WorldWideScience
 
 
1

Is channeling of fission tracks taking place?  

CERN Document Server

A single crystal of natural zircon which is sliced to have (010) basal plane and thinned by ion thinning is electron microscopically observed after slow neutron irradiation to ascertain whether channeling of the nuclear fission fragments is taking place or not. A fairly large number of the induced fission tracks are recognized at low magnification images where a considerable number of them are parallel to low-index lattice planes such as 100, 001, 101, 301, 103 though their directions changed some time up to several degrees. High resolution images of fission tracks often show a variety of zigzag passing of the tracks along low-index lattice planes in atomistic level. The rate of the tracks which are parallel to these low-index lattice planes is fairly high as about 45%, which strongly suggests that channeling of the fission tracks is taking place.

Yada, K

1999-01-01

2

Reconnection Diffusion, Star Formation and Numerical Simulations  

Digital Repository Infrastructure Vision for European Research (DRIVER)

We consider fast magnetic reconnection that takes place within turbulent magnetic flux and show that the process results in diffusion of magnetic fields and matter, which we term reconnection diffusion. The process of reconnection diffusion is based on the model of 3D reconnection of weakly turbulent magnetic fields and is applicable to both fully ionized and partially ionized gas. The rate of reconnection diffusion does not depend on the level of ionization and therefore th...

Lazarian, A.

2013-01-01

3

Reconnection Diffusion, Star Formation and Numerical Simulations  

CERN Document Server

We consider fast magnetic reconnection that takes place within turbulent magnetic flux and show that the process results in diffusion of magnetic fields and matter, which we term reconnection diffusion. The process of reconnection diffusion is based on the model of 3D reconnection of weakly turbulent magnetic fields and is applicable to both fully ionized and partially ionized gas. The rate of reconnection diffusion does not depend on the level of ionization and therefore the usually employed ambipolar diffusion idea gets irrelevant for magnetic field transport in turbulent fluids. We claim that the reconnection diffusion process is a manifestation of the violation of flux conservation in highly conducting turbulent fluids. We discuss the consequences of reconnection diffusion for star formation and stress. We show that reconnection diffusion on large scales is independent of small scale magnetic field dynamics of magnetic fields. We conclude that numerical simulations correctly represents the diffusion of ac...

Lazarian, A

2013-01-01

4

Third Place Learning Environments: Perspective Sharing and Perspective Taking  

Directory of Open Access Journals (Sweden)

Full Text Available In this paper we deliberate on intercultural and global communication strategies of perspective sharing and perspective taking, and potential perspective transformation. Consideration to these strategies is given within the two instances of third place learning environments: (a Role-play simulation environment in which learners develop experiment with strategies for resolving intercultural misconceptions, and (b a professional virtual learning network that may provide just-in-time support for its members encountering disorienting dilemma. The central purpose of the second environment is actually development of knowledge basis for understanding of Third Place Learning.

Mara Alagic

2009-11-01

5

Third Place Learning Environments: Perspective Sharing and Perspective Taking  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In this paper we deliberate on intercultural and global communication strategies of perspective sharing and perspective taking, and potential perspective transformation. Consideration to these strategies is given within the two instances of third place learning environments: (a) Role-play simulation environment in which learners develop experiment with strategies for resolving intercultural misconceptions, and (b) a professional virtual learning network that may provide just-in-time support f...

Mara Alagic; Rimmington, Glyn M.; Tatiana Orel

2009-01-01

6

Astrophysical Implications of Turbulent Reconnection: from cosmic rays to star formation  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Turbulent reconnection allows fast magnetic reconnection of astrophysical magnetic fields. This entails numerous astrophysical implications and opens new ways to approach long standing problems. I briefly discuss a model of turbulent reconnection within which the stochasticity of 3D magnetic field enables rapid reconnection through both allowing multiple reconnection events to take place simultaneously and by restricting the extension of current sheets. In fully ionized gas ...

Lazarian, A.

2005-01-01

7

Collisionless Magnetic Reconnection in Space Plasmas  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Magnetic reconnection requires the violation of the frozen-in condition which ties gyrating charged particles to the magnetic field inhibiting diffusion. Ongoing reconnection has been identified in near-Earth space as being responsible for the excitation of substorms, magnetic storms, generation of field aligned currents and their consequences, the wealth of auroral phenomena. Its theoretical understanding is now on the verge of being completed. Reconnection takes place in t...

Treumann, R. A.; Baumjohann, W.

2014-01-01

8

Magnetic Reconnection under Anisotropic MHD Approximation  

Digital Repository Infrastructure Vision for European Research (DRIVER)

We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless MHD codes based on the double adiabatic approximation and the Landau closure model. We bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observation. Our results showed that once magnetic reconnection takes place, a firehose...

Hirabayashi, K.; Hoshino, M.

2013-01-01

9

Does time-shrinking take place in visual temporal patterns?  

Science.gov (United States)

The duration of a short empty time interval (typically shorter than 300 ms) is often underestimated when it is immediately preceded by a shorter time interval. This illusory underestimation--time-shrinking--had been studied only with auditory temporal patterns. In the present study, we examined whether similar underestimation would take place with visual temporal patterns. It turned out that underestimation of the same kind takes place also in the visual modality. However, a considerable difference between the auditory and the visual modalities appeared. In the auditory modality, it had been shown that the amount of underestimation decreased for preceding time intervals longer than 200 ms. In the present study, the underestimation increased when the preceding time interval varied from 160 to 400 ms. Furthermore, the differences between the two neighbouring intervals which could cause this underestimation had always been in a fixed range in the auditory modality. In the visual modality, the range was broader when the intervals were longer. These results were interpreted in terms of an assimilation process in light of the processing-time hypothesis proposed by Nakajima (1987 Perception 16 485-520) in order to explain an aspect of empty-duration perception. PMID:11064803

Arao, H; Suetomi, D; Nakajima, Y

2000-01-01

10

Using Personalized Education to Take the Place of Standardized Education  

Directory of Open Access Journals (Sweden)

Full Text Available Economic model has been greatly shifted from labor demanding to innovation demanding, which requires education system has to produce creative people. This paper illustrates how traditional education model accrued and developed based on satisfying the old economic model for labor demanding but did not meet the new social requirement for innovation demanding. Also, this paper illustrates how U.S. education reform movement turns into standardization movement that has been trapped by traditional education concept, for example, this standardization movement aims to produce great test takers, but fails to produce creative people with critical thinking skill. As well as this paper discusses how personalized education has been mentioned by Dr. Yong Zhao as a new model that focuses on exploring students’ personal potential of innovation, which means personalized education is able to better adapt the modern society for innovation demanding, and it should take the place of standardized education.

Pengyu Gao

2014-04-01

11

Astrophysical Implications of Turbulent Reconnection: from cosmic rays to star formation  

CERN Document Server

Turbulent reconnection allows fast magnetic reconnection of astrophysical magnetic fields. This entails numerous astrophysical implications and opens new ways to approach long standing problems. I briefly discuss a model of turbulent reconnection within which the stochasticity of 3D magnetic field enables rapid reconnection through both allowing multiple reconnection events to take place simultaneously and by restricting the extension of current sheets. In fully ionized gas the model in Lazarian and Vishniac 99 predicts reconnection rates that depend only on the intensity of turbulence. In partially ionized gas a modification of the original model in Lazarian, Vishniac and Cho 04 predicts the reconnection rates that, apart from the turbulence intensity depend on the degree of ionization. In both cases the reconnection may be slow and fast depending on the level of turbulence in the system. As the result, the reconnection gets bursty, which provides a possible explanation to Solar flares and possibly to gamma ...

Lazarian, A

2005-01-01

12

Out in the Pinwheel Galaxy, a rare event takes place  

Science.gov (United States)

Astronomers forgo sleep; eyes fixed on star's explosionhttp://www.usatoday.com/tech/science/space/story/2011-09-07/Astronomers-forgo-sleep-eyes-fixed-on-stars-explosion/50303380/1#.TmjMWp9vWhAHow to See a Supernova From Your Backyard this Weekendhttp://www.universetoday.com/88617/how-to-see-a-supernova-from-your-backyard-this-weekend/A Stellar Explosion In The Big Dipperhttp://www.npr.org/2011/09/03/140163733/a-stellar-explosion-in-the-big-dippers-handleThe Hubble Space Telescopehttp://hubble.nasa.gov/The Pinwheel Galaxyhttp://www.ing.iac.es/PR/press/m101.htmlWhite Dwarfshttp://imagine.gsfc.nasa.gov/docs/science/know_l2/dwarfs.htmlAstronomers and others who peer into the night sky are getting quite excited about a rather rare event this Friday. A supernova (an exploding star) out in the Pinwheel Galaxy is expected to peak in brightness, and at only a mere 21 million light years away, it is the closest of its kind to be seen in 40 years. In a recent interview, Peter Nugent of the Lawrence Berkeley National Laboratory summed up the sentiments of many when he said "I'm running on adrenaline right now. A good night is four hours sleep." A number of observatories around the world are casting their telescopes out into the Pinwheel Galaxy to observe and document this rather unusual and fascinating event. This particular supernova is part of the "Type 1a" group, born from a runaway thermonuclear combustion from a white dwarf star. While the blast is quite "close" (cosmically speaking), if it had occurred in the Milky Way galaxy, the light from such an event would be visible during the daytime. Those individuals without their own personal high-end space observatory should not dismay, as a 6-inch telescope or a powerful set of binoculars will let them see part of this magnificent event. The first link will take visitors to a piece from Thursday's USA TODAY about this rather unusual and rare event. The second link will whisk users away to a great video clip from Universe Today that features astrophysicist Peter Nugent talking about how amateur astronauts can best view this event. Moving along, the third link will take users to a nice piece from NPR's Weekend Edition that provides a bit more insight into this supernova. The fourth link leads to NASA's homepage for the Hubble Space Telescope. Here visitors can learn about this technological triumph, and also read about its work examining the Pinwheel Galaxy. The fifth link leads to an amazing photograph of the Pinwheel Galaxy, courtesy of the Isaac Newton Telescope. The last link will take users to a page created by NASA's Goddard Space Flight Center that provides some background on white dwarfs.

Grinnell, Max

2011-09-16

13

Magnetic reconnection under anisotropic magnetohydrodynamic approximation  

Science.gov (United States)

We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless MHD codes based on the double adiabatic approximation and the Landau closure model. We bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observations. Our results showed that once magnetic reconnection takes place, a firehose-sense (p?>p?) pressure anisotropy arises in the downstream region, and the generated slow shocks are quite weak comparing with those in an isotropic MHD. In spite of the weakness of the shocks, however, the resultant reconnection rate is 10%-30% higher than that in an isotropic case. This result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere.

Hirabayashi, K.; Hoshino, M.

2013-11-01

14

Magnetic reconnection under anisotropic magnetohydrodynamic approximation  

International Nuclear Information System (INIS)

We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless MHD codes based on the double adiabatic approximation and the Landau closure model. We bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observations. Our results showed that once magnetic reconnection takes place, a firehose-sense (p?>p?) pressure anisotropy arises in the downstream region, and the generated slow shocks are quite weak comparing with those in an isotropic MHD. In spite of the weakness of the shocks, however, the resultant reconnection rate is 10%–30% higher than that in an isotropic case. This result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere

15

Magnetic Reconnection under Anisotropic MHD Approximation  

CERN Document Server

We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless MHD codes based on the double adiabatic approximation and the Landau closure model. We bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observation. Our results showed that once magnetic reconnection takes place, a firehose-sense pressure anisotropy arises in the downstream region, and the generated slow shocks are quite weak comparing with those in an isotropic MHD. In spite of the weakness of the shocks, however, the resultant reconnection rate is 10-30% higher than that in an isotropic case. This result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system, and is consistent with the satellite observation in the Earth's magnetosphere.

Hirabayashi, K

2013-01-01

16

UHECRs from magnetic reconnection in relativistic jets  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Ultra-high energy cosmic rays (UHECRs) may be produced in active galactic nuclei (AGN) or gamma-ray burst (GRB) jets. I argue that magnetic reconnection in jets can accelerate UHECRs rather independently of physical processes in the magnetic dissipation region. First order Fermi acceleration can efficiently take place in the region where the unreconnected (upstream) magnetized fluid converges into the reconnection layer. I find that protons can reach energies up to E~10^{20}...

Giannios, Dimitrios

2010-01-01

17

Collisionless Magnetic Reconnection in Space Plasmas  

Directory of Open Access Journals (Sweden)

Full Text Available Magnetic reconnection, the merging of oppositely directed magnetic fields that leads to field reconfiguration, plasma heating, jetting and acceleration, is one of the most celebrated processes in collisionless plasmas. It requires the violation of the frozen-in condition which ties gyrating charged particles to the magnetic field inhibiting diffusion. Ongoing reconnection has been identified in near-Earth space as being responsible for the excitation of substorms, magnetic storms, generation of field aligned currents and their consequences, the wealth of auroral phenomena. Its theoretical understanding is now on the verge of being completed. Reconnection takes place in thin current sheets. Analytical concepts proceeded gradually down to the microscopic scale, the scale of the electron skin depth or inertial length, recognizing that current layers that thin do preferentially undergo spontaneous reconnection. Thick current layers start reconnecting when being forced by plasma inflow to thin. For almost half a century the physical mechanism of reconnection has remained a mystery. Spacecraft in situ observations in combination with sophisticated numerical simulations in two and three dimensions recently clarified the mist, finding that reconnection produces a specific structure of the current layer inside the electron inertial (also called electron diffusion region around the reconnection site, the X line. Onset of reconnection is attributed to pseudo-viscous contributions of the electron pressure tensor aided by electron inertia and drag, creating a complicated structured electron current sheet, electric fields, and an electron exhaust extended along the current layer. We review the general background theory and recent developments in numerical simulation on collisionless reconnection. It is impossible to cover the entire field of reconnection in a short space-limited review. The presentation necessarily remains cursory, determined by our taste, preferences, and kn

RudolfA.Treumann

2013-12-01

18

Social Reconnection Revisited: The Effects of Social Exclusion Risk on Reciprocity, Trust, and General Risk-Taking  

Science.gov (United States)

We hypothesize that people at risk of exclusion from groups will engage in actions that can socially reconnect them with others and test the hypothesis in four studies. We show that participants at risk of exclusion reciprocated the behavior of an unknown person (Study 1a) and a potential excluder (Study 1b) more compared to two control groups…

Derfler-Rozin, Rellie; Pillutla, Madan; Thau, Stefan

2010-01-01

19

4th openlab Board of Sponsors Meeting takes place at CERN on July 6, 2005  

CERN Multimedia

The 4th openlab Board of Sponsors Meeting is taking place at CERN, room 513, 1-024, the 6th July 2005. The meeting will open with an Executive Session in the presence of Dr. Robert Aymar, Director General of CERN

Patrice Loïez

2005-01-01

20

Mechanisms of impulsive magnetic reconnection: Global and local aspects  

International Nuclear Information System (INIS)

The global and local aspects of mechanisms of impulsive magnetic reconnection are discussed focusing on results from a dedicated laboratory experiment, MRX (Magnetic Reconnection Experiment), as well as fusion experiments. Possible application of the present analysis to reconnection phenomena in solar and space plasmas is also discussed. An external force which drives internal current in a fusion plasma causes magnetic flux to accumulate in a core section of the plasma (flux build-up). When the flux build-up generates a magnetic profile that satisfies a condition for a global magnetohydrodynamic instability to develop, reconnection takes place in an induced current layer generated by the instability leading to a global self-organization of the plasma. Generally the flux build-up phase is significantly longer than the reconnection time, ?H >> ?Rec, thus making the waveform of flux evolution or other plasma parameters sawtooth shaped. In the reconnection layer of collisionless plasmas, the two fluid dynamics would lead to the formation of a narrow electron current channel which tends to become unstable against micro-instabilities, leading to an unsteady or impulsive reconnection. A common feature of impulsive reconnection after flux build-up is presented.

 
 
 
 
21

Collisionless driven reconnection in an open system  

International Nuclear Information System (INIS)

Particle simulation studies of collisionless driven reconnection in an open system are presented. Collisionless reconnection evolves in two steps in accordance with the formation of two current layers, i.e., an ion current layer in the early ion phase and an electron current layer in the late electron phase. After the electron current layer is formed inside the ion current layer, the system relaxes gradually to a steady state when convergent plasma flow is driven by an external electric field with a narrow input window. On the other hand, when the convergent plasma flow is driven from the wide input window, magnetic reconnection takes place in an intermittent manner, due to the frequent formation of magnetic islands in the vicinity of neutral sheet. (author)

22

Particle simulation study of driven magnetic reconnection in a collisionless plasma  

International Nuclear Information System (INIS)

Driven magnetic reconnection in a collisionless plasma, ''collisionless driven reconnection,'' is investigated by means of two-and-one-half-dimensional particle simulation. Magnetic reconnection develops in two steps, i.e., slow reconnection, which takes place in the early stage of the compression when the current layer is compressed as thin as the orbit amplitude of an ion meandering motion (ion current layer), and subsequent fast reconnection, which takes place in the late stage when the electron current is concentrated into the narrow region with a spatial scale comparable to the orbit amplitude of an electron meandering motion (electron current layer). The global dynamic evolution of magnetic reconnection is controlled by the physics of the ion current layer. The maximum reconnection rate is roughly in proportion to the driving electric field. It is also found that both ion heating and electron heating take place in accordance with the formation of two current layers and the ion temperature becomes two or more times as high as the electron temperature

23

Particle simulation study of collisionless driven reconnection in a sheared magnetic field  

International Nuclear Information System (INIS)

Nonlinear development of collisionless driven reconnection and the consequent energy conversion process between the field and particles in a sheared magnetic field are investigated by means of a two-and-one-half-dimensional particle simulation. Magnetic reconnection takes place in two steps irrespective of a longitudinal magnetic field, but the growth rate of the reconnection field varies in proportion to the ExB drift velocity at an input boundary. It is clearly observed that the triggering mechanism of collisionless driven reconnection for the fast growing phase changes from an electron meandering dominance in a weak longitudinal field to an electron inertia dominance in a strong field. The electron acceleration and heating take place in the reconnection area under the influence of reconnection electric field, while the electron energy is converted to the ion energy through the action of an electrostatic (ambipolar) field excited by magnetic compression in the downstream. It is also found that, in the presence of a longitudinal magnetic field, the electron acceleration by the reconnection field takes place effectively and the generated force-free current is maintained for a long period while forming an asymmetric spatial profile of current layer. copyright 1997 American Institute of Physics

24

Thin current sheet structures during reconnection  

Science.gov (United States)

Magnetic reconnection is one of the key processes in space plasmas that takes place in thin currents. In the Earth's magnetotail, thin current sheets form due to magnetic stress increase associated with the enhanced transport of the magnetic flux from the dayside magnetopause reconnection site. Hence the magnetotail reconnection is expected to take place in a north-south symmetric current sheet, with or without guide field depending on the IMF orientation. Cluster multiple observations enabled to resolve the spatial profiles of the tail current sheet with scales down to ion scales. In this study we discuss the structures of thin current sheets in the reconnection region, by using data from Cluster current sheet crossings, across and along the current sheet. The current density profiles and particle signatures in the ion-diffusion region are examined. To identify the location of the current sheet crossings with respect to the X-line, its motion is also considered based on the multi-point timing analysis. We highlight the strong asymmetric features in the current sheets and signatures of the flux ropes observed within the ion diffusion region for cases with a relatively weak guide field.

Nakamura, Rumi; Teh, Wai-Leong; Alexandrova, Alexandra; Wang, Rongsheng

25

Questions and Answers Regarding Actions to Take When Ending Shelter-in-Place  

Energy Technology Data Exchange (ETDEWEB)

Shelter-in-place has found increasing acceptance as an effective protective action option for communities participating in the Chemical Stockpile Emergency Preparedness Program. Studies have confirmed that it can provide optimum protection under certain accident conditions. However, emergency managers and planners, as well as the public, continue to be troubled by the need to end sheltering when the plume has passed in order to avoid sustained exposure to the small amount of agent that has penetrated the shelter. One of the concerns posed by this necessity is uncertainty regarding what hazards will then be faced in the environment outside the shelter and what actions can be taken to avoid those hazards. This report attempts to address those uncertainties. It recognizes that there is an extremely low probability that the environment outside the shelter will be contaminated with chemical agent residue. However, as people comply with an official recommendation to leave their shelters, they probably can't be certain that the environment is free from contamination. Therefore, this report identifies and explains specific and simple actions they can take to avoid the possibility of exposure to chemical agent hazards outside their shelters. It addresses such issues as the actions people should take upon ending shelter-in-place, what clothing they should wear, how they should handle animals, and what they should do about food in their homes and produce in their gardens.

Shumpert, B.

2003-12-30

26

Reconnection in complex geometry: a numerical approach  

International Nuclear Information System (INIS)

Observations and experiments revealed modifications in the topology of magnetic configurations with acceleration of charged particles. In order to be more explicit, attention is down to the following phenomena: solar eruptions, storms in the magnetosphere and the current disruptions recently observed in Tokamak experiments. It appears that reconnection can take place in collisional or noncollisional plasmas in boh subsonic and supersonic regimes depending essentially on the conditions at the limits of the physical systems (open or closed)

27

[Marketing approval and market surveillance of medical devices in Germany: Where does policy integration take place?].  

Science.gov (United States)

Since 2011 new regulatory measures regarding medical devices have been set up with the aim to eliminate obstacles to innovations and to find more coordinated ways to marketing authorisation and market surveillance. This essay investigates whether these new and existing coordination mechanisms build up to a Joined-up Government approach. The analysis shows that the regulatory process should be adjusted along several dimensions. First, many organisations lack awareness regarding their stakeholders and focus solely on their immediate organisational activities. Second, the regulatory process (marketing authorisation and market surveillance) is too fragmented for an effective communication to take place. Finally, the underlying strategy process is an ad-hoc approach lacking continuity and continued involvement of, in particular, the responsible federal ministries. PMID:25066351

Lang, Achim

2014-01-01

28

Repair of DNA interstrand crosslinks may take place at the nuclear matrix.  

Science.gov (United States)

Host cell reactivation assay using Trioxsalen-crosslinked plasmid pEGFP-N1 showed that human cells were able to repair Trioxsalen interstrand crosslinks (ICL). To study the mechanism of this repair pathway, cells were transfected with the plasmids pEGFP-1, which did not contain the promoter of the egfp gene, and with pEGFP-G-, which did not contain the egfp gene. Neither of these plasmids alone was able to express the green fluorescent protein. After cotransfection with the two plasmids, 1%-2% of the cells developed fluorescent signal, which showed that recombination events had taken place in these cells to create DNA constructs containing the promoter and the gene properly aligned. When one or both of the plasmids were crosslinked with Trioxsalen, the recombination rate increased several fold. To identify the nuclear compartment where recombination takes place, cells were transfected with crosslinked pEGFP-N1 and the amount of plasmid DNA in the different nuclear fractions was determined. The results showed that Trioxsalen crosslinking increased the percentage of matrix attached plasmid DNA in a dose-dependent way. Immunoblotting experiments showed that after transfection with Trioxsalen crosslinked plasmids the homologous recombination protein Rad51 also associated with the nuclear matrix fraction. These studies provide a model system for investigating the precise molecular mechanisms that appear to couple repair of DNA ICL with nuclear matrix attachment. PMID:16052506

Atanassov, Boyko; Gospodinov, Anastas; Stoimenov, Ivaylo; Mladenov, Emil; Russev, George; Tsaneva, Irina; Anachkova, Boyka

2005-09-01

29

The effect of turbulence on 2D magnetic reconnection  

Science.gov (United States)

Magnetic reconnection is a well known plasma process believed to lie at the heart of a variety of phenomena such as sub-storms in the Earth's magnetosphere, solar/stellar and accretion-disk flares, sawteeth activity in fusion devices, etc. During reconnection, the global magnetic field topology changes rapidly, leading to the violent release of magnetic energy. One of the outstanding theoretical challenges in this field is the understanding of the mechanism(s) responsible for such rapid changes. In single-fluid MHD, it is believed that magnetic reconnection is well described by the Sweet-Parker theory (SP), which, however, is orders of magnitude too slow to explain observations. In many cases of interest, reconnection takes place in plasmas which are fundamentally collisionless, and which cannot, therefore, be described by MHD theory. Indeed, a vast amount of numerical studies suggest that fast reconnection can be obtained when kinetic physics becomes important. However, in many astrophysical situations (e.g., inside stars and accretion disks) the density is so high that the reconnection layer is collisional and resistive MHD should apply. How, then, can reconnection be fast in these environments? Missing from the SP picture is that most, if not all, environments where reconnection occurs are likely to be turbulent. Theoretical arguments exist [Lazarian & Vishniac, ApJ 517, 700 (1999)] (LV) suggesting that indeed turbulence can significantly enhance the reconnection rate, but only in 3D. In this talk, we present the results of an extensive, high-resolution, numerical study of the effect of small-scale background turbulence on 2D magnetic reconnection [Loureiro et al., MNRAS 399, 1 (2009)]. We show that, contrary to theoretical expectations, turbulence has a very significant effect in speeding-up the 2D reconnection process, yielding a reconnection rate whose dependence on resistivity (?) is extremely weak and is even consistent with an ?-independent value. We suggest that these results point to a mechanism of turbulent enhancement of the reconnection rate which is alternative to that envisionaged by LV, and which may be related to the instability of the current sheet to the formation of multiple secondary magnetic islands (plasmoids).

Loureiro, Nuno

2010-05-01

30

Self-organized Te Redistribution during Driven Reconnection Processes in High Temperature Plasmas  

International Nuclear Information System (INIS)

Two-dimensional (2-D) images of electron temperature fluctuations with a high temporal and spatial resolution were employed to study the sawtooth oscillation in TEXTOR tokamak plasmas. The new findings are: (1) 2-D images revealed that the reconnection is localized and permitted the determination of the physical dimensions of the reconnection zone in the poloidal and toroidal planes. (2) The combination of a pressure driven mode and a kink instability leads to an 'X-point' reconnection process. (3) Reconnection can take place anywhere along the q?1 rational magnetic surface (both high and low field sides). (4) Heat flow from the core to the outside of the inversion radius during the reconnection time is highly asymmetric and the behavior is collective. These new findings are compared with the characteristics of various theoretical models and experimental results for the study of the sawtooth oscillation in tokamak plasmas

31

NEW SOLAR TELESCOPE OBSERVATIONS OF MAGNETIC RECONNECTION OCCURRING IN THE CHROMOSPHERE OF THE QUIET SUN  

International Nuclear Information System (INIS)

Magnetic reconnection is a process in which field-line connectivity changes in a magnetized plasma. On the solar surface, it often occurs with the cancellation of two magnetic fragments of opposite polarity. Using the 1.6 m New Solar Telescope, we observed the morphology and dynamics of plasma visible in the H? line, which is associated with a canceling magnetic feature (CMF) in the quiet Sun. The region can be divided into four magnetic domains: two pre-reconnection and two post-reconnection. In one post-reconnection domain, a small cloud erupted, with a plane-of-sky speed of 10 km s-1, while in the other one, brightening began at points and then tiny bright loops appeared and subsequently shrank. These features support the notion that magnetic reconnection taking place in the chromosphere is responsible for CMFs.

32

Magnetic reconnection  

International Nuclear Information System (INIS)

The fundamental physics of magnetic reconnection in laboratory and space plasmas is reviewed by discussing results from theory, numerical simulations, observations from space satellites, and recent results from laboratory plasma experiments. After a brief review of the well-known early work, representative recent experimental and theoretical works are discussed and the essence of significant modern findings are interpreted. In the area of local reconnection physics, many findings have been made with regard to two-fluid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and microturbulence are discussed to understand the fundamental processes in a local reconnection layer in both space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also discussed.

33

Makro- and micromorphological evidence of processes taking place during Albeluvisol development in S Norway  

Science.gov (United States)

We studied two soil chronosequences in S Norway to identify processes involved in Albeluvisol formation. For this purpose, field observation of vertical and horizontal sections of soil profiles, soil chemical and mineralogical analyses were carried out, and in particular, micromorphological analysis was applied. The study area is located at the western and eastern side of the Oslofjord, S Norway, in the counties Vestfold and Østfold. This region is characterized by continuous glacio-isostatic uplift over the entire Holocene. Hence, the age of the land surface continuously increases from the coast towards higher elevations. Twelve soil profiles in loamy marine sediments were studied. Based on macro- and micromorphological observations and analytical data progressive soil formation is characterized as follows: As soon as the land surface is raised above sea level, five major processes are initiated: 1) development of deep desiccation cracks, forming a polygonal pattern; 2) compaction, taking place as soon as the coarse pores have been drained; 3) pyrite oxidation and release of sulfuric acid; 4) carbonate dissolution by acids from pyrite and iron oxidation resulting in rapid decarbonatization of the originally calcareous sediments; 5) precipitation of iron hypocoatings and coatings in the capillary fringe Soon after these very early processes have taken place, limited water permeability of the fine-textured sediments leads to horizon differentiation into Ah, Eg and Btg horizons within less than 2.1 ka. Eg horizons become lighter in colour with time. Also illuvial clay is already observed in the 2.1 ka-old soil. Soil pH in the upper part of the E horizon of this soil is already too low for significant clay mobilization. Clay illuviation is still active in all soils studied, but the upper boundary of the zone where pH favours clay mobilization is at 20-50 cm depth. Progressive clay illuviation over time is recorded in increasing thickness of clay coatings and proportion of voids having clay coatings. Clay mobilization and iron co-eluviation in the upper Eg horizon ceases within less than 2.1 ka, whereas weathering and formation of clay minerals and iron oxides continue, leading to formation of a BE horizon in the upper part of the Eg horizon. Albeluvic tongues start to form after 4.6-6.2 ka, developing preferably along desiccation cracks. Albeluvic material is washed into the cracks, and also enhanced leaching of bases and clay eluviation take place in the cracks. As both processes proceed, the albeluvic tongues get longer and wider. Clayey intercalations occur in the older soils (Stagnic Albeluvisols), and the following concept is suggested to explain their genesis: When after snow melt or a rainy period infiltrating water arrives at the lower end of an albeluvic tongue, the tongue fills up with water. Perched water accumulates also on top of the dense Btg horizon. Water, carrying suspended clay, penetrates under the pressure of the overlying water column from the tongue into the Btg horizon, where additional clay is mobilized. The clay settles when the velocity of the water decreases, forming clayey intercalations in the dense matrix of the Btg horizon.

Sauer, Daniela; Schülli-Maurer, Isabelle; Sperstad, Ragnhild; Sørensen, Rolf

2014-05-01

34

Reconnection current sheet structure in a turbulent medium  

Directory of Open Access Journals (Sweden)

Full Text Available In the presence of turbulence, magnetic field lines lose their dynamical identity and particles entrained on field lines diffuse through space at a rate determined by the amplitude of the turbulence. In previous work (Lazarian and Vishniac, 1999; Kowal et al., 2009; Eyink et al., 2011 we showed that this leads to reconnection speeds which are independent of resistivity. In particular, in Kowal et al. (2009 we showed that numerical simulations were consistent with the predictions of this model. Here we examine the structure of the current sheet in simulations of turbulent reconnection. Laminar flows consistent with the Sweet-Parker reconnection model produce very thin and well ordered currents sheets. On the other hand, the simulations of Kowal et al. (2009 show a strongly disordered state even for relatively low levels of turbulence. Comparing data cubes with and without reconnection, we find that large scale field reversals are the cumulative effect of many individual eddies, each of which has magnetic properties which are not very different from turbulent eddies in a homogeneous background. This implies that the properties of stationary and homogeneous MHD turbulence are a reasonable guide to understanding turbulence during large scale magnetic reconnection events. In addition, dissipation and high energy particle acceleration during reconnection events take place over a macroscopic volume, rather than being confined to a narrow zone whose properties depend on microscopic transport coefficients.

E. T. Vishniac

2012-11-01

35

OECD Global Science Forum's Astronomy Workshop to take place in Munich  

Science.gov (United States)

On December 1 to 3, the city of Munich (Bavaria, Germany) will be the venue for a "Workshop on Large Scale Programmes and Projects in Astronomy and Astrophysics" organised by the Organisation for Economic Co-operation and Development (OECD) Global Science Forum in co-operation with the European Southern Observatory (ESO). The Workshop will be chaired by Ian Corbett (ESO). The Global Science Forum brings together science policy officials from the OECD countries. The delegates, who meet twice a year, look at a range of generic issues in science funding and seek to identify and maximise opportunities for international co-operation in basic scientific research. This Workshop was proposed by Germany and agreed by the delegates to the Global Science Forum in June. Government officials and scientists will be able to review in detail the information and the observational and technological advances needed for major progress in the field during the next 15- 20 years. The research subjects reviewed will cover the full range from planets, solar systems, life in the Universe, stars, galaxies, extreme objects to cosmology. Related technological challenges, virtual observatories and other data handling issues will also be considered. The primary objective is to specify the policy issues relating to priority-setting, planning, funding and, above all, international co-ordination and co-operation. The Workshop will focus on issues relevant to the process through which astronomy advances, and will highlight means to enhance that process in light of longer-term scientific and political trends. There will probably be a follow-up meeting early in 2004, from which a policy level report will be prepared for consideration by the Global Science Forum and so transmitted to governments. Eighteen delegations, from non-OECD as well as OECD countries, will attend, each consisting of senior programme managers from the national ministry, funding agency or research council, and one or more senior members of the national astronomical community. The International Astronomical Union (IAU) and the European Southern Observatory (ESO) are explicitly represented. Experts from the world-wide astronomy community have been invited to set the stage and provide input for the discussions. The choice by Germany and the OECD to make Munich the venue of this Global Science Forum Workshop is no coincidence. It is a recognition of the important role played by many institutions in the Munich region in the field of Astronomy and Astrophysics. They include the Ludwig-Maximilians-Universität where the Workshop will take place, the Max-Planck-Institut für Astrophysik, the Max-Planck Institut für Extraterrestrische Physik and the European Southern Observatory. These institutions are all participating in large programmes and projects in astronomy. ESO, for its part, is at the leading edge of world astronomy with its flagship facility, the Very Large Telescope in Paranal (Chile) and the newly started ALMA project at Chajnantor (Chile), being carried out in partnership between Europe and North America. Public Talks (Munich) on December 1, 2003 As a prelude to the Workshop, two public keynote presentations will take place on December 1 at the Deutsches Museum in Munich at 18:00 CET. The speakers are Malcolm Longair, Jacksonian Professor of Natural Philosophy and Head of Laboratory, Cavendish Laboratory, Cambridge (UK) and Martin Harwit, Professor Emeritus of Astronomy, Cornell University, and former Director of the National Air and Space Museum, Washington, DC (USA). The talks will be given in English and the entry to this public event is free. Professor Longair will speak on "Astrophysics and Cosmology in the Twenty-First Century" and Professor Harwit will speak on "The Growth of Understanding of our Universe". You can find more informaton on the Public Talks web page.

2003-11-01

36

Optimization on Placing-in and Taking-out Operation for Railway Special Line Based on Improved Simulated Annealing Algorithm  

Directory of Open Access Journals (Sweden)

Full Text Available Placing-in and taking-out operation of railway special line is one of the key links and also is a complicated system engineering that is influenced by multitudinous factors. The intrinsic mechanism of placing-in and taking-out operation for railway radial special line was analyzed according to the characters of railway radial special line. On this basis, the whole process of placing-in and taking-out operation for railway radial special line was divided into the two operations process which include placing-in scheduling and taking-out scheduling, then the optimization model of placing-in and taking-out operation for railway radial special line have been built considering that the time-window of each operation sites, the reliability train on-time and minimize the delay number of jobs is respectively regarded as the decision variable and objective function and optimization sequence of placing-in and taking-out operation was abstained under condition of non-through cars arriving at station. Meanwhile, corresponding optimization algorithm has also been put forward based on Improved Simulated Annealing (ISA algorithm. Finally, a case study has been carried out in order to testify validity, objectivity and applicability of this model and its algorithm and the computing results of Genetic Algorithm (GA, Simulated Annealing (SA and ISA is compared and analyzed respectively, it is shown that the results obtained by ISA are better than those obtained by SA and GA applied alone, the best solutions found so far of the ISA have less fitness value than that of the other two. This model and its algorithm can solve placing-in and taking-out operation of railway radial special line very well.

Linna Cheng

2013-01-01

37

DSC studies of retrogradation and amylose-lipid transition taking place in gamma-irradiated wheat starch  

International Nuclear Information System (INIS)

It has been already shown that degradation resulting from gamma irradiation induces a decrease in order of starch granules and influences gelatinisation taking place during heating of starch and flour suspensions. In presented paper, DSC (differential scanning calorimetry) studies were carried out for wheat starch, non-irradiated and irradiated using doses in the range from 5 to 30 kGy. The influence of the conditions applied during DSC measurements on the possibility to observe differences between the amylose-lipid complex transition and retrogradation taking place in the non-irradiated and particularly irradiated starch samples was checked. The better differentiation between the amylose-lipid complex transition taking place in particular samples accompanied by the better reproducity were obtained in the case of dense suspensions as compared to the watery suspensions as well as during the first analysis performed for the recrystallised gels

38

Magnetic reconnection during magnetospheric substorms  

Science.gov (United States)

The near earth reconnection model of substorms represents an attempt to place a broad range of observations into a consistent framework. The roles and requirements of reconnection are discussed. High speed plasma sheet flows, thin current sheet instability, substorm triggering, plasmoids and flux ropes in the distant tail, and magnetohydrodynamic simulations are discussed. Substorms are global, coherent sequences of processes involving solar wind/magnetosphere/ionosphere interaction. Magnetic reconnection is required to explain different dayside and polar cap phenomena, which required nightside reconnection. The modification and expansion of the standard near earth neutral line (NENL) model can integrate breakup arcs, current disruption, current wedge features, and localized plasma flows into the magnetic reconnection framework.

Baker, Daniel N.

1996-01-01

39

Separatrices: the crux of reconnection  

CERN Document Server

Reconnection is one of the key processes in astrophysical and laboratory plasmas: it is the opposite of a dynamo. Looking at energy, a dynamo transforms kinetic energy in magnetic energy while reconnection takes magnetic energy and returns is to its kinetic form. Most plasma processes at their core involve first storing magnetic energy accumulated over time and then releasing it suddenly. We focus here on this release. A key concept in analysing reconnection is that of the separatrix, a surface (line in 2D) that separates the fresh unperturbed plasma embedded in magnetic field lines not yet reconnected with the hotter exhaust embedded in reconnected field lines. In kinetic physics, the separatrices become a layer where many key processes develop. We present here new results relative to the processes at the separatrices that regulate the plasma flow, the energisation of the species, the electromagnetic fields and the instabilities developing at the separatrices.

Lapenta, Giovanni; Divin, Andrey; Newman, David; Goldman, Martin

2014-01-01

40

Vortex Reconnection as the Dissipative Scattering of Dipoles  

CERN Document Server

We propose a phenomenological model of vortex tube reconnection at high Reynolds numbers. The basic picture is that squeezed vortex lines, formed by stretching in the region of closest approach between filaments, interact like dipoles (monopole-antimonopole pairs) of a confining electrostatic theory. The probability of dipole creation is found from a canonical ensemble spanned by foldings of the vortex tubes, with temperature parameter estimated from the typical energy variation taking place in the reconnection process. Vortex line reshuffling by viscous diffusion is described in terms of directional transitions of the dipoles. The model is used to fit with reasonable accuracy experimental data established long ago on the symmetric collision of vortex rings. We also study along similar lines the asymmetric case, related to the reconnection of non-parallel vortex tubes.

Moriconi, L

1999-01-01

 
 
 
 
41

Magnetic Reconnection  

Energy Technology Data Exchange (ETDEWEB)

We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

Masaaki Yamada, Russell Kulsrud and Hantao Ji

2009-09-17

42

The auroral and ionospheric flow signatures of dual lobe reconnection  

Directory of Open Access Journals (Sweden)

Full Text Available We present the first substantial evidence for the occurrence of dual lobe reconnection from ionospheric flows and auroral signatures. The process of dual lobe reconnection refers to an interplanetary magnetic field line reconnecting with lobe field lines in both the northern and southern hemispheres. Two bursts of sunward plasma flow across the noon portion of the open/closed field line boundary (OCB, indicating magnetic flux closure at the dayside, were observed in SuperDARN radar data during a period of strongly northward IMF. The OCB is identified from spacecraft, radar backscatter, and auroral observations. In order for dual lobe reconnection to take place, we estimate that the interplanetary magnetic field clock angle must be within ±10° of zero (North. The total flux crossing the OCB during each burst is small (1.8% and 0.6% of the flux contained within the polar cap for the two flows. A brightening of the noon portion of the northern auroral oval was observed as the clock angle passed through zero, and is thought to be due to enhanced precipitating particle fluxes due to the occurrence of reconnection at two locations along the field line. The number of solar wind protons captured by the flux closure process was estimated to be ~2.5×1030 (4 tonnes by mass, sufficient to populate the cold, dense plasma sheet observed following this interval.

S. M. Imber

2006-11-01

43

Hall MHD Modeling of Two-dimensional Reconnection: Application to MRX Experiment  

Energy Technology Data Exchange (ETDEWEB)

Two-dimensional resistive Hall magnetohydrodynamics (MHD) code is used to investigate the dynamical evolution of driven reconnection in the Magnetic Reconnection Experiment (MRX). The initial conditions and dimensionless parameters of the simulation are set to be similar to the experimental values. We successfully reproduce many features of the time evolution of magnetic configurations for both co- and counter-helicity reconnection in MRX. The Hall effect is shown to be important during the early dynamic X-phase of MRX reconnection, while effectively negligible during the late ''steady-state'' Y-phase, when plasma heating takes place. Based on simple symmetry considerations, an experiment to directly measure the Hall effect in MRX configuration is proposed and numerical evidence for the expected outcome is given.

V.S. Lukin; S.C. Jardin

2003-01-09

44

A MAGNETIC RECONNECTION ORIGIN FOR THE SOFT X-RAY EXCESS IN AN ACTIVE GALACTIC NUCLEUS  

International Nuclear Information System (INIS)

We present a new scenario to explain the soft X-ray excess in an active galactic nucleus (AGN). Magnetic reconnection could happen in a thin layer on the surface of an accretion disk. Electrons are accelerated by a shock wave and turbulence is triggered by magnetic reconnection. Inverse Compton scattering then takes place above the accretion disk, producing soft X-rays. Based on the standard disk model, we estimate the magnetic field strength and the energy released by magnetic reconnection along the accretion disk and find that the luminosity arising from magnetic reconnection is mostly emitted in the inner disk, which is dominated by radiation pressure. We then apply the model to fit the spectra of AGNs with strong soft X-ray excess

45

ON THE NATURE OF RECONNECTION AT A SOLAR CORONAL NULL POINT ABOVE A SEPARATRIX DOME  

International Nuclear Information System (INIS)

Three-dimensional magnetic null points are ubiquitous in the solar corona and in any generic mixed-polarity magnetic field. We consider magnetic reconnection at an isolated coronal null point whose fan field lines form a dome structure. Using analytical and computational models, we demonstrate several features of spine-fan reconnection at such a null, including the fact that substantial magnetic flux transfer from one region of field line connectivity to another can occur. The flux transfer occurs across the current sheet that forms around the null point during spine-fan reconnection, and there is no separator present. Also, flipping of magnetic field lines takes place in a manner similar to that observed in the quasi-separatrix layer or slip-running reconnection

46

ON THE NATURE OF RECONNECTION AT A SOLAR CORONAL NULL POINT ABOVE A SEPARATRIX DOME  

Energy Technology Data Exchange (ETDEWEB)

Three-dimensional magnetic null points are ubiquitous in the solar corona and in any generic mixed-polarity magnetic field. We consider magnetic reconnection at an isolated coronal null point whose fan field lines form a dome structure. Using analytical and computational models, we demonstrate several features of spine-fan reconnection at such a null, including the fact that substantial magnetic flux transfer from one region of field line connectivity to another can occur. The flux transfer occurs across the current sheet that forms around the null point during spine-fan reconnection, and there is no separator present. Also, flipping of magnetic field lines takes place in a manner similar to that observed in the quasi-separatrix layer or slip-running reconnection.

Pontin, D. I. [Division of Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); Priest, E. R. [School of Mathematics and Statistics, University of St Andrews, Fife KY16 9SS (United Kingdom); Galsgaard, K., E-mail: dpontin@maths.dundee.ac.uk [Niels Bohr Institute, Copenhagen DK-2100 (Denmark)

2013-09-10

47

On the nature of reconnection at a solar coronal null point above a separatrix dome  

CERN Document Server

Three-dimensional magnetic null points are ubiquitous in the solar corona, and in any generic mixed-polarity magnetic field. We consider magnetic reconnection at an isolated coronal null point, whose fan field lines form a dome structure. We demonstrate using analytical and computational models several features of spine-fan reconnection at such a null, including the fact that substantial magnetic flux transfer from one region of field line connectivity to another can occur. The flux transfer occurs across the current sheet that forms around the null point during spine-fan reconnection, and there is no separator present. Also, flipping of magnetic field lines takes place in a manner similar to that observed in quasi-separatrix layer or slip-running reconnection.

Pontin, D I; Galsgaard, K

2013-01-01

48

Magnetic reconnection driven by filament eruption in the 7 June 2011 event  

Science.gov (United States)

During an unusually massive filament eruption on 7 June 2011, SDO/AIA imaged for the first time significant EUV emission around a magnetic reconnection region in the solar corona. The reconnection occurred between magnetic fields of the laterally expanding CME and a neighbouring active region. A pre-existing quasi-separatrix layer was activated in the process. This scenario is supported by data-constrained numerical simulations of the eruption. Observations show that dense cool filament plasma was re-directed and heated in situ, producing coronal-temperature emission around the reconnection region. These results provide the first direct observational evidence, supported by MHD simulations and magnetic modelling, that a large-scale re-configuration of the coronal magnetic field takes place during solar eruptions via the process of magnetic reconnection.

van Driel-Gesztelyi, L.; Baker, D.; Török, T.; Pariat, E.; Green, L. M.; Williams, D. R.; Carlyle, J.; Valori, G.; Démoulin, P.; Matthews, S. A.; Kliem, B.; Malherbe, J.-M.

2014-01-01

49

Comparison of test particle acceleration in torsional spine and fan reconnection regimes  

Science.gov (United States)

Magnetic reconnection is a common phenomenon taking place in astrophysical and space plasmas, especially in solar flares which are rich sources of highly energetic particles. Torsional spine and fan reconnections are important mechanisms proposed for steady-state three-dimensional null-point reconnection. By using the magnetic and electric fields for these regimes, we numerically investigate the features of test particle acceleration in both regimes with input parameters for the solar corona. By comparison, torsional spine reconnection is found to be more efficient than torsional fan reconnection in an acceleration of a proton to a high kinetic energy. A proton can gain as high as 100 MeV of relativistic kinetic energy within only a few milliseconds. Moreover, in torsional spine reconnection, an accelerated particle can escape either along the spine axis or on the fan plane depending on its injection position. However, in torsional fan reconnection, the particle is only allowed to accelerate along the spine axis. In addition, in both regimes, the particle's trajectory and final kinetic energy depend on the injection position but adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory.

Hosseinpour, M.; Mehdizade, M.; Mohammadi, M. A.

2014-10-01

50

A Study on the Place Attachment Differences of Residents in Tourism Destination: Take Gulangyu Island as an Example  

Directory of Open Access Journals (Sweden)

Full Text Available Place attachment is a long time research topic in tourism geography. However, when Chinese people do tourism planning and manage the destination, most of them also pay attention to the management of real enviroment or recreation faclilities. Few people study the place attachment relationship between the resident and the destination. This study takes Gulangyu as an example. By a large number of questionnaires, using relevant statistical software and methematical analysis, the paper analyzes the relationship between place attachment and the background, ways of tourism and frequency of visitation of local residents, the result shows that such as gender, cultural level, living time, occupation and whether the local people have an impact on the place attachment of residents. However,such as age and activities have no impact on the place attachment of residents, some differences of residents' place attachment are found. On the basis of the study, the paper analyzes the residents cluster basing on the difference of place attachment. Four types of resident are identified:"the daily life", "the emotion approval", "the sparsely leaving" and "the vital function".

