WorldWideScience

Sample records for radiation protection surveys

  1. Survey of radiation protection programmes for transport

    International Nuclear Information System (INIS)

    The survey of radiation protection programmes for transport has been jointly performed by three scientific organisations I.P.S.N. (France), G.R.S. ( Germany), and N.R.P.B. (United kingdom) on behalf of the European Commission and the pertaining documentation summarises the findings and conclusions of the work that was undertaken with the principal objectives to provide guidance on the establishment, implementation and application of radiation protection programmes for the transport of radioactive materials by operators and the assessment and evaluation of such programmes by the competent authority and to review currently existing radiation protection programmes for the transport of radioactive materials. (N.C.)

  2. Regulations concerning radiation protection and survey

    International Nuclear Information System (INIS)

    The many and always increasing applications of Atomic Energy for peaceful uses set many safety and security problems relatively to the workers, populations, and locating of the sites in general. A comparative study of the radiation hazards to which the people working in the 'Commissariat a l'energie atomique' installations were exposed during 1957 and the results obtained concerning individual and collective safety and security were extremely satisfactory owing to a continuous control and supervision. 2. However a few contamination and irradiation incidents - exposed subsequently as well as the way they were dealt with - show the necessity of a circumstantial regulation inside of an atomic center to establish the responsibility of the service in charge of the control of the radiation and the responsibility of the services using radioactive products with regard to contamination by radioactive materials. 3. Abstract of the different practical safety and security regulations concerning holding, manipulation, transport and stocking of radioactive materials. Pursuant to the recommendations of the International Commission on Radiologic Protection, the radioelements are classified according to the danger that can occur from them in comparison with the Pu with regard to: - radioactive noxiousness; specific activity per unit of mass; contamination hazards. 4. The service in charge of radiation protection plays the important part of a technical adviser for the construction of specialized laboratories and sees to the keeping of protection regulations. 5. Data essential to radiation protection are given to the people using radioactive materials; particularly: - a table of the radioisotopes and the hazards occurring from them; - radiation hazards regarding ? ray emitted by irradiated Pu; - radiation hazards regarding ? ray emitted by irradiated Th. 6. As the hazards occasioned by irradiated uranium have already been studied, the case of a low and total irradiation will only be considered with regard to recuperation of uranium after simple machining. (author)

  3. A survey of research programs in radiation protection in Canada

    International Nuclear Information System (INIS)

    A survey of research programs in Canada concerned with radiation protection was conducted in 1991-92 by the Joint Subcommittee on Regulatory Research (JSCRR) of the Atomic Energy Control Board (AECB) Advisory Committees on Radiological Protection and on Nuclear Safety. The purpose of this survey was to determine the current state of funding for this type of research in Canada. Funding for health-related radiation research in Canada is critical to establishing and maintaining a supply of trained professionals who can provide competent advice on health-related problems in radiation protection. The present report is an analysis of the information received in this survey. This survey concludes with the recommendation that the organization and definition of subprograms for the AECB Regulatory Research and Support Program should be completed as soon as possible. In this report the JSCRR should assist AECB staff in preparing a report in which priorities for research related to radiation protection are indicated. The sources of information noted at the end of the Discussion section of this report should be considered for this purpose. (author). 15 refs., 3 tabs

  4. A knowledge and awareness level survey of radiation protection among the radiation workers in Henan Province

    International Nuclear Information System (INIS)

    Full text: Objective: To reveal the knowledge and awareness level of radiation protection among radiation workers in Henan province and to explore the methods to improve it. Methods: A questionnaire survey was carried out among 208 radiation workers. Results: The correct rate of the answer to radiation protection knowledge from radiation workers in Henan province is 53.78%. Most of them (88.9%) realized that it is important to protect patients and their companions. They adhere to the principles of justification of medial exposure and optimization of radiation protection and follow the management system of radiation protection. However, a few workers didn't follow the principles strictly. Sometime, during the radio diagnosis and radiotherapy services, the patients and their companions were not well protected from the radiation, and some patients were given unnecessary X-ray examine. Even worse, some workers did not attach importance to the regulations of radiation protection and disobey them frequently. Again, some hospital leaders disregard the regulation of radiation protection and didn't follow the regulation of health surveillance and radiation protection monitoring properly. And those behaviors and attitude, in fact, influence some workers' attitude to radiation protection. Conclusion: The level of radiation protection knowledge and awareness among the radiation workers in Henan province needs to be improved. It is necessary to strengthen radiation protection knowledge by strengthening training, and to improve safety awareness among the radiation staff, and, more important, the hospital leaders as well. (author)

  5. Survey of Radiation Protection Education and Training in Finland in 2003

    Energy Technology Data Exchange (ETDEWEB)

    Havukainen, R.; Korpela, H.; Vaisala, S.; Piri, A.; Kettunen, E.

    2004-07-01

    The current state and need for radiation protection training in Finland have been surveyed by the Radiation and Nuclear Safety Authority STUK. The survey sought to determine whether the current requirements for radiation protection training had been met, and to promote radiation protection training. Details of the scope and quality of present radiation protection training were requested from all educational institutes and organizations providing radiation protection training. The survey covered both basic and further training, special training of radiation safety officers, and supplementary training. The questionnaire was sent to 77 educational organization units, 66 per cent of which responded. Radiation workers and radiation safety officers were asked about radiation protection knowledge and needs for additional training. The questionnaire was sent to 880 radiation users and 170 radiation safety officers, 70 per cent of whom responded. The survey covered all professional groups and fields of the use of ionizing radiation except nuclear energy. The amount of radiation protection training in basic and further (specialization) training in the same vocational or academic degree varied remarkably by educational organization. The average amounts of radiation protection included in most professional degrees met the requirements. 32 per cent of workers considered their radiation protection training inadequate for their duties, and 48 per cent had completed no supplementary training in radiation protection over the last five years. Nurses working in public sector hospitals and physicians working in health centres had the greatest need for radiation protection training. 78 per cent of radiation workers in industry felt that they had sufficient radiation protection training. Co-operation between educational organizations is necessary to harmonize radiation protection training. Guidance of the Ministry of Education (the competent authority for education) is needed in this area, and the Radiation and Nuclear Safety Authority STUK should also be involved. (Author)

  6. Survey of Radiation Protection Education and Training in Finland in 2003

    International Nuclear Information System (INIS)

    The current state and need for radiation protection training in Finland have been surveyed by the Radiation and Nuclear Safety Authority STUK. The survey sought to determine whether the current requirements for radiation protection training had been met, and to promote radiation protection training. Details of the scope and quality of present radiation protection training were requested from all educational institutes and organizations providing radiation protection training. The survey covered both basic and further training, special training of radiation safety officers, and supplementary training. The questionnaire was sent to 77 educational organization units, 66 per cent of which responded. Radiation workers and radiation safety officers were asked about radiation protection knowledge and needs for additional training. The questionnaire was sent to 880 radiation users and 170 radiation safety officers, 70 per cent of whom responded. The survey covered all professional groups and fields of the use of ionizing radiation except nuclear energy. The amount of radiation protection training in basic and further (specialization) training in the same vocational or academic degree varied remarkably by educational organization. The average amounts of radiation protection included in most professional degrees met the requirements. 32 per cent of workers considered their radiation protection training inadequate for their duties, and 48 per cent had completed no supplementary training in radiation protection over the last five years. Nurses working in public sector hospitals and physicians working in health centres had the greatest need for radiation protection training. 78 per cent of radiation workers in industry felt that they had sufficient radiation protection training. Co-operation between educational organizations is necessary to harmonize radiation protection training. Guidance of the Ministry of Education (the competent authority for education) is needed in this area, and the Radiation and Nuclear Safety Authority STUK should also be involved. (Author)

  7. Radiation protection

    International Nuclear Information System (INIS)

    This work define procedures and controls about ionizing radiations. Between some definitions it found the following topics: radiation dose, risk, biological effects, international radioprotection bodies, workers exposure, accidental exposure, emergencies and radiation protection

  8. Calibration of survey instruments used in radiation protection for the assessment of ionizing radiation fields and radioactive surface contamination

    International Nuclear Information System (INIS)

    This report is part of a series prepared under the auspices of Scientific Committee 46, Operational Radiation Safety. It provides guidance on the calibration of survey instruments for the assessment of ionizing radiation fields and radioactive surface contamination. One essential element in the effective use of survey instruments is the knowledge that instruments are properly calibrated, i.e. responding accurately when exposed to a source of ionizing radiation which has been characterized through appropriate comparative measurements with standards maintained by a primary or secondary calibration laboratory. This report discusses the factors which must be considered during calibration in order to increase confidence in measurements made for radiation protection purposes with portable survey instruments. Calibration of photon measuring instruments for external radiation field evaluation, beta dose measuring instruments for external radiation field evaluation, protable instruments for the assessment of neutron radiation fields, and field instrumentation for the assessment of surface contamination are all covered

  9. On the awareness of radiation protection. A questionnaire survey of junior college students of radiological technology

    International Nuclear Information System (INIS)

    A questionnaire survey on the awareness of radiation protection was conducted to improve our curriculum of radiation protection education, which seems to be important for the safe administrative control systems and handling techniques of radiation. A total of 426 students answered our questionnaire during the period of 1994 to 1999. They were 80 first-year, 114 second-year and 232 third-year students. The facility values of 4 questions on the influence of radiation to a human body were 50.2%, 30.3%, 28.9% and 7.0%. There was no statistically significant difference among different age groups. The facility values of 3 questions on the dose limitation of occupation exposure were 50.5% (on the effective dose equivalent), 36.4% (on the tissue dose equivalent to skin), and 40.9% (on the crystalline lens). On safe handling of radiation, only 35.7% of students correctly answered that they use a plastic board to protect themselves from ?-ray, while 77.0% correctly answered the question on the decontamination method of radioactive substance from the skin. The results show the students' lack of knowledge on radiation protection. Those involved in basic science education and radiation protection education, therefore, need to clarify their teaching content and offer explicit explanations on the proper dose of radiation, effects to exposure dose, interaction between different materials and radiation. (author)

  10. Knowledge in Radiation Protection: a Survey of Professionals in Medical Imaging, Radiation Therapy and Nuclear Medicine Units in Yaounde

    International Nuclear Information System (INIS)

    Medical use of ionizing radiation is now the most common radiation source of the population at the global level. The knowledge and practices of health professionals working with X-rays determine the level and quality of implementation of internationally and nationally recommended measures for radiation protection of patients and workers. The level of implementation and enforcement of international recommendations in African countries is an issue of concern due to weak laws and regulations and regulatory bodies. We report the results of a cross-sectional survey of health professionals working with ionizing radiation in Yaounde, the capital city of Cameroon. More than 50% of these professionals have a moderate level of knowledge of the norms and principles of radiation protection and more than 80% have never attended a continuing professional development workshop on radiation protection. (authors)

  11. Radiation protection

    International Nuclear Information System (INIS)

    A circular of the General Direction of Labour and Nuclear Safety takes stock on the measures prevention of the risks of exposure to ionizing radiations. The purpose is, first to bring to concerned actors a precise view of the whole of dispositions relative to the protection of health of workers exposed to ionizing radiations, secondly to supply to the Labour Inspection and to the radiation protection inspectors of the nuclear safety Authority responses in this field, thirdly to explain some notions specially in relation with ionizing radiation such exposed worker. (N.C.)

  12. Radiation protection

    International Nuclear Information System (INIS)

    Personnel whose duties include the application of X-ray or the handling of radioactive material according to the statutory provisions of Germany have to attend a compulsory course in ''Radiation Protection''. The textbook in hand is a systematic compilation of all subjects of the course, with questions and answers. The subjects are: (1) Physical fundamentals and X-radiation. (2) Taking X-rays. (3) X-ray quality. (4) X-ray anatomy. (5) Biological effects of ionizing radiation. (6) Dosimetry. (7) Basic principles underlying radiation protection. (8) Examination instruments. (9) Examinations using contrast media. (10) Quality assurance. (11) Patient positioning and instrument handling. The textbook also presents the relevant texts of the Radiation Protection Ordinance and of the examination problems, and a glossary of terms. (orig.). 165 figs., 24 tabs

  13. Radiation Protection

    International Nuclear Information System (INIS)

    Major achievements of SCK-CEN's Radiation Protection Department in 2000 are described. The main areas for R and D of the department remain neutron dosimetry and neutron activation analysis, safeguards information handling and non-destructive assay techniques. Further activities include low-level radioactivity measurements in environmental and biological samples and radiation protection research. Finally, achievements in decision strategy research and social sciences in nuclear research are reported

  14. Principles of radiation protection and legal basis for workers and public protection - a description of the Federal Radiation Survey

    International Nuclear Information System (INIS)

    The consequences of traditional mining and uranium industry, public concern and the need for decisions on restoration and remediation of radioactive-contaminated sites require systematic investigations and objective evaluations of the existing radiological situation. With this intention a comprehensive Federal project has been lauched to study the contributions of the geologic conditions and mining activities to the radiation exposure of the public. The responsibility for the whole project was delegated to the Federal Office for Radiation Protection (BfS). Topics covered in this paper include: Radiological evaluation and legal basis of the radiological protection for workers and for the public; Radiological protection for workers and the public in case of remedial actions

  15. Concepts of radiation protection

    International Nuclear Information System (INIS)

    This seventh chapter presents the concepts and principles of safety and radiation protection, emergency situations; NORM and TENORM; radiation protection care; radiation protection plan; activities of the radiation protection service; practical rules of radiation protection and the radiation symbol

  16. Radiation protection

    International Nuclear Information System (INIS)

