

    Monique Duval

    2002-01-01

    Places are available in the following courses: November 2002   LabView hands-on (bilingue/bilingual): 5.11.02 (matin/morning) LabView DAQ hands-on (bilingue/bilingual):  5.11.02  (après-midi afternoon) PCAD Schémas - Débutants :  5 & 6.11.02  (2 jours) PCAD PCB - Débutants :  9 - 11.11.02  (3 jours) Introduction au PC et Windows 2000 au CERN :  6 & 7.11.02  (2 jours) Oracle 8i : Access the Database with Java :  7 & 8.11.02  (2 days) Introduction to PVSS (free of charge):  11.11.2002 pm  (1/2 day) Basic PVSS:  12 - 14.11.02  (3 days) EXCEL 2000 - niveau 1 :  12 & 13.11.02  (2 jours) CLEAN-2002: Working in a Cleanroom (English, free of charge):  13.11.2002  (afternoon) LabView Base 1 :  13 - 15.11.02  (3 jours) AutoCAD 2002 - niveau 1 :  14, 15, 21, 22.11.02  (4 jours) LabVIEW - Advanced:  18 - 20.11.02  (3 days) Hands-on Object-Oriented Design and Programming with C++ :  19 - 21.11.02  (3 days)  LabVIEW - Basics 2:  21 - 22.11.02 ...

  19. PLACES AVAILABLE

    CERN Document Server

    Monique Duval

    2002-01-01

    Places are available in the following courses: Introduction à DesignSpace :  16.10.02  (1 journée) AutoCAD Mechanical 6 PowerPack (F) :  21, 22, 23.10 et 4, 5, 6.11.02  (6 jours) Introduction à ANSYS 21 - 25.10.02  (5 jours/days) HREF-2002: Helium Refrigeration Techniques (English-French, bilingual) :  21 - 25.10.2002  (7 half days) LabVIEW Basics 1 (English):  21 - 23.10.02  (3 days) LabVIEW Basics 2 (English):  24 & 25.10.02  (2 days) Oracle 8i : Access the Database with Java:  7 & 8.11.02  (2 days) AutoCAD 2002 - niveau 2 :  7 & 8.11.02  (2 jours) AutoCAD 2002 - Level 1:  14, 15, 21, 22.11.02  (4 days) LabVIEW - Advanced (English) :  18 - 20.11.2002  (3 days) AutoCAD 2002 - niveau 1 :  19, 20, 25, 26.11.02 (4 jours) Oracle iDS Designer: First Class:&...

  20. PLACES AVAILABLE

    CERN Multimedia

    Monique Duval

    2002-01-01

    Places are available in the following courses: Introduction to Oracle 8i : SQL and PL/SQL:  7 - 11.10.02  (5 days) CLEAN-2002 : Working in a Cleanroom (free of charge):  10.10.02  (half-day, p.m.) AutoCAD 2002 - niveau 2 :  14 - 15.10.02  (2 jours) Introduction à DesignSpace :  16.10.02  (1 journée) Introduction to DesignSpace:  17.10.02  (1 day) AutoCAD 2002 - Level 1:  17, 18, 24, 25.10.02  (4 days) AutoCAD Mechanical 6 PowerPack (F) :  21, 22, 23.10 et 4, 5, 6.11.02  (6 jours) Introduction à ANSYS/Introduction to ANSYS (langue à définir suivant demande/ Language to be chosen according to demand):  21 - 25.10.02  (5 jours/days) HREF-2002: Helium Refrigeration Techniques (English-French, bilingual) :  21 - 25.10.2002  (7 half days) HREF-2002: Techniques de la Réfri...

  1. PLACES AVAILABLE

    CERN Multimedia

    Monique Duval

    2002-01-01

    Places are available in the following courses: Introduction to Oracle 8i : SQL and PL/SQL:  7 - 11.10.02  (5 days) CLEAN-2002 : Working in a Cleanroom (free of charge):  10.10.02  (half-day, p.m.) LabView Hands-on (bilingue/bilingual) : 10.10.02 (matin/morning) LabView DAQ Hands-on (bilingue/bilingual)  10.10.02 (après-midi /afternoon) Introduction à DesignSpace :  16.10.02  (1 journée) Introduction to DesignSpace:  17.10.02  (1 day) AutoCAD Mechanical 6 PowerPack (F) :  21, 22, 23.10 et 4, 5, 6.11.02  (6 jours) Introduction à ANSYS/Introduction to ANSYS (langue à définir suivant demande/ Language to be chosen according to demand):  21 - 25.10.02  (5 jours/days) HREF-2002: Helium Refrigeration Techniques (English-French, bilingual) :  21 - 25.10.2002  (7 half days) HREF-2002: Techniques de la...

  2. Places available**

    CERN Multimedia

    2003-01-01

    Places are available in the following courses : FrontPage 2000 - niveau 1: 20 & 21.5.03 (2 jours) PIPES-2003 : Pratique du sertissage de tubes métalliques et multicouches: 21.5.03 (1 jour) Introduction à la CAO Cadence: de la saisie de schéma Concept-HDL au PCB : 20 & 22.5.03 (2 jours) AutoCAD Mechanical 6 PowerPack (E): 5, 6, 12, 13, 26, 27.6.03 (6 days) EXCEL 2000 - niveau 1: 10 & 11.6.03 (2 jours) Conception de PCB rapides dans le flot Cadence: 11.6.03 (matin) EXCEL 2000 - level 1: 12 & 13.6.03 (2 days) Introduction to PVSS: 16.6.03 (half-day, pm) Basic PVSS: 17 - 19.6.03 (3 days) Réalisation de PCB rapides dans le flot Cadence: 17.6.03 (matin) LabView DSC (language to be defined): 19 & 20.6.03 PVSS - JCOP Framework Tutorial: 20.6.03 (1 day) EXCEL 2000 - niveau 2: 24 & 25.6.03 (2 jours) Siemens SIMATIC Training: Introduction to STEP7: 3 & 4.6.03 (2 days) STEP7 Programming: 16 - 20.6.03 (5 days) Simatic Net Network: 26 & 27.6.03 (2 days) These courses will be given...

  3. Places available**

    CERN Multimedia

    2003-01-01

    Places are available in the following courses : FrontPage 2000 - niveau 1 : 20 & 21.5.03 (2 jours) PIPES-2003 : Pratique du sertissage de tubes métalliques et multicouches : 21.5.03 (1 jour) Introduction à la CAO Cadence : de la saisie de schéma Concept-HDL au PCB : 20 & 22.5.03 (2 jours) AutoCAD 2002 - niveau 2 : 3 & 4.6.03 (2 jours) AutoCAD Mechanical 6 PowerPack (F) : 5, 6, 12, 13, 26, 27.6.03 (6 jours) EXCEL 2000 - niveau 1 : 10 & 11.6.03 (2 jours) Conception de PCB rapides dans le flot Cadence : 11.6.03 (matin) EXCEL 2000 - level 1 : 12 & 13.6.03 (2 days) PowerPoint 2000 (F) : 17 & 18.6.03 (2 jours) Réalisation de PCB rapides dans le flot Cadence : 17.6.03 (matin) FrontPage 2000 - niveau 2 : 19 & 20.6.03 (2 jours) LabView DSC (langue à décider/language to be defined) : 19 & 20.6.03 EXCEL 2000 - niveau 2 : 24 & 25.6.03 (2 jours) Siemens SIMATIC Training: Introduction to STEP7 : 3 & 4.6.03 (2 days) STEP7 Programming : 16 - 20.6.03 (5 days) Simatic...

  4. Places available**

    CERN Multimedia

    2003-01-01

    Places are available in the following courses: PIPES-2003 - Pratique du sertissage de tubes métalliques et multicouches :26.8.03(stage pratique) The CERN EDMS for Engineers (free of charge) : 27.8.03 (1 day) CLEAN-2002 : Travailler en salle blanche (séminaire gratuit) : 4.9.03(une demi-journée) The CERN EDMS for Local Administrators (free of charge) : 24 & 25.9.03 (2 days) HeREF-2003 : Techniques de la réfrigération Hélium (cours en français avec support en anglais) : 6 - 10.10.2003 (7 demi-journées) The Java Programming Language Level 1 : 6 - 7.10.2003 (2 days) Java 2 Enterprise Edition - Part 2 : Enterprise JavaBeans : 8 - 10.10.2003 (3 days) FileMaker - niveau 1 : 9 & 10.10.03 (2 jours) EXCEL 2000 - niveau 1 : 20 & 22.10.03 (2 jours) AutoCAD 2002 - niveau 1 : 20, 21, 27, 28.10.03 (4 jours) CLEAN-2002 : Working in a Cleanroom (free of charge) : 23.10.03 (half day) AutoCAD Mechanical 6 PowerPack (E) : 23, 24, 30, 31.10 & 12, 13.11.03 (6 days) AutoCAD 2002 - niveau 2...

  5. PLACES AVAILABLES

    CERN Document Server

    Technical Training; Tel. 74924

    2000-01-01

    Places are available in the following courses:   C++ for Particle Physicists 20 - 24.11.00 6 lectures CANbus 20.11.00 1 journée CANopen 21 et 22.11.00 2 jours Sécutiré dans les installations cryogéniques 21 et 22.11.00 2 demi-journées The JAVA programming language level 2 27 ­ 29.11.00 3 days Contract Follow-up 27.11.00 3 heures 1/2 Cryogénie (introduction) 4 ­ 8.12.00 ANSYS Introduction : langue a décider suivant majorité 5 ­ 7.12.00 3 jours EXCEL 7, 8, 13 et 14.12.00 4 jours Contract Follow-up 15.12.00 3 heures 1/2 If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : http://www.cern.ch/Training/ or fill in an ?application for training? form available from your Divisional Secretariat or from your DTO (Divisional Training Officer)....

  6. PLACES AVAILABLE

    CERN Multimedia

    Technical Training; Tel. 74924

    2001-01-01

    Places are available in the following courses: Cadence Board Design tools : Upgrading to release 14 :  3 1-day sessions on 9, 10 & 11.10.01 MS-Project 2000 - niveau 1 : 15 - 18.10.01 (4 demi-journées) LabView Base 2 : 18 & 19.10.01 (2 jours) WORD 2000 : importer et manipuler des images : 19.10.01 (1 journée) Contract Follow-up (F) :  30.10.01 (1/2 journée) The CERN Engineering Data Management System for Electronics Design :  30.10.01 (1 day) UNIX pour non-programmeurs : 5 - 7.11.01 (3 jours) The Java programming language Level 1: 8 - 9.11.01 (2 days) LabView Base 1 : 12 - 14.11.01 (3 jours) Introduction to PERL 5 :  15 - 16.11.01  (2 days) Introduction to XML :  19 - 20.11.01 (2 days) Programming TSX Premium 1 :  19 - 23.11.01  (5 days) Introduction to C Programming :  21- 23.11.01 (3 days) The Java programming language Level 2:  26 - 28.11.01 (...

  7. PLACES AVAILABLE

    CERN Multimedia

    Technical Training; Tel. 74924

    2001-01-01

    Places are available in the following courses: MS-Project 2000 - niveau 1 : 15 - 18.10.01 (4 demi-journées) LabView Base 2 : 18 & 19.10.01 (2 jours) WORD 2000 : importer et manipuler des images : 19.10.01 (1 journée) Contract Follow-up (F) : 30.10.01 (1/2 journée) The CERN Engineering Data Management System for Electronics Design :  30.10.01 (1 day) UNIX pour non-programmeurs : 5 - 7.11.01 (3 jours) The Java programming language Level 1: 8 - 9.11.01 (2 days) LabView Base 1 : 12 - 14.11.01 (3 jours) Automates et réseaux de terrain : 13 & 14.11.01 (2 jours) Introduction to PERL 5 :  15 - 16.11.01  (2 days) Introduction to XML :  19 - 20.11.01 (2 days) Programming TSX Premium 1 :  19 - 23.11.01  (5 days) Introduction to C Programming :  21- 23.11.01 (3 days) The Java programming language Level 2:  26 - 28.11.01 (3 days) Programmation TSX Premium 2 : 26 ...

  8. PLACES AVAILABLE

    CERN Multimedia

    Technical Training; Tel. 74924

    2001-01-01

    Places are available in the following courses: EXCEL 2000 - niveau 1 : 3 et 4.10.01 (2 jours) Automates et réseaux de terrain : 3 - 4.10.2001 (2 jours) Introduction à Outlook : 5.10.01 (1 journée) C++ for Particle Physicists : 8 - 12.10.01 (6 lectures) Cadence Board Design tools : Upgrading to release 14 : 3 1-day sessions on 9, 10 & 11.10.01 MS-Project 2000 - niveau 1 : 15 - 18.10.01 (4 demi-journées) LabView Base 2 : 18 & 19.10.01 (2 jours) WORD 2000 : importer et manipuler des images : 19.10.01 (1 journée) The CERN Engineering Data Management System for Electronics Design :  30.10.01 (1 day) UNIX pour non-programmeurs : 5 - 7.11.01 (3 jours) The Java programming language Level 1: 8 - 9.11.01 (2 days) Introduction to PERL 5 :  15 - 16.11.01  (2 days) Introduction to XML :  19 - 20.11.01 (2 days) Programming TSX Premium 1 :  19 - 23.11.01  (5 days) Introd...

  9. PLACES AVAILABLE

    CERN Multimedia

    Technical Training; Tel. 74924

    2001-01-01

    Places are available in the following courses: Introduction à Windows 2000 au CERN : 2 sessions de _ journée les 24 et 25.9.01 PROFIBUS : 25 - 26.9.01 (2 jours) PROFIBUS : 27 - 28.9.01 (2 days) EXCEL 2000 - niveau 1 : 3 et 4.10.01 (2 jours) Automates et réseaux de terrain : 3 - 4.10.2001 (2 jours) Introduction à Outlook : 5.10.01 (1 journée) Frontpage 2000 - niveau 1 : 8 et 9.10.01 (2 jours) C++ for Particle Physicists : 8 - 12.10.01 (6 lectures) MS-Project 2000 - niveau 1 : 15 - 18.10.01 (4 demi-journées) Programmation TSX Premium 1 : 15 - 19.10.01 (5 jours) WORD 2000 : importer et manipuler des images : 19.10.01 (1 journée) Programmation TSX Premium 1 : 22 - 26.10.01 (5 jours) UNIX pour non-programmeurs : 5 - 7.11.01 (3 jours) The Java programming language Level 1: 8 - 9.11.01 (2 days) Introduction to PERL 5 :  15 - 16.11.01  (2 days) Introduction to XML :  19 - 20.11.01 (2...

  10. PLACES AVAILABLE

    CERN Multimedia

    Technical Training; Tel. 74924

    2001-01-01

    Places are available in the following courses: Contract Follow-up (F) : 30.10.01 (1/2 journée) The CERN Engineering Data Management System for Electronics Design :  30.10.01 (1 day) Nouveautés d'Excel 2000 : 5.11.01 (1/2 journée) UNIX pour non-programmeurs : 5 - 7.11.01 (3 jours) Introduction à Windows 2000 au CERN : 6.11.01 (1/2 journée) The Java programming language Level 1: 8 - 9.11.01 (2 days) LabView Base 1 : 12 - 14.11.01 (3 jours) LabVIEW DAQ (F) : 15 & 16.11.01 (2 jours) Automates et réseaux de terrain : 13 & 14.11.01 (2 jours) Introduction to PERL 5 :  15 - 16.11.01  (2 days) LabVIEW - DAQ : 15 - 16.11.01 (2 jours) Introduction to XML :  19 - 20.11.01 (2 days) Introduction to C Programming :  21- 23.11.01 (3 days) Programmation TSX Premium 2 : 26 - 30.11.01 (5 jours) Object-Oriented Analysis and Design :  27 - 30.11.2001 (4 days) Hands...

  11. PLACES AVAILABLE

    CERN Multimedia

    Technical Training; Tel. 74924

    2001-01-01

    Places are available in the following courses: Nouveautés d'EXCEL : 5.11.01 (1/2 journée) Introduction a Windows 2000 au CERN : 6.11.01 (1/2 journée) UNIX pour non-programmeurs : 5 - 7.11.01 (3 jours) Design Patterns :  7 - 8.11.01 (2 days) The Java programming language Level 1: 8 - 9.11.01 (2 days) Automates et réseaux de terrain : 13 & 14.11.01 (3 jours) Introduction à Windows 2000 au CERN : 12 - 14.11.01 (1/2 journée) Introduction to Windows 2000 at CERN :  14.11.01  (half-day) Introduction to PERL 5 :  15 - 16.11.01  (2 days) Introduction to C Programming :  21- 23.11.01 (3 days) Programmation TSX Premium 2 : 26 - 30.11.01 (5 jours) Contract Follow-up (F) : 26.11.01 (1/2 journée) Object-Oriented Analysis and Design :  27 - 30.11.2001  (4 days) Hands-on Object-Oriented Design and Programming with C++ :  11 - 13.12.2...

  12. PLACES AVAILABLE

    CERN Multimedia

    TECHNICAL TRAINING; Tel. 74460

    2001-01-01

    Places are available in the following courses: Introduction to Databases : 23 - 24.1.01 (2 days) Advanced and Modern Databases : 25 - 26.01.01 (2 days) UNIX pour non-programmeurs : 31.1 - 2.2.01 (3 jours) JAVA for non-programmers : 5 - 7.2.01 (3 days) Contract Follow-up : 12.2.01 (3 heures) Introduction to Oracle SQL and PL/SQL : 12 - 16.2.01 (5 days) AutoCAD 2D niveau I : 12 - 16.2.02 (5 jours) The JAVA programming language level 2 : 19 - 21.2.2001 (3 days) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : http://www.cern.ch/Training/ or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt.

  13. Places available**

    CERN Multimedia

    2003-01-01

    Places are available in the following courses: The CERN EDMS for Local Administrators (free of charge) : 24 & 25.9.03 (2 days) HeREF-2003 : Techniques de la réfrigération Hélium (cours en français avec support en anglais) : 6 - 10.10.2003 (7 demi-journées) The Java Programming Language Level 1 : 6 - 7.10.2003 (2 days) Java 2 Enterprise Edition - Part 2 : Enterprise JavaBeans : 8 - 10.10.2003 (3 days) FileMaker - niveau 1 : 9 & 10.10.03 (2 jours) EXCEL 2000 - niveau 1 : 20 & 22.10.03 (2 jours) AutoCAD 2002 - niveau 1 : 20, 21, 27, 28.10.03 (4 jours) CLEAN-2002 : Working in a Cleanroom (free of charge) : 23.10.03 (half day) AutoCAD Mechanical 6 PowerPack (E) : 23, 24, 30, 31.10 & 12, 13.11.03 (6 days) AutoCAD 2002 - niveau 2 : 10 & 11.11.03 (2 jours) ACCESS 2000 - niveau 1 : 13 & 14.11.03 (2 jours) FrontPage 2000 - niveau 1 : 20...

  14. PLACES AVAILABLE

    CERN Multimedia

    Technical Training; Tel. 74460

    2001-01-01

    Places are available in the following courses: The JAVA programming language level 1 : 22 - 23.1.01 (2 days) Introduction to Databases : 23 - 24.1.01 (2 days) EXCEL : 24 - 25.1.01  et 1 - 2.2.01 (4 jours) Advanced and Modern Databases : 25 - 26.01.01 (2 days) UNIX pour non-programmeurs : 31.1 - 2.2.01 (3 jours) JAVA for non-programmers : 5 - 7.2.01 (3 days) Publier sur le Web :  6 - 8.2.01 (3 demi-journées) Contract Follow-up : 12.2.01 (3 heures) Introduction to Oracle SQL and PL/SQL : 12 - 16.2.01 (5 days) The JAVA programming language level 2 : 19 - 21.2.01 (3 days) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : http://www.cern.ch/Training/ or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order...

  15. Places available**

    CERN Multimedia

    2003-01-01

    Places are available in the following courses: CLEAN-2002 : Travailler en salle blanche (séminaire gratuit) : 4.9.03 (une demi-journée) The CERN EDMS for Local Administrators (free of charge) : 24 & 25.9.03 (2 days) HeREF-2003 : Techniques de la réfrigération Hélium (cours en français avec support en anglais) : 6 - 10.10.2003 (7 demi-journées) The Java Programming Language Level 1 : 6 - 7.10.2003 (2 days) Java 2 Enterprise Edition - Part 2 : Enterprise JavaBeans : 8 - 10.10.2003 (3 days) FileMaker - niveau 1 : 9 & 10.10.03 (2 jours) EXCEL 2000 - niveau 1 : 20 & 22.10.03 (2 jours) AutoCAD 2002 - niveau 1 : 20, 21, 27, 28.10.03 (4 jours) CLEAN-2002 : Working in a Cleanroom (free of charge) : 23.10.03 (half day) AutoCAD Mechanical 6 PowerPack (E) : 23, 24, 30, 31.10 & 12, 13.11.03 (6 days) AutoCAD 2002 - niveau 2 : 10 & 11.11.03 (2 jours)...

  16. PLACES AVAILABLE

    CERN Multimedia

    Technical Training; Tel. 74924

    2001-01-01

    Places are available in the following courses: Contract Follow-up (F) : 30.10.01 (1/2 journée) The CERN Engineering Data Management System for Electronics Design :  30.10.01 (1 day) UNIX pour non-programmeurs : 5 - 7.11.01 (3 jours) Nouveautés d'EXCEL : 5.11.01 (1/2 journée) Introduction a Windows 2000 au CERN : 6.11.01 (1/2 journée) The Java programming language Level 1: 8 - 9.11.01 (2 days) LabView Base 1 : 12 - 14.11.01 (3 jours) Automates et réseaux de terrain : 13 & 14.11.01 (2 jours) Introduction to PERL 5 :  15 - 16.11.01  (2 days) Introduction to XML :  19 - 20.11.01 (2 days) Programming TSX Premium 1 :  19 - 23.11.01  (5 days) Introduction to C Programming :  21- 23.11.01 (3 days) The Java programming language Level 2:  26 - 28.11.01 (3 days) Programmation TSX Premium 2 : 26 - 30.11.01 (5 jours) Autocad Migration support courses: a detail...

  17. Places available**

    CERN Multimedia

    2003-01-01

    Places are available in the following courses: The CERN EDMS for Local Administrators : 24 & 25.9.03 (2 days, free of charge) HeREF-2003 : Techniques de la réfrigération Hélium cours en français avec support en anglais) : 6 - 10.10.2003 (7 demi-journées) The Java Programming Language Level 1 : 6 - 7.10.2003 (2 days) Java 2 Enterprise Edition - Part 2 : Enterprise JavaBeans : 8 - 10.10.2003 (3 days) FileMaker - niveau 1 : 9 & 10.10.03 (2 jours) EXCEL 2000 - niveau 1 : 20 & 22.10.03 (2 jours) AutoCAD 2002 - niveau 1 : 20, 21, 27, 28.10.03 (4 jours) CLEAN-2002 : Working in a Cleanroom : 23.10.03 (half day, free of charge) AutoCAD 2002 - Level 1 : 3, 4, 12, 13.11.03 (4 days) AutoCAD 2002 - niveau 2 : 10 & 11.11.03 (2 jours) ACCESS 2000 - niveau 1 : 13 & 14.11.03 (2 jours) AutoCAD Mechanical 6 PowerPack (E) : 17, 18, 24, 25.11 & 1, 2.12.03 (6 days) FrontPage 2000 - niveau 1 : 20 & 21.11.03 (2 jours) MAGNE-03 : Magnétisme pour l'électrotechnique : 25 - 27.11.03 (3 jours) ...

  18. PLACES AVAILABLE

    CERN Multimedia

    Technical Training; Tel. 74460

    2001-01-01

    Places are available in the following courses: Introduction à PowerPoint : 26.2.01 (1 journée) Programmation TSX Premium 1 : 26.2 - 2.3.01 (5 jours) Premiers pas avec votre PC : 27.2 - 2.3.01 (4 matins) C++ for Particle Physicists :  5 - 9.3.01 (6*3 hour lectures) The CERN Engineering Data Management System for Electronic Design : 6.3.01 (1 day) The CERN Engineering Data Management System for Electronic Design : 7.3.01 (1 day) EXCEL : 6, 7 et 13, 14.3.01 (4 jours) The JAVA programming language level 2 : 12 - 14.3.01 (3 days) Nouveautés de FileMaker : 20 - 23.03.01 (4 matins) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : http://www.cern.ch/Training/ or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be acc...

  19. Places available**

    CERN Multimedia

    2003-01-01

    Places are available in the following courses : The CERN EDMS for Local Administrators : 24 & 25.9.03 (2 days, free of charge) HeREF-2003 : Techniques de la réfrigération Hélium (cours en français avec support en anglais) : 6 - 10.10.2003 (7 demi-journées) The Java Programming Language Level 1 : 6 - 7.10.2003 (2 days) Java 2 Enterprise Edition - Part 2 : Enterprise JavaBeans : 8 - 10.10.2003 (3 days) FileMaker - niveau 1 : 9 & 10.10.03 (2 jours) EXCEL 2000 - niveau 1 : 20 & 22.10.03 (2 jours) AutoCAD 2002 - niveau 1 : 20, 21, 27, 28.10.03 (4 jours) CLEAN-2002 : Working in a Cleanroom : 23.10.03 (half day, free of charge) AutoCAD 2002 - Level 1 : 3, 4, 12, 13.11.03 (4 days) AutoCAD 2002 - niveau 2 : 10 & 11.11.03 (2 jours) ACCESS 2000 - niveau 1 : 13 & 14.11.03 (2 jours) AutoCAD Mechanical 6 PowerPack (E) : 17, 18, 24, 25.11 & 1, 2.12.03 (6...

  20. PLACES AVAILABLE

    CERN Multimedia

    TECHNICAL TRAINING; Tel. 74460

    2001-01-01

    Places are available in the following courses: MS-Project 1er niveau : 20 - 23.2.01 (4 matins) Architecture d'automatisme : 20 - 21.2.01 (2 jours) Introduction à PowerPoint : 26.2.01 (1 journée) Programmation TSX Premium 1 (Schneider) : 26.2 - 2.3.01 (5 jours) Premiers pas avec votre PC : 27.2 - 2.3.01 (4 matins) C++ for Particle Physicists : 5 - 9.3.01 (6*3 hour lectures) EXCEL : 6, 7 et 13, 14.3.01 (4 jours) The JAVA programming language level 2 :  12 - 14.3.01 (3 days) Nouveautés de FileMaker :  20 - 23.03.01 (4 matins) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : http://www.cern.ch/Training/ or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt.

  1. PLACES AVAILABLE

    CERN Multimedia

    Monique Duval

    2002-01-01

    Places are available in the following courses: LabView DAQ  (F) : 7 & 8.2.02 (2 jours) Hands-on Object-Oriented Design & Programming with Java :  11 - 13.02.02 (3 days) PVSS basics :  18 - 22.2.02 (5 days) Introduction à Windows 2000 : 18.2.02 (1 demi-journée) Introduction to the CERN Engineering Data Management System :  20.2.02 (1 day) Introduction à la CAO CADENCE : 20 & 21.2.02 (2 jours) The CERN Engineering Data Management System for Advanced users :  21.2.02  (1 day) LabView Basics 1 :  4 - 6.3.02  (3 days) Introduction au VHDL et utilisation du simulateur de CADENCE : 6 & 7.3.02 (2 jours) LabView Base 2 : 11 & 12.3.02 (2 jours) C++ for Particle Physicists :  11 - 15.3.2002  (6 * 3 hour lectures) LabView Advanced :  13 - 15.3.02 (3 days) Cours sur la migration AutoCAD :   AutoCAD : Mise à...

  2. PLACES AVAILABLE

    CERN Multimedia

    Monique Duval

    2002-01-01

    Places are available in the following courses: PVSS basics :  18 - 22.2.02 (5 days) Introduction à la CAO CADENCE : 20 & 21.2.02 (2 jours) LabView Basics 1 :  4 - 6.3.02  (3 days) Introduction au VHDL et utilisation du simulateur de CADENCE : 6 & 7.3.02 (2 jours) LabView Base 2 : 11 & 12.3.02 (2 jours) C++ for Particle Physicists :  11 - 15.3.2002  (6 * 3 hour lectures) LabView Advanced :  13 - 15.3.02 (3 days) Cours sur la migration AutoCAD :   AutoCAD : Mise à jour AutoCAD r-14 vers 2002 (2 jours) AutoCAD Mechanical PowerPack 6 basé sur AutoCAD 2002 (5 jours) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : Technical Training or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO...