YUAN Shu-ai

2011-11-01

51

Magnetic reconnection in the interior of interplanetary coronal mass ejections.  

Science.gov (United States)

Recent in situ observations of interplanetary coronal mass ejections (ICMEs) found signatures of reconnection exhausts in their interior or trailing edge. Whereas reconnection on the leading edge of an ICME would indicate an interaction with the coronal or interplanetary environment, this result suggests that the internal magnetic field reconnects with itself. In light of this data, we consider the stability properties of flux ropes first developed in the context of astrophysics, then further elaborated upon in the context of reversed field pinches (RFPs). It was shown that the lowest energy state of a flux rope corresponds to ? × B = ?B with ? a constant, the so-called Taylor state. Variations from this state will result in the magnetic field trying to reorient itself into the Taylor state solution, subject to the constraints that the toroidal flux and magnetic helicity are invariant. In reversed field pinches, this relaxation is mediated by the reconnection of the magnetic field, resulting in a sawtooth crash. If we likewise treat the ICME as a flux rope, any deviation from the Taylor state will result in reconnection within the interior of the flux tube, in agreement with the observations by Gosling et al. Such a departure from the Taylor state takes place as the flux tube cross section expands in the latitudinal direction, as seen in magnetohydrodynamic (MHD) simulations of flux tubes propagating through the interplanetary medium. We show analytically that this elongation results in a state which is no longer in the minimum energy Taylor state. We then present magnetohydrodynamic simulations of an elongated flux tube which has evolved away from the Taylor state and show that reconnection at many surfaces produces a complex stochastic magnetic field as the system evolves back to a minimum energy state configuration. PMID:25083630

Fermo, R L; Opher, M; Drake, J F

2014-07-18

52

Magnetic Reconnection in the Interior of Interplanetary Coronal Mass Ejections  

Science.gov (United States)

Recent in situ observations of interplanetary coronal mass ejections (ICMEs) found signatures of reconnection exhausts in their interior or trailing edge. Whereas reconnection on the leading edge of an ICME would indicate an interaction with the coronal or interplanetary environment, this result suggests that the internal magnetic field reconnects with itself. In light of this data, we consider the stability properties of flux ropes first developed in the context of astrophysics, then further elaborated upon in the context of reversed field pinches (RFPs). It was shown that the lowest energy state of a flux rope corresponds to ?×B=?B with ? a constant, the so-called Taylor state. Variations from this state will result in the magnetic field trying to reorient itself into the Taylor state solution, subject to the constraints that the toroidal flux and magnetic helicity are invariant. In reversed field pinches, this relaxation is mediated by the reconnection of the magnetic field, resulting in a sawtooth crash. If we likewise treat the ICME as a flux rope, any deviation from the Taylor state will result in reconnection within the interior of the flux tube, in agreement with the observations by Gosling et al. Such a departure from the Taylor state takes place as the flux tube cross section expands in the latitudinal direction, as seen in magnetohydrodynamic (MHD) simulations of flux tubes propagating through the interplanetary medium. We show analytically that this elongation results in a state which is no longer in the minimum energy Taylor state. We then present magnetohydrodynamic simulations of an elongated flux tube which has evolved away from the Taylor state and show that reconnection at many surfaces produces a complex stochastic magnetic field as the system evolves back to a minimum energy state configuration.

Fermo, R. L.; Opher, M.; Drake, J. F.

2014-07-01

53

Test particle acceleration in torsional spine magnetic reconnection  

Science.gov (United States)

Three-dimensional (3D) magnetic reconnection is taking place commonly in astrophysical and space plasmas, especially in solar flares which are rich sources of highly energetic particles. One of the proposed mechanisms for steady-state 3D magnetic reconnection is "torsional spine reconnection". By using the magnetic and electric fields for "torsional spine reconnection", we numerically investigate the features of test particle acceleration with input parameters for the solar corona. We show that efficient acceleration of a relativistic proton is possible near the null point where it can gain up to 100 MeV of kinetic energy within a few milliseconds. However, varying the injection position results in different scenarios for proton acceleration. A proton is most efficiently accelerated when it is injected at the point where the magnetic field lines change their curvature in the fan plane. Moreover, a proton injected far away from the null point cannot be accelerated and, even in some cases, it is trapped in the magnetic field. In addition, adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory.

Hosseinpour, M.

2014-10-01

54

DSC Studies of Retrogradation and Amylose-Lipid Complex Transition Taking Place in Gamma Irradiated Wheat Starch  

International Nuclear Information System (INIS)

Degradation resulting from gamma irradiation induces decrease in order of starch granules and influences the processes occurring in starch-water system. Differential scanning calorimetry (DSC) was applied at present for studying the effect of radiation with doses of 5 - 30 kGy on amylose-lipid complex transition and retrogradation occurring in wheat starch gels. Influence of the conditions applied during DSC measurements and intermediate storage was tested on the possibility to observe radiation effect. Wheat starch was irradiated with 60Co gamma rays in a gamma cell Issledovatiel placed in the Department of Radiation Chemistry, INCT. DSC measurements were performed for ca. 50% and ca. 20% gels during heating - cooling - heating cycles (up to 3 cycles) in the temperature range 10 - 150 degree at heating and cooling rates of 10, 5 and 2.5 degree min-1. The Seiko DSC 6200 calorimeter was used. Decrease in amylose-lipid complex transition temperature was found already after irradiation of wheat starch with a dose of 5 kGy showing modificatin of the complex structure. The differences between the irradiated and the non-irradiated samples became the easier seen in the every foregoing heating or cooling cycle as compared to the preceeding one. It is because that thermal treatment causes decrease of transition temperature in all the irradiated samples, with no effect or increase of that temperature observed in the non-irradiated ones. Irradiation hinders retrogradation taking place in ca. 50% gels but facilitates retrogradation occurring in ca. 20 % gels. Moreover, the expanded differences between the amylose-lipid complex formed in the irradiated and non-irradiated gels result due to their recrystallisation. Storage of the gels induces decrease in the temperature of the complex transition as compared to the last cycle of the first analysis. That decrease was, however, more significant in the case of all the irradiated samples than in the case of the initial sample. In result, the differences between the irradiated and the non-irradiated samples are easier detected after storage. The better differentiation between the amylose-lipid complex transition taking place in particular samples accompanied by the better reproducity were obtained in the case of ca. 50% suspensions as compared to ca. 20% suspensions submitted to the same treatment. The results are discussed in terms of the structural changes resulting in starch due to irradiation. The work was sponsored in the frame of research grant 2P06T 026 27 of Polish Ministry of Scientific Research and Information Technology

55

Reconnection in the ISM  

Digital Repository Infrastructure Vision for European Research (DRIVER)

We discuss the role of ambipolar diffusion for simple reconnection in a partially ionized gas, following the reconnection geometry of Parker and Sweet. When the recombination time is short the mobility and reconnection of the magnetic field is substantially enhanced as matter escapes from the reconnection region via ambipolar diffusion. Our analysis shows that in the interstellar medium it is the recombination rate that usually limits the rate of reconnection. We show that h...

Vishniac, Ethan T.; Lazarian, A.

1997-01-01

56

In-Situ Observations of Reconnection in Space  

Science.gov (United States)

This paper gives an overview of the insights into the magnetic reconnection process obtained by in-situ measurements across current sheets found in planetary magnetospheres and the solar wind. Emphasis is placed on results that might be of interest to the study of reconnection in regions where no in-situ observations are available. These results include the role of symmetric versus asymmetric boundary conditions, the identification of the onset conditions, the reconnection rates, and the spatial and temporal scales. Special attention is paid to observations in the so-called diffusion region surrounding the reconnection sites, where ions and eventually also electrons become demagnetized and reconnection is initiated.

Paschmann, Götz; Øieroset, Marit; Phan, Tai

57

Forced magnetic reconnection due to boundary perturbation  

International Nuclear Information System (INIS)

Boundary layer analysis of forced magnetic reconnection due to an externally imposed boundary perturbation is revised. This revised analysis introduces correct asymptotic matching to take into account the effect of inertia in the inner layer precisely, and adopts a time dependent boundary perturbation which is suitable for this analysis. The revised analysis demonstrates a new reconnection process and clarifies the role of stability against the tearing modes in the process. The initial evolution of this new reconnection process is characterized by some significant features. One is that the reconnected flux increases on the same time scale as the boundary perturbation, which excludes the Sweet-Parker time scale obtained by use of the invalid constant-? asymptotic matching. Another is that an induced surface current on a resonant surface is in such a direction as to oppose the progress of the reconnection, because the equilibrium is stable against the tearing modes in the absence of the boundary perturbation. (author)

58

Global Simulations of Magnetotail Reconnection  

Science.gov (United States)

There is a growing number of observational evidences of dynamic quasi-periodical magnetosphere response to continuously southward interplan etary magnetic field (IMF). However, traditional global MHD simulatio ns with magnetic reconnection supported by numerical dissipation and ad hoc anomalous resistivity driven by steady southward IMF often prod uce only quasi-steady configurations with almost stationary near-eart h neutral line. This discrepancy can be explained by the assumption that global MHD simulations significantly underestimate the reconnectio n rate in the magnetotail during substorm expansion phase. Indeed, co mparative studies of magnetic reconnection in small scale geometries demonstrated that traditional resistive MHD did not produce the fast r econnection rates observed in kinetic simulations. The major approxim ation of the traditional MHD approach is an isotropic fluid assumption) with zero off-diagonal pressure tensor components. The approximatio n, however, becomes invalid in the diffusion region around the reconn ection site where ions become unmagnetized and experience nongyrotropic behaviour. Deviation from gyrotropy in particle distribution functi on caused by kinetic effects manifests itself in nongyrotropic pressu re tensor with nonzero off-diagonal components. We use the global MHD code BATS-R-US and replace ad hoc parameters such as "critical curren t density" and "anomalous resistivity" with a physically motivated di ssipation model. The key element of the approach is to identify diffusion regions where the isotropic fluid MHD approximation is not applic able. We developed an algorithm that searches for locations of magnet otail reconnection sites. The algorithm takes advantage of block-based domain-decomposition technique employed by the BATS-R-US. Boundaries of the diffusion region around each reconnection site are estimated from the gyrotropic orbit threshold condition, where the ion gyroradius is equal to the distance to the reconnection site. Inside diffusion regions ions are treated as nongyrotropic fluid with nonzero off-dia gonal components of the pressure tensor. The primary kinetic mechanism controlling the dissipation in the diffusion region is incorporated into global MHD simulations in terms of spatially localized nongyrotropic corrections to the induction equation. The magnitude of the non-g yrotropic corrections to the electric field and spatial scales of the diffusion regions are calculated self-consistently at each time step of the simulation using local MHD plasma and field parameters at the reconnection site without introduction of any ad hoc parameters. We d emonstrated that magnetotail reconnection is inherently unsteady even when the solar wind is steady. Global MHD simulations with nongyrotropic corrections produce bursts of fast reconnection typically observe d in small-scale kinetic simulations. During the bursts the length of the diffusion region does not exceed 2R(sub E) approximates 12(c/ome ga * pi). The bursts of the fast reconnection last only for a few min utes. After reaching the maximum value the reconnection rate decreases while the length of the diffusion region increases. The decreased ra te, however, is still significantly larger that the steady reconnection rate characteristic for MHD simulations with reconnection supported by numerical resistivity alone. Magnetotail reconnection supported b y nongyrotropic effects results in a tailward retreat of the reconnection site with average speed of the order of 100 km/s, accompanied by magnetotail stretching and thin current sheet formation in the near-E arth plasma sheet. Overall magnetotail response to the steady low-mach-number solar wind with southward IMF exhibits quasi-periodic loading /unloading dynamics typical for frequently observed multiple substorm s.

Kuznetsova, M. M.; Hesse, M.; Rastatter, L.; Toth, G.; Gombosi, T.

2007-01-01

59

Explosive turbulent magnetic reconnection.  

Science.gov (United States)

We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconnection jets. This fast turbulent reconnection is achieved by the localization of turbulent diffusion. Additionally, localized structure forms through the interaction of the mean field and turbulence. PMID:23829741

Higashimori, K; Yokoi, N; Hoshino, M

2013-06-21

60

Magnetic reconnection in astrophysics  

International Nuclear Information System (INIS)

Magnetic reconnection has been invoked to explain important transport phenomena and the activity of space and astrophysical plasmas. Two major classes of reconnection are generally distinguished. If time dependence is not essential, steady state reconnection schemes may be applicable. The time-dependent reconnection may either be predominantly spontaneous or predominantly driven. A few aspects that are essential in current research in this field are mentioned and the general trend in favour of the time-dependent reconnection is emphasized. The key role of in-situ space probe measurements is accounted for. A satisfactory theoretical understanding of reconnection requires a deeper insight into collective dissipation processes. (J.U.)

 
 
 
 
61

Solar flare mechanism based on magnetic arcade reconnection and island merging  

Energy Technology Data Exchange (ETDEWEB)

The authors propose a model describing physical processes of solar flares based on resistive reconnection of magnetic field subject to continuous increase of magnetic shear in the arcade. The individual flaring process consists of magnetic reconnection of arcade field lines, generation of magnetic islands in the magnetic arcade, and coalescence of magnetic islands. When a magnetic arcade is sheared (either by foot point motion or by flux emergence), a current sheet is formed and magnetic reconnection can take place to form a magnetic island. A continuing increase of magnetic shear can trigger a new reconnection process and create a new island in the under lying arcade below the magnetic island. The new born island rises faster than the preceding island and merges with it to form one island. Before completing the island merging process, the new born island exhibits two phases of rising motion: a first phase with a slower rising speed and a second phase with a faster rising speed. The flare plasma heating occurs mainly due to magnetic reconnection in the current sheet under the new born island. The new born island represents the X-ray plasma ejecta which shows two phases of rising motion observed by Yohkoh [Ohyama and Shibata (1997)]. The first phase with slower new born island rising speed corresponds to the early phase of reconnection of line-tied field in the underlying current sheet and is considered as the preflare phase. In the second phase, the island coalescence takes place, and the underlying current sheet is elongated so that the line-tied arcade field reconnection rate is enhanced. This phase is interpreted as the impulsive phase or the flash phase of flares. The obtained reconnection electric field is large enough to accelerate electrons to an energy level higher than 10 keV, which is necessary for observed hard X-ray emissions. After merging of the islands is completed, magnetic reconnection continues in the current sheet under the integrated island for a longer period, which is considered as the main phase of flares. The sequence of all these processes is repeated with some time interval while a shear-increasing motion continues. The authors propose that these repetitive flaring processes constitute a set of homologous flares.

C.Z. Chen; G.S. Choe

2000-06-15

62

Reconnection of Magnetic Fields  

Science.gov (United States)

Preface; Part I. Introduction: 1.1 The Sun E. R. Priest; 1.2 Earth's magnetosphere J. Birn; Part II. Basic Theory of MHD Reconnection: 2.1 Classical theory of two-dimensional reconnection T. G. Forbes; 2.2 Fundamental concepts G. Hornig; 2.3 Three-dimensional reconnection in the absence of magnetic null points G. Hornig; 2.4 Three-dimensional reconnection at magnetic null points D. Pontin; 2.5 Three-dimensional flux tube reconnection M. Linton; Part III. Basic Theory of Collisionless Reconnection: 3.1 Fundamentals of collisionless reconnection J. Drake; 3.2 Diffusion region physics M. Hesse; 3.3 Onset of magnetic reconnection P. Pritchett; 3.4 Hall-MHD reconnection A. Bhattacharjee and J. Dorelli; 3.5 Role of current-aligned instabilities J. Büchner and W. Daughton; 3.6 Nonthermal particle acceleration M. Hoshino; Part IV. Reconnection in the Magnetosphere: 4.1 Reconnection at the magnetopause: concepts and models J. G. Dorelli and A. Bhattacharjee; 4.2 Observations of magnetopause reconnection K.-H. Trattner; 4.3 On the stability of the magnetotail K. Schindler; 4.4 Simulations of reconnection in the magnetotail J. Birn; 4.5 Observations of tail reconnection W. Baumjohann and R. Nakamura; 4.6 Remote sensing of reconnection M. Freeman; Part V. Reconnection in the Sun's Atmosphere: 5.1 Coronal heating E. R. Priest; 5.2 Separator reconnection D. Longcope; 5.3 Pinching of coronal fields V. Titov; 5.4 Numerical experiments on coronal heating K. Galsgaard; 5.5 Solar flares K. Kusano; 5.6 Particle acceleration in flares: theory T. Neukirch; 5.7 Fast particles in flares: observations L. Fletcher; 6. Open problems J. Birn and E. R. Priest; Bibliography; Index.

Birn, J.; Priest, E. R.

2007-01-01

63

Solar Flare Particle Heating Via Low-Beta Reconnection  

Science.gov (United States)

Solar flare electrons are accelerated into a quasi-thermal population of tens of keV. X-ray and ?-ray observations also imply long tails in both electron and ion populations, reaching tens of MeV and above. Simple estimates indicate that virtually all available electrons are affected, pointing to an initial bulk heating process rather than acceleration of a small or localized population. Flares appear to occur in conjunction with magnetic reconnection. However, since the reconnection site (diffusion region) only makes up an insignificant volume compared to flare loop dimensions, it is unlikely that reconnection itself is directly responsible for the observed massive heating. Recently, we have explored a model in which the first step takes place along the discontinuities that bound the reconnection inflow/outflow in a Petschek geometry. Traditionally, these are considered to be slow shocks close to the switch-off limit. The usual argument in solar MHD descriptions of slow shocks is that the plasma is ~isothermal, with most of the magnetic energy going into the reconnection outflow. However, from our earlier simulations of low-beta reconnection and from recent observations in the solar wind and at the Earth's magnetotail, we know this is not what happens. In an ion-kinetic plasma, upon entry into the discontinuity, ions are accelerated into beam-like, field-aligned distributions with ~Alfvén speed. The outflow thus harbours counter-streaming ion beams that eventually thermalize, with approximately half of the available energy going into thermal heating - in fast reconnection implying ion energization by a factor of ~0.5/?. In the corona this is very significant, with resulting energies easily at and above the observed thermal electron population. We show a set of new hybrid simulations (kinetic ions, fluid electrons) that is in agreement with the above scaling with ?. We have evaluated the resulting ion distributions and explored the ensuing instabilities. We discuss their role in forming high-energy tails and in heating the electrons. Our work suggests a two-stage acceleration process in which the ions play the primary role both in initial heating, and in providing the free energy for electron heating and high-energy tail formation.

Krauss-Varban, D.

2006-08-01

64

Solar wind interaction with the Earth's magnetosphere: the role of reconnection in the presence of a large scale sheared flow  

Directory of Open Access Journals (Sweden)

Full Text Available The Earth's magnetosphere and solar wind environment is a laboratory of excellence for the study of the physics of collisionless magnetic reconnection. At low latitude magnetopause, magnetic reconnection develops as a secondary instability due to the stretching of magnetic field lines advected by large scale Kelvin-Helmholtz vortices. In particular, reconnection takes place in the sheared magnetic layer that forms between adjacent vortices during vortex pairing. The process generates magnetic islands with typical size of the order of the ion inertial length, much smaller than the MHD scale of the vortices and much larger than the electron inertial length. The process of reconnection and island formation sets up spontaneously, without any need for special boundary conditions or initial conditions, and independently of the initial in-plane magnetic field topology, whether homogeneous or sheared.

F. Califano

2009-01-01

65

Magnetic field reconnection  

International Nuclear Information System (INIS)

The fundamental principles of particle acceleration by magnetic reconnection in cosmic plasmas are reviewed. The history of reconnection models is traced, and consideration is given to the Kelvin-Helmholtz theorem, the frozen-field theorem, the application of the Kelvin-Helmholtz theorem to a collisionless plasma, solutions to specific reconnection problems, and configurational instability. Diagrams and graphs are provided, and the objections raised by critics of the reconnection theory and/or its astrophysical applications are discussed. 42 references

66

Explosive Turbulent Magnetic Reconnection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconn...

Higashimori, Katsuaki; Yokoi, Nobumitsu; Hoshino, Masahiro

2013-01-01

67

Reconnection rates in driven magnetic reconnection  

International Nuclear Information System (INIS)

Using resistive magnetohydrodynamic simulations, we investigate the influence of various parameters on the reconnection rate in two scenarios of magnetic reconnection. The first scenario consists of the ''Newton Challenge'' problem [Birn et al., Geophys. Res. Lett. 32, L06105 (2005)]. In this scenario, reconnection is initiated in a plane Harris-type current sheet by temporally limited, spatially varying, inflow of magnetic flux. The second scenario consists of the well-studied island coalescence problem. This scenario starts from an equilibrium containing periodic magnetic islands with parallel current filaments. Due to the attraction between parallel currents, pairs of islands may move toward each other, forming a current sheet in between. This leads to reconnection and ultimately the merging of islands. In either scenario, magnetic reconnection may be considered as being driven by external or internal forcing. Consistent with that interpretation we find that in either case the maximum reconnection rate (electric field) depends approximately linearly on the maximum driving electric field, when other parameters remain unchanged. However, this can be understood mostly from the change of characteristic background parameters; particularly, the increase of the magnetic field strength in the inflow region due to the added magnetic flux. This interpretation is consistent with the result that the maximum of the reconnection electric field is assumed significantly later (ten field is assumed significantly later (tens of Alfven times) than the maximum driving and typically does not match the instantaneous driving electric field. Furthermore, the reconnection rate also depends on the resistivity and the time scale of the driving

68

Reversible collisionless magnetic reconnection  

Energy Technology Data Exchange (ETDEWEB)

Reversible magnetic reconnection is demonstrated for the first time by means of gyrokinetic numerical simulations of a collisionless magnetized plasma. Growth of a current-driven instability in a sheared magnetic field is accompanied by magnetic reconnection due to electron inertia effects. Following the instability growth, the collisionless reconnection is accelerated with development of a cross-shaped structure of current density, and then all field lines are reconnected. The fully reconnected state is followed by the secondary reconnection resulting in a weakly turbulent state. A time-reversed simulation starting from the turbulent state manifests that the collisionless reconnection process proceeds inversely leading to the initial state. During the reversed reconnection, the kinetic energy is reconverted into the original magnetic field energy. In order to understand the stability of reversed process, an external perturbation is added to the fully reconnected state, and it is found that the accelerated reconnection is reversible when the deviation of the E × B streamlines due to the perturbation is comparable with or smaller than a current layer width.

Ishizawa, A.; Watanabe, T.-H. [National Institute for Fusion Science, Toki 509-5292 (Japan)

2013-10-15

69

Reversible collisionless magnetic reconnection  

International Nuclear Information System (INIS)

Reversible magnetic reconnection is demonstrated for the first time by means of gyrokinetic numerical simulations of a collisionless magnetized plasma. Growth of a current-driven instability in a sheared magnetic field is accompanied by magnetic reconnection due to electron inertia effects. Following the instability growth, the collisionless reconnection is accelerated with development of a cross-shaped structure of current density, and then all field lines are reconnected. The fully reconnected state is followed by the secondary reconnection resulting in a weakly turbulent state. A time-reversed simulation starting from the turbulent state manifests that the collisionless reconnection process proceeds inversely leading to the initial state. During the reversed reconnection, the kinetic energy is reconverted into the original magnetic field energy. In order to understand the stability of reversed process, an external perturbation is added to the fully reconnected state, and it is found that the accelerated reconnection is reversible when the deviation of the E × B streamlines due to the perturbation is comparable with or smaller than a current layer width

70

Asymmetric Magnetic Reconnection in Partially Ionized Chromospheric Plasmas  

Science.gov (United States)

Magnetic reconnection is a ubiquitous process in the solar chromosphere. Realistic models of chromospheric reconnection must take into account that the plasma is partially ionized. Asymmetric reconnection in the chromosphere may occur when newly emerged flux interacts with pre-existing, overlying flux. We present simulations of asymmetric reconnection in weakly ionized, reacting plasmas where the magnetic field strengths, densities, and temperatures are different in each upstream region. The simulations show considerable thinning of the current sheet, asymmetric decoupling of ions and neutrals in the inflow regions, and plasmoid formation late in time. We will discuss these simulations in the context of newly available observations from the Interface Region Imaging Spectrograph (IRIS).

Murphy, Nicholas Arnold; Lukin, Vyacheslav; Raymond, John C.

2014-06-01

71

Research of Place-based 3D Augmented Community-Taking The 3D Virtual Campus as an Example  

Directory of Open Access Journals (Sweden)

Full Text Available Place-based virtual community is the trend of recent researches on pervasive computing. The purpose is to enable users in a physical place to receive ubiquitous services from the environment while they communicate with each other unwittingly. The paper further promotes this idea by allowing remote users to join such a virtual community as well as to interact with members on site and calls this type of community as the place-based 3D augmented (PDA community. With the help of the augmented reality technique, on-the-spot member can visually sense the remote users by their representing avatars. To achieve this goal, the ambient communication environment is required to support message flow among the remote users and people on site. Besides, this environment should be able to discover context passing among members of this community to provide proper services. The context issues and context-awareness approaches of PDA community are fully discussed in the paper. Finally, the infrastructure of this PDA community is also presented along with preliminary result of the prototyping environment.

Chung-Hsien Tsai

2011-05-01

72

Magnetic reconnection in space  

International Nuclear Information System (INIS)

Models of magnetic reconnection in space plasmas generally consider only a segment of the magnetic field lines. The consideration of only a segment of the lines is shown to lead to paradoxical results in which reconnection can be impossible even in a magnetic field constrained to be curl free or can be at an Alfvén rate even when the plasma is a perfect conductor. A model of reconnecting magnetic fields is developed which shows the smallness of the interdiffusion distance ?d of magnetic field lines does not limit the speed of reconnection but does provide a reconnection trigger. When the reconnection region has a natural length Lr, the spatial scale of the gradient of magnetic field across the magnetic field lines must reach Lg?0.3Lr/ln(Lr/?d) for fast reconnection to be triggered, which implies a current density j?B/?0Lg that is far lower than that usually thought required for fast reconnection. The relation between magnetic reconnection in space and in toroidal laboratory plasmas is also discussed.

73

Placing the power of real options analysis into the hands of natural resource managers - taking the next step.  

Science.gov (United States)

This paper explores heuristic methods with potential to place the analytical power of real options analysis into the hands of natural resource managers. The complexity of real options analysis has led to patchy or ephemeral adoption even by corporate managers familiar with the financial-market origins of valuation methods. Intuitively accessible methods for estimating the value of real options have begun to evolve, but their evaluation has mostly been limited to researcher-driven applications. In this paper we work closely with Bush Heritage Australia to evaluate the potential of real options analysis to support the intuitive judgement of conservation estate managers in covenanting land with uncertain future conservation value due to climate change. The results show that modified decision trees have potential to estimate the option value of covenanting individual properties while time and ongoing research resolves their future conservation value. Complementing this, Luehrman's option space has potential to assist managers with limited budgets to increase the portfolio value of multiple properties with different conservation attributes. PMID:23702285

Nelson, Rohan; Howden, Mark; Hayman, Peter

2013-07-30

74

A fully magnetohydrodynamic simulation of three-dimensional non-null reconnection  

International Nuclear Information System (INIS)

A knowledge of the nature of fully three-dimensional magnetic reconnection is crucial in understanding a great many processes in plasmas. It has been previously shown that in the kinematic regime the evolution of magnetic flux in three-dimensional reconnection is very different from two dimensions. In this paper a numerical fully magnetohydrodynamic simulation is described, in which this evolution is investigated. The reconnection takes place in the absence of a magnetic null point, and the nonideal region is localized in the center of the domain. The effect of differently prescribed resistivities is considered. The magnetic field is stressed by shear boundary motions, and a current concentration grows within the volume. A stagnation-point flow develops, with strong outflow jets emanating from the reconnection region. The behavior of the magnetic flux matches closely that discovered in the kinematic regime. In particular, it is found that no unique field line velocity exists, and that as a result field lines change their connections continually and continuously throughout the nonideal region. In order to describe the motion of magnetic flux within the domain, it is therefore necessary to use two different field line velocities. The importance of a component of the electric field parallel to the magnetic field is also demonstrated

75

A THEMIS Survey of Flux Ropes and Traveling Compression Regions: Location of the Near-Earth Reconnection Site During Solar Minimum  

Science.gov (United States)

A statistical study of flux ropes and traveling compression regions (TCRs) during the Time History of Events and Macroscale Interactions during Substorms (THEMIS) second tail season has been performed. A combined total of 135 flux ropes and TCRs in the range GSM X approx -14 to -31 R(sub E) were identified, many of these occurring in series of two or more events separated by a few tens of seconds. Those occurring within 10 min of each other were combined into aggregated reconnection events. For the purposes of this survey, these are most likely the products of reconnect ion occurring simultaneously at multiple, closely spaced x-lines as opposed to statistically independent episodes of reconnection. The 135 flux ropes and TCRs were grouped into 87 reconnection events; of these, 28 were moving tailward and 59 were moving Earthward. The average location of the near-Earth x-line determined from statistical analysis of these reconnection events is (X(sub GSM), Y*(sub GSM)) = (-30R(sub E), 5R(sub E)), where Y* includes a correction for the solar aberration angle. A strong east-west asymmetry is present in the tailward events, with >80% being observed at GSM Y* > O. Our results indicate that the Earthward flows are similarly asymmetric in the midtail region, becoming more symmetric inside - 18 R(sub E). Superposed epoch analyses indicate that the occurrence of reconnection closer to the Earth, i.e., X > -20 R(sub E), is associated with elevated solar wind velocity and enhanced negative interplanetary magnetic field B(sub z). Reconnection events taking place closer to the Earth are also far more effective in producing geomagnetic activity, judged by the AL index, than reconnection initiated beyond X approx -25 R(sub E).

Imber, S. M.; Slavin, J. A.; Auster, H. U.; Angelopoulos, V.

2011-01-01

76

Fast Reconnection and Reconnection Diffusion: Implications for Star Formation  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Fast reconnection of magnetic field in turbulent fluids allows magnetic field to change its topology and connections. As a result, the traditional concept of magnetic fields being frozen into the plasma is no longer applicable. The diffusion of plasmas and magnetic field is enabled by reconnection and therefore is termed "reconnection diffusion". We explore the consequences of reconnection diffusion for star formation. In the paper we explain the physics of reconnection diff...

Lazarian, A.

2011-01-01

77

Simulation of the 3-D Evolution of Electron Scale Magnetic Reconnection - Motivated by Laboratory Experiments Predictions for MMS  

Science.gov (United States)

The four s/c of the Magnetospheric Multiscale (MMS) mission, to be launched in 2014, will use the Earth's magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes. One of them is magnetic reconnection, an essentially multi-scale process. While laboratory experiments and past theoretical investigations have shown that important processes necessary to understand magnetic reconnection take place at electron scales the MMS mission for the first time will be able to resolve these scales by in space observations. For the measurement strategy of MMS it is important to make specific predictions of the behavior of current sheets with a thickness of the order of the electron skin depth which play an important role in the evolution of collisionless magnetic reconnection. Since these processes are highly nonlinear and non-local numerical simulation is needed to specify the current sheet evolution. Here we present new results about the nonlinear evolution of electron-scale current sheets starting from the linear stage and using 3-D electron-magnetohydrodynamic (EMHD) simulations. The growth rates of the simulated instabilities compared well with the growth rates obtained from linear theory. Mechanisms and conditions of the formation of flux ropes and of current filamentation will be discussed in comparison with the results of fully kinetic simulations. In 3D the X- and O-point configurations of the magnetic field formed in reconnection planes alternate along the out-of-reconnection-plane direction with the wavelength of the unstable mode. In the presence of multiple reconnection sites, the out-of-plane magnetic field can develop nested structure of quadrupoles in reconnection planes, similar to the 2-D case, but now with variations in the out-of-plane direction. The structures of the electron flow and magnetic field in 3-D simulations will be compared with those in 2-D simulations to discriminate the essentially 3D features. We also discuss the influence of guide fields, as in the magnetopause case and show how the 3-D evolution of an electron current sheet is influenced the strength of the guide field. This is unlike the 2-D case where reconnection takes place only in a plane. This work was partially funded by the Max-Planck/Princeton Center for Plasma Physics and the National Science Foundation.

Buechner, J.; Jain, N.; Sharma, A.

2013-12-01

78

Asymmetric nonstationary reconnection and erosion of the magnetopause  

International Nuclear Information System (INIS)

Two-dimensional problem on nonstationary reconnection of different-size magnetic fields with formation of Petchek travelling shock waves is solved. It is shown, that plasma with shock waves is accelerated up to the Alfven rates average, which correspond to reconnecting fields. Reconnection line shift perpendicular to the current layer in the direction of large magnetic field is the peculiarity of nonstationary asymmetrical reconnction. When reconnection is finished, shock waves scatter along the current layer, the current layer, shifted concerning the initial one at the distance, directly proportional to the reconnected magnetic flux, is reduced at the diffusion region place. Shift values agree well with magnetopause erosion effect. The shock waves front moves along the current layer with large Alfven rate, the back one - with lower rate, while normal components of the rate and magnetic field with root-mean square rate

79

Magnetic reconnection in comets  

Science.gov (United States)

Today many of the traditionally puzzling phenomena in the cometary plasma-tail environment can plausibly be linked to magnetic reconnection occurring in several regions of a comet (Niedner and Brandt, 1978 and 1980). The turn-on of these various reconnection sites appears to follow a cyclic pattern in which the plasma-tail disconnection event is the primary feature, and the periodic sector structure of the solar wind is the external driver. The purpose of this review is to discuss these different classes of cometary activity, to state the justifications for linking them to reconnection, to discuss proposed alternate (nonreconnection) models, and to suggest future tests of the hypotheses presented.

Niedner, M. B., Jr.

1984-01-01

80

Magnetic reconnection in comets  

Science.gov (United States)

Today many of the traditionally puzzling phenomena in the cometary plasma-tail environment can plausibly be linked to magnetic reconnection occurring in several regions of a comet (Niedner and Brandt, 1978 and 1980). The turn-on of these various reconnection sites appears to follow a cyclic pattern in which the plasma-tail disconnection event is the primary feature, and the periodic sector structure of the solar wind is the external driver. The purpose of this review is to discuss these different classes of cometary activity, to state the justifications for linking them to reconnection, to discuss proposed alternate (nonreconnection) models, and to suggest future tests of the hypotheses presented.

Niedner, M. B., Jr.

 
 
 
 
81

Three-dimensional steady-state magnetic reconnection  

International Nuclear Information System (INIS)

A family of three-dimensional models of reconnection is presented in which the different members of the family are characterized by the vorticity with which plasma flows towards the reconnection site. The nature of this inflow also determines the size and speed of the outflow jet that carries reconnected field lines away from the reconnection site, and the shape of the MHD shocks that bound it. Flows with positive vorticity are of a flux pile-up type, for which the outflow jet is fastest and narrowest. Among those with negative vorticity is the three-dimensional analogue of Petschek reconnection. Not all combinations of vorticity and reconnection rate are possible; for those solutions with negative vorticity, there is a maximum reconnection rate. As the magnetic Reynolds number Rme or the current density is increased, this maximum is reduced and the possible types of solution become more polarized towards the two extremes of flux pile-up and slow compression regimes. Given a distribution of vorticities and inflow speeds, these models give the corresponding distribution of possible steady-state reconnection rates. As an illustrative example, we take Gaussian distributions of both to show that the resulting distribution is dominated by the flux pile-up regime. (author)

82

Fast Turbulent Reconnection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Reconnection is the process by which magnetic fields in a conducting fluid change their topology. This process is essential for understanding a wide variety of astrophysical processes, including stellar and galactic dynamos and astrophysical turbulence. To account for solar flares, solar cycles and the structure of the galactic magnetic field reconnection must be fast, propagating with a speed close to the Alfven speed. We show that the presence of a random magnetic field co...

Lazarian, A.; Vishniac, E.

2000-01-01

83

Evolution of global modes and magnetic reconnection in fusion burning plasmas  

International Nuclear Information System (INIS)

Plasmas under ignition conditions have relatively high peak pressures that can make them vulnerable to the effects of large scale pressure gradient driven modes of both ideal MHD and reconnecting types. These modes can manifest themselves as large sawtooth oscillations or as triggers of more extensive instabilities. The electron collision frequencies are higher than the diamagnetic frequencies so that the reconnecting modes are collisional. Given the very low thresholds that are found, numerically for ideal MHD, n = 1 modes in realistic configurations, the limits of the relevant linear stability analysis are investigated. For toroidal geometry the excitation of an n = 2 component of the toroidal current density is seen to mark the transition from the linear to the nonlinear stage at very low amplitudes. This and the fact that the relevant layers whose reconnection can take place are extremely narrow lead to identify a range of parameters corresponding to low values of ?MHD ?A (here, ?MHD is the ideal MHD growth rate), where existing analyses have to be replaced by others including, e.g. the effects of an underlying state of microscopic turbulence that can affect the electron momentum transport and involve broader reconnection layers. A second approach is the analysis of sawtooth oscillations that are observed in most of the plasma regimes produced by the Alcator C-Mod machine which cover the range of collisionalities relevant to ignnge of collisionalities relevant to ignition experiments but are below the threshold for ideal MHD n = 1 instabilities. The main trends of the relevant observations are found to be consistent with the existing theoretical framework for reconnecting modes. The indications of existing theory and experimental analysis are that high magnetic field ignition experiments are present offer the most secure route to achieve their main objectives. (author). 25 refs, 6 figs, 2 tabs

84

CME Initiation and Reconnection  

Science.gov (United States)

Coronal mass ejections (CMEs) are the most massive explosions in the heliosphere, and the primary drivers of geoeffective space weather. This talk will be focused on fast CMEs, which travel at Alfvenic speeds as high as 2500 km/s. These ejections are associated with solar flares, prominence eruptions, and energetic particles accelerated near the Sun and in interplanetary space. CMEs require sufficient energy storage, in the form of magnetic stress, and rapid release of this energy. Although it is generally agreed that magnetic reconnection is the key to fast CME initiation, different models incorporate reconnection in different ways. One promising model --- the breakout scenario --- involves reconnection in two distinct yet interconnected locations: breakout reconnection ahead of the CME, and flare reconnect ion behind it. This model has been validated through 2D and 3D MHD simulations and favorable comparison with the observed properties of many fast CMEs. I will discuss what we have learned about the onset and evolution of breakout and flare reconnect ion from recent high-resolution 2D simulations of CME initiation with adaptive mesh refinement and numerical resistivity.

Karpen, Judy T.

2010-01-01

85

Catastrophic eruption of magnetic flux rope in the corona and solar wind with and without magnetic reconnection  

CERN Document Server

It is generally believed that the magnetic free energy accumulated in the corona serves as a main energy source for solar explosions such as coronal mass ejections (CMEs). In the framework of the flux rope catastrophe model for CMEs, the energy may be abruptly released either by an ideal magnetohydrodynamic (MHD) catastrophe, which belongs to a global magnetic topological instability of the system, or by a fast magnetic reconnection across preexisting or rapidly-developing electric current sheets. Both ways of magnetic energy release are thought to be important to CME dynamics. To disentangle their contributions, we construct a flux rope catastrophe model in the corona and solar wind and compare different cases in which we either prohibit or allow magnetic reconnection to take place across rapidly-growing current sheets during the eruption. It is demonstrated that CMEs, even fast ones, can be produced taking the ideal MHD catastrophe as the only process of magnetic energy release. Nevertheless, the eruptive s...

Chen, Y; Sun, S J

2007-01-01

86

Signatures of interchange reconnection: STEREO, ACE and Hinode observations combined  

Directory of Open Access Journals (Sweden)

Full Text Available Combining STEREO, ACE and Hinode observations has presented an opportunity to follow a filament eruption and coronal mass ejection (CME on 17 October 2007 from an active region (AR inside a coronal hole (CH into the heliosphere. This particular combination of "open" and closed magnetic topologies provides an ideal scenario for interchange reconnection to take place. With Hinode and STEREO data we were able to identify the emergence time and type of structure seen in the in-situ data four days later. On the 21st, ACE observed in-situ the passage of an ICME with "open" magnetic topology. The magnetic field configuration of the source, a mature AR located inside an equatorial CH, has important implications for the solar and interplanetary signatures of the eruption. We interpret the formation of an "anemone" structure of the erupting AR and the passage in-situ of the ICME being disconnected at one leg, as manifested by uni-directional suprathermal electron flux in the ICME, to be a direct result of interchange reconnection between closed loops of the CME originating from the AR and "open" field lines of the surrounding CH.

D. Baker

2009-10-01

87

Signatures of interchange reconnection: STEREO, ACE and Hinode observations combined  

Science.gov (United States)

Combining STEREO, ACE and Hinode observations has presented an opportunity to follow a filament eruption and coronal mass ejection (CME) on 17 October 2007 from an active region (AR) inside a coronal hole (CH) into the heliosphere. This particular combination of "open" and closed magnetic topologies provides an ideal scenario for interchange reconnection to take place. With Hinode and STEREO data we were able to identify the emergence time and type of structure seen in the in-situ data four days later. On the 21st, ACE observed in-situ the passage of an ICME with "open" magnetic topology. The magnetic field configuration of the source, a mature AR located inside an equatorial CH, has important implications for the solar and interplanetary signatures of the eruption. We interpret the formation of an "anemone" structure of the erupting AR and the passage in-situ of the ICME being disconnected at one leg, as manifested by uni-directional suprathermal electron flux in the ICME, to be a direct result of interchange reconnection between closed loops of the CME originating from the AR and "open" field lines of the surrounding CH.

Baker, D.; Rouillard, A. P.; van Driel-Gesztelyi, L.; Démoulin, P.; Harra, L. K.; Lavraud, B.; Davies, J. A.; Opitz, A.; Luhmann, J. G.; Sauvaud, J.-A.; Galvin, A. B.

2009-10-01

88

Magnetic Reconnection in Astrophysical Environments  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Magnetic reconnection is a process that changes magnetic field topology in highly conducting fluids. Traditionally, magnetic reconnection was associated mostly with solar flares. In reality, the process must be ubiquitous as astrophysical fluids are magnetized and motions of fluid elements necessarily entail crossing of magnetic frozen in field lines and magnetic reconnection. We consider magnetic reconnection in realistic 3D geometry in the presence of turbulence. This turb...

Lazarian, A.; Eyink, G.; Vishniac, E.; Kowal, G.

2014-01-01

89

Externally driven magnetic reconnection  

International Nuclear Information System (INIS)

A model is presented in which externaly driven reconnection is simulated by solving the MHD equations in an initially plane current sheet. Magnetic reconnection in the earth's magnetotail is widely believed to be the direct cause of magnetospheric substorms. Both 2-D and 3-D versions of the model have been developed. It is postulated that connection in the tail is triggered by a local compression of the plasma sheet which results from an invasion of the solar wind into the magnetotail. Thus, the simulation is started by introducing flow from the lobes normal to the plasma sheet. When resistivity is generated in a local region of the neutral sheet, reconnection develops and magnetic energy is converted into plasma bulk flow. Although the driven reconnection model is highly simplified, it can aid in understanding many features of substorms in the tail; in particular, results show that rapid flows both earthward and tailward of the neutral line and the nightside substorm current system are natural consequences of driven magnetic reconnection. 34 references

90

Reconnecting Flux Ropes  

Science.gov (United States)

Magnetic flux ropes are due to helical currents and form a dense carpet of arches on the surface of the sun. Occasionally one tears loose as a coronal mass ejection and its rope structure is detected by satellites close to the earth. Current sheets can tear into filaments and these are nothing other than flux ropes. Ropes are not static, they exert mutual JxB forces causing them to twist about each other and merge. Kink instabilities cause them to violently smash into each other and reconnect at the point of contact. We report on experiments done in the large plasma device (LAPD) at UCLA (L=17m,dia=60cm,0.3plasma. The currents and magnetic fields form exotic shapes with no ignorable direction and no magnetic nulls. Volumetric space-time data show multiple reconnection sites with time-dependent locations. The concept of a quasi-separatrix layer (QSL), a tool to understand 3D reconnection without null points. In our experiment the QSL is a narrow ribbon-like region(s) that twists between field lines. Within the QSL(s) field lines that start close to one another rapidly diverge as they pass through one or more reconnection regions. When the field lines are tracked they are observed to slip along the QSL when reconnection occurs. The Heating and other co-existing waves will be presented.

Gekelman, Walter; van Compernolle, Bart

2012-10-01

91

Laboratory reconnection experiments  

Science.gov (United States)

Laboratory experiments dedicated for the study of magnetic reconnection have been contributed considerably to a more detailed understanding of the involved processes. Their strength is to disentangle parameter dependencies, to diagnose in detail the plasma and field response, and to form an excellent testbed for the validation of numerical simulations. In the present paper recent results obtained from the new cylindrical reconnection experiment VINETA II are presented. The experimental setup allows to independently vary plasma parameters, reconnection drive strength/timescale, and current sheet amplitude. Current research objectives focus on two major scientific issues: Guide field effects on magnetic reconnection and the evolution of electromagnetic fluctuations. The superimposed homogeneous magnetic guide field has a strong influence on the spatiotemporal evolution of the current sheet, predominantly due to magnetic pitch angle effects, which leads to a strong elongation of the sheet along the separatrices and results in axial gradients of the reconnection rates. Within the current sheet, incoherent electromagnetic fluctuations are observed. Their magnetic signature is characterized by a broad spectrum somewhat centered around the lower-hybrid frequency and extremely short spatial correlation lengths being typically smaller than the local ion sound radius. The fluctuation amplitude correlates with the local current density and, thus, for low guide fields, displays also axial gradients. Despite the quantitatively different parameter regime and geometry the basic fluctuation properties are in good agreement with studies conducted at the MRX experiment (PPPL).

Grulke, Olaf

92

Skewed magnetic field lines reconnection  

International Nuclear Information System (INIS)

Three-dimensional time-dependent reconnection of skewed magnetic field lines is studied. Reconnection is shown to be possible only in the limited oval-shaped part of the current sheet, which was called the reconnection zone. The size of the reconnection zone is defined by the reconnection line length, the behaviour of the electric field in the diffusion region as well as by the angle between the reconnecting fields. Reconnected magnetic flux has the same direction as it has in the Petschek's model near the reconnection line (normal flux), but it changes its sign in the rest of the reconnection zone (anomalous flux). The magnetic energy is converted into the kinetic one in the normal flux region, and the reverse process occurs in the anomalous flux region, so the energy balance is fulfilled within the reconnection region. An electric double layer emerges along the reconnection zone, which emits Alfven waves, these carryin away the energy released in the reconnection process. The solution obtained may be useful in various problems of cosmic plasma physics, e.g. MHD waves generation on the Sun, carrying magnetic flux away from its surface, origin of solar cosmic rays, etc

93

Transport of thermal energy and its relation to magnetic reconnection and to the spontaneous rotation phenomenon  

International Nuclear Information System (INIS)

The high-temperature theory of the collisional drift-tearing mode is presented. In the regimes relevant to present day experiments the parallel electron thermal conductivity plays a key role and the novel analysis that is presented shows that the structure of the mode as well as the characteristics of the region where reconnection takes place differ significantly from the ones described in the original work where the regime with relatively high collisionality was considered. A brief description is given of the 'accretion' theory of the 'spontaneous' rotation phenomenon and of the associated toroidal plasma collective modes that produce an inflow of angular momentum towards the center of the plasma column. (author)

94

Magnetic reconnection in comets  

International Nuclear Information System (INIS)

Today many of the traditionally puzzling phenomena in the cometary plasma-tail environment can plausibly be linked to magnetic reconnection occurring in several regions of a comet (Niedner and Brandt, 1978 and 1980). The turn-on of these various reconnection sites appears to follow a cyclic pattern in which the plasma-tail disconnection event is the primary feature, and the periodic sector structure of the solar wind is the external driver. The purpose of this review is to discuss these different classes of cometary activity, to state the justifications for linking them to reconnection, to discuss proposed alternate (nonreconnection) models, and to suggest future tests of the hypotheses presented. 45 references

95

Experimental Investigation of the Neutral sheet Profile During Magnetic Reconnection  

International Nuclear Information System (INIS)

During magnetic reconnection, a ''neutral sheet'' current is induced, heating the plasma. The resultant plasma thermal pressure forms a stationary equilibrium with the opposing magnetic fields. The reconnection layer profile holds significant clues about the physical mechanisms which control reconnection. On the Magnetic Reconnection Experiment [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)], a quasi steady-state and axisymmetric neutral sheet profile has been measured precisely using a magnetic probe array with spatial resolution equal to one quarter of the ion gyro-radius. It was found that the reconnecting field profile fits well with a Harris-type profile [E. G. Harris, Il Nuovo Cimento 23, 115 (1962)], B(x) approximately tanh(x/delta). This agreement is remarkable since the Harris theory does not take into account reconnection and associated electric fields and dissipation. An explanation for this agreement is presented. The sheet thickness delta is found to be approximately 0.4 times the ion skin depth, which agrees with a generalized Harris theory incorporating non-isothermal electron and ion temperatures and finite electric field. The detailed study of additional local features of the reconnection region is also presented

96

Forced magnetic reconnection  

Energy Technology Data Exchange (ETDEWEB)

By studying a simple model problem, we examine the time evolution of magnetic field islands which are induced by perturbing the boundary surrounding an incompressible plasma with a resonant surface inside. We find that for sufficiently small boundary perturbations, the reconnection and island formation process occurs on the tearing mode time scale defined by Furth, Killeen, and Rosenbluth. For larger perturbations the time scale is that defined by Rutherford. The resulting asymptotic equilibrium is such that surface currents in the resonant region vanish. A detailed analytical picture of this reconnection process is presented.