    Radiation protection is a task to be fulfilled by experts. The selection of adequate protection measures, their practical realisation and the control of their efficiency requires solid expert knowledge. For passing this expert knowledge to workers in their member companies, the Berufsgenossenschaft der Feinmechanik und Elektrotechnik (Trade Association of Light and Electrical Engineering) has been organizing radiation protection courses for years. The booklet at hand is a result of the experience gained during these courses. It is based on the imparted subject-matter and furthermore, provides many individual bits of information which cannot be treated in course due to a lack of time. The booklet is intended to be a learning aid for participants in the course and, afterwards, to be used on the job as an original reference book. (orig./HP)

  17. Radiation protection

    International Nuclear Information System (INIS)

    Three main pillars underpin the IAEA's mission: Safety and Security - The IAEA helps countries to upgrade their infrastructure for nuclear and radiation safety and security, and to prepare for and respond to emergencies. Work is keyed to international conventions, the development of international standards and the application of these standards. The aim is to protect people and the environment from the harmful effects of exposure to ionizing radiation. Science and Technology - The IAEA is the world's focal point for mobilizing peaceful applications of nuclear science and technology for critical needs in developing countries. The work contributes to alleviating poverty, combating disease and pollution of the environment and to other goals of sustainable development. Safeguards and Verification - The IAEA is the nuclear inspectorate, with more than four decades of verification experience. Inspectors work to verify that nuclear material and activities are not diverted towards military purposes. Quantities and Units: Dose equivalent is the product of absorbed dose of radiation and quality factor (Q). For absorbed dose in rads, dose equivalent is in rems. If absorbed dose is in gray, the dose equivalent is in sievert. Quality factor is defined without reference to any particular biological end point. Quality factors are recommended by committees such as the International Commission on Radiological Protection (ICRP) or the National Council on Radiation Protection and Measurements (NCRP), based on experimental RBE values but with some judgment exercised. Effective Dose Equivalent: It is the sum of the weighted dose equivalents for all irradiated tissues, in which the weighting factors represent the different risks of each tissue to mortality from cancer and hereditary effects. Committed dose equivalent: It is the integral over 50 years of dose equivalent following the intake of a radionuclide. Collective effective dose equivalent: It is a quantity for a population and is the sum of effective dose equivalents to all members of that population. Units are in person-sievert/person-rems. Aim of Radiation Protection: 1. Avoid the deterministic effects; and 2. Lower the probability of stochastic effects to an acceptable level. (author)

  18. Survey of radiation protection programmes for transport; Etude des programmes de radioprotection pour les transports de matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Lizot, M.T.; Perrin, M.L.; Sert, G. [CEA Fontenay-aux-Roses, Inst. de Protection et de Surete Nucleaire, Dept. de Protection et de Surete Nucleaire, 92 (France); Lange, F.; Schwarz, G.; Feet, H.J.; Christ, R. [Gesellschaft fur Anlagen-und Reaktorsicherheit, GRS, mbH, Cologne (Germany); Shaw, K.B.; Hughes, J.S.; Gelder, R. [National Radiological Protection Board (NRPB), Oxon, OX (United Kingdom)

    2001-07-01

    The survey of radiation protection programmes for transport has been jointly performed by three scientific organisations I.P.S.N. (France), G.R.S. ( Germany), and N.R.P.B. (United kingdom) on behalf of the European Commission and the pertaining documentation summarises the findings and conclusions of the work that was undertaken with the principal objectives to provide guidance on the establishment, implementation and application of radiation protection programmes for the transport of radioactive materials by operators and the assessment and evaluation of such programmes by the competent authority and to review currently existing radiation protection programmes for the transport of radioactive materials. (N.C.)

  19. Proposal of a survey of radiation protection procedures during breast feeding

    International Nuclear Information System (INIS)

    Contamination can occur by breast milk ingestion involving mothers subjected to diagnostic procedures or treatment with radiopharmaceuticals, which can reach high concentrations in milk causing significant absorbed doses to the children organs. Besides internal dose, close contact between the baby and his mother give rise to external exposures. In Brazil, 7% of diagnostic procedures use 131I or 123I for thyroid imaging and 84% of these were hold by women. For 131I, 67Ga and 201Tl, is recommended breast feeding cessation. The present work proposes a survey of the state of the art of radiation protection to breast feeding infants. It was planned interviews with nuclear medicine staff applying a questionnaire in order to assess specific procedures to women in reproductive age. This is 'on progress work'. (author)

  20. The use of roentgen diagnostics in chiropractor activities. Project based survey according to new regulations regarding radiation protection and use of radiation

    International Nuclear Information System (INIS)

    An audit has been performed in 17 chiropractic enterprises according to new radiation protection legislation. Before the audits a survey of the use of diagnostic imaging in Norwegian chiropractic enterprises was carried out. This report summarizes the results of the survey and the findings at the audits. (Author)

  1. Survey and analysis of radiation safety management systems at medical institutions. Second report. Radiation measurement, calibration of radiation survey meters, and periodic check of installations, equipment, and protection instruments

    International Nuclear Information System (INIS)

    We carried out a questionnaire survey to determine the actual situation of radiation safety management measures in all medical institutions in Japan that had nuclear medicine facilities. The questionnaire consisted of questions concerning the evaluation of shielding capacity; radiation measurement; periodic checks of installations, equipment, and protection instruments; and the calibration of radiation survey meters. The analysis was undertaken according to region, type of establishment, and number of beds. The overall response rate was 60 percent. For the evaluation of shielding capacity, the outsourcing rate was 53 percent of the total. For the radiation measurements of ''leakage radiation dose and radioactive contamination'' and contamination of radioactive substances in the air'', the outsourcing rates were 28 percent and 35 percent of the total, respectively (p<0.001, according to region and establishment). For the periodic check of radiation protection instruments, the implementation rate was 98 percent, and the outsourcing rate was 32 percent for radiation survey meters and 47 percent for lead aprons. The non-implemented rate for calibration of radiation survey meters was 25 percent of the total (p<0.001, according to region and establishment). The outsourcing rate for calibration of radiation survey meters accounted for 87 percent of the total, and of these medical institutions, 72 percent undertook annual calibration. The implementation rate for patient exposure measurement was 20 percent of the total (p<0.001, according to number of beds), and of these medical institutions 46 percent recorded measurement outcome. (author)

  2. Radiation. Protection. Health. Proceedings

    International Nuclear Information System (INIS)

    The topics of the meeting are the diagnostic and therapeutic application of ionizing radiations, the application of radiation in research, industry and engineering and radiation protection. The volume includes the following chapters: Radiation protection and society, radiation protection infrastructure, population and environment, metrology and measuring techniques, 1. Workshop on population and environment, NORM and radon, 2. Update: dose - extent of damage - limiting value definition, radiation protection for personnel (except medicine), radiation protection in medicine.

  3. [Survey and analysis of radiation safety management systems at medical institutions--second report: radiation measurement, calibration of radiation survey meters, and periodic check of installations, equipment, and protection instruments].

    Science.gov (United States)

    Ohba, Hisateru; Ogasawara, Katsuhiko; Aburano, Tamio

    2006-01-20

    We carried out a questionnaire survey to determine the actual situation of radiation safety management measures in all medical institutions in Japan that had nuclear medicine facilities. The questionnaire consisted of questions concerning the evaluation of shielding capacity; radiation measurement; periodic checks of installations, equipment, and protection instruments; and the calibration of radiation survey meters. The analysis was undertaken according to region, type of establishment, and number of beds. The overall response rate was 60 percent. For the evaluation of shielding capacity, the outsourcing rate was 53 percent of the total. For the radiation measurements of "leakage radiation dose and radioactive contamination" and "contamination of radioactive substances in the air," the outsourcing rates were 28 percent and 35 percent of the total, respectively (poutsourcing rate was 32 percent for radiation survey meters and 47 percent for lead aprons. The non-implemented rate for calibration of radiation survey meters was 25 percent of the total (poutsourcing rate for calibration of radiation survey meters accounted for 87 percent of the total, and of these medical institutions, 72 percent undertook annual calibration. The implementation rate for patient exposure measurement was 20 percent of the total (p<0.001, according to number of beds), and of these medical institutions 46 percent recorded measurement outcome. PMID:16456509

  4. Radiation protection of nuclear medicine workers in the Czech Republic in 2003 -some results of SONS and questionnaire survey II

    International Nuclear Information System (INIS)

    Our paper presents the most. important data concerning an equipment of 45 nuclear medicine departments (depts.) with radiation protection facilities and aids. The results of the questionnaire survey mentioned in our previous paper are briefly summarized here. A relatively low radiation burden of nuclear medicine staff suggests the standard of radiation protection measures to be relatively good in our country. However, our survey shows some shortcomings, especially the following ones: (1) some depts. need equipment for the preparation and dispensing of radiopharmaceuticals; (2) syringe shields for injection of beta-emitters such as 90Y are missing Iargely; (3) at some depts. shielding of staff from the patient containing a radiopharmaceutical is either missing or insufficient. Some deficiencies, including those not mentioned here, cannot be considered too significant. If syringe shields for beta-emitters are not available, Pb shields can be provisionally used. It would be desirable to replace the Pb shields by tungsten ones having the same effectiveness as Pb shields but smaller dimensions enabling a more comfortable injections (of course, tungsten syringe shields were available at four depts. which administered 18F-FDG in 2003). An acquaintance of depts. with the results of our survey is believed to stimulate nuclear medicine workers to improve further radiation protection in compliance with legislative requirements. (authors)

  5. The German Radiation Protection Ordinance of 2000: a survey and comparison with the former regulations

    International Nuclear Information System (INIS)

    The radiation protection standards defined by the European Union in May 1996, as well as the EU directive for the protection of patients, effective since June 1997, have to be incorporated into the law and administrative regulations of the Federal Republic of Germany by the 13th of May 2000. The German BMU, the ministry responsible for nuclear safety and radiation protection, presented the draft law for departmental consultation about the amendment of the StlSchV in December 1999. This draft law is the basis of the expert discussions of the meeting. One major change for instance is that for the first time, a broad classification system has been applied, which facilitates orientation. (orig./CB)

  6. Radiation protection calibration activities

    International Nuclear Information System (INIS)

    The Philippines has two Secondary Standard Dosimetry Laboratories (SSDL), both of which are the members of IAEA/WHO network of SSDLs. The Radiation Health Service of the Department of Health and the Philippines Nuclear Research Institute of the Department of Science and Technology signed the agreement to avoid overlapping activities and to ensure complimentary development work programs. The Radiation Health Service was founded in 1974, and it is charged with the responsibility of regulating the production, import, export and use of the apparatuses emitting electrically produced radiation, the energy of which does not reach the threshold value, and non-ionizing radiation devices. The RHS SSDL performs two major activities, that is, the calibration of therapy level and protection level radiation detection and measuring instruments and personnel monitoring service. Those activities and the available facilities are reported. The calibration procedures for survey meters and thermoluminescent dosimeters are explained, and the specific problems are pointed out. (K.I.)

  7. Assessment of radiation protection training needs and capabilities in Europe: Results of the ENETRAP survey

    International Nuclear Information System (INIS)

    Full text: Maintaining a high level of competencies in the field of radiation protection is crucial for the future safe application of ionising radiation and to ensure the protection of workers, the public and the environment. Although working with a variety of responsibilities and specific professional aims, practitioners dealing with applications of ionizing radiation have three common needs with regard to radiological protection: basic education and training providing the required level of understanding of artificial and natural radiation; a standard for the recognition of skills and experience; and an opportunity to fine-tune and test acquired knowledge on a regular basis. The wide variety of the national approaches of the E and T programs in radiological protection in Europe hampers a common European methodology concerning these issues. This is particularly true for the Qualified Expert. Although, in this specific case, the fundamentals of the E and T programs are given by a European directive, the national differences in for instance, level, duration, subjects, practical and theoretical proportions in a program etc. create a barrier for the mutual recognition of this expert. The development of a common European radiation protection and safety culture and, based on that, the mutual recognition of radiation protection courses and the acquired competencies of radiation protection experts becomes crucial in a world of dynamic markets and increasing workers' mobility. A sustainable Education and Training (E and T) infrastructure is an essential component to combat the decline in expertise and to ensure the continuation of the high level of radiation protection knowledge in the future. Such infrastructure has to be built in such a way that both the initial training ('Education') and the unceasing maintenance of the level of competencies ('Training') are available. In answer to the need to develop a common European radiation protection and safety culture and, based on that, the mutual recognition for radiation protection courses and the acquired competencies of Qualified Experts, the ENETRAP project is working on a European harmonized approach of E and T programs in radiation protection. In a first phase of the ENETRAP project; a questionnaire was set up, the objective of this questionnaire being to elicit detailed information which will enable us to: assess the actual training needs in the EU Member States and Candidate States; understand the various regulatory aspects and consequently propose minimum requirements for mutual recognition of RPEs and RPOs; collate details of the various training and education activities available in the EU Member and Candidate States, and; review the content, structure and methods of these training and education activities. Hereto, an extensive list of questions was set up addressing the following topics: numbers of RPEs; identification of practices; national capabilities for education and training in radiological protection; regulatory requirements and; recognition. This questionnaire was sent out to 31 countries, i.e. the European Member States, the Candidate States, and the Associated States Norway and Switzerland. This paper will summarize the results of this questionnaire and the implementation these results into the construction of the E and T programmes, namely the European Master in Radiation Protection (EMRP - to start in September 2007) and the ENETRAP training scheme, being a revision of the Saclay based European Radiation Protection Course ERPC. A preliminary programme of both initiatives uses a modular approach and puts forward 2 parts : a common basis, and a series of specialized modules on occupational radiation protection in nuclear power plants and fuel cycle industry, the medical sector, non-nuclear industry and research laboratories, waste and disposal sites, etc. The EMRP and ENETRAP training scheme are planned to run (partly) in parallel, so that an overlap can be made between certain modules. This innovative construction allows close contact and enhances discussi ons between students and professionals. The theoretical program needs to be extended by an on-the-job training (OJT) period and the possibility to follow (parts of) the modules via e-learning needs to be implemented. ENETRAP also strongly suggests to cooperate with expert networks such as EURADOS and the ALARA network who are willing to 'foster' the chapters dealing with their specific competences. The final program of the ENETRAP training scheme needs to be developed in such a way that it gives a common basis which meets as much as possible all national regulations and thus will receive a recognition from the participating European countries. Standardized material should be provided. The results of the ENETRAP project will be transferred to the European umbrella organization EUTERP which could deal with issues such as recognition of courses and certification, mobility of students and teachers, sharing of teachers and teaching facilities etc. (author)