  3. PLACES AVAILABLE

    CERN Multimedia

    Monique Duval

    2002-01-01

    Places are available in the following courses: Introduction à la CAO CADENCE : 20 & 21.2.02 (2 jours) LabView Basics 1 :  4 - 6.3.02  (3 days) Introduction au VHDL et utilisation du simulateur de CADENCE : 6 & 7.3.02 (2 jours) CLEAN-2002 : Working in a Clean Room :  7.3.2002  (1 day) LabView Base 2 : 11 & 12.3.02 (2 jours) C++ for Particle Physicists :  11 - 15.3.2002  (6 * 3 hour lectures) LabView Advanced :  13 - 15.3.02 (3 days) Cours sur la migration AutoCAD :   AutoCAD : Mise à jour AutoCAD r-14 vers 2002 (2 jours) AutoCAD Mechanical PowerPack 6 basé sur AutoCAD 2002 (5 jours) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : Technical Training or fill in an 'application for training' form available from your Divisiona...

  4. PLACES AVAILABLE

    CERN Multimedia

    Technical Training; Tel. 74924

    2001-01-01

    Places are available in the following courses: Utilisation du simulateur Simplorer : 30.5 - 1.6.01 (3 jours) JAVA programming language level 1: 11-12.6.01 (2 days) LabView hands-on F ou E : 11.6.01 (1/2 journée) Comprehensive VHDL for EPLD/FPGA Design : 11 - 15.6.01 (5 days) Introduction au Langage C : 13 - 15.6.01 (3 jours) LabView Base 1 : 12 - 14.6.01 (3 jours) Habilitation électrique : superviseurs : 2 sessions d'une demi-journée les 12 et 19.6.01 Migration de LabVIEW 5 vers LabVIEW 6i Migration from LabVIEW 5 to LabVIEW 6I :  15.6.01 (1/2 journée/half-day) Introduction to Perl 5 : 2 - 3.7.01 (2 days) JAVA programming language level 2 : 4 - 6.7.01 (3 days) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : http://www.cern.ch/Training/ or fill in an 'application for training' form available from ...

  5. PLACES AVAILABLE

    CERN Multimedia

    Monique Duval

    2002-01-01

    Places are available in the following courses: LabView Base 1 :  23 - 25.9.02  (3 jours) Object-Oriented Analysis & Design using UML:  25 - 27.9.02  (3 days) LabView DAQ (E):  26 - 27.9.02  (2 days) Introduction to Oracle 8i : SQL and PL/SQL:  7 - 11.10.02  (5 days) CLEAN-2002 : Working in a Cleanroom (free of charge):  10.10.02  (half-day, p.m.) AutoCAD 2002 - niveau 2 :  14 - 15.10.02  (2 jours) Introduction à DesignSpace :  16.10.02  (1 journée) Introduction to DesignSpace:  17.10.02  (1 day) AutoCAD 2002 - Level 1:  17, 18, 24, 25.10.02  (4 days) AutoCAD Mechanical 6 PowerPack (F) :  21, 22, 23.10 et 4, 5, 6.11.02  (6 jours) Introduction à ANSYS/Introduction to ANSYS (langue à définir suivant demande/ Language to be chosen according to demand):...

  6. PLACES AVAILABLE

    CERN Multimedia

    Monique Duval

    2002-01-01

    Places are available in the following courses: Java 2 Enterprise Edition - Part 2: Enterprise JavaBeans:  18 - 20.9.02  (3 days) AutoCAD 2002 - niveau 1 :  19, 20, 26, 27.9.02  (4 jours) LabView Base 1 :  23 - 25.9.02  (3 jours) Object-Oriented Analysis & Design using UML:  25 - 27.9.02  (3 days) LabView DAQ (E):  26 - 27.9.02  (2 days) Introduction to Oracle 8i : SQL and PL/SQL:  7 - 11.10.02  (5 days) CLEAN-2002 : Working in a Cleanroom (free of charge):  10.10.02  (half-day, p.m.) AutoCAD 2002 - niveau 2 :  14 - 15.10.02  (2 jours) Introduction à DesignSpace :  16.10.02  (1 journée) Introduction to DesignSpace:  17.10.02  (1 day) AutoCAD 2002 - Level 1:  17, 18, 24, 25.10.02  (4 days) AutoCAD Mechanical 6 PowerPack (F) :  21, 22, 23.10 et 4, 5, 6.11....

  7. PLACES AVAILABLE

    CERN Document Server

    Enseignement Technique; Tél. 74924; Technical Training; Monique Duval; Tel. 74924

    2000-01-01

    Places are available in the following courses : Premiers pas avec votre PC 12 - 15.9.00 (4 demi-journées) WORD 20, 21 et 26, 27.9.2000 (4 jours) JAVA programming level 1 25 - 26.9.2000 (2 days) Gaz inflammables 1 26.9.2000 (1 journée) Advanced aspects of PERL 5 6.10.2000 (1 day) Initiation au WWW 10 - 12.10.00 (3 demi-journées) WORD : importer et manipuler des images 16.10.2000 (1 journée) FileMaker 17, 18 et 24, 25.10.00 (4 jours) Nouveautés de WORD 19 et 20.10.2000 (2 jours) ACCESS 1er niveau 30 - 31.10.00 (2 jours)Introduction à PowerPoint 6.11.00 (1 journée)Nouveautés d?EXCEL 7.11.2000(4 demi-journées)Excel 13, 14 et 20, 21.11.00 (4 jours) LabView hands-on 13.11.2000(4 hours)LabView Basics 1 14 - 16.11.2000 (3 days) MS-Project 1er niveau 14-17.11.00 (4 demi-journées) If you wish to participate in one of these courses, please discuss with your supervisor and apply elec...

  8. PLACES AVAILABLE

    CERN Multimedia

    Monique Duval

    2002-01-01

    Places are available in the following courses: ELEC-2002 : Spring Term :  9, 11, 16, 18, 23, 25, 30.4.02 (7 * 2.5 hours) Object-Oriented Analysis & Design: 16 - 19.4.02  (4 days) The CERN Engineering Data Management System for Advanced users:  16.4.02  (1 day) Migration from AutoCAD 14 towards AutoCAD Mechanical6 PowerPack:  17 - 19.4 and 2 &3.5.02  (5 days) AutoCAD - niveau 1 : 22, 23, 29, 30.4 et 6, 7.5.02 (6 jours) LabVIEW base 1 : 22 - 24.4.02 (3 jours) CLEAN 2002 : working in a cleanroom:  24.4.02  (half-day, pm) LabVIEW DSC (F) 25 & 26.4.02 (2 jours) AutoCAD : Mise à jour AutoCAD r-14 vers 2002 : 25 & 26.4.02 (2 jours) LabVIEW Basics 2 : 13 & 14.5.02 (2 days) EXCEL 2000 - niveau 1 : 15 & 16.5.02 (2 jours) LabVIEW DAQ (F) : 15 & 16.5.02 (2 jours) EXCEL 2000 - niveau 2 : 22 & 23.5.02 (2 jours) LabVIEW Basics 1:  3 - 5.6.02&a...

  9. PLACES AVAILABLE

    CERN Multimedia

    Monique Duval

    2002-01-01

    Places are available in the following courses: Habilitation électrique : recyclage HT/BT : 11 - 15.3.2002  (2 * 2 heures) PVSS Basics :  8 - 12.4.02  (5 days) ELEC-2002 : Spring Term :  9, 11, 16, 18, 23, 25, 30.4.02 (7 * 2.5 hours) LabVIEW base 1 : 22 - 24.4.02 (3 jours) LabVIEW DSC (F) 25 & 26.4.02 (2 jours) LabVIEW Basics 2 : 13 & 14.5.02 (2 days) LabVIEW DAQ (F) : 15 & 16.5.02 (2 jours) Cours sur la migration AutoCAD :   AutoCAD : Mise à jour AutoCAD r-14 vers 2002 (2 jours) AutoCAD Mechanical PowerPack 6 basé sur AutoCAD 2002 (5 jours) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : Technical Training or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applica...

  10. PLACES AVAILABLE

    CERN Multimedia

    Monique DUVAL

    2002-01-01

    Places are available in the following courses: LabView Basics 1 :  4 - 6.3.02  (3 days) CLEAN-2002 : Working in a Clean Room :  7.3.2002  (half day) LabView Base 2 : 11 & 12.3.02 (2 jours) C++ for Particle Physicists :  11 - 15.3.2002  (6 * 3 hour lectures) Programming the Web for Control Applications : 11, 12, 18, 19.3.2002  (4 * 2 hour lectures) Habilitation électrique : recyclage HT/BT (Français) : 13 - 14.3.2002 (2 * 2 heures) LabView Advanced :  13 - 15.3.02 (3 days) Introduction to the CERN Engineering Data Management System (EDMS) :  20.3.2002  (1 day) The CERN (EDMS) for Advanced Users :  21.3.2002  (1 day) LabVIEW DSC : 25 - 26.4.2002 (2 jours) LabVIEW DAQ : 15 - 16.5.2002 (2 jours) Cours sur la migration AutoCAD :   AutoCAD : Mise à jour AutoCAD r-14 vers 2002 (2 jours) AutoCAD Mechanical PowerPack 6 basé ...

  11. PLACES AVAILABLE

    CERN Multimedia

    Monique Duval

    2002-01-01

    Places are available in the following courses: PVSS Basics :  8 - 12.4.02  (5 days) AutoCAD : Mise à jour AutoCAD r-14 vers 2002 : 25 & 26.4.02 (2 jours) ELEC-2002 : Spring Term :  9, 11, 16, 18, 23, 25, 30.4.02 (7 * 2.5 hours) Object-Oriented Analysis & Design: 16 - 19.4.02  (4 days) Migration from AutoCAD 14 towards AutoCAD Mechanical6 PowerPack:  17 - 19.4 and 2 &3.5.02  (5 days) LabVIEW base 1 : 22 - 24.4.02 (3 jours) LabVIEW DSC (F) 25 & 26.4.02 (2 jours) LabVIEW Basics 2 : 13 & 14.5.02 (2 days) EXCEL 2000 - niveau 2 : 22 & 23.5.02 (2 jours) LabVIEW DAQ (F) : 15 & 16.5.02 (2 jours) LabVIEW Basics 1:  3 - 5.6.02  (3 days) LabVIEW DAQ (E):  6 & 7.6.02  (2 days) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that...

  12. PLACES AVAILABLE

    CERN Multimedia

    Monique Duval

    2002-01-01

    Places are available in the following courses: C++ for Particle Physicists :  11 - 15.3.2002  (6 * 3 hour lectures) Programming the Web for Control Applications : 11, 12, 18, 19.3.2002  (4 * 2 hour lectures) Habilitation électrique : recyclage HT/BT (Français) : 13 - 14.3.2002 (2 * 2 heures) Introduction à la CAO CADENCE : 19 & 20.3.02 (2 jours) LabVIEW base 1 : 22 - 24.4.02 (3 jours) LabVIEW DSC (F) 25 & 26.4.02 (2 jours) LabVIEW Basics 2 : 13 & 14.5.02 (2 days) LabVIEW DAQ (F) : 15 & 16.5.02 (2 jours) Cours sur la migration AutoCAD :   AutoCAD : Mise à jour AutoCAD r-14 vers 2002 (2 jours) AutoCAD Mechanical PowerPack 6 basé sur AutoCAD 2002 (5 jours) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : Technical Training or fil...

  13. PLACES AVAILABLE

    CERN Multimedia

    Monique Duval

    2002-01-01

    Places are available in the following courses: LabView hands-on (bilingue/bilingual): 5.11.02 (matin/morning) LabView DAQ hands-on (bilingue/bilingual):  5.11.02  (après-midi afternoon) Introduction au PC et Windows 2000 au CERN:  6 & 7.11.02  (2 jours) Oracle 8i : Access the Database with Java:  7 & 8.11.02  (2 days) AutoCAD 2002 - niveau 2:  7 & 8.11.02  (2 jours) Introduction to PVSS (free of charge):  11.11.2002 pm  (1/2 day) Basic PVSS:  12 - 14.11.02  (3 days) EXCEL 2000 - niveau 1:  12 & 13.11.02  (2 jours) CLEAN-2002: Working in a Cleanroom (English, free of charge):  13.11.2002  (afternoon) LabView Base 1 :  13 - 15.11.02  (3 jours) AutoCAD 2002 - Level 1:  14, 15, 21, 22.11.2002  (4 days) LabVIEW - Advanced:  18 - 20.11.02  (3 days) Auto...

  14. PLACES AVAILABLE

    CERN Multimedia

    Monique Duval

    2002-01-01

    Places are available in the following courses: LabVIEW base 1 : 22 - 24.4.02 (3 jours) CLEAN 2002 : working in a cleanroom:  24.4.02  (half-day, pm) LabVIEW DSC (F) 25 & 26.4.02 (2 jours) AutoCAD : Mise à jour AutoCAD r-14 vers 2002 : 25 & 26.4.02 (2 jours) Cotations selon les normes GPS de l'ISO : 29 - 30.4.02 (2 jours) Introduction to the CERN Engineering Data Management System:  7.5.02  (1 day) LabVIEW Basics 2: 13 & 14.5.02 (2 days) AutoCAD Mechanical 6 PowerPack (F) : 13-14, 17, 21, 27-28.5.02 (6 jours) WorldFIP - Généralités : 14.5.2002 (1/2 journée) WorldFIP - Développer avec MicroFIP HANDLER : 14.5 - après-midi, 15.5.02 - matin (1 jour) WorldFIP - FullFIP FDM : FIP Device Manager (F) : 15.5 - après-midi, 16.5.02 - matin (1 jour) LabVIEW DAQ (F) : 15 & 16.5.02 (2 jours) EXCEL 2000 - niveau 2 : 22 & 23.5.02 (2 jours)...

  15. PLACES AVAILABLE

    CERN Multimedia

    Monique Duval

    2002-01-01

    Places are available in the following courses: The CERN Engineering Data Management System for Advanced users : 16.4.02  (1 day) Migration from AutoCAD 14 towards AutoCAD Mechanical6 PowerPack:  17 - 19.4 and 2 &3.5.02  (5 days) AutoCAD - niveau 1 : 22, 23, 29, 30.4 et 6, 7.5.02 (6 jours) LabVIEW base 1 : 22 - 24.4.02 (3 jours) CLEAN 2002 : working in a cleanroom:  24.4.02  (half-day, pm) LabVIEW DSC (F) 25 & 26.4.02 (2 jours) AutoCAD : Mise à jour AutoCAD r-14 vers 2002 : 25 & 26.4.02 (2 jours) Cotations selon les normes GPS de l'ISO : 29 - 30.4.02 (2 jours) Introduction to the CERN Engineering Data Management System:  7.5.02  (1 day) LabVIEW Basics 2: 13 & 14.5.02 (2 days) AutoCAD Mechanical 6 PowerPack (F) : 13-14, 17, 21, 27-28.5.02 (6 jours) WorldFIP - Généralités : 14.5.2002 (1/2 journée) WorldFIP - Développer avec Micr...

  16. PLACES AVAILABLE

    CERN Multimedia

    Monique Duval

    2002-01-01

    Places are available in the following courses: ELEC-2002 : Spring Term :  9, 11, 16, 18, 23, 25, 30.4.02 (7 * 2.5 hours) Object-Oriented Analysis & Design: 16 - 19.4.02  (4 days) The CERN Engineering Data Management System for Advanced users:  16.4.02  (1 day) Migration from AutoCAD 14 towards AutoCAD Mechanical6 PowerPack:  17 - 19.4 and 2 &3.5.02  (5 days) AutoCAD - niveau 1 : 22, 23, 29, 30.4 et 6, 7.5.02 (6 jours) LabVIEW base 1 : 22 - 24.4.02 (3 jours) CLEAN 2002 : working in a cleanroom:  24.4.02  (half-day, pm) LabVIEW DSC (F) 25 & 26.4.02 (2 jours) AutoCAD : Mise à jour AutoCAD r-14 vers 2002 : 25 & 26.4.02 (2 jours) Cotations selon les normes GPS de l'ISO : 29 - 30.4.02 (2 jours) Introduction to the CERN Engineering Data Management System:  7.5.02  (1 day) LabVIEW Basics 2 : 13 & 14.5.02 (2 days) AutoCAD Mechanical 6 PowerPack (F) : 13-...

  17. Places available**

    CERN Multimedia

    2003-01-01

    Places are available in the following courses : DISP-2003 - Spring II Term : Advanced Digital Signal Processing : 30.4, 7, 14, 21.5.03 (4 X 2-hour lectures) Programmation de pilotes périphériques : 5 - 8.5.03 (4 jours) Oracle iDS Reports : Build Internet Reports : 5 - 9.5.03 (5 days) LabView DAQ (language to be defined) : 8 & 9.5.03 AutoCAD Mechanical 6 PowerPack (F) : 12, 13, 20, 21, 27 & 28.5.0 (6 jours) FrontPage 2000 - niveau 1 : 20 & 21.5.03 (2 jours) AutoCAD 2002 - niveau 2 : 3 & 4.6.03 (2 jours) EXCEL 2000 - niveau 1 : 10 & 11.6.03 (2 jours) EXCEL 2000 - level 1 : 12 & 13.6.03 (2 days) PowerPoint 2000 (F) : 17 & 18.6.03 (2 jours) FrontPage 2000 - niveau 2 : 19 & 20.6.03 (2 jours) LabView DSC (langue à décider/language to be defined) : 19 & 20.6.03 EXCEL 2000 - niveau 2 : 24 & 25.6.03 (2 jours) Siemens SIMATIC Training : Introduction to STEP7 : 3 & 4.6.03 (2 days) STEP7 Programming : 16 - 20.6.03 (5 days) Simatic Net Network : 26 & 27.6.03 ...

  18. Places available **

    CERN Multimedia

    2003-01-01

    Places are available in the following courses : CLEAN-2002 : Working in a cleanroom (free course, registration required): 11.4.03 (half-day, afternoon, ) LabView Basics 2 : 10 - 11.4.03 (3 days) DISP-2003 - Spring II Term : Advanced Digital Signal Processing : 30.4, 7, 14, 21.5.03 (4 X 2-hour lectures) AutoCAD 2002 - niveau 1 : 29, 30.4 et 7, 8.5.03 (4 jours) Oracle iDS Reports : Build Internet Reports : 5 - 9.5.03 (5 days) AutoCAD 2002 - niveau 2 : 5 & 6.5.03 (2 jours) AutoCAD Mechanical 6 PowerPack (F) : 12, 13, 20, 21, 27 & 28.5.03 (6 jours) Formation Siemens SIMATIC /Siemens SIMATIC Training : Introduction à STEP7 /Introduction to STEP7 : 3 & 4.6.03 (2 jours/2 days) Programmation STEP7/STEP7 Programming : 31.3 - 4.4.03 / 16 - 20.6.03 (5 jours/5 days) Réseau Simatic Net /Simatic Net Network : 15 & 16.4.03 / 26 & 27.6.03 These courses will be given in French or English following the requests. Cours de sécurité : Etre TSO au CERN : Prochaines sessions : 24, 25 & 27.6....

  19. Places available**

    CERN Multimedia

    2003-01-01

    Places are available in the following courses : EXCEL 2000 - niveau 1 : 10 & 11.6.03 (2 jours) Conception de PCB rapides dans le flot Cadence : 11.6.03 (matin) EXCEL 2000 - level 1 : 12 & 13.6.03 (2 days) Introduction to PVSS : 16.6.03 (p.m.) Basic PVSS : 17 - 19.6.03 (3 days) Réalisation de PCB rapides dans le flot Cadence : 17.6.03 (matin) PVSS - JCOP Framework Tutorial : 20.6.03 (1 day) EXCEL 2000 - niveau 2 : 24 & 25.6.03 (2 jours) Siemens SIMATIC Training : Introduction to STEP7 : 3 & 4.6.03 (2 jours/2 days) STEP7 Programming : 16 - 20.6.03 (5 jours/5 days) Simatic Net Network : 26 & 27.6.03 (2 jours/2 days) These courses will be given in French or English following the requests. Programmation automate Schneider : Programmation automate Schneider TSX Premium - 1er niveau : 10 - 13.6.03 (4 jours) - audience : toute personne qui veux maitriser la msie en uvre et la programmation d'un automate TSX Premium - objectifs : maitriser la mise en uvre et la programmation d'un autom...

  20. Places available**

    CERN Multimedia

    2003-01-01

    Places are available in the following courses : CLEAN-2002 : Working in a cleanroom (free course, registration required) : 2.4.03 (half-day, afternoon) LabView base 1/LabView Basics 1 (Langue à définir/ language to be decided) : 9 - 11.4.03 (3 jours/3 days) DISP-2003 - Spring II Term : Advanced Digital Signal Processing : 30.4, 7, 14, 21.5.03 (4 X 2-hour lectures) AutoCAD 2002 - niveau 1 : 29, 30.4 et 7, 8.5.03 (4 jours) AutoCAD 2002 - niveau 2 : 5 & 6.5.03 (2 jours) AutoCAD Mechanical 6 PowerPack (F) : 12, 13, 20, 21, 27 & 28.5.03(6 jours) Formation Siemens SIMATIC /Siemens SIMATIC Training : Introduction à STEP7 /Introduction to STEP7 : 3 & 4.6.03 (2 jours/2 days) Programmation STEP7/STEP7 Programming : 31.3 - 4.4.03 / 16 - 20.6.03 (5 jours/5 days) Réseau Simatic Net /Simatic Net Network : 15 & 16.4.03 / 26 & 27.6.03 These courses will be given in French or English following the requests. Cours de sécurité : Etre TSO au CERN : 3 sessions sont programmées pour 2003 : 25...

  1. Places available**

    CERN Multimedia

    2003-01-01

    Places are available in the following courses : Introduction to PVSS : 10.3.03 (half-day, afternoon) CLEAN-2002 : Working in a cleanroom : 2.4.03 (half-day, afternoon, free course, registration required) LabView Basics 1 : 9 - 11.4.03 (3 days) Language to be decided. DISP-2003 - Spring II Term : Advanced Digital Signal Processing : 30.4, 7, 14, 21.5.03 (4 X 2-hour lectures). AutoCAD 2002 - niveau 1 : 29, 30.4 et 7, 8.5.03 (4 jours) AutoCAD 2002 - niveau 2 : 5 & 6.5.03 (2 jours) AutoCAD Mechanical 6 PowerPack (F) : 12, 13, 20, 21, 27 & 28.5.03 (6 jours) Siemens SIMATIC Training: Introduction to STEP7 : 3 & 4.6.03 (2 days) STEP7 Programming : 31.3 - 4.4.03 / 16 - 20.6.03 (5 days) Simatic Net Network : 15 & 16.4.03 / 26 & 27.6.03 These courses will be given in French or English following the requests. Cours de sécurité: Etre TSO au CERN : 3 sessions sont programmées pour 2003 : 25, 26 & 28.3.03 - 24, 25 & 27.6.03 - 4, 5 & 7.11.03 (sessions de 3 jours) ** The number o...

  2. Places available**

    CERN Multimedia

    2003-01-01

    Places are available in the following courses : CLEAN-2002 : Working in a cleanroom (free course, registration required): 11.4.03 (half-day, afternoon, ) LabView Basics 2 : 10 - 11.4.03 (3 days) DISP-2003 - Spring II Term : Advanced Digital Signal Processing : 30.4, 7, 14, 21.5.03 (4 X 2-hour lectures) AutoCAD 2002 - niveau 1 : 29, 30.4 et 7, 8.5.03 (4 jours) Oracle iDS Reports : Build Internet Reports : 5 - 9.5.03 (5 days) AutoCAD 2002 - niveau 2 : 5 & 6.5.03 (2 jours) AutoCAD Mechanical 6 PowerPack (F) : 12, 13, 20, 21, 27 & 28.5.03(6 jours) Formation Siemens SIMATIC /Siemens SIMATIC Training : Introduction à STEP7 /Introduction to STEP7 : 3 & 4.6.03 (2 jours/2 days) Programmation STEP7/STEP7 Programming : 31.3 - 4.4.03 / 16 - 20.6.03 (5 jours/5 days) Réseau Simatic Net /Simatic Net Network : 15 & 16.4.03 / 26 & 27.6.03 These courses will be given in French or English following the requests. Cours de sécurité : Etre TSO au CERN : Prochaines sessions : 24, 25 & 27.6...

  3. Places available**

    CERN Multimedia

    2003-01-01

    Places are available in the following courses : DISP-2003 - Spring II Term : Advanced Digital Signal Processing : 30.4, 7, 14, 21.5.03 (4 X 2-hour lectures) Oracle iDS Reports : Build Internet Reports : 5 - 9.5.03 (5 days) LabView DAQ (language to be defined) : 8 & 9.5.03 AutoCAD Mechanical 6 PowerPack (F) : 12, 13, 20, 21, 27 & 28.5.03 (6 jours) AutoCAD 2002 - niveau 2 : 3 & 4.6.03 (2 jours) LabView DSC (language to be defined) : 19 & 20.6.03 Siemens SIMATIC Training : Introduction to STEP7 : 3 & 4.6.03 (2 days) STEP7 Programming : 16 - 20.6.03 (5 days) Simatic Net Network : 15 & 16.4.03 / 26 & 27.6.03 (sessions of 2 days) These courses will be given in French or English following the requests. Cours de sécurité : Etre TSO au CERN : Prochaines sessions : 24, 25 & 27.6.03 - 4, 5 & 7.11.03 (session de 3 jours) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description ...

  4. Places available**

    CERN Multimedia

    2003-01-01

    Places are available in the following courses : CLEAN-2002 : Working in a cleanroom (free course, registration required): 11.4.03 (half-day, afternoon) LabView Basics 2 : 10 - 11.4.03 (3 days) DISP-2003 - Spring II Term : Advanced Digital Signal Processing : 30.4, 7, 14, 21.5.03 (4 X 2-hour lectures) AutoCAD 2002 - niveau 1 : 29, 30.4 et 7, 8.5.03 (4 jours) Oracle iDS Reports : Build Internet Reports : 5 - 9.5.03 (5 days) AutoCAD 2002 - niveau 2 : 5 & 6.5.03 (2 jours) AutoCAD Mechanical 6 PowerPack (F) : 12, 13, 20, 21, 27 & 28.5.03(6 jours) Formation Siemens SIMATIC /Siemens SIMATIC Training : Introduction à STEP7 /Introduction to STEP7 : 3 & 4.6.03 (2 jours/2 days) Programmation STEP7/STEP7 Programming : 16 - 20.6.03 (5 jours/5 days) Réseau Simatic Net /Simatic Net Network : 15 & 16.4.03 / 26 & 27.6.03 These courses will be given in French or English following the requests. Cours de sécurité : Etre TSO au CERN : Prochaines sessions : 24, 25 & 27.6.03 - 4, 5 & 7....

  5. Collisionless magnetic reconnection under anisotropic MHD approximation

    Science.gov (United States)

    Hirabayashi, Kota; Hoshino, Masahiro

    We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless magneto-hydro-dynamic (MHD) simulations based on the double adiabatic approximation, which is an important step to bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observation. According to our results, a pair of slow shocks does form in the reconnection layer. The resultant shock waves, however, are quite weak compared with those in an isotropic MHD from the point of view of the plasma compression and the amount of the magnetic energy released across the shock. Once the slow shock forms, the downstream plasma are heated in highly anisotropic manner and a firehose-sense (P_{||}>P_{?}) pressure anisotropy arises. The maximum anisotropy is limited by the marginal firehose criterion, 1-(P_{||}-P_{?})/B(2) =0. In spite of the weakness of the shocks, the resultant reconnection rate is kept at the same level compared with that in the corresponding ordinary MHD simulations. It is also revealed that the sequential order of propagation of the slow shock and the rotational discontinuity, which appears when the guide field component exists, changes depending on the magnitude of the guide field. Especially, when no guide field exists, the rotational discontinuity degenerates with the contact discontinuity remaining at the position of the initial current sheet, while with the slow shock in the isotropic MHD. Our result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere.