Hahm, T.S.; Kulsrud, R.M.

1984-11-01

97

THE COLLAPSE OF TURBULENT CORES AND RECONNECTION DIFFUSION  

Energy Technology Data Exchange (ETDEWEB)

In order for a molecular cloud clump to form stars, some transport of magnetic flux is required from the denser internal regions to the outer regions; otherwise, this can prevent the gravitational collapse. Fast magnetic reconnection, which takes place in the presence of turbulence, can induce a process of reconnection diffusion that has been elaborated on in earlier theoretical works. We have named this process turbulent reconnection diffusion, or simply RD. This paper continues our numerical study of this process and its implications. In particular, we extend our studies of RD in cylindrical clouds and consider more realistic clouds with spherical gravitational potentials (from embedded stars); we also account for the effects of the gas self-gravity. We demonstrate that, within our setup reconnection, diffusion is efficient. We have also identified the conditions under which RD becomes strong enough to make an initially subcritical cloud clump supercritical and induce its collapse. Our results indicate that the formation of a supercritical core is regulated by a complex interplay between gravity, self-gravity, the magnetic field strength, and nearly transonic and trans-Alfvénic turbulence; therefore, it is very sensitive to the initial conditions of the system. In particular, self-gravity helps RD and, as a result, the magnetic field decoupling from the collapsing gas becomes more efficient compared with the case of an external gravitational field. Our simulations confirm that RD can transport magnetic flux from the core of collapsing clumps to the envelope, but only a few of them become nearly critical or supercritical sub-Alfvénic cores, which is consistent with the observations. Furthermore, we have found that the supercritical cores built up in our simulations develop a predominantly helical magnetic field geometry that is also consistent with recent observations. Finally, we have also evaluated the effective values of the turbulent RD coefficient in our simulations and found that they are much larger than the numerical diffusion coefficient, especially for initially trans-Alfvénic clouds, thus ensuring that the detected magnetic flux removal is due to the action of turbulent RD rather than numerical diffusivity.

Leão, M. R. M.; De Gouveia Dal Pino, E. M.; Santos-Lima, R. [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, R. do Matão, 1226, São Paulo, SP 05508-090 (Brazil); Lazarian, A., E-mail: mleao@ime.unicamp.br, E-mail: dalpino@astro.iag.usp.br, E-mail: rlima@astro.iag.usp.br, E-mail: alazarian@facstaff.wisc.edu [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States)

2013-11-01

98

THE COLLAPSE OF TURBULENT CORES AND RECONNECTION DIFFUSION  

International Nuclear Information System (INIS)

In order for a molecular cloud clump to form stars, some transport of magnetic flux is required from the denser internal regions to the outer regions; otherwise, this can prevent the gravitational collapse. Fast magnetic reconnection, which takes place in the presence of turbulence, can induce a process of reconnection diffusion that has been elaborated on in earlier theoretical works. We have named this process turbulent reconnection diffusion, or simply RD. This paper continues our numerical study of this process and its implications. In particular, we extend our studies of RD in cylindrical clouds and consider more realistic clouds with spherical gravitational potentials (from embedded stars); we also account for the effects of the gas self-gravity. We demonstrate that, within our setup reconnection, diffusion is efficient. We have also identified the conditions under which RD becomes strong enough to make an initially subcritical cloud clump supercritical and induce its collapse. Our results indicate that the formation of a supercritical core is regulated by a complex interplay between gravity, self-gravity, the magnetic field strength, and nearly transonic and trans-Alfvénic turbulence; therefore, it is very sensitive to the initial conditions of the system. In particular, self-gravity helps RD and, as a result, the magnetic field decoupling from the collapsing gas becomes more efficient compared with the case of an external gravitational field. Our simulations confirm that RD can transport magnetic flux from the core of collapsing clumps to the envelope, but only a few of them become nearly critical or supercritical sub-Alfvénic cores, which is consistent with the observations. Furthermore, we have found that the supercritical cores built up in our simulations develop a predominantly helical magnetic field geometry that is also consistent with recent observations. Finally, we have also evaluated the effective values of the turbulent RD coefficient in our simulations and found that they are much larger than the numerical diffusion coefficient, especially for initially trans-Alfvénic clouds, thus ensuring that the detected magnetic flux removal is due to the action of turbulent RD rather than numerical diffusivity

99

Interchange Reconnection Alfven Wave Generation  

CERN Document Server

Given recent observational results of interchange reconnection processes in the solar corona and the theoretical development of the S-Web model for the slow solar wind, we present further analysis of the 3D MHD simulation of interchange reconnection by Edmondson et al. (Astrophys. J. 707, 1427, 2009). Specifically, we analyze the consequences of the dynamic streamer belt jump that corresponds to flux opening by interchange reconnection. Information about the magnetic field restructuring by interchange reconnection is carried throughout the system by Alfven waves propagating away from the reconnection region, distributing the shear and twist imparted by the driving flows, including shedding the injected stress-energy and accumulated magnetic helicity along newly-open field lines. We quantify the properties of the reconnection-generated wave activity in the simulation. There is a localized high frequency component associated with the current sheet/reconnection site and an extended low frequency component associ...

Lynch, B J; Li, Y

2014-01-01

100

Two Energy Release Processes for CMEs: MHD Catastrophe and Magnetic Reconnection  

CERN Document Server

It remains an open question how magnetic energy is rapidly released in the solar corona so as to create solar explosions such as solar flares and coronal mass ejections (CMEs). Recent studies have confirmed that a system consisting of a flux rope embedded in a background field exhibits a catastrophic behavior, and the energy threshold at the catastrophic point may exceed the associated open field energy. The accumulated free energy in the corona is abruptly released when the catastrophe takes place, and it probably serves as the main means of energy release for CMEs at least in the initial phase. Such a release proceeds via an ideal MHD process in contrast with nonideal ones such as magnetic reconnection. The catastrophe results in a sudden formation of electric current sheets, which naturally provide proper sites for fast magnetic reconnection. The reconnection may be identified with a solar flare associated with the CME on one hand, and produces a further acceleration of the CME on the other. On this basis,...

Chen, Y; Xia, L D

2007-01-01

 
 
 
 
101

Magnetic Reconnections in Mast  

Science.gov (United States)

In MAST the appearance of a spontaneous snake in the plasma core has many of the properties of a full reconnection. Analysis of SXR and TS data indicates a strongly radiating core with high impurity levels forming before the onset of the snake. Following the appearance of an x-point (island on the q=1 surface) the former core is hypothesised to move off axis and shrink, appearing as a radiative region with flux-tube-like rotating helical structure (the snake). A code has been developed to compare this with a slow full Kadomtsev type reconnection process including effects of impurities, density and temperature perturbations, current profile evolution and transport. The code reproduces many of the trends and effects seen in the data, confirming the event as consistent with full reconnection. The time-scale of the event is also consistent with estimates of hybrid growth times for such a reconnection process. Further analysis will be presented exploring the physics of this process in more detail.

Turri, G.; Buttery, R. J.; Hastie, R. J.; Gimblett, C. G.; Cowley, S. C.; Lehane, I.

2004-11-01

102

Reconnection in tokamaks  

International Nuclear Information System (INIS)

Calculations with several different computer codes based on the resistive MHD equations have shown that (m = 1, n = 1) tearing modes in tokamak plasmas grow by magnetic reconnection. The observable behavior predicted by the codes has been confirmed in detail from the waveforms of signals from x-ray detectors and recently by x-ray tomographic imaging

103

meta versus para substitution: how does C-H activation in a methyl group occur in 3-methylbenzophenone but does not take place in 4-methylbenzophenone?  

Science.gov (United States)

The photophysical and photochemical reactions of 3-methylbenzophenone (3-MeBP) and 4-methylbenzophenone (4-MeBP) were investigated using femtosecond transient absorption (fs-TA) and nanosecond time-resolved resonance Raman (ns-TR(3)) spectroscopy and density functional theory (DFT) calculations. 3-MeBP and 4-MeBP were observed to behave similarly to their parent compound benzophenone (BP) in acetonitrile and isopropyl alcohol solvents. However, in acidic aqueous solutions, an unusual acid-catalyzed proton exchange reaction (denoted the m-methyl activation) of 3-MeBP (with a maximum efficiency at pH 0) is detected to compete with a photohydration reaction. In contrast, only the photohydration reaction was observed for 4-MeBP under the acidic pH conditions investigated. How the m-methyl activation takes place after photolysis of 3-MeBP in acid aqueous solutions is briefly discussed and compared to related photochemistry of other meta-substituted aromatic carbonyl compounds. PMID:23586524

Ma, Jiani; Su, Tao; Li, Ming-De; Zhang, Xiting; Huang, Jinqing; Phillips, David Lee

2013-05-17

104

Mathematical Modeling of a Cs(I – Sr(II – Bentonite – Magnetite Sorption System, Simulating the Processes Taking Place in a Deep Geological Repository  

Directory of Open Access Journals (Sweden)

Full Text Available The derivation of mathematical models of systems consisting of Cs(I or Sr(II and of bentonite (B, magnetite (M or their mixtures (B+M are described. The paper deals especially with modeling of the protonation and sorption processes occurring on the functional groups of the solid phase, namely on so called edge sites and layer sites. The two types of sites have different properties and, as a result, three types of Surface Complexation Models (SCM are used for edge sites, viz. two electrostatic SCMs: the Constant Capacitance Model (CCM and the Diffusion Double Layer Model (DLM, and one without electrostatic correction: the Chemical Model (CEM. The processes taking place on the layer sites are described by means of the Ion Exchange Model (IExM. In the course of modeling, the speciation of the given metal in the liquid (aqueous phase has to be taken into account. In principle, the model of protonation or sorption processes is based on the reactions occurring in the aqueous phase and on the surface of the solid phase, and comprises not only the equations of the equilibrium constants of the individual reactions, but also the mass and charge balance equations. The algorithm of the numerical solution is compatible with FAMULUS 3.5 (a Czech software product quite extensively used at Czech universities in the last decade, the bookcase codes of which are utilized. 

H. Filipská

2005-01-01

105

Magnetic reconnection of plasma toroids with co- and counter-helicity  

International Nuclear Information System (INIS)

Magnetic reconnection phenomena are investigated taking into account all three vector components of the magnetic field in a laboratory experiment. Two toroidal magnetized plasmas carrying identical toroidal currents and poloidal field configurations are made to collide, thereby inducing magnetic reconnections, The directions of the toroidal field play an important role in the merging process. It is found that plasmas of anti-parallel helicity merge much faster than those of parallel helicity. It is also found that the reconnection rate is proportional to the initial relative velocity of the two plasma tori, suggesting that magnetic reconnection, in the present experiment, is forced phenomenon. 16 refs., 5 figs

106

Comparison of secondary islands in collisional reconnection to Hall reconnection  

CERN Document Server

Large-scale resistive Hall-magnetohydrodynamic (Hall-MHD) simulations of the transition from Sweet-Parker (collisional) to Hall (collisionless) magnetic reconnection are presented, the first to separate effects of secondary islands from collisionless effects. Three main results are described. There exists a regime in which secondary islands occur without collisionless effects when the thickness of the dissipation regions exceed ion gyroscales. The reconnection rate with secondary islands is faster than Sweet-Parker but significantly slower than Hall reconnection. This implies that secondary islands are not the cause of the fastest reconnection rates. Because Hall reconnection is much faster, its onset causes the ejection of secondary islands from the vicinity of the X-line. These results imply that most of the energy release occurs during Hall reconnection. Coronal applications are discussed.

Shepherd, L S

2010-01-01

107

Turbulent Reconnection in the Magnetic Reconnection Experiment (MRX)  

Science.gov (United States)

One of the key open questions in Magnetic Reconnection is the nature of the mechanism that governs the reconnection rate in real astrophysical and laboratory systems. For collisonless plasmas, the Hall effect removes an important bottleneck to fast reconnection as the heavier ions exit the reconnection layer over a broader region [1]. However, the Hall term cannot balance the reconnection electric field at the layer center, and the 2-D, collisionless expression for the electric field due to particle dynamics [2] has been shown to be insufficient in the Magnetic Reconnection Experiment (MRX) [1,3]. Turbulent 3-D effects such as lower hybrid frequency range fluctuations [4] may play an important role in fast reconnection in MRX. These electromagnetic fluctuations tend to be associated with high local currents and a rapid local reconnection rate. The precise relation of these fluctuations and associated 3-D asymmetries to fast reconnection is a topic of active investigations; the most up to date results will be discussed. This work was supported by NDSEG, DOE, NASA, and NSF.[4pt] [1] Y. Ren, et al., Phys. Plasmas 15, 082113 (2008). [2] M. Hesse, et al., Phys. Plasmas, 6:1781 (1999). [3] S. Dorfman, et al., Phys. Plasmas 15, 102107 (2008). [4] H. Ji, et al., Phys.Rev.Lett. 92 (2004) 115001.

Dorfman, S.; Ji, H.; Yamada, M.; Oz, E.; Yoo, J.; Daughton, W.; Roytershteyn, V.

2009-11-01

108

The role of reconnection diffusion in the gravitational collapse of turbulent cloud cores  

Science.gov (United States)

For a molecular cloud clump to form stars some transport of magnetic flux is required from the denser, inner regions to the outer regions of the cloud, otherwise this can prevent the collapse. Fast magnetic reconnection which takes place in the presence of turbulence can induce a process of reconnection diffusion (RD). Extending earlier numerical studies of reconnection diffusion in cylindrical clouds, we consider more realistic clouds with spherical gravitational potentials and also account for the effects of the gas self-gravity. We demonstrate that within our setup RD is efficient. We have also identified the conditions under which RD becomes strong enough to make an initially subcritical cloud clump supercritical and induce its collapse. Our results indicate that the formation of a supercritical core is regulated by a complex interplay between gravity, self-gravity, the magnetic field strength and nearly transonic and trans-Alfvénic turbulence, confirming that RD is able to remove magnetic flux from collapsing clumps, but only a few of them become nearly critical or supercritical, sub-Alfvénic cores, which is consistent with the observations. Besides, we have found that the supercritical cores built up in our simulations develop a predominantly helical magnetic field geometry which is also consistent with observations. Finally, we have evaluated the effective values of the turbulent reconnection diffusion coefficient and found that they are much larger than the numerical diffusion, especially for initially trans-Alfvénic clouds, ensuring that the detected magnetic flux removal is due to to the action of the RD rather than to numerical diffusivity.

Leão, M. R. M.; de Gouveia Dal Pino, E. M.; Santos-Lima, R.; Lazarian, A.

2014-10-01

109

Reconnection via the Tearing Instability  

Digital Repository Infrastructure Vision for European Research (DRIVER)

We discuss the role of tearing instabilities in magnetic reconnection. In three dimensions this instability leads to the formation of strong Alfvenic waves that remove plasma efficiently from the reconnection layer. As a result the instability proceeds at high rates while staying close to the linear regime. Our calculations show that for a resistive fluid the reconnection speed scales as the product of the Alfven speed V_A over the magnetic Reynolds number to the power -0.3....

Lazarian, A.; Vishniac, Ethan T.

1998-01-01

110

Three-Dimensional Magnetic Reconnection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The importance of magnetic reconnection as an energy release mechanism in many solar, stellar, magnetospheric and astrophysical phenomena has long been recognised. Reconnection is the only mechanism by which magnetic fields can globally restructure, enabling them to access a lower energy state. Over the past decade, there have been some major advances in our understanding of three-dimensional reconnection. In particular, the key characteristics of 3D magnetohydrodynamic (MHD...

Parnell, Clare E.; Haynes, Andrew L.

2009-01-01

111

Turbulent magnetic reconnection  

Science.gov (United States)

The results of two-dimensional spectral-method MHD simulations of the effect of turbulence on magnetic-reconnection processes are presented in extensive graphs and tables and characterized in detail. In a periodic sheet-pinch configuration, early-onset, persistent turbulence is found to occur when a low level of broadband fluctuations is introduced into the initial data. Features observed include small-scale unsteady coherent electric-current and vorticity structures, enhanced viscous and resistive dissipation, unsteady and spatially asymmetric fluid flow, large-scale and small-scale magnetic islands, multiple X points, large-amplitude electric-field fluctuations, and spectral characteristics indicating that the turbulence is broadband in both spatial directions and similar to homogeneous MHD turbulence. The importance of reconnection for studies of solar, magnetospheric, and laboratory plasmas in inhomogeneous magnetic fields is indicated.

Matthaeus, W. H.; Lamkin, S. L.

1986-01-01

112

The role of compressibility in energy release by magnetic reconnection  

International Nuclear Information System (INIS)

Using resistive compressible magnetohydrodynamics, we investigate the energy release and transfer by magnetic reconnection in finite (closed or periodic) systems. The emphasis is on the magnitude of energy released and transferred to plasma heating in configurations that range from highly compressible to incompressible, based on the magnitude of the background ? (ratio of plasma pressure over magnetic pressure) and of a guide field in two-dimensional reconnection. As expected, the system becomes more incompressible, and the role of compressional heating diminishes, with increasing ? or increasing guide field. Nevertheless, compressional heating may dominate over Joule heating for values of the guide field of 2 or 3 (in relation to the reconnecting magnetic field component) and ? of 5–10. This result stems from the strong localization of the dissipation near the reconnection site, which is modeled based on particle simulation results. Imposing uniform resistivity, corresponding to a Lundquist number of 103 to 104, leads to significantly larger Ohmic heating. Increasing incompressibility greatly reduces the magnetic flux transfer and the amount of energy released, from ?10% of the energy associated with the reconnecting field component, for zero guide field and low ?, to ?0.2%?0.4% for large values of the guide field By0>5 or large ?. The results demonstrate the importance of taking into account plasma compressibility and loplasma compressibility and localization of dissipation in investigations of heating by turbulent reconnection, possibly relevant for solar wind or coronal heating.

113

Interchange Reconnection Alfvén Wave Generation  

Science.gov (United States)

Given recent observational results of interchange reconnection processes in the solar corona and the theoretical development of the S-Web model for the slow solar wind, we extend the analysis of the 3D MHD simulation of interchange reconnection by Edmondson et al. ( Astrophys. J. 707, 1427, 2009). Specifically, we analyze the consequences of the dynamic streamer-belt jump that corresponds to flux opening by interchange reconnection. Information about the magnetic field restructuring by interchange reconnection is carried throughout the system by Alfvén waves propagating away from the reconnection region, distributing the shear and twist imparted by the driving flows, including shedding the injected stress-energy and accumulated magnetic helicity along newly open fieldlines. We quantify the properties of the reconnection-generated wave activity in the simulation. There is a localized high-frequency component associated with the current sheet/reconnection site and an extended low-frequency component associated with the large-scale torsional Alfvén wave generated from the interchange reconnection field restructuring. The characteristic wavelengths of the torsional Alfvén wave reflect the spatial size of the energized bipolar flux region. Lastly, we discuss avenues of future research by modeling these interchange reconnection-driven waves and investigating their observational signatures.

Lynch, B. J.; Edmondson, J. K.; Li, Y.

2014-08-01

114

Does fast magnetic reconnection exist?  

Science.gov (United States)

The main features of the Priest-Forbes (1986) and Priest-Lee (1990) models of magnetic reconnection in astrophysical plasmas are discussed, and the Priest-Lee model is generalized to include inflow pressure gradients and thus different regimes of reconnection. It is shown that different scaling results can be obtained depending on the boundary conditions. These results are compared to the ones observed in the numerical experiments of Biskamp (1986) and Lee and Fu (1986). It is concluded that numerical experiments with suitably designed boundary conditions are likely to exhibit fast reconnection, and that such reconnection is a common process in astrophysical and space plasmas.

Priest, E. R.; Forbes, T. G.

1992-01-01

115

Colour reconnection in Herwig  

Energy Technology Data Exchange (ETDEWEB)

As the LHC's quick step-up in luminosity necessarily comes with increasing pile-up activity accompanying every event of interest, the Monte Carlo event generators have to come up with proper models of soft inclusive hadron collisions. Moreover, an irreducible background of hadronic activity, the underlying event, is adherent to the single hard hadron collisions themselves. We report on colour reconnection in Herwig, which provides improvements in these two fields of current research.

Roehr, Christian; Gieseke, Stefan [Karlsruhe Institute of Technology, Karlsruhe (Germany); Siodmok, Andrzej [The University of Manchester, Manchester (United Kingdom)

2012-07-01

116

Theoretical analysis of the magnetic reconnection experiment, MRX  

International Nuclear Information System (INIS)

In the MRX experiment two identical spheromaks with a common major axis are driven together. Their poloidal fields are oriented so that at the point of contact reconnection occurs. Their toroidal fields are oriented either parallel or antiparallel. The general theoretical picture of the physics of the experiment is discussed. It is believed that an axisymmetric current layer forms between the two spheromaks, in which the reconnection occurs. In this layer the electron temperature is high due to ohmic heating, and there is considerable magnetic tension due to the merging poloidal field. In addition, in the counterhelicity case, there is magnetic tension in the toroidal direction. As a result of these forces large velocities develop in the layer. These velocities take the plasma out of the reconnection region, and into a thin separatrix region that lies, between the regions of unreconnected flux and common flux. In this separatrix region the motion quickly develops into heat. We first describe the experiment from a global point of view. At any time the plasma is in magnetostatic equilibrium everywhere except in the reconnection and separatrix regions. Across these regions the sum of magnetic pressure and the gas pressure is continuous. The high pressure in the region of common flux results from the dissipation of kinetic energy, and can be found by energy conservation since it really comes from dissipation of poloidal and, in the counterhelicity case, toroidal field enee counterhelicity case, toroidal field energy. Thus, from the global point of view a unique sequence of equilibria is given. Once the global situation is determined the proper boundary conditions and geometry are available to treat the local behavior in the reconnection region by asymptotic analysis. The rate of reconnection determines the rate of passage through the sequence of equilibria. We attempt to carry out the inner analysis for a variety of reconnection rates ranging from the Sweet-Parker rate to the Petschek maximum reconnection rate

117

Como ocorrem as inovações em serviços? um estudo exploratório de empresas no Brasil / Understanding how innovation takes place in service companies - an exploratory study of companies in Brazil  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: Portuguese Abstract in portuguese O objetivo deste artigo é o de buscar uma melhor compreensão sobre o fenômeno da inovação nas empresas de serviços. Procurou-se seguir uma linha de abordagem segundo a qual, para se estudar e compreender o funcionamento do processo inovativo nestas empresas, se faz necessário um estudo com maior pro [...] fundidade nas organizações, investigando como ocorreram - em detalhes - as inovações. Para essa finalidade foram conduzidos estudos de casos em cinco diferentes organizações de serviços no setor de telecomunicações e atividades de informática no Brasil. Para melhor descrever o processo de inovação foi empregado o conceito de cadeia de inovação proposto por Hansen e Birkinshaw (2007), isto é, uma visão expandida do fenômeno da inovação que forma uma espécie de cadeia composta pelas seguintes fases: geração de ideias (intradepartamental, interdepartamental e interinstitucional); a conversão (seleção de ideias, incluindo a triagem, o financiamento e o desenvolvimento) e a difusão (sua disseminação na organização e no mercado). Por meio dos casos percebeu-se também que a inovação em serviços segue uma lógica similar em relação às inovações encontradas na literatura para bens físicos, sobretudo no que se refere ao uso da metodologia dos Stage-Gates proposto por Cooper (1993). Abstract in english The main objective of this paper is to improve the understanding of the phenomenon of innovation in service companies. It focuses on the idea that in order to study and understand how innovation processes take place, a more in depth study of these companies was required. Several case studies were co [...] nducted in five different service enterprises in the sector of telecommunications and computer-related activities. To describe the innovation process, the concept of "Chain of Innovation" proposed by Hansen and Birkinshaw (2007) was applied, i.e. an expanded view of the phenomenon of innovation that forms a type of chain composed by the following phases: generation of ideas; conversion (selection of ideas, including the selection, financing, and development), and diffusion. Through the cases studied, it can be seen that innovation in services follows a similar logic to that found in the literature for physical goods, especially concerning the use of the Stage-Gates' classic model proposed by Cooper (1993).

Luís Henrique Rigato, Vasconcellos; Roberto, Marx.

118

Magnetic reconnection at Uranus' magnetopause  

Science.gov (United States)

magnetosphere of Uranus has barely been explored by spacecraft but is distinct from other solar system magnetospheres in many respects. Determining how this magnetosphere is coupled to the solar wind is central to understanding energy flow through the system. Here we assess how the solar wind interacts with the Uranian magnetosphere via magnetic reconnection. Analytical models of conditions at the magnetopause are combined with current understanding of reconnection onset to predict where reconnection may occur on the boundary. The results suggest that conditions at Uranus' magnetopause are generally less favorable for reconnection than those at the magnetopause of any planet closer to the Sun, as a result of how typical solar wind parameters vary with heliocentric distance. The location of reconnection sites on the Uranian magnetopause is likely to be highly dependent on not only the interplanetary magnetic field orientation but also planetary longitude and season. Solar wind-magnetosphere coupling via magnetic reconnection may be stronger under near-solstice conditions than under near-equinox conditions. We discuss the typical reconnection electric field strength at Uranus' magnetopause and suggest that the typical reconnection voltage is considerably less than 40 kV. Complimentary assessments of other means of coupling to the solar wind (e.g., via a "viscous-like" interaction) are needed to establish the overall nature of solar wind-magnetosphere coupling at Uranus.

Masters, A.

2014-07-01

119

Reconnections of Wave Vortex Lines  

Science.gov (United States)

When wave vortices, that is nodal lines of a complex scalar wavefunction in space, approach transversely, their typical crossing and reconnection is a two-stage process incorporating two well-understood elementary events in which locally coplanar hyperbolas switch branches. The explicit description of this reconnection is a pedagogically useful…

Berry, M. V.; Dennis, M. R.

2012-01-01

120

Impulsive magnetic reconnection in plasma  

International Nuclear Information System (INIS)

Transient effect of magnetic reconnection has been investigated in the TS-4 torus plasma merging device. The two loop merging with pull reconnection converts one common flux to two private fluxes. Under strongly driven inflow, the plasma and magnetic flux inflow exceeded the outflow ones, causing flux and density piled-up in the current sheet. This pile-up effect was found to increase the inflow speed without anomalous resistivity effect. Under strong guiding field, a plasmoid grew in the current sheet during plasma pile-up. When flux pile-up reached a critical value, the plasmoid was ejected from the reconnection region and the reconnection speed transiently increased. The plasmoid ejection made the reconnection rate maximum when its acceleration was maximized. (author)

 
 
 
 
121

Particle acceleration by cascading reconnection in the Solar corona  

Science.gov (United States)

Recently it has been shown by adaptive mesh refinement MHD simulations that plasma outflows from the Sun decay, forming smaller and smaller scale magnetic islands (Barta et al., 2012). Usually it is conjectured that the resulting reconnection electric fields can accelerate particles to high energies. In this study we use test particle calculations in a guiding center approach to study the consequences of the acceleration of electrons. We show the acceleration in a fragmented current sheet (CS) above a flaring arcade, behind a CME or in the streamer belt of the Sun depends on the resistivity model. In order to compare with the X-ray observation in solar flares, we analyzed the electrons which can reach the chromosphere of the Sun, where they cause X-ray emissions. For them we derive the resulting X-ray spectra with the non-thermal bremsstrahlung method. On the other hand energetic ions are of interest, if they escape into the interplanetary space where they may propagate toward the Earth. We found that the electric fields obtained by applying refined meshes better describe the huge observed energies. Energetic electrons that quickly reach the chromosphere are most efficiently accelerated from the center of the current sheet. All particles gain energies up to MeV energies at a short, sub-second time. As we could explain by simple arguments, the chromospheric footpoints of energetic electrons and positively charged particles are indeed located anti-symmetrically around the current sheet. Independent on the resistivity model, the main acceleration takes place at the same sites. The final particle energy depends mainly on their initial position with respect to the main acceleration sites. We found that initial velocities and pitch angles influence only the low energy electrons, particles with final energies less than 10 keV usually do not reach the chromosphere at all. For the resulting X-ray spectrum we found a reconnection (resistivity) model dependence only for energies around 100keV. For higher reconnection rates (larger electric fields) the spectrum of energetic electrons becomes harder (smaller spectral index), as it can be found using higher mesh resolution runs. In models with a constant enhanced resistivity, switched on for large current carrier velocities, we found a clear break point in the hard X-ray spectrum.

Zhou, Xiaowei; Büchner, Jörg; Gan, Weiqun; Bárta, Miroslav; Liu, Siming

122

The Magnetic Reconnection Code: Center for Magnetic Reconnection Studies  

Energy Technology Data Exchange (ETDEWEB)

Understanding magnetic reconnection is one of the principal challenges in plasma physics. Reconnection is a process by which magnetic fields reconfigure themselves, releasing energy that can be converted to particle energies and bulk flows. Thanks to the availability of sophisticated diagnostics in fusion and laboratory experiments, in situ probing of magnetospheric and solar wind plasmas, and X-ray emission measurements from solar and stellar plasmas, theoretical models of magnetic reconnection can now be constrained by stringent observational tests. The members of the CMRS comprise an interdisciplinary group drawn from applied mathematics, astrophysics, computer science, fluid dynamics, plasma physics, and space science communities.

Amitava Bhattacharjee

2007-04-20

123

Effect of interchange instability on magnetic reconnection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

We present here the results of a study of interacting magnetic fields that involves a force normal to the reconnection layer. In the presence of such force, the reconnection layer becomes unstable to interchange disturbances. The interchange instability results in formation of tongues of heated plasma that leaves the reconnection layer through its wide surface rather than through its narrow ends, as is the case in traditional magnetic reconnection models. This plasma flow out of the reconnect...

Lyatsky, W.; Goldstein, M. L.

2013-01-01

124

NUMERICAL STUDIES OF WEAKLY STOCHASTIC MAGNETIC RECONNECTION  

Digital Repository Infrastructure Vision for European Research (DRIVER)

We study the e ects of turbulence on magnetic reconnection using three-dimensional numerical simulations.This is the rst attempt to test the model of fast magnetic reconnection proposed by Lazarian & Vishniac (1999), which assumes the presence of weak, small-scale magnetic eld structure near the current sheet. This a ects the rate of reconnection by reducing the transverse scale for reconnection ows and by allowing many independent ux reconnection events to occur simultaneously. We perfor...

Kowal, G.; Lazarian, A.; Vishniac, E. T.; Otmianowska-mazur, K.

2009-01-01

125

Magnetic reconnection launcher  

Science.gov (United States)

An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in synchrony with the passage of a projectile. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile by magnetic reconnection as the gap portion of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile at both the rear vertical surface of the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils and fit loosely within the gap between the opposing coils.

Cowan, Maynard (Albuquerque, NM)

1989-01-01

126

Intuitive approach to magnetic reconnection  

Science.gov (United States)

Two reconnection problems are considered. The first problem concerns global physics. The plasma in the global reconnection region is in magnetostatic equilibrium. It is shown that this equilibrium can be uniquely characterized by a set of constraints. During reconnection and independently of the local reconnection physics, these constraints can be uniquely evolved from any initial state. The second problem concerns Petschek reconnection. Petschek's model for fast reconnection, which is governed by resistive MHD equations with constant resistivity is not validated by numerical simulations. Malyshkin et al. [Phys. Plasmas 12, 102920 (2005)], showed that the reason for the discrepancy is that Petschek did not employ Ohm's law throughout the local diffusion region, but only at the X-point. A derivation of Petschek reconnection, including Ohm's law throughout the entire diffusion region, removes the discrepancy. This derivation is based largely on Petschek's original 1964 calculation [in AAS-NASA Symposium on Solar Flares (National Aeronautics and Space Administration, Washington, D.C., 1964), NASA SP50, p. 425]. A useful physical interpretation of the role which Ohm's law plays in the diffusion region is presented.

Kulsrud, Russell M.

2011-11-01

127

Reconnection rates of magnetic fields  

Energy Technology Data Exchange (ETDEWEB)

The Sweet-Parker and Petschek scalings of magnetic reconnection rate are modified to include the effect of the viscosity. The modified scalings show that the viscous effect can be important in high-..beta.. plasmas. The theoretical reconnection scalings are compared with numerical simulation results in a tokamak geometry for three different cases: a forced reconnection driven by external coils, the nonlinear m = 1 resistive internal kink, and the nonlinear m = 2 tearing mode. In the first two cases, the numerical reconnection rate agrees well with the modified Sweet-Parker scaling, when the viscosity is sufficiently large. When the viscosity is negligible, a steady state which was assumed in the derivation of the reconnection scalings is not reached and the current sheet in the reconnection layer either remains stable through sloshing motions of the plasma or breaks up to higher m modes. When the current sheet remains stable, a rough comparison with the Sweet-Parker scaling is obtained. In the nonlinear m = 2 tearing mode case where the instability is purely resistive, the reconnection occurs on the slower dissipation time scale (Psi/sub s/ approx. eta). In addition, experimental data of the nonlinear m = 1 resistive internal kink in tokamak discharges are analyzed and are found to give reasonable agreement with the modified Sweet-Parker scaling.

Park, W.; Monticello, D.A.; White, R.B.

1983-05-01

128

Rapid magnetic reconnection caused by finite amplitude fluctuations  

Science.gov (United States)

The nonlinear dynamics of the magnetohydrodynamic sheet pinch have been investigated as an unforced initial value problem for large scale Reynolds numbers up to 1000. Reconnection is triggered by adding to the sheet pinch a small but finite level of broadband random perturbations. Effects of turbulence in the solutions include the production of reconnected magnetic islands at rates that are insensitive to resistivity at early times. This is explained by noting that electric field fluctuations near the X point produce irregularities in the vector potential, sometimes taking the form of 'magnetic bubbles', which allow rapid change of field topology.

Matthaeus, W. H.; Lamkin, S. L.

1985-01-01

129

Solar wind magnetosphere interaction as simulated by a 3-D EM particle code : A 3-D reconnection at the magnetopause  

DEFF Research Database (Denmark)

We have studied the solar wind-magnetosphere interaction with a 3-D electromagnetic particle code. The results for an unmagnetized solar wind plasma streaming past a dipole magnetic field show the formation of a magnetopause and a magnetotail, the penetration of energetic particles into cusps and radiation belt and dawn-dusk asymmetries. The effects of interplanetary magnetic field (IMF) have been investigated in a similar way as done by MHD simulations. The simulation results with a southward IMF show the shrunk magnetosphere with great particle entry into the cusps and nightside magnetosphere. This is a signature of a magnetic reconnection at the dayside magnetopause. On the other hand, in the case where a solar wind with a northward IMF is switched on, the significant changes take place in the magnetotail. The waving motion was seen in the magnetotail and its length was shortened, This phenomena are consistent with the reconnections which occur at the high latitude magnetopause. In our simulations kinetic effects will determine the self-consistent anomalous resistivity in the magnetopause that causes reconnections.

Nishikawa, K.-I; Neubert, Torsten

1996-01-01

130

Effect of interchange instability on magnetic reconnection  

Directory of Open Access Journals (Sweden)

Full Text Available We present here the results of a study of interacting magnetic fields that involves a force normal to the reconnection layer. In the presence of such force, the reconnection layer becomes unstable to interchange disturbances. The interchange instability results in formation of tongues of heated plasma that leaves the reconnection layer through its wide surface rather than through its narrow ends, as is the case in traditional magnetic reconnection models. This plasma flow out of the reconnection layer facilitates the removal of plasma from the layer and leads to fast reconnection. The proposed mechanism provides fast reconnection of interacting magnetic fields and does not depend on the thickness of the reconnection layer. This instability explains the strong turbulence and bidirectional streaming of plasma that is directed toward and away from the reconnection layer that is observed frequently above reconnection layers. The force normal to the reconnection layer also accelerates the removal of plasma islands appearing in the reconnection layer during turbulent reconnection. In the presence of this force normal to the reconnection layer, these islands are removed from the reconnection layer by the "buoyancy force", as happens in the case of interchange instability that arises due to the polarization electric field generated at the boundaries of the islands.

W. Lyatsky

2013-06-01

131

Reconnection of magnetic field lines  

International Nuclear Information System (INIS)

Magnetic field line diffusion in a plasma is studied on the basis of the non-linear boundary layer equations of dissipative, incompressible magnetohydrodynamics. Non-linear steady state solutions for a class of plasma parameters have been obtained which are consistent with the boundary conditions appropriate for reconnection. The solutions are self-consistent in connecting a stagnation point flow of a plasma with reconnecting magnetic field lines. The range of the validity of the solutions, their relation to other fluid models of reconnection, and their possible applications to space plasma configurations are pointed out. (Author)

132

Observational Signatures of Magnetic Reconnection  

Science.gov (United States)

Magnetic reconnection is often referred to as the primary source of energy release during solar flares. Directly observing reconnection occurring in the solar atmosphere, however, is not trivial considering that the scale size of the diffusion region is magnitudes smaller than the observational capabilities of current instrumentation, and coronal magnetic field measurements are not currently sufficient to capture the process. Therefore, predicting and studying observationally feasible signatures of the precursors and consequences of reconnection is necessary for guiding and verifying the simulations that dominate our understanding. I will present a set of such observations, particularly in connection with long-duration solar events, and compare them with recent simulations and theoretical predictions.

Savage, Sabrina

2014-01-01

133

Wave associated anomalous drag during magnetic field reconnection  

International Nuclear Information System (INIS)

The anomalous drag, D, due to large amplitude plasma waves is used for the first time, in place of ?*j, to estimate dissipation at the sub-solar magnetopause and to determine the extent to which this drag accounts for the reconnection electric field. This anomalous drag is determined by measuring correlations of the fluctuations in the electric field and plasma density. Large amplitude electric fields occurred more than 60% of the time in the more than 100 sub-solar, low latitude magnetopause crossings of the THEMIS satellite. They occurred mainly near the magnetospheric separatrix in the form of electrostatic lower hybrid and whistler waves. The anomalous drag at the separatrix was generally <10% of the average reconnection electric field, and it was <1% of the field in the current sheet. Thus, anomalous drag due to waves is not a significant driver of reconnection or of the required dissipation at the sub-solar magnetopause.

134

Reconnection Rate in Collisionless Magnetic Reconnection under Open Boundary Conditions  

International Nuclear Information System (INIS)

Collisionless magnetic reconnection is studied by using two-dimensional Darwin particle-in-cell simulations with different types of open boundary conditions. The simulation results indicate that reconnection rates are strongly dependent on the imposed boundary conditions of the magnetic field Bx in the inward side. Under the zero- gradient Bx boundary condition, the reconnection rate quickly decreases after reaching its maximum and no steady-state is found. Under both electromagnetic and magnetosonic boundary conditions, the system can reach a quasi-steady state. However, the reconnection rate Er ? 0.08 under the electromagnetic boundary condition is weaker than Er ? 0.13 under the magnetosonic boundary condition. (physics of gases, plasmas, and electric discharges)

135

Reconnection and merging of positive streamers in air  

International Nuclear Information System (INIS)

Pictures show that streamer or sprite discharge channels emerging from the same electrode sometimes seem to reconnect or merge though their heads carry electric charge of the same polarity; one might therefore suspect that reconnections are an artefact of the two-dimensional projection in the pictures. Here we use stereo photography to investigate the full three-dimensional structure of such events. We analyse reconnection, possibly an electrostatic effect in which a late thin streamer reconnects to an earlier thick streamer channel, and merging, a suggested photoionization effect in which two simultaneously propagating streamer heads merge into one new streamer. We use four different anode geometries (one tip, two tips, two asymmetric protrusions in a plate and a wire), placed 40 mm above a flat cathode plate in ambient air. A positive high voltage pulse is applied to the anode, creating a positive corona discharge. This discharge is studied with a fast ICCD camera, in many cases combined with optics to enable stereoscopic imaging. We find that reconnections as defined above occur frequently. Merging on the other hand was only observed at a pressure of 25 mbar and a tip separation of 2 mm, i.e. for a reduced tip distance of p·d = 50 ?m bar. In this case the full width at half maximum of the streamer channel is more than 10 times as large as the tip separation. At higher pressures or with a wire anode, merging was not observed..

136

Reconnection and merging of positive streamers in air  

Science.gov (United States)

Pictures show that streamer or sprite discharge channels emerging from the same electrode sometimes seem to reconnect or merge though their heads carry electric charge of the same polarity; one might therefore suspect that reconnections are an artefact of the two-dimensional projection in the pictures. Here we use stereo photography to investigate the full three-dimensional structure of such events. We analyse reconnection, possibly an electrostatic effect in which a late thin streamer reconnects to an earlier thick streamer channel, and merging, a suggested photoionization effect in which two simultaneously propagating streamer heads merge into one new streamer. We use four different anode geometries (one tip, two tips, two asymmetric protrusions in a plate and a wire), placed 40 mm above a flat cathode plate in ambient air. A positive high voltage pulse is applied to the anode, creating a positive corona discharge. This discharge is studied with a fast ICCD camera, in many cases combined with optics to enable stereoscopic imaging. We find that reconnections as defined above occur frequently. Merging on the other hand was only observed at a pressure of 25 mbar and a tip separation of 2 mm, i.e. for a reduced tip distance of p·d = 50 µm bar. In this case the full width at half maximum of the streamer channel is more than 10 times as large as the tip separation. At higher pressures or with a wire anode, merging was not observed.

Nijdam, S.; Geurts, C. G. C.; van Veldhuizen, E. M.; Ebert, U.

2009-02-01

137

Reconnection and merging of positive streamers in air  

Energy Technology Data Exchange (ETDEWEB)

Pictures show that streamer or sprite discharge channels emerging from the same electrode sometimes seem to reconnect or merge though their heads carry electric charge of the same polarity; one might therefore suspect that reconnections are an artefact of the two-dimensional projection in the pictures. Here we use stereo photography to investigate the full three-dimensional structure of such events. We analyse reconnection, possibly an electrostatic effect in which a late thin streamer reconnects to an earlier thick streamer channel, and merging, a suggested photoionization effect in which two simultaneously propagating streamer heads merge into one new streamer. We use four different anode geometries (one tip, two tips, two asymmetric protrusions in a plate and a wire), placed 40 mm above a flat cathode plate in ambient air. A positive high voltage pulse is applied to the anode, creating a positive corona discharge. This discharge is studied with a fast ICCD camera, in many cases combined with optics to enable stereoscopic imaging. We find that reconnections as defined above occur frequently. Merging on the other hand was only observed at a pressure of 25 mbar and a tip separation of 2 mm, i.e. for a reduced tip distance of p{center_dot}d = 50 {mu}m bar. In this case the full width at half maximum of the streamer channel is more than 10 times as large as the tip separation. At higher pressures or with a wire anode, merging was not observed.

Nijdam, S; Geurts, C G C; Van Veldhuizen, E M; Ebert, U, E-mail: s.nijdam@tue.n [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

2009-02-21

138

Magnetic Reconnection in Astrophysical Systems  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The main subject of my talk is the question: in what kind of astrophysical systems magnetic reconnection is interesting and/or important? To address this question, I first put forward three general criteria for selecting the relevant astrophysical environments. Namely, reconnection should be: fast; energetically important; and observable. From this, I deduce that the gas density should be low, so that the plasma is: collisionless; force-free; and optically thin. Thus, for ex...

Uzdensky, Dmitri A.

2006-01-01

139

A model of Hall reconnection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The rate of quasi-stationary, two-dimensional magnetic reconnection is calculated in the framework of incompressible Hall magnetohydrodynamics (MHD). The calculation is based on the solution of Hall-MHD equations that include Hall and electron pressure terms for electric current. These equations are solved in a local region across the reconnection electron layer, including only the upstream region and the layer center. In the case when the ion inertial length d_i is larger t...

Malyshkin, Leonid M.

2008-01-01

140

On the relativistic magnetic reconnection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Reconnection of the magnetic lines of force is considered in case the magnetic energy exceeds the rest energy of the matter. It is shown that the classical Sweet-Parker and Petschek models are generalized straightforwardly to this case and the reconnection rate may be estimated by substituting the Alfven velocity in the classical formulas by the speed of light. The outflow velocity in the Sweet-Parker configuration is mildly relativistic. In the Petschek configuration, the o...

Lyubarsky, Y. E.

2005-01-01

 
 
 
 
141

Multiscale modeling of magnetospheric reconnection  

Science.gov (United States)

In our efforts to bridge the gap between small-scale kinetic modeling and global simulations, we introduced an approach that allows to quantify the interaction between large-scale global magnetospheric dynamics and microphysical processes in diffusion regions near reconnection sites. We use the global MHD code BATS-R-US and replace an ad hoc anomalous resistivity often employed by global MHD models with a physically motivated dissipation model. The primary kinetic mechanism controlling the dissipation in the diffusion region in the vicinity of the reconnection site is incorporated into the MHD description in terms of nongyrotropic corrections to the induction equation. We developed an algorithm to search for reconnection sites in north-south symmetric magnetotail. Spatial scales of the diffusion region and magnitude of the reconnection electric field are calculated consistently using local MHD plasma and field parameters. The locations of the reconnection sites are constantly updated during the simulations. To clarify the role of nongyrotropic effects in the diffusion region on the global magnetospheric dynamics, we perform simulations with steady southward interplanetary magnetic field driving of the magnetosphere. Ideal MHD simulations with magnetic reconnection supported by numerical resistivity often produce quasi-steady configuration with almost stationary near-Earth neutral line (NENL). Simulations with nongyrotropic corrections demonstrate dynamic quasi-periodic response to the steady driving conditions. Fast magnetotail reconnection supported by nongyrotropic effects results in tailward retreat of the reconnection site with average speed of the order of 100 km/s followed by a formation of a new NENL in the near-Earth thin current sheet. This approach allowed to model for the first time loading/unloading cycle frequently observed during extended periods of steady low-mach-number solar wind with southward interplanetary magnetic field.

Kuznetsova, M. M.; Hesse, M.; RastäTter, L.; Taktakishvili, A.; Toth, G.; de Zeeuw, D. L.; Ridley, A.; Gombosi, T. I.