  8. Survey of radiation protection creiteria following the accident at the Fukushima Dai-ichi Nuclear Power Plant

    International Nuclear Information System (INIS)

    After the accident at Fukushima Dai-ichi Nuclear Power Plant, various numerical criteria relevant to radiation protection were defined. We surveyed these criteria through internet. As a result of survey, the following 13 items were identified: (1) criteria for taking stable iodine tablets, (2) criteria for the screening of surface contamination, (3) evacuation area, sheltering area, etc., (4) activity concentrations in food, drinking water,etc., (5) dose limit for radiation workers engaged in emergency work, (6) guideline levels of radioactive substances in bathing areas, (7) criteria for use of school buildings and schoolyards, (8) restriction on planting rice, (9) acceptable activity concentrations in feedstuff, (10) acceptable activity concentrations in compost, (11) criteria for export containers and ships, (12) criteria for contaminated waste, (13) standards for radiation workers engaged in decontamination work. In this report, the basis of and issues on these criteria are summarized. (author)

  9. Experience in Radiation Protection Monitoring

    International Nuclear Information System (INIS)

    This paper describes the experience in radiation protection monitoring acquired in the Thai Office of Atomic Energy for Peace. The subjects discussed are the film badge service, reactor monitoring, survey meters and neutron monitors. (author)

  10. Survey and analysis of radiation safety management systems at medical institutions. Initial report. Radiation protection supervisor, radiation safety organization, and education and training

    International Nuclear Information System (INIS)

    In this study, a questionnaire survey was carried out to determine the actual situation of radiation safety management systems in Japanese medical institutions with nuclear medicine facilities. The questionnaire consisted of questions concerning the Radiation Protection Supervisor license, safety management organizations, and problems related to education and training in safety management. Analysis was conducted according to region, type of establishment, and number of beds. The overall response rate was 60%, and no significant difference in response rate was found among regions. Medical institutions that performed nuclear medicine practices without a radiologist participating accounted for 10% of the total. Medical institutions where nurses gave patients intravenous injections of radiopharmaceuticals as part of the nuclear medicine practices accounted for 28% of the total. Of these medical institutions, 59% provided education and training in safety management for nurses. The rate of acquisition of Radiation Protection Supervisor licenses was approximately 70% for radiological technologists and approximately 20% for physicians (regional difference, p=0.02). The rate of medical institutions with safety management organizations was 71% of the total. Among the medical institutions (n=208) without safety management organizations, approximately 56% had 300 beds or fewer. In addition, it became clear that 35% of quasi-public organizations and 44% of private organizations did not provide education and training in safety management (p<0.001, according to establishment). (author)

  11. Radiation and radiation protection

    International Nuclear Information System (INIS)

    The brochure explains the major types of radiation, the radiation sources, effects, uses, and risks, as well as the regulatory system adopted by the government in order to keep the risks as low as possible. (orig./DG)

  12. Ethical problems in radiation protection

    International Nuclear Information System (INIS)

    In this report the authors survey existing international radiation-protection recommendations and standards of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the authors review ethical thinking on seven key issues related to radiation protection and ethics. They formulate each of these seven issues in terms of alternative ethical stances: (1) equity versus efficiency, (2) health versus economics, (3) individual rights versus societal benefits, (4) due process versus necessary sacrifice, (5) uniform versus double standards, (6) stake holder consent versus management decisions, and (7) environmental stewardship versus anthropocentric standards

  13. Ethical problems in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Shrader-Frechette, K.; Persson, Lars

    2001-05-01

    In this report the authors survey existing international radiation-protection recommendations and standards of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the authors review ethical thinking on seven key issues related to radiation protection and ethics. They formulate each of these seven issues in terms of alternative ethical stances: (1) equity versus efficiency, (2) health versus economics, (3) individual rights versus societal benefits, (4) due process versus necessary sacrifice, (5) uniform versus double standards, (6) stake holder consent versus management decisions, and (7) environmental stewardship versus anthropocentric standards.

  14. Atoms, Radiation, and Radiation Protection

    CERN Document Server

    Turner, James E

    2007-01-01

    Atoms, Radiation, and Radiation Protection offers professionals and advanced students a comprehensive coverage of the major concepts that underlie the origins and transport of ionizing radiation in matter. Understanding atomic structure and the physical mechanisms of radiation interactions is the foundation on which much of the current practice of radiological health protection is based. The work covers the detection and measurement of radiation and the statistical interpretation of the data. The procedures that are used to protect man and the environment from the potential harmful effects of

  15. On ethical issues in radiation protection

    International Nuclear Information System (INIS)

    From an ethical viewpoint the author surveys existing international radiation protection recommendations and standards. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the author discusses ethical thinking on seven key issues related to radiation protection and ethics. (author)

  16. Radiation protection seminar

    International Nuclear Information System (INIS)

    The Radiation Protection Seminar, was organized by the Argentina Association of Biology and Nuclear Medicine, and Bacon Laboratory, the 20 june 2012, in the Buenos Aires city of Argentina. In this event were presented some papers on the following topics: methods of decontamination, radiation protection of patients; concepts of radiation protection and dosimetry.

  17. Radiation protection of female patients of reproductive capacity: A survey of policy and practice in Norway

    International Nuclear Information System (INIS)

    The implementation of various policies related to female patients of reproductive capacity was investigated using a structured telephone interview of radiological departments in Norway. The findings suggest that 60% (n = 35/58) of radiological departments have written guidelines regarding female patients of reproductive capacity. The 10-day rule is implemented for a range of examinations in 12% (n = 7/58) of the radiological departments questioned, and in another 9% (n = 5/58) it is only implemented for hysterosalpingography. Forty percent (n = 23/58) of departments are familiar with rapid urine pregnancy tests and use them in certain circumstances. In conclusion, a lack of standardisation of approaches to radiation protection is apparent, and this raises concerns as national and international recommendations are not being correctly implemented. This may lead to confusion amongst patients and staff, and may have adverse consequences such as the accidental irradiation of the unborn child

  18. Protective legislation, ionizing radiation and health: a new appraisal and international survey

    International Nuclear Information System (INIS)

    Restrictive regulations (protective legislation) on employment conditions of female workers limiting maximum hours of work and prohibiting certain toxic exposures have existed for decades. In some countries, such as the United States, Canada and the Nordic countries, the growth of civil rights and equal opportunity legislation has led to their elimination, either in fact or in practice, and only a small number of disparate regulations for male and female workers still exist. Most other industrialized countries, as well as the International Labour Office of the United Nations, still have active restrictive rules for women's employment. However, restrictive regulation is an area of active policy debate around the world. International examples of the debate on protective legislation are given here. A specific case study of the occupational health standards governing exposure to ionizing radiation is used and its technical rationale discussed as an illustration of the basic issues. These include: overbroad categorization of all women as potential childbearers, no matter what their childbearing intentions; failure to recognize the full range of potential adverse health effects to males; disparate application of the restrictive regulations, generally to occupations or areas of employment that are traditionally held by men, while traditional female jobs with the same exposures are excluded from the regulatory restriction

  19. Ethical issues in radiation protection

    International Nuclear Information System (INIS)

    In this note the authors survey existing international radiation-protection recommendations of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection and risk assessment/management, the authors review ethical thinking on five key issues related to radiation protection and ethics. They formulate each of these five issues in terms of alternative ethical stances: (1) Equity vs. Efficiency, (2) Health vs. Economics, (3) Individual Rights vs. Societal Benefits, (4) Due Process vs. Necessary Sacrifice, and (5) Stakeholder Consent vs. Management Decisions (authors)

  20. Radiation protection research

    Energy Technology Data Exchange (ETDEWEB)

    Vanmarcke, H

    2002-04-01

    The objectives of the research in the field of radiation protection research performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to elaborate and to improve methods and guidelines for the evaluation of restoration options for radioactively contaminated sites; (2) to develop, test and improve biosphere models for the performance assessment of radioactive waste disposal in near-surface or geological repositories; (3) to asses the impact of releases from nuclear or industrial installations; (4) to increase capabilities in mapping and surveying sites possibly or likely contaminated with enhanced levels of natural radiation; (5) to identify non nuclear industries producing NORM waste, to make an inventory of occurring problems and to propose feasible solutions or actions when required; (6) to maintain the know-how of retrospective radon measurements in real conditions and to assess radon decay product exposure by combining these techniques. Main achievements in these areas for 2001 are summarised.

  1. Radiation protection research

    International Nuclear Information System (INIS)

    The objectives of the research in the field of radiation protection research performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to elaborate and to improve methods and guidelines for the evaluation of restoration options for radioactively contaminated sites; (2) to develop, test and improve biosphere models for the performance assessment of radioactive waste disposal in near-surface or geological repositories; (3) to asses the impact of releases from nuclear or industrial installations; (4) to increase capabilities in mapping and surveying sites possibly or likely contaminated with enhanced levels of natural radiation; (5) to identify non nuclear industries producing NORM waste, to make an inventory of occurring problems and to propose feasible solutions or actions when required; (6) to maintain the know-how of retrospective radon measurements in real conditions and to assess radon decay product exposure by combining these techniques. Main achievements in these areas for 2001 are summarised

  2. Radiation protection forum

    International Nuclear Information System (INIS)

    The National Director of the Nuclear Regulatory Authority and Radiation Protection of Uruguay in the first forum for radiation protection set out the following themes: activity of regulatory body, radiation safety, physical security, safeguards, legal framework, committed substantive program, use of radiation, risks and benefits, major sources of radiation, the national regulatory framework, national inventory of sources, inspections, licensing, import and export of sources control , radioactive transport, materials safety, agreements, information and teaching, radiological emergencies and prompt response.

  3. The Radiation Protection Act

    International Nuclear Information System (INIS)

    The new Radiation Protection Act (1988:220) entered into force in Sweden on July 1st, 1988. This book presents the Act as well as certain regulations connected to it. As previously, the main responsibility for public radiation protection will rest with one central radiation protection authority. According to the 1988 Act, the general obligations with regard to radiation protection will place a greater responsibility than in the past on persons carrying out activities involving radiation. Under the act, it is possible to adjust the licensing and supervisory procedures to the level of danger of the radiation source and the need for adequate competence, etc. The Act recognises standardised approval procedures combined with technical regulations for areas where the risks are well known. The Act contains several rules providing for more effective supervision. The supervising authority may in particular decide on the necessary regulations and prohibitions for each individual case. The possibilities of using penal provisions have been extended and a rule on the mandatory execution of orders has been introduced. The Ordinance on Radiation Protection (1988:293) designates the National Institute of Radiation Protection (SSI) as the central authority referred to in the Radiation Protection Act. The book also gives a historic review of radiation protection laws in Sweden, lists regulations issued by SSI and presents explanations of radiation effects and international norms in the area. (author)

  4. Optimization of radiation protection

    International Nuclear Information System (INIS)

    The Symposium presentations were divided into three sessions devoted to the following topics: the role of optimization of radiation protection (10 papers), application of the principle of optimization of radiation protection (26 papers), methods and techniques in the optimization of radiation protection (7 papers). An additional session was devoted to the presentation of a summary statement and to an extended discussion by a panel of senior experts on the question of whether optimization (ALARA) is meeting its objective

  5. Radiation protection standards

    International Nuclear Information System (INIS)

    Topics covered include biological radiation effects, radiation protection principles, recommendations of the ICRP and the National Health and Medical Research Council, and dose limits for individuals, particularly the limit applied to the inhalation of radon daughters

  6. Radiation Protection Handbook

    Science.gov (United States)

    1972-01-01

    A handbook which sets forth the Kennedy Space Center radiation protection policy is presented. The book also covers administrative direction and guidance on organizational and procedural requirements of the program. Only ionizing radiation is covered.