  6. Places disponibles/Places available

    CERN Multimedia

    2004-01-01

    Si vous désirez participer à l'un des cours suivants, veuillez en discuter avec votre superviseur et vous inscrire électroniquement en direct depuis les pages de description des cours dans le Web que vous trouvez à l'adresse : http://www.cern.ch/Training/ ou remplissez une « demande de formation » disponible auprès du Secrétariat de votre Division ou de votre DTO (Délégué divisionnaire à la formation). Les places seront attribuées dans l'ordre de réception des inscriptions. If you wish to participate in one of the following courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at: http://www.cern.ch/Training/ or fill in an "application for training" form available from your Divisional Secretariat or from your DTO (Divisional Training Off...

  7. Experimental study of ion heating and acceleration during magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.C.

    2000-01-28

    This dissertation reports an experimental study of ion heating and acceleration during magnetic reconnection, which is the annihilation and topological rearrangement of magnetic flux in a conductive plasma. Reconnection is invoked often to explain particle heating and acceleration in both laboratory and naturally occurring plasmas. However, a simultaneous account of reconnection and its associated energy conversion has been elusive due to the extreme inaccessibility of reconnection events, e.g. in the solar corona, the Earth's magnetosphere, or in fusion research plasmas. Experiments for this work were conducted on MRX (Magnetic Reconnection Experiment), which creates a plasma environment allowing the reconnection process to be isolated, reproduced, and diagnosed in detail. Key findings of this work are the identification of local ion heating during magnetic reconnection and the determination that non-classical effects must provide the heating mechanism. Measured ion flows are sub-Alfvenic and can provide only slight viscous heating, and classical ion-electron interactions can be neglected due to the very long energy equipartition time. The plasma resistivity in the reconnection layer is seen to be enhanced over the classical value, and the ion heating is observed to scale with the enhancement factor, suggesting a relationship between the magnetic energy dissipation mechanism and the ion heating mechanism. The observation of non-classical ion heating during reconnection has significant implications for understanding the role played by non-classical dissipation mechanisms in generating fast reconnection. The findings are relevant for many areas of space and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating. In the process of performing this work, local measurements of ion temperature and flows in a well-characterized reconnection layer were obtained for the first time in either laboratory or observational reconnection research. Furthermore, much progress was made in understanding the reconnection process itself.

  8. Experimental study of ion heating and acceleration during magnetic reconnection

    International Nuclear Information System (INIS)

    This dissertation reports an experimental study of ion heating and acceleration during magnetic reconnection, which is the annihilation and topological rearrangement of magnetic flux in a conductive plasma. Reconnection is invoked often to explain particle heating and acceleration in both laboratory and naturally occurring plasmas. However, a simultaneous account of reconnection and its associated energy conversion has been elusive due to the extreme inaccessibility of reconnection events, e.g. in the solar corona, the Earth's magnetosphere, or in fusion research plasmas. Experiments for this work were conducted on MRX (Magnetic Reconnection Experiment), which creates a plasma environment allowing the reconnection process to be isolated, reproduced, and diagnosed in detail. Key findings of this work are the identification of local ion heating during magnetic reconnection and the determination that non-classical effects must provide the heating mechanism. Measured ion flows are sub-Alfvenic and can provide only slight viscous heating, and classical ion-electron interactions can be neglected due to the very long energy equipartition time. The plasma resistivity in the reconnection layer is seen to be enhanced over the classical value, and the ion heating is observed to scale with the enhancement factor, suggesting a relationship between the magnetic energy dissipation mechanism and the ion heating mechanism. The observation of non-classical ion heating during reconnection has significant implications for understanding the role played by non-classical dissipation mechanisms in generating fast reconnection. The findings are relevant for many areas of space and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating. In the process of performing this work, local measurements of ion temperature and flows in a well-characterized reconnection layer were obtained for the first time in either laboratory or observational reconnection research. Furthermore, much progress was made in understanding the reconnection process itself

  9. What is taking place in science classrooms?: A case study analysis of teaching and learning in seventh-grade science of one Alabama school and its impact on African American student learning

    Science.gov (United States)

    Norman, Lashaunda Renea

    This qualitative case study investigated the teaching strategies that improve science learning of African American students. This research study further sought the extent the identified teaching strategies that are used to improve African American science learning reflect culturally responsive teaching. Best teaching strategies and culturally responsive teaching have been researched, but there has been minimal research on the impact that both have on science learning, with an emphasis on the African American population. Consequently, the Black-White achievement gap in science persists. The findings revealed the following teaching strategies have a positive impact on African American science learning: (a) lecture-discussion, (b) notetaking, (c) reading strategies, (d) graphic organizers, (e) hands-on activities, (f) laboratory experiences, and (g) cooperative learning. Culturally responsive teaching strategies were evident in the seventh-grade science classrooms observed. Seven themes emerged from this research data: (1) The participating teachers based their research-based teaching strategies used in the classroom on all of the students' learning styles, abilities, attitudes towards science, and motivational levels about learning science, with no emphasis on the African American student population; (2) The participating teachers taught the state content standards simultaneously using the same instructional model daily, incorporating other content areas when possible; (3) The participating African American students believed their seventh-grade science teachers used a variety of teaching strategies to ensure science learning took place, that science learning was fun, and that science learning was engaging; (4) The participating African American students genuinely liked their teacher; (5) The participating African American students revealed high self-efficacy; (6) The African American student participants' parents value education and moved to Success Middle School district for better educational opportunities; and (7) Teachers were not familiar with the term "culturally responsive teaching," but there was evidence that several aspects of it were present in the seventh-grade science classroom environment. Critical Race Theory (CRT) was the framework for analysis and interpretation of this research study. The findings support the following tenets of CRT: (a) racism is normal, (b) interest-convergence or colorblindness, (c) contextual-historical analysis, (d) storytelling or counterstorytelling, and (e) social transformation. These findings indicate that racial inequalities remain an issue in the underachievement of African Americans and may be the solution to improving science learning of African Americans. The outcome of this study contributes to the limited research on utilizing culturally responsive teaching along with best teaching strategies to improve academic achievement of African American students, and CRT exposes the issues that contribute to the Black-White achievement gap in science widening.

  10. Episodic X-ray Emission Accompanying the Activation of an Eruptive Prominence: Evidence of Episodic Magnetic Reconnection

    CERN Document Server

    Liu, Wei W; Dennis, Brian R; Holman, Gordon D

    2009-01-01

    We present an X-ray imaging and spectroscopic study of a partially occulted C7.7 flare on 2003 April 24 observed by RHESSI that accompanied a prominence eruption observed by TRACE. (1) The activation and rise of the prominence occurs during the preheating phase of the flare. The initial X-ray emission appears as a single coronal source at one leg of the prominence and it then splits into a double source. Such a source splitting happens three times, each coinciding with an increased X-ray flux and plasma temperature, suggestive of fast reconnection in a localized current sheet and an enhanced energy release rate. In the late stage of this phase, the prominence displays a helical structure. These observations are consistent with the tether-cutting or kink instability model for triggering solar eruptions. (2) The eruption of the prominence takes place during the flare impulsive phase. Since then, there appear signatures predicted by the classical CSHKP model of two-ribbon flares occurring in a vertical current s...

  11. Particle acceleration and transport in reconnecting twisted loops in a stratified atmosphere

    CERN Document Server

    Gordovskyy, Mykola; Kontar, Eduard; Bian, Nicolas

    2015-01-01

    Twisted coronal loops should be ubiquitous in the solar corona. Twisted magnetic fields contain excess magnetic energy, which can be released during magnetic reconnection, causing solar flares. The aim of this work is to investigate magnetic reconnection, and particle acceleration and transport in kink-unstable twisted coronal loops, with a focus on the effects of resistivity, loop geometry and atmospheric stratification. Another aim is to perform forward-modelling of bremsstrahlung emission and determine the structure of hard X-ray sources. We use a combination of magnetohydrodynamic (MHD) and test-particle methods. First, the evolution of the kinking coronal loop is considered using resistive MHD model, incorporating atmospheric stratification and loop curvature. Then, the obtained electric and magnetic fields and density distributions are used to calculate electron and proton trajectories using a guiding-centre approximation, taking into account Coulomb collisions. It is shown that electric fields in twist...

  12. Magnetic reconnection in space and laboratory plasmas; Proceedings of the Chapman Conference on Magnetic Reconnection, Los Alamos, NM, October 3-7, 1983

    International Nuclear Information System (INIS)

    The physics of magnetic reconnection is discussed in reviews and reports of theoretical and experimental investigations. Topics examined include the theory of magnetic reconnection, reconnection in astronomical objects, reconnection in the earth magnetosphere and magnetotail, computer modeling, and laboratory plasmas. Diagrams, spectra, drawings, graphs, and photographs are provided

  13. Does the Rate of Collisionless Magnetic Reconnection Depend on the Dissipation Mechanism?

    Science.gov (United States)

    Aunai, Nicolas; Hesse, Michael; Black, Carrie; Evans, Rebekah; Kuznetsova, Maria

    2012-01-01

    The importance of the electron dissipation effect on the reconnection rate is investigated in the general case of asymmetric collisionless magnetic reconnection. Contrary to the standard collisionless reconnection model, it is found that the reconnection rate, and the macroscopic evolution of the reconnecting system, crucially depend on the nature of the dissipation mechanism and that the Hall effect alone is not able to sustain fast reconnection.

  14. Statistics of magnetic reconnection in two-dimensional magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    The nonlinear dynamics of magnetic reconnection in turbulence is investigated through direct numerical simulations of decaying, incompressible, two-dimensional magnetohydrodynamics. Recently, it was shown by Servidio et al. [Phys. Rev. Lett. 102, 115003 (2009)] that in fully developed turbulence complex processes of reconnection occur locally. Here, the main statistical features of these multiscale reconnection events are further described, providing details on the methodology. It is found that is possible to describe the reconnection process in turbulence as a generalized local Sweet-Parker process in which the parameters are locally controlled by the turbulence cascade, thus providing a step toward reconciling classical turbulence analysis with reconnection theory. This general description of reconnection may be useful for laboratory and space plasmas, where the presence of turbulence plays a crucial role.

  15. Magnetic Reconnection with Radiative Cooling. I. Optically-Thin Regime

    CERN Document Server

    Uzdensky, Dmitri A

    2010-01-01

    Magnetic reconnection, a fundamental plasma process associated with a rapid dissipation of magnetic energy, is believed to power many disruptive phenomena in laboratory plasma devices, the Earth magnetosphere, and the solar corona. Traditional reconnection research, geared towards these rather tenuous environments, has justifiably ignored the effects of radiation on the reconnection process. However, in many reconnecting systems in high-energy astrophysics (e.g., accretion-disk coronae, relativistic jets, magnetar flares) and, potentially, in powerful laser plasma and z-pinch experiments, the energy density is so high that radiation, in particular radiative cooling, may start to play an important role. This observation motivates the development of a theory of high-energy-density radiative magnetic reconnection. As a first step towards this goal, we present in this paper a simple Sweet--Parker-like theory of non-relativistic resistive-MHD reconnection with strong radiative cooling. First, we show how, in the a...

  16. Oblique Shocks in the Magnetic Reconnection Jet in Solar Flares

    Science.gov (United States)

    Tanuma, Syuniti; Shibata, Kazunari

    2007-04-01

    Strong radio emission of energetic electrons is observed in some solar flares. The origin of energetic electrons is, however, not fully known. In this letter we suggest that oblique shocks are created in reconnection jets in solar flares, and that energetic electrons are accelerated by shocks. We examine 2D MHD simulations of magnetic reconnection with high spacial resolution by assuming an anomalous resistivity model. As a result, magnetic reconnection is found to occur after a secondary tearing instability at the current sheet. We find that, during nonsteady Petschek reconnection, oblique shocks are created by an even mode of the Kelvin-Helmholtz-like instability in the reconnection jet when we assume an anomalous resistivity model. Furthermore, bursty, time-dependent reconnection ejects many plasmoids from the diffusion region, and creates shocks. We suggest that these shocks can be possible sites of particle acceleration in solar flares.

  17. The role of Magnetic Reconnection in flares and prominence eruptions

    Science.gov (United States)

    Forbes, T. G.

    1990-01-01

    Magnetic Reconnection is often invoked as the primary mechanism for driving a flare or a prominence eruption. This paper argues that a catastrophic loss of mechanical equilibrium, rather than reconnection, is probably the primary mechanism for driving these phenomena. However, reconnection is still essential in order for any significant amount of energy to be released. To illustrate this idea, some recent results are presented from an MHD simulation based on a catastrophe mechanism first proposed by Van Tend and Kuperus. In order for this mechanism to be effective, a substantial amount of reconnection must occur within a few Alfven-scale times. Such rapid reconnection is plausible since the loss of mechanical equilibrium can generate flows which drive the reconnection at a rapid rate.

  18. Shocks and Thermal Conduction Fronts in Retracting Reconnected Flux Tubes

    CERN Document Server

    Guidoni, Silvina

    2010-01-01

    We present a model for plasma heating produced by time-dependent, spatially localized reconnection within a flare current sheet separating skewed magnetic fields. The reconnection creates flux tubes of new connectivity which subsequently retract at Alfv\\'enic speeds from the reconnection site. Heating occurs in gas-dynamic shocks which develop inside these tubes. Here we present generalized thin flux tube equations for the dynamics of reconnected flux tubes, including pressure-driven parallel dynamics as well as temperature dependent, anisotropic viscosity and thermal conductivity. The evolution of tubes embedded in a uniform, skewed magnetic field, following reconnection in a patch, is studied through numerical solutions of these equations, for solar coronal conditions. Even though viscosity and thermal conductivity are negligible in the quiet solar corona, the strong gas-dynamic shocks generated by compressing plasma inside reconnected flux tubes generate large velocity and temperature gradients along the t...

  19. Reconnection and electron temperature anisotropy in electron scale plasma turbulence

    CERN Document Server

    Haynes, Christopher T; Camporeale, Enrico

    2013-01-01

    We study the turbulent decay of fluctuations using results from 2D, particle-in-cell (PIC) collisionless plasma simulations with realistic electron-proton mass ratio and a guide field out of the simulation plane. A fluctuation power spectrum with approximately power law form is created down to scales of order the electron gyroradius. Where there is an X-point magnetic field line geometry we find signatures of reconnection such as electron bulk inflows and outflows. The reconnection signatures persist even when the reconnection sites are only several electron gyroradii across. Although the reconnection sites do not dominate the electron temperature variation, they are generally associated with regions of strong parallel electron temperature anisotropy. By tracking simulation particles we find that electrons are accelerated along the guide field near reconnection sites, and that in the reconnection outflows there is a mixing of electrons from spatially separated locations. The topology of magnetic field lines c...

  20. Theory of magnetic reconnection in solar and astrophysical plasmas.

    Science.gov (United States)

    Pontin, David I

    2012-07-13

    Magnetic reconnection is a fundamental process in a plasma that facilitates the release of energy stored in the magnetic field by permitting a change in the magnetic topology. In this paper, we present a review of the current state of understanding of magnetic reconnection. We discuss theoretical results regarding the formation of current sheets in complex three-dimensional magnetic fields and describe the fundamental differences between reconnection in two and three dimensions. We go on to outline recent developments in modelling of reconnection with kinetic theory, as well as in the magnetohydrodynamic framework where a number of new three-dimensional reconnection regimes have been identified. We discuss evidence from observations and simulations of Solar System plasmas that support this theory and summarize some prominent locations in which this new reconnection theory is relevant in astrophysical plasmas. PMID:22665898

  1. Aspects of collisionless magnetic reconnection in asymmetric systems

    International Nuclear Information System (INIS)

    Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with nonvanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide

  2. Reconnection outflow generated turbulence in the solar wind

    CERN Document Server

    Vörös, Z; Semenov, V S; Zaqarashvili, T V; Bruno, R; Khodachenko, M

    2014-01-01

    Petschek-type time-dependent reconnection (TDR) and quasi-stationary reconnection (QSR) models are considered to understand reconnection outflow structures and the features of the associated locally generated turbulence in the solar wind. We show that the outflow structures, such as discontinuites, Kelvin-Helmholtz (KH) unstable flux tubes or continuous space filling flows cannot be distinguished from one-point WIND measurements. In both models the reconnection outflows can generate more or less spatially extended turbulent boundary layers (TBDs). The structure of an unique extended reconnection outflow is investigated in detail. The analysis of spectral scalings and break locations show that reconnection outflows can control the local field and plasma conditions which may play in favor of one or another turbulent dissipation mechanisms with their characteristic scales and wavenumbers.

  3. Separation of accelerated electrons and positrons in the relativistic reconnection

    OpenAIRE

    Karlicky, Marian

    2007-01-01

    We study an acceleration of electrons and positrons in the relativistic magnetic field reconnection using a 2.5-D particle-in-cell electromagnetic relativistic code. We consider the model with two current sheets and periodic boundary conditions. The electrons and positrons are very effectively accelerated during the tearing and coalescence processes of the reconnection. We found that near the X-points of the reconnection the positions of electrons and positrons differ. This ...

  4. A Model for Spontaneous Onset of Fast Magnetic Reconnection

    OpenAIRE

    Cassak, P. A.; Drake, J. F.; Shay, M. A.

    2006-01-01

    We present a model for the spontaneous onset of fast magnetic reconnection in a weakly collisional plasma, such as the solar corona. When a current layer of macroscopic width undergoes collisional (Sweet-Parker) reconnection, a narrow dissipation region forms around the X-line. This dissipation region naturally becomes narrower during the reconnection process as stronger magnetic fields are convected toward the X-line. When the dissipation region becomes thinner than the ion...

  5. Two-dimensional MHD simulations of relativistic magnetic reconnection

    OpenAIRE

    Watanabe, Naoyuki; Yokoyama, Takaaki

    2006-01-01

    It has been recognized that magnetic reconnection process is of great importance in high-energy astrophysics. We develop a new two-dimensional relativistic resistive magnetohydrodynamic (R$^2$MHD) code, and carry out numerical simulations of magnetic reconnection. We find that outflow velocity reaches Alfv\\'{e}n velocity in the inflow region, and that higher Alfv\\'{e}n velocity provides higher reconnection rate. We also find Lorentz contraction plays an important role in enh...

  6. Theory of magnetic reconnection in solar and astrophysical plasmas

    OpenAIRE

    Pontin, D. I

    2012-01-01

    Magnetic reconnection is a fundamental process in a plasma that facilitates the release of energy stored in the magnetic field by permitting a change in the magnetic topology. In this article we present a review of the current state of understanding of magnetic reconnection. We discuss theoretical results regarding the formation of current sheets in complex 3D magnetic fields, and describe the fundamental differences between reconnection in two and three dimensions. We go on...

  7. New Measure of the Dissipation Region in Collisionless Magnetic Reconnection

    OpenAIRE

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Kuznetsova, Masha

    2011-01-01

    A new measure to identify a small-scale dissipation region in collisionless magnetic reconnection is proposed. The energy transfer from the electromagnetic field to plasmas in the electron's rest frame is formulated as a Lorentz-invariant scalar quantity. The measure is tested by two-dimensional particle-in-cell simulations in typical configurations: symmetric and asymmetric reconnection, with and without the guide field. The innermost region surrounding the reconnection sit...

  8. Scaling Law of Relativistic Sweet-Parker Type Magnetic Reconnection

    OpenAIRE

    Takahashi, Hiroyuki R.; Kudoh, Takahiro; Masada, Youhei; Matsumoto, Jin

    2011-01-01

    Relativistic Sweet-Parker type magnetic reconnection is investigated by relativistic resistive magnetohydrodynamic (RRMHD) simulations. As an initial setting, we assume anti-parallel magnetic fields and a spatially uniform resistivity. A perturbation imposed on the magnetic fields triggers magnetic reconnection around a current sheet, and the plasma inflows into the reconnection region. The inflows are then heated due to ohmic dissipation in the diffusion region, and finally...

  9. Particle trajectories and acceleration during 3D fan reconnection

    OpenAIRE

    Dalla, S.; Browning, P. K.

    2008-01-01

    Context. The primary energy release in solar flares is almost certainly due to magnetic reconnection, making this a strong candidate as a mechanism for particle acceleration. While particle acceleration in 2D geometries has been widely studied, investigations in 3D are a recent development. Two main classes of reconnection regimes at a 3D magnetic null point have been identified: fan and spine reconnection Aims. Here we investigate particle trajectories and acceleration duri...

  10. Magnetic Reconnection in Two-Dimensional Magnetohydrodynamic Turbulence

    International Nuclear Information System (INIS)

    Systematic analysis of numerical simulations of two-dimensional magnetohydrodynamic turbulence reveals the presence of a large number of X-type neutral points where magnetic reconnection occurs. We examine the statistical properties of this ensemble of reconnection events that are spontaneously generated by turbulence. The associated reconnection rates are distributed over a wide range of values and scales with the geometry of the diffusion region. Locally, these events can be described through a variant of the Sweet-Parker model, in which the parameters are externally controlled by turbulence. This new perspective on reconnection is relevant in space and astrophysical contexts, where plasma is generally in a fully turbulent regime

  11. The magnetotail reconnection region in a global MHD simulation

    Directory of Open Access Journals (Sweden)

    T. V. Laitinen

    2005-12-01

    Full Text Available This work investigates the nature and the role of magnetic reconnection in a global magnetohydrodynamic simulation of the magnetosphere. We use the Gumics-4 simulation to study reconnection that occurs in the near-Earth region of the current sheet in the magnetotail. We locate the current sheet surface and the magnetic x-line that appears when reconnection starts. We illustrate the difference between quiet and active states of the reconnection region: variations in such quantities as the current sheet thickness, plasma flow velocities, and Poynting vector divergence are strong. A characteristic feature is strong asymmetry caused by non-perpendicular inflows. We determine the reconnection efficiency by the net rate of Poynting flux into the reconnection region. The reconnection efficiency in the simulation is directly proportional to the energy flux into the magnetosphere through the magnetopause: about half of all energy flowing through the magnetosphere is converted from an electromagnetic into a mechanical form in the reconnection region. Thus, the tail reconnection that is central to the magnetospheric circulation is directly driven; the tail does not exhibit a cycle of storage and rapid release of magnetic energy. We find similar behaviour of the tail in both synthetic and real event runs.

  12. Fast and slow nonlinear tearing mode reconnection

    CERN Document Server

    Loureiro, N F; Dorland, W; Haines, M; Schekochihin, A

    2004-01-01

    This is a brief account of our numerical study of the tearing mode reconnection. We demonstrate two main points. First, we show that, given sufficiently small resistivity, the Rutherford regime always exists; larger values of Delta' require smaller values of resistivity. Rutherford's negligible-inertia assumption is validated and the asymptotically linear dependence of the time derivative of the island width on the resistivity and Delta' is confirmed. Second, we find that, at large Delta', the Rutherford regime is followed by a nonlinear stage of fast growth linked to X-point collapse and formation of a current sheet. This causes the reconnection to become Sweet-Parke (SP) like. The signature resistivity^{1/2} scaling of the effective island growth rate is, indeed, found in this nonlinear stage. The SP stage culminates in the saturation of the mode, which can, thus, be achieved much faster than via Rutherford regime.

  13. Introduction to Plasma Dynamo, Reconnection and Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Thomas P. [Los Alamos National Laboratory

    2012-08-30

    In our plasma universe, most of what we can observe is composed of ionized gas, or plasma. This plasma is a conducting fluid, which advects magnetic fields when it flows. Magnetic structure occurs from the smallest planetary to the largest cosmic scales. We introduce at a basic level some interesting features of non linear magnetohydrodynamics (MHD). For example, in our plasma universe, dynamo creates magnetic fields from gravitationally driven flow energy in an electrically conducting medium, and conversely magnetic reconnection annihilates magnetic field and accelerates particles. Shocks occur when flows move faster than the local velocity (sonic or Alfven speed) for the propagation of information. Both reconnection and shocks can accelerate particles, perhaps to gigantic energies, for example as observed with 10{sup 20} eV cosmic rays.

  14. Magnetic reconnection in the near Venusian magnetotail.

    Science.gov (United States)

    Zhang, T L; Lu, Q M; Baumjohann, W; Russell, C T; Fedorov, A; Barabash, S; Coates, A J; Du, A M; Cao, J B; Nakamura, R; Teh, W L; Wang, R S; Dou, X K; Wang, S; Glassmeier, K H; Auster, H U; Balikhin, M

    2012-05-01

    Observations with the Venus Express magnetometer and low-energy particle detector revealed magnetic field and plasma behavior in the near-Venus wake that is symptomatic of magnetic reconnection, a process that occurs in Earth's magnetotail but is not expected in the magnetotail of a nonmagnetized planet such as Venus. On 15 May 2006, the plasma flow in this region was toward the planet, and the magnetic field component transverse to the flow was reversed. Magnetic reconnection is a plasma process that changes the topology of the magnetic field and results in energy exchange between the magnetic field and the plasma. Thus, the energetics of the Venus magnetotail resembles that of the terrestrial tail, where energy is stored and later released from the magnetic field to the plasma. PMID:22491094

  15. Space weather. Ionospheric control of magnetotail reconnection.

    Science.gov (United States)

    Lotko, William; Smith, Ryan H; Zhang, Binzheng; Ouellette, Jeremy E; Brambles, Oliver J; Lyon, John G

    2014-07-11

    Observed distributions of high-speed plasma flows at distances of 10 to 30 Earth radii (R(E)) in Earth's magnetotail neutral sheet are highly skewed toward the premidnight sector. The flows are a product of the magnetic reconnection process that converts magnetic energy stored in the magnetotail into plasma kinetic and thermal energy. We show, using global numerical simulations, that the electrodynamic interaction between Earth's magnetosphere and ionosphere produces an asymmetry consistent with observed distributions in nightside reconnection and plasmasheet flows and in accompanying ionospheric convection. The primary causal agent is the meridional gradient in the ionospheric Hall conductance which, through the Cowling effect, regulates the distribution of electrical currents flowing within and between the ionosphere and magnetotail. PMID:25013068

  16. Numerical examination of plasmoid-induced reconnection model for solar flares: the relation between plasmoid velocity and reconnection rate

    OpenAIRE

    Nishida, Keisuke; Shimizu, Masaki; Shiota, Daikou; Takasaki, Hiroyuki; Magara, Tetsuya; Shibata, Kazunari

    2008-01-01

    The plasmoid-induced-reconnection model explaining solar flares based on bursty reconnection produced by an ejecting plasmoid suggests a possible relation between the ejection velocity of a plasmoid and the rate of magnetic reconnection. In this study, we focus on the quantitative description of this relation. We performed magnetohydrodynamic (MHD) simulations of solar flares by changing the values of resistivity and the plasmoid velocity. The plasmoid velocity has been chan...

  17. Kinetic Vlasov Simulations of collisionless magnetic Reconnection

    OpenAIRE

    H Schmitz; Grauer, R.

    2006-01-01

    A fully kinetic Vlasov simulation of the Geospace Environment Modeling (GEM) Magnetic Reconnection Challenge is presented. Good agreement is found with previous kinetic simulations using particle in cell (PIC) codes, confirming both the PIC and the Vlasov code. In the latter the complete distribution functions $f_k$ ($k=i,e$) are discretised on a numerical grid in phase space. In contrast to PIC simulations, the Vlasov code does not suffer from numerical noise and allows a m...

  18. 3D Null Point Reconnection Regimes

    OpenAIRE

    Priest, E. R.; Pontin, D. I

    2009-01-01

    Recent advances in theory and computational experiments have shown the need to refine the previous categorisation of magnetic reconnection at three-dimensional null points -- points at which the magnetic field vanishes. We propose here a division into three different types, depending on the nature of the flow near the spine and fan of the null. The spine is an isolated field line which approaches the null (or recedes from it), while the fan is a surface of field lines which ...

  19. Collisionless magnetic reconnection in a plasmoid chain

    OpenAIRE

    Markidis, S.; Henri, P.; Lapenta, G.; Divin, A.; Goldman, M.V.; Newman, D.; Eriksson, S.

    2012-01-01

    The kinetic features of plasmoid chain formation and evolution are investigated by two dimensional Particle-in-Cell simulations. Magnetic reconnection is initiated in multiple X points by the tearing instability. Plasmoids form and grow in size by continuously coalescing. Each chain plasmoid exhibits a strong out-of plane core magnetic field and an out-of-plane electron current that drives the coalescing process. The disappearance of the X points in the c...