2007-10-01

142

Magnetic reconnection via current sheets  

International Nuclear Information System (INIS)

A general picture of magnetic reconnection in the frame work of 2D incompressible resistive magnetohydrodynamic theory is presented. Numerical studies of (quasi-) steady state driven reconnection reveal current sheet formation for Mach numbers M = u/vA exceeding the Sweet-Parker reconnection rate MSP = ?/LvA)1/2. Since the thickness ? of the current sheet is found to be invariant to a change of the resistivity ?, its length ? increases rapidly with decreasing ? or increasing M, which can be written in the form ? ? (M/MSP)4, so that ? reaches the global system size L within a short range of the parameter M/MSP. The reconnection process is therefore rather slow. This picture agrees in essence with Syrovatsky's theory of current sheets and disproves Petschek's mechanism of fast magnetic reconnection. A theory of the solution in the external and in the diffusion region is developed and analytical expressions in agreement with the simulation results are obtained by means of a variational principle. For sufficiently long current sheets the tearing mode becomes unstable in spite of the stabilizing effect of the inhomogeneous flow. The tearing mode contributes to the overall reconnection process, but a general assessment of this effect in the asymptotic regime of almost vanishing ? is difficult

143

Properties of asymmetric magnetic reconnection  

International Nuclear Information System (INIS)

Properties of magnetic reconnection are investigated in two-dimensional, resistive magnetohydrodynamic (MHD) simulations of current sheets separating plasmas with different magnetic field strengths and densities. Specific emphasis is on the influence of the external parameters on the reconnection rate. The effect of the dissipation in the resistive MHD model is separated from this influence by evaluating resistivity dependence together with the dependence on the background parameters. Two scenarios are considered, which may be distinguished as driven and nondriven reconnection. In either scenario, the maximum reconnection rate (electric field) is found to depend on appropriate hybrid expressions based on a magnetic field strength and an Alfven speed derived from the characteristic values in the two inflow regions. The scaling compares favorably with an analytic formula derived recently by Cassak and Shay [Phys. Plasmas 14, 102114 (2007)] applied to the regime of fast reconnection. An investigation of the energy flow and conversion in the vicinity of the reconnection site revealed a significant role of enthalpy flux generation, in addition to the expected conversion of Poynting flux to kinetic energy flux. This enthalpy flux generation results from Ohmic heating as well as adiabatic, that is, compressional heating. The latter is found more important when the magnetic field strengths in the two inflow regions are comparable in magnitudeagnitude

144

Come take a walk with me: the "go-along" interview as a novel method for studying the implications of place for health and well-being.  

Science.gov (United States)

This paper aims to serve as a four-part introductory primer on the "go-along" qualitative interview methodology for studying the health issues of neighborhood or local-area contexts. First, I describe the purpose and different types of implementation of go-alongs. Second, I discuss its advantages for studying how place may matter for health (particularly in terms of the participants) and how it may facilitate researchers' understandings of local knowledge as well as the social and physical context. Third, I consider the method's strengths and limitations for population health research on neighborhoods and local areas. Fourth and finally, I discuss how go-alongs may be used in tandem with other qualitative and quantitative approaches for multi-method research. Informing this discussion are my own experiences with a particular type of go-along interview-"walk-along" interviews-during a study of social capital in Milwaukee, Wisconsin neighborhoods. PMID:18606557

Carpiano, Richard M

2009-03-01

145

NS [Nuclear Safety] update. Current safety and security activities and developments taking place in the Department of Nuclear Safety and Security, Issue no. 6, March 2008  

International Nuclear Information System (INIS)

The current issue presents information about the following activities: 1) International Conference on Illicit Nuclear Trafficking which took place in November 2007 in Edinburgh. The principal aim of the conference was to examine the threat and context of illicit nuclear trafficking of radioactive material, specifically, what is being done to combat such trafficking and where more needs to be done. The conference was also to consider how the obligations and commitments of the legally binding and non-binding international instruments could be and are being implemented by various States. 2) INSAG Message on Nuclear Safety Infrastructure in which the INSAG Chairman Richard Meserve addressed nuclear safety in the current context and various issues that warrant special attention. 3) approved for publication the Safety Requirements publication on Safety of Nuclear Fuel Cycle Facilities. 4) The Asian Nuclear Safety Network (ANSN)

146

NS [Nuclear Safety] update. Current safety and security activities and developments taking place in the Department of Nuclear Safety and Security, Issue no. 8, September 2008  

International Nuclear Information System (INIS)

The current issue presents information about the following activities: 1) International Workshops on Denial of Shipments raise awareness of suppliers, recipients, regulators, carriers/consignors and international organizations of the problems relating to denials of radioactive shipments to determine effective measures to prevent or reduce the instances of shipment denials and delays. 2) Communication and knowledge Management in the Department of Nuclear Safety and Security (NS). 3) Nuclear Security at the Beijing Olympics - an excellent example of the IAEA's work in protecting large scale public events. 4) The Incident and Emergency Centre's Participation in the ConvEx 3 Exercise, 9-10 July 2008, which took place at the Laguna Verde nuclear power plant in Mexico. During the 43 hour long exercise, the Incident and Emergency Centre (IEC) was fully activated. Staff members participating in the exercise represented different departments within the IAEA and the diversity of their knowledge and experience ensured an effective response

147

Diagnostics of solar flare reconnection  

Directory of Open Access Journals (Sweden)

Full Text Available We present new diagnostics of the solar flare reconnection, mainly based on the plasma radio emission. We propose that the high-frequency (600-2000 MHz slowly drifting pulsating structures map the flare magnetic field reconnection. These structures correspond to the radio emission from plasmoids which are formed in the extended current sheet due to tearing and coalescence processes. An increase of the frequency drift of the drifting structures is interpreted as an increase of the reconnection rate. Using this model, time scales of slowly drifting pulsating structure observed during the 12 April 2001 flare by the Trieste radiopolarimeter with high time resolution (1 ms are interpreted as a radio manifestation of electron beams accelerated in the multi-scale reconnection process. For short periods Fourier spectra of the observed structure have a power-law form with power-law indices in the 1.3-1.6 range. For comparison the 2-D MHD numerical modeling of the multi-scale reconnection is made and it is shown that Fourier spectrum of the reconnection dissipation power has also a power-law form, but with power-law index 2. Furthermore, we compute a time evolution of plasma parameters (density, magnetic field etc in the 2-D MHD model of the reconnection. Then assuming a plasma radio emission from locations, where the 'double-resonance' instability generates the upper-hybrid waves due to unstable distribution function of suprathermal electrons, we model radio spectra. Effects of the MHD turbulence are included. The resulting spectra are compared with those observed. It is found, that depending on model parameters the lace bursts and the decimetric spikes can be reproduced. Thus, it is shown that the model can be used for diagnostics of the flare reconnection process. We also point out possible radio signatures of reconnection outflow termination shocks. They are detected as type II-like herringbone structures in the 200-700 MHz frequency range. Finally, we mention H? spectra of the 18 September 1995 eruptive prominence which indicate the bi-directional plasma flow as expected in the reconnection process.

M. Karlický

2004-01-01

148

Steady state reconnection at a single 3D magnetic null point  

CERN Document Server

To systematically stress a rotationally symmetric 3D magnetic null point by advecting the opposite footpoints of the spine axis in opposite directions. This stress eventually concentrates in the vicinity of the null point forming a local current sheet through which magnetic reconnection takes place. The aim is to look for a steady state evolution of the current sheet dynamics which may provide scaling relations for various characteristic parameters of the system. The evolution is followed by solving numerically the non-ideal MHD equations in a Cartesian domain. The null point is embedded in an initially constant density and temperature plasma. It is shown that a quasi-steady reconnection process can be set up at a 3D null by continuous shear driving. It appears that a true steady state in unlikely to be realised as the current layer tends to grow until restricted by the geometry of the computational domain and imposed driving profile. However, ratios between characteristic quantities clearly settle after some...

Galsgaard, K

2011-01-01

149

NS [Nuclear Safety] update. Current safety and security activities and developments taking place in the Department of Nuclear Safety and Security. Issue no. 2, January 2007  

International Nuclear Information System (INIS)

This newsletter reports on the training of cardiologists in radiation protection, IAEA's safety review services and the operational safety assessment review team (OSART), the international conference on management of spent fuel and the recent INSAG (International Nuclear Safety Group) publications. The IAEA has begun a major international initiative to train interventional cardiologists in radiation protection. Starting with the first course in May 2004, so far 6 regional and 3 national training courses have been conducted with the participation of over 400 health professionals putting the IAEA in a leading role in this area. A programme of two days' training has been developed, covering possible and observed radiation effects among patients and staff, international standards, dose management techniques, examples of good and bad practice and examples indicating prevention of possible injuries as a result of good practice in radiation protection. The training material is freely available on CD and will be placed on the Radiological Protection of Patients website at http://rpop.iaea.org/

150

Analysis of the chemical stability of the 1% sodium hypochlorite solution taking in consideration the place of storage and the amount of present solution in the bottle  

Directory of Open Access Journals (Sweden)

Full Text Available Introduction and objective: This study had as objective to analyze theloss of the chlorine text of the 1% sodium hypochlorite solution stored in coolant and ambient temperature and in bottles of plastic amber and cloudy white plastic, leading in consideration the amount of existing solution in the bottles. Material and methods: 24 liters of solution had been used, which had been divided in two groups: group 1 (6 bottles of plastic amber and 6 white plastic bottles filled with 1.000 mL of the 1% sodium hypochlorite solution and group 2 (6 bottles of plastic amber and 6 white plastic bottles filled with 800 mL of solution.In the second group had been removed 50 mL of solution of each bottle on each week, while the bottles of group 1 had always remained full. The analysis of the chlorine text was carried through in the beginning and in the final period of 10 weeks through the method of titulometria of oxi-reduction or iodometria. Results and conclusion:For the analysis statistics it was used analysis of the variance (Anovafollowed by the test of Tukey, to the level of significance of 5%, where it can be verified that the amount of present solution in the interior of the bottles contributed for the instability of the solution, whatever the place and the bottle of storage, and the full bottles had kept the chlorinetext of the solutions higher.

Graziele BORIN

2008-12-01

151

Effects of proton irradiation on a gas phase in which condensation takes place. I Negative Mg-26 anomalies and Al-26. [applied to solar and meteoritic composition  

Science.gov (United States)

In the present paper, isotopic effects in magnesium generated in a proton-irradiated gas phase are examined, taking only (p,n), (p,d), and (p, alpha) reactions in magnesium, aluminum, and silicon into consideration. In the presence of proton radiation, the three elements are 'removed' from the gas phase by condensation. It is required that a value of Al-26/Al-27 greater than 6 times 10 to the -5th must be reached, consistent with the value deduced by Lee Papanastassiou, and Wasserburg (1976) from their studies of the Allende meteorite. The calculations show that fast aluminum condensation reduces the required proton fluence substantially, that a significant fraction of aluminum remains uncondensed when the above value of the Al-26/Al-27 ratio is reached, that a detectable MG-24 excess is very likely to occur, that detectable negative MG-28 anomalies can be generated, and that proton fluxes and irradiation times can be varied simultaneously, and over a wide range of values, without significant changes in the required proton fluence.

Heymann, D.; Dziczkaniec, M.; Walker, A.; Huss, G.; Morgan, J. A.

1978-01-01

152

Asymmetric Magnetic Reconnection in Solar Flare and Coronal Mass Ejection Current Sheets  

Digital Repository Infrastructure Vision for European Research (DRIVER)

We present two-dimensional resistive magnetohydrodynamic simulations of line-tied asymmetric magnetic reconnection in the context of solar flare and coronal mass ejection current sheets. The reconnection process is made asymmetric along the inflow direction by allowing the initial upstream magnetic field strengths and densities to differ, and along the outflow direction by placing the initial perturbation near a conducting wall boundary that represents the photosphere. When ...

Murphy, N. A.; Miralles, M. P.; Pope, C. L.; Raymond, J. C.; Winter, H. D.; Reeves, K. K.; Seaton, D. B.; Ballegooijen, A. A.; Lin, J.

2012-01-01

153

Take Five  

Science.gov (United States)

What if you could learn about how to prepare for emergency situations, explore the legends of the Alamo, and the rise of wireless communications all in one place? Sounds like a pretty good deal, and it is all possible via the Take Five website. Presented by the University of Texas at Austin, the Take Five website presents videos of various faculty members talking about their areas of expertise in an accessible and engaging format. Since the spring of 2003, the Take Five project has presented five new lectures each semester (hence the name of the project), and visitors to the site have access to all of these materials. The presentations are uniformly quite good, and along with the previously mentioned topics, they also cover such areas as minority entrepreneurship and the role of technology in addressing the worldâÂÂs major health problems.

154

Fast Reconnection and Reconnection Diffusion: Implications for Star Formation  

CERN Document Server

Fast reconnection of magnetic field in turbulent fluids allows magnetic fields change their topology and connections. As a result the traditional concept of magnetic field being frozen into plasma is no more applicable. Plasma which is at one instance can be associated with a given magnetic field lines at the next instant is distributed along a different set of magnetic field lines. This diffusion is enabled by reconnection and therefore is termed "reconnection diffusion". The astrophysical implications of this concept include many astrophysical phenomena, e.g. heat transfer in plasmas, advection of metals in plasmas etc. However, the most dramatic implications of the concept are related to star formation process. The reason for that is that the existing theory of star formation was developed assuming that the decoupling of mass and magnetic field is due to neutrals drifting in respect to magnetic field with entrained ions, i.e. through the process of ambipolar diffusion. This implies that if the ionization o...

Lazarian, A

2011-01-01

155

Outflow structure and reconnection rate of the self-similar evolution model of fast magnetic reconnection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In order to understand the nature of magnetic reconnection in ``free space'' which is free from any influence of external circumstances, I have studied the structure of spontaneous reconnection outflow using a shock tube approximation. The reconnection system of this case continues to expand self-similarly. This work aims 1) to solve the structure of reconnection outflow and 2) to clarify the determination mechanism of reconnection rate of the ``self-similar evolution model'...

Nitta, Shin-ya

2004-01-01

156

Magnetic reconnection models of flares  

Science.gov (United States)

The most feasible energy source for solar and stellar flares is the energy stored in coronal magnetic fields. To convert a significant fraction of this energy into heat and kinetic energy in a short time requires rapid change in the topology of the magnetic fields, and hence, rapid reconnection of field lines. Recent numerical and analytical models of solar flares suggest that the magnetic energy released by reconnection drives chromospheric ablation in the flare ribbons. Simple theoretical arguments based on compressible reconnection theory predict that the temperature of the ablated plasma should be about 1.03 x 10 to the 6th B exp 0.62 K where B is the coronal magnetic field strength in Gauss.

Forbes, T. G.

1988-01-01

157

Toward an Interdisciplinary Understanding of Place: Lessons for Environmental Education  

Science.gov (United States)

Sense of place is lauded as critical to developing an environmentally conscious and responsive citizenry. Calls for place-based education have often arisen from an emotional plea to reconnect to the land, become rooted, and conserve natural places. However, in reality, sense of place encompasses a multidimensional array that is not only…

Ardoin, Nicole M.

2006-01-01

158

Reconnection and merging of positive streamers in air  

CERN Document Server

Pictures show that streamer or sprite discharge channels emerging from the same electrode sometimes seem to reconnect or merge though their heads carry electric charge of the same polarity; one might therefore suspect that reconnections are an artifact of the two-dimensional projection in the pictures. Here we use stereo-photography to investigate the full three-dimensional structure of such events. We analyze reconnection, possibly an electrostatic effect in which a late thin streamer reconnects to an earlier thick streamer channel, and merging, a suggested photoionization effect in which two simultaneously propagating streamer heads merge into one new streamer. We use four different anode geometries (one tip, two tips, two asymmetric protrusions in a plate, and a wire), placed 40 mm above a flat cathode plate in ambient air. A positive high voltage pulse is applied to the anode, creating a positive corona discharge. This discharge is studied with a fast ICCD camera, in many cases combined with optics to ena...

Nijdam, S; van Veldhuizen, E M; Ebert, U

2008-01-01

159

Transition to whistler mediated magnetic reconnection  

Science.gov (United States)

The transition in the magnetic reconnection rate from the resistive magnetohydrodynamic (MHD) regime where the Alfen wave controls reconnection to a regime in which the ions become unmagnetized and the whistler wave mediates reconnection is explored with 2-D hybrid simulations. In the whistler regime the electrons carry the currents while the ions provide a neutralizing background. A simple physical picture is presented illustrating the role of the whistler mediated reconnection is calculated analytically. The development of an out-of-plane component of the magnetic field is an observable signature of whistler driven reconnection.

Mandt, M. E.; Denton, R. E.; Drake, J. F.

1994-01-01

160

MAGNETIC RECONNECTION IN NON-EQUILIBRIUM IONIZATION PLASMA  

International Nuclear Information System (INIS)

We have studied the effect of time-dependent ionization and the recombination processes on magnetic reconnection in the solar corona. Petschek-type steady reconnection, in which the magnetic energy is mainly converted at the slow-mode shocks, was assumed. We carried out the time-dependent ionization calculation in the magnetic reconnection structure. We only calculated the transient ionization of iron; the other species were assumed to be in ionization equilibrium. The intensity of line emissions at specific wavelengths was also calculated for comparison with Hinode or other observations in future. We found the following: (1) iron is mostly in non-equilibrium ionization in the reconnection region; (2) the intensity of line emission estimated by the time-dependent ionization calculation is significantly different from that determined from the ionization equilibrium assumption; (3) the effect of time-dependent ionization is sensitive to the electron density in the case where the electron density is less than 1010 cm–3; (4) the effect of thermal conduction lessens the time-dependent ionization effect; and (5) the effect of radiative cooling is negligibly small even if we take into account time-dependent ionization.

 
 
 
 
161

Model for incomplete reconnection in sawtooth crashes.  

Science.gov (United States)

A model for incomplete reconnection in sawtooth crashes is presented. The reconnection inflow during the crash phase of sawteeth self-consistently convects the high pressure core toward the reconnection site, raising the pressure gradient there. Reconnection shuts off if the diamagnetic drift speed at the reconnection site exceeds a threshold, which may explain incomplete reconnection. The relaxation of magnetic shear after reconnection stops may explain the destabilization of ideal interchange instabilities reported previously. Proof-of-principle two-fluid simulations confirm this basic picture. Predictions of the model compare favorably to data from the Mega Ampere Spherical Tokamak. Applications to transport modeling of sawteeth are discussed. The results should apply across tokamaks, including ITER. PMID:22243083

Beidler, M T; Cassak, P A

2011-12-16

162

Magnetopause reconnection and interlinked flux tubes  

Directory of Open Access Journals (Sweden)

Full Text Available Magnetic reconnection can be a continuous or a transient process. Global magnetohydrodynamics (MHD simulations are important tools to understand the relevant magnetic reconnection mechanisms and the resulting magnetic structures. We have studied magnetopause reconnection using a global 3-D MHD simulation in which the interplanetary magnetic field (IMF has been set to large positive By and large negative Bz components, i.e., a south-duskward direction. Flux tubes have been observed even during these constant solar wind conditions. We have focused on the interlinked flux tubes event resulting from time-dependent, patchy and multiple reconnection. At the event onset, two reconnection modes seem to occur simultaneously: a time-dependent, patchy and multiple reconnection for the subsolar region; and, a steady and large-scale reconnection for the regions far from the subsolar site.

F. R. Cardoso

2013-10-01

163

Interaction behaviours of solitoffs: fission, fusion, reconnection and annihilation  

International Nuclear Information System (INIS)

The interactions between solitoffs are extensively investigated. Besides the known solitoff fission and fusion interactions, two new types of solitoff interactions are discovered, named the solitoff reconnection and the solitoff annihilation. Taking the asymmetric Nizhnik-Novikov-Veselov equation as an illustrative system, five types of solitoff interactions are graphically revealed on the basis of the analytical solution obtained by the modified tanh function expansion method. (general)

164

Study of Electron-scale Dissipation near the X-line During Magnetic Reconnection in a Laboratory Plasma  

Science.gov (United States)

Despite its disruptive influences on the large-scale structures of space and solar plasmas, the crucial topological changes and associated dissipation during magnetic reconnection take place only near an X-line within thin singular layers. In the modern collisionless models where electrons and ions are allowed to move separately, it has been predicted that ions exhaust efficiently through a thicker, ion-scale dissipative layer while mobile electrons can evacuate through a thinner, electron-scale dissipation layer, allowing for efficient release of magnetic energy. While ion dissipation layers have been frequently detected, the existence of election layers near the X-line and the associated dissipation structures and mechanisms are still an open question, and will be a main subject of the coming MMS mission. In this presentation, we will summarize our efforts in the past a few years to study electron-scale dissipation in a well-controlled and well-diagnosed reconnecting current sheet in a laboratory plasma, with close comparisons with the state-of-the-art, 2D and 3D fully kinetic simulations. Key results include: (1) positive identification of electromagnetic waves detected at the current sheet center as long wave-length, lower-hybrid drift instabilities (EM-LHDI), (2) however, there is strong evidence that this EM-LHDI cannot provide the required force to support the reconnection electric field, (3) detection of 3D flux-rope-like magnetic structures during impulsive reconnection events, and (4) electrons are heated through non-classical mechanisms near the X-line with a small but clear temperature anisotropy. These results, unfortunately, do not resolve the outstanding discrepancies on electron layer thickness between best available experiments and fully kinetic simulations. To make further progress, we are continuously pushing in the both experimental and numerical frontiers. Experimentally, we started investigations on EM-LHDI and electron heating as a function of guide field strength and symmetry of reconnection geometry, with new attempts to measure non-thermal electrons and higher frequency fluctuations. Numerically, we started investigations of kinetic simulations at realistic ratios of electron plasma frequency to cyclotron frequency, and also at realistic ratios of ion mass to electron mass. The most updated results of these new projects will be presented with discussions on the relevance to space observations.

Ji, H.; Yoo, J.; Dorfman, S. E.; Jara-Almonte, J.; Yamada, M.; Swanson, C.; Daughton, W. S.; Roytershteyn, V.; Kuwahata, A.; Ii, T.; Inomoto, M.; Ono, Y.; von Stechow, A.; Grulke, O.; Phan, T.; Mozer, F.; Bale, S. D.

2013-12-01

165

NUMERICAL STUDIES OF WEAKLY STOCHASTIC MAGNETIC RECONNECTION  

Directory of Open Access Journals (Sweden)

Full Text Available We study the e ects of turbulence on magnetic reconnection using three-dimensional numerical simulations.This is the rst attempt to test the model of fast magnetic reconnection proposed by Lazarian & Vishniac (1999, which assumes the presence of weak, small-scale magnetic eld structure near the current sheet. This a ects the rate of reconnection by reducing the transverse scale for reconnection ows and by allowing many independent ux reconnection events to occur simultaneously. We performed a number of simulations to test the dependencies of the reconnection speed, de ned as the ratio of the in ow velocity to the Alfv n speed, on the turbulence power, the injection scale and resistivity. Our results show that turbulence signi cantly a ects the topology of magnetic eld near the di usion region and increases the thickness of the out ow region. We con rm the predictions of the Lazarian & Vishniac model. In particular, we report the growth of the reconnection speed proportional to V 2 l , where Vl is the amplitude of velocity at the injection scale. It depends on the injection scale linj as (linj=L2=3, where L is the size of the system, which is somewhat faster but still roughly consistent with the theoretical expectations. We also show that for 3D reconnection the Ohmic resistivity is important in the local reconnection events only, and the global reconnection rate in the presence of turbulence does not depend on it.

G. Kowal

2009-01-01

166

On phase diagrams of magnetic reconnection  

International Nuclear Information System (INIS)

Recently, “phase diagrams” of magnetic reconnection were developed to graphically organize the present knowledge of what type, or phase, of reconnection is dominant in systems with given characteristic plasma parameters. Here, a number of considerations that require caution in using the diagrams are pointed out. First, two known properties of reconnection are omitted from the diagrams: the history dependence of reconnection and the absence of reconnection for small Lundquist number. Second, the phase diagrams mask a number of features. For one, the predicted transition to Hall reconnection should be thought of as an upper bound on the Lundquist number, and it may happen for considerably smaller values. Second, reconnection is never “slow,” it is always “fast” in the sense that the normalized reconnection rate is always at least 0.01. This has important implications for reconnection onset models. Finally, the definition of the relevant Lundquist number is nuanced and may differ greatly from the value based on characteristic scales. These considerations are important for applications of the phase diagrams. This is demonstrated by example for solar flares, where it is argued that it is unlikely that collisional reconnection can occur in the corona

167

Outflow structure and reconnection rate of the self-similar evolution model of fast magnetic reconnection  

CERN Document Server

In order to understand the nature of magnetic reconnection in ``free space'' which is free from any influence of external circumstances, I have studied the structure of spontaneous reconnection outflow using a shock tube approximation. The reconnection system of this case continues to expand self-similarly. This work aims 1) to solve the structure of reconnection outflow and 2) to clarify the determination mechanism of reconnection rate of the ``self-similar evolution model'' of fast reconnection. Many cases of reconnection in astrophysical phenomena are characterized by a huge dynamic range of expansion in size ($\\sim 10^7$ for typical solar flares). Although such reconnection is intrinsically time dependent, a specialized model underlying the situation has not been established yet. The theoretical contribution of this paper is in obtaining a solution for outflow structure which is absent in our previous papers proposing the above new model. The outflow has a shock tube-like structure, i.e., forward slow sho...

Nitta, S

2004-01-01

168

On the Rate of Spontaneous Magnetic Reconnection  

CERN Document Server

Magnetic reconnection is a topological rearrangement of the magnetic field lines, leading to the release of magnetic energy, which is thought to be associated with solar flares, coronal mass ejections and magnetospheric storms. Despite magnetic field lines are supposed to be frozen into the well-conducting plasma, the reconnection observed in nature is, typically, fast, so that the rate of convergence of the magnetic field lines is the fraction of the Alfven speed, v_A. The Sweet-Parker solution predicts reconnection rates which are negligible for the solar or astrophysical conditions, this have prompted research into collisionless reconnection. The stochasticity of magnetic field lines due to ambient turbulence leads to fast reconnection and the rate was predicted to be proportional to kinetic energy density of ambient turbulence. Also, tearing instability of the thin current sheet was proposed as a driver of resistivity-independent reconnection, which was shown to be consistent with two-dimensional simulati...

Beresnyak, Andrey

2013-01-01

169

Patchy Reconnection in the Solar Corona  

CERN Document Server

Supra-arcade downflows (SADs) and supra-arcade downflowing loops (SADLs) descending from reconnection regions toward solar post-flare arcades seem to be two different observational signatures of retracting, isolated reconnected flux tubes with irreducible three-dimensional geometries. This dissertation describes work in refining and improving a novel model of patchy reconnection, where only a small bundle of field lines is reconnected across a current sheet and forms a reconnected thin flux tube. Traditional models have not been able to explain why some of the observed SADs appear to be hot and relatively devoid of plasma. The present work shows that plasma depletion naturally occurs in flux tubes that are reconnected across nonuniform current sheets and slide trough regions of decreasing magnetic field magnitude. Moreover, through a detailed theoretical analysis of generalized thin flux tube equations, we show that the addition to the model of pressure-driven parallel dynamics, as well as temperature-depende...

Guidoni, Silvina E

2011-01-01

170

Particle acceleration at a reconnecting magnetic separator  

CERN Document Server

While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. The effect upon particle behaviour of initial position, pitch angle and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains ...

Threlfall, J; Parnell, C E; Oskoui, S Eradat

2014-01-01

171

Indeterminacy and instability in Petschek reconnection  

Energy Technology Data Exchange (ETDEWEB)

We explain two puzzling aspects of Petschek's model for fast reconnection. One is its failure to occur in plasma simulations with uniform resistivity. The other is its inability to provide anything more than an upper limit for the reconnection rate. We have found that previously published analytical solutions based on Petschek's model are structurally unstable if the electrical resistivity is uniform. The structural instability is associated with the presence of an essential singularity at the X-line that is unphysical. By requiring that such a singularity does not exist, we obtain a formula that predicts a specific rate of reconnection. For uniform resistivity, reconnection can only occur at the slow, Sweet-Parker rate. For nonuniform resistivity, reconnection can occur at a much faster rate provided that the resistivity profile is not too flat near the X-line. If this condition is satisfied, then the scale length of the nonuniformity determines the reconnection rate.

Forbes, Terry G. [Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire 03824 (United States); Priest, Eric R. [Institute of Mathematics, University of St. Andrews, Fife KY16 9SS, Scotland (United Kingdom); Seaton, Daniel B. [SIDC-Royal Observatory of Belgium, Ringlaan 3, 1180 Brussels (Belgium); Litvinenko, Yuri E. [Department of Mathematics, University of Waikato, P.O. 3105, Hamilton (New Zealand)

2013-05-15

172

On the Periodicity of Oscillatory Reconnection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Oscillatory reconnection is a time-dependent magnetic reconnection mechanism that naturally produces periodic outputs from aperiodic drivers. This paper aims to quantify and measure the periodic nature of oscillatory reconnection for the first time. We solve the compressible, resistive, nonlinear MHD equations using 2.5D numerical simulations. We identify two distinct periodic regimes: the impulsive and stationary phases. In the impulsive phase, we find the greater the ampli...

Mclaughlin, J. A.; Thurgood, J. O.; Mactaggart, D.

2012-01-01

173

Magnetopause reconnection and interlinked flux tubes  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Magnetic reconnection can be a continuous or a transient process. Global magnetohydrodynamics (MHD) simulations are important tools to understand the relevant magnetic reconnection mechanisms and the resulting magnetic structures. We have studied magnetopause reconnection using a global 3-D MHD simulation in which the interplanetary magnetic field (IMF) has been set to large positive By and large negative Bz components, i.e., a south-duskward direction. Flu...

Cardoso, F. R.; Gonzalez, W. D.; Sibeck, D. G.; Kuznetsova, M.; Koga, D.

2013-01-01

174

Impulsive nature in collisional driven reconnection  

International Nuclear Information System (INIS)

Compressible magnetohydrodynamic simulation is carried out in order to investigate energy relaxation process of the driven magnetic reconnection in an open finite system through a long time calculation. It is found that a very impulsive energy release occurs in an intermittent fashion through magnetic reconnection for a continuous magnetic flux injection on the boundary. In the impulsive phase, the reconnection rate is remarkably enhanced up to more than ten times of the driving rate on the boundary. (author)

175

Solar flares: an extremum of reconnection  

International Nuclear Information System (INIS)

Three points are emphasized: that the solar flare is that particular astrophysical phenomenon that is the extremum of reconnection, no other phenomenon demands as rapid magnetic flux annihilation as is seen in the solar flare; that plasma physics experiments can and should be performed in the laboratory that model reconnection as we observe it in astrophysics; and that stochastic field lines derived from something similar to Alfven wave turbulence are a necessary part of reconnection

176

Gravitational wave bursts from cosmic superstring reconnections  

International Nuclear Information System (INIS)

We compute the gravitational waveform produced by cosmic superstring reconnections. This is done by first constructing the superstring reconnection trajectory, which closely resembles that of classical, instantaneous reconnection but with the singularities smoothed out due to the string path integral. We then evaluate the graviton vertex operator in this background to obtain the burst amplitude. The result is compared to the detection threshold for current and future gravitational wave detectors, finding that neither bursts nor the stochastic background would be detectable by Advanced LIGO. This disappointing but anticipated conclusion holds even for the most optimistic values of the reconnection probability and loop sizes.

177

Relation of astrophysical turbulence and magnetic reconnection  

International Nuclear Information System (INIS)

Astrophysical fluids are generically turbulent and this must be taken into account for most transport processes. We discuss how the preexisting turbulence modifies magnetic reconnection and how magnetic reconnection affects the MHD turbulent cascade. We show the intrinsic interdependence and interrelation of magnetic turbulence and magnetic reconnection, in particular, that strong magnetic turbulence in 3D requires reconnection and 3D magnetic turbulence entails fast reconnection. We follow the approach in Eyink et al.[Astrophys. J. 743, 51 (2011)] to show that the expressions of fast magnetic reconnection in A. Lazarian and E. T. Vishniac [Astrophys. J. 517, 700 (1999)] can be recovered if Richardson diffusion of turbulent flows is used instead of ordinary Ohmic diffusion. This does not revive, however, the concept of magnetic turbulent diffusion which assumes that magnetic fields can be mixed up in a passive way down to a very small dissipation scales. On the contrary, we are dealing the reconnection of dynamically important magnetic field bundles which strongly resist bending and have well defined mean direction weakly perturbed by turbulence. We argue that in the presence of turbulence the very concept of flux-freezing requires modification. The diffusion that arises from magnetic turbulence can be called reconnection diffusion as it based on reconnection of magnetic field lines. The reconnection diffusion has important implications for the continuous transport prplications for the continuous transport processes in magnetized plasmas and for star formation. In addition, fast magnetic reconnection in turbulent media induces the First order Fermi acceleration of energetic particles, can explain solar flares and gamma ray bursts. However, the most dramatic consequence of these developments is the fact that the standard flux freezing concept must be radically modified in the presence of turbulence.

178

Theoretical analysis of driven magnetic reconnection experiments  

Energy Technology Data Exchange (ETDEWEB)

In this paper the authors develop a theoretical framework for the Magnetic Reconnection Experiment (MRX) in order to understand the basic physics of the experiment, including the effect of the external driving force, and the difference between co and counterhelicity cases of the experiment. In order to simplify the problem they reduce it to a 1-D resistive MHD model. Also, they define a special class of holonomic boundary conditions under which a unique sequence of global equilibria can be obtained, independent of the rate of reconnection. This enables them to break the whole problem into two parts: a global problem for the ideal region, and a local problem for the resistive reconnection layer. The authors carry out the calculations and obtain the global solution for the ideal region in one particular case of holonomic constraints, the so called `constant force`` regime, for both the co and counterhelicity cases. After the sequence of equilibria in the ideal region is found, they tackle the problem of the rate of reconnection in the resistive reconnection region. This rate tells how fast they proceed through the sequence of global equilibria but does not affects the sequence itself. Assuming the Sweet-Parker model for the reconnection layer, they calculate the reconnection rate, and demonstrate the difference between the co and counterhelicity cases, as well as the role of the external forces. The authors find their results to be in reasonable agreement with the experiment. Magnetic reconnection is important both in laboratory experiments and in astrophysics.

Uzdensky, D.A.; Kulsrud, R.M.; Yamada, Masaaki [Princeton Univ., NJ (United States)

1995-11-01

179

On the cessation of magnetic reconnection  

Directory of Open Access Journals (Sweden)

Full Text Available Kinetic simulations of collisionless magnetic reconnection are used to study the effect on the reconnection rate of ion density enhancements in the inflow region. The goal of the investigation is to study a candidate mechanism for the slow-down of magnetic reconnection. The calculations involve either proton or oxygen additions in the inflow region, initially located at two distances from the current sheet. Protons are found to be much more tightly coupled into the evolution of the reconnecting system and, therefore, they effect an immediate slowdown of the reconnection process, as soon as the flux tubes they reside on become involved. Oxygen, on the other hand, has, within the limits of the calculations, a much less pronounced effect on the reconnection electric field. The difference is attributed to the lack of tight coupling to the magnetic field of the oxygen populations. Last, a study of proton and oxygen acceleration finds that protons respond primarily to the reconnection electric field, whereas the main oxygen electric field is achieved by Hall-type electric fields at the plasma sheet boundary.

Key words. Space plasma physics (magnetic reconnection; numerical simulation studies; numerical simulation studies

M. Hesse

2004-01-01

180

Magnetic reconnection in partially ionized plasmas  

International Nuclear Information System (INIS)

We review the theory of magnetic reconnection in weakly ionized gases. The theory is relevant to reconnection in the interstellar medium, protostellar and protoplanetary disks, the outer envelopes of cool stars, and a new laboratory experiment. In general, partial ionization introduces three effects beyond the obvious one: increased resistivity due to electron-neutral collisions. First, magnetic neutral sheets are steepened by plasma-neutral drift, setting up the conditions for reconnection. Second, when ion-neutral friction is strong, the effective ion mass is increased by ?/?i, the ratio of total to plasma mass density. This reduces the Alfven speed vA by a factor of ?(?/?i) and increases the ion skin depth ?i by ?(?/?i). As a result, entrainment of neutrals slows MHD reconnection but permits the onset of fast collisionless reconnection at a larger Lundquist number S, or for a longer current sheet, than in the fully ionized plasma case. These effects, taken together, promote fast collisionless reconnection when the ionization fraction is of order 10% to 1%, but reconnection is slowed down for much smaller ionization fractions. Finally, ion-neutral friction can be a strong heating mechanism throughout the inflow and outflow regions. These effects are under study at the Magnetic Reconnection Experiment (MRX).

 
 
 
 
181

Magnetic reconnection from a multiscale instability cascade.  

Science.gov (United States)

Magnetic reconnection, the process whereby magnetic field lines break and then reconnect to form a different topology, underlies critical dynamics of magnetically confined plasmas in both nature and the laboratory. Magnetic reconnection involves localized diffusion of the magnetic field across plasma, yet observed reconnection rates are typically much higher than can be accounted for using classical electrical resistivity. It is generally proposed that the field diffusion underlying fast reconnection results instead from some combination of non-magnetohydrodynamic processes that become important on the 'microscopic' scale of the ion Larmor radius or the ion skin depth. A recent laboratory experiment demonstrated a transition from slow to fast magnetic reconnection when a current channel narrowed to a microscopic scale, but did not address how a macroscopic magnetohydrodynamic system accesses the microscale. Recent theoretical models and numerical simulations suggest that a macroscopic, two-dimensional magnetohydrodynamic current sheet might do this through a sequence of repetitive tearing and thinning into two-dimensional magnetized plasma structures having successively finer scales. Here we report observations demonstrating a cascade of instabilities from a distinct, macroscopic-scale magnetohydrodynamic instability to a distinct, microscopic-scale (ion skin depth) instability associated with fast magnetic reconnection. These observations resolve the full three-dimensional dynamics and give insight into the frequently impulsive nature of reconnection in space and laboratory plasmas. PMID:22337058

Moser, Auna L; Bellan, Paul M

2012-02-16

182

Theoretical analysis of driven magnetic reconnection experiments  

International Nuclear Information System (INIS)

In this paper the authors develop a theoretical framework for the Magnetic Reconnection Experiment (MRX) in order to understand the basic physics of the experiment, including the effect of the external driving force, and the difference between co and counterhelicity cases of the experiment. In order to simplify the problem they reduce it to a 1-D resistive MHD model. Also, they define a special class of holonomic boundary conditions under which a unique sequence of global equilibria can be obtained, independent of the rate of reconnection. This enables them to break the whole problem into two parts: a global problem for the ideal region, and a local problem for the resistive reconnection layer. The authors carry out the calculations and obtain the global solution for the ideal region in one particular case of holonomic constraints, the so called 'constant force'' regime, for both the co and counterhelicity cases. After the sequence of equilibria in the ideal region is found, they tackle the problem of the rate of reconnection in the resistive reconnection region. This rate tells how fast they proceed through the sequence of global equilibria but does not affects the sequence itself. Assuming the Sweet-Parker model for the reconnection layer, they calculate the reconnection rate, and demonstrate the difference between the co and counterhelicity cases, as well as the role of the external forces. The authors find their results to be in reasonable agreement with the experiment. Magnetic reconnection is important both in laboratory experiments and in astrophysics

183

Magnetopause reconnection observations , past and MMS perspective  

Science.gov (United States)

A review on critical magnetopause reconnection observations since the early seventees will be given as a background for the coming MMS observations. Open questions about magnetopause reconnection that are expected to be answered by MMS will also be listed and discussed in the context of existing models.

Gonzalez Alarcon, Walter Demétrio

184

Magnetic reconnection between colliding magnetized laser-produced plasma plumes.  

Science.gov (United States)

Observations of magnetic reconnection between colliding plumes of magnetized laser-produced plasma are presented. Two counterpropagating plasma flows are created by irradiating oppositely placed plastic (CH) targets with 1.8-kJ, 2-ns laser beams on the Omega EP Laser System. The interaction region between the plumes is prefilled with a low-density background plasma and magnetized by an externally applied magnetic field, imposed perpendicular to the plasma flow, and initialized with an X-type null point geometry with B=0 at the midplane and B=8??T at the targets. The counterflowing plumes sweep up and compress the background plasma and the magnetic field into a pair of magnetized ribbons, which collide, stagnate, and reconnect at the midplane, allowing the first detailed observations of a stretched current sheet in laser-driven reconnection experiments. The dynamics of current sheet formation are in good agreement with first-principles particle-in-cell simulations that model the experiments. PMID:25238366

Fiksel, G; Fox, W; Bhattacharjee, A; Barnak, D H; Chang, P-Y; Germaschewski, K; Hu, S X; Nilson, P M

2014-09-01

185

Magnetic Reconnection between Colliding Magnetized Laser-Produced Plasma Plumes  

Science.gov (United States)

Observations of magnetic reconnection between colliding plumes of magnetized laser-produced plasma are presented. Two counterpropagating plasma flows are created by irradiating oppositely placed plastic (CH) targets with 1.8-kJ, 2-ns laser beams on the Omega EP Laser System. The interaction region between the plumes is prefilled with a low-density background plasma and magnetized by an externally applied magnetic field, imposed perpendicular to the plasma flow, and initialized with an X-type null point geometry with B=0 at the midplane and B =8 T at the targets. The counterflowing plumes sweep up and compress the background plasma and the magnetic field into a pair of magnetized ribbons, which collide, stagnate, and reconnect at the midplane, allowing the first detailed observations of a stretched current sheet in laser-driven reconnection experiments. The dynamics of current sheet formation are in good agreement with first-principles particle-in-cell simulations that model the experiments.

Fiksel, G.; Fox, W.; Bhattacharjee, A.; Barnak, D. H.; Chang, P.-Y.; Germaschewski, K.; Hu, S. X.; Nilson, P. M.

2014-09-01

186

Steady magnetic reconnection in three dimensions  

Science.gov (United States)

The concept of magnetic reconnection, defined to occur when there is an electric field parallel to field lines which are potential reconnection locations and near which the field has an X-type topology in a plane normal to the field line, has been generalized to three-dimensional configurations. A continuum of neighboring potential singular lines is found to exist, one of which supports reconnection, depending upon the imposed flow or electric field. For the case of steady reconnection, the nearby flow and electric field are shown to be severely constrained in the ideal region by the condition that the electric field = 0 there. It is noted that reconnection may occur at singularities of the electric field where this constraint fails and there is singular plasma jetting.

Priest, E. R.; Forbes, T. G.

1989-01-01

187

Magnetic reconnection in space and laboratory plasmas  

International Nuclear Information System (INIS)

An important kind of plasma instabilities is the magnetic reconnection, when the topology of magnetic field lines changes suddenly, new field lines occur and reconnect. This phenomenon is often accompanied with fast variation of the magnetic field strength, burst-like acceleration of charged particles and fast plasma heating effects. The energy of magnetic field is transformed into heat and kinetic energy. The physical conditions of magnetic reconnection instability are investigated in detail. If the condition of freezing in of the magnetic field lines are not valid, the resistive diffusion of field lines can lead to the magnetic reconnection. The formation and explosive instability of current sheets are in close connection with magnetic reconnection processes. This phenomenon is important in laboratory, e.g. in fusion plasma experiments, and in the astrophysics, as the possible mechanism of solar flares. (D.Gy.)

188

Scaling of asymmetric reconnection in compressible plasmas  

International Nuclear Information System (INIS)

The scaling of the reconnection rate with external parameters is reconsidered for antiparallel reconnection in a single-fluid magnetohydrodynamic (MHD) model, allowing for compressibility as well as asymmetry between the plasmas and magnetic fields in the two inflow regions. The results show a modest dependence of the reconnection rate on the plasma beta (ratio of plasma to magnetic pressure) in the inflow regions and demonstrate the importance of the conversion of magnetic energy to enthalpy flux (that is, convected thermal energy) in the outflow regions. The conversion of incoming magnetic to outgoing thermal energy flux remains finite even in the limit of incompressibility, while the scaling of the reconnection rate obtained earlier [P. A. Cassak and M. A. Shay, Phys. Plasmas 14, 102114 (2007)] is recovered. The assumptions entering the scaling estimates are critically investigated on the basis of two-dimensional resistive MHD simulations, confirming and even strengthening the importance of the enthalpy flux in the outflow from the reconnection site.

189

Magnetic reconnection, merging, and viscous interaction in the magnetosphere  

Science.gov (United States)

This paper discusses the historical development of the reconnection theory, with consideration given to the effects of a magnetic field within the plasma and the mechanisms of magnetic reconnection, merging, and viscouslike interaction. Particular attention is given to Dungey's (1958, 1961) steady-state reconnection model of the magnetosphere and to its criticism. Observational evidence supporting the reconnection model is presented.

Heikkila, W. J.

1990-01-01

190

Reconnection process involving nonpendular islands  

International Nuclear Information System (INIS)

A new type of Hamiltonian nonlinear resonant island is analyzed in the present paper. In the usual case where the resonant island is pendulum-like, chains bifurcated out of the central elliptic point undergo infinite cascades of period-doubling bifurcations as they approach the island boundary. In the present case we find that those chains undergo either period doubling or inverse saddle-node bifurcations, depending on the strength of perturbing terms. In the saddle-node case we show that just after a reconnection process, external chains cross the island boundary to collapse against the bifurcated internal chains. (author). 8 refs., 2 figs

191

Scaling of the magnetic reconnection rate with symmetric shear flow  

International Nuclear Information System (INIS)

The scaling of the reconnection rate during (fast) Hall magnetic reconnection in the presence of an oppositely directed bulk shear flow parallel to the reconnecting magnetic field is studied using two-dimensional numerical simulations of Hall reconnection with two different codes. Previous studies noted that the reconnection rate falls with increasing flow speed and shuts off entirely for super-Alfvenic flow, but no quantitative expression for the reconnection rate in sub-Alfvenic shear flows is known. An expression for the scaling of the reconnection rate is presented.

192

Fast Reconnection in a Two-Stage Process  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Magnetic reconnection plays an essential role in the generation and evolution of astrophysical magnetic fields. The best tested and most robust reconnection theory is that of Parker and Sweet. According to this theory, the reconnection rate scales with magnetic diffusivity lambda as lambda^0.5. In the interstellar medium, the Parker-Sweet reconnection rate is far too slow to be of interest. Thus, a mechanism for fast reconnection seems to be required. We have studied the mag...

Heitsch, Fabian; Zweibel, Ellen G.

2002-01-01

193

Magnetic reconnection and magnetic activity  

International Nuclear Information System (INIS)

A large-scale magnetic field extending through a highly conducting tenuous fluid may become distorted on a small scale as a consequence of slow small-scale shuffling of the magnetic lines of force at the boundaries of the tenuous fluid. Any slow wrapping and winding introduced at the boundaries is distributed along the field (at the Alfven speed). It is a curious and little-known fact that such wrapping and winding possesses no static equilibrium (except for a set of solutions of extreme symmetry). The result is neutral-point reconnection of the strains in the field, rapidly dissipating the wrapping and winding. It is suggested that this is the principal cause of the extreme heating that produces the active corona of the sun and other stars. The shuffling of the footpoints of the magnetic field in the photospheric turbulence introduces small-scale wrapping and twisting into the coronal loops. The work done by the turbulence in twisting the fields is dissipated within a matter 10-20 hours by neutral-point reconnection, introducing heat into the corona at a rate of about 10 Mergs/sq cm sec for photospheric turbulence of 0.5 km/sec. It is suggested that this is the basic cause of the X-ray corona. 32 references

194

Continuous transition from fast magnetic reconnection to slow reconnection and change of the reconnection system structure  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This paper analytically investigates a series of two-dimensional MHD reconnection solutions over a wide variation of magnetic Reynolds number ($R_{em}^*$). A new series of solutions explains a continuous transition from Petschek-like fast regime to a Sweet-Parker-like slow regime. The inflow region is obtained from a Grad-Shafranov analysis used by Nitta et al. 2002 and the outflow region from a shock-tube approximation used by Nitta 2004, 2006. A single X-point (Petschek-li...

Nitta, Shin-ya

2007-01-01

195

Evolutions of nonsteady state magnetic reconnection  

Energy Technology Data Exchange (ETDEWEB)

The full evolutions of collisionless non-steady-state magnetic reconnection are studied with full kinetic particle-in-cell simulations. There are different stages of reconnection: the onset or early growing stage when the out-of-plane electric field (Ey) structure is a monopole at the X-point, the bipolar stage when the Ey structure is bipolar and the outer electron diffusion region (EDR) is being elongated over time, and the possible final steady-state stage when E{sub y} is uniform in the reconnection plane. We find the change of reconnection rate is not empowered or dependent on the length of the EDR. During the early growing stage, the EDR is elongated while the reconnection rate is growing. During the later stage, the reconnection rate may significantly decrease but the length of the inner EDR is largely stable. The results indicate that reconnection is not controlled by the downstream physics, but rather by the availability of plasma inflows from upstream. The physical mechanism of the EDR elongation is studied. The Hall current induced by the quadrupole magnetic field (B{sub y}) is discovered to play an important role in this process. The condition of forming an extended electron super-Alfvenic outflow jet structure in nature is discussed. The jet structure could be elongated during the bipolar stage, and remains stable during steady state. The sufficiency of the electron inflow is crucial for the elongation. Open boundary conditions are applied in the outflow direction.