  7. Radiation protection to firemen

    International Nuclear Information System (INIS)

    The basic Knowledge about ionizing radiation oriented for firemen, are presented. The mainly damage and effects caused by radiation exposure as well as the method of radiation protection are described in simple words. The action to be taken in case of fire involving radiation such as vehicles transporting radioactive materials are emphasized. (author)

  8. Radiation protection practice

    International Nuclear Information System (INIS)

    Proceeding from the physical fundamentals, this manual summarizes practical aspects of radiation protection including radiation doses to man, maximum permissible levels, responsibility, training, licensing, X-ray application, handling of sealed and unsealed sources, radiation monitoring, medical surveillance, and emergency measures. Small chapters are devoted to the transport of radioactive materials, to the management of radioactive wastes and to radiation protection problems associated with the construction and operation of nuclear power plants. The appendix contains a compilation of titles of current GDR regulations and standards in radiation protection

  9. Radiation protection survey of research and development activities initiated after the Chernobyl accident. Review report

    International Nuclear Information System (INIS)

    The compilation of research and development activities in the various fields of radiation protection in OECD Member countries which have been undertaken or planned specifically to address open questions arising from the Chernobyl reactor accident experience shows a potential for international cooperative arrangements and/or coordination between national programmes. Both the preliminary review of the answers, which only cover a part of the relevant activities in OECD Member countries, and a computerized literature search indicate that the multidisciplinarity of the research area under consideration will call for special efforts to efficiently implement new models and new quantitative findings from the different fields of activity to provide an improved basis for emergency management and risk assessment. Further improvements could also be achieved by efforts to initiate new activities to close gaps in the programmes under way, to enhance international cooperation, and to coordinate the evaluation of the results. This preliminary review of the answers of 17 Member countries to the questionnaire on research and development activities initiated after the Chernobyl accident is not sufficient as a basis for a balanced decision on those research areas most in need for international cooperation and coordination. It may however serve as a guide for the exploration of the potential for international cooperative arrangements and/or coordination between national programmes by the CRPPH. Even at this preliminary stage, several specific activities are proposed to the NEA/OECD by Member countries. Whole body counting and the intercomparison of national data bases on the behaviour of radionuclides in the environment did attract most calls for international cooperation sponsored by the NEA

  10. Radiation protection practices and related continuing professional education in dental radiography: A survey of practitioners in the North-east of England

    International Nuclear Information System (INIS)

    Purpose: To establish the level of implementation of recommendations from the National Radiological Protection Board, relating to best radiation protection practice in dental radiography within general dental practices in the North-east of England. To survey the opinion of practitioners on the availability of related post-graduate courses in the region. Methods: A postal survey in the form of a self-reported questionnaire was mailed to all practices in the North-east of England in November 2000. The questionnaire, consisting of closed and open-ended questions, was to be completed where possible by the resident radiation protection supervisor. Results: Two hundred and sixteen practices responded to the questionnaire, a response rate of 53%. The survey revealed variation in the standards of application of best radiation protection practice. Some 23% of practitioners had not attended any post-graduate courses on radiation protection since qualifying. Post-graduate education provision on radiation protection in the region was considered insufficient by 51% of respondents. Conclusions: It is concluded that a significant proportion of practices were not making full use of opportunities to reduce dose to their patients. In addition, a small number of practices had untrained staff acting as the Radiation Protection Supervisor. A significant proportion of practitioners had not been updated in radiation protection practices within a 5-year period, and this may account for the failure to implement best radiographic practice. Over half felt that there was insufficient availability of post-graduate courses in radiation protection. The regional provision of continuing professional education in this field may need development

  11. Radiation control and protection

    International Nuclear Information System (INIS)

    For radiation control and protection in a particle beam therapy facility, the use of radiation is regulated by Medical Care Act (MCA) in addition to Act on Prevention of Radiation Disease Due to Radioisotopes etc., because it is not only a radiation but also a medical facility. X-ray radiographic equipments are regulated only by the MCA. On the other hand, the regulations for the facility having accelerators are essentially similar to those for general radiation facilities. In this article, designing and operation of a particle beam therapy facility are summarized from the aspect of radiation control and protection. (author)

  12. Implantation of inspection and radiation protection plan

    International Nuclear Information System (INIS)

    Methods, means and procedures adopted by Petrobras engineering service to survey safety radiation protection of the companies that carry out radiographic services of PETROBRAS are showed. The systematic used in certification of personel, procedures, audits and field survey concerning radiation protection, are described. (C.M.)

  13. Regulations in radiation protection

    International Nuclear Information System (INIS)

    On the occasion of the twenty fifth anniversary of the Dutch Society for Radiation Protection, a symposium was held about Regulations in Radiation Protection. The program consisted of six contributions of which four are included in this publication. The posters presented are published in NVS-nieuws, 1985, vol. 11(5). (G.J.P.)

  14. Radiation protection infrastructure

    International Nuclear Information System (INIS)

    A prerequisite for the safe use of ionizing radiation in a country is the availability of an adequate infrastructure to achieve the desired degree of protection. The extent of such an infrastructure, generally comprising regulatory mechanisms and technical capabilities for application and enforcement of regulations, has to be commensurate with the stage of technological development. The expanding application of ionizing radiation in medicine, industry and research calls for vigorous promotion of effective radiation protection efforts, not only to prevent any unsafe practices but also to assess correctly and provide authoritative information on the safety of adopted practices. Experience reveals that radiation protection practices vary considerably from one country to another. The regulatory structures and type of organization with regard to radiation protection are very different, depending on a number of factors such as the constitutional framework, the legal and administrative systems of the country concerned, the state of technical development, the status of application of radiation sources, the existence of research and associated institutions, and the technical skills and financial resources available. Radiation protection principles evolve with time as further experience is gained and as new research evidence becomes available. Regulation of radiation protection has to take account of such changes and adapt to changing conditions. Forty-eight papers from 29 Member States and two International Organizations were presented in nine scientific sessions. Topics included radiation protection regulation and licensing notification, registration, inspection and control programmes, education and training, the role of supporting institutions such as national laboratories and research institutes, the role of professional associations, the contribution of radiation protection services, and international activities. A concluding panel addressed development strategies to strengthen radiation protection infrastructure and explored how the IAEA could best assist to overcome identified shortcomings. Refs, figs and tabs

  15. Radiation protection in space

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, E.A. [Lawrence Berkeley Lab., CA (United States); Fry, R.J.M. [Oak Ridge National Lab., TN (United States)

    1995-02-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space.

  16. Optimisation of radiation protection

    International Nuclear Information System (INIS)

    Optimisation of radiation protection is one of the key elements in the current radiation protection philosophy. The present system of dose limitation was issued in 1977 by the International Commission on Radiological Protection (ICRP) and includes, in addition to the requirements of justification of practices and limitation of individual doses, the requirement that all exposures be kept as low as is reasonably achievable, taking social and economic factors into account. This last principle is usually referred to as optimisation of radiation protection, or the ALARA principle. The NEA Committee on Radiation Protection and Public Health (CRPPH) organised an ad hoc meeting, in liaison with the NEA committees on the safety of nuclear installations and radioactive waste management. Separate abstracts were prepared for individual papers presented at the meeting

  17. Ethics and radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Sven Ove [Department of Philosophy and the History of Technology, Royal Institute of Technology (KTH), Teknikringen 78 B, 2tr, SE-100 44 Stockholm (Sweden)

    2007-06-01

    Some of the major problems in radiation protection are closely connected to issues that have a long, independent tradition in moral philosophy. This contribution focuses on two of these issues. One is the relationship between the protection of individuals and optimisation on the collective level, and the other is the relative valuation of future versus immediate damage. Some of the intellectual tools that have been developed by philosophers can be useful in radiation protection. On the other hand, philosophers have much to learn from radiation protectors, not least when it comes to finding pragmatic solutions to problems that may be intractable in principle.

  18. Ethics and radiation protection

    International Nuclear Information System (INIS)

    Some of the major problems in radiation protection are closely connected to issues that have a long, independent tradition in moral philosophy. This contribution focuses on two of these issues. One is the relationship between the protection of individuals and optimisation on the collective level, and the other is the relative valuation of future versus immediate damage. Some of the intellectual tools that have been developed by philosophers can be useful in radiation protection. On the other hand, philosophers have much to learn from radiation protectors, not least when it comes to finding pragmatic solutions to problems that may be intractable in principle

  19. Radiation Protection Proclamation

    International Nuclear Information System (INIS)

    A proclamation of the Government of Ethiopia, cited as the radiation protection proclamation number 79/1993 was prepared with the objective to establish a national radiation protection authority that formulates policies, controls and supervises activities involving all sources of radiation and lay down laws governing such activities in order to ensure public safety against associated hazards while allowing radiation related activities to be carried out for the benefit of the public . The Authority is guided by an inter-ministerial board and is accountable to the Ethiopian Science and Technology Commission

  20. [National survey of radiation protection for workers in positron emission tomography facilities in Japan-1st report: occupational role assignment, radiation exposure to medical workers].

    Science.gov (United States)

    Watanabe, Hiroshi; Satou, Tsutomu; Senzui, Norio; Kimura, Fumiharu; Sano, Miyako; Hoshi, Tsunehiko; Itou, Atsushi; Naka, Kouji; Sagawa, Ryou

    2009-03-20

    We have investigated the role assignment and radiation exposure of medical workers (including receptionists) in PET (positron emission tomography) facilities in Japan using a questionnaire. The survey period was from October 1st to November 15th 2006. The response rate for the questionnaire was 60.0% (72/120 facilities). Nurses were engaged in the intravenous administration of radioactive FDG in 66.9% of PET facilities. In 89.5% of PET facilities, radiological technologists mainly performed the PET examination. The average radiation exposure to medical workers was 0.13 mSv/month (n: 709, S.D.: 0.16) as the effective dose. It was shown that radiation exposure was significantly different depending on the occupation and content of work (pfacility was 0.60 [mSv month(-1)], which was 4.6 times higher than the average dose of 0.13 [mSv month(-1)]. We have clarified the actual conditions of radiation protection in PET facilities in Japan for the first time. PMID:19367061

  1. National survey of radiation protection for workers in positron emission tomography facilities in Japan. 1st Report. Occupational role assignment, radiation exposure to medical workers

    International Nuclear Information System (INIS)

    We have investigated the role assignment and radiation exposure of medical workers (including receptionists) in PET (positron emission tomography) facilities in Japan using a questionnaire. The survey period was from October 1st to November 15th 2006. The response rate for the questionnaire was 60.0% (72/120 facilities). Nurses were engaged in the intravenous administration of radioactive fluorodeoxyglucose (FDG) in 66.9% of PET facilities. In 89.5% of PET facilities, radiological technologists mainly performed the PET examination. The average radiation exposure to medical workers was 0.13 mSv/month (n: 709, standard deviation (S.D.): 0.16) as the effective dose. It was shown that radiation exposure was significantly different depending on the occupation and content of work (p-1], which was 4.6 times higher than the average dose of 0.13 [mSv month-1]. We have clarified the actual conditions of radiation protection in PET facilities in Japan for the first time. (author)

  2. Radiation protection textbook

    International Nuclear Information System (INIS)

    This textbook of radiation protection presents the scientific bases, legal and statutory measures and technical means of implementation of the radioprotection in the medical and industrial sectors, research and nuclear installations. It collects the practical information (organization, analysis of post, prevention, evaluation and risks management, the controls, the training and the information) usually scattered and the theoretical knowledge allowing every person using ionizing radiation: To analyze jobs in controlled areas, to watch the respect for the current regulations, to participate in the training and in the information of the staffs exposed to intervene in accidental situation. This third edition is widely updated and enriched by the most recent scientific and legal data concerning, notably, the human exposure, the dosimetry, the optimization of the radiation protection and the epidemiological inquiries. The contents is as follows: physics of ionizing radiation, ionizing radiation: origin and interaction with matter, dosimetry and protection against ionizing radiation, detection and measurement of ionizing radiation, radiobiology, legal measures relative to radiation protection, human exposure of natural origin, human exposure of artificial origin, medical, dental and veterinarian radiology, radiotherapy, utilization of unsealed sources in medicine and research, electronuclear industry, non nuclear industrial and aeronautical activities exposing to ionizing radiation, accidental exposures. (N.C.)

  3. Radiation Protection: introduction

    International Nuclear Information System (INIS)

    The abstract gives an overview and introduction to the activities of SCK-CEN's Radiation Protection department. Main strategic developments and achievements in the field of life sciences, policy supports and medical applications are summarised

  4. Physics for radiation protection

    CERN Document Server

    Martin, James E

    2013-01-01

    A much-needed working resource for health physicists and other radiation protection professionals, this volume presents clear, thorough, up-to-date explanations of the basic physics necessary to address real-world problems in radiation protection. Designed for readers with limited as well as basic science backgrounds, Physics for Radiation Protection emphasizes applied concepts and carefully illustrates all topics through examples as well as practice problems. Physics for Radiation Protection draws substantially on current resource data available for health physics use, providing decay schemes and emission energies for approximately 100 of the most common radionuclides encountered by practitioners. Excerpts of the Chart of the Nuclides, activation cross sections, fission yields, fission-product chains, photon attenuation coefficients, and nuclear masses are also provided.

  5. Radiation Protection Group

    CERN Multimedia

    2006-01-01

    The Radioactive Waste Section of the Radiation Protection Group wishes to inform you that the Radioactive Waste Treatment Centre will be closed on the afternoon of Tuesday 19 December 2006. Thank-you for your understanding.

  6. The workers radiation protection

    International Nuclear Information System (INIS)

    This file gathers contributions and points of view from different actors of the workers radiation protection, included two foreign contributions making reference to Spanish and British practices. (N.C.)

  7. Radiation protecting clothing materials

    International Nuclear Information System (INIS)

    Purpose: To provide radiation protecting clothing materials excellent in mechanical strength, corrosion resistance, flexibility and flexing strength. Constitution: The radiation protecting clothing materials according to this invention has pure lead sheets comprising a thin pure lead foil of 50 to 150 ?m and radiation resistant organic materials, for example, polyethylene with high neutron shielding effect disposed to one or both surfaces thereof. The material are excellent in the repeating bending fatigue and mechanical strength, corrosion resistance and flexibility and, accordingly, radiation protecting clothings prepared by using them along or laminating them also possess these excellent characteristics. Further, they are excellent in the handlability, particularly, durability to the repeated holding and extension, as well as are preferable in the physical movability and feeling upon putting. The clothing materials may be cut into an appropriate size, or stitched into clothings made by radiation-resistant materials. In this case, pure lead sheets are used in lamination. (Horiuchi, T.)

  8. Radiation protection in the dental profession

    International Nuclear Information System (INIS)

    A survey, conducted by the Health and Safety Executive (HSE), on the standard of radiation protection in the dental profession in the United Kingdom is described. The results are compared with UK advisory standards. The preliminary survey results were reported in the professional press and each participating dental practitioner received comments and advice concerning the basic requirements for radiation protection. The method of survey has been broadened to form the basis of inspection of dental radiography by the HSE. (H.K.)