  20. Electron Acceleration in 3D Magnetic Reconnection

    CERN Document Server

    Dahlin, J T; Swisdak, M

    2015-01-01

    A kinetic simulation of 3D collisionless magnetic reconnection shows a dramatic enhancement of electron acceleration when compared with a 2D system. In the 2D system, electrons are trapped in magnetic islands which limits their energy gain, whereas in the 3D system the stochastic magnetic field enables the electrons to access volume-filling acceleration regions. The dominant accelerator of the most energetic electrons is Fermi reflection from contracting field lines.

  1. Generation of Alfven Waves by Magnetic Reconnection

    OpenAIRE

    Kigure, Hiromitsu; Takahashi, Kunio; Shibata, Kazunari; Yokoyama, Takaaki; Nozawa, Satoshi

    2010-01-01

    In this paper, results of 2.5-dimensional magnetohydrodynamical simulations are reported for the magnetic reconnection of non-perfectly antiparallel magnetic fields. The magnetic field has a component perpendicular to the computational plane, that is, guide field. The angle theta between magnetic field lines in two half regions is a key parameter in our simulations whereas the initial distribution of the plasma is assumed to be simple; density and pressure are uniform except...

  2. An Electromagnetic Drift Instability in the Magnetic Reconnection Experiment (MRX) and its Importance for Magnetic Reconnection

    International Nuclear Information System (INIS)

    The role which resistivity plays in breaking magnetic field lines, heating the plasma, and plasma field slippage during magnetic reconnection is discussed. Magnetic fluctuations are observed in the MRX (Magnetic Reconnection Experiment) that are believed to provide resistive friction or wave resistivity. A localized linear theory has been proposed for their origin as an obliquely propagating Lower Hybrid Drift Instability. In this paper, the linear theory of the instability is summarized, and the resulting heating and slippage are calculated from quasi-linear theory. Making use of measured amplitudes of the magnetic fluctuations in the MRX the amount of these effects is estimated. Within the experimental uncertainties they are shown to be quite important for the magnetic reconnection process

  3. Vortex tube reconnection at Re = 104

    Science.gov (United States)

    van Rees, Wim M.; Hussain, Fazle; Koumoutsakos, Petros

    2012-07-01

    We present simulations of the long-time dynamics of two anti-parallel vortex tubes with and without initial axial flow, at Reynolds number Re = ?/? = 104. Simulations were performed in a periodic domain with a remeshed vortex method using 785 × 106 particles. We quantify the vortex dynamics of the primary vortex reconnection that leads to the formation of elliptical rings with axial flow and report for the first time a subsequent collision of these rings. In the absence of initial axial flow, a -5/3 slope of the energy spectrum is observed during the first reconnection of the tubes. The resulting elliptical vortex rings experience a coiling of their vortex lines imparting an axial flow inside their cores. These rings eventually collide, exhibiting a -7/3 slope of the energy spectrum. Studies of vortex reconnection with an initial axial flow exhibit also the -7/3 slope during the initial collision as well as in the subsequent collision of the ensuing elliptical vortex rings. We quantify the detailed vortex dynamics of these collisions and examine the role of axial flow in the breakup of vortex structures.

  4. Redistribution of fast ions during sawtooth reconnection

    International Nuclear Information System (INIS)

    In a tokamak-based fusion power plant, possible scenarios may include regulated sawtooth oscillations to remove thermalized helium from the core of the plasma. During a sawtooth crash, the helium ash and other impurities trapped in the core are driven by the instability to an outer region. However, in a fusion plasma, high energy ions will represent a significant population. We thus study the behaviour of these energetic particles during a sawtooth. This paper presents the modelling of the redistribution of fast ions during a sawtooth reconnection event in a tokamak plasma. Along the lines of the model for the evolution of the flux surfaces during a sawtooth collapse described in Ya.I. Kolesnichenko and Yu.V. Yakovenko 1996 Nucl. Fusion 36 159, we have built a time-dependent electromagnetic model of a sawtooth reconnection. The trajectories of the ions are described by a complete gyro-orbit integration. The fast particles were evolved from specific initial parameters (given energy and uniform spread in pitch) or distributed initially according to a slowing-down distribution created by fusion reactions. Our modelling is used to understand the main equilibrium parameters driving the motions during the collapse and to determine the evolution of the distribution function of energetic ions when different geometries of reconnection are considered. (paper)

  5. Circularly polarized Magnetic Field of Whistler Wave during Fast Magnetic Reconnection

    Science.gov (United States)

    Zhai, Xiang; Wongwaitayakornkul, Pakorn; Bellan, Paul; Bellan Group Team

    2014-10-01

    Obliquely propagating whistler waves are expected to have circularly polarized magnetic components and to be associated with fast magnetic reconnection. In the Caltech plasma jet experiment, a current-carrying collimated jet is created from the merging of eight plasma-filled flux ropes. Fast magnetic reconnection occurs during the merging process. When the current- carrying jet undergoes fast kink instability, a lateral Rayleigh-Taylor instability occurs on the jet surface and induces another fast magnetic reconnection event. A capacitive coupling probe placed near the jet has measured fast electric field fluctuations at 15MHz which is in the whistler regime for this plasma. A 3D fast Bdot probe with good electrostatic rejection has been specifically designed to measure the 3D magnetic components of the whistler wave. Preliminary results have revealed a 3D 15 MHz magnetic fluctuation. Work is underway to increase the sensitivity of the induction probe and also to reduce electrostatic pickup. With the improved probe, the polarization property of the magnetic component of the whistler wave is expected to be resolved if it exists.

  6. NUMERICAL TESTS OF FAST RECONNECTION IN WEAKLY STOCHASTIC MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    We study the effects of turbulence on magnetic reconnection using three-dimensional direct numerical simulations. This is the first attempt to test a model of fast magnetic reconnection in the presence of weak turbulence proposed by Lazarian and Vishniac. This model predicts that weak turbulence, which is generically present in most astrophysical systems, enhances the rate of reconnection by reducing the transverse scale for reconnection events and by allowing many independent flux reconnection events to occur simultaneously. As a result, the reconnection speed becomes independent of Ohmic resistivity and is determined by the magnetic field wandering induced by turbulence. We test the dependence of the reconnection speed on turbulent power, the energy injection scale, and resistivity. We apply the open and experiment with the outflow boundary conditions in our numerical model and discuss the advantages and drawbacks of various setups. To test our results, we also perform simulations of turbulence with the same outflow boundaries but without a large-scale field reversal, thus without large-scale reconnection. To quantify the reconnection speed we use both an intuitive definition, i.e., the speed of the reconnected flux inflow, and a more sophisticated definition based on a formally derived analytical expression. Our results confirm the predictions of the Lazarian and Vishniac model. In particular, we find that the reconnection speed is proportional to the square root ospeed is proportional to the square root of the injected power, as predicted by the model. The dependence on the injection scale for some of our models is a bit weaker than expected, i.e., l3/4inj, compared to the predicted linear dependence on the injection scale, which may require some refinement of the model or may be due to effects such as the finite size of the excitation region, which are not a part of the model. The reconnection speed was found to depend on the expected rate of magnetic field wandering and not on the magnitude of the guide field. In our models, we see no dependence on the guide field when its strength is comparable to the reconnected component. More importantly, while in the absence of turbulence we successfully reproduce the Sweet-Parker scaling of reconnection, in the presence of turbulence we do not observe any dependence on Ohmic resistivity, confirming that the reconnection of the weakly stochastic field is fast. We also do not observe a dependence on anomalous resistivity, which suggests that the presence of anomalous effects, e.g., Hall MHD effects, may be irrelevant for astrophysical systems with weakly stochastic magnetic fields.

  7. High power heating of magnetic reconnection in merging tokamak experimentsa)

    Science.gov (United States)

    Ono, Y.; Tanabe, H.; Yamada, T.; Gi, K.; Watanabe, T.; , T., Ii; Gryaznevich, M.; Scannell, R.; Conway, N.; Crowley, B.; Michael, C.

    2015-05-01

    Significant ion/electron heating of magnetic reconnection up to 1.2 keV was documented in two spherical tokamak plasma merging experiment on MAST with the significantly large Reynolds number R˜105. Measured 1D/2D contours of ion and electron temperatures reveal clearly energy-conversion mechanisms of magnetic reconnection: huge outflow heating of ions in the downstream and localized heating of electrons at the X-point. Ions are accelerated up to the order of poloidal Alfven speed in the reconnection outflow region and are thermalized by fast shock-like density pileups formed in the downstreams, in agreement with recent solar satellite observations and PIC simulation results. The magnetic reconnection efficiently converts the reconnecting (poloidal) magnetic energy mostly into ion thermal energy through the outflow, causing the reconnection heating energy proportional to square of the reconnecting (poloidal) magnetic field Brec2 ˜ Bp2. The guide toroidal field Bt does not affect the bulk heating of ions and electrons, probably because the reconnection/outflow speeds are determined mostly by the external driven inflow by the help of another fast reconnection mechanism: intermittent sheet ejection. The localized electron heating at the X-point increases sharply with the guide toroidal field Bt, probably because the toroidal field increases electron confinement and acceleration length along the X-line. 2D measurements of magnetic field and temperatures in the TS-3 tokamak merging experiment also reveal the detailed reconnection heating mechanisms mentioned above. The high-power heating of tokamak merging is useful not only for laboratory study of reconnection but also for economical startup and heating of tokamak plasmas. The MAST/TS-3 tokamak merging with Bp > 0.4 T will enables us to heat the plasma to the alpha heating regime: Ti > 5 keV without using any additional heating facility.

  8. Magnetic Reconnection During Major Magnetospheric Storms

    Science.gov (United States)

    Hubert, B. A.; Milan, S. E.; Cowley, S. W. H.

    2014-12-01

    We combine imaging of the proton aurora from the SI12-IMAGE instrument with ionospheric convection measurement from the SuperDARN radar network to analyze the cycle of magnetic flux opening and closure of the Earth magnetosphere. Interaction between the solar wind and the Earth geomagnetic environment causes a reconfiguration of the magnetic field that connects the interplanetary magnetic field (IMF) to the geomagnetic field. This reconnection process produces open magnetic field lines (i.e. field lines of the magnetosphere that close through the interplanetary medium) that are dragged to the magnetotail by the solar wind flow, where they eventually reconnect again, back to a closed topology. The SI12 imaging of the Doppler-shifted Lyman-? emission of the proton aurora is used to estimate the location of the boundary separating open and closed field lines at ionospheric altitude. We then estimate the open magnetic flux of the Earth magnetosphere, encircled by this boundary. The rate of reconnection causing a variation of the open magnetic flux can be expressed as a voltage in application of Faraday's law. This voltage is measured along the open/closed field line boundary determined from the imaging data. The electric field associated with the voltage has two origins: motion of the boundary and the ionospheric field. We use the ionospheric electric field deduced from ionospheric convection measurement from the SuperDARN to estimate the reconnection voltage at the magnetopause (flux opening) and in the magnetotail (flux closure) accounting for the motion of the open/closed field line boundary determined from the SI12 images. The method is applied during several (strong) geomagnetic storms. These intervals are characterized by large values of open flux and reconnection rates, as a result of coupling between the solar wind and the geomagnetic environment. We present these results in terms of a magnetospheric mode that develops under strong coupling with the solar wind, a condition known to be prone to the development of sawtooth events, characterized by overloading of the magnetosphere with open magnetic flux.

  9. Finding the Right Place for the Person with Alzheimer's Disease

    Science.gov (United States)

    Finding the Right Place for the Person with AD Steps to take Assisted living facilities Group homes Nursing homes How to ... well cared for." Steps to take Choosing the right place is a big decision. It's hard to ...

  10. The relation between reconnected flux, the parallel electric field, and the reconnection rate in a three-dimensional kinetic simulation of magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Wendel, D. E.; Olson, D. K.; Hesse, M.; Kuznetsova, M.; Adrian, M. L. [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Aunai, N. [Institute for Research in Astrophysics and Planetology, University Paul Sabatier, Toulouse (France); Karimabadi, H. [SciberQuest, Inc., Del Mar, California 92014 (United States); Department of Computer and Electrical Engineering, University of California, San Diego, La Jolla, California 92093 (United States); Daughton, W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2013-12-15

    We investigate the distribution of parallel electric fields and their relationship to the location and rate of magnetic reconnection in a large particle-in-cell simulation of 3D turbulent magnetic reconnection with open boundary conditions. The simulation's guide field geometry inhibits the formation of simple topological features such as null points. Therefore, we derive the location of potential changes in magnetic connectivity by finding the field lines that experience a large relative change between their endpoints, i.e., the quasi-separatrix layer. We find a good correspondence between the locus of changes in magnetic connectivity or the quasi-separatrix layer and the map of large gradients in the integrated parallel electric field (or quasi-potential). Furthermore, we investigate the distribution of the parallel electric field along the reconnecting field lines. We find the reconnection rate is controlled by only the low-amplitude, zeroth and first–order trends in the parallel electric field while the contribution from fluctuations of the parallel electric field, such as electron holes, is negligible. The results impact the determination of reconnection sites and reconnection rates in models and in situ spacecraft observations of 3D turbulent reconnection. It is difficult through direct observation to isolate the loci of the reconnection parallel electric field amidst the large amplitude fluctuations. However, we demonstrate that a positive slope of the running sum of the parallel electric field along the field line as a function of field line length indicates where reconnection is occurring along the field line.

  11. The Relation between Reconnected Flux, the Parallel Electric Field, and the Reconnection Rate in a Three-Dimensional Kinetic Simulation of Magnetic Reconnection

    Science.gov (United States)

    Wendel, D. E.; Olson, D. K.; Hesse, M.; Karimabadi, H.; Daughton, W. S.

    2013-12-01

    We investigate the distribution of parallel electric fields and their relationship to the location and rate of magnetic reconnection of a large particle-in-cell simulation of 3D turbulent magnetic reconnection with open boundary conditions. The simulation's guide field geometry inhibits the formation of topological features such as separators and null points. Therefore, we derive the location of potential changes in magnetic connectivity by finding the field lines that experience a large relative change between their endpoints, i.e., the quasi-separatrix layer. We find a correspondence between the locus of changes in magnetic connectivity, or the quasi-separatrix layer, and the map of large gradients in the integrated parallel electric field (or quasi-potential). Furthermore, we compare the distribution of parallel electric fields along field lines with the reconnection rate. We find the reconnection rate is controlled by only the low-amplitude, zeroth and first-order trends in the parallel electric field, while the contribution from high amplitude parallel fluctuations, such as electron holes, is negligible. The results impact the determination of reconnection sites within models of 3D turbulent reconnection as well as the inference of reconnection rates from in situ spacecraft measurements. It is difficult through direct observation to isolate the locus of the reconnection parallel electric field amidst the large amplitude fluctuations. However, we demonstrate that a positive slope of the partial sum of the parallel electric field along the field line as a function of field line length indicates where reconnection is occurring along the field line.

  12. A Case Study of How Teaching Practice Process Takes Place

    Science.gov (United States)

    Yalin Ucar, Meltem

    2012-01-01

    The process of "learning" carries an important role in the teaching practice which provides teacher candidates with professional development. Being responsible for the learning experiences in that level, cooperating teacher, teacher candidate, mentor and practice school are the important variables which determine the quality of the teaching…

  13. BP-Mobil partnership. The common network takes place

    International Nuclear Information System (INIS)

    After the partnership between BP and Mobil was signed, the program of transformation of the petrol stations network started in November 1996 in the UK and concern 3300 stations in Europe and 800 stations in France. About 9100 stations will be transformed by the end of 1998. BP France is the operator for petroleum products (petrol, fuel, bitumens, LPG..) with a 70% share holding (30% for Mobil) while Mobil is the major shareholder (51%) for the lubricants and special products activities. The chemical, aviation nd maritime activities are not concerned. Thanks to the fusion of their down-file activities in Europe, the benefits of the partnership should reach 600 to 700 million of US Dollars each year. However the restructuring cost should reach 740 millions of US Dollars in two years, which doubles the initial estimation. Short paper. (J.S.)

  14. Direct evidence for kinetic effects associated with solar wind reconnection.

    Science.gov (United States)

    Xu, Xiaojun; Wang, Yi; Wei, Fengsi; Feng, Xueshang; Deng, Xiaohua; Ma, Yonghui; Zhou, Meng; Pang, Ye; Wong, Hon-Cheng

    2015-01-01

    Kinetic effects resulting from the two-fluid physics play a crucial role in the fast collisionless reconnection, which is a process to explosively release massive energy stored in magnetic fields in space and astrophysical plasmas. In-situ observations in the Earth's magnetosphere provide solid consistence with theoretical models on the point that kinetic effects are required in the collisionless reconnection. However, all the observations associated with solar wind reconnection have been analyzed in the context of magnetohydrodynamics (MHD) although a lot of solar wind reconnection exhausts have been reported. Because of the absence of kinetic effects and substantial heating, whether the reconnections are still ongoing when they are detected in the solar wind remains unknown. Here, by dual-spacecraft observations, we report a solar wind reconnection with clear Hall magnetic fields. Its corresponding Alfvenic electron outflow jet, derived from the decouple between ions and electrons, is identified, showing direct evidence for kinetic effects that dominate the collisionless reconnection. The turbulence associated with the exhaust is a kind of background solar wind turbulence, implying that the reconnection generated turbulence has not much developed. PMID:25628139

  15. Progress in the theory of magnetic reconnection phenomena

    International Nuclear Information System (INIS)

    Recent theoretical work on magnetic reconnection in hot plasma confinement devices is reviewed. The presentation highlights the common aspects of reconnection phenomena, and current research trends are emphasised. Progress in understanding the dynamics of slowly evolving modes of the tearing family, based on advanced analytic techniques and numerical simulation, as well as of faster modes that lead to internal disruptions, is reported. (authors)

  16. Two-dimensional MHD model of the reconnection diffusion region

    Directory of Open Access Journals (Sweden)

    N. V. Erkaev

    2002-01-01

    Full Text Available Magnetic reconnection is an important process providing a fast conversion of magnetic energy into thermal and kinetic plasma energy. In this concern, a key problem is that of the resistive diffusion region where the reconnection process is initiated. In this paper, the diffusion region is associated with a nonuniform conductivity localized to a small region. The nonsteady resistive incompressible MHD equations are solved numerically for the case of symmetric reconnection of antiparallel magnetic fields. A Petschek type steady-state solution is obtained as a result of time relaxation of the reconnection layer structure from an arbitrary initial stage. The structure of the diffusion region is studied for various ratios of maximum and minimum values of the plasma resistivity. The effective length of the diffusion region and the reconnection rate are determined as functions of the length scale and the maximum of the resistivity. For sufficiently small length scale of the resistivity, the reconnection rate is shown to be consistent with Petschek's formula. By increasing the resistivity length scale and decreasing the resistivity maximum, the reconnection layer tends to be wider, and correspondingly, the reconnection rate tends to be more consistent with that of the Parker-Sweet regime.

  17. Direct evidence for kinetic effects associated with solar wind reconnection

    Science.gov (United States)

    Xu, Xiaojun; Wang, Yi; Wei, Fengsi; Feng, Xueshang; Deng, Xiaohua; Ma, Yonghui; Zhou, Meng; Pang, Ye; Wong, Hon-Cheng

    2015-01-01

    Kinetic effects resulting from the two-fluid physics play a crucial role in the fast collisionless reconnection, which is a process to explosively release massive energy stored in magnetic fields in space and astrophysical plasmas. In-situ observations in the Earth's magnetosphere provide solid consistence with theoretical models on the point that kinetic effects are required in the collisionless reconnection. However, all the observations associated with solar wind reconnection have been analyzed in the context of magnetohydrodynamics (MHD) although a lot of solar wind reconnection exhausts have been reported. Because of the absence of kinetic effects and substantial heating, whether the reconnections are still ongoing when they are detected in the solar wind remains unknown. Here, by dual-spacecraft observations, we report a solar wind reconnection with clear Hall magnetic fields. Its corresponding Alfvenic electron outflow jet, derived from the decouple between ions and electrons, is identified, showing direct evidence for kinetic effects that dominate the collisionless reconnection. The turbulence associated with the exhaust is a kind of background solar wind turbulence, implying that the reconnection generated turbulence has not much developed.

  18. Progress in the theory of magnetic reconnection phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Ottaviani, M.; Arcis, N.; Maget, P.; Zwingmann, W. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Escande, D.F. [Universite de Provence, UMR 6633 CNRS, Centre Saint-Jerome, 13 - Marseille (France); Grasso, D.; Militello, F.; Porcelli, F. [Burning Plasma Research Group, INFM and Polytecnico di Torino (Italy)

    2004-07-01

    Recent theoretical work on magnetic reconnection in hot plasma confinement devices is reviewed. The presentation highlights the common aspects of reconnection phenomena, and current research trends are emphasised. Progress in understanding the dynamics of slowly evolving modes of the tearing family, based on advanced analytic techniques and numerical simulation, as well as of faster modes that lead to internal disruptions, is reported. (authors)

  19. Comment on Lockwood and Davis, "On the longitudinal extent of magnetopause reconnection pulses"

    Science.gov (United States)

    Heikkila, W. J.

    1999-02-01

    Lockwood and Davis (1996) present a concise description of magnetopause reconnection pulses, with the claimed support of three types of observations: (1) flux transfer events (FTE), (2) poleward-moving auroral forms on the dayside, and (3) steps in cusp ion dispersion characteristics. However, there are a number of errors and misconceptions in the paper that make their conclusions untenable. They do not properly take account of the fact that the relevant processes operate in the presence of a plasma. They fail to notice that the source of energy (a dynamo with E · J0) in transient phenomena, since energy (or information) cannot travel faster than the group velocity of waves in the medium (here the Alfvén velocity VA). In short, Lockwood and Davis use the wrong contour in their attempt to evaluate the electromotive force (emf). This criticism goes beyond their article: a dynamo is not included in the usual definition of reconnection, only the reconnection load. Without an explicit source of energy in the assumed model, the idea of magnetic reconnection is improperly posed. Recent research has carried out a superposed epoch analysis of conditions near the dayside magnetopause and has found the dynamo and the load, both within the magnetopause current sheet. Since the magnetopause current is from dawn to dusk, the sign of E · J reflects the sign of the electric field. The electric field reverses, within the magnetopause; this can be discovered by an application of Lenz's law using the concept of erosion of the magnetopause. The net result is plasma transfer across the magnetopause to feed the low latitude boundary layer, at least partly on closed field lines, and viscous interaction as the mechanism by which solar wind plasma couples to the magnetosphere.

  20. Fluid vs. kinetic magnetic reconnection with strong guide-fields

    CERN Document Server

    Stanier, A; Chacon, L; Daughton, W

    2015-01-01

    The fast rates of magnetic reconnection found in both nature and experiments are important to understand theoretically. Recently, it was demonstrated that two-fluid magnetic reconnection remains fast in the strong guide field regime, regardless of the presence of fast-dispersive waves. This conclusion is in agreement with recent results from kinetic simulations, and is in contradiction to the findings in an earlier two-fluid study, where it was suggested that fast-dispersive waves are necessary for fast reconnection. In this paper, we give a more detailed derivation of the analytic model presented in a recent letter, and present additional simulation results to support the conclusions that the magnetic reconnection rate in this regime is independent of both collisional dissipation and system-size. In particular, we present a detailed comparison between fluid and kinetic simulations, finding good agreement in both the reconnection rate and overall length of the current layer. Finally, we revisit the earlier tw...

  1. Conservation of writhe helicity under anti-parallel reconnection

    Science.gov (United States)

    Laing, Christian E.; Ricca, Renzo L.; Sumners, De Witt L.

    2015-03-01

    Reconnection is a fundamental event in many areas of science, from the interaction of vortices in classical and quantum fluids, and magnetic flux tubes in magnetohydrodynamics and plasma physics, to the recombination in polymer physics and DNA biology. By using fundamental results in topological fluid mechanics, the helicity of a flux tube can be calculated in terms of writhe and twist contributions. Here we show that the writhe is conserved under anti-parallel reconnection. Hence, for a pair of interacting flux tubes of equal flux, if the twist of the reconnected tube is the sum of the original twists of the interacting tubes, then helicity is conserved during reconnection. Thus, any deviation from helicity conservation is entirely due to the intrinsic twist inserted or deleted locally at the reconnection site. This result has important implications for helicity and energy considerations in various physical contexts.

  2. Conservation of writhe helicity under anti-parallel reconnection

    CERN Document Server

    Laing, Christian E; Sumners, De Witt L

    2014-01-01

    Reconnection is a fundamental event in many areas of science, from the interaction of vortices in classical and quantum fluids, and magnetic flux tubes in magnetohydrodynamics and plasma physics, to the recombination in polymer physics and DNA biology. By using fundamental results in topological fluid mechanics, the helicity of a flux tube can be calculated in terms of writhe and twist contributions. Here we show that the writhe is conserved under anti-parallel reconnection. Hence, for a pair of interacting flux tubes of equal flux, if the twist of the reconnected tube is the sum of the original twists of the interacting tubes, then helicity is conserved during reconnection. Thus, any deviation from helicity conservation is entirely due to the intrinsic twist inserted or deleted locally at the reconnection site. This result has important implications for helicity and energy considerations in various physical contexts.

  3. Oblique Shocks in the Reconnection Jet in Solar Flares

    Science.gov (United States)

    Tanuma, S.; Shibata, K.

    2007-10-01

    The strong hard X-ray emission of energetic electrons is observed in some solar flares. The origin of energetic electrons is, however, not known fully. Then, we suggest that the internal shocks are created in the reconnection jet in solar flares, and that energetic electrons are accelerated by the shocks. In this paper, we examine 2D MHD simulations of magnetic reconnection with a high spatial resolution. As the results, the magnetic reconnection occurs after the secondary tearing instability at the current sheet. We find that, during the non-steady Petschek reconnection, the oblique strong shocks are created by the Kelvin-Helmholtz-like instability in the reconnection jet when we assume an anomalous resistivity model. The oblique shocks can be possible sites of the particle acceleration in the solar flares.

  4. Review of recent experiments on magnetic reconnection in laboratory plasmas

    International Nuclear Information System (INIS)

    The present paper reviews recent laboratory experiments on magnetic reconnection. Examples will be drawn from electron current sheet experiments, merging spheromaks, and from high temperature tokamak plasmas with the Lundquist numbers exceeding 107. These recent laboratory experiments create an environment which satisfies the criteria for MHD plasma and in which the global boundary conditions can be controlled externally. Experiments with fully three dimensional reconnection are now possible. In the most recent TFTR tokamak discharges, Motional Stark effect (MSE) data have verified the existence of a partial reconnection. In the experiment of spheromak merging, a new plasma acceleration parallel to the neutral line has been indicated. Together with the relationship of these observations to the analysis of magnetic reconnection in space and in solar flares, important physics issues such as global boundary conditions, local plasma parameters, merging angle of the field lines, and the 3-D aspects of the reconnection are discussed

  5. Suprathermal electron acceleration during reconnection onset in the magnetotail

    Directory of Open Access Journals (Sweden)

    A. Vaivads

    2011-10-01

    Full Text Available We study one event of reconnection onset associated to a small substorm on 27 September 2006 by using Cluster observations at inter-spacecraft separation of about 10 000 km. We focus on the acceleration of suprathermal electrons during different stages of reconnection. We show that several distinct stages of acceleration occur: (1 moderate acceleration during reconnection of pre-existing plasma sheet flux tubes, (2 stronger acceleration during reconnection of lobe flux tubes, (3 production of the most energetic electrons within dipolarization fronts (magnetic pile-up regions. The strongest acceleration is reached at the location of Bz maxima inside the magnetic pile-up region where the reconnection jet stops. Very strong localized dawn-dusk electric field are observed within the magnetic pile-up regions and are associated to most of the magnetic flux transport.

  6. Turbulent magnetic reconnection in 2D and 3D

    CERN Document Server

    Lazarian, A; Vishniac, E; Kulpa-Dubel, K; Otmianowska-Mazur, K

    2010-01-01

    Magnetic field embedded in a perfectly conducting fluid preserves its topology for all time. Although ionized astrophysical objects, like stars and galactic disks, are almost perfectly conducting, they show indications of changes in topology, `magnetic reconnection', on dynamical time scales. Reconnection can be observed directly in the solar corona, but can also be inferred from the existence of large scale dynamo activity inside stellar interiors. Solar flares and gamma ray busts are usually associated with magnetic reconnection. Previous work has concentrated on showing how reconnection can be rapid in plasmas with very small collision rates. Here we present numerical evidence, based on three dimensional simulations, that reconnection in a turbulent fluid occurs at a speed comparable to the rms velocity of the turbulence, regardless of the value of the resistivity. In particular, this is true for turbulent pressures much weaker than the magnetic field pressure so that the magnetic field lines are only slig...