Wan, Weigang [Los Alamos National Laboratory; Lapenta, Giovanni [KATHOLIEKE UNIV

2008-01-01

196

Magnetic reconnection and solar flare loops  

Science.gov (United States)

Reconnection models of the main phase of large solar flares are used to explain the energetics and the motions of the large flare loops that occur during this phase. Correct predictions for the density and temperature of the X-ray emitting loops are obtained by coupling magnetic reconnection with chromospheric ablation. In the reconnection models the ablation is driven by the thermal conduction of heat along magnetic field lines connecting the reconnection shocks in the corona with the flare ribbons in the chromosphere. Combining the compressible reconnection theory of Soward and Priest (1982) with the magnetohydrodynamic (MHD) subshock criteria of Coroniti (1970) shows that the Petschek-type slow-mode shocks in the vicinity of the x-line always dissociate into pairs of isothermal slow-mode subshocks and thermal conduction fronts. The rate of expansion of the loops is a function of the reconnection rate, and loops can be evolving self-similarly in time with their height increasing as sq root t and the reconnection rate decreasing as t to the minus 1.

Forbes, T. G.

1987-01-01

197

Magnetic reconnection as an element of turbulence  

Directory of Open Access Journals (Sweden)

Full Text Available In this work, recent advances on the study of reconnection in turbulence are reviewed. Using direct numerical simulations of decaying incompressible two-dimensional magnetohydrodynamics (MHD, it was found that in fully developed turbulence complex processes of reconnection locally occur (Servidio et al., 2009, 2010a. In this complex scenario, reconnection is spontaneous but locally driven by the fields, with the boundary conditions provided by the turbulence. Matching classical turbulence analysis with a generalized Sweet-Parker theory, the statistical features of these multiple-reconnection events have been identified. A discussion on the accuracy of our algorithms is provided, highlighting the necessity of adequate spatial resolution. Applications to the study of solar wind discontinuities are reviewed, comparing simulations to spacecraft observations. New results are shown, studying the time evolution of these local reconnection events. A preliminary study on the comparison between MHD and Hall MHD is reported. Our new approach to the study of reconnection as an element of turbulence has broad applications to space plasmas, shedding a new light on the study of magnetic reconnection in nature.

S. Servidio

2011-10-01

198

Evolution of magnetic helicity under kinetic magnetic reconnection: Part II B ? 0 reconnection  

Directory of Open Access Journals (Sweden)

Full Text Available We investigate the evolution of magnetic helicity under kinetic magnetic reconnection in thin current sheets. We use Harris sheet equilibria and superimpose an external magnetic guide field. Consequently, the classical 2D magnetic neutral line becomes a field line here, causing a B ? 0 reconnection. While without a guide field, the Hall effect leads to a quadrupolar structure in the perpendicular magnetic field and the helicity density, this effect vanishes in the B ? 0 reconnection. The reason is that electrons are magnetized in the guide field and the Hall current does not occur. While a B = 0 reconnection leads just to a bending of the field lines in the reconnection area, thus conserving the helicity, the initial helicity is reduced for a B ? 0 reconnection. The helicity reduction is, however, slower than the magnetic field dissipation. The simulations have been carried out by the numerical integration of the Vlasov-equation.

T. Wiegelmann

2002-01-01

199

Women take the island: nation, profession, place Women take the island: nation, profession, place  

Directory of Open Access Journals (Sweden)

Full Text Available The Tempest has been one of Shakespeare’s most adapted plays. Its stage history is concomitantly a history of the British theatre, from regularized comedy to semi-opera to pantomime to opera. It has had other lives, too, from its position in romantic ideas of Shakespeare’s biography and his so-called farewell to the stage, to a supporting role as witness for the nineteenth-century Darwinians’ idea of the missing link, to a veritable efflorescence of walk-on parts, cameos, and star vehicles in twentieth-century psychoanalytic and social arguments about European expansion.2 The play has given us individual poems and paintings, not to speak of screen-plays for several film adaptations. The Tempest has been one of Shakespeare’s most adapted plays. Its stage history is concomitantly a history of the British theatre, from regularized comedy to semi-opera to pantomime to opera. It has had other lives, too, from its position in romantic ideas of Shakespeare’s biography and his so-called farewell to the stage, to a supporting role as witness for the nineteenth-century Darwinians’ idea of the missing link, to a veritable efflorescence of walk-on parts, cameos, and star vehicles in twentieth-century psychoanalytic and social arguments about European expansion.2 The play has given us individual poems and paintings, not to speak of screen-plays for several film adaptations.

Ruth Morse

2008-04-01

200

Evolution of magnetic helicity under kinetic magnetic reconnection: Part II B != 0 reconnection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

We investigate the evolution of magnetic helicity under kinetic magnetic reconnection in thin current sheets. We use Harris sheet equilibria and superimpose an external magnetic guide field. Consequently, the classical 2D magnetic neutral line becomes a field line here, causing a B ? 0 reconnection. While without a guide field, the Hall effect leads to a quadrupolar structure in the perpendicular magnetic field and the helicity density, this effect vanishes in the B ? 0 reconnect...

Wiegelmann, T.; Bu?chner, J.

2002-01-01

 
 
 
 
201

Evolution of magnetic helicity under kinetic magnetic reconnection: Part II B ? 0 reconnection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

We investigate the evolution of magnetic helicity under kinetic magnetic reconnection in thin current sheets. We use Harris sheet equilibria and superimpose an external magnetic guide field. Consequently, the classical 2D magnetic neutral line becomes a field line here, causing a B ? 0 reconnection. While without a guide field, the Hall effect leads to a quadrupolar structure in the perpendicular magnetic field and the helicity density, this effect vanishes in the B ? 0 reconnect...

2002-01-01

202

The role of the Weibel instability at the reconnection jet front in relativistic pair plasma reconnection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The role of the Weibel instability is investigated for the first time in the context of the large-scale magnetic reconnection problem. A late-time evolution of magnetic reconnection in relativistic pair plasmas is demonstrated by particle-in-cell (PIC) simulations. In the outflow regions, powerful reconnection jet piles up the magnetic fields and then a tangential discontinuity appears there. Further downstream, it is found that the two-dimensional extension of the relativis...

Zenitani, S.; Hesse, M.

2007-01-01

203

New electric field in asymmetric magnetic reconnection.  

Science.gov (United States)

We present a theory and numerical evidence for the existence of a previously unexplored in-plane electric field in collisionless asymmetric magnetic reconnection. This electric field, dubbed the "Larmor electric field," is associated with finite Larmor radius effects and is distinct from the known Hall electric field. Potentially, it could be an important indicator for the upcoming Magnetospheric Multiscale mission to locate reconnection sites as we expect it to appear on the magnetospheric side, pointing earthward, at the dayside magnetopause reconnection site. PMID:24116786

Malakit, K; Shay, M A; Cassak, P A; Ruffolo, D

2013-09-27

204

Magnetic reconnection in collisionless plasmas - Prescribed fields  

Science.gov (United States)

The structure of the dissipation region during magnetic reconnection in collisionless plasma is investigated by examining a prescribed two-dimensional magnetic x line configuration with an imposed inductive electric field E(y). The calculations represent an extension of recent MHD simulations of steady state reconnection (Biskamp, 1986; Lee and Fu, 1986) to the collisionless kinetic regime. It is shown that the structure of the x line reconnection configuration depends on only two parameters: a normalized inductive field and a parameter R which represents the opening angle of the magnetic x lines.

Burkhart, G. R.; Drake, J. F.; Chen, J.

1990-01-01

205

Magnetic reconnection in the terrestrial magnetosphere  

International Nuclear Information System (INIS)

An overview is given of quantitative comparisons between measured phenomena in the terrestrial magnetosphere thought to be associated with magnetic reconnection, and related theoretical predictions based on Petschek's simple model. Although such a comparison cannot be comprehensive because of the extended nature of the process and the relatively few in situ multipoint measurements made to date, the agreement is impressive where comparisons have been possible. This result leaves little doubt that magnetic reconnection does indeed occur in the terrestrial magnetosphere. The maximum reconnection rate, expressed in terms of the inflow Mach number, M/sub A/, is measured to be M/sub A/ = 0.2 +- 0.1

206

Asymmetric Magnetic Reconnection in Solar Flare and Coronal Mass Ejection Current Sheets  

CERN Document Server

We present two-dimensional resistive magnetohydrodynamic simulations of line-tied asymmetric magnetic reconnection in the context of solar flare and coronal mass ejection current sheets. The reconnection process is made asymmetric along the inflow direction by allowing the initial upstream magnetic field strengths and densities to differ, and along the outflow direction by placing the initial perturbation near a conducting wall boundary that represents the photosphere. When the upstream magnetic fields are asymmetric, the post-flare loop structure is distorted into a characteristic skewed candle flame shape. The simulations can thus be used to provide constraints on the reconnection asymmetry in post-flare loops. More hard X-ray emission is expected to occur at the footpoint on the weak magnetic field side because energetic particles are more likely to escape the magnetic mirror. The footpoint on the weak magnetic field side is predicted to move more quickly because of the requirement in two dimensions that e...

Murphy, N A; Pope, C L; Raymond, J C; Winter, H D; Reeves, K K; Seaton, D B; van Ballegooijen, A A; Lin, J

2012-01-01

207

Interaction of magnetic reconnection and Kelvin-Helmholtz modes for large magnetic shear: 2. Reconnection trigger  

Science.gov (United States)

A typical property of magnetopause reconnection is a significant perpendicular shear flow due to the fast streaming magnetosheath plasma. Therefore, the magnetopause represents a large magnetic and flow shear boundary during periods of southward interplanetary magnetic field, which can be unstable to Kelvin-Helmholtz (KH) modes and to magnetic reconnection. A series of local three-dimensional MHD and Hall MHD simulations is carried out to investigate the interaction of reconnection and nonlinear KH waves considering magnetic reconnection as the primary process. It is demonstrated that the onset reconnection causes a thinning of the shear flow layer, thereby generating small wavelength KH modes. In turn, the growing KH modes modify the current layer width, which modulate the diffusion regions, increase the local reconnection rates, and generate field-aligned currents. The simulation results imply a limitation of total amount of open flux likely caused by nonlinear saturation of KH growth and the associated diffusion. It is also demonstrated that the reconnection rate maximizes for conditions that allow a strong nonlinear evolution of KH waves, i.e., fast shear flow and limited guide magnetic field. The presence of Hall physics increases the reconnection rate in the early stage; however, the maximum reconnection rate and the total amount of open flux at saturation are the same as in the MHD case.

Ma, Xuanye; Otto, Antonius; Delamere, Peter A.

2014-02-01

208

Taking Medication  

Medline Plus

Full Text Available ... taking and help them understand how your medications work. They can demonstrate how to inject insulin or explain how diabetes pills work and when to take them. Effective drug therapy ...

209

Taking Medication  

Science.gov (United States)

... Educator Questions, Comments, Concerns? 800 . 338 . 3633 Taking Medication Diabetes is a progressive condition. Depending on what ... healthcare team will be able to determine which medications they should be taking and help them understand ...

210

Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection  

CERN Document Server

Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten--Lan--van Leer (HLL) method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv\\'{e}nic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond--chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet--Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

Zenitani, Seiji; Klimas, Alex

2010-01-01

211

Interchange reconnection in a turbulent Corona  

CERN Document Server

Magnetic reconnection at the interface between coronal holes and loops, so-called interchange reconnection, can release the hotter, denser plasma from magnetically confined regions into the heliosphere, contributing to the formation of the highly variable slow solar wind. The interchange process is often thought to develop at the apex of streamers or pseudo-streamers, near Y and X-type neutral points, but slow streams with loop composition have been recently observed along fanlike open field lines adjacent to closed regions, far from the apex. However, coronal heating models, with magnetic field lines shuffled by convective motions, show that reconnection can occur continuously in unipolar magnetic field regions with no neutral points: photospheric motions induce a magnetohydrodynamic turbulent cascade in the coronal field that creates the necessary small scales, where a sheared magnetic field component orthogonal to the strong axial field is created locally and can reconnect. We propose that a similar mechan...

Rappazzo, A F; Ruffolo, D; Servidio, S; Velli, M

2012-01-01

212

Reconnection of Vortex Bundles Lines with Sinusoidally  

Directory of Open Access Journals (Sweden)

Full Text Available Using the vortex filament model with the full Biot-Savart law, we show that non-straight bundles of quantized vortex lines in HeII are structurally robust and can reconnect with each other maintaining their identity. We discuss vortex stretching in superfluid turbulence in many cases. We show that, during the bundle reconnection process, Kelvin waves of large amplitude are generated, in agreement with previous work and with the finding that helicity is produced by nearly singular vortex interactions in classical Euler flows. The reconnection events lead to changes in velocities, radius, number of points and total length. The existence of reconnections was confirmed by other authors using the model of nonlinear Schrödinger equation (NLSE. Our results are agreed with the finding of other authors and extension to our numerical experiments.

Sultan Z. Alamri

2013-06-01

213

Magnetic Reconnection in the Earth's Magnetosphere  

Science.gov (United States)

The process of magnetic reconnection plays an important role during the interaction of the solar wind with the Earth's magnetosphere which leads to the exchange of mass, momentum, and energy between these two highly conducting plasmas.

Tsurutani, B. T.; Lakhina, G. S.

1997-01-01

214

Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection  

Science.gov (United States)

Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv enic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

Zenitani, Seiji; Hesse, Michael; Klimas, Alex

2010-01-01

215

Magnetic reconnection in partially ionized gases  

Science.gov (United States)

Magnetic field lines in a plasma reconnect at a rate scaled by the Alfven speed. In a partially ionized gas there are two natural Alfven speeds: one determined by the ionized mass density alone, which applies when ion-neutral friction is negligible, and one determined by the total mass density, which applies when ion-neutral friction is strong. When the ionization fraction is low, as in a dense molecular cloud, these two speeds differ by several orders of magnitude. Both time-dependent tearing modes and steady-state magnetic reconnection in partially ionized gas are considered, and the regimes in which the charged and neutral components are strongly, intermediately, and weakly coupled are delineated. Molecular clouds are probably in the intermediate regime, while reconnection in solar prominences probably has strong ion-neutral coupling. Reconnection proceeds more rapidly when coupling is not strong.

Zweibel, Ellen G.

1989-01-01

216

The Role of Geometry in Magnetic Reconnection  

Science.gov (United States)

Magnetic reconnection is arguably the most effective energy conversion and transport process in plasmas. Reconnection is subject to topological considerations in two ways. First, the process itself involves a change in topology of the combined plasma-magnetic field system. This change in topology transcends that of the magnetic field alone and accounts for flux transport relative to the motion of the plasma in the system under investigation. The second way topology is important to magnetic reconnection is through modifications of the diffUSion/dissipation physics brought about by the structure of the reconnecting system. This presentation will present an overview and summary of both past and recent results pertaining to both aspects.

Hesse, Michael; Aunai, Nicholas; Birn, Joachim; Zenitani, Seiji

2012-01-01

217

The Dissipation Mechanism of Magnetic Reconnection  

Science.gov (United States)

Magnetic reconnection is arguably the most efficient transport and energy conversion mechanism in almost ideal plasmas. Reconnection controls the overall dynamics in space and astrophysics plasmas, as well as in many laboratory plasma systems. Reconnection operates by means of a localized diffusion region, where deviations from the plasma idealness condition generate electric fields and permit plasma transport even far away from the diffusion region itself. Recent advances in analytic theory and computer modeling have begun to shed light on the internal dynamics of the diffusion region. In particular, we begin to understand the delicate nature of the force balance in the inner diffusion region, where particles can become unmagnetized and where electric field forces are important. This presentation will provide a brief introduction of the reconnection process and its applications. This introduction will be followed by a detailed analysis of the current understanding of dissipation region physics, and by an outlook toward future research.

Hesse, Michael

2008-01-01

218

Model of two-fluid reconnection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

A theoretical model of quasi-stationary, two-dimensional magnetic reconnection is presented in the framework of incompressible two-fluid magnetohydrodynamics (MHD). The results are compared with recent numerical simulations and experiment.

Malyshkin, Leonid M.

2009-01-01

219

The Inner Workings of Magnetic Reconnection  

Science.gov (United States)

Magnetic reconnection is arguably the most efficient transport and energy conversion mechanism in almost ideal plasmas. Reconnection controls the overall dynamics in space and astrophysics plasmas, as well as in many laboratory plasma systems. Reconnection operates by means of a localized diffusion region, where deviations from the plasma idealness condition generate electric fields and permit plasma transport even far away from the diffusion region itself. Recent advances in analytic theory and computer modeling have begun to shed light on the internal dynamics of the diffusion region. In particular, we begin to understand the delicate nature of the force balance in the inner diffusion region, where particles can become unmagnetized and where electric field forces are important. This presentation will provide a brief introduction of the reconnection process and its applications. This introduction will be followed by a detailed analysis of the current understanding of dissipation region physics, and by an outlook toward future research.

Hesse, Michael; Zenitani, S.

2007-01-01

220

Three-dimensional Hall magnetic reconnection  

International Nuclear Information System (INIS)

New numerical results of three-dimensional magnetic reconnection in the Hall limit (Lpi where c/?pi is the ion inertial length) are presented. The reconnection process is initiated with a magnetic field perturbation localized along the current channel in a reversed field plasma configuration. The perturbation induces a magnetic wave structure that propagates opposite to the current, and leads to the asymmetric thinning of the plasma layer, strong plasma flows in the direction of the current, and rapid magnetic reconnection. The propagating wave structure is a Hall phenomenon associated with magnetic field curvature. The reconnection rate is independent of a (weak) guide field and the boundary conditions (i.e., periodic or outflowing)

 
 
 
 
221

Magnetic reconnection in Z-pinch plasmas  

International Nuclear Information System (INIS)

Effects of magnetic reconnection on coronal plasma acceleration and energy balance have been discussed. Acceleration of coronal plasma to the array axis can be divided into two stages. Firstly, coronal plasma is pushed radially inward the array axis mainly by global magnetic force or thermal force, depending on the wire number. Secondly, plasma jets are accelerated to Alfven speed by magnetic reconnection, eventually reaching the array axis as precursor pinch. The thickness of the reconnection layer that is comparable to the ion inertial length indicates the motions of electrons and ions are decoupled in the current sheet. Strong radial electric field produced by charge separation converts magnetic energy to axial kinetic energy of plasmas, and thermalization of radial and axial kinetic energy accounts for radiation yield. For facilities with 1 MA drive level, the energy of electromagnetic pulse produced by magnetic reconnection can reach 1 kJ. (authors)

222

Helicity transfer during quantised vortex reconnection  

CERN Document Server

We consider the reconnection of two untwisted, linked quantised vortex rings in a Bose-Einstein condensate. We show that the reconnection is capable of transferring helicity, from the links present in the initial configuration, to a twisting of the resulting vortex ring, and hence a rotation of the phase plane along the vortex ring. As velocities in a quantum fluid are the gradient of the phase, a twisting of the phase along the vortices leads to an axial flow along the vortices. Hence one would expect that the dynamics of quantum turbulence are strongly influence by the helicity of the initial conditions or the system forcing. Our results also provide an important link between quantised vortex reconnections and reconnections in classical and magnetised fluids.

Baggaley, Andrew W

2014-01-01

223

Forcing continuous reconnection in hybrid simulations  

Science.gov (United States)

We have performed hybrid simulations of driven continuous reconnection with open boundary conditions. Reconnection is started by a collision of two subsonic plasma fronts with opposite magnetic fields, without any specified magnetic field configuration as initial condition. Due to continued forced plasma inflow, a current sheet co-located with a dense and hot plasma sheet develops. The translational symmetry of the current sheet is broken by applying a spatial gradient in the inflow speed. We compare runs with and without localized resistivity: reconnection is initiated in both cases, but localized resistivity stabilizes it and enhances its efficiency. The outflow speed reaches about half of Alfvén speed. We quantify the conversion of magnetic energy to kinetic energy of protons and to Joule heating and show that with localized resistivity, kinetic energy of protons is increased on average five-fold in the reconnection in our simulation case.

Laitinen, T. V.; Jarvinen, R.; Kallio, E.; Janhunen, P.

2014-07-01

224

Multi-Scale Modeling of Magnetospheric Reconnection  

Science.gov (United States)

One of the major challenges in modeling the magnetospheric magnetic reconnection is to quantify the interaction between large-scale global magnetospheric dynamics and microphysical processes in diffusion regions near reconnection sites. There is still considerable debate as to what degree microphysical processes on kinetic scales affect the global evolution and how important it is to substitute numerical dissipation and/or ad hoc anomalous resistivity by a physically motivated model of dissipation. Comparative studies of magnetic reconnection in small scale geometries demonstrated that MHD simulations that included non-ideal processes in terms of a resistive term $\\eta J$ did not produce the fast reconnection rates observed in kinetic simulations. For a broad range of physical parameters in collisionless magnetospheric plasma, the primary mechanism controlling the dissipation in the vicinity of the reconnection site is non-gyrotropic effects with spatial scales comparable with the particle Larmor radius. We utilize the global MHD code BATSRUS and incorporate nongyrotropic effects in diffusion regions in terms of corrections to the induction equation. We developed an algorithm to search for magnetotail reconnection sites, specifically where the magnetic field components perpendicular to the local current direction approaches zero and form an X-type configuration. Spatial scales of the diffusion region and magnitude of the reconnection electric field are calculated selfconsistently using MHD plasma and field parameters in the vicinity of the reconnection site. The location of the reconnection sites is updated during the simulations. To clarify the role of nongyrotropic effects in diffusion region on the global magnetospheric dynamic we perform simulations with steady southward IMF driving of the magnetosphere. Ideal MHD simulations with magnetic reconnection supported by numerical resistivity produce steady configuration with almost stationary near-earth neutral line (NENL). Simulations with non-gyrotropic corrections demonstrate dynamic quasi-periodic response to the steady driving condition. The loading/unloading cycle in non-gyrotropic MHD results has a non-stationary reconnection site in the magnetotail, with the retreating during the stretching phase and then a new NENL forming in the resulting thin plasma sheet. We expect that this model will lead to improved representations of space weather event in the magnetosphere.

Kuznetsova, M. M.; Hesse, M.; Rastatter, L.; Toth, G.; Dezeeuw, D.; Gomobosi, T.

2007-01-01

225

Sound Emission due to Superfluid Vortex Reconnections  

Science.gov (United States)

By performing numerical simulations based on the Gross-Pitaevskii equation, we make direct quantitative measurements of the sound energy released due to superfluid vortex reconnections. We show that the energy radiated expressed in terms of the loss of vortex line length is a simple function of the reconnection angle. In addition, we study the temporal and spatial distribution of the radiation and show that energy is emitted in the form of a sound pulse with a wavelength of a few healing lengths.

Leadbeater, M.; Winiecki, T.; Samuels, D. C.; Barenghi, C. F.; Adams, C. S.

2001-02-01

226

The Diffusion Region in Collisionless Magnetic Reconnection  

Science.gov (United States)

A review of present understanding of the dissipation region in magnetic reconnection is presented. The review focuses on results of the thermal inertia-based dissipation mechanism but alternative mechanisms are mentioned as well. For the former process, a combination of analytical theory and numerical modeling is presented. Furthermore, a new relation between the electric field expressions for anti-parallel and guide field reconnection is developed.

Hesse, Michael; Neukirch, Thomas; Schindler, Karl; Kuznetsova, Masha; Zenitani, Seiji

2011-01-01

227

Collisionless Magnetic Reconnection via Alfven Eigenmodes  

Digital Repository Infrastructure Vision for European Research (DRIVER)

We propose an analytic approach to the problem of collisionless magnetic reconnection formulated as a process of Alfven eigenmodes' generation and dissipation. Alfven eigenmodes are confined by the current sheet in the same way that quantum mechanical waves are confined by the tanh^2 potential. The dynamical time scale of reconnection is the system scale divided by the eigenvalue propagation velocity of the n=1 mode. The prediction of the n=1 mode shows good agreement with t...

Dai, Lei

2009-01-01

228

On the Rate of Spontaneous Magnetic Reconnection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Magnetic reconnection is a topological rearrangement of the magnetic field lines, leading to the release of magnetic energy, which is thought to be associated with solar flares, coronal mass ejections and magnetospheric storms. Despite magnetic field lines are supposed to be frozen into the well-conducting plasma, the reconnection observed in nature is, typically, fast, so that the rate of convergence of the magnetic field lines is the fraction of the Alfven speed, v_A. The ...

Beresnyak, Andrey

2013-01-01

229

Magnetic Reconnection in Extreme Astrophysical Environments  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Magnetic reconnection is a basic plasma process of dramatic rearrangement of magnetic topology, often leading to a violent release of magnetic energy. It is important in magnetic fusion and in space and solar physics --- areas that have so far provided the context for most of reconnection research. Importantly, these environments consist just of electrons and ions and the dissipated energy always stays with the plasma. In contrast, in this paper I introduce a new direction o...

Uzdensky, Dmitri A.

2011-01-01

230

Interchange reconnection in a turbulent Corona  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Magnetic reconnection at the interface between coronal holes and loops, so-called interchange reconnection, can release the hotter, denser plasma from magnetically confined regions into the heliosphere, contributing to the formation of the highly variable slow solar wind. The interchange process is often thought to develop at the apex of streamers or pseudo-streamers, near Y and X-type neutral points, but slow streams with loop composition have been recently observed along f...

Rappazzo, A. F.; Matthaeus, W. H.; Ruffolo, D.; Servidio, S.; Velli, M.

2012-01-01

231

Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten--Lan--van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv\\'{e}nic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-...

Zenitani, Seiji; Hesse, Michael; Klimas, Alex

2010-01-01

232

Test particle acceleration in torsional fan reconnection  

Science.gov (United States)

Magnetic reconnection is understood to be a potential mechanism for particle acceleration in astrophysical and space plasmas, especially in solar flares. Torsional fan reconnection is one of the proposed mechanisms for steady-state three-dimensional (3D) magnetic reconnection. By using the magnetic and electric fields for `torsional fan reconnection', the features of test particle acceleration with input parameters for the solar corona are investigated numerically. We show that torsional fan reconnection is potentially an efficient particle accelerator and a proton can gain up to tens of MeV of kinetic energy within only a few milliseconds. Although the final kinetic energy of the accelerated particle depends on the injection position but there exists only one scenario for the particle's trajectory with different initial positions in which the particle is accelerated on the fan plane. Moreover, adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory. These results are compared with those of torsional spine reconnection.

Hosseinpour, M.

2014-12-01

233

Multiscale Modeling of Solar Coronal Magnetic Reconnection  

Science.gov (United States)

Magnetic reconnection is widely believed to be the primary process by which the magnetic field releases energy to plasma in the Sun's corona. For example, in the breakout model for the initiation of coronal mass ejections/eruptive flares, reconnection is responsible for the catastrophic destabilizing of magnetic force balance in the corona, leading to explosive energy release. A critical requirement for the reconnection is that it have a "switch-on' nature in that the reconnection stays off until a large store of magnetic free energy has built up, and then it turn on abruptly and stay on until most of this free energy has been released. We discuss the implications of this requirement for reconnection in the context of the breakout model for CMEs/flares. We argue that it imposes stringent constraints on the properties of the flux breaking mechanism, which is expected to operate in the corona on kinetic scales. We present numerical simulations demonstrating how the reconnection and the eruption depend on the effective resistivity, i.e., the effective Lundquist number, and propose a model for incorporating kinetic flux-breaking mechanisms into MHO calculation of CMEs/flares.

Antiochos, Spiro K.; Karpen, Judith T.; DeVore, C. Richard

2010-01-01

234

Collisionless magnetic reconnection in a plasmoid chain  

Directory of Open Access Journals (Sweden)

Full Text Available The kinetic features of plasmoid chain formation and evolution are investigated by two dimensional Particle-in-Cell simulations. Magnetic reconnection is initiated in multiple X points by the tearing instability. Plasmoids form and grow in size by continuously coalescing. Each chain plasmoid exhibits a strong out-of plane core magnetic field and an out-of-plane electron current that drives the coalescing process. The disappearance of the X points in the coalescence process are due to anti-reconnection, a magnetic reconnection where the plasma inflow and outflow are reversed with respect to the original reconnection flow pattern. Anti-reconnection is characterized by the Hall magnetic field quadrupole signature. Two new kinetic features, not reported by previous studies of plasmoid chain evolution, are here revealed. First, intense electric fields develop in-plane normally to the separatrices and drive the ion dynamics in the plasmoids. Second, several bipolar electric field structures are localized in proximity of the plasmoid chain. The analysis of the electron distribution function and phase space reveals the presence of counter-streaming electron beams, unstable to the two stream instability, and phase space electron holes along the reconnection separatrices.

S. Markidis

2012-02-01

235

Collisionless magnetic reconnection in a plasmoid chain  

Science.gov (United States)

The kinetic features of plasmoid chain formation and evolution are investigated by two dimensional Particle-in-Cell simulations. Magnetic reconnection is initiated in multiple X points by the tearing instability. Plasmoids form and grow in size by continuously coalescing. Each chain plasmoid exhibits a strong out-of plane core magnetic field and an out-of-plane electron current that drives the coalescing process. The disappearance of the X points in the coalescence process are due to anti-reconnection, a magnetic reconnection where the plasma inflow and outflow are reversed with respect to the original reconnection flow pattern. Anti-reconnection is characterized by the Hall magnetic field quadrupole signature. Two new kinetic features, not reported by previous studies of plasmoid chain evolution, are here revealed. First, intense electric fields develop in-plane normally to the separatrices and drive the ion dynamics in the plasmoids. Second, several bipolar electric field structures are localized in proximity of the plasmoid chain. The analysis of the electron distribution function and phase space reveals the presence of counter-streaming electron beams, unstable to the two stream instability, and phase space electron holes along the reconnection separatrices.

Markidis, S.; Henri, P.; Lapenta, G.; Divin, A.; Goldman, M. V.; Newman, D.; Eriksson, S.

2012-02-01

236

Achieving fast reconnection in resistive MHD models via turbulent means  

Directory of Open Access Journals (Sweden)

Full Text Available Astrophysical fluids are generally turbulent and this preexisting turbulence must be taken into account for models of magnetic reconnection in astrophysical, solar or heliospheric environments. In addition, reconnection itself induces turbulence which provides an important feedback on the reconnection process. In this paper we discuss both the theoretical model and numerical evidence that magnetic reconnection becomes fast in the approximation of resistive MHD. We consider the relation between the Lazarian and Vishniac turbulent reconnection theory and Lapenta's numerical experiments testifying of the spontaneous onset of turbulent reconnection in systems which are initially laminar.

G. Lapenta

2012-04-01

237

Reconnection Processes in the Chromosphere and Corona  

Science.gov (United States)

Magnetic reconnection is a fundamental key physical process in magnetized plasmas. Recent space solar observations revealed that magnetic reconnection is ubiquitous in the solar chromospheres and corona. Especially recent Hinode observations has found various types of tiny chromospheric jets, such as chromospheric anemone jets (Shibata et al. 2007), penumbral microjets (Katsukawa et al. 2007), light bridge jets from sunspot umbra (Shimizu et al. 2009), etc. It was also found that the corona is full of tiny X-ray jets (Cirtain et al. 2007). Often they are seen as helical spinning jets (Shimojo et al. 2007, Patsourakos et al. 2008, Pariat et al. 2009, Filippov et al. 2009, Kamio et al. 2010) with Alfvenic waves (Nishizuka et al. 2008, Liu et al. 2009) and there are increasing evidence of magnetic reconnection in these tiny jets. We can now say that as spatial resolution of observations become better and better, smaller and smaller flares and jets have been discovered, which implies that the magnetized solar atmosphere consist of fractal structure and dynamics, i.e., fractal reconnection. Bursty radio and hard X-ray emissions from flares also suggest the fractal reconnection and associated particle acceleration. Since magnetohydrodynamics (MHD) does not contain any characteristic length and time scale, it is natural that MHD structure, dynamics, and reconnection, tend to become fractal in ideal MHD plasmas with large magnetic Reynolds number such as in the solar atmosphere. We would discuss recent observations and theories related to fractal reconnection in the chromospheres and corona, and discuss possible implication to chromospheric and coronal heating.

Shibata, Kazunari

2012-07-01

238

Turbulent Reconnection Rates from Cluster Observations in the Magneto sheath  

Science.gov (United States)

The role of turbulence in producing fast reconnection rates is an important unresolved question. Scant in situ analyses exist. We apply multiple spacecraft techniques to a case of nonlinear turbulent reconnection in the magnetosheath to test various theoretical results for turbulent reconnection rates. To date, in situ estimates of the contribution of turbulence to reconnection rates have been calculated from an effective electric field derived through linear wave theory. However, estimates of reconnection rates based on fully nonlinear turbulence theories and simulations exist that are amenable to multiple spacecraft analyses. Here we present the linear and nonlinear theories and apply some of the nonlinear rates to Cluster observations of reconnecting, turbulent current sheets in the magnetos heath. We compare the results to the net reconnection rate found from the inflow speed. Ultimately, we intend to test and compare linear and nonlinear estimates of the turbulent contribution to reconnection rates and to measure the relative contributions of turbulence and the Hall effect.

Wendel, Deirdre

2011-01-01

239

Quantitative analytical model for magnetic reconnection in hall magnetohydrodynamics  

Energy Technology Data Exchange (ETDEWEB)

Magnetic reconnection is of fundamental importance for laboratory and naturally occurring plasmas. Reconnection usually develops on time scales which are much shorter than those associated with classical collisional dissipation processes, and which are not fully understood. While such dissipation-independent (or 'fast') reconnection rates have been observed in particle and Hall magnetohydrodynamics (MHD) simulations and predicted analytically in electron MHD, a quantitative analytical theory of fast reconnection valid for arbitrary ion inertial lengths d{sub i} has been lacking. Here we propose such a theory without a guide field. The theory describes two-dimensional magnetic field diffusion regions, provides expressions for the reconnection rates, and derives a formal criterion for fast reconnection in terms of dissipation parameters and di. It also demonstrates that both open X-point and elongated diffusion regions allow dissipation-independent reconnection and reveals a possibility of strong dependence of the reconnection rates on d{sub i}.

Simakov, Andrei N [Los Alamos National Laboratory

2008-01-01

240

Turbulent Reconnection Rates from Cluster Observations in the Magnetosheath  

Science.gov (United States)

The role of turbulence in producing fast reconnection rates is an important unresolved question. Scant in situ analyses exist. We apply multiple spacecraft techniques to a case of nonlinear turbulent reconnection in the magnetosheath to test various theoretical results for turbulent reconnection rates. To date, in situ estimates of the contribution of turbulence to reconnection rates have been calculated from an effective electric field derived through linear wave theory. However, estimates of reconnection rates based on fully nonlinear turbulence theories and simulations exist that are amenable to multiple spacecraft analyses. Here we present the linear and nonlinear theories and apply some of the nonlinear rates to Cluster observations of reconnecting, turbulent current sheets in the magnetosheath. We compare the results to the net reconnection rate found from the inflow speed. Ultimately, we intend to test and compare linear and nonlinear estimates of the turbulent contribution to reconnection rates and to measure the relative contributions of turbulence and the Hall effect.

Wendel, Deirdre

2011-01-01

 
 
 
 
241

Reconnection Onset in the Breakout Model for CME Initiation  

Science.gov (United States)

Fast coronal mass ejections (CMEs) are the most massive explosions in the heliosphere, and the primary drivers of geoeffective space weather. Although it is generally agreed that magnetic reconnection is the key to fast CME initiation, different models incorporate reconnection in different ways. One promising model --- the breakout scenario --- involves reconnection in two distinct yet interconnected locations: breakout reconnection ahead of the CME, and flare reconnection behind it. We will discuss what we have learned about the early evolution of breakout and flare reconnection from recent high-resolution 2.5D adaptively refined MHD simulations of CME initiation, including the evolving properties of the breakout and flare current sheets, the conditions that trigger reconnection onset in each sheet, the ensuing positive feedback between breakout and flare reconnections, and implications for electron acceleration in flares.

Karpen, Judy T.; DeVore, C. R.; Antiochos, S. K.

2010-01-01

242

Patchy Reconnection in a Y-Type Current Sheet  

Digital Repository Infrastructure Vision for European Research (DRIVER)

We study the evolution of the magnetic field in a Y-type current sheet subject to a brief, localized magnetic reconnection event. The reconnection produces up- and down-flowing reconnected flux tubes which rapidly decelerate when they hit the Y-lines and underlying magnetic arcade loops at the ends of the current sheet. This localized reconnection outflow followed by a rapid deceleration reproduces the observed behavior of post-CME downflowing coronal voids. These simulation...

Linton, M. G.; Devore, C. R.; Longcope, D. W.

2007-01-01

243

Magnetic Reconnection with Radiative Cooling. I. Optically-Thin Regime  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Magnetic reconnection, a fundamental plasma process associated with a rapid dissipation of magnetic energy, is believed to power many disruptive phenomena in laboratory plasma devices, the Earth magnetosphere, and the solar corona. Traditional reconnection research, geared towards these rather tenuous environments, has justifiably ignored the effects of radiation on the reconnection process. However, in many reconnecting systems in high-energy astrophysics (e.g., accretion-d...

Uzdensky, Dmitri A.; Mckinney, Jonathan C.

2010-01-01

244

Externally driven magnetic reconnection in a collisionless plasma  

International Nuclear Information System (INIS)

Driven magnetic reconnection in a collisionless plasma, 'collisionless driven reconnection', is investigated by means of two-and-one-half dimensional particle simulation. Magnetic reconnection develops in two steps in accordance with the formation of two current layers, i.e., an ion current layer and an electron current layer. It is found that the global dynamical evolution of magnetic reconnection is controlled by the physics of the ion current layer. (author). 5 refs, 3 figs

245

A catastrophe model for fast magnetic reconnection onset  

Digital Repository Infrastructure Vision for European Research (DRIVER)

A catastrophe model for the onset of fast magnetic reconnection is presented that suggests why plasma systems with magnetic free energy remain apparently stable for long times and then suddenly release their energy. For a given set of plasma parameters there are generally two stable reconnection solutions: a slow (Sweet-Parker) solution and a fast (Alfv\\'enic) Hall reconnection solution. Below a critical resistivity the slow solution disappears and fast reconnection dominate...

Cassak, P. A.; Shay, M. A.; Drake, J. F.

2005-01-01

246

Magnetic Reconnection in Turbulent Plasmas and Gamma Ray Bursts  

Digital Repository Infrastructure Vision for European Research (DRIVER)

We discuss how the model of magnetic reconnection in the presence of turbulence proposed inLazarian & Vishniac 1999 makes the reconnection rate independent either of resistivity or microscopic plasma effects, but determined entirely by the magnetic field line wandering induced by turbulence. We explain that the model accounts for both fast and slow regimes of reconnection and that this property naturally induces flares of reconnection in low beta plasma environments. In addi...

Lazarian, A.; Yan, Huirong

2013-01-01

247

Fast magnetic reconnection in laser-produced plasma bubbles  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Recent experiments have observed magnetic reconnection in high-energy-density, laser-produced plasma bubbles, with reconnection rates observed to be much higher than can be explained by classical theory. Based on fully kinetic particle simulations we find that fast reconnection in these strongly driven systems can be explained by magnetic flux pile-up at the shoulder of the current sheet and subsequent fast reconnection via two-fluid, collisionless mechanisms. In the strong ...

Fox, W.; Bhattacharjee, A.; Germaschewski, K.

2011-01-01

248

Magnetic reconnection in solar flares  

Science.gov (United States)

The magnetic energy stored in the corona is the only plausible source for the energy released during large solar flares. During the last 20 years most theoretical work has concentrated on models which store magnetic energy in the corona in the form of electrical currents, and a major goal of present day research is to understand how these currents are created, and then later dissipated during a flare. Another important goal is to find a flare model which can eject magnetic flux into interplanetary space. Although many flares do not eject magnetic flux, those which do are of special importance for solar-terrestrial relations since the ejected flux can have dramatic effects if it hits the Earth's magnetosphere. Three flare models which have been extensively investigated are the emerging-flux model, the sheared-arcade model, and the magnetic-flux-rope model. All of these models can store and release magnetic energy efficiently provided that rapid magnetic reconnection occurs. However, only the magnetic-flux-rope model appears to provide a plausible mechanism for ejecting magnetic flux into interplanetary space.

Forbes, T. G.

1991-01-01

249

Stochastic sawtooth reconnection in ASDEX Upgrade  

International Nuclear Information System (INIS)

In this paper we investigate non-complete sawtooth reconnection in the ASDEX Upgrade tokamak. Such reconnection phenomena are associated with internal m/n = 1/1 kink mode which does not vanish after the crash phase (as would be the case for complete reconnection). It is shown that this sawtooth cannot be fully described by pure m/n = 1/1 mode and that higher harmonics play an important role during the sawtooth crash phase. We employ the Hamiltonian formalism and reconstructed perturbations to model incomplete sawtooth reconnection. It is demonstrated that stochastization appears due to the excitation of low-order resonances which are present in the corresponding q-profiles inside the q = 1 surface which reflects the key role of the q0 value. Depending on this value two completely different situations are possible for one and the same mode perturbations: (i) the resonant surfaces are present in the q-profile leading to stochasticity and sawtooth crash (q0 ? 0.7 ± 0.1); (ii) the resonant surfaces are not present, which means no stochasticity in the system and no crash event (q0 ? 0.9 ± 0.05). Accordingly the central safety factor value is always less than unity in the case of a non-complete sawtooth reconnection. Our investigations show that the stochastic model agrees well with the experimental observations and can be proposed as a promising candidate for an explanation of the sawtooth reconnectionion

250

Density Enhancements and Voids following Patchy Reconnection  

CERN Document Server

We show, through a simple patchy reconnection model, that retracting reconnected flux tubes may present elongated regions relatively devoid of plasma, as well as long lasting, dense central hot regions. Reconnection is assumed to happen in a small patch across a Syrovatski\\'i (non-uniform) current sheet (CS) with skewed magnetic fields. The background magnetic pressure has its maximum at the center of the CS plane, and decreases toward the edges of the plane. The reconnection patch creates two V-shaped reconnected tubes that shorten as they retract in opposite directions, due to magnetic tension. One of them moves upward toward the top edge of the CS, and the other one moves downward toward the top of the underlying arcade. Rotational discontinuities (RDs) propagate along the legs of the tubes and generate parallel super-sonic flows that collide at the center of the tube. There, gas dynamics shocks that compress and heat the plasma are launched outwardly. The descending tube moves through the bottom part of t...

Guidoni, S E

2011-01-01

251

Fast Reconnection of Weak Magnetic Fields  

Science.gov (United States)

Fast magnetic reconnection refers to annihilation or topological rearrangement of magnetic fields on a timescale that is independent (or nearly independent) of the plasma resistivity. The resistivity of astrophysical plasmas is so low that reconnection is of little practical interest unless it is fast. Yet, the theory of fast magnetic reconnection is on uncertain ground, as models must avoid the tendency of magnetic fields to pile up at the reconnection layer, slowing down the flow. In this paper it is shown that these problems can be avoided to some extent if the flow is three dimensional. On the other hand, it is shown that in the limited but important case of incompressible stagnation point flows, every flow will amplify most magnetic fields. Although examples of fast magnetic reconnection abound, a weak, disordered magnetic field embedded in stagnation point flow will in general be amplified, and should eventually modify the flow. These results support recent arguments against the operation of turbulent resistivity in highly conducting fluids.

Zweibel, Ellen G.

1998-01-01

252

Flow-turbulence interaction in magnetic reconnection  

International Nuclear Information System (INIS)

Roles of turbulence in the context of magnetic reconnection are investigated with special emphasis on the mutual interaction between flow (large-scale inhomogeneous structure) and turbulence. In order to evaluate the effective transport due to turbulence, in addition to the intensity information of turbulence represented by the turbulent energy, the structure information represented by pseudoscalar statistical quantities (helicities) is important. On the basis of the evolution equation, mechanisms that provide turbulence with cross helicity are presented. Magnetic-flux freezing in highly turbulent media is considered with special emphasis on the spatial distribution of the turbulent cross helicity. The cross-helicity effects in the context of magnetic reconnection are also investigated. It is shown that the large-scale flow and magnetic-field configurations favorable for the cross-helicity generation is compatible with the fast reconnection. Difference between the spatial distributions of the turbulent MHD energy and cross helicity plays an essential role for localizing the reconnection region. In this sense, turbulence and large-scale structures promote magnetic reconnection mediated by the turbulent cross helicity.

253

The Dissipation Mechanism in Collisionless Magnetic Reconnection  

Science.gov (United States)

The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. On the other hand, a second set of studies emphasizes the role of wave-particle interactions in providing anomalous resistivity in the diffusion region. In this presentation, we present analytical theory results, as well as PIC simulations of guide-field magnetic reconnection. We will show that the thermal electron inertia-based dissipation mechanism, expressed through nongyrotropic electron pressure tensors, remains viable in three dimensions. We will demonstrate the thermal inertia effect through studies of electron distribution functions. Furthermore, we will show that the reconnection electric field provides a transient acceleration on particles traversing the inner reconnection region. This inertial effect can be described as a diffusion-like term of the current density, which matches key features of electron distribution functions.

Hesse, Michael; Kuznetsova, M.; Birn, J.; Schindler, K.

2006-01-01

254

Bursty magnetic reconnection at Saturn's magnetopause  

Science.gov (United States)

We infer the evolution of magnetopause reconnection from simultaneous in situ magnetopause crossings and auroral observations by Cassini on 19 July 2008. Depending on the magnetosheath field, it proceeds from (i) the high-latitude lobe, producing a cusp spot in the aurora, to (ii) lower latitude but north of Cassini, evidenced by an enhancement of the pre-noon auroral arc and escape of magnetospheric electrons during a long boundary layer traversal, to (iii) bursts of reconnection south of Cassini, resulting in bifurcations of the near-noon auroral oval, escape of magnetospheric electrons, and a short boundary layer encounter. The conditions under which the auroral bifurcations associated with this bursty reconnection were observed were examined for this and three other examples. The magnetosphere was strongly compressed with a high magnetosheath field strength in every case. We conclude that reconnection can proceed at different locations on the magnetopause, depending on the local magnetic shear and plasma ? conditions, and bursty reconnection occurs when the magnetosphere is strongly compressed and can result in significant solar wind-driven flux transport in Saturn's outer magnetosphere.

Badman, S. V.; Masters, A.; Hasegawa, H.; Fujimoto, M.; Radioti, A.; Grodent, D.; Sergis, N.; Dougherty, M. K.; Coates, A. J.

2013-03-01

255

On fast reconnection in pair plasmas  

Science.gov (United States)

The relevance of two-fluid effects to fast magnetic reconnection in standard electron-proton plasmas is well-known. The currently accepted view is that such fast reconnection is enabled by fast dispersive waves, which originate in the ion-electron mass difference. However, electron-positron (pair) plasmas do not feature such mass difference, and thus do not support fast dispersive waves. Nevertheless, recent kinetic and fluid pair-plasmas simulations have demonstrated that fast magnetic reconnection is indeed possible, thus casting doubt on the accepted view. In this study, we develop an analytical fluid model for 2D reconnection in non-relativistic, large-guide-field, low-? pair plasmas, including inertia, resistivity, and parallel viscosity.^4 We conclude that fast reconnection is possible in the collisionless (viscosity-dominated) regime, but not in the collisional (resistivity-dominated) one. J. Birn et al., J. Geophys. Res. 106 (A3), pp. 3715--3719 (2001) M. A. Shay et al., Geophys. Res. Lett. 26, 2163 (1999); B. N. Rogers et al., Phys. Rev. Lett. 87, 195004 (2001) See e.g. S. Zenitani and M. Hoshino, Astrophys. J. 562, L63 (2001); N. Bessho and A. Bhattacharjee, Phys. Rev. Lett. 95, 245001 (2005); W. Daughton and H. Karimabadi, Phys. Plasmas 14, 72303 (2007). L. Chac'on, A. N. Simakov, V. S. Lukin, A. Zocco, Phys. Rev. Lett., 025003 (2008)

Zocco, A.; Chacon, L.; Simakov, A.; Lukin, V.