  9. International trends in radiation protection

    International Nuclear Information System (INIS)

    The great uranium debate throughout the industrialised world has intensified awareness of the biological hazards from ionizing radiation. It is therefore appropriate to use this awareness to draw attention to medical X-Radiation which today represents the most significant risk to future generations. There is ample legislation to control proliferation of nuclear development but in diagnostic radiology proliferation is unlimited; most international surveys indicate an unchecked annual growth rate of 15%. The article looks at risk hypotheses, dose measurements and the responsibilities of practising radiographers, and also reviews the international situation as reported at the 1977 world congress of radiation protection

  10. Radiation protection zoning

    International Nuclear Information System (INIS)

    Radiation being not visible, the zoning of an area containing radioactive sources is important in terms of safety. Concerning radiation protection, 2 work zones are defined by regulations: the monitored zone and the controlled zone. The ministerial order of 15 may 2006 settles the frontier between the 2 zones in terms of radiation dose rates, the rules for access and the safety standards in both zones. Radioprotection rules and the name of the person responsible for radiation protection must be displayed. The frontier between the 2 zones must be materialized and marked with adequate equipment (specific danger signs and tapes). Both zones are submitted to selective entrance, the access for the controlled zone is limited because of the radiation risk and of the necessity of confining radioactive contamination while the limitation of the access to the monitored zone is due to radiation risk only. (A.C.)

  11. Radiation Protection. Chapter 24

    International Nuclear Information System (INIS)

    Chapter 21, in describing basic radiation biology and radiation effects, demonstrates the need to have a system of radiation protection that allows the many beneficial uses of radiation to be realized while ensuring detrimental radiation effects are either prevented or minimized. This can be achieved with the twin objectives of preventing the occurrence of deterministic effects and of limiting the probability of stochastic effects to a level that is considered acceptable. In a radiology facility, consideration needs to be given to the patient, the staff involved in performing the radiological procedures, members of the public and other staff that may be in the radiology facility, carers and comforters of patients undergoing procedures, and persons who may be undergoing a radiological procedure as part of a biomedical research project. This chapter discusses how the objectives given above are fulfilled through a system of radiation protection and how such a system should be applied practically in a radiology facility

  12. Radiation Protection in Guatemala

    International Nuclear Information System (INIS)

    The tasks connected with radiation protection are allocated to the National Institute for Nuclear Energy in Guatemala. Regulatory measures are further needed to identify the responsibilities of various authorities to ensure that all radiation workers are provided with personal dosemeters. (author)

  13. Radiation protection in dentistry

    International Nuclear Information System (INIS)

    The X-ray Ordinance as of January 8, 1987 defines the principles to be observed in dental radiology; these are explained in the chapter, refering to radiation protection by technical and structural means, dosimetry and monitoring, and health physics to protect patients and the personnel. (DG)

  14. The use of roentgen diagnostics in chiropractor activities. Project based survey according to new regulations regarding radiation protection and use of radiation; Bruk av roentgendiagnostikk i norske kiropraktorvirksomheter. Prosjektrettet tilsyn etter ny forskrift om straalevern og bruk av straaling

    Energy Technology Data Exchange (ETDEWEB)

    Raaum, Aud; Widmark, Anders

    2005-12-15

    An audit has been performed in 17 chiropractic enterprises according to new radiation protection legislation. Before the audits a survey of the use of diagnostic imaging in Norwegian chiropractic enterprises was carried out. This report summarizes the results of the survey and the findings at the audits. (Author)

  15. Radiation protection glossary

    International Nuclear Information System (INIS)

    The glossary is intended to be used as a terminology standard for IAEA documentation on radiation protection. An effort has been made to use definitions contained in internationally accepted publications such as recommendations of the International Commission on Radiological Protection (ICRP), standards of the International Organization for Standardization (ISO) and of the International Electrotechnical Commission (IEC), reports of the International Commission on Radiation Units and Measurements (ICRU), with only slight modifications in order to tailor them more closely to IAEA needs. The glossary is restricted to ionizing radiation

  16. Radiation Protection Dosimetry

    International Nuclear Information System (INIS)

    The contributions presented during the seminar provided clear evidence that radiation protection of the patient plays an increasingly important role for manufacturers of radiological equipment and for regulatory bodies, as well as for radiologists, doctors and assistants. The proceedings of this seminar reflect the activities and work in the field of radiation protection of the patient and initiate further action in order to harmonize dosimetric measurements and calculations, to ameliorate education and training, to improve the technical standards of the equipment and to give a push to a more effective use of ionising radiation in the medical sector

  17. Radiation protection type testing

    International Nuclear Information System (INIS)

    In the GDR, radiation protection type tests (type tests from the radiation protection point of view) are prescribed by law for the following groups of products: sealed sources; equipment containing sealed sources (such as teletherapy apparatus and flaw detectors); equipment in which charged particles are accelerated (such as x-ray machines and neutron generators); equipment in which ionizing radiation arises as an unwanted byproduct (such as television sets and electron microscopes). Based on the practical experience gained during the past seven years, several problems associated with type testing and licensing are discussed in detail. (author)

  18. Instructed officers Radiation Protection

    International Nuclear Information System (INIS)

    This law contains instructions on the prevention of radiological and contains 4 articles Article I: describe the responsibilities of the institutions that operate within the scope of radiological protection in terms of the number of radiation protection officers and personal Supervisors who available in the practices radiation field. Article II: talking about the conditions of radiation protection officers that must be available in the main officers and working field in larg institutions and thecondition of specific requirements for large enterprises of work permits in the field of radiological work that issued by the Council. Article III: the functions and duties of officers in the prevention of radiological oversee the development of radiation protection programmes in the planning stages, construction and preparing the rules of local labour and what it lead of such tasks.Article IV: radiation protection officers powers: to modify and approve the programme of prevention and radiation safety at the company, stop any unsafe steps, amend the steps of the usage, operation of materials, devices and so on

  19. Education in Radiation Protection

    International Nuclear Information System (INIS)

    Full text: This paper discussed the problem of the education in radiation protection. All aspects of education are included started with primary school and lasted with very specialised courses for the experts. In the last few years the lack of interest for education in radiation protection was recognised by many agencies included also IAEA and EU commission. In this paper the reasons for this situation will be presented and the way how to promote this subject again. It is not possible to prevent effects of radiation on environment and population if qualified and well educated experts do not exist. The situation in the field of education in radiation protection in Croatia will be presented, according to the new regulations in this field. (author)

  20. Concepts in radiation protection

    International Nuclear Information System (INIS)

    This monograph provides basic notions and principles in dosimetry and radiation protection in compliance with two fundamental works: IAEA Safety Series No.115 - International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources - and Publication no. 60 of International Commission on Radiological Protection. After the review of quantities and units necessary in radiation protection, the book presents the new values of dose limits as well as the values of 'radiation weighting factor', 'tissue weighting factor' and 'conversion factor intake-dose' (committed effective dose per unit intake) by ingestion and inhalation for 30 most important radionuclides. The new values of dose limits, lower than the old values, are a challenge for the radiation protection, especially of the 'public' where the dose limit diminished by a factor of five relative to the earlier edition. The new value of dose limit for public, 1 mSv per year (obviously over the natural exposure of 2.4 mSv per year), imposes new action ways and levels in radiation protection, especially in some cases of exacerbated natural radioactivity. The book provides the calculus of external exposure with the Gamma constant expressed in adequate units, to make the calculation easier. In the calculus of protection shield for gamma sources one uses a method, which while approximate helps save time. The calculus of internal exposure is made using the conversion factor intake-dose. Finally, the 'dosimetric watch' of the natural and artificial radioactivity of the atmosphere, hydrosphere and biosphere is intended to comply with the International Basic Safety Standards. Each chapter ends with a set of illustrative problems which enhances the reader's understanding of underlying concepts and current methods used in the field

  1. Project Radiation Protection - East

    International Nuclear Information System (INIS)

    The Swedish Government has allocated SEK 37.1 million for cooperation projects in radiation protection with countries in Central and Eastern Europe, particularly the Baltic states (Estonia, Latvia, Lithuania) and Russia. The Swedish Radiation Protection Inst. (SSI) is in charge of this program, which is often referred to as Radiation Protection - East. The general background of this cooperation program, its objectives, practical organization of the work etc. have been presented in the following reports: SSI Report No.93-08: Projekt Straalskydd Oest - Laegesrapport (March 1993); SSI Report No.93-29: Swedish Cooperation Program for Radiation Protection in Eastern and Central Europe (November 1993). The present report summarizes the work carried out up to and including September 1994. The more than 70 cooperation projects have been divided into the following categories: Upgrading of national authorities; Emergency preparedness, early warning; Nuclear power and research reactors; Instrumentation; Decommissioning, waste, environmental control; General radiation protection; Other projects; Project management and administrative support. Project criteria and a simple program for quality assurance and follow-up are presented briefly. A status report, including an economic overview, is given for all ongoing or already finished projects, together with future plans and a suggested budget for the next fiscal year

  2. Principles of radiation protection

    International Nuclear Information System (INIS)

    In the rapidly developing areas of occupational and public health devoted to the protection of people from both immediate and delayed harmful (and sometimes Irreversible) effects of radiation exposure, industrial hygienists, radiological physicists and radiologists must now assume the additional responsibility of protection against radiation. Everyone during his life will have had one or more X-rays taken for diagnostic purposes. The doses received, depending upon the site, are not harmful to the individual, from the genetic aspect, however, the increasing use of X-ray examinations does present a danger,since almost the whole population is involved. Rapid progress in the development of nuclear energy and the practical extension of its use in medicine, agriculture and industry are steadily increasing the potential danger of large groups of the population being exposed to radiation, and radiation hazards are becoming an important aspect of industrial and public hygiene. WHO is concerned with the overall evaluation of population exposure from peaceful uses of atomic energy and through medical practice, the evaluation of radiation risks,and the control of medical radiation exposure. WHO stimulates and provides technical assistance for the development of appropriate programs of radiation protection with respect to the agricultural, industrial and medical applications of radioisotopes. X-rays and radium. (author)

  3. Level of compliance with the radiation protection regulation-A survey among Norwegian hospitals and X-ray institutes

    International Nuclear Information System (INIS)

    To identify the level of compliance with the new radiation protection regulation among Norwegian health care enterprises (HCEs). Totally, 41 HCEs were authorised to use advanced X-ray equipment for medical purposes during 2005-07. Follow-up inspections with 14 HCEs were carried out during 2007-09. Main topics for the inspections were those requirements identified as most challenging to implement in the authorisation process. Totally, 192 non-conformities with the regulation were revealed during the authorisation process. The inspections revealed that 93 % of the inspected HCEs had non-conformities with the regulation. Most common non-conformities dealt with skills in radiation protection, establishment of local diagnostic reference levels, access to medical physicists and performance of quality control of X-ray equipment. Inspections are an effective tool for implementation of regulation the requirements at the HCEs, thus improving radiation protection awareness. (authors)

  4. Project Radiation Protection - East

    International Nuclear Information System (INIS)

    The Swedish Government has allocated SEK 11 million for support in radiation protection to Central and Eastern Europe, particularly the Baltic states and Russia. The Swedish Radiation Protection Institute is in charge of this program, commonly referred to as Radiation Protection - East. The support will be given in the form of consultancy services, measurement equipment, computer hardware and software, etc. Some 40 projects have been initiated and prioritized in discussions with relevant parties in the East, and bilateral protocols on cooperation have been signed. Most of the projects are in progress and some have already been finalized. An introduction to the aims, organization and practical experience of the work is given in this report, together with a presentation of all ongoing and planned projects. A financial statement and a quick glance at suggested future projects conclude the report

  5. Radiation protection and instrumentation

    Science.gov (United States)

    Bailey, J. V.

    1975-01-01

    Radiation was found not to be an operational problem during the Apollo program. Doses received by the crewmen of Apollo missions 7 through 17 were small because no major solar-particle events occurred during those missions. One small event was detected by a radiation sensor outside the Apollo 12 spacecraft, but no increase in radiation dose to the crewmen inside the spacecraft was detected. Radiation protection for the Apollo program was focused on both the peculiarities of the natural space radiation environment and the increased prevalence of manmade radiation sources on the ground and onboard the spacecraft. Radiation-exposure risks to crewmen were assessed and balanced against mission gain to determine mission constraints. Operational radiation evaluation required specially designed radiation detection systems onboard the spacecraft in addition to the use of satellite data, solar observatory support, and other liaison. Control and management of radioactive sources and radiation-generating equipment was important in minimizing radiation exposure of ground-support personnel, researchers, and the Apollo flight and backup crewmen.

  6. National congress of radiation protection

    International Nuclear Information System (INIS)

    The congress of radiation protection tackled different areas of radiation protection. The impact of ionizing radiations on environment coming from radioactive activities. The biological radiation effects, the dosimetry, the different ways of doing relative to radiation protection,the risks analysis and the communications with populations, information about accidents and the lessons learned from them are included in this congress. (N.C.)