  7. Relativistic Reconnection: an Efficient Source of Non-Thermal Particles

    CERN Document Server

    Sironi, Lorenzo

    2014-01-01

    In magnetized astrophysical outflows, the dissipation of field energy into particle energy via magnetic reconnection is often invoked to explain the observed non-thermal signatures. By means of two- and three-dimensional particle-in-cell simulations, we investigate anti-parallel reconnection in magnetically-dominated electron-positron plasmas. Our simulations extend to unprecedentedly long temporal and spatial scales, so we can capture the asymptotic state of the system beyond the initial transients, and without any artificial limitation by the boundary conditions. At late times, the reconnection layer is organized into a chain of large magnetic islands connected by thin X-lines. The plasmoid instability further fragments each X-line into a series of smaller islands, separated by X-points. At the X-points, the particles become unmagnetized and they get accelerated along the reconnection electric field. We provide definitive evidence that the late-time particle spectrum integrated over the whole reconnection r...

  8. Conservation of writhe helicity under anti-parallel reconnection

    Science.gov (United States)

    Laing, Christian E.; Ricca, Renzo L.; Sumners, De Witt L.

    2015-01-01

    Reconnection is a fundamental event in many areas of science, from the interaction of vortices in classical and quantum fluids, and magnetic flux tubes in magnetohydrodynamics and plasma physics, to the recombination in polymer physics and DNA biology. By using fundamental results in topological fluid mechanics, the helicity of a flux tube can be calculated in terms of writhe and twist contributions. Here we show that the writhe is conserved under anti-parallel reconnection. Hence, for a pair of interacting flux tubes of equal flux, if the twist of the reconnected tube is the sum of the original twists of the interacting tubes, then helicity is conserved during reconnection. Thus, any deviation from helicity conservation is entirely due to the intrinsic twist inserted or deleted locally at the reconnection site. This result has important implications for helicity and energy considerations in various physical contexts. PMID:25820408

  9. Two-dimensional magnetic reconnection model for incompressible plasmas

    International Nuclear Information System (INIS)

    A modified two-dimensional magnetic reconnection model is presented which focuses on the role of electrostatic field generated by charge separation in magnetic reconnection, and the E cross B drift causing the Alfvenic outflows. This reconnection model reveals that the reconnection rate described in Sweet-Parker model is strongly dependent on the ratio of the electron mass and the ion mass, and the effective local resistivity normalized by the Spitzer resistivity is proportional to the square of the ratio of the ion skin depth to the width of the current sheet. The relativistic effect and creation of electron-positron pairs in high temperature plasmas can enhance the reconnection rate. The excitation of electromagnetic waves is necessary for dissipation of magnetic energy. (authors)

  10. Cross-Scale Observational Signatures of Magnetic Reconnection

    Science.gov (United States)

    Savage, Sabrina; Malaspina, David

    2014-01-01

    Magnetic reconnection is a significant mechanism for energy release across many astrophysical applications. In the solar atmosphere, reconnection is considered a primary contributor of flare evolution and coronal heating. Directly observing reconnection occurring in the solar atmosphere, however, is not trivial considering that the scale size of the diffusion region is magnitudes smaller than the observational capabilities of current instrumentation, and coronal magnetic field measurements are not currently sufficient to capture the process. Meanwhile, reconnection occurring in the Earth's magnetosphere transfers energy from the solar wind through a comparable process, although on vastly different scales. Magnetospheric measurements are made in situ rather than remotely; ergo, comparison of observations between the two regimes allows for potentially significant insight into reconnection as a stochastic and possibly turbulent process. We will present a set of observations from long-duration solar events and compare them to in situ measurements from the magnetosphere.

  11. Implications of RHESSI Flare Observations for Magnetic Reconnection Models

    Science.gov (United States)

    Holman, Gordon D.; Sui, Linhui; Dennis, Brian R.

    2004-01-01

    The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations of the 2002 April 15 solar flare and related flares provide compelling evidence for the formation of a large-scale, reconnecting current sheet in at least some flares. We describe the observed evolution of the April 15 flare in terms of magnetic reconnection models. We argue that the flare most likely evolved through magnetic geometries associated with super-slow reconnection (early rise phase), fast reconnection (impulsive phase), and slow reconnection (gradual phase). We also provide evidence for X-ray brightenings within the evolving current sheet, possibly induced by the tearing mode instability. This work was supported in part by the RHESSI Program and NASA's Sun-Earth Connection Program. This work would not have been possible without the dedicated efforts of the entire RHESSI team.

  12. A naturally driven reconnection mechanism for the solar corona

    Science.gov (United States)

    Lapenta, G.; Knoll, D.

    2002-12-01

    Reconnection in the solar corona is believed to be important for a series of processes from flares and CMEs to coronal heating. However, theoretical understanding of the reconnection process still remains elusive. The reconnection rate predicted by the Sweet-Parker model is determined by resistivity and is very many orders of magnitude too small to explain the observations. A possible mechanism that can provide fast reconnection rate is driven reconnection, When external flows drive field lines together, the rate of reconnection is determined by the driving mechanism and is indipendent of resistivity. In related works applied to the Earth's magnetopause [1], it as been shown that a Kelvin Helmholtz instability (KHI) can cause local compressive motions that push field lines together and drive reconnection. We propose here that the same mechanism could conceivably be at work in the solar corona. We propose that photospheric motions cause torsional Alfven waves that propagate in the chromosphere and are amplified in the transition regions, emerging as sizabe velocity shears in the solar corona. Simulaiton works have proposed that such shear can be amplified to a good fraction (e.g. 0.3) of the Alfven speed [2]. The velocity shear injected in the corona can cause magnetic loops previously stressed by photospheric motions [3] to reconnect. We have conducted a series of simulation to prove this scenario and to observe the properties of the reconneciton process. We have shown that indeed reconnection can be achieved trough local compression driven by the KHI and that the reconnection rate in that case is not sensitive to resistivity. [1] Brackbill, J.U., Knoll, D.A., Phys. Rev. Lett., 86, 2329 (2001) [2] Kudoh, T., Shibata K., Ap. J., 514, 493 (1999) [3] Mikic, Z., Barnes, D.C., Schnack, D.D., Ap. J., 328, 830 (1988)

  13. MAVEN Observations of Magnetic Reconnection on the Dayside Martian Magnetosphere

    Science.gov (United States)

    DiBraccio, Gina A.; Espley, Jared R.; Connerney, John E. P.; Brain, David A.; Halekas, Jasper S.; Mitchell, David L.; Harada, Yuki; Hara, Takuya

    2015-04-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission offers a unique opportunity to investigate the complex solar wind-planetary interaction at Mars. The Martian magnetosphere is formed as the interplanetary magnetic field (IMF) drapes around the planet's ionosphere and localized crustal magnetic fields. As the solar wind interacts with this induced magnetosphere, magnetic reconnection can occur at any location where a magnetic shear is present. Reconnection between the IMF and the induced and crustal fields facilitates a direct plasma exchange between the solar wind and the Martian ionosphere. Here we address the occurrence of magnetic reconnection on the dayside magnetosphere of Mars using MAVEN magnetic field and plasma data. When reconnection occurs on the dayside, a non-zero magnetic field component normal to the obstacle, B_N, will result. Using minimum variance analysis, we measure BN by transforming Magnetometer data into boundary-normal coordinates. Selected events are then further examined to identify plasma heating and energization, in the form of Alfvénic outflow jets, using Solar Wind Ion Analyzer measurements. Additionally, the topology of the crustal fields is validated from electron pitch angle distributions provided by the Solar Wind Electron Analyzer. To understand which parameters are responsible for the onset of reconnection, we test the dependency of the dimensionless reconnection rate, calculated from BN measurements, on magnetic field shear angle and plasma beta (the ratio of plasma pressure to magnetic pressure). We assess the global impact of reconnection on Mars' induced magnetosphere by combining analytical models with MAVEN observations to predict the regions where reconnection may occur. Using this approach we examine how IMF orientation and magnetosheath parameters affect reconnection on a global scale. With the aid of analytical models we are able to assess the role of reconnection on a global scale to better understand which factors drive these dynamics in the space environment of Mars.

  14. Density Depletion and Hall Effect in Magnetic Reconnection

    Science.gov (United States)

    Jin, S.; Yang, H.

    2005-12-01

    We investigate the layers of density depletion in magnetic reconnection using a 2.5 dimensional Hall MHD code developed from a multi-step implicit scheme. The numerical results at the quasi-steady state of Hall MHD reconnection with di/L0 greater than 0.1 show not only the density depletions along the magnetic separatrices but also a dip in the density in the vicinity of the X neutral line. We examine a series of cases with di/L0 ranging from 0.25 to 0.01 and find the depleting layers of density along the separatrices become more and more slight as the Hall effect weakens with decreasing di/L0, and they are hardly distinguishable for the cases with di/L0 less than 1/20. What's more, the profile of the density * at the central point of the diffusion region as the function of di/L0 illustrates that * decreases as Hall effect strengthens with increasing di/L0. As seen in the profile of * versus di/L0, * is approximate to 2.0 in the cases with di/L0 less than 1/50 where the reconnection dynamics are controlled by the resistivity. However, * is less than 1.0 in the cases with di/L0 greater than 0.1 where the reconnection dynamics are dominated by Hall effect. It demonstrates that the density depletion in the magnetic reconnection is a peculiar feature to the case with a strong Hall term. The Cluster spacecraft observations confirmed the existence of a density dip at the current sheet following the shape of the separatrix. We take a cut line closed to Cluster trajectory along z and plot the spatial profiles of three components Bx, By, Bz in magnetic field, the density * and the y component (JxB)y of Hall term along this cut line. The patterns of the profile Bx, By and Bz are similar to the Cluster observations. In addition, the profiles of density * exhibit a significant increase of density in the central region of plasma outflow and the obvious dips in density near the locations of the separatrices. Such a spatial variation in density is in qualitative agreement with four-spacecraft measurement. And the density dips located at the magnetic separatrices coincide with the peaks in the spatial profile of (JxB)y, that demonstrates the major role of Hall term in the formation of the density depletion layers near the separatrices. In the serendipitous encounter of Wind spacecraft with an active reconnection diffusion region, a dip in the density was detected just preceding the time of the flow reversal. Aiming at this observation by Wind, the spatial profiles of the density *, the x component Vix of ion velocity and the out-of-plane component By of magnetic field along x are plotted for the case of di/L0 = 0.2. The curve * versus x exhibits a clear dip in the density corresponding to the reversal of ion velocity Vix and By bipolar signature associated with By quadrupolar structure around the X line. Images of the overall profiles behave like the detection by Wind. However, the observed density depletion is not centered at the time of the flow reversal, but just preceding this time. The case with an initial guide field By0=0.5B0 is explored. It is very interesting to note that the depletion region of density around the X-line has a shape distortion in comparison with the case of By0 = 0. The curve * vs x also exhibits a clear dip in the density around the X line. It is worthy of note that this density dip in the case with By0=0.5B0 is not in coincides with the reversal of ion velocity Vix but is located at left side of the Vix reversal point. Our argument here is that the observed density depletion would correspond to a dip in the vicinity of the X line rather than along the separatrices.

  15. FAST MAGNETIC RECONNECTION AND SPONTANEOUS STOCHASTICITY

    International Nuclear Information System (INIS)

    Magnetic field lines in astrophysical plasmas are expected to be frozen-in at scales larger than the ion gyroradius. The rapid reconnection of magnetic-flux structures with dimensions vastly larger than the gyroradius requires a breakdown in the standard Alfvén flux-freezing law. We attribute this breakdown to ubiquitous MHD plasma turbulence with power-law scaling ranges of velocity and magnetic energy spectra. Lagrangian particle trajectories in such environments become 'spontaneously stochastic', so that infinitely many magnetic field lines are advected to each point and must be averaged to obtain the resultant magnetic field. The relative distance between initial magnetic field lines which arrive at the same final point depends upon the properties of two-particle turbulent dispersion. We develop predictions based on the phenomenological Goldreich and Sridhar theory of strong MHD turbulence and on weak MHD turbulence theory. We recover the predictions of the Lazarian and Vishniac theory for the reconnection rate of large-scale magnetic structures. Lazarian and Vishniac also invoked 'spontaneous stochasticity', but of the field lines rather than of the Lagrangian trajectories. More recent theories of fast magnetic reconnection appeal to microscopic plasma processes that lead to additional terms in the generalized Ohm's law, such as the collisionless Hall term. We estimate quantitatively the effect of such processes on the inertial-range turbulence dynamics and findertial-range turbulence dynamics and find them to be negligible in most astrophysical environments. For example, the predictions of the Lazarian and Vishniac theory are unchanged in Hall MHD turbulence with an extended inertial range, whenever the ion skin depth ?i is much smaller than the turbulent integral length or injection-scale Li .

  16. Ion Temperature Anisotropy across Reconnection Exhaust Jets

    Science.gov (United States)

    Hietala, H.; Drake, J. F.; Phan, T. D.; Eastwood, J. P.; McFadden, J. P.

    2014-12-01

    Magnetic reconnection redistributes energy by releasing magnetic energy into plasma kinetic energy - high speed bulk flows, heating, and particle acceleration. In the magnetotail, most of the released energy appears to go into ion heating. However, previous observations and simulations show that this heating is anisotropic with the plasma temperature parallel to the magnetic field generally increasing more than the perpendicular temperature. Simulations and theory indicate that this temperature anisotropy can balance part of the magnetic tension force that accelerates the jet, and may even exceed it leading to firehose instability.Here we report the results of a new study of ion temperature anisotropy in reconnection exhausts generated by anti-parallel reconnection. We have examined ARTEMIS dual-spacecraft observations of long-duration magnetotail exhausts at lunar distances in conjunction with Particle-In-Cell simulations. In particular, we have studied spatial variations in the ion temperature anisotropy across the outflows far away (>100 ion inertial lengths) from the X-line. A consistent pattern is found in both the spacecraft data and the simulations: whilst the total temperature profile across the exhaust is flat, near the exhaust boundaries the parallel temperature dominates. A consequence of this is that firehose threshold is greatly exceeded in a significant fraction of the exhaust. In contrast, the perpendicular temperature dominates at the neutral plane (|BX| < 0.1 B0), indicating that, despite the turbulence and the large distance to the X-line, particles undergo Speiser-like motion (rather than isotropization by scattering). We also analyse the characteristics of the particle distributions leading to these anisotropies at different distances from the mid-plane.

  17. Magnetopause reconnection across wide local time

    Directory of Open Access Journals (Sweden)

    M. W. Dunlop

    2011-09-01

    Full Text Available During April to July 2007 a combination of 10 spacecraft provided simultaneous monitoring of the dayside magnetopause across a wide range of local times. The array of four Cluster spacecraft, separated at large distances (10 000 km, were traversing the dawn-side magnetopause at high and low latitudes; the five THEMIS spacecraft were often in a 4 + 1 grouped configuration, traversing the low latitude, dusk-side magnetosphere, and the Double star, TC-1 spacecraft was in an equatorial orbit between the local times of the THEMIS and Cluster orbits. We show here a number of near simultaneous conjunctions of all 10 spacecraft at the magnetopause. One conjunction identifies an extended magnetic reconnection X-line, tilted in the low latitude, sub-solar region, which exists together with active anti-parallel reconnection sites extending to locations on the dawn-side flank. Oppositely moving FTE's are observed on all spacecraft, consistent with the initially strong IMF By conditions and the comparative locations of the spacecraft both dusk-ward and dawn-ward of noon. Comparison with other conjunctions of magnetopause crossings, which are also distributed over wide local times, supports the result that reconnection activity may occur at many sites simultaneously across the sub-solar and flank magnetopause, but linked to the large scale (extended configuration of the merging line; broadly depending on IMF orientation. The occurrence of MR therefore inherently follows a "component" driven scenario irrespective of the guide field conditions. Some conjunctions allow the global magnetopause response to IMF changes to be observed and the distribution of spacecraft can directly confirm its shape, motion and deformation at local noon, dawn and dusk-side, simultaneously.

  18. Dynamics of thin current sheets associated with magnetotail reconnection

    Science.gov (United States)

    Nakamura, R.; Baumjohann, W.; Asano, Y.; Runov, A.; Balogh, A.; Owen, C. J.; Fazakerley, A. N.; Fujimoto, M.; Klecker, B.; RèMe, H.

    2006-11-01

    We have examined the detailed structure of thin current sheets and their evolution during a substorm interval on 24 August 2003, when Cluster experienced several rapid current sheet crossings within a couple of ion gyrotimes. These crossings took place during an interval of high-speed ion flows with BZ reversals and signatures of accelerated electrons, suggesting crossing of the reconnection region. On the basis of four-point observations with a tetrahedron scale of ˜200 km, we could quantify for the first time the thickness of the current sheet, which was comparable to or less than one ion inertia length, and resolve some internal structures such as multiple peaks within these thin current sheets. Different patterns in jX and in electron anisotropy were identified during the current sheet crossings: two crossings during tailward flow interval exhibited a quadrupole-type Hall current in the ion diffusion region without a guide field, while one crossing during earthward flow showed a current system as predicted in the ion diffusion region under the presence of a guide field. Multiple flux rope type signatures or transient skewed structures are observed in the thin current sheets, particularly in regions where signatures of electron acceleration are observed. These observations suggest that three-dimensional localized/transient structures could play an essential role in the dynamics of the thin current sheets, while a gross X-line picture can be established only in an average sense.

  19. Study of driven magnetic reconnection in a laboratory plasma

    International Nuclear Information System (INIS)

    The Magnetic Reconnection Experiment (MRX) has been constructed to investigate the fundamental physics of magnetic reconnection in a well controlled laboratory setting. This device creates an environment satisfying the criteria for a magnetohydrodynamic (MHD) plasma (S much-gt 1, ?i much-lt L). The boundary conditions can be controlled externally, and experiments with fully three-dimensional reconnection are now possible. In the initial experiments, the effects of the third vector component of reconnecting fields have been studied. Two distinctively different shapes of neutral sheet current layers, depending on the third component, are identified during driven magnetic reconnection. Without the third component (anti-parallel or null-helicity reconnection), a thin double-Y shaped diffusion region is identified. A neutral sheet current profile is measured accurately to be as narrow as order ion gyro-radius. In the presence of an appreciable third component (co-helicity reconnection), an O-shaped diffusion region appears and grows into a spheromak configuration

  20. Study of driven magnetic reconnection in a laboratory plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Masaaki; Ji, H.; Hsu, S.; Carter, T.; Kulsrud, R.; Bretz, N.; Jobes, F.; Ono, Yasushi; Perkins, F.

    1998-12-31

    The Magnetic Reconnection Experiment (MRX) has been constructed to investigate the fundamental physics of magnetic reconnection in a well controlled laboratory setting. This device creates an environment satisfying the criteria for a magnetohydrodynamic (MHD) plasma (S {much_gt} 1, {rho}{sub i} {much_lt} L). The boundary conditions can be controlled externally, and experiments with fully three-dimensional reconnection are now possible. In the initial experiments, the effects of the third vector component of reconnecting fields have been studied. Two distinctively different shapes of neutral sheet current layers, depending on the third component, are identified during driven magnetic reconnection. Without the third component (anti-parallel or null-helicity reconnection), a thin double-Y shaped diffusion region is identified. A neutral sheet current profile is measured accurately to be as narrow as order ion gyro-radius. In the presence of an appreciable third component (co-helicity reconnection), an O-shaped diffusion region appears and grows into a spheromak configuration.

  1. Inner Plasma Structure of the Low-Latitude Reconnection Layer

    Science.gov (United States)

    Zhang, Q.-H.; Dunlop, M. W.; Lockwood, M.; Lavraud, B.; Bogdanova, Y. V.; Hasegawa, H.; Yang, H. -G.; Liu, R. -Y.; Hu, H. -Q.; Zhang, B. -C.; Pu, Z. -Y.; Yang, Z. -W.; Wang, J.; Taylor, M. G. G. T.; Berchem, J.; Constantinescu, D.; Volwerk, M.; Frey, H.; Fazakerley, A. N.; Shen, C.; Shi, J. -K.; Sibeck, D.; Escoubet, P.; Wild, J. A.

    2012-01-01

    We report a clear transition through a reconnection layer at the low-latitude magnetopause which shows a complete traversal across all reconnected field lines during northwestward interplanetary magnetic field (IMF) conditions. The associated plasma populations confirm details of the electron and ion mixing and the time history and acceleration through the current layer. This case has low magnetic shear with a strong guide field and the reconnection layer contains a single density depletion layer on the magnetosheath side which we suggest results from nearly field-aligned magnetosheath flows. Within the reconnection boundary layer, there are two plasma boundaries, close to the inferred separatrices on the magnetosphere and magnetosheath sides (Ssp and Ssh) and two boundaries associated with the Alfvén waves (or Rotational Discontinuities, RDsp and RDsh). The data are consistent with these being launched from the reconnection site and the plasma distributions are well ordered and suggestive of the time elapsed since reconnection of the field lines observed. In each sub-layer between the boundaries the plasma distribution is different and is centered around the current sheet, responsible for magnetosheath acceleration. We show evidence for a velocity dispersion effect in the electron anisotropy that is consistent with the time elapsed since reconnection. In addition, new evidence is presented for the occurrence of partial reflection of magnetosheath electrons at the magnetopause current layer.

  2. Recent Results from Magnetic Reconnection Experiment (MRX) at PPPL

    Science.gov (United States)

    Yamada, M.; Ji, H.

    1999-05-01

    Magnetic reconnection plays a crucial role in determining the topology of magnetic fields in solar flares, magnetospheric substorms, and relaxation processes in laboratory plasmas. Many fundamental issues of magnetic reconnection are being investigated in the MRX (Magnetic Reconnection Experiment) device [1], which creates an environment satisfying the criteria for MHD plasmas with well controlled boundary conditions in a nearly two-dimensional geometry. Detailed structures and key plasma parameters of magnetic reconnection have been measured by extensive diagnostics. Major findings of recent MRX experiments are: (1) The observed reconnection rate can be explained by a generalized Sweet-Parker model [2], which incorporates compressibility, downstream pressure, and the effective resistivity; (2) The reconnection speed and the shape of the diffusion region depend on the merging angle of the reconnecting field; (3) Resistivity is greatly enhanced over the classical values in the collisionless regime; (4) The thickness of current sheet is proportional to ion gyro-radius and ion skin-depth. This result can be translated into a constant drift velocity over a wide range of plasma density, and is closely related to the observed resistivity enhancement. Application of these MRX results to solar flares will be discussed along with the detailed analysis and physics interpretations. [1] M. Yamada, H. Ji et al., Phys. Rev. Lett. 78, 3117(1997). [2] H. Ji, M. Yamada et al., Phys. Rev. Lett. 80, 3256 (1998).

  3. Reconnection driven by natural flows in the solar corona

    Science.gov (United States)

    Knoll, D.; Lapenta, G.

    2003-12-01

    Reconnection in the solar corona is believed to be important for a series of processes from flares and CMEs to coronal heating. However, theoretical understanding of the reconnection process still remains elusive. The reconnection rate predicted by the Sweet-Parker model is determined by resistivity and is very many orders of magnitude too small to explain the observations. A possible mechanism that can provide fast reconnection rate is driven reconnection, When flows drive field lines together, the rate of reconnection is determined by the driving mechanism and is independent of resistivity. In the present work we consider two possibilities: converging flows created by the long term evolution of coronal structures and converging flows due to flow instabilities. While the first mechanism has been invoked in the flux rope model of coronal mass ejections (CME) [1], the second mechanism has been proposed recently in studies of the evolution of helmet streamer configurations in presence of velocity shears [2]. Velocity shear induces the onset of the Kelvin Helmhotlz instability that leads to the compression of field lines in localized zones. Localized compression, in turn, leads to reconnection driven by the flow. The presence of the Kelvin-Helmholtz instability can be due to superAlfvenic field aligned flows or even to subAlfvenic flows across the field lines. [1] T.G. Forbes, J. Geophys. Res. 95, 11919 (1990). [2] G. Lapenta, D.A. Knoll, Solar Phys., 214, 107 (2003)

  4. Internal Shocks in the Magnetic Reconnection Jet in Solar Flares

    Science.gov (United States)

    Tanuma, S.; Shibata, K.

    2004-01-01

    The satellites such as Yohkoh and RHESSI observe the X- and gamma-ray emissions from the high energy particles in solar flare: for example at looptop and foot points of impulsive flare. In this paper we suggest that the multiple fast shock are created in the reconnection jet and they create the high energy particles by performing two-dimensional numerical resistive magnetohydrodynamic simulations. As the results we find that the current sheet becomes thin by tearing instability and it collapses to Sweet-Parker current sheet. The thin current sheet becomes unstable to the tearing instability again. The fast reconnection starts immediately after the plasmoid-ejection which are created by the secondary tearing instability. The internal shocks are created inside the reconnection jet due to the nonsteady plasmoid-ejection created by the secondary tearing instability. In the next phase the reconnection jet starts to oscillate which is due to Kelvin-Helmholtz instability or turbulence reconnection. The reconnection jet collides with two standing slow shocks so that the fast shocks are created as the oblique shocks. The fast shocks created by the magnetic reconnection is possible sites for the particle acceleration.

  5. Total magnetic reconnection during a tokamak major disruption

    International Nuclear Information System (INIS)

    Magnetic reconnection has long been considered to be the cause of sawtooth oscillations and major disruptions in tokamak experiments. Experimental confirmation of reconnection models has been hampered by the difficulty of direct measurement of reconnection, which would involve tracing field lines for many transits around the tokamak. Perhaps the most stringent test of reconnection in a tokamak involves measurement of the safety factor q. Reconnection arising from a single helical disturbance with mode numbers m and n should raise q to m/n everywhere inside of the original resonant surface. Total reconnection should also flatten the temperature and current density profiles inside of this surface. Disruptive instabilities have been studied in the Tokapole 2, a poloidal divertor tokamak. When Tokapole 2 is operated in the material limiter configuration, a major disruption results in current termination as in most tokamaks. However, when operated in the magnetic limiter configuration current termination is suppressed and major disruptions appear as giant sawtooth oscillations. The objective of this thesis is to determine if total reconnection is occurring during major disruptions. To accomplish this goal, the poloidal magnetic field has been directly measured in Tokapole 2 with internal magnetic coils. A full two-dimensional measurement over the central current channel has been done. From these measurements, the poloidal magnetic flux function is obtained and the magnetic surfaces are plotted. The flux-surface-averaged safety factor is obtained by integrating the local magnetic field line pitch over the experimentally obtained magnetic surface

  6. Observational Evidence for the Causes and Consequences of Chromospheric Reconnection

    Science.gov (United States)

    Yan, Limei; He, Jiansen; Xia, Lidong; Jiao, Fangran

    2015-05-01

    The chromospheric anemone jets with an inverse “Y” shape are ubiquitous, as revealed by the Solar Optical Telescope observations. These jets are considered to be consequences of chromospheric magnetic reconnections. Although these jets have been studied intensively, the dynamics and their driving causes remain unclear observationally. In this work, we report a case of a chromospheric jet showing complete observational evidence for the cause and consequence of chromospheric intermittent reconnection. The intermittent eruption of this jet shows two distinct quasi-periods, 50–60 s and 600–700 s. The short-period eruptions may be related to the plasmoid-induced reconnection, and the long-period ones may be interpreted as sequences of cycles of energy storage and release during magnetic reconnections. The observations also reveal Alfvénic waves with a mean period around 88 s and a maximum transverse displacement around 0.?26. The jet is hosted by a loop moving smoothly with a horizontal speed of ?0.4 km s?1. Our results provide observational evidence supporting the magnetic reconnection model of the formation of the chromospheric jets with related products, in which the loop advection drives intermittent magnetic reconnections, and the reconnection outflows carrying plasmoids collide further with the ambient field lines and finally excite waves and jets.