2008-11-01

256

Healthy Places  

Centers for Disease Control (CDC) Podcasts

Every person has a stake in environmental public health. As the environment deteriorates, so does the physical and mental health of the people within it. Healthy places are those designed and built to improve the quality of life for all people who live, work, worship, learn, and play within their borders -- where every person is free to make choices amid a variety of healthy, available, accessible, and affordable options. The CDC recognizes significant health issues and places that are vital in developing the Healthy Places program and provides examples in this report.  Created: 4/10/2007 by CDC National Center for Environmental Health.   Date Released: 4/13/2007.

2007-04-10

257

Vortex reconnections between coreless vortices in binary condensates  

International Nuclear Information System (INIS)

Vortex reconnections plays an important role in the turbulent flows associated with the superfluids. To understand the dynamics, we examine the reconnections of vortex rings in the superfluids of dilute atomic gases confined in trapping potentials using Gross-Petaevskii equation. Further more we study the reconnection dynamics of coreless vortex rings, where one of the species can act as a tracer

258

Explosive energy conversion mechanism by magnetic field reconnection  

International Nuclear Information System (INIS)

The self-consistent coupling between magnetic reconnection flow and anomalous plasma resistivity is studied. It is shown that, coupled to an anomalous resistivity due to a current-driven microinstability, magnetic reconnection grows very rapidly. The fast reconnection mechanism, eventually established, provides a very powerful energy converter quite responsible for catastrophic events, such as solar flares, geomagnetic substorms and tokamak disruptions. (author)

259

Vortex reconnections between coreless vortices in binary condensates  

Energy Technology Data Exchange (ETDEWEB)

Vortex reconnections plays an important role in the turbulent flows associated with the superfluids. To understand the dynamics, we examine the reconnections of vortex rings in the superfluids of dilute atomic gases confined in trapping potentials using Gross-Petaevskii equation. Further more we study the reconnection dynamics of coreless vortex rings, where one of the species can act as a tracer.

Gautam, S. [Indian Institute of Science, Bangalore-560 012 (India); Suthar, K.; Angom, D. [Physical Research Laboratory, Ahmedabad-380 009 (India)

2014-02-11

260

Taking Stock.  

Science.gov (United States)

A complete theory of adult learning must take into consideration the learner, learning process, and context. Andragogy, self-directed learning, consciousness, critical theory, feminism, transformational learning, and situated cognition contribute to understanding of this complex phenomenon. (SK)

Merriam, Sharan B.

1993-01-01

 
 
 
 
261

Cluster observations of currents in the plasma sheet during reconnection  

Science.gov (United States)

We present Cluster PEACE observations of parallel electron currents near a reversal of accelerated ion flows which indicated that the spacecraft were in the vicinity of an active reconnection X-line (XL). Moments calculated from the PEACE electron spectrometer 3D 4s resolution data are analysed. We surveyed the electron current structure to reveal their dependence on distance from the neutral sheet (NS). The electron density and the magnetic field component parallel to the lobe magnetic field were selected as proxies of the distance to the NS. We found that earthward from the XL the electron parallel current switches direction: tailward closer to the NS and earthward nearer to the lobe. On the interface between the tailward and earthward currents we found a narrow layer of strong earthward current. At the same place the largest transverse magnetic disturbances were detected. The observed current structure is consistent with the collisionless reconnection model. However, tailward of the XL no such structure was evident in the data.

Alexeev, I. V.; Owen, C. J.; Fazakerley, A. N.; Runov, A.; Dewhurst, J. P.; Balogh, A.; Rème, H.; Klecker, B.; Kistler, L.

2005-02-01

262

The structure of the magnetic reconnection exhaust boundary  

CERN Document Server

The structure of shocks that form at the exhaust boundaries during collisionless reconnection of anti-parallel fields is studied using particle-in-cell (PIC) simulations and modeling based on the anisotropic magnetohydrodynamic equations. Large-scale PIC simulations of reconnection and companion Riemann simulations of shock development demonstrate that the pressure anisotropy produced by counterstreaming ions within the exhaust prevents the development of classical Petschek switch-off-slow shocks (SSS). The shock structure that does develop is controlled by the firehose stability parameter epsilon=1-mu_0(P_parallel-P_perpendicular)/ B^2 through its influence on the speed order of the intermediate and slow waves. Here P_parallel and P_perpendicular are the pressure parallel and perpendicular to the local magnetic field. The exhaust boundary is made up of a series of two shocks and a rotational wave. The first shock takes epsilon from unity upstream to a plateau of 0.25 downstream. The condition epsilon =0.25 i...

Liu, Yi-Hsin; Swisdak, M

2011-01-01

263

Gyro-induced acceleration of magnetic reconnection  

CERN Document Server

The linear and nonlinear evolution of magnetic reconnection in collisionless high-temperature plasmas with a strong guide field is analyzed on the basis of a two-dimensional gyrofluid model. The linear growth rate of the reconnecting instability is compared to analytical calculations over the whole spectrum of linearly unstable wave numbers. In the strongly unstable regime (large \\Delta '), the nonlinear evolution of the reconnecting instability is found to undergo two distinctive acceleration phases separated by a stall phase in which the instantaneous growth rate decreases. The first acceleration phase is caused by the formation of strong electric fields close to the X-point due to ion gyration, while the second acceleration phase is driven by the development of an open Petschek-like configuration due to both ion and electron temperature effects. Furthermore, the maximum instantaneous growth rate is found to increase dramatically over its linear value for decreasing diffusion layers. This is a consequence o...

Comisso, Luca; Waelbroeck, François L; Borgogno, Dario

2013-01-01

264

Cosmic Ray Acceleration in Magnetic Reconnection Sites  

CERN Document Server

Cosmic Ray (CR) acceleration still challenges the researchers. Fast particles may be accelerated in astrophysical environments by a variety of processes. Acceleration in magnetic reconnection sites in particular, has lately attracted the attention of researchers not only for its potential importance in the solar system context, but also in other astrophysical environments, like compact stellar sources, AGNs and GRBs, and even in diffusive media like the ISM and the IGM, especially when the environment is magnetically dominated. In this talk we review this process and also present three-dimensional collisional MHD simulations with the injection of thousands of test particles showing from the evolution of their energy spectrum that they can be efficiently accelerated by reconnection through a first-order Fermi process within large scale magnetic current sheets (especially when local turbulence is present which makes reconnection fast and the acceleration layer thicker).

Pino, Elisabete M de Gouveia Dal; Lazarian, Alex

2014-01-01

265

Particle Demagnetization in Collisionless Magnetic Reconnection  

Science.gov (United States)

The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. In this presentation, we present analytical theory results, as well as 2.5 and three-dimensional PIC simulations of guide field magnetic reconnection. We will show that diffusion region scale sizes in moderate and large guide field cases are determined by electron Larmor radii, and that analytical estimates of diffusion region dimensions need to include description of the heat flux tensor. The dominant electron dissipation process appears to be based on thermal electron inertia, expressed through nongyrotropic electron pressure tensors. We will argue that this process remains viable in three dimensions by means of a detailed comparison of high resolution particle-in-cell simulations.

Hesse, Michael

2006-01-01

266

Microstructure of magnetic reconnection in earth's magnetotail  

Science.gov (United States)

The structure of heated electron reconnection events associated with magnetic substorm events in the earth's magnetotail is examined using IMP 8 spacecraft and ground-based magnetometer, plasma analyzer and spectroscopic data. Plasma, magnetic field and energetic particle data for five events are presented. Reconnection is shown to occur in two phases: preheating and heating. In preheating, lasting about 5 min, a strong tailward plasma flow appears and ends with electron heating. A 1-2 min heating phase starts with electron heating and ends with plasma sheet drop out and/or decay of the electron temperature to pre-event levels. The heating pulse is always connected with a Bx reversal at 30 earth radii tailward, where the reconnection occurs.

Bieber, J. W.; Stone, E. C.; Hones, E. W., Jr.; Baker, D. N.; Bame, S. J.; Lepping, R. P.

1984-01-01

267

Driven reconnection and bursty bulk flows  

Directory of Open Access Journals (Sweden)

Full Text Available The energetics of driven magnetic reconnections induced by the deformation of the magnetopause boundary due to the solar wind-magnetosphere interaction are studied. The bursty type reconnection ensues due to the forcing of the magnetopause boundary by the solar wind. For typical plasma parameters in the inner central plasma sheet (ICPS, the magnetic energy release during the reconnection is estimated and it is found that the available free energy is comparable to the observed kinetic energy of typical bursty bulk flows. It implies that the part of the free energy goes into the heating of the ICPS particles, whereas the rest goes into its acceleration. The accelerated particle manifests itself as bursty flows.

Key words. Magnetospheric physics (magnetotail; storms and substorms

B. P. Pandey

268

Asymmetric reconnection and stochasticity in tokamaks  

International Nuclear Information System (INIS)

A model of the asymmetric internal reconnection occurring in toroidal geometry when pressure effects are taken into account is proposed. This model predicts a toroidal modulation of the current sheet, which is strong and mainly pressure driven for a rather low shear value on the q = 1 surface. This modulation drives magnetic field line stochasticity in the vicinity of the m = 1 separatrix, increasing during the reconnection process and reaching a value that can explain a complete expulsion of the electronic energy before the completion of the reconnection if the central value of the safety factor is somewhat below 0.8. This model is compared with a full toroidal MHD simulation including toroidal harmonics up to n = 11. (author). 17 refs, 5 figs

269

Computer simulation of reconnection in planetary magnetospheres  

International Nuclear Information System (INIS)

The earth's magnetosphere provides an ideal opportunity to model reconnection in well known geometries that are close enough to the idealized analytic models to make a comparison of the computer models with analytic theory meaningful. In addition more detailed, even three-dimensional, models can be used for a comparison with extended data from in situ observations. The computer studies have basically confirmed the reconnection picture that was based on two-dimensional steady state models and linear analytic theory. The three-dimensional models in particular have also added a lot more information on the reconnection process and the structure of flow, magnetic fields, and currents including many features that are consistent with observations and empirical models of geomagnetic substorms

270

Sound emission due to superfluid vortex reconnections  

CERN Document Server

By performing numerical simulations of superfluid vortex ring collisions we make direct quantitative measurements of the sound energy released due to vortex reconnections. We show that the energy radiated expressed in terms of the loss of vortex line length is a simple function of the reconnection angle. In addition, we study the temporal and spatial distribution of the radiation and show that energy is emitted in the form of a rarefaction pulse. The pulse evolves into a sound wave with a wavelength of 6-8 healing lengths.

Leadbeater, M L; Samuels, D C; Barenghi, C F; Adams, C S

2001-01-01

271

Computer modeling of fast collisionless reconnection  

International Nuclear Information System (INIS)

Particle simulations of collisionless tearing, reconnection and coalescence of magnetic fields for a sheet-pinch configuration show that reconnection is Sweet-Parker like in the tearing and island formation phase. It is much faster, or even explosive, in the island coalescence stage. Island coalescence is the most energetic process and leads to large ion temperature increase and oscillations in the merged state. Similar phenomena have been observed in equivalent MHD simulations. Coalescence and its effects, as observed in the authors' simulations, may explain many of the features of solar flares and coronal X-ray brightening

272

Computer modeling of fast collisionless reconnection  

International Nuclear Information System (INIS)

Particle simulations of collisionless tearing, reconnection and coalescence of magnetic fields for a sheet-pinch configuration show that reconnection is Sweet-Parker like in the tearing and island formation phase. It is much faster to explosive in the island coalescence state. Island coalescence is the most energetic process and leads to large ion temperature increase and oscillations in the merged state. Similar phenomena have been observed in equivalent MHD simulations. Coalescence and its effects, as observed in our simulations, may explain many of the features of solar flares and coronal x-ray brightening

273

Particle-in-cell simulations of shock-driven reconnection in relativistic striped winds  

International Nuclear Information System (INIS)

By means of two- and three-dimensional particle-in-cell simulations, we investigate the process of driven magnetic reconnection at the termination shock of relativistic striped flows. In pulsar winds and in magnetar-powered relativistic jets, the flow consists of stripes of alternating magnetic field polarity, separated by current sheets of hot plasma. At the wind termination shock, the flow compresses and the alternating fields annihilate by driven magnetic reconnection. Irrespective of the stripe wavelength ? or the wind magnetization ? (in the regime ? ? 1 of magnetically dominated flows), shock-driven reconnection transfers all the magnetic energy of alternating fields to the particles, whose average Lorentz factor increases by a factor of ? with respect to the pre-shock value. In the limit ?/(rL?) ? 1, where rL is the relativistic Larmor radius in the wind, the post-shock particle spectrum approaches a flat power-law tail with slope around ?1.5, populated by particles accelerated by the reconnection electric field. The presence of a current-aligned ‘guide’ magnetic field suppresses the acceleration of particles only when the guide field is stronger than the alternating component. Our findings place important constraints on the models of non-thermal radiation from Pulsar Wind Nebulae and relativistic jets. (paper)

274

Fast magnetic reconnection in laser-produced plasma bubbles  

CERN Document Server

Recent experiments have observed magnetic reconnection in high-energy-density, laser-produced plasma bubbles, with reconnection rates observed to be much higher than can be explained by classical theory. Based on fully kinetic particle simulations we find that fast reconnection in these strongly driven systems can be explained by magnetic flux pile-up at the shoulder of the current sheet and subsequent fast reconnection via two-fluid, collisionless mechanisms. In the strong drive regime with two-fluid effects, we find that the ultimate reconnection time is insensitive to the nominal system Alfven time.

Fox, W; Germaschewski, K

2011-01-01

275

Fast magnetic reconnection in laser-produced plasma bubbles.  

Science.gov (United States)

Recent experiments have observed magnetic reconnection in high-energy-density, laser-produced plasma bubbles, with reconnection rates observed to be much higher than can be explained by classical theory. Based on fully kinetic particle simulations we find that fast reconnection in these strongly driven systems can be explained by magnetic flux pileup at the shoulder of the current sheet and subsequent fast reconnection via two-fluid, collisionless mechanisms. In the strong drive regime with two-fluid effects, we find that the ultimate reconnection time is insensitive to the nominal system Alfvén time. PMID:21699307

Fox, W; Bhattacharjee, A; Germaschewski, K

2011-05-27

276

Effects of color reconnection on t anti t final states at the LHC  

International Nuclear Information System (INIS)

The modeling of color reconnection has become one of the dominant sources of systematic uncertainty in the top mass determination at hadron colliders. The uncertainty on the top mass due to color reconnection is conventionally estimated by taking the difference in the predictions of a model with and a model without color reconnection. We show that this procedure underestimates the uncertainty when applied to the existing models in PYTHIA 8. We introduce two new classes of color reconnection models, each containing several variants, which encompass a variety of scenarios that could be realized in nature and we study how they affect the reconstruction of the top mass. After tuning the new models to existing LHC data, the remaining spread of predictions is used to derive a more realistic uncertainty for the top mass, which is found to be around 500 MeV. We also propose how future LHC measurements with t anti t events can be used to further constrain these models and reduce the associated modeling uncertainty.

277

Effects of color reconnection on t anti t final states at the LHC  

Energy Technology Data Exchange (ETDEWEB)

The modeling of color reconnection has become one of the dominant sources of systematic uncertainty in the top mass determination at hadron colliders. The uncertainty on the top mass due to color reconnection is conventionally estimated by taking the difference in the predictions of a model with and a model without color reconnection. We show that this procedure underestimates the uncertainty when applied to the existing models in PYTHIA 8. We introduce two new classes of color reconnection models, each containing several variants, which encompass a variety of scenarios that could be realized in nature and we study how they affect the reconstruction of the top mass. After tuning the new models to existing LHC data, the remaining spread of predictions is used to derive a more realistic uncertainty for the top mass, which is found to be around 500 MeV. We also propose how future LHC measurements with t anti t events can be used to further constrain these models and reduce the associated modeling uncertainty.

Argyropoulos, Spyros [Univ. Lund (Sweden). Dept. of Astronomy and Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Sjoestrand, Torbjoern [Univ. Lund (Sweden). Dept. of Astronomy and Theoretical Physics

2014-07-15

278

Effects of color reconnection on $t\\bar{t}$ final states at the LHC  

CERN Document Server

The modeling of color reconnection has become one of the dominant sources of systematic uncertainty in the top mass determination at hadron colliders. The uncertainty on the top mass due to color reconnection is conventionally estimated by taking the difference in the predictions of a model with and a model without color reconnection. We show that this procedure underestimates the uncertainty when applied to the existing models in {\\sc Pythia}~8. We introduce two new classes of color reconnection models, each containing several variants, which encompass a variety of scenarios that could be realized in nature and we study how they affect the reconstruction of the top mass. After tuning the new models to existing LHC data, the remaining spread of predictions is used to derive a more realistic uncertainty for the top mass, which is found to be around 500 MeV. We also propose how future LHC measurements with $t\\bar{t}$ events can be used to further constrain these models and reduce the associated modeling uncerta...

Argyropoulos, Spyros

2014-01-01

279

Good Education in an Age of Measurement: On the Need to Reconnect with the Question of Purpose in Education  

Science.gov (United States)

In this paper I argue that there is a need to reconnect with the question of purpose in education, particularly in the light of a recent tendency to focus discussions about education almost exclusively on the measurement and comparison of educational outcomes. I first discuss why the question of purpose should always have a place in our…

Biesta, Gert

2009-01-01

280

Magnetic Reconnection: Theoretical and Observational Perspectives: Preface  

Science.gov (United States)

Magnetic reconnection is a fundamental plasma-physical process by which energy stored in a magnetic field is converted, often explosively, into heat and the kinetic energy of the charged particles that constitute the plasma. It occurs in a variety of astrophysical settings, ranging from the solar corona to pulsar magnetospheres and winds, as well as in laboratory fusion experiments, where it is responsible for sawtooth crashes. First proposed by R.G. Giovanelli in the late I 940s as the mechanism responsible for solar flares, magnetic reconnection was invoked at the beginning of the space age to explain not just solar flares but also the transfer of energy, mass, and momentum from the solar wind to Earth's magnetosphere and the subsequent storage and release of the transferred energy in the magnetotai\\. During the half century or so that has followed the seminal theoretical works by J.W. Dungey, P.A. Sweet, E.N. Parker, and H.E. Petschek, in-situ measurements by Earth-orbiting satellites and remote-sensing observations of the solar corona have provided a growing body of evidence for the occurrence of reconnection at the Sun, in the solar wind, and in the near-Earth space environment. The last thirty years have also seen the development of laboratory reconnection experiments at a number of institutions. In parallel with the efforts of experimentalists in both space and laboratory plasma physics, theorists have investigated, analytically and with the help of increasingly powerful MHD, hybrid, and kinetic numerical simulations, the structure of the diffusion region, the factors controlling the rate, onset, and cessation of reconnection, and the detailed physics that enables the demagnetization of the ions and electrons and the topological reconfiguration of the magnetic field. Moreover, the scope of theoretical reconnection studies has been extended well beyond solar system and laboratory plasmas to include more exotic astrophysical plasma systems whose strong (10(exp 14)-10(exp 15) G) magnetic fields require that models of reconnection in these systems incorporate quantum electrodynamical, special relativistic, and radiative effects. The papers collected in this topical issue of Space Science Reviews cover different aspects of recent theoretical and observational work on magnetic reconnection in solar and space physics, astrophysics, and laboratory plasma physics. They derive from presentations given at a workshop on magnetic reconnection held in the Yosemite National Park, February 8-12,2010. The intent of the workshop was to stimulate, through a combination of tutorial talks, shorter focused talks, and extensive informal discussions, an interdisciplinary dialogue among members of the different research communities working on the problem of magnetic reconnection. One of the motivating considerations for holding the workshop was its relevance to NASA's Magnetospheric Multiscale (MMS) mission, scheduled for launch in 2014. The four identically instrumented MMS spacecraft are designed to study reconnect ion in Earth's magnetosphere and, specifically, to probe the electron diffusion region in order to determine the microphysical processes that enable the change in the topology of the magnetic field. Building on the achievements of the multi spacecraft Cluster and THEMIS missions, MMS will use the magnetosphere as an astrophysical plasma laboratory in which to test, through in-situ measurement of the plasma, energetic particles, and electric and magnetic fields, various models and theories that have emerged during the past twenty years, a period of extraordinarily productive theoretical and observational work.

Lewis, W. S.; Antiochos, S. K,; Drake, J. F.

2011-01-01

 
 
 
 
281

Fast magnetic reconnection regime in double tearing modes  

Science.gov (United States)

Nonlinear phases of magnetic reconnection in double tearing modes are studied. The first two nonlinear phases of magnetic reconnection lead to the formation of magnetic islands followed by a fast phase to complete the reconnection process with all field lines reconnected and islands vanished. Resistivity dependences for various phases are studied and shown by scaling analysis for the first time. It is shown that after an early non-constant-? Sweet-Parker phase with a ?^1/2-scale, the long nonlinear phase is in a Rutherford regime with a ?-scale following by the fast reconnection phase with a very fast ?^1/5-scale. The latter phase is found generated by a process of neighboring magnetic separatrices merging and magnetic islands coupling, with a very fast reconnection rate weakly depended on plasma resistivity. The fast reconnection rate can be understood as a result of the island coupling equivalent to a steadily inward flux boundary driven.

Wang, Z. X.; Wang, X. G.; Dong, J. Q.; Long, Y. X.; Mou, Z. Z.; Qu, W. X.

2007-11-01

282

Magnetic reconnection with radiative cooling. I. Optically thin regime  

Science.gov (United States)

Magnetic reconnection processes in many high-energy-density astrophysical and laboratory plasma systems are significantly affected by radiation; hence traditional, nonradiative reconnection models are not applicable to these systems. Motivated by this observation, the present paper develops a Sweet-Parker-like theory of resistive magnetic reconnection with strong radiative cooling. It is found that, in the case with zero guide field, intense radiative cooling leads to a strong plasma compression, resulting in a higher reconnection rate. The compression ratio and the reconnection layer temperature are determined by the balance between ohmic heating and radiative cooling. The lower temperature in a radiatively cooled layer leads to a higher Spitzer resistivity and, hence, a higher reconnection rate. Several specific radiative processes (bremsstrahlung, cyclotron, and inverse Compton) in the optically thin regime are considered for both the zero- and strong-guide-field cases, and concrete expressions for the reconnection parameters are derived, along with the applicability conditions.

Uzdensky, Dmitri A.; McKinney, Jonathan C.

2011-04-01

283

Magnetopause Reconnection Impact Parameters from Multiple Spacecraft Magnetic Field Measurements  

Science.gov (United States)

We present a novel technique that exploits multiple spacecraft data to determine the impact parameters of the most general form of magnetic reconnection at the magnetopause. The method consists of a superposed epoch of multiple spacecraft magnetometer measurements that yields the instantaneous magnetic spatial gradients near a magnetopause reconnection site. The gradients establish the instantaneous positions of the spacecraft relative to the reconnection site. The analysis is well suited to evaluating the spatial scales of singular field line reconnection, which is characterized by a two-dimensional x-type topology adjacent and perpendicular to a reconnecting singular field line. Application of the method to Cluster data known to lie in the vicinity of a northward IMF reconnection site establishes a field topology consistent with singular field line reconnection and a normal magnetic field component of 20 nT. The corresponding current structure consists of a 130 km sheet possibly embedding a thinner. bifurcated sheet.

Wendel, Deirdre E.; Reiff, Patricia H.

2009-01-01

284

General magnetic reconnection, parallel electric fields, and helicity  

Science.gov (United States)

This paper considers the concept of magnetic reconnection from a general point of view, with special consideration given to magnetic reconnection in nonvanishing magnetic fields, i.e., finite-B reconnection as distinct from zero-B reconnection. It is shown that the electric field component parallel to the magnetic field (E-parallel) plays a crucial physical role in finite-B reconnection. Two theorems involving E-parallel are proposed. The first defines a necessary and sufficient condition of E-parallel for global reconnection to occur. The second theorem is concerned with the change of magnetic helicity to E-parallel for cases where the electric field vanishes at large distances. The general magnetic reconnection concept is tested by applying it to the process of plasmoid formation process.

Schindler, K.; Hesse, M.; Birn, J.

1988-01-01

285

Taking Medication  

Medline Plus

Full Text Available ... Online Store Events Make a Donation Access My Learning Access AADE7 System Find a Diabetes Educator Questions, Comments, Concerns? 800 . 338 . 3633 Taking Medication Diabetes is a progressive condition. Depending on what type a person has, their healthcare team will be ...

286

Taking Medication  

Medline Plus

Full Text Available ... Make a Donation Access My Learning Access AADE7 System Find a Diabetes Educator Questions, Comments, Concerns? 800 . 338 . 3633 Taking Medication Diabetes is a progressive condition. Depending on what type a person has, their healthcare team will be able to determine which medications ...

287

Places to Go: Moodle  

Science.gov (United States)

Educators are becoming increasingly interested in alternatives to learning management systems (LMS) Blackboard and WebCT. Stephen Downes's column Places to Go turns to one internationally popular open source LMS--Moodle. Downes takes the reader through Moodle's Web site, which is simultaneously a Web site about its LMS and an example of what its…

Downes, Stephen

2006-01-01

288

Stochastic Acceleration by Multi-Island Contraction during Turbulent Magnetic Reconnection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The acceleration of charged particles in magnetized plasmas is considered during turbulent multi-island magnetic reconnection. The particle acceleration model is constructed for an ensemble of islands which produce adiabatic compression of the particles. The model takes into account the statistical fluctuations in the compression rate experienced by the particles during their transport in the acceleration region. The evolution of the particle distribution function is describ...

Bian, Nicolas; Kontar, Eduard

2013-01-01

289

MAGNETIC RECONNECTION, HELICITY DYNAMICS, AND HYPER-DIFFUSION  

International Nuclear Information System (INIS)

We examine the influence of noise and Alfvén wave turbulence on magnetic reconnection in a reduced magnetohydrodynamics model. We focus on the dynamics of magnetic helicity density. Helicity conservation is then used to calculate the global reconnection rate in terms of the helicity density flux. Two specific scenarios are explored—noisy reconnection and Alfvén wave turbulent reconnection. For noisy reconnection, the current sheet is assumed to sit in a noisy state, marginal to plasmoid formation instability. The scaling of the reconnection rate in the presence of noise is proportional to (S 20/VAL 2)1/11, where S 20/VAL 2 is the relative amplitude of the noise. We obtain this prediction using a symmetry analysis of the helicity density flux. For Alfvén wave turbulent reconnection, a mean field closure scheme is applied. A reconnection rate proportional to (2>/2)1/8 is obtained, where 2>/2 and (B) are the relative energy of Alfvén wave turbulence and the reconnecting field. The constraint on reconnection rate enforced mean-square magnetic potential conservation is reexamined. A critical magnetic Reynolds number Rm,c is identified. For Rm >> Rm,c, the reconnection rate becomes independent of Spitzer resistivity and thus can be higher than the Sweet-Parkes can be higher than the Sweet-Parker model prediction. Both cases exhibit a weak dependence of the reconnection rate on the amplitude of the turbulence. Therefore, even noise or weak turbulence can trigger fast reconnection if the system is marginally stable. The important distinction between turbulent reconnection and turbulent dissipation of magnetic energy is also discussed.

290

Three-dimensional null point reconnection regimes  

International Nuclear Information System (INIS)

Recent advances in theory and computational experiments have shown the need to refine the previous categorization of magnetic reconnection at three-dimensional null points--points at which the magnetic field vanishes. We propose here a division into three different types, depending on the nature of the flow near the spine and fan of the null. The spine is an isolated field line which approaches the null (or recedes from it), while the fan is a surface of field lines which recede from it (or approach it). So-called torsional spine reconnection occurs when field lines in the vicinity of the fan rotate, with current becoming concentrated along the spine so that nearby field lines undergo rotational slippage. In torsional fan reconnection field lines near the spine rotate and create a current that is concentrated in the fan with a rotational flux mismatch and rotational slippage. In both of these regimes, the spine and fan are perpendicular and there is no flux transfer across spine or fan. The third regime, called spine-fan reconnection, is the most common in practice and combines elements of the previous spine and fan models. In this case, in response to a generic shearing motion, the null point collapses to form a current sheet that is focused at the null itself, in a sheet that locally spans both the spine and fan. In this regime the spine and fan are no longer perpendicular and there is flux transfer across both of them.

291

Magnetic reconnection with large separatrix angles  

Science.gov (United States)

The magnetic reconnection process is studied here using incompressible MHD simulations with different inflow boundary conditions and different magnetic Reynolds numbers R(m). The angle between the magnetic separatrices is in steady state reconnection depends mainly on the normal magnetic field on the inflow boundary. In steady state nonuniform reconnection with large separatrix angles, field-aligned plasma jets appear slightly downstream of the magnetic separatrices. The field-aligned plasma jet are stronger when R(m) is larger. Each field-aligned plasma jet consists of two parts: a slow shock and a fast-mode compressional wave. The slow shock converts the magnetic energy into plasma kinetic energy by acceleration and heating. The fast-mode compressional wave decelerates the plasma to a smaller outflow speed and heats it further. Nearly all the magnetic energy flowing into the diffusion region is converted into other forms. The length and width of the diffusion region depend on the values of the reconnection rate, R(m), and the normal magnetic field on the inflow boundary.

Yan, M.; Lee, L. C.; Priest, E. R.

1993-01-01

292

Superdiffusion revisited in view of collisionless reconnection  

Science.gov (United States)

The concept of diffusion in collisionless space plasmas like those near the magnetopause and in the geomagnetic tail during reconnection is reexamined making use of the division of particle orbits into waiting orbits and break-outs into ballistic motion lying at the bottom, for instance, of Lévy flights. The rms average displacement in this case increases with time, describing superdiffusion, though faster than classical, is still a weak process, being however strong enough to support fast reconnection. Referring to two kinds of numerical particle-in-cell simulations we determine the anomalous diffusion coefficient, the anomalous collision frequency on which the diffusion process is based, and construct a relation between the diffusion coefficients and the resistive scale. The anomalous collision frequency from electron pseudo-viscosity in reconnection turns out to be of the order of the lower-hybrid frequency with the latter providing a lower limit, thus making similar assumptions physically meaningful. Tentative though not completely justified use of the ? distribution yields ? ? 6 in the reconnection diffusion region and, for the anomalous diffusion coefficient, the order of several times Bohm diffusivity.

Treumann, R. A.; Baumjohann, W.

2014-06-01

293

Crossed Flux Tubes Magnetic Reconnection Experiment  

Science.gov (United States)

The dynamics of arched, plasma-filled flux tubes have been studied in experiments at Caltech. These flux tubes expand, undergo kink instabilities, magnetically reconnect, and are subject to magnetohydrodynamic forces. An upgraded experiment will arrange for two of these flux tubes to cross over each other. It is expected then that the flux tubes will undergo magnetic reconnection at the crossover point, forming one long flux tube and one short flux tube. This reconnection should also result in a half-twist in the flux tubes at the crossover point, which will propagate along each tube as Alfv'en waves. The control circuitry requires two independent floating high energy capacitor power supplies to power the plasma loops, which will be put in series when the plasma loops reconnect. Coordinating these two power supplies requires the building of new systems for controlling plasma generation. Unlike with previous designs, all timing functions are contained on a single printed circuit board, allowing the design to be easily replicated for use with each independent capacitor involved. The control circuit sequencing has been tested successfully in generating a single flux tube. The plasma gun is currently under construction, with its installation pending completion of prior experiments.

Tobin, Zachary; Bellan, Paul

2012-10-01

294

VINETA II: a linear magnetic reconnection experiment.  

Science.gov (United States)

A linear experiment dedicated to the study of driven magnetic reconnection is presented. The new device (VINETA II) is suitable for investigating both collisional and near collisionless reconnection. Reconnection is achieved by externally driving magnetic field lines towards an X-point, inducing a current in the background plasma which consequently modifies the magnetic field topology. Owing to the open field line configuration of the experiment, the current is limited by the axial sheath boundary conditions. A plasma gun is used as an additional electron source in order to counterbalance the charge separation effects and supply the required current. Two drive methods are used in the device. First, an oscillating current through two parallel conductors drive the reconnection. Second, a stationary X-point topology is formed by the parallel conductors, and the drive is achieved by an oscillating current through a third conductor. In the first setup, the magnetic field of the axial plasma current dominates the field topology near the X-point throughout most of the drive. The second setup allows for the amplitude of the plasma current as well as the motion of the flux to be set independently of the X-point topology of the parallel conductors. PMID:24593355

Bohlin, H; Von Stechow, A; Rahbarnia, K; Grulke, O; Klinger, T

2014-02-01

295

VINETA II: A linear magnetic reconnection experiment  

Energy Technology Data Exchange (ETDEWEB)

A linear experiment dedicated to the study of driven magnetic reconnection is presented. The new device (VINETA II) is suitable for investigating both collisional and near collisionless reconnection. Reconnection is achieved by externally driving magnetic field lines towards an X-point, inducing a current in the background plasma which consequently modifies the magnetic field topology. Owing to the open field line configuration of the experiment, the current is limited by the axial sheath boundary conditions. A plasma gun is used as an additional electron source in order to counterbalance the charge separation effects and supply the required current. Two drive methods are used in the device. First, an oscillating current through two parallel conductors drive the reconnection. Second, a stationary X-point topology is formed by the parallel conductors, and the drive is achieved by an oscillating current through a third conductor. In the first setup, the magnetic field of the axial plasma current dominates the field topology near the X-point throughout most of the drive. The second setup allows for the amplitude of the plasma current as well as the motion of the flux to be set independently of the X-point topology of the parallel conductors.

Bohlin, H., E-mail: hannes.bohlin@ipp.mpg.de; Von Stechow, A.; Rahbarnia, K.; Grulke, O. [Max-Planck-Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Klinger, T. [Max-Planck-Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Ernst-Moritz-Arndt University, Domstr. 11, 17489 Greifswald (Germany)

2014-02-15

296

VINETA II: A linear magnetic reconnection experiment  

International Nuclear Information System (INIS)

A linear experiment dedicated to the study of driven magnetic reconnection is presented. The new device (VINETA II) is suitable for investigating both collisional and near collisionless reconnection. Reconnection is achieved by externally driving magnetic field lines towards an X-point, inducing a current in the background plasma which consequently modifies the magnetic field topology. Owing to the open field line configuration of the experiment, the current is limited by the axial sheath boundary conditions. A plasma gun is used as an additional electron source in order to counterbalance the charge separation effects and supply the required current. Two drive methods are used in the device. First, an oscillating current through two parallel conductors drive the reconnection. Second, a stationary X-point topology is formed by the parallel conductors, and the drive is achieved by an oscillating current through a third conductor. In the first setup, the magnetic field of the axial plasma current dominates the field topology near the X-point throughout most of the drive. The second setup allows for the amplitude of the plasma current as well as the motion of the flux to be set independently of the X-point topology of the parallel conductors

297

The relation between reconnected flux, the parallel electric field, and the reconnection rate in a three-dimensional kinetic simulation of magnetic reconnection  

International Nuclear Information System (INIS)

We investigate the distribution of parallel electric fields and their relationship to the location and rate of magnetic reconnection in a large particle-in-cell simulation of 3D turbulent magnetic reconnection with open boundary conditions. The simulation's guide field geometry inhibits the formation of simple topological features such as null points. Therefore, we derive the location of potential changes in magnetic connectivity by finding the field lines that experience a large relative change between their endpoints, i.e., the quasi-separatrix layer. We find a good correspondence between the locus of changes in magnetic connectivity or the quasi-separatrix layer and the map of large gradients in the integrated parallel electric field (or quasi-potential). Furthermore, we investigate the distribution of the parallel electric field along the reconnecting field lines. We find the reconnection rate is controlled by only the low-amplitude, zeroth and first–order trends in the parallel electric field while the contribution from fluctuations of the parallel electric field, such as electron holes, is negligible. The results impact the determination of reconnection sites and reconnection rates in models and in situ spacecraft observations of 3D turbulent reconnection. It is difficult through direct observation to isolate the loci of the reconnection parallel electric field amidst the large amplitude fluctuations. However, we demonstrate that a positive slope of the running sum of the parallel electric field along the field line as a function of field line length indicates where reconnection is occurring along the field line

298

Three-dimensional inverse energy cascade induced by vortex reconnections  

CERN Document Server

A recent study of homogeneous isotropic turbulence by Biferale, Musacchio and Toschi has determined that a three-dimensional inverse energy cascade is possible if the nonlinearity of the Navier-Stokes equation is restricted in Fourier space to helical modes of the same sign. In low-temperature superfluid helium, viscosity is zero, vorticity takes the form of discrete, thin vortex filaments of fixed circulation, and turbulence is a tangle of such filaments. We exploit the simpler nature of quantum vorticity to show that the three-dimensional inverse energy cascade can arise from reconnections of vortex loops of the same polarity which shift energy from small length scales to large length scales, in analogy to what was envisaged by Biferale and collaborators in classical Navier-Stokes turbulence. We discuss superfluid turbulence experiments and the observed generation of the classical Kolmogorov energy spectrum in view of this finding.

Baggaley, Andrew W; Sergeev, Yuri A

2012-01-01

299

Places available**  

CERN Multimedia

If you wish to participate in one of the following courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at: http://www.cern.ch/Training/ or fill in an "application for training" form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt. TECHNICAL TRAINING Monique Duval tel. 74924 technical.training@cern.ch ** The number of places available may vary. Please check our Web site to find out the current availability. Places are available in the following courses: ACCESS 2000 - niveau 1 : 13 & 14.11.03 (2 jours) C++ for Particle Physicists : 17 ? 21.11.03 (6 X 3-hour lectures) Programmation automate Schneider TSX Premium ? niveau 2 : 18 ? 21.11.03 (4 jours) JAVA 2 Enterprise Edition ? Part 1 : WEB Applications : 20 & ...

2003-01-01

300

Engaging Places  

Science.gov (United States)

How does the built environment affect our daily lives? It's a valuable question, and one that is explored in-depth via the writings, photographs, lessons, and activities on the Engaging Places website. Based in Britain, the site includes the areas Teaching Resources, Network, and About Us. First-time visitors should browse around the In the Spotlight area first. Here they can learn about the accolades garnered by Engaging Places and the site's latest outreach efforts. The Browse by Topic area allows users to learn about the built environment via the topics Architecture in focus, School case studies, and Heritage. The Architecture in Focus area is brilliant, as it contains pieces on 10 Downing Street, Blenheim Palace, and the De La Warr Pavilion, a Modernist icon. Additionally, visitors can use the Recently Added area to look over new content or use the Google Maps interface to search for sites of note and related teaching materials.

2013-05-23

 
 
 
 
301

Places available  

CERN Multimedia

If you wish to participate in one of the following courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at: http://www.cern.ch/Training/ or fill in an "application for training" form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt. Places available The number of places available may vary. Please check our Web site to find out the current availability. Places are available in the following courses : Introduction à Outlook : 19.8.2004 (1 journée) Outlook (short course I) : E-mail : 31.8.2004 (2 hours, morning) Outlook (short course II) : Calendar, Tasks and Notes : 31.8.2004 (2 hours, afternoon) Instructor-led WBTechT Study or Follow-up for Microsoft Applications : 7.9.2004 (morning) Outlook (short course III) : Meetings and Delegation : 7.9.2004 (2 hours, afternoon) Introduction ...

2004-01-01

302

Places disponibles*/Places available **  

CERN Multimedia

Des places sont disponibles dans les cours suivants : Places are available in the following course : Java 2 Enterprise Edition - Part 2 : Enterprise JavaBeans : 20 - 22.1.03 (3 days) Introduction to PVSS : 27.1.03 (Afternoon) free course but registration necessary Basic PVSS : 28 - 30.1.03 (3 days) MAGNE-03 - Magnétisme pour l'électrotechnique : 28 - 30.1.03 (3 jours) MAGNE-03 - Magnetism for Technical Electronics : 11 - 13.2.03 (3 days) AutoCAD 2002 - niveau 1 : 24, 25.2 et 3, 4.3.03 (4 jours) AutoCAD 2002 - niveau 2 : 10 & 11.3.03 (2 jours) C++ for Particle Physicists : 10 - 14.3.03 (6 X 3 hour lectures) AutoCAD Mechanical 6 PowerPack (F) : 12, 13, 17, 18, 24 & 25.3.03 (6 jours) * Etant donné le délai d'impression du Bulletin, ces places peuvent ne plus être disponibles au moment de sa parution. Veuillez consulter notre site Web pour avoir la dernière mise à jour. ** The number of places available may vary. Please check our Web site to find out the current availability. Si vous désirez ...

2003-01-01

303

Places disponibles/Places available  

CERN Multimedia

Etant donné le délai d'impression du Bulletin, ces places peuvent ne plus être disponibles au moment de sa parution. Veuillez consulter notre site Web pour avoir la dernière mise à jour. The number of places available may vary. Please check our Web site to find out the current availability. Des places sont disponibles dans les cours suivants : / Places are available in the following courses : Introduction à Outlook : 19.8.2004 (1 journée) Outlook (short course I) : E-mail : 31.8.2004 (2 hours, morning) Outlook (short course II) : Calendar, Tasks and Notes : 31.8.2004 (2 hours, afternoon) Instructor-led WBTechT Study or Follow-up for Microsoft Applications : 7.9.2004 (morning) Outlook (short course III) : Meetings and Delegation : 7.9.2004 (2 hours, afternoon) Introduction au VHDL et utilisation du simulateur NCVHDL de CADENCE : 7 & 8.9.2004 (2 jours) Joint PVSS JCOP Framework : 13 - 17.9.2004 (5 days) AutoCAD 2002 - niveau 1 : 13, 14, 23, 24.9.2004 (4 jours) Programmation S...

2004-01-01

304

Collisionless magnetic reconnection under anisotropic MHD approximation  

Science.gov (United States)

We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless magneto-hydro-dynamic (MHD) simulations based on the double adiabatic approximation, which is an important step to bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observation. According to our results, a pair of slow shocks does form in the reconnection layer. The resultant shock waves, however, are quite weak compared with those in an isotropic MHD from the point of view of the plasma compression and the amount of the magnetic energy released across the shock. Once the slow shock forms, the downstream plasma are heated in highly anisotropic manner and a firehose-sense (P_{||}>P_{?}) pressure anisotropy arises. The maximum anisotropy is limited by the marginal firehose criterion, 1-(P_{||}-P_{?})/B(2) =0. In spite of the weakness of the shocks, the resultant reconnection rate is kept at the same level compared with that in the corresponding ordinary MHD simulations. It is also revealed that the sequential order of propagation of the slow shock and the rotational discontinuity, which appears when the guide field component exists, changes depending on the magnitude of the guide field. Especially, when no guide field exists, the rotational discontinuity degenerates with the contact discontinuity remaining at the position of the initial current sheet, while with the slow shock in the isotropic MHD. Our result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere.

Hirabayashi, Kota; Hoshino, Masahiro

305

Interchange Reconnection and Coronal Hole Dynamics  

Science.gov (United States)

We investigate the effect of magnetic reconnection between open and closed field, (often referred to as "interchange" reconnection), on the dynamics and topology of coronal hole boundaries. The most important and most prevalent 3D topology of the interchange process is that of a small-scale bipolar magnetic field interacting with a large-scale background field. We determine the evolution of such a magnetic topology by numerical solution of the fully 3D MHD equations in spherical coordinates. First, we calculate the evolution of a small-scale bipole that initially is completely inside an open field region and then is driven across a coronal hole boundary by photospheric motions. Next the reverse situation is calculated in which the bipole is initially inside the closed region and driven toward the coronal hole boundary. In both cases we find that the stress imparted by the photospheric motions results in deformation of the separatrix surface between the closed field of the bipole and the background field, leading to rapid current sheet formation and to efficient reconnection. When the bipole is inside the open field region, the reconnection is of the interchange type in that it exchanges open and closed field. We examine, in detail, the topology of the field as the bipole moves across the coronal hole boundary, and find that the field remains well-connected throughout this process. Our results imply that open flux cannot penetrate deeply into the closed field region below a helmet streamer and, hence, support the quasi-steady models in which open and closed flux remain topologically distinct. Our results also support the uniqueness hypothesis for open field regions as postulated by Antiochos et al. We discuss the implications of this work for coronal observations. Subject Headings: Sun: corona Sun: magnetic fields Sun: reconnection Sun: coronal hole

Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Lynch, B. J.; Zurbuchen, T. H.

2011-01-01

306

Magnetic reconnection in collisionless plasmas: Prescribed fields  

International Nuclear Information System (INIS)

The structure of the dissipation region during magnetic reconnection in collisionless plasma has been investigated. Particles are injected onto a computational grid, their orbits are integrated, and the moments of the distribution function are stored. The structure of the dissipation region depends on only two variables: a normalized reconnection electric field (E) and the opening angle ? of the separatrices of the magnetic field. An important conclusion of the work is that there is no linear relationship between the current sheet velocity vy and the electric field. For a small normalized electric field the maximum vy is localized away from the x line, is diamagnetic in origin, and is independent of (E) as (E) ? 0. For a large normalized electric field the effective life-time of particles in the reconnection region scales as (E)-1/3 and vy ? (E)2/3. In this limit, particles are ejected from the reconnection region as high-velocity, gyrophase-bunched beams. These beams produced an irregular filamentary current distribution in the outflow region. The beams which are ejected along the center of the outflow region are eventually trapped by the magnetic field while the beams ejected just downstream from the separatrix continue to move with high velocity out of the comuptational region. Over the entire range of (E), significant temperature anisotropies are produced, with Tperpendicular parallel in the inflow region and Tperpendicular >> Tparallel in the outflow region. Implications of the results for understanding magnetic reconnection in magnetospheric plasma and the source of energetic particles measured in the plasma sheet boundary layer and in explaining recent observations of fine scale magnetic turbulence in the central plasma sheet are discussed

307

ASYMMETRIC MAGNETIC RECONNECTION IN SOLAR FLARE AND CORONAL MASS EJECTION CURRENT SHEETS  

International Nuclear Information System (INIS)

We present two-dimensional resistive magnetohydrodynamic simulations of line-tied asymmetric magnetic reconnection in the context of solar flare and coronal mass ejection current sheets. The reconnection process is made asymmetric along the inflow direction by allowing the initial upstream magnetic field strengths and densities to differ, and along the outflow direction by placing the initial perturbation near a conducting wall boundary that represents the photosphere. When the upstream magnetic fields are asymmetric, the post-flare loop structure is distorted into a characteristic skewed candle flame shape. The simulations can thus be used to provide constraints on the reconnection asymmetry in post-flare loops. More hard X-ray emission is expected to occur at the footpoint on the weak magnetic field side because energetic particles are more likely to escape the magnetic mirror there than at the strong magnetic field footpoint. The footpoint on the weak magnetic field side is predicted to move more quickly because of the requirement in two dimensions that equal amounts of flux must be reconnected from each upstream region. The X-line drifts away from the conducting wall in all simulations with asymmetric outflow and into the strong magnetic field region during most of the simulations with asymmetric inflow. There is net plasma flow across the X-line for both the inflow and outflow directions. The reconnection exhaust directed away from the obstructing wall is signifi away from the obstructing wall is significantly faster than the exhaust directed toward it. The asymmetric inflow condition allows net vorticity in the rising outflow plasmoid which would appear as rolling motions about the flux rope axis.