  7. Foundations for radiation protection

    International Nuclear Information System (INIS)

    Full text; In 1996, the IAEA published the latest edition of the International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources (Basic Safety Standards or BSS) comprising basic requirements to be filled in all activities involving radiation exposure. The standards define internationally harmonized requirements and provide practical guidance for public authorities and services, employers and workers, specialized radiation protection bodies, enterprises and health and safety communities. In the same year, the IAEA, through the technical cooperation programme, launched the Model Project on Upgrading Radiation Protection Infrastructure, a global initiative designed to help Member States establish the infrastructure needed to adhere to the BSS. To address the complexity of this task, the radiation protection team identified key elements, known as Thematic Safety Areas. These are: 1. Legislative Framework and Regulatory Infrastructure, Draft and put into effect radiation protection laws and regulations and establish and empower a national regulatory authority. 2. Occupational Exposure Control Protect the health and safety of each individual who faces the risk of radiation exposure in the workplace through individual and workplace monitoring programmes, including dose assessment, record keeping of doses and quality management. 3. Medical Exposure Control: Develop procedures and activities to control the exposure of patients undergoing diagnosis and/or treatment via diagnostic and interventional radiology, nuclear medicine or radiotherapy through staff training, provision of basic quality control equipment, and the establishment of quality assurance programmes. 4. Public and Environmental Exposure Control: Develop means to protect both the public and the environment including: a) programmes to register, inventory and provide safe storage of unused radioactive sources and material; b) procedures to control and safely manage radioactive waste; c) mechanisms to ensure that foodstuffs and other consumer goods being exported/imported comply with national safety standards; and d) tools to monitor radiation levels in the environment (i.e., in air, soil and water). 5. Emergency Preparedness and Response: Mitigate the impact of radiological and/or nuclear emergencies by developing capabilities for preparedness and response through a national emergency plan. This includes training qualified personnel, ensuring technical capabilities are in place and allocating sufficient resources to facilitate an efficient response. (IAEA)

  8. International radiation protection standards

    International Nuclear Information System (INIS)

    Working Group 4 studied the following question: 'Should the various interested countries work more closely together with a view to seek more uniform a national regulatory solution.' The countries should give attention to the following items that may be the object of harmonized approaches: Itinerant workers, production and distribution of irradiated foodstuffs, consumer goods, radiation protection and training, and manufacture and use of radiation apparatus. (CW)

  9. Radiation protection for nurses

    International Nuclear Information System (INIS)

    Various aspects of radiation protection relevant to nurses are presented. The different radioisotopes used in internal radiotherapy and scintiscanning techniques and any necessary precautions which should be observed when nursing these patients are described. General information is also given on nuclear and atomic terminology, the physical half-life of radioisotopes, radiation dose as a function of distance, shielding, film badges and the maximum permissible dose. (U.K.)

  10. Radiation protection optimization of workers

    International Nuclear Information System (INIS)

    This report presents the contribution of CEPN (study center on protection evaluation in nuclear area) to the Days of the French Radiation Protection Society (SFRP) on optimization of workers radiation protection in electronuclear, industrial and medical areas

  11. The principles of radiation protection

    International Nuclear Information System (INIS)

    The aim of radiation protection is to avoid or to reduce the risks linked to ionizing radiation. In order to reduce these risks, the radiation protection uses three great principles: justification, optimization and limitation of radiation doses. to apply these principles, the radiation protection has regulatory and technical means adapted to three different categories of people: public, patients and workers. The nuclear safety authority elaborates the regulation, and carries out monitoring of the reliable application of radiation protection system. (N.C.)

  12. Environmental radiation protection standards

    International Nuclear Information System (INIS)

    The principles involved in the setting of radiological protection standards are reviewed, and the differences in procedures used by various countries in implementing them are outlined. Standards are taken here to mean the specific numerical limits relating to radiation doses to people or to amounts of radioactive material released into the environment. (author)

  13. Radiation protecting glove

    International Nuclear Information System (INIS)

    The radiation protecting gloves of the present invention comprise a neutron shielding material made of natural or synthetic rubber incorporated with neutron shielding materials. For the neutron shielding materials, those having first neutron moderating effect and those having thermal neutron absorbing effect can be used properly. As the materials having first neutron moderating effect, gadolinium oxide power, zirconium hydride powder or the like is used. Further, as the thermal neutron absorbing material, boron carbide powder or the like is used. As the natural or synthetic rubber for the substrate, neoprene rubber, butadiene rubber or hyperlon rubber may be used for instance. Thus, a radiation protection gloves having neutron protecting function can be obtained. (I.N.)

  14. Guidelines for radiation protection

    International Nuclear Information System (INIS)

    Guidelines for radiation protection originate from numerous federal, state, and local agencies. Guidelines in radiation protection can be either mandatory or advisory. Regulations by federal, state, and local governments for the use of radioactive materials define operating practices. Adherence to these regulations is required by law and there are penalties for noncompliance. Regulations generally constitute the minimum requirements for good practice and are usually supplemented by less formal recommendations from regulatory agencies and advisory groups. The regulatory guides published by the Nuclear Regulatory Commission (NRC) and by radiation control groups of agreement states are intended to assist the user of radioactive material in maintaining compliance with regulations. These guides recommend good practice but are not mandatory in that the user can propose alternatives to the regulatory agencies to meet the regulations. Many groups serve in an advisory capacity in formulating reports and recommendations for the safe use of radioactive material. The most prominent and influential among these are the National Council in Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). Often the recommendations of these advisory groups evolve into either regulatory guidelines or regulations for the use of radioactive materials. At the present time, the backbone of the Nuclear Regulatory Commission's regulations relating to the medical use of radionuclides, Standards for Protection Against Radiation (10CFR20) and Human Use of Byproduct Material (10CFR35), are undergoing extensive review with major revisions anticipated within the very near future. These proposed changes could have a significant impact on the practice of nuclear medicine

  15. Fundamentals of health physics for the radiation-protection officer

    International Nuclear Information System (INIS)

    The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs

  16. Fundamentals of health physics for the radiation-protection officer

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, B.L.; Traub, R.J.; Gilchrist, R.L.; Mann, J.C.; Munson, L.H.; Carbaugh, E.H.; Baer, J.L.

    1983-03-01

    The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs. (ACR)

  17. Radiation Protection: Introduction

    International Nuclear Information System (INIS)

    As a federal research Centre, SCK-CEN has the statutory assignment to give priority to research related to safety, radioactive waste management, protection of man and environment, management of fissile and other strategic materials and social implications as part of the pursuit of sustainable development and to develop and gather the necessary knowledge and spread this knowledge through formation and communication. At the Division of Radiation Protection at SCK-CEN we are therefore active to maintain and enhance knowledge and expertise in each aspect of radiation protection: we study the risk of exposure - the way that radioactive materials spread in the environment and the potential for human contact - and the risk from exposure - how radiation affects human health; we perform health physics measurements; we are involved in emergency planning and preparedness and support to risk governance and decision taking. These activities are supported by radiation specific analysis and measurement techniques. These activities are not performed in isolation but in context of national and international collaborations or demands

  18. Enhancing radiation protection

    International Nuclear Information System (INIS)

    When a new radiotherapy center in Gezira, Sudan, delivers its first therapeutic dose to a cancer patient, two things happen: A young man begins to regain his health and looks forward to being better able to support his family and contribute to his community; and a developing nation realizes an important step toward deriving the social and economic benefits of nuclear science. The strategic application of nuclear technology in particular fields- human health, industry, food and agriculture, energy, water resources and environmental protection - has enormous potential to help shape the future of developing countries. But past radiological incidents, several of which involved high levels of exposure or death (Bolivia, Brazil, Cost Rica, Georgia, Ghana, Morocco, Panama and Thailand), underscore the inherent and very serious risks. For this reason, the IAEA's Departments of Technical Cooperation and Nuclear Safety and Security partner closely, particularly in the area of radiation protection. They strive to consider every minute detail in the equation that brings together radiation sources, modern technologies, people and the environment. Launched in 1996, the Model Project on Upgrading Radiation Protection Infrastructure (the Model Project) aimed to help Member States: achieve capacities that underpin the safe and secure application of nuclear technologies; establish a legislative framework and regulatory infrastructure; develop exposure control mechanisms to protect workers, medical patients, the public and the environment; and achieve preparedness and planned response to radiological emergencies. In fact, the hospital scenario above typically marks several years of intense collaboration amongst scientists, legislators, regulators, politicians and administrators from both Member States and the IAEA, orchestrated and aided by regional managers and technical experts from the IAEA. As radiation protection team members can attest, every application of nuclear technology carries special considerations and unique challenges. And each country is equally distinct in terms of needs, technical capacity, availability of financial resources and adequately trained personnel (at both regulatory and user organizations), and overall infrastructure

  19. Radiological protection survey results about radiodiagnosis protection practices in Cuba

    International Nuclear Information System (INIS)

    In order to identify radiation protection current situation in national X-ray diagnostic practice , the State (cuban) Supervision System for Radiation and Nuclear Safety carried out in 1992 a survey which was planned for projection of future regulatory activities in this field. Survey covers the most important aspects related to radiation protection of occupationally exposed workers, patients and general population. Surveyed sample included a total of 52 X-ray units, sited in 7 dental clinics, 2 polyclinics and 13 hospitals, from 7 provinces of the country. Results showed that the organization of radiation protection in terms of personnel specially designated to carry out surveillance and control activities and level of documentation is deficient. Survey evidenced the general lack of safety and quality culture among technologists and radiologists which is mainly reflected in non regular application of basic patient protection measures (shielding, collimation, use of proper filtration among others) and non regular execution of basic quality inspection of employed radiographic systems. (authors). 4 refs., 1 fig

  20. Protection from Space Radiation

    Science.gov (United States)

    Tripathi, R. K.; Wilson, J. W.; Shinn, J. L.; Singleterry, R. C.; Clowdsley, M. S.; Cucinotta, F. A.; Badhwar, G. D.; Kim, M. Y.; Badavi, F. F.; Heinbockel, J. H.

    2000-01-01

    The exposures anticipated for our astronauts in the anticipated Human Exploration and Development of Space (HEDS) will be significantly higher (both annual and carrier) than any other occupational group. In addition, the exposures in deep space result largely from the Galactic Cosmic Rays (GCR) for which there is as yet little experience. Some evidence exists indicating that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate [1,2]. The purpose of this presentation is to evaluate our current understanding of radiation protection with laboratory and flight experimental data and to discuss recent improvements in interaction models and transport methods.

  1. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure.

    Directory of Open Access Journals (Sweden)

    Olav Christophersen

    2012-02-01

    Full Text Available There are several animal experiments showing that high doses of ionizing radiation lead to strongly enhanced leakage of taurine from damaged cells into the extracellular fluid, followed by enhanced urinary excretion. This radiation-induced taurine depletion can itself have various harmful effects (as will also be the case when taurine depletion is due to other causes, such as alcohol abuse or cancer therapy with cytotoxic drugs, but taurine supplementation has been shown to have radioprotective effects apparently going beyond what might be expected just as a consequence of correcting the harmful consequences of taurine deficiency per se. The mechanisms accounting for the radioprotective effects of taurine are, however, very incompletely understood. In this article an attempt is made to survey various mechanisms that potentially might be involved as parts of the explanation for the overall beneficial effect of high levels of taurine that has been found in experiments with animals or isolated cells exposed to high doses of ionizing radiation. It is proposed that taurine may have radioprotective effects by a combination of several mechanisms: 1 during the exposure to ionizing radiation by functioning as an antioxidant, but perhaps more because it counteracts the prooxidant catalytic effect of iron rather than functioning as an important scavenger of harmful molecules itself, 2 after the ionizing radiation exposure by helping to reduce the intensity of the post-traumatic inflammatory response, and thus reducing the extent of tissue damage that develops because of severe inflammation rather than as a direct effect of the ionizing radiation per se, 3 by functioning as a growth factor helping to enhance the growth rate of leukocytes and leukocyte progenitor cells and perhaps also of other rapidly proliferating cell types, such as enterocyte progenitor cells, which may be important for immunological recovery and perhaps also for rapid repair of various damaged tissues, especially in the intestines, and 4 by functioning as an antifibrogenic agent. A detailed discussion is given of possible mechanisms involved both in the antioxidant effects of taurine, in its anti-inflammatory effects and in its role as a growth factor for leukocytes and nerve cells, which might be closely related to its role as an osmolyte important for cellular volume regulation because of the close connection between cell volume regulation and the regulation of protein synthesis as well as cellular protein degradation. While taurine supplementation alone would be expected to exert a therapeutic effect far better than negligible in patients that have been exposed to high doses of ionizing radiation, it may on theoretical grounds be expected that much better results may be obtained by using taurine as part of a multifactorial treatment strategy, where it may interact synergistically with several other nutrients, hormones or other drugs for optimizing antioxidant protection and minimizing harmful posttraumatic inflammatory reactions, while using other nutrients to optimize DNA and tissue repair processes, and using a combination of good diet, immunostimulatory hormones and perhaps other nontoxic immunostimulants (such as beta-glucans for optimizing the recovery of antiviral and antibacterial immune functions. Similar multifactorial treatment strategies may presumably be helpful in several other disease situations (including severe infectious diseases and severe asthma as well as for treatment of acute intoxications or acute injuries (both mechanical ones and severe burns where severely enhanced oxidative and/or nitrative stress and/or too much secretion of vasodilatory neuropeptides from C-fibres are important parts of the pathogenetic mechanisms that may lead to the death of the patient. Some case histories (with discussion of some of those mechanisms that may have been responsible for the observed therapeutic outcome are given for illustration of the likely validity of these concepts and their relevance both for treatment of severe infection

  2. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure.