  7. SCALING LAW OF RELATIVISTIC SWEET-PARKER-TYPE MAGNETIC RECONNECTION

    International Nuclear Information System (INIS)

    Relativistic Sweet-Parker-type magnetic reconnection is investigated by relativistic resistive magnetohydrodynamic (RRMHD) simulations. As an initial setting, we assume anti-parallel magnetic fields and a spatially uniform resistivity. A perturbation imposed on the magnetic fields triggers magnetic reconnection around a current sheet, and the plasma inflows into the reconnection region. The inflows are then heated due to ohmic dissipation in the diffusion region and finally become relativistically hot outflows. The outflows are not accelerated to ultrarelativistic speeds (i.e., Lorentz factor ? 1), even when the magnetic energy dominates the thermal and rest mass energies in the inflow region. Most of the magnetic energy in the inflow region is converted into the thermal energy of the outflow during the reconnection process. The energy conversion from magnetic to thermal energy in the diffusion region results in an increase in the plasma inertia. This prevents the outflows from being accelerated to ultrarelativistic speeds. We find that the reconnection rate R obeys the scaling relation R?S-0.5, where S is the Lundquist number. This feature is the same as that of non-relativistic reconnection. Our results are consistent with the theoretical predictions of Lyubarsky for Sweet-Parker-type magnetic reconnection.

  8. ANALYTICAL DESCRIPTION OF STEADY MAGNETIC RECONNECTION IN HALL MAGNETOHYDRODYNAMICS

    International Nuclear Information System (INIS)

    Steady magnetic reconnection in the framework of incompressible Hall magnetohydrodynamics is considered. The principal role of the Hall effect in the formation of the structure of the reconnecting current sheet is emphasized. Analytical expressions for the velocity and the magnetic field in the sheet are derived, based on the approximation of a weak two dimensionality of the planar components of the solution. The analytical solution illustrates key features of Hall magnetic reconnection, including the reconnection rate enhancement and the sheet thinning due to the Hall effect, the presence of a quadrupolar axial (out-of-the-plane) magnetic field that controls the geometry of the reconnecting planar magnetic field, and the dynamical coupling of the axial and planar components of the solution, with the coupling strength that is proportional to the ion skin depth. Scalings for the sheet thickness, width, and the reconnection inflow and outflow speeds in terms of the electric resistivity and the axial magnetic field are determined. Implications of the results for fast magnetic reconnection in a weakly collisional plasma of the solar corona are discussed.

  9. Collisionless reconnection: magnetic field line interaction

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2012-10-01

    Full Text Available Magnetic field lines are quantum objects carrying one quantum ?0 = 2?h/e of magnetic flux and have finite radius ?m. Here we argue that they possess a very specific dynamical interaction. Parallel field lines reject each other. When confined to a certain area they form two-dimensional lattices of hexagonal structure. We estimate the filling factor of such an area. Anti-parallel field lines, on the other hand, attract each other. We identify the physical mechanism as being due to the action of the gauge potential field, which we determine quantum mechanically for two parallel and two anti-parallel field lines. The distortion of the quantum electrodynamic vacuum causes a cloud of virtual pairs. We calculate the virtual pair production rate from quantum electrodynamics and estimate the virtual pair cloud density, pair current and Lorentz force density acting on the field lines via the pair cloud. These properties of field line dynamics become important in collisionless reconnection, consistently explaining why and how reconnection can spontaneously set on in the field-free centre of a current sheet below the electron-inertial scale.

  10. Reconnection of vorticity lines and magnetic lines

    International Nuclear Information System (INIS)

    Magnetic field and fluid vorticity share many features. First, as divergence-free vector fields they are conveniently visualized in terms of their field lines, curves that are everywhere tangent to the field. The lines indicate direction and their density indicates field strength. The question arises of the extent to which the evolution of the fields can be treated in terms of the evolution of their field lines. The essential answer has been given by Newcomb [Ann. Phys. (NY) 3, 347 (1958)]. He derived the general conditions on the evolution of vector fields that permit the identification of field lines from one instant to the next. The equations of evolution of the vorticity field and the magnetic field fall within Newcomb's analysis. The dynamics of the flows differs between these two systems, so that geometrically similar phenomena happen in different ways in the two systems. This provides opportunity for comparison and contrast. In this paper the geometrical similarities are emphasized. Reconnection will be defined here as evolution in which it is not possible to preserve the global identification of some field lines. There is a close relation between reconnection and the topology of the vector field lines. Nontrivial topology occurs where the field has null points or there are field lines that are closed loops

  11. Coherent Structures and Reconnection in Collisionless Turbulence

    Science.gov (United States)

    Roytershteyn, Vadim; Karimabadi, Homa

    2014-10-01

    The sub-proton range of collisionless turbulence has attracted considerable attention in the last decades due to its role in the dissipation of cascading energy and increased availability of high-quality measurements capable of constraining the relevant models. Coherent structures, such as current sheets, have long been considered important sites for the dissipation of energy. However, a self-consistent treatment of their formation and of the relevant collisionless dissipation mechanisms has only become possible recently. Here we discuss several examples from recent kinetic simulations of turbulence focusing on the role of current sheets and magnetic reconnection. In the 3D fully kinetic simulations with initial conditions relevant to solar wind turbulence, current sheets form over a large range of scales and are shown to be sites of increased energy transfer between fluctuating fields and particles. Moreover, depending on the initial conditions and the type of driving, other types of coherent structures are possible, such as magnetic holes. 2D and 3D global hybrid simulations of the interaction between solar wind and planetary magnetospheres demonstrate inherent connection between collisionless shocks, turbulence, and magnetic reconnection. Specifically, the interaction of foreshock turbulence driven by reflected ions with the shock itself leads to a variety of fascinating phenomena in the magnetosheath, seeding both small-scale turbulence and large-scale global perturbations.

  12. A new fast reconnection model in a collisionless regime

    International Nuclear Information System (INIS)

    Based on the first principles [i.e., (i) by balancing the magnetic field advection with the term containing electron pressure tensor nongyrotropic components in the generalized Ohm's law; (ii) using the conservation of mass; and (iii) assuming that the weak magnetic field region width, where electron meandering motion supports electron pressure tensor off-diagonal (nongyrotropic) components, is of the order of electron Larmor radius] a simple model of magnetic reconnection in a collisionless regime is formulated. The model is general, resembling its collisional Sweet-Parker analog in that it is not specific to any initial configuration, e.g., Harris-type tearing unstable current sheet, X-point collapse or otherwise. In addition to its importance from the fundamental point of view, the collisionless reconnection model offers a much faster reconnection rate [Mc'less=(c/?pe)2/(rL,eL)] than Sweet-Parker's classical one (Msp=S-1/2). The width of the diffusion region (current sheet) in the collisionless regime is found to be ?c'less=(c/?pe)2/rL,e, which is independent of the global reconnection scale L and is only prescribed by microphysics (electron inertial length, c/?pe, and electron Larmor radius, rL,e). Amongst other issues, the fastness of the reconnection rate alleviates, e.g., the problem of interpretation of sg., the problem of interpretation of solar flares by means of reconnection, as for the typical solar coronal parameters the obtained collisionless reconnection time can be a few minutes, as opposed to Sweet-Parker's equivalent value of less than a day. The new theoretical reconnection rate is compared to the Magnetic Reconnection Experiment device experimental data by Yamada et al. [Phys. Plasmas 13, 052119 (2006)] and Ji et al. [Geophys. Res. Lett. 35, 13106 (2008)], and a good agreement is obtained.

  13. Ion acceleration during internal magnetic reconnection events in TST-2

    International Nuclear Information System (INIS)

    Characteristics of ion acceleration in the internal magnetic reconnection events (IRE) have been studied by means of a neutral particle energy analyzer (NPA) in Tokyo Spherical Tokamak (TST-2). The major and minor radii are 0.38 m and 0.25 m, respectively. The magnetic field strength is 0.3 T and the maximum plasma current is up to 140 kA. The electron and ion temperatures are 0.4 - 0.5 keV and 0.1 keV, respectively and the electron density is ? 1019 m-3. The NPA can be scanned toroidally from ? = 74 degrees (cw) to ? = 114 degrees (ccw), where ? = 90 degrees corresponds to the perpendicular sight-line. The direction of the plasma current is cw. The NPA signals are digitized at every 50 ?s. The NPA is calibrated in the energy range of 0.1 keV i) increases by 80 eV at IREs. The angle ? dependence of increment of Ti shows that ?Ti (? equals 74 degrees) is higher than that for ? = 114 degrees. This observation suggests that an ion is accelerated initially in the direction of magnetic field lines. The time evolution of the ion distribution function is simulated with a Fokker-Planck code taking into account the electric field effects. (authors)

  14. Macroscale particle simulation of externally driven magnetic reconnection

    International Nuclear Information System (INIS)

    Externally driven reconnection, assuming an anomalous particle collision model, is numerically studied by means of a 2.5D macroscale particle simulation code in which the field and particle motions are solved self-consistently. Explosive magnetic reconnection and energy conversion are observed as a result of slow shock formation. Electron and ion distribution functions exhibit large bulk acceleration and heating of the plasma. Simulation runs with different collision parameters suggest that the development of reconnection, particle acceleration and heating do not significantly depend on the parameters of the collision model. (author)

  15. Bursty magnetic reconnection under slow shock-generated whistler waves

    Science.gov (United States)

    Ma, Z. W.; Wu, L. N.; Li, L. J.; Wang, L. C.

    2014-09-01

    Nonlinear dynamics of magnetic reconnection with an external sub-Alfvenic parallel shear flow is investigated by using two-dimensional compressible Hall MHD simulation. Two pairs of slow shocks in the inflow region are generated by the sub-Alfvenic shear flow in the MHD simulation. With inclusion of Hall effects, it is found that whistler waves are generated in the downstream region of slow shocks. The whistler waves propagating toward the reconnection region drive a large bursty enhancement in magnetic reconnection during its decaying phase.

  16. Reconnection mechanism for coronal condensations in two-ribbon flares

    International Nuclear Information System (INIS)

    The series of self-consistent, two-dimensional, MHD calculations used to explore the reconnection dynamics implicit in the two-ribbon flare model of Kopp and Pneumann (1976) indicate that there exists, in addition to the standard, slow mode MHD shocks generated by reconnection, a standing, fast mode MHD shock. Due to thermal conduction, the slow shocks generate an evaporative upflow of chromospheric plasma into the reconnection region; an analysis of these effects of radiative and conductive cooling suggests that at least some of this evaporated plasma will undergo thermal condensation in passing through the fast shock. 16 references

  17. Effects of electron inertia in collisionless magnetic reconnection

    CERN Document Server

    Andrés, N; Dmitruk, P; Gómez, D

    2013-01-01

    We present a study of collisionless magnetic reconnection within the framework of full two-fluid MHD for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure and electron inertia. We performed 2.5D simulations using a pseudo-spectral code with no dissipative effects. We check that the ideal invariants of the problem are conserved down to round-off errors. Our results show that the change in the topology of the magnetic field lines is exclusively due to the presence of electron inertia. The computed reconnection rates remain a fair fraction of the Alfv\\'en velocity, which therefore qualifies as fast reconnection.

  18. On the relationship between quadrupolar magnetic field and collisionless reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Smets, R., E-mail: roch.smets@lpp.polytechnique.fr; Belmont, G. [LPP, University P. and M. Curie, CNRS, Ecole Polytechnique, F-91128 Palaiseau (France); Aunai, N. [IRAP, University Paul Sabatier, F-31028 Toulouse (France); Boniface, C. [CEA/DAM, DIF, F-91297 Arpajon (France); Fuchs, J. [LULI, Ecole Polytechnique, CNRS, CEA, University P. and M. Curie, F-91128 Palaiseau (France)

    2014-06-15

    Using hybrid simulations, we investigate the onset of fast reconnection between two cylindrical magnetic shells initially close to each other. This initial state mimics the plasma structure in High Energy Density Plasmas induced by a laser-target interaction and the associated self-generated magnetic field. We clearly observe that the classical quadrupolar structure of the out-of-plane magnetic field appears prior to the reconnection onset. Furthermore, a parametric study reveals that, with a non-coplanar initial magnetic topology, the reconnection onset is delayed and possibly suppressed. The relation between the out-of-plane magnetic field and the out-of-plane electric field is discussed.

  19. Hybrid studies of collisionless magnetic reconnection on tearing mode

    Energy Technology Data Exchange (ETDEWEB)

    Avendano, J D; Devia, A [Laboratorio de Fisica del Plasma, Departamento de Fisica y Quimica, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia)], E-mail: adevia@une.net.co

    2008-10-15

    In this work, we performed two-dimensional hybrid (kinetic particle ions, massless fluid electrons) studies of collisionless magnetic reconnection on tearing mode, which is characteristic of magnetosphere and high temperature fusion device plasmas. Results include the full electron pressure tensor (instead of a localized resistivity) in the generalized Ohm's law to initiate reconnection, and an initial perturbation to the Harris equilibrium is applied. It was found that the reconnection rate has similar results to those obtained on magnetohydrodynamic (MHD) models and kinetic models.

  20. New Measure of the Dissipation Region in Collisionless Magnetic Reconnection

    Science.gov (United States)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Kuznetsova, Masha

    2012-01-01

    A new measure to identify a small-scale dissipation region in collisionless magnetic reconnection is proposed. The energy transfer from the electromagnetic field to plasmas in the electron s rest frame is formulated as a Lorentz-invariant scalar quantity. The measure is tested by two-dimensional particle-in-cell simulations in typical configurations: symmetric and asymmetric reconnection, with and without the guide field. The innermost region surrounding the reconnection site is accurately located in all cases. We further discuss implications for nonideal MHD dissipation.

  1. Effects of electron inertia in collisionless magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428, Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univrsidad de Buenos Aires, Pabellón I, 1428, Buenos Aires (Argentina); Martin, Luis; Dmitruk, Pablo [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univrsidad de Buenos Aires, Pabellón I, 1428, Buenos Aires (Argentina)

    2014-07-15

    We present a study of collisionless magnetic reconnection within the framework of full two-fluid MHD for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure and electron inertia. We performed 2.5D simulations using a pseudo-spectral code with no dissipative effects. We check that the ideal invariants of the problem are conserved down to round-off errors. Our numerical results confirm that the change in the topology of the magnetic field lines is exclusively due to the presence of electron inertia. The computed reconnection rates remain a fair fraction of the Alfvén velocity, which therefore qualifies as fast reconnection.

  2. FLARE (Facility for Laboratory Reconnection Experiments): A Major Next-Step for Laboratory Studies of Magnetic Reconnection

    Science.gov (United States)

    Ji, Hantao; Bhattacharjee, A.; Prager, S.; Daughton, W.; Bale, Stuart D.; Carter, T.; Crocker, N.; Drake, J.; Egedal, J.; Sarff, J.; Fox, W.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Yamada, M.; Yoo, J.

    2015-04-01

    A new intermediate-scale plasma experiment, called the Facility for Laboratory Reconnection Experiments or FLARE (flare.pppl.gov), is under construction at Princeton as a joint project by five universities and two national labs to study magnetic reconnection in regimes directly relevant to heliophysical and astrophysical plasmas. The currently existing small-scale experiments have been focusing on the single X-line reconnection process in plasmas either with small effective sizes or at low Lundquist numbers, both of which are typically very large in natural plasmas. These new regimes involve multiple X-lines as guided by a reconnection "phase diagram", in which different coupling mechanisms from the global system scale to the local dissipation scale are classified into different reconnection phases [H. Ji & W. Daughton, Phys. Plasmas 18, 111207 (2011)]. The design of the FLARE device is based on the existing Magnetic Reconnection Experiment (MRX) (mrx.pppl.gov) and is to provide experimental access to the new phases involving multiple X-lines at large effective sizes and high Lundquist numbers, directly relevant to magnetospheric, solar wind, and solar coronal plasmas. After a brief summary of recent laboratory results on the topic of magnetic reconnection, the motivating major physics questions, the construction status, and the planned collaborative research especially with heliophysics communities will be discussed.

  3. Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma

    CERN Document Server

    Leake, James E; Linton, Mark G; Meier, Eric T

    2012-01-01

    We present results from the first self-consistent multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma. We simulate two dimensional magnetic reconnection in a Harris current sheet with a numerical model which includes ion-neutral scattering collisions, ionization, recombination, optically thin radiative loss, collisional heating, and thermal conduction. In the resulting tearing mode reconnection the neutral and ion fluids become decoupled upstream from the reconnection site, creating an excess of ions in the reconnection region and therefore an ionization imbalance. Ion recombination in the reconnection region, combined with Alfv\\'{e}nic outflows, quickly removes ions from the reconnection site, leading to a fast reconnection rate independent of Lundquist number. In addition to allowing fast reconnection, we find that these non-equilibria partial ionization effects lead to the onset of the nonlinear secondary tearing instability at lower values of the Lundquist nu...

  4. Forced Hall magnetic reconnection: Parametric variation of the 'Newton Challenge'

    International Nuclear Information System (INIS)

    A parametric study of forced magnetic reconnection using a 2D Hall magnetohydrodynamic (MHD) code based on the 'Newton Challenge' is presented. The 'Newton Challenge' defined a magnetic reconnection problem in which reconnection was initiated by a spatially and temporally dependent inflow velocity on the upstream boundary. In this study the magnitude and time dependence of the inflow velocity are varied, as well as the length of the system and the boundary conditions. The general conclusion is that reconnection occurs sooner and faster for stronger impulsive drives (e.g., larger inflow velocities and longer time scales). The results are fairly insensitive to system length. Finally, the Hall MHD results are compared to results from a particle-in-cell simulation study

  5. Integrating Kinetic Effects into Global Models for Reconnection

    Science.gov (United States)

    Antiochos, S. K.

    2012-01-01

    Magnetic reconnection is the most striking example of how the coupling between global and kinetic scales can lead to fast energy release. Explosive solar activity, such as coronal mass ejections and flares for example, is widely believed to be due to the release of magnetic energy stored on global scales by magnetic reconnection operating on kinetic scales. Understanding how processes couple across spatial scales is one of the most difficult challenges in all of physics, and is undoubtedly the main obstacle to developing predictive models for the Sun's activity. Consequently, the NASA Living With a Star Program selected a Focused Science Team to attack the problem of cross-scale coupling in reconnection. In this talk I will present some of the results of the Team and review our latest theories and methods for modeling the global-local coupling in solar reconnection.

  6. A Reconnecting Current Sheet Imaged in A Solar Flare

    CERN Document Server

    Liu, Rui; Wang, Tongjiang; Stenborg, Guillermo; Liu, Chang; Wang, Haimin

    2010-01-01

    Magnetic reconnection changes the magnetic field topology and powers explosive events in astrophysical, space and laboratory plasmas. For flares and coronal mass ejections (CMEs) in the solar atmosphere, the standard model predicts the presence of a reconnecting current sheet, which has been the subject of considerable theoretical and numerical modeling over the last fifty years, yet direct, unambiguous observational verification has been absent. In this Letter we show a bright sheet structure of global length (>0.25 Rsun) and macroscopic width ((5 - 10)x10^3 km) distinctly above the cusp-shaped flaring loop, imaged during the flare rising phase in EUV. The sheet formed due to the stretch of a transequatorial loop system, and was accompanied by various reconnection signatures that have been dispersed in the literature. This unique event provides a comprehensive view of the reconnection geometry and dynamics in the solar corona.

  7. A RECONNECTING CURRENT SHEET IMAGED IN A SOLAR FLARE

    International Nuclear Information System (INIS)

    Magnetic reconnection changes the magnetic field topology and powers explosive events in astrophysical, space, and laboratory plasmas. For flares and coronal mass ejections (CMEs) in the solar atmosphere, the standard model predicts the presence of a reconnecting current sheet, which has been the subject of considerable theoretical and numerical modeling over the last 50 years, yet direct, unambiguous observational verification has been absent. In this Letter, we show a bright sheet structure of global length (>0.25 R sun) and macroscopic width ((5-10)x103 km) distinctly above the cusp-shaped flaring loop, imaged during the flare rising phase in EUV. The sheet formed due to the stretch of a transequatorial loop system and was accompanied by various reconnection signatures. This unique event provides a comprehensive view of the reconnection geometry and dynamics in the solar corona.

  8. Collisionless magnetic reconnection in the presence of a guide field

    International Nuclear Information System (INIS)

    The results of kinetic simulations of magnetic reconnection in Harris current sheets are analyzed. A range of guide fields is considered to study reconnection in plasmas characterized by different ? values, ?>me/mi. Both an implicit particle-in-cell (PIC) simulation method and a parallel explicit PIC code are used. Simulations with mass ratios up to the physical value are performed. The simulations show that the reconnection rate decreases with the guide field and depends weakly on the mass ratio. The off-diagonal components of the electron pressure tensor break the frozen-in condition, even in low ? plasmas. In high ? plasmas, evidence is presented that whistler waves play a key role in the fast reconnection physics, while in low ? plasmas the kinetic Alfven waves are important. The in-plane and the out-of-plane ion and electron motion are also considered, showing that they are influenced by the mass ratio and the plasma ?

  9. MESSENGER Observations of Magnetic Reconnection in Mercury’s Magnetosphere.

    Czech Academy of Sciences Publication Activity Database

    Slavin, J.A.; Acuna, M. H.; Anderson, B.J.; Baker, D. N.; Benna, M.; Boardsen, S.A.; Gloeckler, G.; Gold, R.E.; Ho, G.C.; Korth, H.; Krimigis, S.M.; McNutt, Jr., R.L.; Raines, J.M.; Sarantos, M.; Schriver, D.; Solomon, S.C.; Trávní?ek, Pavel M.; Zurbuchen, T.H.

    2009-01-01

    Ro?. 324, ?. 5927 (2009), s. 606-610. ISSN 0036-8075 Institutional research plan: CEZ:AV0Z10030501 Keywords : magnetosphere * Mercury * magnetic reconnection Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 29.747, year: 2009

  10. Magnetopause reconnection and the role of the magnetosphere

    Science.gov (United States)

    Walsh, Brian; Sibeck, David; Phan, Tai; Souza, Vitor; Bonnell, John

    2015-04-01

    The Earth's dayside magnetopause provides a platform to study magnetic reconnection over a wide range of parameter space. The plasma and magnetic field on both sides of the magnetopause boundary can change significantly. The resulting boundary is the site of asymmetric reconnection spanning a host of parameters and with a range of effects on energy input into the magnetosphere. We present recent spacecraft observations from the THEMIS mission studying the impact of changes on the magnetosphere side of the boundary. This includes changes in plasma density by up to three orders of magnitude (0.1 to 100cm^-3). We find the reconnection structure agrees with asymmetric reconnection theory, however the local parameters in the magnetosheath do not adjust sufficiently to accommodate changes within the magnetoshere.

  11. Laboratory observation of localized onset of magnetic reconnection.

    Science.gov (United States)

    Katz, Noam; Egedal, Jan; Fox, Will; Le, Ari; Bonde, Jeff; Vrublevskis, Arturs

    2010-06-25

    Magnetic reconnection is a fundamental process in plasmas that results in the often explosive release of stored magnetic energy, but the trigger for its onset is not well understood. We explore this trigger for fast reconnection in toroidal experiments using a magnetic x-type geometry in the strong guide-field regime. We find that the onset occurs asymmetrically: the reconnection begins on one side of the torus and propagates around approximately at the Alfvén speed. The fast reconnection occurs only in the presence of a global plasma mode, which breaks the axisymmetry and enables the current at the x line to decrease sharply. A simple semiempirical model is used to describe the onset's growth rate. PMID:20867390

  12. Observations of slow electron holes at a magnetic reconnection site.

    Science.gov (United States)

    Khotyaintsev, Yu V; Vaivads, A; André, M; Fujimoto, M; Retinò, A; Owen, C J

    2010-10-15

    We report in situ observations of high-frequency electrostatic waves in the vicinity of a reconnection site in the Earth's magnetotail. Two different types of waves are observed inside an ion-scale magnetic flux rope embedded in a reconnecting current sheet. Electron holes (weak double layers) produced by the Buneman instability are observed in the density minimum in the center of the flux rope. Higher frequency broadband electrostatic waves with frequencies extending up to f(pe) are driven by the electron beam and are observed in the denser part of the rope. Our observations demonstrate multiscale coupling during the reconnection: Electron-scale physics is induced by the dynamics of an ion-scale flux rope embedded in a yet larger-scale magnetic reconnection process. PMID:21230981

  13. Energy of Alfven waves generated during magnetic reconnection

    CERN Document Server

    Wang, L C; Ma, Z W; Zhang, X; Lee, L C

    2015-01-01

    A new method for the determination of the Alfven wave energy generated during magnetic reconnection is introduced and used to analyze the results from two-dimensional MHD simulations. It is found that the regions with strong Alfven wave perturbations almost coincide with that where both magnetic-field lines and flow-stream lines are bent, suggesting that this method is reliable for identifying Alfven waves. The magnetic energy during magnetic reconnection is mainly transformed into the thermal energy. The conversion rate to Alfven wave energy from the magnetic energy is strongly correlated to the magnetic reconnection rate. The maximum conversion rate at the time with the peak reconnection rate is found to be only about 4% for the cases with the plasma beta=0.01,0.1, and 1.0.

  14. A Reconnecting Current Sheet Imaged in A Solar Flare

    OpenAIRE

    Liu, Rui; Lee, Jeongwoo; Wang, Tongjiang; Stenborg, Guillermo; Liu, Chang; Wang, Haimin

    2010-01-01

    Magnetic reconnection changes the magnetic field topology and powers explosive events in astrophysical, space and laboratory plasmas. For flares and coronal mass ejections (CMEs) in the solar atmosphere, the standard model predicts the presence of a reconnecting current sheet, which has been the subject of considerable theoretical and numerical modeling over the last fifty years, yet direct, unambiguous observational verification has been absent. In this Letter we show a bri...

  15. Collisionless reconnection in an electron-positron plasma.

    Science.gov (United States)

    Bessho, N; Bhattacharjee, A

    2005-12-01

    Electromagnetic particle-in-cell simulations of fast collisionless reconnection in a two-dimensional electron-positron plasma (without an equilibrium guide field) are presented. A generalized Ohm's law in which the Hall current cancels out exactly is given. It is suggested that the key to fast reconnection in this plasma is the localization caused by the off-diagonal components of the pressure tensors, which produce an effect analogous to a spatially localized resistivity. PMID:16384388

  16. Reconnection in weakly stochastic B-fields in 2D

    OpenAIRE

    Kulpa-Dybel, K.; G. Kowal; Otmianowska-Mazur, K.; Lazarian, A.; E. Vishniac

    2009-01-01

    We study two dimensional turbulent magnetic reconnection in a compressible fluid in the gas pressure dominated limit. We use open boundary conditions and start from a Harris current sheet configuration with a uniform total pressure. A small perturbation to the vector potential initiates laminar reconnection at the Sweet-Parker rate, which is allowed to evolve for several dynamical times. Subsequently sub-Alfvenic turbulence is produced through random forcing at small wave nu...

  17. Three-dimensional magnetic reconnection through a moving magnetic null

    OpenAIRE

    Lukin, V. S.; Linton, M. G.

    2011-01-01

    A computational study of three-dimensional magnetic reconnection between two flux ropes through a moving reconnection site is presented. The configuration is considered in the context of two interacting spheromaks constrained by a perfectly conducting cylindrical boundary and oriented to form a single magnetic field null at its center. The initial magnetic field configuration is embedded into a uniform thermal plasma and is unstable to tilting. As the spheromaks tilt, their magnetic fi...

  18. Fast magnetic reconnection in the plasmoid-dominated regime

    OpenAIRE

    Uzdensky, DA; Loureiro, NF; Schekochihin, AA

    2010-01-01

    A conceptual model of resistive magnetic reconnection via a stochastic plasmoid chain is proposed. The global reconnection rate is shown to be independent of the Lundquist number. The distribution of fluxes in the plasmoids is shown to be an inverse-square law. It is argued that there is a finite probability of emergence of abnormally large plasmoids, which can disrupt the chain (and may be responsible for observable large abrupt events in solar flares and sawtooth crashes). A criterion for t...