308

Experimental study of ion heating and acceleration during magnetic reconnection  

International Nuclear Information System (INIS)

This dissertation reports an experimental study of ion heating and acceleration during magnetic reconnection, which is the annihilation and topological rearrangement of magnetic flux in a conductive plasma. Reconnection is invoked often to explain particle heating and acceleration in both laboratory and naturally occurring plasmas. However, a simultaneous account of reconnection and its associated energy conversion has been elusive due to the extreme inaccessibility of reconnection events, e.g. in the solar corona, the Earth's magnetosphere, or in fusion research plasmas. Experiments for this work were conducted on MRX (Magnetic Reconnection Experiment), which creates a plasma environment allowing the reconnection process to be isolated, reproduced, and diagnosed in detail. Key findings of this work are the identification of local ion heating during magnetic reconnection and the determination that non-classical effects must provide the heating mechanism. Measured ion flows are sub-Alfvenic and can provide only slight viscous heating, and classical ion-electron interactions can be neglected due to the very long energy equipartition time. The plasma resistivity in the reconnection layer is seen to be enhanced over the classical value, and the ion heating is observed to scale with the enhancement factor, suggesting a relationship between the magnetic energy dissipation mechanism and the ion heating mechanism. The observation of non-classical ion heating during reconnection has significant implications for understanding the role played by non-classical dissipation mechanisms in generating fast reconnection. The findings are relevant for many areas of space and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating. In the process of performing this work, local measurements of ion temperature and flows in a well-characterized reconnection layer were obtained for the first time in either laboratory or observational reconnection research. Furthermore, much progress was made in understanding the reconnection process itself

309

Aspects of Three-Dimensional Magnetic Reconnection - (Invited Review)  

Science.gov (United States)

In this review paper we discuss several aspects of magnetic reconnection theory, focusing on the field-line motions that are associated with reconnection. A new exact solution of the nonlinear MHD equations for reconnective annihilation is presented which represents a two-fold generalization of the previous solutions. Magnetic reconnection at null points by several mechanisms is summarized, including spine reconnection, fan reconnection and separator reconnection, where it is pointed out that two common features of separator reconnection are the rapid flipping of magnetic field lines and the collapse of the separator to a current sheet. In addition, a formula for the rate of reconnection between two flux tubes is derived. The magnetic field of the corona is highly complex, since the magnetic carpet consists of a multitude of sources in the photosphere. Progress in understanding this complexity may, however, be made by constructing the skeleton of the field and developing a theory for the local and global bifurcations between the different topologies. The eruption of flux from the Sun may even sometimes be due to a change of topology caused by emerging flux break-out. A CD-ROM attached to this paper presents the results of a toy model of vacuum reconnection, which suggests that rapid flipping of field lines in fan and separator reconnection is an essential ingredient also in real non-vacuum conditions. In addition, it gives an example of binary reconnection between a pair of unbalanced sources as they move around, which may contribute significantly to coronal heating. Finally, we present examples in TRACE movies of geometrical changes of the coronal magnetic field that are a likely result of large-scale magnetic reconnection.

Priest, E. R.; Schrijver, C. J.

1999-12-01

310

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: C++ Programming Level 2 - Traps & Pitfalls:  16 - 19.7.02 (4 days) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : Technical Training or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt. Technical Training Monique Duval Tel.74924 monique.duval@cern.ch

Monique Duval

2002-01-01

311

Highly localized, fully 3-D disruptions of the reconnection layer in the Magnetic Reconnection Experiment  

Science.gov (United States)

Magnetic reconnection is a fundamental process in plasmas which converts magnetic energy to plasma kinetic and thermal energy through topological changes. One of the important goals in magnetic reconnection research is to explain the fast reconnection rate observed in real three-dimensional laboratory and astrophysical systems. In the Magnetic Reconnection Experiment (MRX), an enhancement of the reconnection electric field is often associated with a wholesale disruption of the reconnection current layer, an intrinsically 3-D phenomena observed in the presence of out-of-plane gradients of local quantities such as reconnection layer current and density. During a disruption, the out-of-plane current decreases as current carrying electrons are redirected in the outflow direction. Observed ``O-point'' signatures and density striations suggest that this redirection often occurs though the ejection of 3-D flux rope structures. Large fluctuations in the lower hybrid frequency range are also routinely seen, but the ratio of the phase speed to the diamagnetic drift speed does not match what is predicted by 3-D kinetic simulations without disruptions. A 2-D Hall MHD analysis of the out-of-plane gradients is consistent with the buildup of magnetic energy leading to the event [1], but variation in all three spacial dimensions is required in order to obtain results in agreement with the disruptive behavior observed. Analysis and comparison with 3-D simulations is ongoing to determine if the fluctuations and/or disruptive behavior are responsible for the corresponding discrepancies in the layer structure between the experiments and 2-D kinetic simulations [2,3,4]. Supported by DOE, NASA, and NSF. [4pt] [1] J.D. Huba and L.I. Rudakov, Phys. Plasmas 10, 3139 (2003).[0pt] [2] Y. Ren, et al., Phys. Plasmas 15, 082113 (2008).[0pt] [3] S. Dorfman, et al., Phys. Plasmas 15, 102107 (2008).[0pt] [4] V. Roytershteyn, et al., Phys. Plasmas 17, 055706 (2010).

Dorfman, Seth

2011-11-01

312

Places available**  

CERN Multimedia

If you wish to participate in one of the following courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at: http://www.cern.ch/Training/ or fill in an "application for training" form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt. TECHNICAL TRAINING Monique Duval tel. 74924 technical.training@cern.ch ** The number of places available may vary. Please check our Web site to find out the current availability. Places are available in the following courses: The JAVA Programming Language Level 1 :9 & 10.1.2004 (2 days) The JAVA Programming Language Level 2 : 11 to 13.1.2004 (3 days) Hands-on Introduction to Python Programming : 16 - 18.2.2004 (3 days - free of charge) CLEAN-2002 : Working in a Cleanroom : 10.3.2004 (afternoon - free of charge) C++ for Particle Physicists : 8 - 12.3.2004...

2004-01-01

313

Places available**  

CERN Document Server

If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at: http://www.cern.ch/Training/ or fill in an "application for training" form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt. ** The number of places available may vary. Please check our Web site to find out the current availability. Places are available in the following courses : EXCEL 2000 - niveau 1 : 20 & 22.10.03 (2 jours) CLEAN-2002 : Working in a Cleanroom (free of charge) : 23.10.03 (half day) The EDMS-MTF in practice (free of charge) :  28 -  30.10.03 (6 half-day sessions) AutoCAD 2002 - Level 1 : 3, 4, 12, 13.11.03 (4 days) LabVIEW TestStand ver. 3 : 4 & 5.11.03 (2 days) Introduction to Pspice : 4.11.03 p.m. (half-day) Hands-on Introduction to Python Programm...

2003-01-01

314

Places available**  

CERN Multimedia

Places are available in the following courses: Conception de PCB rapides dans le flot Cadence : 11.6.03 (matin) EXCEL 2000 - level 1 : 12 & 13.6.03 (2 days) Introduction to PVSS : 16.6.03 (p.m.) Basic PVSS : 17 - 19.6.03 (3 days) Réalisation de PCB rapides dans le flot Cadence : 17.6.03 (matin) PVSS - JCOP Framework Tutorial : 20.6.03 (1 day) Programmation automate Schneider : Programmation automate Schneider TSX Premium - 2ème niveau : 24 - 27.6.03 (4 jours) - audience : toute personne qui veux maitriser la mise en uvre et la programmation des fonctions spécialisées d'un automate TSX Premium - objectifs : maitriser la mise en uvre et la programmation des fonctions spécialisées d'un automate TSX Premium Cours de sécurité : Etre TSO au CERN : Prochaines sessions : 24, 25 & 27.6.03 - 4, 5 & 7.11.03 (session de 3 jours) ** The number of places available may vary. Please check our Web site to find out the current availability. If you wish to participate in one of these courses, pl...

2003-01-01

315

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: The CERN Engineering Data Management System for Advanced users :  13.6.02  (1 day) The CERN Engineering Data Management System for Local Administrators :  18.6.02  (1 day) AutoCAD 2002 - niveau 2 : 24 - 25.6.02 (2 jours) Frontpage 2000 - niveau 2 : 25 - 26.6.02 (2 jours) Object-oriented Analysis and Design :  2 - 5.7.02  (4 days) C++ Programming Level 2 - Traps & Pitfalls :  16 - 19.7.02  (4 days) C++ for Particle Physicists :  22 - 26.7.02  (6 * 3 hour lectures) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : Technical Training or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of the...

Monique Duval

2002-01-01

316

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: Automates et réseaux de terrain : 13 & 14.11.01 (3 jours) Introduction à Windows 2000 au CERN : 12 - 14.11.01 (1/2 journée) Introduction to Windows 2000 at CERN :  14.11.01  (half-day) Introduction to PERL 5 :  15 - 16.11.01  (2 days) Sécurité dans les installations cryogéniques : 21 - 22.11.2001 (2 demi-journées) Introduction to C Programming :  21- 23.11.01 (3 days) Programmation TSX Premium 2 : 26 - 30.11.01 (5 jours) Contract Follow-up (F) : 26.11.01 (1/2 journée) Object-Oriented Analysis and Design :  27 - 30.11.2001  (4 days) Introduction to the CERN Engineering Data Management System :  30.11.2001 (1 day) Electromagnetic Compatibility (EMC): Introduction (bilingual) :  3.12.01 (half-day) Introduction to the CERN Engineering Data Management System : 07.12.2001...

Technical Training; Tel. 74924

2001-01-01

317

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: C++ Programming Level 2 - Traps & Pitfalls:  16 - 19.7.02 (4 days) Frontpage 2000 - level 1 :  22 - 23.7.02  (2 days) Introduction à Windows 2000 au CERN : 24.7.02 (après-midi) CLEAN-2002 : Travailler en salle blanche (cours gratuit) : 13.08.2002 (matin) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : Technical Training or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt. Technical Training Monique Duval Tel.74924 monique.duval@cern.ch

Monique Duval

2002-01-01

318

PLACES AVAIABLE  

CERN Multimedia

Places are available in the following courses: The Java programming language (Level 1) : 8 - 9.2.01 (2 days) Architecture d'automatisme : 20 - 21.2.01 (2 jours) Programmation TSX Premium 1 (Schneider) : 26.2 - 2.3.01 (5 jours) C++ for Particle Physicists : 5 - 9.3.01 (6*3 hour lectures) The Java programming language (Level 2) : 12 - 14.3.2001 (3 days) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : http://www.cern.ch/Training/ or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt.

TECHNICAL TRAINING; Tel. 74460

2001-01-01

319

Places Wire  

Science.gov (United States)

Are you curious to learn more about cities? You'd do well to make a beeline for the Places Wire site, which offers a cornucopia of material on urban parks, public policy, architecture, planning, and other topics. In sum total, the site is a "curated feed of news and commentary on architecture, landscape and urbanism." The site has partnered with 20 different organizations to provide new content on a daily basis. Some of the recent articles that have found their way to the site include "9 Suggestions for Changing DC's Height Limit" and "The Demise of the Public Hearing." Visitors can also use the drop-down View tab to scroll through the last few hours or days, as the content is quite dynamic. One gem that should not be missed is the archived appearance of Frank Lloyd Wright as a guest on the 1950s television program "What's My Line?"

320

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: LabView Base 1 : 27-29.3.01 (3 jours) Contract Follow-up : 9.4.01 (3 heures) Introduction à PowerPoint : 24.4.01 (1 journée) Publier sur le Web : 25-27.4.01 (3 demi-journées) Programmation TSX Premium 2 : 15-16.5.01 (5 jours) LabView Base 2 : 27-29.3.01 (2 jours) Hands-on Object-oriented Analysis, Design & Programming with C++ :  23-27.4.01 (5 days) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : http://www.cern.ch/Training/ or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt.

Technical Training; Tel. 74460

2001-01-01

 
 
 
 
321

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: October 2002   Introduction to the CERN Engineering Data Management System (free of charge):  29.10.2002  (1 day) The CERN EDMS for Advanced users (free of charge):  30.10.2002  (1 day) November 2002   LabView hands-on (bilingue/bilingual): 5.11.02 (matin/morning) LabView DAQ hands-on (bilingue/bilingual):  5.11.02  (après-midi afternoon) Introduction au PC et Windows 2000 au CERN :  6 & 7.11.02  (2 jours) Oracle 8i : Access the Database with Java:  7 & 8.11.02  (2 days) AutoCAD 2002 - niveau 2 :  7 & 8.11.02  (2 jours) Introduction to PVSS (free of charge):  11.11.2002 pm  (1/2 day) Basic PVSS:  12 - 14.11.02  (3 days) EXCEL 2000 - niveau 1 :  12 & 13.11.02  (2 jours) CLEAN-2002: Working in a Cleanroom (English, free ...

Monique Duval

2002-01-01

322

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: December 2002   PCAD Schémas - Débutants :  5 & 6.12.02  (2 jours) PCAD PCB - Débutants :  9 - 11.12.02  (3 jours) FrontPage 2000 - level 1:  9 & 10.12.02  (2 days) Introduction à la CAO Cadence (cours gratuit) :  10 & 11.12.02  (2 jours) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : Technical Training or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt. Technical Training Monique Duval Tel.74924 monique.duval@cern.ch

Monique Duval

2002-01-01

323

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: November 2002   Java Programming Language level 1 :  28 & 29.11.02  (2 days) December 2002   LabVIEW - DSC (English) :  2 - 3.12.02  (2 days) FileMaker (Français) :  2 - 5.12.02  (4 jours) PCAD Schémas - Débutants :  5 & 6.12.02  (2 jours) PCAD PCB - Débutants :  9 - 11.12.02  (3 jours) FrontPage 2000 - level 1:  9 & 10.12.02  (2 days) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : Technical Training or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt. Technical Training M...

Monique Duval

2002-01-01

324

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: November 2002   Hands-on Object-Oriented Design and Programming with C++:  19 - 21.11.02  (3 days)  December 2002   LabVIEW - DSC (English) :  2 - 3.12.02  (2 days) AutoCAD 2002 - niveau 2 :  2 & 3.12.02  (2 jours) FileMaker (Français) :  2 - 5.12.02  (4 jours) PCAD Schémas - Débutants :  5 & 6.12.02  (2 jours) PCAD PCB - Débutants :  9 - 11.12.02  (3 jours) FrontPage 2000 - level 1:  9 & 10.12.02  (2 days) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : Technical Training or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisiona...

Monique Duval

2002-01-01

325

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: November 2002   Introduction to PVSS (free of charge): 11.11.02  (afternoon) EXCEL 2000 - niveau 1 :  12 & 13.11.02  (2 jours) CLEAN-2002: Working in a Cleanroom (English, free of charge):  13.11.2002  (afternoon) AutoCAD 2002 - niveau 1 :  14, 15, 21, 22.11.02  (4 jours) Hands-on Object-Oriented Design and Programming with C++:  19 - 21.11.02  (3 days)  EXCEL 2000 - niveau 2 :  25 & 26.11.02  (2 jours) FrontPage 2000 - niveau 1 :  27 & 28.11.02  (2 jours) December 2002   LabVIEW - DSC (English) :  2 - 3.12.02  (2 days) AutoCAD 2002 - niveau 2 :  2 & 3.12.02  (2 jours) FileMaker (Français) :  2 - 5.12.02  (4 jours) PCAD Schémas - Débutants :  5 & 6.12.02 ...

Monique Duval

2002-01-01

326

Places available **  

CERN Multimedia

Places are available in the following courses: PIPES-2003 - Pratique du Sertissage de tubes métalliques et multicouches : 26.8.03 (stage pratique) The CERN Engineering Data Management System (EDMS) for Engineers : 27.8.03 (1 day, free of charge) CLEAN-2002 : Travailler en salle blanche : 4.9.03 (une demi-journée, séminaire gratuit) The CERN Engineering Data Management System (EDMS) for Local Administrators : 24 & 25.9.03 (2 days, free of charge) Siemens SIMATIC Training : Programmation STEP7 - niveau 1 : 29 - 2.10.03 (4 jours) - ouverture des inscriptions fin août Programmation STEP7 - niveau 2 : 13 - 17.10.03 (5 jours) - ouverture des inscriptions fin août Réseau Simatic Net : 22 & 23.10.03 (2 jours) - ouverture des inscriptions fin août CLEAN-2002 : Working in a Cleanroom : 23.20.03 (half day, free of charge) These courses will be given in French or Englis...

2003-01-01

327

Magnetic Reconnection with Radiative Cooling. I. Optically-Thin Regime  

CERN Document Server

Magnetic reconnection, a fundamental plasma process associated with a rapid dissipation of magnetic energy, is believed to power many disruptive phenomena in laboratory plasma devices, the Earth magnetosphere, and the solar corona. Traditional reconnection research, geared towards these rather tenuous environments, has justifiably ignored the effects of radiation on the reconnection process. However, in many reconnecting systems in high-energy astrophysics (e.g., accretion-disk coronae, relativistic jets, magnetar flares) and, potentially, in powerful laser plasma and z-pinch experiments, the energy density is so high that radiation, in particular radiative cooling, may start to play an important role. This observation motivates the development of a theory of high-energy-density radiative magnetic reconnection. As a first step towards this goal, we present in this paper a simple Sweet--Parker-like theory of non-relativistic resistive-MHD reconnection with strong radiative cooling. First, we show how, in the a...

Uzdensky, Dmitri A

2010-01-01

328

Local influence of magnetosheath plasma beta fluctuations on magnetopause reconnection  

Directory of Open Access Journals (Sweden)

Full Text Available We present observations from two subsolar Cluster magnetopause crossings under southward interplanetary magnetic field and strong mirror mode fluctuations in the magnetosheath. In both events the reconnection outflow jets show strong variations on the timescale of one minute. We show that at least some of the recorded variations are truly temporal, not spatial. On the same timescale, mirror mode fluctuations appear as strong magnetic fluctuations in the magnetosheath next to the magnetopause. This suggests that mirror modes can cause the variations either through modulation of continuous reconnection or through triggering of bursty reconnection. Using a theoretical scaling law for asymmetric reconnection we show that modulation of reconnection at a single x-line can explain the observations of the first event. The second event cannot be explained by a single modulated x-line: there the evidence points to patchy and bursty reconnection.

T. V. Laitinen

2010-05-01

329

Aspects of collisionless magnetic reconnection in asymmetric systems  

International Nuclear Information System (INIS)

Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with nonvanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide

330

The role of Magnetic Reconnection in flares and prominence eruptions  

Science.gov (United States)

Magnetic Reconnection is often invoked as the primary mechanism for driving a flare or a prominence eruption. This paper argues that a catastrophic loss of mechanical equilibrium, rather than reconnection, is probably the primary mechanism for driving these phenomena. However, reconnection is still essential in order for any significant amount of energy to be released. To illustrate this idea, some recent results are presented from an MHD simulation based on a catastrophe mechanism first proposed by Van Tend and Kuperus. In order for this mechanism to be effective, a substantial amount of reconnection must occur within a few Alfven-scale times. Such rapid reconnection is plausible since the loss of mechanical equilibrium can generate flows which drive the reconnection at a rapid rate.

Forbes, T. G.

1990-01-01

331

Theory of magnetic reconnection in solar and astrophysical plasmas.  

Science.gov (United States)

Magnetic reconnection is a fundamental process in a plasma that facilitates the release of energy stored in the magnetic field by permitting a change in the magnetic topology. In this paper, we present a review of the current state of understanding of magnetic reconnection. We discuss theoretical results regarding the formation of current sheets in complex three-dimensional magnetic fields and describe the fundamental differences between reconnection in two and three dimensions. We go on to outline recent developments in modelling of reconnection with kinetic theory, as well as in the magnetohydrodynamic framework where a number of new three-dimensional reconnection regimes have been identified. We discuss evidence from observations and simulations of Solar System plasmas that support this theory and summarize some prominent locations in which this new reconnection theory is relevant in astrophysical plasmas. PMID:22665898

Pontin, David I

2012-07-13

332

Aspects of collisionless magnetic reconnection in asymmetric systems  

Energy Technology Data Exchange (ETDEWEB)

Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with nonvanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide.

Hesse, Michael; Aunai, Nicolas; Kuznetsova, Masha [Heliophysics Science Division, Code 670, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Zenitani, Seiji [National Astronomical Observatory of Japan, Tokyo (Japan); Birn, Joachim [Space Science Institute, Boulder, Colorado 80301 (United States)

2013-06-15

333

Shocks and Thermal Conduction Fronts in Retracting Reconnected Flux Tubes  

CERN Document Server

We present a model for plasma heating produced by time-dependent, spatially localized reconnection within a flare current sheet separating skewed magnetic fields. The reconnection creates flux tubes of new connectivity which subsequently retract at Alfv\\'enic speeds from the reconnection site. Heating occurs in gas-dynamic shocks which develop inside these tubes. Here we present generalized thin flux tube equations for the dynamics of reconnected flux tubes, including pressure-driven parallel dynamics as well as temperature dependent, anisotropic viscosity and thermal conductivity. The evolution of tubes embedded in a uniform, skewed magnetic field, following reconnection in a patch, is studied through numerical solutions of these equations, for solar coronal conditions. Even though viscosity and thermal conductivity are negligible in the quiet solar corona, the strong gas-dynamic shocks generated by compressing plasma inside reconnected flux tubes generate large velocity and temperature gradients along the t...

Guidoni, Silvina

2010-01-01

334

Reconnection outflow generated turbulence in the solar wind  

CERN Document Server

Petschek-type time-dependent reconnection (TDR) and quasi-stationary reconnection (QSR) models are considered to understand reconnection outflow structures and the features of the associated locally generated turbulence in the solar wind. We show that the outflow structures, such as discontinuites, Kelvin-Helmholtz (KH) unstable flux tubes or continuous space filling flows cannot be distinguished from one-point WIND measurements. In both models the reconnection outflows can generate more or less spatially extended turbulent boundary layers (TBDs). The structure of an unique extended reconnection outflow is investigated in detail. The analysis of spectral scalings and break locations show that reconnection outflows can control the local field and plasma conditions which may play in favor of one or another turbulent dissipation mechanisms with their characteristic scales and wavenumbers.

Vörös, Z; Semenov, V S; Zaqarashvili, T V; Bruno, R; Khodachenko, M

2014-01-01

335

Magnetic reconnection in space and laboratory plasmas; Proceedings of the Chapman Conference on Magnetic Reconnection, Los Alamos, NM, October 3-7, 1983  

International Nuclear Information System (INIS)

The physics of magnetic reconnection is discussed in reviews and reports of theoretical and experimental investigations. Topics examined include the theory of magnetic reconnection, reconnection in astronomical objects, reconnection in the earth magnetosphere and magnetotail, computer modeling, and laboratory plasmas. Diagrams, spectra, drawings, graphs, and photographs are provided

336

Does the Rate of Collisionless Magnetic Reconnection Depend on the Dissipation Mechanism?  

Science.gov (United States)

The importance of the electron dissipation effect on the reconnection rate is investigated in the general case of asymmetric collisionless magnetic reconnection. Contrary to the standard collisionless reconnection model, it is found that the reconnection rate, and the macroscopic evolution of the reconnecting system, crucially depend on the nature of the dissipation mechanism and that the Hall effect alone is not able to sustain fast reconnection.

Aunai, Nicolas; Hesse, Michael; Black, Carrie; Evans, Rebekah; Kuznetsova, Maria

2012-01-01

337

Does the Rate of Collisionless Reconnection Depend on the Dissipation Mechanism?  

Science.gov (United States)

The importance of the electron dissipation effect on the reconnection rate is investigated in the general case of asymmetric collisionless magnetic reconnection. Contrary to the standard collisionless reconnection model, it is found that the reconnection rate, and them acroscopic evolution of the reconnecting system, crucially depend on the nature of the dissipation mechanism and that the Hall effect alone is not able to sustain fast reconnection.

Aunai, Nicolas; Hesse, Michael; Black, Carrie; Evans, Rebekah; Kuznetsova, maria

2012-01-01

338

Comment on "Reconnection of quantized vortex filaments and the Kolmogorov spectrum"  

CERN Document Server

In this comment we would like to emphasize that in [Phys. Rev. B 90, 104506 (2014)] the calculated energy spectrum takes into account only the small interaction (cross) term and, additionally, this term is only calculated at the instant when the two vortices reconnect. The majority of the kinetic energy is contained in the self-energy term which has a characteristic spectrum of $1/k$. If this, and the additional average over time, is taken into account the suggested Kolmogorov type $k^{-5/3}$ spectrum is likely not visible in the kinetic energy spectrum which contains both terms. Therefore, we find the suggestion misleading that the Kolmogorov spectrum in superfluids arises from the reconnection of vortices.

Hänninen, R

2014-01-01

339

A general hybrid kinetic-fluid model for collisionless magnetic reconnection  

International Nuclear Information System (INIS)

A general set of equations appropriate for the description of the plasma dynamics within a collisionless magnetized plasma during the process of magnetic reconnection is derived. The particular geometry considered is that of a Harris pinch with a guide field and full kinetic equations for the perturbations are found, valid within the singular layer around the reconnecting region. Ion equations take into account finite Larmor radius effects while electron dynamics is based on the gyro-averaged drift kinetic equation. A more manageable model is obtained by resorting to fluid equations for the ions and retaining electron kinetic effects. It is shown that these equations give the same results obtained from the two-fluid theory in the limit of the collisionless tearing mode for different regimes

340

Theory of magnetic reconnection in solar and astrophysical plasmas  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Magnetic reconnection is a fundamental process in a plasma that facilitates the release of energy stored in the magnetic field by permitting a change in the magnetic topology. In this article we present a review of the current state of understanding of magnetic reconnection. We discuss theoretical results regarding the formation of current sheets in complex 3D magnetic fields, and describe the fundamental differences between reconnection in two and three dimensions. We go on...

Pontin, D. I.

2012-01-01

 
 
 
 
341

Self-Feeding Turbulent Magnetic Reconnection on Macroscopic Scales  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Within a MHD approach we find magnetic reconnection to progress in two entirely different ways. The first is well-known: the laminar Sweet-Parker process. But a second, completely different and chaotic reconnection process is possible. This regime has properties of immediate practical relevance: i) it is much faster, developing on scales of the order of the Alfv\\'en time, and ii) the areas of reconnection become distributed chaotically over a macroscopic region. The onset of...

Lapenta, Giovanni

2008-01-01

342

Plasmoid Instability in High-Lundquist-Number Magnetic Reconnection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Our understanding of magnetic reconnection in resistive magnetohydrodynamics has gone through a fundamental change in recent years. The conventional wisdom is that magnetic reconnection mediated by resistivity is slow in laminar high Lundquist ($S$) plasmas, constrained by the scaling of the reconnection rate predicted by Sweet-Parker theory. However, recent studies have shown that when $S$ exceeds a critical value $\\sim10^{4}$, the Sweet-Parker current sheet is unstable to ...

Huang, Yi-min; Bhattacharjee, A.

2013-01-01

343

`Island Surfing' Mechanism of Electron Acceleration During Magnetic Reconnection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

One of the key unresolved problems in the study of space plasmas is to explain the production of energetic electrons as magnetic field lines `reconnect' and release energy in a exposive manner. Recent observations suggest possible roles played by small scale magnetic islands in the reconnection region, but their precise roles and the exact mechanism of electron energization have remained unclear. Here we show that secondary islands generated in the reconnection region are in...

Oka, M.; Fujimoto, M.; Shinohara, I.; Phan, T. -d

2010-01-01

344

Mountain Hike North of Big Cottonwood Canyon Road, Begining at the S-Turn at Mill B., Near Hidden Falls, and Taking Trail Leading to Mt. Raymond and Other Intersting Places.  

Science.gov (United States)

Our first objective is to leave the highway via Mill B North Fork by taking the Big Cottonwood Canyon trail that leads to Maxfield Basin, where 3 trails intersect, just s. of Mount Raymond (Elev. 10,241 ft.) the n. trail takes us down to the Mill Creek Canyon Road, at about 1 mi. (+) east of intersection with Church Park Picnic Ground road. At Maxfield Basin, again, the east trail skirts around Mt. Raymond and has another intersection with a trail running n. thru the area of Gobblers Knob (elev. 10,246 ft.), to White Fir Pass and turns w. at Bowman Fk. until it connects with Porter Fork and then the Mill Creek Road. The remaining trail at Mill A Basin, just e. of Mount Raymond, long before Gobblers Knob is seen, runs east past a spring, and connects to Butler Fork (which begins at 3.775 mi., measured along highway from Mill B, North Fork), which leads directly to Dog Lake. Evidently both Dog Lake and Lake Desolation (changing U.S. Geological Survey maps from Mount Aire, Utah to Park City West, Utah) have connected outlets, at least during certain times of the year. Following the trail s. e. (down) that follows near Summit Co. and Salt Lake County, we pass by the radio transmitters shown on Park City, West, Utah, map and finally enter the Brighton, Utah map with Scott Hill, Scott Pass, the important highway leading to Midway Reservoir, and beyond, Bloods Lake ( 9500 ft.), Clayton Peak (10,721 ft.) and Lake Lackawaxen ( 9980 ft.), our final destination showing through. One may easily walk the distance to lake Lackawaxen from Bloods Lake by staying south of the ridgecrest and by following the hollow down for a while. This completes our destination. Recall that the main roadway here was already passed over about 1/2 mile n. of Bloods Lake; this thoroughfare has its beginning at about 0.4 miles below (or North) of the Brighton Loop, where the road to city of Midway leaves the main Big Cottonwood Highway going n. and runs e., on the average, going past Midway Reservoir leading to Midway. -END-

McDonald, Keith L.

2004-11-01

345

Magnetic reconnection in the near Venusian magnetotail.  

Science.gov (United States)

Observations with the Venus Express magnetometer and low-energy particle detector revealed magnetic field and plasma behavior in the near-Venus wake that is symptomatic of magnetic reconnection, a process that occurs in Earth's magnetotail but is not expected in the magnetotail of a nonmagnetized planet such as Venus. On 15 May 2006, the plasma flow in this region was toward the planet, and the magnetic field component transverse to the flow was reversed. Magnetic reconnection is a plasma process that changes the topology of the magnetic field and results in energy exchange between the magnetic field and the plasma. Thus, the energetics of the Venus magnetotail resembles that of the terrestrial tail, where energy is stored and later released from the magnetic field to the plasma. PMID:22491094

Zhang, T L; Lu, Q M; Baumjohann, W; Russell, C T; Fedorov, A; Barabash, S; Coates, A J; Du, A M; Cao, J B; Nakamura, R; Teh, W L; Wang, R S; Dou, X K; Wang, S; Glassmeier, K H; Auster, H U; Balikhin, M

2012-05-01

346

Space weather. Ionospheric control of magnetotail reconnection.  

Science.gov (United States)

Observed distributions of high-speed plasma flows at distances of 10 to 30 Earth radii (R(E)) in Earth's magnetotail neutral sheet are highly skewed toward the premidnight sector. The flows are a product of the magnetic reconnection process that converts magnetic energy stored in the magnetotail into plasma kinetic and thermal energy. We show, using global numerical simulations, that the electrodynamic interaction between Earth's magnetosphere and ionosphere produces an asymmetry consistent with observed distributions in nightside reconnection and plasmasheet flows and in accompanying ionospheric convection. The primary causal agent is the meridional gradient in the ionospheric Hall conductance which, through the Cowling effect, regulates the distribution of electrical currents flowing within and between the ionosphere and magnetotail. PMID:25013068

Lotko, William; Smith, Ryan H; Zhang, Binzheng; Ouellette, Jeremy E; Brambles, Oliver J; Lyon, John G

2014-07-11

347

Petschek reconnection with a nonlocalized resistivity  

International Nuclear Information System (INIS)

The impact of using a nonlocalized electrical resistivity having a spatially asymmetric profile is considered on two-dimensional steady-state magnetic reconnection. Starting from an initial Harris current sheet, time-dependent magnetohydrodynamic simulations are carried out over an entire spatial domain without any symmetry assumptions. It is shown that a stationary Petschek-like reconnection is obtained in the half-plane where a uniform resistivity is adopted. The latter configuration is maintained by a coexisting Petschek configuration that is formed in the second half-plane where the resistivity exhibits a classical exponentially decreasing variation. The structure of the central diffusion region is asymmetric, with a stagnation point flow which does not coincide with the X-point. These results suggest conditions under which a Petschek solution can indeed exist in the presence of a small uniform resistivity in the whole domain.

348

Nonlinear Acceleration Mechanism of Collisionless Magnetic Reconnection  

CERN Document Server

A mechanism for fast magnetic reconnection in collisionless plasma is studied for understanding sawtooth collapse in tokamak discharges. Nonlinear growth of the tearing mode driven by electron inertia is analytically estimated by invoking the energy principle for the first time. Decrease of potential energy in the nonlinear regime (where the island width exceeds the electron skin depth) is found to be steeper than in the linear regime, resulting in acceleration of the reconnection. Release of free energy by such ideal fluid motion leads to unsteady and strong convective flow, which theoretically corroborates the inertia-driven collapse model of the sawtooth crash [D. Biskamp and J. F. Drake, Phys. Rev. Lett. 73, 971 (1994)].

Hirota, M; Ishii, Y; Yagi, M; Aiba, N

2012-01-01

349

Nonlinear magnetic reconnection in low collisionality plasmas  

Energy Technology Data Exchange (ETDEWEB)

The magnetic reconnection in collisionless regimes, where electron inertia is responsible for the decoupling of the plasma motion from that of the field lines, is discussed. Since the linear theory of m=1 modes breaks down for very small magnetic island widths, a non linear analysis is called for. Thus, the behaviour of a collisionless, 2-D fluid slab model in the limit {rho}/d -> 0, is analyzed. The main result is that, when the island size is larger than the linear layer but smaller than the equilibrium scale length, the reconnection rate exhibits a quasi-explosive time behaviour, during which a current density sub-layer narrower than the skin depth is formed. It is believed that the inclusion of the electron initial term in Ohm`s law opens the possibility to understand the rapidity of relaxation process observed in low collisionality plasmas. 7 refs., 6 figs.

Ottaviani, M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Porcelli, F. [Politecnico di Torino, Turin (Italy)

1994-07-01

350

Introduction to Plasma Dynamo, Reconnection and Shocks  

Energy Technology Data Exchange (ETDEWEB)

In our plasma universe, most of what we can observe is composed of ionized gas, or plasma. This plasma is a conducting fluid, which advects magnetic fields when it flows. Magnetic structure occurs from the smallest planetary to the largest cosmic scales. We introduce at a basic level some interesting features of non linear magnetohydrodynamics (MHD). For example, in our plasma universe, dynamo creates magnetic fields from gravitationally driven flow energy in an electrically conducting medium, and conversely magnetic reconnection annihilates magnetic field and accelerates particles. Shocks occur when flows move faster than the local velocity (sonic or Alfven speed) for the propagation of information. Both reconnection and shocks can accelerate particles, perhaps to gigantic energies, for example as observed with 10{sup 20} eV cosmic rays.

Intrator, Thomas P. [Los Alamos National Laboratory

2012-08-30

351

PARTIAL SLINGSHOT RECONNECTION BETWEEN TWO FILAMENTS  

Energy Technology Data Exchange (ETDEWEB)

We present a rare observation of an interaction between two filaments around AR 11358 and AR 11361 on 2011 December 3 that is strongly suggestive of the occurrence of slingshot reconnection. A small elbow-shaped active-region filament (F12) underwent a failed eruption that brought it into contact with a nearby larger, thicker filament (F34). Accompanied by the appearance of complicated internal structures below the erupting F12, its two legs separated away from each other and then connected into F34. This process led the filaments to change their connectivity to form two newly linked filaments, and one of them showed a clear inverse {gamma}-shape. However, the alteration in the filament connectivity was imperfect since F34 is discernible after the eruption. These observations can be interpreted as a partial slingshot reconnection between two filaments that had unequal axial magnetic flux.

Jiang, Yunchun; Hong, Junchao; Yang, Jiayan; Bi, Yi; Zheng, Ruisheng; Yang, Bo; Li, Haidong; Yang, Dan, E-mail: jyc@ynao.ac.cn [National Astronomical Observatory/Yunnan Astronomical Observatory, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011 (China)

2013-02-10

352

Take heart!  

CERN Document Server

Recently, ten new semi-automatic defibrillators were installed at various locations around CERN. This is a preventive measure intended to provide cardiac arrest victims with the best possible response. The first responder could be you!   The Director-General has welcomed the initiative of the Medical Service and Fire Brigade for the installation of ten new semi-automatic defibrillators. You have probably seen them on your way to the restaurant, for example:  brand new semi-automatic defibrillators, ready for an emergency. Housed in a white wall-mounted case, the bright red defibrillators are marked with a white heart symbol crossed by a lightning bolt (see photo). The defibrillator is designed so that anyone can use it. “Anyone can use it, you don’t need to be a health professional,” says Dr Reymond from CERN's Medical Service. Together with the CERN Fire Brigade, he is behind the initiative to have these units put in place. And with good reason, as the unit...

Alizée Dauvergne

2010-01-01

353

Self-Feeding Turbulent Magnetic Reconnection on Macroscopic Scales  

CERN Document Server

Within a MHD approach we find magnetic reconnection to progress in two entirely different ways. The first is well-known: the laminar Sweet-Parker process. But a second, completely different and chaotic reconnection process is possible. This regime has properties of immediate practical relevance: i) it is much faster, developing on scales of the order of the Alfv\\'en time, and ii) the areas of reconnection become distributed chaotically over a macroscopic region. The onset of the faster process is the formation of closed circulation patterns where the jets going out of the reconnection regions turn around and forces their way back in, carrying along copious amounts of magnetic flux.

Lapenta, Giovanni

2008-01-01

354

The magnetotail reconnection region in a global MHD simulation  

Directory of Open Access Journals (Sweden)

Full Text Available This work investigates the nature and the role of magnetic reconnection in a global magnetohydrodynamic simulation of the magnetosphere. We use the Gumics-4 simulation to study reconnection that occurs in the near-Earth region of the current sheet in the magnetotail. We locate the current sheet surface and the magnetic x-line that appears when reconnection starts. We illustrate the difference between quiet and active states of the reconnection region: variations in such quantities as the current sheet thickness, plasma flow velocities, and Poynting vector divergence are strong. A characteristic feature is strong asymmetry caused by non-perpendicular inflows. We determine the reconnection efficiency by the net rate of Poynting flux into the reconnection region. The reconnection efficiency in the simulation is directly proportional to the energy flux into the magnetosphere through the magnetopause: about half of all energy flowing through the magnetosphere is converted from an electromagnetic into a mechanical form in the reconnection region. Thus, the tail reconnection that is central to the magnetospheric circulation is directly driven; the tail does not exhibit a cycle of storage and rapid release of magnetic energy. We find similar behaviour of the tail in both synthetic and real event runs.

T. V. Laitinen

2005-12-01

355

Flux transfer events and reconnection at the magnetopause  

International Nuclear Information System (INIS)

A unified model of magnetopause reconnection is broached by examining complementary aspects of large-scale reconnection (LSR) and flux-transfer-events (FTE) models. Attention is given to: (1) the reconnection-potential values predicted by the two models; (2) the transiency of the magnetopause reconnection; and (3) observations of the cross polar-cap potential and ionospheric transmission. The time-dependent LSR model is favored over the FTE model because the related convection flows are expected to be asymmetrical and the dominance of large Alfven and slow shocks. 28 refs

356

INTERCHANGE RECONNECTION IN A TURBULENT CORONA  

Energy Technology Data Exchange (ETDEWEB)

Magnetic reconnection at the interface between coronal holes and loops, the so-called interchange reconnection, can release the hotter, denser plasma from magnetically confined regions into the heliosphere, contributing to the formation of the highly variable slow solar wind. The interchange process is often thought to develop at the apex of streamers or pseudo-streamers, near Y- and X-type neutral points, but slow streams with loop composition have been recently observed along fanlike open field lines adjacent to closed regions, far from the apex. However, coronal heating models, with magnetic field lines shuffled by convective motions, show that reconnection can occur continuously in unipolar magnetic field regions with no neutral points: photospheric motions induce a magnetohydrodynamic turbulent cascade in the coronal field that creates the necessary small scales, where a sheared magnetic field component orthogonal to the strong axial field is created locally and can reconnect. We propose that a similar mechanism operates near and around boundaries between open and closed regions inducing a continual stochastic rearrangement of connectivity. We examine a reduced magnetohydrodynamic model of a simplified interface region between open and closed corona threaded by a strong unipolar magnetic field. This boundary is not stationary, becomes fractal, and field lines change connectivity continuously, becoming alternatively open and closed. This model suggests that slow wind may originate everywhere along loop-coronal-hole boundary regions and can account naturally and simply for outflows at and adjacent to such boundaries and for the observed diffusion of slow wind around the heliospheric current sheet.

Rappazzo, A. F.; Matthaeus, W. H. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Ruffolo, D. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Servidio, S. [Dipartimento di Fisica, Universita della Calabria, I-87036 Cosenza (Italy); Velli, M., E-mail: rappazzo@udel.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

2012-10-10

357

Magnetic reconnection induced by perturbation on boundaries  

International Nuclear Information System (INIS)

The magnetic field reconnection is considered in a plasma induced by perturbing the boundaries of a slab of incompressible plasma with a magnetic neutral surface inside. It is assumed that the boundaries of the plasma slab are perturbed at both fast and slow rates compared with the hydromagnetic evolution rate, and the ensuing adjustments in the plasma and the magnetic field threading through it are investigated

358

INTERCHANGE RECONNECTION IN A TURBULENT CORONA  

International Nuclear Information System (INIS)

Magnetic reconnection at the interface between coronal holes and loops, the so-called interchange reconnection, can release the hotter, denser plasma from magnetically confined regions into the heliosphere, contributing to the formation of the highly variable slow solar wind. The interchange process is often thought to develop at the apex of streamers or pseudo-streamers, near Y- and X-type neutral points, but slow streams with loop composition have been recently observed along fanlike open field lines adjacent to closed regions, far from the apex. However, coronal heating models, with magnetic field lines shuffled by convective motions, show that reconnection can occur continuously in unipolar magnetic field regions with no neutral points: photospheric motions induce a magnetohydrodynamic turbulent cascade in the coronal field that creates the necessary small scales, where a sheared magnetic field component orthogonal to the strong axial field is created locally and can reconnect. We propose that a similar mechanism operates near and around boundaries between open and closed regions inducing a continual stochastic rearrangement of connectivity. We examine a reduced magnetohydrodynamic model of a simplified interface region between open and closed corona threaded by a strong unipolar magnetic field. This boundary is not stationary, becomes fractal, and field lines change connectivity continuously, becoming alternatively open and closed. This model suggests that slow wind may originate everywhere along loop-coronal-hole boundary regions and can account naturally and simply for outflows at and adjacent to such boundaries and for the observed diffusion of slow wind around the heliospheric current sheet.

359

Electron Surfing Acceleration in Magnetic Reconnection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

We discuss that energetic electrons are generated near the X-type magnetic reconnection region due to a surfing acceleration mechanism. In a thin plasma sheet, the polarization electric fields pointing towards the neutral sheet are induced around the boundary between the lobe and plasma sheet in association with the Hall electric current. By using a particle-in-cell simulation, we demonstrate that the polarization electric fields are strongly enhanced in an externally driven...

Hoshino, Masahiro

2005-01-01

360

3D Null Point Reconnection Regimes  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Recent advances in theory and computational experiments have shown the need to refine the previous categorisation of magnetic reconnection at three-dimensional null points -- points at which the magnetic field vanishes. We propose here a division into three different types, depending on the nature of the flow near the spine and fan of the null. The spine is an isolated field line which approaches the null (or recedes from it), while the fan is a surface of field lines which ...

Priest, E. R.; Pontin, D. I.

2009-01-01

 
 
 
 
361

Kinetic Vlasov Simulations of collisionless magnetic Reconnection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

A fully kinetic Vlasov simulation of the Geospace Environment Modeling (GEM) Magnetic Reconnection Challenge is presented. Good agreement is found with previous kinetic simulations using particle in cell (PIC) codes, confirming both the PIC and the Vlasov code. In the latter the complete distribution functions $f_k$ ($k=i,e$) are discretised on a numerical grid in phase space. In contrast to PIC simulations, the Vlasov code does not suffer from numerical noise and allows a m...

Schmitz, H.; Grauer, R.

2006-01-01

362

Collisionless magnetic reconnection in a plasmoid chain  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The kinetic features of plasmoid chain formation and evolution are investigated by two dimensional Particle-in-Cell simulations. Magnetic reconnection is initiated in multiple X points by the tearing instability. Plasmoids form and grow in size by continuously coalescing. Each chain plasmoid exhibits a strong out-of plane core magnetic field and an out-of-plane electron current that drives the coalescing process. The disappearance of the X points in the c...

Markidis, S.; Henri, P.; Lapenta, G.; Divin, A.; Goldman, M. V.; Newman, D.; Eriksson, S.

2012-01-01

363

Fast Magnetic Reconnection and Spontaneous Stochasticity  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Magnetic field-lines in astrophysical plasmas are expected to be frozen-in at scales larger than the ion gyroradius. The rapid reconnection of magnetic flux structures with dimensions vastly larger than the gyroradius requires a breakdown in the standard Alfv\\'en flux-freezing law. We attribute this breakdown to ubiquitous MHD plasma turbulence with power-law scaling ranges of velocity and magnetic energy spectra. Lagrangian particle trajectories in such environments become ...

Eyink, Gregory L.; Lazarian, Alex; Vishniac, Ethan T.

2011-01-01

364

Flow-turbulence interaction in magnetic reconnection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Roles of turbulence in the context of magnetic reconnection are investigated with special emphasis on the mutual interaction between flow (large-scale inhomogeneous structure) and turbulence. In order to evaluate the effective transport due to turbulence, in addition to the {\\it intensity} information of turbulence represented by the turbulent energy, the {\\it structure} information represented by pseudoscalar statistical quantities (helicities) is important. On the basis of...

Yokoi, Nobumitsu; Hoshino, Masahiro

2011-01-01

365

Nonlinear gyrofluid simulations of collisionless reconnection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The Hamiltonian gyrofluid model recently derived by Waelbroeck et al. [Phys. Plasmas {\\bf 16}, 032109 (2009)], is used to investigate nonlinear collisionless reconnection with a strong guide field by means of numerical simulations. Finite ion Larmor radius gives rise to a cascade of the electrostatic potential to scales below both the ion gyroradius and the electron skin depth. This cascade is similar to that observed previously for the density and current in models with cold ions. In additio...

Grasso, D.; Tassi, Emanuele; Waelbroeck, F.

2010-01-01

366

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: Introduction à Windows 2000 au CERN : 2 sessions de _ journée les 24 et 25.9.01 PROFIBUS : 25 - 26.9.01 (2 jours) PROFIBUS : 27 - 28.9.01 (2 days) EXCEL 2000 - niveau 1 : 3 et 4.10.01 (2 jours) Automates et réseaux de terrain : 3 - 4.10.2001 (2 jours) Introduction à Outlook : 5.10.01 (1 journée) Frontpage 2000 - niveau 1 : 8 et 9.10.01 (2 jours) C++ for Particle Physicists : 8 - 12.10.01 (6 lectures) MS-Project 2000 - niveau 1 : 15 - 18.10.01 (4 demi-journées) Programmation TSX Premium 1 : 15 - 19.10.01 (5 jours) WORD 2000 : importer et manipuler des images : 19.10.01 (1 journée) Programmation TSX Premium 1 : 22 - 26.10.01 (5 jours) UNIX pour non-programmeurs : 5 - 7.11.01 (3 jours) The Java programming language Level 1: 8 - 9.11.01 (2 days) Introduction to PERL 5 :  15 - 16.11.01  (2 days) Introduction to XML :  19 - 20.11.01 (2...

Technical Training; Tel. 74924

2001-01-01

367

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: The CERN Engineering Data Management System for Advanced users : 16.4.02  (1 day) Migration from AutoCAD 14 towards AutoCAD Mechanical6 PowerPack:  17 - 19.4 and 2 &3.5.02  (5 days) AutoCAD - niveau 1 : 22, 23, 29, 30.4 et 6, 7.5.02 (6 jours) LabVIEW base 1 : 22 - 24.4.02 (3 jours) CLEAN 2002 : working in a cleanroom:  24.4.02  (half-day, pm) LabVIEW DSC (F) 25 & 26.4.02 (2 jours) AutoCAD : Mise à jour AutoCAD r-14 vers 2002 : 25 & 26.4.02 (2 jours) Cotations selon les normes GPS de l'ISO : 29 - 30.4.02 (2 jours) Introduction to the CERN Engineering Data Management System:  7.5.02  (1 day) LabVIEW Basics 2: 13 & 14.5.02 (2 days) AutoCAD Mechanical 6 PowerPack (F) : 13-14, 17, 21, 27-28.5.02 (6 jours) WorldFIP - Généralités : 14.5.2002 (1/2 journée) WorldFIP - Développer avec Micr...