    Science.gov (United States)

    Christophersen, Olav Albert

    2012-01-01

    There are several animal experiments showing that high doses of ionizing radiation lead to strongly enhanced leakage of taurine from damaged cells into the extracellular fluid, followed by enhanced urinary excretion. This radiation-induced taurine depletion can itself have various harmful effects (as will also be the case when taurine depletion is due to other causes, such as alcohol abuse or cancer therapy with cytotoxic drugs), but taurine supplementation has been shown to have radioprotective effects apparently going beyond what might be expected just as a consequence of correcting the harmful consequences of taurine deficiency per se. The mechanisms accounting for the radioprotective effects of taurine are, however, very incompletely understood. In this article an attempt is made to survey various mechanisms that potentially might be involved as parts of the explanation for the overall beneficial effect of high levels of taurine that has been found in experiments with animals or isolated cells exposed to high doses of ionizing radiation. It is proposed that taurine may have radioprotective effects by a combination of several mechanisms: (1) during the exposure to ionizing radiation by functioning as an antioxidant, but perhaps more because it counteracts the prooxidant catalytic effect of iron rather than functioning as an important scavenger of harmful molecules itself, (2) after the ionizing radiation exposure by helping to reduce the intensity of the post-traumatic inflammatory response, and thus reducing the extent of tissue damage that develops because of severe inflammation rather than as a direct effect of the ionizing radiation per se, (3) by functioning as a growth factor helping to enhance the growth rate of leukocytes and leukocyte progenitor cells and perhaps also of other rapidly proliferating cell types, such as enterocyte progenitor cells, which may be important for immunological recovery and perhaps also for rapid repair of various damaged tissues, especially in the intestines, and (4) by functioning as an antifibrogenic agent. A detailed discussion is given of possible mechanisms involved both in the antioxidant effects of taurine, in its anti-inflammatory effects and in its role as a growth factor for leukocytes and nerve cells, which might be closely related to its role as an osmolyte important for cellular volume regulation because of the close connection between cell volume regulation and the regulation of protein synthesis as well as cellular protein degradation. While taurine supplementation alone would be expected to exert a therapeutic effect far better than negligible in patients that have been exposed to high doses of ionizing radiation, it may on theoretical grounds be expected that much better results may be obtained by using taurine as part of a multifactorial treatment strategy, where it may interact synergistically with several other nutrients, hormones or other drugs for optimizing antioxidant protection and minimizing harmful posttraumatic inflammatory reactions, while using other nutrients to optimize DNA and tissue repair processes, and using a combination of good diet, immunostimulatory hormones and perhaps other nontoxic immunostimulants (such as beta-glucans) for optimizing the recovery of antiviral and antibacterial immune functions. Similar multifactorial treatment strategies may presumably be helpful in several other disease situations (including severe infectious diseases and severe asthma) as well as for treatment of acute intoxications or acute injuries (both mechanical ones and severe burns) where severely enhanced oxidative and/or nitrative stress and/or too much secretion of vasodilatory neuropeptides from C-fibres are important parts of the pathogenetic mechanisms that may lead to the death of the patient. Some case histories (with discussion of some of those mechanisms that may have been responsible for the observed therapeutic outcome) are given for illustration of the likely validity of these concepts and their relevance both for treatment of severe infections and n

  3. Regulations concerning radiation protection and survey; Donnees de la surveillance et regles qui en resultent en matiere de protection contre les rayonnements

    Energy Technology Data Exchange (ETDEWEB)

    Duhamel; Lavie; Fitoussi [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The many and always increasing applications of Atomic Energy for peaceful uses set many safety and security problems relatively to the workers, populations, and locating of the sites in general. A comparative study of the radiation hazards to which the people working in the 'Commissariat a l'energie atomique' installations were exposed during 1957 and the results obtained concerning individual and collective safety and security were extremely satisfactory owing to a continuous control and supervision. 2. However a few contamination and irradiation incidents - exposed subsequently as well as the way they were dealt with - show the necessity of a circumstantial regulation inside of an atomic center to establish the responsibility of the service in charge of the control of the radiation and the responsibility of the services using radioactive products with regard to contamination by radioactive materials. 3. Abstract of the different practical safety and security regulations concerning holding, manipulation, transport and stocking of radioactive materials. Pursuant to the recommendations of the International Commission on Radiologic Protection, the radioelements are classified according to the danger that can occur from them in comparison with the Pu with regard to: - radioactive noxiousness; specific activity per unit of mass; contamination hazards. 4. The service in charge of radiation protection plays the important part of a technical adviser for the construction of specialized laboratories and sees to the keeping of protection regulations. 5. Data essential to radiation protection are given to the people using radioactive materials; particularly: - a table of the radioisotopes and the hazards occurring from them; - radiation hazards regarding {gamma} ray emitted by irradiated Pu; - radiation hazards regarding {gamma} ray emitted by irradiated Th. 6. As the hazards occasioned by irradiated uranium have already been studied, the case of a low and total irradiation will only be considered with regard to recuperation of uranium after simple machining. (author) [French] 1. L'utilisation croissante de l'energie nucleaire sous toutes ses formes a des fins pacifiques pose des problemes de securite vis-a-vis des travailleurs, des populations et des sites en general. Une etude comparee des risques d'irradiation auxquels le personnel du Commissariat a l'Energie atomique (CEA) a ete expose au cours de l'annee 1957 et des resultats du controle des radiations par les moyens de detection collectifs ou individuels montre que les installations du CEA ont une influence negligeable sur la sante, en raison de la surveillance exercee. 2. Cependant, quelques incidents de contamination et d'irradiation - sommairement indiques ainsi que la maniere dont ils ont ete regles - rendent necessaire l'elaboration d'une reglementation precise definissant les responsabilites respectives, au sein d'un etablissement nucleaire, des services utilisateurs et du Service charge de la Protection contre les Radiations, en matiere de prevention de la contamination. 3. Un ensemble coherent de regles pratiques de prevention et de protection relatives a la detention, la manipulation, le transport et le stockage de sources radioactives scellees ou non scellees, est presente. A cette fin, a partir des recommandations de la Commission Internationale de Protection Radiologique et compte tenu: - de leur nocivite radioactive; de leur activite specifique par unite de masse et du risque de contamination; les radioelements ont ete classes suivant le danger qu'ils presentent par rapport au plutonium. 4. Le Service charge de la Protection contre les Radiations intervient comme conseiller des la conception des laboratoires specialises et veille ensuite a ce que les prescriptions reglementaires de securite soient observees. 5. Des donnees elaborees, indispensables a la protection contre les rayonnements, sont mises a la disposition des utilisateurs en particulier: - table des radio-isotopes et des dangers associes,

  4. Radiation protection and safe working

    International Nuclear Information System (INIS)

    If hazardous effects caused by ionising radiation are likely to occur in an industrial plant, the person responsible for radiation protection has to assign radiation protection specialists. Radiation protection specialist and safety expert work together in the platn. An efficient co-operation of these two is necessary for obtaining a real total view of the conventional dangers and the dangers due to radiation. (orig.)

  5. The national radiation protection infrastructure

    International Nuclear Information System (INIS)

    The state system of radiation protection is still being created after Lithuania regained its independancy and in connection with recommendations laid in the ICRP-60 publication and requirements of legislation of European Community. A new regulation institutions was established and a number of laws and regulations related to radiation protection was prepared. The Radiation Protection Centre of Ministry of Health is the regulatory authority responsible for radiation protection of public and of workers using sources of ionizing radiation in Lithuania. A new Radiation Protection Law, Nuclear Energy Law, Radioactive Waste Management Law and different regulations was approved. Preparation of legislation, creation of state system of radiation protection and its upgrading allow to presume that the necessary level of radiation protection is to be achieved. (au)

  6. Radiation protection infrastructure in Iran

    International Nuclear Information System (INIS)

    The protection of human beings, their progeny and their environment against harmful effects of radiation requires the enforcement of rules, regulations and standards by a national competent authority on radiation protection. In the Islamic Republic of Iran, the Radiation Protection Act of 1989 has empowered the Atomic Energy Organization of Iran and in turn its National Radiation Protection Department as a competent authority to regulate and to control the entire range of radiation source applications. The Act has evolved from the radiation protection infrastructure in the country and it has filled the gaps in the Act of 1974. The paper presents and discusses the state of the radiation protection infrastructure in Iran, including regulatory provisions, the organizational structure, licensing and inspection, responsibilities, education and training, as well as some highlights of research, development, services and experiences gained in the development of the radiation protection infrastructure and organization. (author). 25 refs, 2 figs

  7. Some perspectives on radiation protection

    International Nuclear Information System (INIS)

    A brief review of the history and organizational structure of the NCRP is given. Summaries are given of a number of NCRP radiation protection guides dealing with hazards from 85Kr, radiation exposures from consumer products, basic radiation protection criteria, and doses from natural background radiation

  8. Radiation protection, optimization and justification

    International Nuclear Information System (INIS)

    Nine articles in the field of radiation protection relative to the medical examinations concern the new legislation in radiation protection, the optimization of this one in order to reduce the radiation doses delivered to the patients, the side effects induced by irradiation and to give an evaluation of the medical exposure of french population to ionizing radiations. (N.C.)

  9. Medical imaging: progress in radiation protection

    International Nuclear Information System (INIS)

    A survey is given on possible radiation risks and on state and efficiency of radiation protection measures at all imaging procedures used today in medicine. In particular, examinations of children are dealt with. Also, the controversial dispute about the planned mammographic screening is discussed. With regard to the technical equipment, the use and advantage of modern digital detectors is shown. (orig.)

  10. On ethical issues in radiation protection. Radiation protection recommendations and standards seen from an ethical perspective

    International Nuclear Information System (INIS)

    International radiation protection recommendations and standards of the ICRP, the IAEA, the European Union and the ILO are surveyed from an ethical perspective. The authors come to the conclusion that the insights of ethical theories provide a number of ways in which current recommendations and standards for radiation protection could improve. (orig.)

  11. Radiation protection training in Switzerland

    International Nuclear Information System (INIS)

    An increasing number of radiation protection experts and of professionally exposed workers is temporarily or permanently working in a country other than the one where they received their radiation protection education or training. They all face the problem and the difficulties of recognition of radiation protection training programs by other countries. For this reason the German-Swiss Radiation Protection Association (Fachverband fuer Strahlenschutz; FS) made a proposal to IRPA for an action on the mutual recognition of radiation protection education in Europe. In a first step contacts were made with two other European Associations of France and UK in order to establish a joint working group. (orig.)

  12. Radiation protection - a perspective

    International Nuclear Information System (INIS)

    Both the natural and manmade sources of radiation contribute to the dose received by the occupational workers and the members of public. During last century the number of manmade sources have increased considerably. Ionising radiations emitted by these sources have been put to large number of uses in the field of medicine, industry, agriculture and research. Exposure to radiation can lead to both deterministic and stochastic effects. Though it is difficult to quantify the risk due to exposure to low levels of radiation, however because of the vast data available for high exposures, it is possible to have some idea of the risk. These data have helped in deciding the dose limits for both the workers and members of public. Exposure can be both internal and external. Different methods are used to estimate internal dose and external dose. Philosophy of radiation protection as envisaged by ICRP is discussed in the paper. Various methods of protection, which will help in implementing the concept of ALARA, are outlined. Immediate biological effects of radiation depend upon the quantum of dose received. Effects at various levels of doses are given in the paper. Acute radiation syndrome is also discussed in the paper. Symptoms of low doses chronic exposure may not manifest initially but can be seen after a long latent period, in the form of cancer, though with a very low probability. As per ICRP risk/Sv for excess probability of fatal cancer for workers is 4.00 x 10-2 and for public is 5.00 x 10-2. A nuclear emergency may lead to exposure of persons and contamination of the area. Various types emergencies are described in the paper. In an emergency there are various pathways through which exposure can take place. A detailed emergency preparedness plan should include details of the monitoring to be followed, assessment of the situation as it develops, procedure for communication with various agencies, plans for evacuation, etc. Establishment of an emergency response center and formation of various response teams are important part of the emergency preparedness programme. (author)

  13. Occupational radiation protection software

    International Nuclear Information System (INIS)

    This paper presents a reflection on the basic essentials of a Radiation Work Permit (RWP). Based on the latest WANO Recommendations, this paper considers the RWP as a complete process rather than a simple administrative procedure. This process is implemented via software which is also presented in this paper. The software has been designed to achieve the following objectives: - To configure the radiological map of the plant. To plan radiological surveillance, to input data, to update radiological signposting and mandatory protective clothing in each area of the station. All this information can be checked from any personnel computer connected to a network. - To collect radiological data by means of a palmtop (PDA) and to upload it to a personnel computer, thereby speeding up the job and reducing human errors. - To implement the RWP by allowing on-line consultation of the permitted individual doses of the workers and the planned collective dose for each job. The software also supplies the radiological information to the workers. - To collect and arrange pictures, maps and sketches of equipment placed in rooms or in areas of the plant. - To allow the software to be used in real time from different workstations. - High reliability and speed of working. - Flexible data enquiry. The software provides a number of standard data enquiries such as numbers of workers on each job and their individual dose received...etc. It also allows data to be exported to other well-known software applications such as Excel and Access for further data analysis. The software has been designed by radiation protection professionals and developed by computer programmers who were integrated into the radiological work environment. The software would fulfill Occupational Radiation Protection Department requirements. (author)

  14. Review of the results of routine radiation protection surveys of radiography-only diagnostic x-ray machines, February 1987-May 1991

    International Nuclear Information System (INIS)

    The results are given of routine radiation protection surveys performed during the period February 1987-May 1991 by National Radiation Laboratory (NRL) health physicists on 432 radiography-only x-ray machines used in medical diagnosis and 92 used in chiropractic diagnosis. Compliance was high with the more explicit radiation protection requirements of the NRL codes of safe practice for the use of x-rays in diagnosis, viz, x-ray beam filtration, timer function, x-ray tube leakage, protective barrier and x-ray room shieldings. However, for those aspects of the codes dealing with x-ray machine performance there were less satisfactory results. While compliance for reproducibility of radiation output was >99%, it fell to 91% for accuracy of exposure timers, to 84% for linearity of x-ray output with adjacent mA and mAs settings, and from 70% for kilovoltage calibrations of multi-pulse x-ray machines to 54% for kilovoltage calibrations of 1- and 2- pulse machines. (author). 24 refs., 15 tabs., 5 figs

  15. Survey and evaluation of the external research and development programme 1977-1983 of the Swedish Radiation Protection Institute

    International Nuclear Information System (INIS)

    A review of the external research programme of SSI is undertaken. The main research programme is in this report divided into five subprogrammes according to the main programmes of the Institute. This report covers research projects reported 1977-1983. An evaluation of the impact of the R and D programme is included in the report. The external R and D research programme of SSI has had an important impact on the radiation protection work in Sweden. The methods for evaluation of research programmes are also discussed in the report

  16. Radiation protection considerations

    CERN Document Server

    Adorisio, C; Urscheler, C; Vincke, H

    2015-01-01

    This chapter summarizes the legal Radiation Protection (RP) framework to be considered in the design of HiLumi LHC. It details design limits and constraints, dose objectives and explains how the As Low As Reasonably Achievable (ALARA) approach is formalized at CERN. Furthermore, features of the FLUKA Monte Carlo code are summarized that are of relevance for RP studies. Results of FLUKA simulations for residual dose rates during Long Shutdown 1 (LS1) are compared to measurements demonstrating good agreement and providing proof for the accuracy of FLUKA predictions for future shutdowns. Finally, an outlook for the residual dose rate evolution until LS3 is given.