  19. Electron acceleration and heating in collisionless magnetic reconnection

    OpenAIRE

    Ricci, Paolo; Lapenta, Giovanni; J. U. Brackbill

    2003-01-01

    We discuss electron acceleration and heating during collisionless magnetic reconnection by using the results of implicit kinetic simulations of Harris current sheets. We consider and compare electron dynamics in plasmas with different \\beta values and perform simulations up to the physical mass ratio. We analyze the typical trajectory of electrons passing through the reconnection region, we study the electron velocity, focusing on the out-of-plane velocity, and we discuss th...

  20. Onset of Fast Magnetic Reconnection in Partially Ionized Gases

    OpenAIRE

    Malyshkin, Leonid M.; Zweibel, Ellen G

    2011-01-01

    We consider quasi-stationary two-dimensional magnetic reconnection in a partially ionized incompressible plasma. We find that when the plasma is weakly ionized and the collisions between the ions and the neutral particles are significant, the transition to fast collisionless reconnection due to the Hall effect in the generalized Ohm's law is expected to occur at much lower values of the Lundquist number, as compared to a fully ionized plasma case. We estimate that these cond...

  1. Fluid and Magnetofluid Modeling of Relativistic Magnetic Reconnection

    OpenAIRE

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2011-01-01

    The fluid-scale evolution of relativistic magnetic reconnection is investigated by using two-fluid and magnetofluid simulation models. Relativistic two-fluid simulations demonstrate the meso-scale evolution beyond the kinetic scales, and exhibit quasi-steady Petschek-type reconnection. Resistive relativistic MHD simulations further show new shock structures in and around the downstream magnetic island (plasmoid). General discussions on these models are presented.

  2. The Orientation of the Reconnection X-line

    OpenAIRE

    Swisdak, M.; Drake, J. F.

    2007-01-01

    We propose a criterion for identifying the orientation of the X-line when two regions of plasma with arbitrary densities, temperatures, and magnetic fields undergo reconnection. The X-line points in the direction that maximizes the (suitably-defined) Alfv\\'en speed characterizing the reconnection outflow. For many situations a good approximation is that the X-line bisects the angle formed by the magnetic fields.

  3. A New Electric Field in Asymmetric Magnetic Reconnection

    OpenAIRE

    Malakit, Kittipat; Shay, Michael A.; Cassak, Paul A.; Ruffolo, David

    2013-01-01

    We present a theory and numerical evidence for the existence of a previously unexplored in-plane electric field in collisionless asymmetric magnetic reconnection. This electric field, dubbed the "Larmor electric field," is associated with finite Larmor radius effects and is distinct from the known Hall electric field. Potentially, it could be an important indicator for the upcoming Magnetospheric Multiscale (MMS) mission to locate reconnection sites as we expect it to appear...

  4. Magnetic Reconnection with Asymmetry in the Outflow Direction

    OpenAIRE

    Murphy, N. A.; Sovinec, C. R.; Cassak, P. A.

    2009-01-01

    Magnetic reconnection with asymmetry in the outflow direction occurs in the Earth's magnetotail, coronal mass ejections, flux cancellation events, astrophysical disks, spheromak merging experiments, and elsewhere in nature and the laboratory. A control volume analysis is performed for the case of steady antiparallel magnetic reconnection with asymmetric downstream pressure, which is used to derive scaling relations for the outflow velocity from each side of the current sheet...

  5. Conditions for fast magnetic reconnection in astrophysical plasmas

    OpenAIRE

    Hanasz, Micha?; Lesch, Harald

    2003-01-01

    We investigate favourable circumstances for fast magnetic reconnection in astrophysical plasmas based on recent results by Rogers et al. (2001). Given that a critical magnetic field structure with antiparallel field lines exists, our analysis demonstrates that a sufficient condition for fast reconnection is that the ratio of the thermal pressure to the magnetic field pressure $\\beta$ should be significantly larger than $ 2 m_e/m_p$ (twice the ratio of electron mass to proton...

  6. On the two-dimensional magnetic reconnection with nonuniform resistivity

    OpenAIRE

    Malyshkin, Leonid; Kulsrud, Russell M.

    2006-01-01

    In this paper two theoretical approaches for the calculation of the rate of quasi-stationary, two-dimensional magnetic reconnection with nonuniform anomalous resistivity are considered in the framework of incompressible magnetohydrodynamics (MHD). In the first, ``global'' equations approach the MHD equations are approximately solved for a whole reconnection layer, including the upstream and downstream regions and the layer center. In the second, ``local'' equations approach ...

  7. A Generalized Flux Function for Three-dimensional Magnetic Reconnection

    OpenAIRE

    Yeates, A. R.; Hornig, G.

    2011-01-01

    The definition and measurement of magnetic reconnection in three-dimensional magnetic fields with multiple reconnection sites is a challenging problem, particularly in fields lacking null points. We propose a generalization of the familiar two-dimensional concept of a magnetic flux function to the case of a three-dimensional field connecting two planar boundaries. In this initial analysis, we require the normal magnetic field to have the same distribution on both boundaries. Using hyperbolic ...

  8. Fast magnetic reconnection in three dimensional MHD simulations

    OpenAIRE

    Pang, Bijia; Pen, Ue-li; Vishniac, Ethan T.

    2010-01-01

    We present a constructive numerical example of fast magnetic reconnection in a three dimensional periodic box. Reconnection is initiated by a strong, localized perturbation to the field lines. The solution is intrinsically three dimensional, and its gross properties do not depend on the details of the simulations. $\\sim 50%$ of the magnetic energy is released in an event which lasts about one Alfven time, but only after a delay during which the field lines evolve into a crit...

  9. Relativistic Two-fluid Simulations of Guide Field Magnetic Reconnection

    OpenAIRE

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2009-01-01

    The nonlinear evolution of relativistic magnetic reconnection in sheared magnetic configuration (with a guide field) is investigated by using two-dimensional relativistic two-fluid simulations. Relativistic guide field reconnection features the charge separation and the guide field compression in and around the outflow channel. As the guide field increases, the composition of the outgoing energy changes from enthalpy-dominated to Poynting-dominated. The inertial effects of t...

  10. Fast and slow two-fluid magnetic reconnection

    OpenAIRE

    Malyshkin, Leonid M.

    2010-01-01

    We present a two-fluid magnetohydrodynamics (MHD) model of quasi-stationary, two-dimensional magnetic reconnection in an incompressible plasma composed of electrons and ions. We find two distinct regimes of slow and fast reconnection. The presence of these two regimes can provide a possible explanation for the initial slow build up and subsequent rapid release of magnetic energy frequently observed in cosmic and laboratory plasmas.

  11. Magnetic Reconnection in Space Plasmas : Cluster Spacecraft Observations

    OpenAIRE

    Retino?, Alessandro

    2007-01-01

    Magnetic reconnection is a universal process occurring at boundaries between magnetized plasmas, where changes in the topology of the magnetic field lead to the transport of charged particles across the boundaries and to the conversion of electromagnetic energy into kinetic and thermal energy of the particles. Reconnection occurs in laboratory plasmas, in solar system plasmas and it is considered to play a key role in many other space environments such as magnetized stars and accretion disks ...

  12. EPISODIC X-RAY EMISSION ACCOMPANYING THE ACTIVATION OF AN ERUPTIVE PROMINENCE: EVIDENCE OF EPISODIC MAGNETIC RECONNECTION

    International Nuclear Information System (INIS)

    We present an X-ray imaging and spectroscopic study of a partially occulted (N16W93) C7.7 flare on 2003 April 24 observed by Reuven Ramaty High Energy Solar Spectroscopy Imager that accompanied a prominence eruption observed by Transition Region and Coronal Explorer. (1) The activation and rise of the prominence occurs during the preheating phase of the flare. The initial X-ray emission appears as a single coronal source at one leg of the prominence and it then splits into a double source. Such a source splitting happens three times, each coinciding with an increased X-ray flux and plasma temperature, suggestive of fast reconnection in a localized current sheet and an enhanced energy-release rate. In the late stage of this phase, the prominence displays a helical structure. These observations are consistent with the tether-cutting and/or kink-instability model for triggering solar eruptions. (2) The eruption of the prominence takes place during the flare impulsive phase. Since then, there appear signatures predicted by the classical model of two-ribbon flares occurring in a vertical current sheet trailing an eruption. These signatures include an extreme-ultraviolet (EUV) cusp and current-sheet-like feature (or ridge) above it. There is also X-ray emission along the EUV ridge both below and above the cusp, which in both regions appears closer to the cusp at higher energies in the thermal regime (?47 cm-3), and a harder nonthermal spectrum (electron power-law index ? = 5.4 ± 0.4 vs. 8 ± 1) than the upper sources.

  13. Resistive instabilities and field line reconnection

    International Nuclear Information System (INIS)

    A review is given of the linear theory of reconnection for a plane current layer. The three basic modes are the Rippling Mode, the Gravitational Interchange Mode, and the Tearing Mode. A derivation is given of the magnetic field energy which provides the driving force for the tearing mode. The necessary concepts for the analysis of tearing modes in cylindrical geometry are introduced. The equations governing tearing mode evolution in a tokamak are expanded to lowest order in the inverse aspect ratio. The tearing mode in a toroidal device is closely related to the ideal magnetohydrodynamic kink mode, and this relationship is stressed in the derivations of the linear growth rates for modes with poloidal model number m > 2 and for the quite different m = 1 mode. The nonlinear theory of tearing mode development and the implications of this theory for the understanding of toroidal magnetic confinement devices is reviewed

  14. Resistive instabilities and field line reconnection

    Energy Technology Data Exchange (ETDEWEB)

    White, R.B.

    1980-05-01

    A review is given of the linear theory of reconnection for a plane current layer. The three basic modes are the Rippling Mode, the Gravitational Interchange Mode, and the Tearing Mode. A derivation is given of the magnetic field energy which provides the driving force for the tearing mode. The necessary concepts for the analysis of tearing modes in cylindrical geometry are introduced. The equations governing tearing mode evolution in a tokamak are expanded to lowest order in the inverse aspect ratio. The tearing mode in a toroidal device is closely related to the ideal magnetohydrodynamic kink mode, and this relationship is stressed in the derivations of the linear growth rates for modes with poloidal model number m > 2 and for the quite different m = 1 mode. The nonlinear theory of tearing mode development and the implications of this theory for the understanding of toroidal magnetic confinement devices is reviewed.

  15. Fast Magnetic Reconnection and Spontaneous Stochasticity

    CERN Document Server

    Eyink, Gregory L; Vishniac, Ethan T

    2011-01-01

    Fast turbulent reconnection based on the MHD description assumes, implicitly, a breakdown of flux-freezing. We suggest that this violation is due to the "spontaneous stochasticity" of Lagrangian particle trajectories, a recently discovered phenomenon which corresponds to non-unique and random trajectories for the same starting point. This phenomenon requires a fundamental reformulation of flux-freezing, which reduces to the standard Alfv\\'en relation for laminar flow but which becomes intrinsically stochastic in a turbulent MHD plasma with an extended inertial-range. Infinitely-many magnetic field-lines are stochastically advected to each point and must be averaged to obtain the resultant magnetic field. The relative distance between initial magnetic field lines which arrive to the same final point depends upon the properties of two-particle turbulent dispersion. We develop predictions for such dispersion based on the Goldreich & Sridhar theory of strong MHD turbulence and on weak MHD turbulence theory. O...

  16. Reconnection of vortex filaments and Kolmogorov spectrum

    CERN Document Server

    Nemirovskii, Sergey K

    2014-01-01

    The energy spectrum of the 3D velocity field, induced by collapsing vortex filaments is studied. One of the aims of this work is to clarify the appearance of the Kolmogorov type energy spectrum $E(k)\\varpropto k^{-5/3}$, observed in many numerical works on discrete vortex tubes (quantized vortex filaments in quantum fluids). Usually, explaining classical turbulent properties of quantum turbulence, the model of vortex bundles, is used. This model is necessary to mimic the vortex stretching, which is responsible for the energy transfer in classical turbulence. In our consideration we do not appeal to the possible "bundle arrangement" but explore alternative idea that the turbulent spectra appear from singular solution, which describe the collapsing line at moments of reconnection. One more aim is related to an important and intensively discussed topic - a role of hydrodynamic collapse in the formation of turbulent spectra. We demonstrated that the specific vortex filament configuration generated the spectrum $E...

  17. Extended Magnetic Reconnection across the Dayside Magnetopause

    International Nuclear Information System (INIS)

    The extent of where magnetic reconnection (MR), the dominant process responsible for energy and plasma transport into the magnetosphere, operates across Earth's dayside magnetopause has previously been only indirectly shown by observations. We report the first direct evidence of X-line structure resulting from the operation of MR at each of two widely separated locations along the tilted, subsolar line of maximum current on Earth's magnetopause, confirming the operation of MR at two or more sites across the extended region where MR is expected to occur. The evidence results from in-situ observations of the associated ion and electron plasma distributions, present within each magnetic X-line structure, taken by two spacecraft passing through the active MR regions simultaneously.

  18. Plasma Astrophysics, Part II Reconnection and Flares

    CERN Document Server

    Somov, Boris V

    2013-01-01

    This two-part book is devoted to classic fundamentals and current practices and perspectives of modern plasma astrophysics. This second part discusses the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas in the solar system, single and double stars, relativistic objects, accretion disks and their coronae. More than 25% of the text is updated from the first edition, including the additions of new figures, equations and entire sections on topics such as topological triggers for solar flares and the magnetospheric physics problem. This book is aimed at professional researchers in astrophysics, but it will also be useful to graduate students in space sciences, geophysics, applied physics and mathematics, especially those seeking a unified view of plasma physics and fluid mechanics.

  19. Plasma Astrophysics, part II Reconnection and Flares

    CERN Document Server

    Somov, Boris V

    2007-01-01

    This well-illustrated monograph is devoted to classic fundamentals, current practice, and perspectives of modern plasma astrophysics. The first part is unique in covering all the basic principles and practical tools required for understanding and working in plasma astrophysics. The second part presents the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas within the solar system; single and double stars, relativistic objects, accretion disks, and their coronae are also covered. This book is designed mainly for professional researchers in astrophysics. However, it will also be interesting and useful to graduate students in space sciences, geophysics, as well as advanced students in applied physics and mathematics seeking a unified view of plasma physics and fluid mechanics.

  20. Extended Magnetic Reconnection Across the Dayside Magnetopause

    Science.gov (United States)

    Dunlop, M. W.; Zhang, Q.-H.; Bogdanova, Y. V.; Lockwood, M.; Pu, Z.; Hasegawa, H.; Wang, J.; Taylor, M. G. G. T.; Berchem, J.; Lavraund, B.; Eastwood, J.; Volwerk, M.; Shen, C.; Shi, J.-K.; Constantinescu, D.; Frey, H.; Fazakerley, A. N.; Sibeck, D.; Escoubet, P.; Wild, J. A.; Liu, Z.-X.

    2011-01-01

    The extent of where magnetic reconnection (MR), the dominant process responsible for energy and plasma transport into the magnetosphere, operates across Earth's dayside magnetopause has previously been only indirectly shown by observations. We report the first direct evidence of X-line structure resulting from the operation of MR at each of two widely separated locations along the tilted, subsolar line of maximum current on Earth's magnetopause, confirming the operation of MR at two or more sites across the extended region where MR is expected to occur. The evidence results from in-situ observations of the associated ion and electron plasma distributions, present within each magnetic X-line structure, taken by two spacecraft passing through the active MR regions simultaneously.

  1. How to Cope with Sheltering in Place

    Science.gov (United States)

    ... affected by what they hear and see on television. ? Look to credible sources for information about the ... a shelter in place situation. You can: ? Take advantage of current technology such as Skype or FaceTime ...

  2. Time-dependent localized reconnection of skewed magnetic fields

    International Nuclear Information System (INIS)

    The authors describe and analyze a model for time-varying, localized reconnection in a current sheet with skewed magnetic field orientations on opposite sides. As in Petschek's description, disruption is initiated in a localized part of the current sheet known as the diffusion region, and the disturbances are subsequently propagated into the system at large through magnetohydrodynamic (MHD) waves. The MHD waves therefore play the dominant role in energy conversion, and collectively they form an outflow for plasma streaming toward the current sheet and a field reversal region joining magnetic field lines from opposite sides. They restrict the analysis to an incompressible plasma, in which case the Alfven wave and the slow shock merge to form shocks bounding the field reversal or outflow region, and the case of weak reconnection, which implies that the reconnection electric field is much smaller than the product of the characteristic values of the external field strength and Alfven speed. Reconnection also acts as a source of surface waves, and their analysis determines the behavior of the perpendicular field and flow components and the shape of the shocks. Lastly, the field reversal region can be considered as a thin boundary layer in the treatment, and the external disturbances can therefore be solved in a way similar to the flow around a thin aerofoil. The model presented here can be applied to the Earth's magnetopause, where reconnection is considered to be the domi reconnection is considered to be the dominant process coupling the solar wind and the magnetosphere

  3. Origins of effective resistivity in collisionless magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nagendra [Electrical and Computer Engineering, University of Alabama, Huntsville, Alabama 35899 (United States)

    2014-07-15

    The mechanisms that provide effective resistivity for supporting collisonless magnetic reconnection have remained unsettled despite numerous studies. Some of these studies demonstrated that the electron pressure nongyrotropy generates the resistivity (?{sub npg}) in the electron diffusion region (EDR). We derive an analytical relation for the effective resistivity (?{sub kin}) by momentum balance in a control volume in the EDR. Both ?{sub npg} and ?{sub kin} mutually compare well and they also compare well with the resistivity required to support reconnection electric field E{sub rec} in multi-dimensional particle-in-cell simulations as well as in satellite observations when reconnection occurs in an EDR. But they are about an order of magnitude or so smaller than that required when the reconnection occurred in a much wider reconnecting current sheet (RCS) of half width (w) of the order of the ion skin depth (d{sub i}), observed in the Earth magnetosphere. The chaos-induced resistivity reported in the literature is found to be even more deficient. We find that for reconnection in RCS with w???d{sub i}, anomalous diffusion, such as the universal Bhom diffusion and/or that arising from kinetic Alfven waves, could fairly well account for the required resistivity.

  4. Plasmoid instability in high-Lundquist-number magnetic reconnection

    International Nuclear Information System (INIS)

    Our understanding of magnetic reconnection in resistive magnetohydrodynamics has gone through a fundamental change in recent years. The conventional wisdom is that magnetic reconnection mediated by resistivity is slow in laminar high Lundquist (S) plasmas, constrained by the scaling of the reconnection rate predicted by Sweet-Parker theory. However, recent studies have shown that when S exceeds a critical value ?104, the Sweet-Parker current sheet is unstable to a super-Alfvénic plasmoid instability, with a linear growth rate that scales as S1/4. In the fully developed statistical steady state of two-dimensional resistive magnetohydrodynamic simulations, the normalized average reconnection rate is approximately 0.01, nearly independent of S, and the distribution function f(?) of plasmoid magnetic flux ? follows a power law f(?)???1. When Hall effects are included, the plasmoid instability may trigger onset of Hall reconnection even when the conventional criterion for onset is not satisfied. The rich variety of possible reconnection dynamics is organized in the framework of a phase diagram

  5. A generalized flux function for three-dimensional magnetic reconnection

    International Nuclear Information System (INIS)

    The definition and measurement of magnetic reconnection in three-dimensional magnetic fields with multiple reconnection sites is a challenging problem, particularly in fields lacking null points. We propose a generalization of the familiar two-dimensional concept of a magnetic flux function to the case of a three-dimensional field connecting two planar boundaries. In this initial analysis, we require the normal magnetic field to have the same distribution on both boundaries. Using hyperbolic fixed points of the field line mapping, and their global stable and unstable manifolds, we define a unique flux partition of the magnetic field. This partition is more complicated than the corresponding (well-known) construction in a two-dimensional field, owing to the possibility of heteroclinic points and chaotic magnetic regions. Nevertheless, we show how the partition reconnection rate is readily measured with the generalized flux function. We relate our partition reconnection rate to the common definition of three-dimensional reconnection in terms of integrated parallel electric field. An analytical example demonstrates the theory and shows how the flux partition responds to an isolated reconnection event.

  6. TWO-FLUID MAGNETOHYDRODYNAMIC SIMULATIONS OF RELATIVISTIC MAGNETIC RECONNECTION

    International Nuclear Information System (INIS)

    We investigate the large-scale evolution of a relativistic magnetic reconnection in an electron-positron pair plasma by a relativistic two-fluid magnetohydrodynamic (MHD) code. We introduce an interspecies friction force as an effective resistivity to dissipate magnetic fields. We demonstrate that magnetic reconnection successfully occurs in our two-fluid system, and that it involves Petschek-type bifurcated current layers in a later stage. We further observe a quasi-steady evolution thanks to an open boundary condition, and find that the Petschek-type structure is stable over the long time period. Simulation results and theoretical analyses exhibit that the Petschek outflow channel becomes narrower when the reconnection inflow contains more magnetic energy, as previously claimed. Meanwhile, we find that the reconnection rate goes up to ?1 in extreme cases, which is faster than previously thought. The role of the resistivity, implications for reconnection models in the magnetically dominated limit, and relevance to kinetic reconnection works are discussed.

  7. Current disruption and its spreading in collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    Recent magnetic reconnection experiments (MRX) [Dorfman et al., Geophys. Res. Lett. 40, 233 (2013)] have disclosed current disruption in the absence of an externally imposed guide field. During current disruption in MRX, both the current density and the total observed out-of-reconnection-plane current drop simultaneous with a rise in out-of-reconnection-plane electric field. Here, we show that current disruption is an intrinsic property of the dynamic formation of an X-point configuration of magnetic field in magnetic reconnection, independent of the model used for plasma description and of the dimensionality (2D or 3D) of reconnection. An analytic expression for the current drop is derived from Ampere's Law. Its predictions are verified by 2D and 3D electron-magnetohydrodynamic (EMHD) simulations. Three dimensional EMHD simulations show that the current disruption due to localized magnetic reconnection spreads along the direction of the electron drift velocity with a speed which depends on the wave number of the perturbation. The implications of these results for MRX are discussed

  8. Self-reinforcing process of the reconnection electric field in the electron diffusion region and onset of collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    The onset of collisionless magnetic reconnection is considered to be controlled by electron dynamics in the electron diffusion region, where the reconnection electric field is balanced mainly by the off-diagonal electron pressure tensor term. Two-dimensional particle-in-cell simulations are employed in this paper to investigate the self-reinforcing process of the reconnection electric field in the electron diffusion region, which is found to grow exponentially. A theoretical model is proposed to demonstrate such a process in the electron diffusion region. In addition the reconnection electric field in the pileup region, which is balanced mainly by the electromotive force term, is also found to grow exponentially and its growth rate is twice that in the electron diffusion region. (paper)

  9. Observations of high-speed plasma flow near the earth's magnetopause: evidence for reconnection

    International Nuclear Information System (INIS)

    In an attempt to confirm the evidence for reconnection reported by Paschmann et al. (1979), we have examined three-dimensional plasma velocity distributions sampled near the magnetopause by using the LEPEDEA plasma instrument. During the magnetopause crossing of September 8, 1978, we observe high-speed flow in the magnetospheric boundary layer that is suggestive of the accelerated flow predicted by reconnection models. However, our low-energy plasma observations reveal an apparent inconsistency with the tangential stress balance condition, and there is no clear evidence available from the plasma measurements for a local, normal component v/sub n/. Simultaneous measurements of > or =45-keV energetic electrons show pancake-shaped pitch angle distributions and intensity variations that suggest a closed field line regime, whereas the high-speed plasma flow is predicted to occur on open field lines for the reconnection hypothesis. Allowing for finite gyroradius effects, the energetic particles show no signature of traversing from a closed to an open field line regime upon entering the boundary layer which contains high-speed ion flow. Since the energetic particle angular distributions indicate that the high-speed plasma flow occurs partly or entirely on closed field lines, we suggest that the simplest hypothesis is to place the entire boundary layer observed during this crossing on closed field lines. We find that several detailed features of the available measurements canfeatures of the available measurements can be explained readily in this way. Our ISEE observations appear to be most consistent with inpulsive injection of magnetosheath plasma across the magnetopause in a process that involves both MHD and plasma kinetic instabilities

  10. Stress at Work Place

    Directory of Open Access Journals (Sweden)

    Mohammad A. Shahrour

    2010-06-01

    Full Text Available One of hardest forms of stresses to avoid is that work place or job stress Job stress refers to stress experienced by an individual at or because of issues at their work place The term work related stress has many meanings and it causes different levels of anxiety. Not all challenges at work can be called stress as some of these challenges drive employees upward, and empower them to learn new skills or push them to work harder to achieve a certain goal. So, this type of challenges cannot be considered as true stress True job stress is a condition that not only destroys employee desire to work, but also his or her energy, getting them to suffer both emotionally and physically. Warning signs of stress at work when people feel overwhelmed they feel lacking confidence, become irritated or withdrawn, less productive, less effective and their work less rewarding if these warning passed unnoticed then signs and symptoms of stress will appear. Signs and Symptoms of Excessive 4. Personal conflicts with supervisors Workplace Stress or other employees 5. Feeling insecure at work ( 1. Feeling anxious, agitated, constantly threatened with criticism depressed or apathetic or job loss 2. Loss of interest at work 6. Discrimination ( race, sex or age 3. Difficulty in attention and 7. Discouragement (to feel concentration incompetent and worthless 4. Insomnia and sleep problems 8. Sexual harassment 5. Feeling fatigue 9. Lack of flexibility in work hours 6. Muscle tension and headaches 10. Poor work environment 7. Stomach problems or different 11. Developments in technology body aches 8. Social withdrawal How to Deal with Work Place Stress 9. Loss of sex drive 10. Using alcohol or drugs to cope Fortunately, there is a lot that you can do to manage and reduce stress at work. Different Causes of Job Stress General Guidelines: 1. Poor work conditions and having no say over such conditions A. Taking responsibility for 2. Unreasonable demands from improving your physical and emotional employers ( to do perfect job all the well being. time B. Avoiding pitfalls: by identifying 3. Long hours of stressful work knee jerks habits and negative attitudes

  11. CAN THE SOLAR WIND BE DRIVEN BY MAGNETIC RECONNECTION IN THE SUN'S MAGNETIC CARPET?

    International Nuclear Information System (INIS)

    The physical processes that heat the solar corona and accelerate the solar wind remain unknown after many years of study. Some have suggested that the wind is driven by waves and turbulence in open magnetic flux tubes, and others have suggested that plasma is injected into the open tubes by magnetic reconnection with closed loops. In order to test the latter idea, we developed Monte Carlo simulations of the photospheric 'magnetic carpet' and extrapolated the time-varying coronal field. These models were constructed for a range of different magnetic flux imbalance ratios. Completely balanced models represent quiet regions on the Sun and source regions of slow solar wind streams. Highly imbalanced models represent coronal holes and source regions of fast wind streams. The models agree with observed emergence rates, surface flux densities, and number distributions of magnetic elements. Despite having no imposed supergranular motions in the models, a realistic network of magnetic 'funnels' appeared spontaneously. We computed the rate at which closed field lines open up (i.e., recycling times for open flux), and we estimated the energy flux released in reconnection events involving the opening up of closed flux tubes. For quiet regions and mixed-polarity coronal holes, these energy fluxes were found to be much lower than that which is required to accelerate the solar wind. For the most imbalanced coronal holes, the energy fluxes may be large enough to power the solar wind,y be large enough to power the solar wind, but the recycling times are far longer than the time it takes the solar wind to accelerate into the low corona. Thus, it is unlikely that either the slow or fast solar wind is driven by reconnection and loop-opening processes in the magnetic carpet.

  12. Spontaneous three-dimensional magnetic reconnection in merging toroidal plasma experiment

    International Nuclear Information System (INIS)

    We investigated a new phenomenon of three-dimensional (3D) magnetic reconnection in TS-4 torus plasma merging experiments by directly measuring the 3D structures of the current sheet. Removal of all toroidal asymmetry of the device reveals that a strong external drive of reconnection inflow increases the toroidal asymmetry of the current sheet only during the reconnection. This spontaneous 3D deformation of the current sheet increases the reconnection outflow as well as the reconnection electric field, probably because local compression of the current sheet to a thickness less than the ion gyroradius triggers its strong dissipation of the current sheet, responsible for the onset of 3D reconnection. These mechanisms indicate that the 3D reconnection is a newly observed spontaneous process of fast reconnection.