Monique Duval

2002-01-01

368

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: ELEC-2002 : Spring Term :  9, 11, 16, 18, 23, 25, 30.4.02 (7 * 2.5 hours) Object-Oriented Analysis & Design: 16 - 19.4.02  (4 days) The CERN Engineering Data Management System for Advanced users:  16.4.02  (1 day) Migration from AutoCAD 14 towards AutoCAD Mechanical6 PowerPack:  17 - 19.4 and 2 &3.5.02  (5 days) AutoCAD - niveau 1 : 22, 23, 29, 30.4 et 6, 7.5.02 (6 jours) LabVIEW base 1 : 22 - 24.4.02 (3 jours) CLEAN 2002 : working in a cleanroom:  24.4.02  (half-day, pm) LabVIEW DSC (F) 25 & 26.4.02 (2 jours) AutoCAD : Mise à jour AutoCAD r-14 vers 2002 : 25 & 26.4.02 (2 jours) Cotations selon les normes GPS de l'ISO : 29 - 30.4.02 (2 jours) Introduction to the CERN Engineering Data Management System:  7.5.02  (1 day) LabVIEW Basics 2 : 13 & 14.5.02 (2 days) AutoCAD Mechanical 6 PowerPack (F) : 13-...

Monique Duval

2002-01-01

369

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: LabVIEW base 1 : 22 - 24.4.02 (3 jours) CLEAN 2002 : working in a cleanroom:  24.4.02  (half-day, pm) LabVIEW DSC (F) 25 & 26.4.02 (2 jours) AutoCAD : Mise à jour AutoCAD r-14 vers 2002 : 25 & 26.4.02 (2 jours) Cotations selon les normes GPS de l'ISO : 29 - 30.4.02 (2 jours) Introduction to the CERN Engineering Data Management System:  7.5.02  (1 day) LabVIEW Basics 2: 13 & 14.5.02 (2 days) AutoCAD Mechanical 6 PowerPack (F) : 13-14, 17, 21, 27-28.5.02 (6 jours) WorldFIP - Généralités : 14.5.2002 (1/2 journée) WorldFIP - Développer avec MicroFIP HANDLER : 14.5 - après-midi, 15.5.02 - matin (1 jour) WorldFIP - FullFIP FDM : FIP Device Manager (F) : 15.5 - après-midi, 16.5.02 - matin (1 jour) LabVIEW DAQ (F) : 15 & 16.5.02 (2 jours) EXCEL 2000 - niveau 2 : 22 & 23.5.02 (2 jours)...

Monique Duval

2002-01-01

370

Places available**  

CERN Multimedia

Places are available in the following courses: PIPES-2003 - Pratique du sertissage de tubes métalliques et multicouches :26.8.03(stage pratique) The CERN EDMS for Engineers (free of charge) : 27.8.03 (1 day) CLEAN-2002 : Travailler en salle blanche (séminaire gratuit) : 4.9.03(une demi-journée) The CERN EDMS for Local Administrators (free of charge) : 24 & 25.9.03 (2 days) HeREF-2003 : Techniques de la réfrigération Hélium (cours en français avec support en anglais) : 6 - 10.10.2003 (7 demi-journées) The Java Programming Language Level 1 : 6 - 7.10.2003 (2 days) Java 2 Enterprise Edition - Part 2 : Enterprise JavaBeans : 8 - 10.10.2003 (3 days) FileMaker - niveau 1 : 9 & 10.10.03 (2 jours) EXCEL 2000 - niveau 1 : 20 & 22.10.03 (2 jours) AutoCAD 2002 - niveau 1 : 20, 21, 27, 28.10.03 (4 jours) CLEAN-2002 : Working in a Cleanroom (free of charge) : 23.10.03 (half day) AutoCAD Mechanical 6 PowerPack (E) : 23, 24, 30, 31.10 & 12, 13.11.03 (6 days) AutoCAD 2002 - niveau 2...

2003-01-01

371

Places available**  

CERN Multimedia

Places are available in the following courses: The CERN EDMS for Local Administrators : 24 & 25.9.03 (2 days, free of charge) HeREF-2003 : Techniques de la réfrigération Hélium cours en français avec support en anglais) : 6 - 10.10.2003 (7 demi-journées) The Java Programming Language Level 1 : 6 - 7.10.2003 (2 days) Java 2 Enterprise Edition - Part 2 : Enterprise JavaBeans : 8 - 10.10.2003 (3 days) FileMaker - niveau 1 : 9 & 10.10.03 (2 jours) EXCEL 2000 - niveau 1 : 20 & 22.10.03 (2 jours) AutoCAD 2002 - niveau 1 : 20, 21, 27, 28.10.03 (4 jours) CLEAN-2002 : Working in a Cleanroom : 23.10.03 (half day, free of charge) AutoCAD 2002 - Level 1 : 3, 4, 12, 13.11.03 (4 days) AutoCAD 2002 - niveau 2 : 10 & 11.11.03 (2 jours) ACCESS 2000 - niveau 1 : 13 & 14.11.03 (2 jours) AutoCAD Mechanical 6 PowerPack (E) : 17, 18, 24, 25.11 & 1, 2.12.03 (6 days) FrontPage 2000 - niveau 1 : 20 & 21.11.03 (2 jours) MAGNE-03 : Magnétisme pour l'électrotechnique : 25 - 27.11.03 (3 jours) ...

2003-01-01

372

PLACES AVAILABLE  

CERN Document Server

Places are available in the following courses : Premiers pas avec votre PC 12 - 15.9.00 (4 demi-journées) WORD 20, 21 et 26, 27.9.2000 (4 jours) JAVA programming level 1 25 - 26.9.2000 (2 days) Gaz inflammables 1 26.9.2000 (1 journée) Advanced aspects of PERL 5 6.10.2000 (1 day) Initiation au WWW 10 - 12.10.00 (3 demi-journées) WORD : importer et manipuler des images 16.10.2000 (1 journée) FileMaker 17, 18 et 24, 25.10.00 (4 jours) Nouveautés de WORD 19 et 20.10.2000 (2 jours) ACCESS 1er niveau 30 - 31.10.00 (2 jours)Introduction à PowerPoint 6.11.00 (1 journée)Nouveautés d?EXCEL 7.11.2000(4 demi-journées)Excel 13, 14 et 20, 21.11.00 (4 jours) LabView hands-on 13.11.2000(4 hours)LabView Basics 1 14 - 16.11.2000 (3 days) MS-Project 1er niveau 14-17.11.00 (4 demi-journées) If you wish to participate in one of these courses, please discuss with your supervisor and apply elec...

Enseignement Technique; Tél. 74924; Technical Training; Monique Duval; Tel. 74924

2000-01-01

373

Places available**  

CERN Multimedia

Places are available in the following courses: The CERN EDMS for Local Administrators (free of charge) : 24 & 25.9.03 (2 days) HeREF-2003 : Techniques de la réfrigération Hélium (cours en français avec support en anglais) : 6 - 10.10.2003 (7 demi-journées) The Java Programming Language Level 1 : 6 - 7.10.2003 (2 days) Java 2 Enterprise Edition - Part 2 : Enterprise JavaBeans : 8 - 10.10.2003 (3 days) FileMaker - niveau 1 : 9 & 10.10.03 (2 jours) EXCEL 2000 - niveau 1 : 20 & 22.10.03 (2 jours) AutoCAD 2002 - niveau 1 : 20, 21, 27, 28.10.03 (4 jours) CLEAN-2002 : Working in a Cleanroom (free of charge) : 23.10.03 (half day) AutoCAD Mechanical 6 PowerPack (E) : 23, 24, 30, 31.10 & 12, 13.11.03 (6 days) AutoCAD 2002 - niveau 2 : 10 & 11.11.03 (2 jours) ACCESS 2000 - niveau 1 : 13 & 14.11.03 (2 jours) FrontPage 2000 - niveau 1 : 20...

2003-01-01

374

Places available**  

CERN Multimedia

Places are available in the following courses : The CERN EDMS for Local Administrators : 24 & 25.9.03 (2 days, free of charge) HeREF-2003 : Techniques de la réfrigération Hélium (cours en français avec support en anglais) : 6 - 10.10.2003 (7 demi-journées) The Java Programming Language Level 1 : 6 - 7.10.2003 (2 days) Java 2 Enterprise Edition - Part 2 : Enterprise JavaBeans : 8 - 10.10.2003 (3 days) FileMaker - niveau 1 : 9 & 10.10.03 (2 jours) EXCEL 2000 - niveau 1 : 20 & 22.10.03 (2 jours) AutoCAD 2002 - niveau 1 : 20, 21, 27, 28.10.03 (4 jours) CLEAN-2002 : Working in a Cleanroom : 23.10.03 (half day, free of charge) AutoCAD 2002 - Level 1 : 3, 4, 12, 13.11.03 (4 days) AutoCAD 2002 - niveau 2 : 10 & 11.11.03 (2 jours) ACCESS 2000 - niveau 1 : 13 & 14.11.03 (2 jours) AutoCAD Mechanical 6 PowerPack (E) : 17, 18, 24, 25.11 & 1, 2.12.03 (6...

2003-01-01

375

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: Introduction to C Programming :  21- 23.11.01 (3 days) Programmation TSX Premium 2 : 26 - 30.11.01 (5 jours) Contract Follow-up (F) : 26.11.01 (1/2 journée) Habilitation électrique : électriciens network : 27 - 29.11.2001 (3 jours) Object-Oriented Analysis and Design :  27 - 30.11.2001  (4 days) Introduction to the CERN Engineering Data Management System :  30.11.2001 (1 day) Electromagnetic Compatibility (EMC): Introduction (bilingual) :  3.12.01 (half-day) Introduction to the CERN Engineering Data Management System : 07.12.2001 (1 day) LabVIEW - Basics 1 :  10 - 12.12.01 (3 days) LabVIEW - Basics 2 :  13 - 14.12.01 (2 days) EXCEL 2000 - niveau 2 : 15 - 16.1.02 (2 jours) C++ Programming Level 2 - Traps and Pitfalls :  15 - 18.1.2002  (4 days) Nouveautés de WORD 2000 : 18.1.02 (1/2 journée) FileMaker P...

Technical Training; Tel. 74924

2001-01-01

376

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: MS-Project 2000 : 10 & 11.01.02 (2 jours) EXCEL 2000 - niveau 2 : 15 - 16.1.02 (2 jours) Sécurité dans les installations cryogéniques: 15-17.1.2002 (2 demi-journées) C++ Programming Level 2 - Traps and Pitfalls :  15 - 18.1.2002  (4 days) ELEC-2002 Winter Term: Readout and system electronics for Physics  15.1.2002 - 7.2.2002 (8 half- days) Nouveautés de WORD 2000 : 18.1.02 (1/2 journée) LabView hands-on : 21.01.02 (1/2 journée) LabView DAQ hands-on : 21.01.02 (1/2 journée) FileMaker Pro : 22 - 25.1.02 (4 jours) MS-Project 2000 : 24 & 25.01.02 (2 jours) Introduction au PC et à Windows 2000 au CERN : 29 - 30.1.02 (2 jours) LabView Base 1 : 4 - 6.2.02 (3 jours) LabView DAQ  (E) :  7 & 8.02.02 (2 days) Hands-on Object-Oriented Design & Programming with Java :&nbs...

Enseignement Technique; Tel. 74924

2001-01-01

377

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: Habilitation électrique : superviseurs : 5.12.01 (1/2 journée) LabVIEW - Basics 1 :  10 - 12.12.01 (3 days) Introduction au PC et Windows 2000 : 12 & 14.12.01 (2 jours) LabVIEW - Basics 2 :  13 - 14.12.01 (2 days) Habilitation électrique : superviseurs : 17.12.2001 (1/2 journée) EXCEL 2000 - niveau 2 : 15 - 16.1.02 (2 jours) Sécurité dans les installations cryogéniques: 15-17.1.2002 (2 demi-journées) C++ Programming Level 2 - Traps and Pitfalls :  15 - 18.1.2002  (4 days) ELEC-2002 Winter Term: Readout and system electronics for Physics  15.1.2002 - 7.2.2002 (8 half- days) Nouveautés de WORD 2000 : 18.1.02 (1/2 journée) LabView hands-on : 21.01.02 (1/2 journée) LabView DAQ hands-on : 21.01.02 (1/2 journée) FileMaker Pro : 22 - 25.1.02 (4 jours) Frontpage...

Technical Training; Tel.74924

2001-01-01

378

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: LabVIEW - Basics 1 :  10 - 12.12.01 (3 days) Introduction to XML :  12 & 13.12.01 (2 days) Introduction au PC et Windows 2000 : 12 & 14.12.01 (2 jours) LabVIEW - Basics 2 :  13 - 14.12.01 (2 days) Habilitation électrique : superviseurs : 17.12.2001 (1/2 journée) MS-Project 2000 : 10 & 11.01.02 (2 jours) EXCEL 2000 - niveau 2 : 15 - 16.1.02 (2 jours) Sécurité dans les installations cryogéniques: 15-17.1.2002 (2 demi-journées) C++ Programming Level 2 - Traps and Pitfalls :  15 - 18.1.2002  (4 days) ELEC-2002 Winter Term: Readout and system electronics for Physics  15.1.2002 - 7.2.2002 (8 half- days) Nouveautés de WORD 2000 : 18.1.02 (1/2 journée) LabView hands-on : 21.01.02 (1/2 journée) LabView DAQ hands-on : 21.01.02 (1/2 journée) FileMaker Pro : 22 -...

Technical Training; Tel. 74924

2001-01-01

379

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: Contract Follow-up (F) : 30.10.01 (1/2 journée) The CERN Engineering Data Management System for Electronics Design :  30.10.01 (1 day) Nouveautés d'Excel 2000 : 5.11.01 (1/2 journée) UNIX pour non-programmeurs : 5 - 7.11.01 (3 jours) Introduction à Windows 2000 au CERN : 6.11.01 (1/2 journée) The Java programming language Level 1: 8 - 9.11.01 (2 days) LabView Base 1 : 12 - 14.11.01 (3 jours) LabVIEW DAQ (F) : 15 & 16.11.01 (2 jours) Automates et réseaux de terrain : 13 & 14.11.01 (2 jours) Introduction to PERL 5 :  15 - 16.11.01  (2 days) LabVIEW - DAQ : 15 - 16.11.01 (2 jours) Introduction to XML :  19 - 20.11.01 (2 days) Introduction to C Programming :  21- 23.11.01 (3 days) Programmation TSX Premium 2 : 26 - 30.11.01 (5 jours) Object-Oriented Analysis and Design :  27 - 30.11.2001 (4 days) Hands...

Technical Training; Tel. 74924

2001-01-01

380

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: Nouveautés d'EXCEL : 5.11.01 (1/2 journée) Introduction a Windows 2000 au CERN : 6.11.01 (1/2 journée) UNIX pour non-programmeurs : 5 - 7.11.01 (3 jours) Design Patterns :  7 - 8.11.01 (2 days) The Java programming language Level 1: 8 - 9.11.01 (2 days) Automates et réseaux de terrain : 13 & 14.11.01 (3 jours) Introduction à Windows 2000 au CERN : 12 - 14.11.01 (1/2 journée) Introduction to Windows 2000 at CERN :  14.11.01  (half-day) Introduction to PERL 5 :  15 - 16.11.01  (2 days) Introduction to C Programming :  21- 23.11.01 (3 days) Programmation TSX Premium 2 : 26 - 30.11.01 (5 jours) Contract Follow-up (F) : 26.11.01 (1/2 journée) Object-Oriented Analysis and Design :  27 - 30.11.2001  (4 days) Hands-on Object-Oriented Design and Programming with C++ :  11 - 13.12.2...

Technical Training; Tel. 74924

2001-01-01

 
 
 
 
381

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: Electromagnetic Compatibility (EMC): Introduction (bilingual) :  3.12.01 (half-day) Habilitation électrique : superviseurs : 5.12.01 (1/2 journée) Introduction to the CERN Engineering Data Management System : 07.12.2001 (1 day) LabVIEW - Basics 1 :  10 - 12.12.01 (3 days) Introduction au PC et Windows 2000 : 12 & 14.12.01 (2 jours) LabVIEW - Basics 2 :  13 - 14.12.01 (2 days) Habilitation électrique : superviseurs : 17.12.2001 (1/2 journée) EXCEL 2000 - niveau 2 : 15 - 16.1.02 (2 jours) C++ Programming Level 2 - Traps and Pitfalls :  15 - 18.1.2002  (4 days) Nouveautés de WORD 2000 : 18.1.02 (1/2 journée) LabView hands-on : 21.01.02 (1/2 journée) LabView DAQ hands-on : 21.01.02 (1/2 journée) FileMaker Pro : 22 - 25.1.02 (4 jours) Introduction au PC et à Windows 2000 au CERN : 29 - 30.1....

Technical Traininf; Tel. 74924

2001-01-01

382

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: MS-Project 1er niveau : 20 - 23.2.01 (4 matins) Architecture d'automatisme : 20 - 21.2.01 (2 jours) Introduction à PowerPoint : 26.2.01 (1 journée) Programmation TSX Premium 1 (Schneider) : 26.2 - 2.3.01 (5 jours) Premiers pas avec votre PC : 27.2 - 2.3.01 (4 matins) C++ for Particle Physicists : 5 - 9.3.01 (6*3 hour lectures) EXCEL : 6, 7 et 13, 14.3.01 (4 jours) The JAVA programming language level 2 :  12 - 14.3.01 (3 days) Nouveautés de FileMaker :  20 - 23.03.01 (4 matins) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : http://www.cern.ch/Training/ or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt.

TECHNICAL TRAINING; Tel. 74460

2001-01-01

383

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: Introduction au PC et à Windows 2000 au CERN : 29 - 30.1.02 (2 jours) LabView Base 1 : 4 - 6.2.02 (3 jours) LabView DAQ  (F) : 7 & 8.2.02 (2 jours) Hands-on Object-Oriented Design & Programming with Java :  11 - 13.02.02 (3 days) PVSS basics :  18 - 22.2.02 (5 days) Introduction à Windows 2000 : 18.2.02 (1 demi-journée) Introduction to the CERN Engineering Data Management System :  20.2.02 (1 day) The CERN Engineering Data Management System for Advanced users :  21.2.02  (1 day) C++ for Particle Physicists :  11 - 15.3.2002  (6 * 3 hour lectures) Cours sur la migration AutoCAD : AutoCAD : Mise à jour AutoCAD r-14 vers 2002 (2 jours) AutoCAD Mechanical PowerPack 6 basé sur AutoCAD 2002 (5 jours) If you wish to participate in one of these courses, please discuss with your supervisor and apply electr...

Monique Duval

2002-01-01

384

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: LabView hands-on : 21.01.02 (1/2 journée) LabView DAQ hands-on : 21.01.02 (1/2 journée) FileMaker Pro : 22 - 25.1.02 (4 jours) MS-Project 2000 : 24 & 25.01.02 (2 jours) Introduction au PC et à Windows 2000 au CERN : 29 - 30.1.02 (2 jours) LabView Base 1 : 4 - 6.2.02 (3 jours) LabView DAQ (E) : 7 & 8.02.02 (2 days) Hands-on Object-Oriented Design & Programming with Java : 11 - 13.02.02 (3 days) C++ for Particle Physicists : 11 - 15.3.2002 (6 * 3 hour lectures) Cours sur la migration AutoCAD : AutoCAD : Mise à jour AutoCAD r-14 vers 2002 (2 jours) AutoCAD Mechanical PowerPack 6 basé sur AutoCAD 2002 (5 jours) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : Technical Training or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO ...

Technical Training; Tel 74924

2002-01-01

385

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: LabView hands-on : 21.01.02 (1/2 journée) LabView DAQ hands-on : 21.01.02 (1/2 journée) FileMaker Pro : 22 - 25.1.02 (4 jours) MS-Project 2000 : 22, 24 & 25.01.02 (3 jours) Introduction au PC et à Windows 2000 au CERN : 29 - 30.1.02 (2 jours) LabView Base 1 : 4 - 6.2.02 (3 jours) LabView DAQ  (E) :  7 & 8.02.02 (2 days) Hands-on Object-Oriented Design & Programming with Java :  11 - 13.02.02 (3 days) PVSS basics :  11 - 15.2.02 (5 days) Introduction à Windows 2000 : 18.2.02 (1 demi-journée) Introduction to the CERN Engineering Data Management System :  20.2.02 (1 day) The CERN Engineering Data Management System for Advanced users :  21.2.02  (1 day) C++ for Particle Physicists :  11 - 15.3.2002  (6 * 3 hour lectures) Cours sur la migration AutoCAD : AutoCAD : Mise à...

Technical Training; Tel. 74924

2002-01-01

386

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: PVSS basics :  18 - 22.2.02 (5 days) Introduction à la CAO CADENCE : 20 & 21.2.02 (2 jours) LabView Basics 1 :  4 - 6.3.02  (3 days) Introduction au VHDL et utilisation du simulateur de CADENCE : 6 & 7.3.02 (2 jours) LabView Base 2 : 11 & 12.3.02 (2 jours) C++ for Particle Physicists :  11 - 15.3.2002  (6 * 3 hour lectures) LabView Advanced :  13 - 15.3.02 (3 days) Cours sur la migration AutoCAD :   AutoCAD : Mise à jour AutoCAD r-14 vers 2002 (2 jours) AutoCAD Mechanical PowerPack 6 basé sur AutoCAD 2002 (5 jours) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : Technical Training or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO...

Monique Duval

2002-01-01

387

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: Utilisation du simulateur Simplorer : 30.5 - 1.6.01 (3 jours) JAVA programming language level 1: 11-12.6.01 (2 days) LabView hands-on F ou E : 11.6.01 (1/2 journée) Comprehensive VHDL for EPLD/FPGA Design : 11 - 15.6.01 (5 days) Introduction au Langage C : 13 - 15.6.01 (3 jours) LabView Base 1 : 12 - 14.6.01 (3 jours) Habilitation électrique : superviseurs : 2 sessions d'une demi-journée les 12 et 19.6.01 Migration de LabVIEW 5 vers LabVIEW 6i Migration from LabVIEW 5 to LabVIEW 6I :  15.6.01 (1/2 journée/half-day) Introduction to Perl 5 : 2 - 3.7.01 (2 days) JAVA programming language level 2 : 4 - 6.7.01 (3 days) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : http://www.cern.ch/Training/ or fill in an 'application for training' form available from ...

Technical Training; Tel. 74924

2001-01-01

388

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: LabView DAQ  (F) : 7 & 8.2.02 (2 jours) Hands-on Object-Oriented Design & Programming with Java :  11 - 13.02.02 (3 days) PVSS basics :  18 - 22.2.02 (5 days) Introduction à Windows 2000 : 18.2.02 (1 demi-journée) Introduction to the CERN Engineering Data Management System :  20.2.02 (1 day) Introduction à la CAO CADENCE : 20 & 21.2.02 (2 jours) The CERN Engineering Data Management System for Advanced users :  21.2.02  (1 day) LabView Basics 1 :  4 - 6.3.02  (3 days) Introduction au VHDL et utilisation du simulateur de CADENCE : 6 & 7.3.02 (2 jours) LabView Base 2 : 11 & 12.3.02 (2 jours) C++ for Particle Physicists :  11 - 15.3.2002  (6 * 3 hour lectures) LabView Advanced :  13 - 15.3.02 (3 days) Cours sur la migration AutoCAD :   AutoCAD : Mise à...

Monique Duval

2002-01-01

389

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: Introduction à la CAO CADENCE : 20 & 21.2.02 (2 jours) LabView Basics 1 :  4 - 6.3.02  (3 days) Introduction au VHDL et utilisation du simulateur de CADENCE : 6 & 7.3.02 (2 jours) CLEAN-2002 : Working in a Clean Room :  7.3.2002  (1 day) LabView Base 2 : 11 & 12.3.02 (2 jours) C++ for Particle Physicists :  11 - 15.3.2002  (6 * 3 hour lectures) LabView Advanced :  13 - 15.3.02 (3 days) Cours sur la migration AutoCAD :   AutoCAD : Mise à jour AutoCAD r-14 vers 2002 (2 jours) AutoCAD Mechanical PowerPack 6 basé sur AutoCAD 2002 (5 jours) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : Technical Training or fill in an 'application for training' form available from your Divisiona...

Monique Duval

2002-01-01

390

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: LabView Basics 1 :  4 - 6.3.02  (3 days) CLEAN-2002 : Working in a Clean Room :  7.3.2002  (half day) LabView Base 2 : 11 & 12.3.02 (2 jours) C++ for Particle Physicists :  11 - 15.3.2002  (6 * 3 hour lectures) Programming the Web for Control Applications : 11, 12, 18, 19.3.2002  (4 * 2 hour lectures) Habilitation électrique : recyclage HT/BT (Français) : 13 - 14.3.2002 (2 * 2 heures) LabView Advanced :  13 - 15.3.02 (3 days) Introduction to the CERN Engineering Data Management System (EDMS) :  20.3.2002  (1 day) The CERN (EDMS) for Advanced Users :  21.3.2002  (1 day) LabVIEW DSC : 25 - 26.4.2002 (2 jours) LabVIEW DAQ : 15 - 16.5.2002 (2 jours) Cours sur la migration AutoCAD :   AutoCAD : Mise à jour AutoCAD r-14 vers 2002 (2 jours) AutoCAD Mechanical PowerPack 6 basé ...

Monique DUVAL

2002-01-01

391

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: Habilitation électrique : recyclage HT/BT : 11 - 15.3.2002  (2 * 2 heures) PVSS Basics :  8 - 12.4.02  (5 days) ELEC-2002 : Spring Term :  9, 11, 16, 18, 23, 25, 30.4.02 (7 * 2.5 hours) LabVIEW base 1 : 22 - 24.4.02 (3 jours) LabVIEW DSC (F) 25 & 26.4.02 (2 jours) LabVIEW Basics 2 : 13 & 14.5.02 (2 days) LabVIEW DAQ (F) : 15 & 16.5.02 (2 jours) Cours sur la migration AutoCAD :   AutoCAD : Mise à jour AutoCAD r-14 vers 2002 (2 jours) AutoCAD Mechanical PowerPack 6 basé sur AutoCAD 2002 (5 jours) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : Technical Training or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applica...

Monique Duval

2002-01-01

392

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: C++ for Particle Physicists :  11 - 15.3.2002  (6 * 3 hour lectures) Programming the Web for Control Applications : 11, 12, 18, 19.3.2002  (4 * 2 hour lectures) Habilitation électrique : recyclage HT/BT (Français) : 13 - 14.3.2002 (2 * 2 heures) Introduction à la CAO CADENCE : 19 & 20.3.02 (2 jours) LabVIEW base 1 : 22 - 24.4.02 (3 jours) LabVIEW DSC (F) 25 & 26.4.02 (2 jours) LabVIEW Basics 2 : 13 & 14.5.02 (2 days) LabVIEW DAQ (F) : 15 & 16.5.02 (2 jours) Cours sur la migration AutoCAD :   AutoCAD : Mise à jour AutoCAD r-14 vers 2002 (2 jours) AutoCAD Mechanical PowerPack 6 basé sur AutoCAD 2002 (5 jours) If you wish to participate in one of these courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at : Technical Training or fil...

Monique Duval

2002-01-01

393

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: PVSS Basics : 20 - 24.8.01 (5 days) PROFIBUS : 25 - 26.9.01 (2 jours) PROFIBUS : 27 - 28.9.01 (2 days) PCAD Schémas - débutants : 4 - 5.10.01 (2 jours) PCAD PCB - débutants : 8 - 10.10.01 (3 jours) Programming TSX Premium 1: 15 - 19.10.01 (5 days) Programmation TSX Premium 1 : 22 - 26.10.01 (5 jours) Programming TSX Premium 2: 19 - 23.11.01 (5 days) Programmation TSX Premium 2 : 26 - 30.11.01 (5 jours) The following LabView courses will be given in either English or French according to demand LabVIEW - Base 1 / LabVIEW - Basics 1 : 10 - 12.9.01 (3 jours / 3 days) LabVIEW - DAQ / LabVIEW - DAQ : 13 - 14.9.01 (2 jours / 2 days) LabVIEW - Base 1 / LabVIEW - Basics 1 : 15 - 17.10.01 (3 jours / 3 days) LabVIEW - Base 2 / LabVIEW - Basics 2 : 18 - 19.10.01 (2 jours / 2 days) LabVIEW - Base 1 / LabVIEW - Basics 1 : 12 - 14.11.01 (3 jours / 3 days) LabVIEW - DAQ / LabVIEW - DAQ : 15 - 16.11.01 (2 jours / 2...

Technical Training; Tel. 74924

2001-01-01

394

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: Introduction à Windows 2000 au CERN : 2 sessions de _ journée les 24 et 25.9.01 PROFIBUS : 25 - 26.9.01 (2 jours) PROFIBUS : 27 - 28.9.01 (2 days) PowerPoint 2000 : 1 et 2.10.01 (2 jours) EXCEL 2000 - niveau 1 : 3 et 4.10.01 (2 jours) Automates et réseaux de terrain : 3 - 4.10.2001 (2 jours) PCAD Schémas - débutants : 4 - 5.10.01 (2 jours) Introduction à Outlook : 5.10.01 (1 journée) Frontpage 2000 - niveau 1 : 8 et 9.10.01 (2 jours) PCAD PCB - débutants : 8 - 10.10.01 (3 jours) C++ for Particle Physicists : 8 - 12.10.01 (6 3-hour lectures) MS-Project 2000 - niveau 1 : 15 - 18.10.01 (4 demi-journées) LabView Basics 1 :  15 - 17.10.01  (3 days) Programmation TSX Premium 1 : 15 - 19.10.01 (5 jours) WORD 2000 : importer et manipuler des images : 19.10.01 (1 journée) Programmation TSX Premium 1 : 22 - 26.10.01...

Technical Training; Tel. 74924

2001-01-01

395

Places available**  

CERN Multimedia

Places are available in the following courses : FrontPage 2000 - niveau 1: 20 & 21.5.03 (2 jours) PIPES-2003 : Pratique du sertissage de tubes métalliques et multicouches: 21.5.03 (1 jour) Introduction à la CAO Cadence: de la saisie de schéma Concept-HDL au PCB : 20 & 22.5.03 (2 jours) AutoCAD Mechanical 6 PowerPack (E): 5, 6, 12, 13, 26, 27.6.03 (6 days) EXCEL 2000 - niveau 1: 10 & 11.6.03 (2 jours) Conception de PCB rapides dans le flot Cadence: 11.6.03 (matin) EXCEL 2000 - level 1: 12 & 13.6.03 (2 days) Introduction to PVSS: 16.6.03 (half-day, pm) Basic PVSS: 17 - 19.6.03 (3 days) Réalisation de PCB rapides dans le flot Cadence: 17.6.03 (matin) LabView DSC (language to be defined): 19 & 20.6.03 PVSS - JCOP Framework Tutorial: 20.6.03 (1 day) EXCEL 2000 - niveau 2: 24 & 25.6.03 (2 jours) Siemens SIMATIC Training: Introduction to STEP7: 3 & 4.6.03 (2 days) STEP7 Programming: 16 - 20.6.03 (5 days) Simatic Net Network: 26 & 27.6.03 (2 days) These courses will be given...

2003-01-01

396

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: November 2002   LabView hands-on (bilingue/bilingual): 5.11.02 (matin/morning) LabView DAQ hands-on (bilingue/bilingual):  5.11.02  (après-midi afternoon) PCAD Schémas - Débutants :  5 & 6.11.02  (2 jours) PCAD PCB - Débutants :  9 - 11.11.02  (3 jours) Introduction au PC et Windows 2000 au CERN :  6 & 7.11.02  (2 jours) Oracle 8i : Access the Database with Java :  7 & 8.11.02  (2 days) Introduction to PVSS (free of charge):  11.11.2002 pm  (1/2 day) Basic PVSS:  12 - 14.11.02  (3 days) EXCEL 2000 - niveau 1 :  12 & 13.11.02  (2 jours) CLEAN-2002: Working in a Cleanroom (English, free of charge):  13.11.2002  (afternoon) LabView Base 1 :  13 - 15.11.02  (3 jours) AutoCAD 2002 - niveau 1 :  14, 15, 21, 22.11.02  (4 jours) LabVIEW - Advanced:  18 - 20.11.02  (3 days) Hands-on Object-Oriented Design and Programming with C++ :  19 - 21.11.02  (3 days)  LabVIEW - Basics 2:  21 - 22.11.02 ...

Monique Duval

2002-01-01

397

PLACES AVAILABLES  

CERN Multimedia

Places are available in the following courses: PVSS Basics : 20 - 24.8.01 (5 days) PROFIBUS : 25 - 26.9.01 (2 jours) PROFIBUS : 27 - 28.9.01 (2 days) PCAD Schémas - débutants : 4 - 5.10.01 (2 jours) PCAD PCB - débutants : 8 - 10.10.01 (3 jours) Programming TSX Premium 1: 15 - 19.10.01 (5 days) Programmation TSX Premium 1 : 22 - 26.10.01 (5 jours) Programming TSX Premium 2: 19 - 23.11.01 (5 days) Programmation TSX Premium 2 : 26 - 30.11.01 (5 jours) The following LabView courses will be given in either English or French according to demand LabVIEW - Base 1 / LabVIEW - Basics 1 : 10 - 12.9.01 (3 jours / 3 days) LabVIEW - DAQ / LabVIEW - DAQ : 13 - 14.9.01 (2 jours / 2 days) LabVIEW - Base 1 / LabVIEW - Basics 1 : 15 - 17.10.01 (3 jours / 3 days) LabVIEW - Base 2 / LabVIEW - Basics 2 : 18 - 19.10.01 (2 jours / 2 days) LabVIEW - Base 1 / LabVIEW - Basics 1 : 12 - 14.11.01 (3 jours / 3 days) LabVIEW - DAQ / LabVIEW - DAQ : 15 - 16.11.01 (2 jours / 2...

Technical Training; Tel. 74924

2001-01-01

398

Places available**  

CERN Multimedia

Places are available in the following courses : EXCEL 2000 - niveau 1 : 10 & 11.6.03 (2 jours) Conception de PCB rapides dans le flot Cadence : 11.6.03 (matin) EXCEL 2000 - level 1 : 12 & 13.6.03 (2 days) Introduction to PVSS : 16.6.03 (p.m.) Basic PVSS : 17 - 19.6.03 (3 days) Réalisation de PCB rapides dans le flot Cadence : 17.6.03 (matin) PVSS - JCOP Framework Tutorial : 20.6.03 (1 day) EXCEL 2000 - niveau 2 : 24 & 25.6.03 (2 jours) Siemens SIMATIC Training : Introduction to STEP7 : 3 & 4.6.03 (2 jours/2 days) STEP7 Programming : 16 - 20.6.03 (5 jours/5 days) Simatic Net Network : 26 & 27.6.03 (2 jours/2 days) These courses will be given in French or English following the requests. Programmation automate Schneider : Programmation automate Schneider TSX Premium - 1er niveau : 10 - 13.6.03 (4 jours) - audience : toute personne qui veux maitriser la msie en uvre et la programmation d'un automate TSX Premium - objectifs : maitriser la mise en uvre et la programmation d'un autom...

2003-01-01

399

Places available**  

CERN Multimedia

Places are available in the following courses : FrontPage 2000 - niveau 1 : 20 & 21.5.03 (2 jours) PIPES-2003 : Pratique du sertissage de tubes métalliques et multicouches : 21.5.03 (1 jour) Introduction à la CAO Cadence : de la saisie de schéma Concept-HDL au PCB : 20 & 22.5.03 (2 jours) AutoCAD 2002 - niveau 2 : 3 & 4.6.03 (2 jours) AutoCAD Mechanical 6 PowerPack (F) : 5, 6, 12, 13, 26, 27.6.03 (6 jours) EXCEL 2000 - niveau 1 : 10 & 11.6.03 (2 jours) Conception de PCB rapides dans le flot Cadence : 11.6.03 (matin) EXCEL 2000 - level 1 : 12 & 13.6.03 (2 days) PowerPoint 2000 (F) : 17 & 18.6.03 (2 jours) Réalisation de PCB rapides dans le flot Cadence : 17.6.03 (matin) FrontPage 2000 - niveau 2 : 19 & 20.6.03 (2 jours) LabView DSC (langue à décider/language to be defined) : 19 & 20.6.03 EXCEL 2000 - niveau 2 : 24 & 25.6.03 (2 jours) Siemens SIMATIC Training: Introduction to STEP7 : 3 & 4.6.03 (2 days) STEP7 Programming : 16 - 20.6.03 (5 days) Simatic...

2003-01-01

400

PLACES AVAILABLE  

CERN Multimedia

Places are available in the following courses: PROFIBUS : 25 - 26.9.01 (2 jours) PROFIBUS : 27 - 28.9.01 (2 days) Automates et réseaux de terrain : 3 - 4.10.2001 (2 jours) PCAD Schémas - débutants : 4 - 5.10.01 (2 jours) PCAD PCB - débutants : 8 - 10.10.01 (3 jours) Programmation TSX Premium 1 : 15 - 19.10.01 (5 jours) Programmation TSX Premium 1 : 22 - 26.10.01 (5 jours) Programming TSX Premium 2: 19 - 23.11.01 (5 days) Programmation TSX Premium 2 : 26 - 30.11.01 (5 jours) Autocad Migration support courses: a detailed calendar will be published shortly for this series of sessions which will start on 15.10.2001. Registration is already open AutoCAD : Mise à jour AutoCAD r-14 vers 2002 (2 jours) AutoCAD Mechanical PowerPack 6 basé sur AutoCAD 2002 (5 jours) The following LabView courses will be given in either English or French according to demand LabVIEW - Base 1 / LabVIEW - Basics 1 : 10 - 12.9.01 (3 jours / 3 days)...

Technical training; Tel. 74924

2001-01-01

 
 
 
 
401

Ion acceleration during internal magnetic reconnection events in TST-2  

Energy Technology Data Exchange (ETDEWEB)

Characteristics of ion acceleration in the internal magnetic reconnection events (IRE) have been studied by means of a neutral particle energy analyzer (NPA) in Tokyo Spherical Tokamak (TST-2). The major and minor radii are 0.38 m and 0.25 m, respectively. The magnetic field strength is 0.3 T and the maximum plasma current is up to 140 kA. The electron and ion temperatures are 0.4 - 0.5 keV and 0.1 keV, respectively and the electron density is {approx} 10{sup 19} m{sup -3}. The NPA can be scanned toroidally from {theta} = 74 degrees (cw) to {theta} = 114 degrees (ccw), where {theta} = 90 degrees corresponds to the perpendicular sight-line. The direction of the plasma current is cw. The NPA signals are digitized at every 50 {mu}s. The NPA is calibrated in the energy range of 0.1 keV < E < 8.4 keV. When the IRE occurs, it is observed that the plasma current increases by about 20% and the loop voltage drops from 0.6 V to -5 V for {approx} 0.1 ms. The enhanced charge exchange flux is observed by more than one order of magnitude at about 1 keV for this reconnection phase. The ion temperature (T{sub i}) increases by 80 eV at IREs. The angle {theta} dependence of increment of T{sub i} shows that {delta}T{sub i} ({theta} equals 74 degrees) is higher than that for {theta} = 114 degrees. This observation suggests that an ion is accelerated initially in the direction of magnetic field lines. The time evolution of the ion distribution function is simulated with a Fokker-Planck code taking into account the electric field effects. (authors)

Hoshika, H.; Sasaki, K. [Kyushu Univ., Interdisciplinary Graduate School of Engineering Sciences (Japan); Zushi, H.; Idei, H.; Iyomasa, A.; Kawasaki, S.; Sakamoto, M.; Sato, K.; Nakashima, H.; Nakamura, K.; Hasegawa, M.; Hanada, K.; Higashijima, A. [Research Institute for Applied Mechanics (Japan); Aramasu, M.; Ejiri, A.; Kasahara, H.; Kamada, Y.; Shiraiwa, S.; Takase, Y. [Tokyo Univ., Graduate School of Frontier Sciences (Japan); Ohara, S.; Takagid, Y.; Yamada, T. [Tokyo Univ., Dept. of Science (Japan)

2004-07-01

402

Places disponibles/Places available  

CERN Multimedia

Si vous désirez participer à l'un des cours suivants, veuillez en discuter avec votre superviseur et vous inscrire électroniquement en direct depuis les pages de description des cours dans le Web que vous trouvez à l'adresse : http://www.cern.ch/Training/ ou remplissez une « demande de formation » disponible auprès du Secrétariat de votre Division ou de votre DTO (Délégué divisionnaire à la formation). Les places seront attribuées dans l'ordre de réception des inscriptions. If you wish to participate in one of the following courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at: http://www.cern.ch/Training/ or fill in an "application for training" form available from your Divisional Secretariat or from your DTO (Divisional Training Off...

2004-01-01

403

Redistribution of fast ions during sawtooth reconnection  

Science.gov (United States)

In a tokamak-based fusion power plant, possible scenarios may include regulated sawtooth oscillations to remove thermalized helium from the core of the plasma. During a sawtooth crash, the helium ash and other impurities trapped in the core are driven by the instability to an outer region. However, in a fusion plasma, high energy ions will represent a significant population. We thus study the behaviour of these energetic particles during a sawtooth. This paper presents the modelling of the redistribution of fast ions during a sawtooth reconnection event in a tokamak plasma. Along the lines of the model for the evolution of the flux surfaces during a sawtooth collapse described in Ya.I. Kolesnichenko and Yu.V. Yakovenko 1996 Nucl. Fusion 36 159, we have built a time-dependent electromagnetic model of a sawtooth reconnection. The trajectories of the ions are described by a complete gyro-orbit integration. The fast particles were evolved from specific initial parameters (given energy and uniform spread in pitch) or distributed initially according to a slowing-down distribution created by fusion reactions. Our modelling is used to understand the main equilibrium parameters driving the motions during the collapse and to determine the evolution of the distribution function of energetic ions when different geometries of reconnection are considered.

Jaulmes, F.; Westerhof, E.; de Blank, H. J.

2014-10-01

404

Two dimensional magnetic merging and reconnection  

International Nuclear Information System (INIS)

Magnetic energy release is mergin flows in investigated by numerical integration of unsteady resistive MHD equations in two dimensions. No explosive magnetic energy release is found in two topologically distinct merging flow geometries, in the absence of imposed strong plasma inflows. The first geometry is the merging of straight field lines without magnetic reconnection, and the second is merging with reconnection at an x-type neutral point. In each geometry the merging energy release is compared with the diffusive energy release in the absence of plasma motion. It is found in both geometries that the merging energy release is less than the diffusive energy release. Magnetic island formation occurs in the reconnection simulation. The magnetic energy release appears mainly as thermal rather than kinetic energy, but the heating is not localized. These results indicate that two dimensional merging without strong forcing is not promising as a mechanism for explosive magnetic energy release, but is more promising for gradual plasma heating and magnetic field dissipation. It is suggested that similar results would apply to any merging geometry which is stable in ideal MHD

405

Magnetic reconnection in electron-magnetohydrodynamics  

International Nuclear Information System (INIS)

The magnetic field dynamics and reconnection processes in a highly conducting plasma are investigated in regimes where Ohm's law is dominated by the Hall term using a single (electron) fluid description (Electron-magnetohydrodynamics). In these regimes, which correspond to the frequency range of the so-called whistler mode, the electromagnetic field is nearly force-free: (jxB)/c+eneE=0. Small scale magnetic reconnection occurs near surfaces where k·B=0, and tearing-type modes can be unstable due to the effect of electron inertia. The evolution of the magnetic field in the vicinity of an X-line is discussed and the propagation of whistler waves is shown to result in the steepening of their wave front and in the increase of the electric current density. A class of exact self-similar solutions is obtained which describe, within the scope of a local approximation, the magnetic collapse of three-dimensional magnetic configurations leading to the formation of flat electric current sheets. Finally, the rate of reconnection in the electron-hydrodynamic frequency range is estimated in a steady state approximation. (author) 7 refs

406

The Alfvén edge in asymmetric reconnection  

Directory of Open Access Journals (Sweden)

Full Text Available We show that in the case of magnetic reconnection where the Alfvén velocity is much higher in the plasma on one side of the current sheet than the other, an Alfvén edge is formed. This edge is located between the electron and ion edges on the high Alfvén velocity side of the current sheet. The Alfvén edge forms because the Alfvén wave generated near the X-line will propagate faster than the accelerated ions forming the ion edge. We discuss possible generation mechanism and the polarization of the Alfvén wave in the case when higher Alfvén speed is due to larger magnetic field and smaller plasma density, as in the case of magnetopause reconnection. The Alfvén wave can be generated due to Hall dynamics near the X-line. The Alfvén wave pulse has a unipolar electric field and the parallel current will be such that the outer current on the high magnetic field side is flowing away from the X-line. Understanding Alfvén edges is important for understanding the separatrix regions at the boundaries of reconnection jets. We present an example of Alfvén edge observed by the Cluster spacecraft at the magnetopause.

A. Vaivads

2010-06-01

407

Privileged Girls: The Place of Femininity and Femininity in Place  

Science.gov (United States)

Constructions of femininity and attendant notions of feminism are being produced in different ways in different places around the world. This is a complicated global process that cannot be reduced to analyses that take place in nation states. This paper seeks to respond to and enhance Angela McRobbie's compelling argument about understandings…

Fahey, Johannah

2014-01-01

408

Slip Running Reconnection in Magnetic Flux Ropes  

Science.gov (United States)

Magnetic flux ropes are due to helical currents and form a dense carpet of arches on the surface of the sun. Occasionally one tears loose as a coronal mass ejection and its rope structure can be detected by satellites close to the earth. Current sheets can tear into filaments and these are nothing other than flux ropes. Ropes are not static, they exert mutual ?c{J}×?c{B} forces causing them to twist about each other and eventually merge. Kink instabilities cause them to violently smash into each other and reconnect at the point of contact. We report on experiments on two adjacent ropes done in the large plasma device (LAPD) at UCLA ( ne ˜ 1012, Te ˜ 6 eV, B0z=330G, Brope}\\cong{10G,trep=1 Hz). The currents and magnetic fields form exotic shapes with no ignorable direction and no magnetic nulls. Volumetric space-time data (70,600 spatial locations) show multiple reconnection sites with time-dependent locations. The concept of a quasi-separatrix layer (QSL), a tool to understand and visualize 3D magnetic field lines reconnection without null points is introduced. Three-dimensional measurements of the QSL derived from magnetic field data are presented. Within the QSL field lines that start close to one another rapidly diverge as they pass through one or more reconnection regions. The motion of magnetic field lines are traced as reconnection proceeds and they are observed to slip through the regions of space where the QSL is largest. As the interaction proceeds we double the current in the ropes. This accompanied by intense heating as observed in uv light and plasma flows measured by Mach probes. The interaction of the ropes is clearly seen by vislaulizng magnetic field data , as well as in images from a fast framing camera. Work supported by the Dept. of Energy and The National Science Foundation, done at the Basic Plasma Science Facility at UCLA.Magnetic Field lines (measured) of three flux ropes and the plasma currents associated with them

Gekelman, W. N.; Van Compernolle, B.; Vincena, S. T.; De Hass, T.

2012-12-01

409

A Self-Consistent Mechanism for Incomplete Reconnection in Sawteeth  

Science.gov (United States)

A prevailing impediment to core confinement in fusion devices is the occurrence of large sawtooth events. Experiments show that the crash phase often ends before all available magnetic flux is reconnected, i.e., reconnection is incomplete, but this is inconsistent with the Kadomtsev model. We present a model for incomplete, or partial, reconnection in sawtooth crashes [1]. The reconnection inflow self-consistently convects the high pressure core and low pressure edge of a tokamak toward the m=n=1 rational surface, thereby increasing the pressure gradient at the reconnection site. If the pressure gradient at the rational surface exceeds a threshold, incomplete reconnection will occur. We show that predictions of this model are borne out in large-scale simulations of reconnection. The predictions are also consistent with data from the Mega Ampere Spherical Tokamak. Physically, we attribute the suppression to the interaction of the exterior pressure gradient with the pressure quadrupole that inherently occurs during collisionless (Hall) reconnection with a strong guide-field. The results should apply across tokamaks, including ITER.[4pt] [1] M. T. Beidler and P. A. Cassak, Phys. Rev. Lett., 107, 255002 (2011)

Beidler, Matthew; Cassak, Paul

2012-03-01

410

The plasmoid instability during asymmetric inflow magnetic reconnection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Theoretical studies of the plasmoid instability generally assume that the reconnecting magnetic fields are symmetric. We relax this assumption by performing two-dimensional resistive magnetohydrodynamic simulations of the plasmoid instability during asymmetric inflow magnetic reconnection. Magnetic asymmetry modifi