  13. Signatures of Secondary Collisionless Magnetic Reconnection Driven by Kink Instability of a Flux Rope

    CERN Document Server

    Markidis, S; Delzanno, G L; Henri, P; Goldman, M V; Newman, D L; Intrator, T; Laure, E

    2014-01-01

    The kinetic features of secondary magnetic reconnection in a single flux rope undergoing internal kink instability are studied by means of three-dimensional Particle-in-Cell simulations. Several signatures of secondary magnetic reconnection are identified in the plane perpendicular to the flux rope: a quadrupolar electron and ion density structure and a bipolar Hall magnetic field develop in proximity of the reconnection region. The most intense electric fields form perpendicularly to the local magnetic field, and a reconnection electric field is identified in the plane perpendicular to the flux rope. An electron current develops along the reconnection line in the opposite direction of the electron current supporting the flux rope magnetic field structure. Along the reconnection line, several bipolar structures of the electric field parallel to the magnetic field occur making the magnetic reconnection region turbulent. The reported signatures of secondary magnetic reconnection can help to localize magnetic re...

  14. Geotail observation of the dissipation region in magnetotail reconnection

    Science.gov (United States)

    Zenitani, S.; Shinohara, I.; Nagai, T.

    2012-12-01

    Magnetic reconnection is an important fundamental process in and around the Earth's magnetosphere. Since the reconnection process is controlled by a compact region surrounding the X-point, it is important to understand the structure and local physics there. Recent large-scale kinetic simulations have revealed a complex structure near the X-point such as a central dissipation region, quadrupole Hall fields, and bi-directional electron jets. In this work, we verify the above picture in the Earth's magnetotail. We examine Geotail data of the 2003-05-15 reconnection event in the pre-midnight magnetotail. This is the best ever reconnection event and electron-scale signatures are well resolved. Introducing an approximate dissipation measure D_e* and evaluating it from Geotail data, we successfully detect a compact dissipation region, for the first time in a planetary magnetotail. The results are consistent with the theory: The region is associated with the electron flow reversal, its spatial length is 2400--3600 [km] or 1--2 local ion inertial length, and the dissipation rate is 45 [pWm**-3]. We also introduce Lorentz work W, the work rate by Lorentz force to plasmas. It is positive over the reconnection region and it has a peak around the pileup region away from the X-point. These new measures D_e* and W provide useful information to understand the reconnection structure.Geotail crossing of the reconnection site on 15 May 2003. Plasma velocities and the energy dissipation D_e* are shown.

  15. Experimental study of energy conversion in the magnetic reconnection layer

    Science.gov (United States)

    Yamada, Masaaki

    2014-10-01

    Magnetic reconnection, in which magnetic field lines break and reconnect to change their topology, occurs throughout the universe: in solar flares, the earth's magnetosphere, star forming galaxies, and laboratory fusion plasmas. The essential feature of reconnection is that it energizes plasma particles by converting magnetic energy to particle energy; this process both accelerates and heats the plasma particles. Despite the recent advances of reconnection research, the exact mechanisms for bulk plasma heating, particle acceleration, and energy flow channels remain unresolved. In this work, the mechanisms responsible for the energization of plasma particles in the magnetic reconnection layer are investigated in the MRX device together with a quantitative evaluation of the conversion of magnetic energy to ions and electrons. A comprehensive analysis of the reconnection layer is made in terms of two-fluid physics based on the measurements of two-dimensional profiles of 1) electric potential, 2) flow vectors of electrons and ions, and 3) the electron temperature, Te and the ion temperature, Ti in the layer. It is experimentally verified that a saddle shaped electrostatic electric potential profile is formed in the reconnection plane. Ions are accelerated across the separatrices by the strong electrostatic field and enter the exhaust region where they become thermalized. Electron heating is observed to extend beyond the electron diffusion region, and non-classical heating mechanisms associated with high frequency fluctuations is found to play a role. Our quantitative analysis of the energy transport processes and energy inventory concludes that more than 50% of magnetic energy is converted to plasma particles, of which 2/3 transferred to ions and 1/3 to electrons. The results which demonstrate that conversion of magnetic energy occurs in a significantly larger region than theoretically considered before, are compared with the two-fluid simulations and the recent space measurements. Broader implication of the present results will be discussed. Supported by DOE, NASA and NSF. Collaborators; J. Yoo, J. Jara Almonte, H. Ji, R. Kulsrud, and C. Myers.

  16. Magnetic Reconnection: A Fundamental Process in Space Plasmas

    Science.gov (United States)

    Hesse, Michael

    2010-01-01

    For many years, collisionless magnetic reconnect ion has been recognized as a fundamental process, which facilitates plasma transport and energy release in systems ranging from the astrophysical plasmas to magnetospheres and even laboratory plasma. Beginning with work addressing solar dynamics, it has been understood that reconnection is essential to explain solar eruptions, the interaction of the solar wind with the magnetosphere, and the dynamics of the magnetosphere. Accordingly, the process of magnetic reconnection has been and remains a prime target for space-based and laboratory studies, as well as for theoretical research. Much progress has been made throughout the years, beginning with indirect verifications by studies of processes enabled by reconnection, such as Coronal Mass Ejections, Flux Transfer Events, and Plasmoids. Theoretical advances have accompanied these observations, moving knowledge beyond the Sweet-Parker theory to the recognition that other, collisionless, effects are available and likely to support much faster reconnect ion rates. At the present time we are therefore near a break-through in our understanding of how collisionless reconnect ion works. Theory and modeling have advanced to the point that two competing theories are considered leading candidates for explaining the microphysics of this process. Both theories predict very small spatial and temporal scales. which are. to date, inaccessible to space-based or laboratory measurements. The need to understand magnetic reconnect ion has led NASA to begin the implementation of a tailored mission, Magnetospheric MultiScale (MMS), a four spacecraft cluster equipped to resolve all relevant spatial and temporal scales. In this presentation, we present an overview of current knowledge as well as an outlook towards measurements provided by MMS.

  17. Acceleration of Energetic Particles through Reconnection of Weakly Stochastic Magnetic Field

    OpenAIRE

    Lazarian, A.; G. Kowal; Pino, E. de Gouveia Dal; E. Vishniac

    2012-01-01

    Astrophysical media are turbulent and therefore reconnection should be treated in the presence of pre-existing turbulence. We consider the model of fast magnetic reconnection in Lazarian & Vishniac (1999) which predicts that the rate of reconnection is controlled by the intensity and the injection scale of turbulent motions. We provide new evidence of successful testing of the model and argue that the model presents a generic set up for astrophysical reconnection events. We ...

  18. Demonstration of Anisotropic Fluid Closure Capturing the Kinetic Structure of Magnetic Reconnection

    OpenAIRE

    Ohia, Obioma O.; Egedal, J.; Lukin, V. S.; Daughton, W.

    2012-01-01

    Collisionless magnetic reconnection in high-temperature plasmas has been widely studied through fluid-based models. Here, we present results of fluid simulation implementing new equations of state for guide-field reconnection. The new fluid closure accurately accounts for the anisotropic electron pressure that builds in the reconnection region due to electric and magnetic trapping of electrons. In contrast to previous fluid models, our fluid simulation reproduces the detailed reconnection reg...

  19. Model of Reconnection of Weakly Stochastic Magnetic Field and its Implications

    OpenAIRE

    Lazarian, A.; E. Vishniac

    2008-01-01

    We discuss the model of magnetic field reconnection in the presence of turbulence introduced by us approximately ten years ago. The model does not require any plasma effects to be involved in order to make the reconnection fast. In fact, it shows that the degree of magnetic field stochasticity controls the reconnection. The turbulence in the model is assumed to be subAlfvenic, with the magnetic field only slightly perturbed. This ensures that the reconnection happens in gene...

  20. A time-dependent model for magnetic reconnection in the presence of a separator

    OpenAIRE

    Wilmot-Smith, A. L.; Hornig, G.

    2011-01-01

    We present a model for separator reconnection due to an isolated reconnection process. Separator reconnection is a process which occurs in the neighbourhood of a distinguished field line (the separator) connecting two null points of a magnetic field. It is, for example, important for the dynamics of magnetic flux at the dayside magnetopause and in the solar corona. We find that, above a certain threshold, such a reconnection process generates new separators which leads to a ...

  1. Computer studies on noncoplanar slow and intermediate shocks associated with the sheared fast reconnection mechanism

    International Nuclear Information System (INIS)

    It was recently found that noncoplanar slow shocks stood in the sheared fast reconnection configuration. Hence, the present one-dimensional magnetohydrodynamics (MHD) simulations with high numerical resolution study the temporal dynamics of MHD shocks, from a slow shock to a weak intermediate shock, that are placed in a noncoplanar situation. It is shown that for any case the noncoplanar shock structure can be sustained by physical dissipations involved. The resulting noncoplanar slow shock structure is, both qualitatively and quantitatively, in good agreement with the two-dimensional shock transition layer associated with the sheared fast reconnection mechanism. The one-dimensional noncoplanar slow or (subfast) intermediate shock structure is eventually bifurcated into an intermediate wave and a coplanar slow shock as a result of magnetic field rotation. In general, any stable shock must be coplanar, and in actual systems strictly coplanar boundary conditions ahead of and behind a shock cannot be provided nor sustained. Hence we propose a criterion, required for a stable shock to be realized, such that the (coplanar) shock must survive and hence be derived as an eventual solution in noncoplanar situations. It is argued that the present simulation results as well as the previous ones should be interpreted and reconsidered on the basis of this criterion

  2. Take Charge. Take the Test. PSA (:30)

    Centers for Disease Control (CDC) Podcasts

    2012-03-07

    As part of the Take Charge. Take the Test. campaign, this 30 second PSA encourages African American women to get tested for HIV. Locations for a free HIV test can be found by visiting hivtest.org/takecharge or calling 1-800-CDC-INFO (1-800-232-4636).  Created: 3/7/2012 by National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP).   Date Released: 3/7/2012.

  3. Science takes time :families take time!

    OpenAIRE

    Hultberg, Kirsti Baird

    2000-01-01

    Who has time to have a family ? Scientists are the «heroes» of our time. Science takes time - Families take time. Who gives time ? My case -study consists of interviews with scientific workers of both sexes. They are asked how they juggle the time required in the production of scientific knowledge and family life. My findings indicate that it is women, who give of their time.

  4. Definition of reconnection rate of solar flares registered in 2011-2012 years

    OpenAIRE

    Sarsembayeva, A. T

    2012-01-01

    Was defined reconnection rate of solar flares observed with the SOHO Michelson Doppler Imager (MDI). Measured physical parameters of 15 flares, such as the temporal scale, size and magnetic flux density. Estimated reconnection inflow velocity, coronal Alfven velocity, and reconnection rate using the observed values.

  5. A new fast reconnection model in a collisionless regime

    CERN Document Server

    Tsiklauri, David

    2008-01-01

    Based on the first principles (by balancing the advection with the electron pressure tensor in the generalised Ohm's law, and using the conservation of mass) a simple model of magnetic reconnection in a collisionless regime is formulated. In addition to its importance from the fundamental point of view, the collisionless reconnection model offers a much faster reconnection rate ($M_{c'less}={(d_i/2)}^{1/2}$) than Sweet-Parker's classical one ($M_{sp}=S^{-1/2}$). The width of the diffusion region (current sheet) in the collisionless regime is found to be $\\delta_{c'less}={(d_i/2)}^{1/2}L$, which is much larger than the Sweet-Parker width ($\\delta_{sp}=S^{-1/2}L$) for the space plasma conditions. Amongst other issues, this alleviates e.g. the problem of interpretation of solar flares by means of reconnection, as for the typical solar coronal parameters the obtained collisionless reconnection time can be $< 10$ minutes, as opposed to Sweet-Parker's equivalent value of $<$ year. The new theoretical reconnec...

  6. Observations of significant flux closure by dual lobe reconnection

    Directory of Open Access Journals (Sweden)

    S. M. Imber

    2007-07-01

    Full Text Available We present an interval of dual lobe reconnection during which interplanetary magnetic field lines are captured by the magnetosphere by reconnecting at high latitudes in both the Northern and the Southern Hemispheres. This event was identified using measurements of the ionospheric convection flow and observations of the aurora using the SuperDARN radars and the IMAGE spacecraft. A cusp spot, characteristic of northward IMF, is clearly visible for a 30 min period enabling the ionospheric footprint of the Northern Hemisphere merging gap to be accurately determined. During the interval a strong burst of sunward flow across the dayside open/closed field line boundary (OCB is observed, which we interpret as the reconfiguration of the magnetosphere following a burst of reconnection. Noon-midnight and dawn-dusk keograms of the aurora show that the polar cap shrinks during the interval indicating that a large amount of flux was closed by the reconnection. Using the SuperDARN potential maps it is possible to calculate that the amount of flux closed during the interval is 0.13 GWb which represents approximately 10% of the pre-existing polar cap. The number of ions captured by the burst of dual lobe reconnection was calculated to be ~2.2×1031, more than sufficient to populate a cold, dense plasma sheet. That a dense plasma sheet was not subsequently observed is discussed in terms of subsequent changes in the IMF.

  7. Flux Rope Acceleration and Enhanced Magnetic Reconnection Rate

    Energy Technology Data Exchange (ETDEWEB)

    C.Z. Cheng; Y. Ren; G.S. Choe; Y.-J. Moon

    2003-03-25

    A physical mechanism of flares, in particular for the flare rise phase, has emerged from our 2-1/2-dimensional resistive MHD simulations. The dynamical evolution of current-sheet formation and magnetic reconnection and flux-rope acceleration subject to continuous, slow increase of magnetic shear in the arcade are studied by employing a non-uniform anomalous resistivity in the reconnecting current sheet under gravity. The simulation results directly relate the flux rope's accelerated rising motion with an enhanced magnetic reconnection rate and thus an enhanced reconnection electric field in the current sheet during the flare rise phase. The simulation results provide good quantitative agreements with observations of the acceleration of flux rope, which manifests in the form of SXR ejecta or erupting filament or CMEs, in the low corona. Moreover, for the X-class flare events studied in this paper the peak reconnection electric field is about O(10{sup 2} V/m) or larger, enough to accelerate p articles to over 100 keV in a field-aligned distance of 10 km. Nonthermal electrons thus generated can produce hard X-rays, consistent with impulsive HXR emission observed during the flare rise phase.

  8. Mechanisms for Opening Exhaust Cones in Magnetic Reconnection

    Science.gov (United States)

    Singh, Nagendra

    2012-07-01

    One of the major unsolved problems in the field of magnetic reconnection is the lack of a clear understanding of the mechanisms for opening the reconnection exhaust cone angle. The energetic plasma created by the reconnection flows in the exhaust cones. We will review the features of exhaust cones as seen from simulations, space observations and laboratory experiments. The existing theoretical ideas ranging from Petschek Model based on slow shocks to recent ideas based on group velocity cones of some relevant wave modes will be discussed. We will highlight that wave modes commonly invoked in the reconnection models are the slow MHD mode for large-scale MHD scales, and whistler and kinetic Alfven waves at the much smaller kinetic scales. It will be shown that the key idea behind the opening the exhaust angle is the angular dispersion of these wave modes. We will attempt to relate the Petschek cone angle to the angular dispersion of slow MHD waves. We will discuss how the modes predict and limit the reconnection rates. Evidence of angular dispersion from simulations, laboratory experiments and space observations will be discussed.

  9. Reconnection in photospheric-chromospheric current sheet and coronal heating

    International Nuclear Information System (INIS)

    It has been observed by various ground and space based solar missions that magnetic reconnection occurs frequently in the photosphere-chromosphere region as well as in the solar corona. The purpose of this article is to examine the process of reconnection in thin current sheet formed between two oppositely directed magnetic flux tubes in photospheric-chromospheric region. Using the data of different atmospheric models for the solar photosphere and chromosphere, we have estimated the rate of magnetic reconnection in terms of Alfvénic Mach number, growth rate of tearing mode, island length scales, and energy dissipation rate necessary to heat the chromospheric plasma. It is found that magnetic Reynolds number for the current sheet in the chromosphere varies from 1.14 × 103 to 7.14 × 106 which indicates that the field lines in the photosphere and chromosphere reconnect with speed, that is, 0.00034 to 0.0297 times the Alfvén speed. Frequency of the MHD waves generated in the chromosphere reconnection region is of the order of 100 Hz, so these high-frequency waves may be the sources of coronal heating and solar wind acceleration.

  10. Three-Dimensional Turbulent Reconnection Induced by the Plasmoid Instability

    Science.gov (United States)

    Bhattacharjee, A.; Huang, Y. M.

    2014-12-01

    It has been established that the Sweet-Parker current layer in high-Lundquist-number reconnection is unstable to the super-Alfvenic plasmoid instability. Past two-dimensional magnetohydrodynamic simulations have demonstrated that the plasmoid instability leads to a new regime in which the Sweet-Parker current layer evolves into a chain of plasmoids connected by secondary current sheets and the averaged reconnection rate becomes nearly independent of the Lundquist number. In a three-dimensional configuration with a guide field, the additional degree of freedom allows plasmoid instabilities to grow at oblique angles [S. Baalrud et al. Phys. Plasmas 19, 022101 (2012)] and develop the complex dynamics of flux ropes which overlap, cause field-line stochasticization, and self-generate a turbulent state. Three-dimensional simulations in the high-Lundquist-number regime show the formation of cigar-shaped eddies elongated in the direction of the local magnetic field, which is a signature of anisotropic MHD turbulence. Furthermore, the energy fluctuation spectra are found to satisfy power laws in the inertial range. The averaged 3D reconnection rate in the self-generated turbulent state is of the order of a hundredth of the characteristic Alfven speed, which is an order of magnitude lower than the reconnection rate reported in recent studies of externally driven 3D turbulent reconnection. The physical reasons for these differences will be discussed.

  11. Flux Rope Acceleration and Enhanced Magnetic Reconnection Rate

    International Nuclear Information System (INIS)

    A physical mechanism of flares, in particular for the flare rise phase, has emerged from our 2-1/2-dimensional resistive MHD simulations. The dynamical evolution of current-sheet formation and magnetic reconnection and flux-rope acceleration subject to continuous, slow increase of magnetic shear in the arcade are studied by employing a non-uniform anomalous resistivity in the reconnecting current sheet under gravity. The simulation results directly relate the flux rope's accelerated rising motion with an enhanced magnetic reconnection rate and thus an enhanced reconnection electric field in the current sheet during the flare rise phase. The simulation results provide good quantitative agreements with observations of the acceleration of flux rope, which manifests in the form of SXR ejecta or erupting filament or CMEs, in the low corona. Moreover, for the X-class flare events studied in this paper the peak reconnection electric field is about O(102 V/m) or larger, enough to accelerate p articles to over 100 keV in a field-aligned distance of 10 km. Nonthermal electrons thus generated can produce hard X-rays, consistent with impulsive HXR emission observed during the flare rise phase

  12. Crossed flux tubes 3D magnetic reconnection experiment

    Science.gov (United States)

    Bellan, Paul

    2011-11-01

    The formation and dynamics of writhing, plasma-filled, twisted open magnetic flux tubes is being investigated using laboratory experiments. The behavior of these flux tubes is relevant to solar corona loops, astrophysical jets, spheromak formation, and open field lines in tokamaks and RFP's. MHD forces have been determined to drive fast axial plasma flows into the flux tube from the boundary it intercepts. These flows fill the flux tubes with plasma while simultaneously injecting linked frozen-in azimuthal flux; helicity injection is thus associated with mass injection. An upgraded experiment under construction will have two adjacent arched plasma-filled flux tubes cross over each other. It is anticipated that a localized 3D reconnection will occur at the cross-over. This reconnection should result in half-twists in the post re-connection topology and subsequent Alfven wave propagation to equilibrate the half-twists along the post-reconnection flux tubes. The electrical circuitry requires two initially independent floating capacitor bank power supplies that become series-connected as a result of reconnection.

  13. Momentum transport near a magnetic X line in collisionless reconnection

    Science.gov (United States)

    Cai, H. J.; Ding, D. Q.; Lee, L. C.

    1994-01-01

    Plasma dynamics and momentum transport near an X line during time-dependent magnetic reconnection in a collisionless plasma are investigated based on two-dimensional particle simulations. We find that a weakly skewed velocity distribution is formed near the magnetic X line, leading to the presence of off-diagonal elements of the plasma pressure tensor. Let the reconnection electric field be in the y direction. The gradients of the off-diagonal elements of the pressure tensor can provide a transport of the y momentum. During the normal magnetic reconnection, the momentum transport associated with the off-diagonal terms of the pressure tensor mediates a transfer of the y momentum from the region near the X line to regions outside the X line. A period of 'reverse magnetic reconnection,' during which the plasma kinetic energy is converted into magnetic energy, is also observed in the simulation. When reverse reconnection occurs, the gradients of the off-diagonal pressure tensor elements can mediate a transfer of y momentum into the X line. It is found that the inertial term also plays a significant role in the force balance near the magnetic X line. An explanation for the origin of the off-diagonal pressure terms is also given in this paper.

  14. On the characterization of magnetic reconnection in global MHD simulations

    Directory of Open Access Journals (Sweden)

    T. V. Laitinen

    2006-11-01

    Full Text Available The conventional definition of reconnection rate as the electric field parallel to an x-line is problematic in global MHD simulations for several reasons: the x-line itself may be hard to find in a non-trivial geometry such as at the magnetopause, and the lack of realistic resistivity modelling leaves us without reliable non-convective electric field. In this article we describe reconnection characterization methods that avoid those problems and are practical to apply in global MHD simulations. We propose that the reconnection separator line can be identified as the region where magnetic field lines of different topological properties meet, rather than by local considerations. The global convection associated with reconnection is then quantified by calculating the transfer of mass, energy or magnetic field across the boundary of closed and open field line regions. The extent of the diffusion region is determined from the destruction of electromagnetic energy, given by the divergence of the Poynting vector. Integrals of this energy conversion provide a way to estimate the total reconnection efficiency.

  15. Understanding Magnetic Reconnection: The Physical Mechanism Driving Space Weather

    Science.gov (United States)

    Black, Carrie; Antiochos, Spiro K.; Karpen, Judith T.; Germaschewski, Kai; Bessho, Naoki

    2015-04-01

    The explosive energy release in solar eruptive events is believed to be due to magnetic reconnection. In the standard model for coronal mass ejections (CME) and/or solar flares, the free energy for the event resides in the strongly sheared magnetic field of a filament channel. The pre-eruption force balance consists of an upward force due to the magnetic pressure of the sheared field countered by the downward tension of the overlying unsheared field. Magnetic reconnection disrupts this force balance. Therefore, to understand CME/flare initiation, it is critical to model the onset of reconnection driven by the build-up of magnetic shear. In MHD simulations, the application of a magnetic-field shear is trivial. However, kinetic effects are important in the diffusion region and thus, it is important to examine this process with PIC simulations as well. The implementation of such a driver in PIC methods is nontrivial, however, and indicates the necessity of a true multiscale model for such processes in the solar environment. The field must be sheared self-consistently and indirectly to prevent the generation of waves that destroy the desired system. In the work presented here, we show reconnection in an X-Point geometry due to a velocity shear driver perpendicular to the plane of reconnection.This material is based upon work supported by the National Science Foundation under Award No. AGS-1331356 and NASA's Living With a Star Targeted Research and Technology program.

  16. On the longitudinal extent of magnetopause reconnection pulses

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    Full Text Available The open magnetosphere model of cusp ion injection, acceleration and precipitation is used to predict the dispersion characteristics for fully pulsed magnetic reconnection at a low-latitude magnetopause X-line. The resulting steps, as would be seen by a satellite moving meridionally and normal to the ionospheric projection of the X-line, are compared with those seen by satellites moving longitudinally, along the open/closed boundary. It is shown that two observed cases can be explained by similar magnetosheath and reconnection characteristics, and that the major differences between them are well explained by the different satellite paths through the events. Both cases were observed in association with poleward-moving transient events seen by ground-based radar, as also predicted by the theory. The results show that the reconnection is pulsed but strongly imply it cannot also be spatially patchy, in the sense of isolated X-lines which independently are intermittently active. Furthermore they show that the reconnection pulses responsible for the poleward-moving events and the cusp ion steps, must cover at least 3 h of magnetic local time, although propagation of the active reconnection region may mean that it does not extend this far at any one instant of time.

  17. Management and communication courses – Places available

    CERN Multimedia

    2012-01-01

    There are places available in some management and communication courses taking place in the period January to March 2013.   For more information on the course, click on the course title, which will bring you to the training catalogue. You can then sign-up on-line. For advice, you can contact: Erwin Mosselmans, tel. 74125, erwin.mosselmans@cern.ch Nathalie Dumeaux, tel. 78144, nathalie.dumeaux@cern.ch Courses in English (or bilingual) Session Duration Language Availability How to get, as a supervisor, the most out of the annual interview 21 January 1 day English 2 places Project Engineering 24 and 25 January 2 days English 6 places How to get, as a supervisor, the most out of the annual interview 31 January 1 day English 6 places Conflict Resolution for Managers 19 and 20 February 2 days English One more place Project Scheduling & Costing 6 and 7 March 2 days English 2 places Communicati...

  18. Stochastic acceleration by multi-island contraction during turbulent magnetic reconnection.

    Science.gov (United States)

    Bian, Nicolas H; Kontar, Eduard P

    2013-04-12

    The acceleration of charged particles in magnetized plasmas is considered during turbulent multi-island magnetic reconnection. The particle acceleration model is constructed for an ensemble of islands which produce adiabatic compression of the particles. The model takes into account the statistical fluctuations in the compression rate experienced by the particles during their transport in the acceleration region. The evolution of the particle distribution function is described as a simultaneous first- and second-order Fermi acceleration process. While the efficiency of the first-order process is controlled by the average rate of compression, the second-order process involves the variance in the compression rate. Moreover, the acceleration efficiency associated with the second-order process involves both the Eulerian properties of the compression field and the Lagrangian properties of the particles. The stochastic contribution to the acceleration is nonresonant and can dominate the systematic part in the case of a large variance in the compression rate. The model addresses the role of the second-order process, how the latter can be related to the large-scale turbulent transport of particles, and explains some features of the numerical simulations of particle acceleration by multi-island contraction during magnetic reconnection. PMID:25167241

  19. Kinetic Vlasov Simulations of collisionless magnetic Reconnection

    CERN Document Server

    Schmitz, H

    2006-01-01

    A fully kinetic Vlasov simulation of the Geospace Environment Modeling (GEM) Magnetic Reconnection Challenge is presented. Good agreement is found with previous kinetic simulations using particle in cell (PIC) codes, confirming both the PIC and the Vlasov code. In the latter the complete distribution functions $f_k$ ($k=i,e$) are discretised on a numerical grid in phase space. In contrast to PIC simulations, the Vlasov code does not suffer from numerical noise and allows a more detailed investigation of the distribution functions. The role of the different contributions of Ohm's law are compared by calculating each of the terms from the moments of the $f_k$. The important role of the off--diagonal elements of the electron pressure tensor could be confirmed. The inductive electric field at the X--Line is found to be dominated by the non--gyrotropic electron pressure, while the bulk electron inertia is of minor importance. Detailed analysis of the electron distribution function within the diffusion region revea...

  20. RADIO EVIDENCE OF BREAK-OUT RECONNECTION?

    International Nuclear Information System (INIS)

    We reconsider the 2003 October 28 X17 flare/coronal mass ejection (CME), studying the five minutes immediately before the impulsive flare phase (not discussed in previous work). To this aim we examine complementary dynamic radio spectrograms, single frequency polarimeter records, radio images, space-based longitudinal field magnetograms, and ultraviolet images. We find widely distributed faint and narrowband meter wave radio sources located outside active regions but associated with the boundaries of magnetic flux connectivity cells, inferred from the potential extrapolation of the observed photospheric longitudinal field as a model for coronal magnetic field structures. The meter wave radio sources occur during the initial decimeter wave effects, which are well known to be associated with filament destabilization in the flaring active region (here NOAA 10486). Antiochos et al. predict in their break-out model for CME initiation that '... huge phenomena ... may be controlled by detailed plasma processes that occur in relatively tiny regions'. They suggest that the expected faint energy release '... on long field lines far away from any neutral line ... may be detectable in radio/microwave emission from nonthermal particles...'. In this paper, we describe meter wave sources whose properties correctly coincide with the quoted predictions of the break-out reconnection model of the CME initiation.