  17. Radiation protection and society

    International Nuclear Information System (INIS)

    The radiological protection of population, living on the contaminated territories, is actual 10 years after the Chernobyl accident. Eventually, the whole system of countermeasures application is aimed to protect society as a complex community of individuals . The variety of levels of society, i.e. family, settlement on the whole, can be considered as certain harmonic systems differing in their public consciousness levels and lifestyles, this explain the difference in their 'behaviour' in terms of radiation protection and attitude to the information obtained. Each level of society possesses a certain degree of liberty of choice, that finally influence the magnitude and the character of dose distribution within certain population groups. In general, the dose distribution in the settlement can be explained only on the bases of 'family' analysis. This concerns the rural settlement as a society too. All rural settlement can be divided into two or three classes: with low, high and intermediate social features. Small settlements (< 100 persons), where the advanced in age persons with low material income and high degree of natural economy are applied to the first class. This results in higher doses (2-3 fold), than in the settlements with higher social level. The analysis shows that in socially 'waning' settlements the countermeasures are less efficient and the term of their action is shorter. (this class is the largest, About 50% among all the rural settlements). Due to the deterioration of the economic situation in the Republic of Belarus after 1991-1992 resulted in the increase of doses mainly in the habitants first of all of this class of settlements. It seems problematic to increase countermeasures efficiency in this class of settlements without the refuse of the accustomed lifestyle and radical improvement of social-demographic and economic conditions. The present material shows the necessity of the differential approach based on 'society-analysis' in the determination of the strategy and tactics of radiological protection of the rural population. (authors)

  18. Pregnancy and Radiation Protection

    Science.gov (United States)

    Gerogiannis, J.; Stefanoyiannis, A. P.

    2010-01-01

    Several modalities are currently utilized for diagnosis and therapy, by appropriate application of x-rays. In diagnostic radiology, interventional radiology, radiotherapy, interventional cardiology, nuclear medicine and other specialties radiation protection of a pregnant woman as a patient, as well as a member of the operating personnel, is of outmost importance. Based on radiation risk, the termination of pregnancy is not justified if foetal doses are below 100 mGy. For foetal doses between 100 and 500 mGy, a decision is reached on a case by case basis. In Diagnostic Radiology, when a pregnant patient takes an abdomen CT, then an estimation of the foetus' dose is necessary. However, it is extremely rare for the dose to be high enough to justify an abortion. Radiographs of the chest and extremities can be done at any period of pregnancy, provided that the equipment is functioning properly. Usually, the radiation risk is lower than the risk of not undergoing a radiological examination. Radiation exposure in uterus from diagnostic radiological examinations is unlikely to result in any deleterious effect on the child, but the possibility of a radiation-induced effect can not be entirely ruled out. The effects of exposure to radiation on the foetus depend on the time of exposure, the date of conception and the absorbed dose. Finally, a pregnant worker can continue working in an x-ray department, as long as there is reasonable assurance that the foetal dose can be kept below 1 mGy during the pregnancy. Nuclear Medicine diagnostic examinations using short-lived radionuclides can be used for pregnant patient. Irradiation of the foetus results from placental transfer and distribution of radiopharmaceuticals in the foetal tissues, as well as from external irradiation from radioactivity in the mother's organ and tissues. As a rule, a pregnant patient should not undergo therapy with radionuclide, unless it is crucial for her life. In Radiotherapy, the patient, treating oncologist, other team and family members should carefully discuss for the decision of abortion. Important factors must be considered such as the stage and aggressiveness of the tumour, the location of the tumour, the stage of pregnancy, various therapies etc.

  19. Pregnancy and Radiation Protection

    International Nuclear Information System (INIS)

    Several modalities are currently utilized for diagnosis and therapy, by appropriate application of x-rays. In diagnostic radiology, interventional radiology, radiotherapy, interventional cardiology, nuclear medicine and other specialties radiation protection of a pregnant woman as a patient, as well as a member of the operating personnel, is of outmost importance. Based on radiation risk, the termination of pregnancy is not justified if foetal doses are below 100 mGy. For foetal doses between 100 and 500 mGy, a decision is reached on a case by case basis. In Diagnostic Radiology, when a pregnant patient takes an abdomen CT, then an estimation of the foetus' dose is necessary. However, it is extremely rare for the dose to be high enough to justify an abortion. Radiographs of the chest and extremities can be done at any period of pregnancy, provided that the equipment is functioning properly. Usually, the radiation risk is lower than the risk of not undergoing a radiological examination. Radiation exposure in uterus from diagnostic radiological examinations is unlikely to result in any deleterious effect on the child, but the possibility of a radiation-induced effect can not be entirely ruled out. The effects of exposure to radiation on the foetus depend on the time of exposure, the date of conception and the absorbed dose. Finally, a pregnant worker can continue working in an x-ray department, as long as there is reasonable assurance that the foetal dose can be kept below 1 mGy during the pregnancy. Nuclear Medicine diagnostic examinations using short-lived radionuclides can be used for pregnant patient. Irradiation of the foetus results from placental transfer and distribution of radiopharmaceuticals in the foetal tissues, as well as from external irradiation from radioactivity in the mother's organ and tissues. As a rule, a pregnant patient should not undergo therapy with radionuclide, unless it is crucial for her life. In Radiotherapy, the patient, treating oncologist, other team and family members should carefully discuss for the decision of abortion. Important factors must be considered such as the stage and aggressiveness of the tumour, the location of the tumour, the stage of pregnancy, various therapies etc.

  20. Radiation protection and environment

    International Nuclear Information System (INIS)

    The ruling on Basic Nuclear Installations on the one hand applies to the larger production, storage or application units, of which France possesses a few tens. These regulations, set up by the Industry Ministry, are interministerial and lay down strict instructions for the control of radiation effects on the environment at the project, building then running stages of the facilities concerned. The legislation on Classified Installations on the other hand concerns large facilities other than basic nuclear installations. For certain of these facilities it calls for an administrative working permit in which are set down regulations intended to protect personnel and environment; for other smaller facilities it provides for the respect of pre-established rules. Special mention is made of the technical aspects (development of techniques and know-how) and economic aspects (realism, cost-efficiency arbitration) expressed by these regulations

  1. Radiation risks and radiation protection at CRNL

    International Nuclear Information System (INIS)

    Radiation exposure is an occupational hazard at CRNL. The predicted health effects of low levels of radiation are described and compared with other hazards of living. Data related to the health of radiation workers are also considered. Special attention is given to the expected effects of radiation on the unborn child. Measures taken to protect CRNL employees against undue occupational exposure to radiation are noted

  2. Radiation protection and quality management

    International Nuclear Information System (INIS)

    The book contains the following contributions: Radiation protection: an aspect of the governmental assignment to guarantee and regulate the public safety and law and order; the regulation amendment concerning X radiation and the new radiation protection ordinance; biological radiation effects; dosimetry; modern diagnostic radiology; the vindicatory indication; experiences of applied radiation protection in X-ray diagnostics: multislice computer tomography, X-ray examination and angiography; networking imaging; vindicatory indication in radiotherapy: for malign diseases and for benign diseases; medical appointments; quality management in health care; quality management in practice and clinics; personal management in health care - a challenging assignment under the aspects of resource control and quality. Appendices: Regulation concerning X radiation protection and remarks; regulation concerning ionising radiation protection: excerpts and remarks

  3. Health protection of radiation workers

    International Nuclear Information System (INIS)

    Essential information on the health protection of radiation workers which has accumulated since the advent of nuclear fission thirty years ago is presented in simple terms. Basic facts on ionizing radiation, its measurement, and dosimetry are presented. Acute and chronic somatic and genetic effects are discussed with emphasis on prevention. Radiation protection standards and regulations are outlined, and methods for maintaining these standards are described. Diagnosis and treatment of radiation injury from external radiation and/or internally deposited radionuclides is considered generally as well as specifically for each radioisotope. The medical supervision of radiation workers, radiation accidents, atomic power plants, and medicolegal problems is also covered. (853 references) (U.S.)

  4. The International radiation protection: the national authorities of radiation protection

    International Nuclear Information System (INIS)

    In October 2005, in the issue number 167 of 'Controle' dedicated to the International actors in radiation protection (ICRU, UNSCEAR, ICRP, IAEA...), we observed an international relative consensus on the basic concepts of radiation protection although these organisations act quite often independently of each other. But we also observed major differences in the implementation of the international recommendations in radiation protection. In order to progress rigorously and objectively in the direction of a necessary harmonization of radiation protection at the international level, it is useful to give the floor to the heads of the national authorities of radiation protection in the world. The major issues are the role of national authorities in the drawing up of international standards of radiation protection, the independence of control, the interface between nuclear safety and radiation protection, the international harmonization of practices of control and especially the harmonization of the training of radiation protection inspectors. The transparency regarding the control, the credibility of controllers and the justification of some practices with exposure to ionizing radiations were also proposed as subjects requiring reflection. (N.C.)

  5. Plowshare radiation protection guidance

    International Nuclear Information System (INIS)

    The recommendations of the ICRP and the NCRP were developed primarily for occupational radiation exposures. They were later modified and applied to non-occupational exposures of populations. These, with appropriate interpretations, can be used to provide Plowshare radiation protection guidance. Exposures from Plowshare operations will tend to be acute, arising from radionuclides of relatively short half-life, but will have some chronic aspects due to small amounts of long-lived radionuclides generated. In addition, the neutron activation process of Plowshare technology will produce radionuclides not commonly encountered in routine nuclear energy programs. How these radionuclides contribute to personnel exposure is known for only a few situations that may not be representative of Plowshare exposure. Further complications arise from differences in radionuclide deposition and physiological sensitivity among individuals of different ages and states of health in the exposed population. All parameters necessary to evaluate such exposures are not available, even for good quantitative approximations, resulting in the need for interpretive experience. (author)

  6. Personal Radiation Protection System

    Science.gov (United States)

    McDonald, Mark; Vinci, Victoria

    2004-01-01

    A report describes the personal radiation protection system (PRPS), which has been invented for use on the International Space Station and other spacecraft. The PRPS comprises walls that can be erected inside spacecraft, where and when needed, to reduce the amount of radiation to which personnel are exposed. The basic structural modules of the PRPS are pairs of 1-in. (2.54-cm)-thick plates of high-density polyethylene equipped with fasteners. The plates of each module are assembled with a lap joint. The modules are denoted bricks because they are designed to be stacked with overlaps, in a manner reminiscent of bricks, to build 2-in. (5.08-cm)-thick walls of various lengths and widths. The bricks are of two varieties: one for flat wall areas and one for corners. The corner bricks are specialized adaptations of the flat-area bricks that make it possible to join walls perpendicular to each other. Bricks are attached to spacecraft structures and to each other by use of straps that can be tightened to increase the strengths and stiffnesses of joints.

  7. Radiation protective clothing

    International Nuclear Information System (INIS)

    The present invention concerns radiation protective clothings suitable for medical protective clothings, aprons, etc. A primary sheet comprises a lead-incorporated organic polymer layer having a less frictional layer on one side and a contamination-resistant layer on the other side. A secondary sheet comprises a lead-incorporated organic polymer layer having a less frictional layer on one side and a comfortable skin-feeling layer on the other side. The less frictional layers of the primary and the secondary layer are laminated so as to be in contact with each other. Then, they are formed so that the comfortable skin-feeling layer of the secondary sheet is on the inner side, in other words, on the side of a wearer, and the contamination-resistant layer of the primary sheet is on the outer side. With such a constitution, although it involves the lead-incorporated organic polymer sheets of a large weight, it is comfortable to wear because of excellent flexibility and causes less feeling of fatigue even during wearing for a long period of time. (I.N.)

  8. National Sessions of Radiation Protection

    International Nuclear Information System (INIS)

    The Radioprotection Argentine Society (SAR) was organized the National Sessions on Radiation Protection 2012 in order to continue the exchange in the radiation protection community in the country, on work areas that present a challenge to the profession. The new recommendations of the ICRP and the IAEA Safety Standards (2011), among others, includes several topics that are necessary to develop. The SAR wants to encourage different organizations from Argentina, to submit projects that are developing in order to strengthen radiation protection.

  9. Radiation protection in dental clinic

    International Nuclear Information System (INIS)

    Although the diagnostic information provided by radiographs may be of definite benefit to the patients, the radiographic examination does carry the potential for harm from exposure to ionizing radiation. Therefore we should try to expose radiation as low as reasonably achievable and to give diagnostic information to patients as much as possible. All of dentists should have competence in radiation protection. I wish to deal with what we should do for the optimization of radiation protection in dental clinic

  10. Radiation protection, measurements and methods

    International Nuclear Information System (INIS)

    The introductory lectures discuss subjects such as radiation protection principles and appropriate measuring techniques; methods, quantities and units in radiation protection measurement; technical equipment; national and international radiation protection standards. The papers presented at the various sessions deal with: Dosimetry of external radiation (27 papers); Working environment monitoring and emission monitoring (21 contributions); Environmental monitoring (19 papers); Incorporation monitoring (9 papers); Detection limits (4 papers); Non-ionizing radiation, measurement of body dose and biological dosimetry (10 papers). All 94 contributions (lectures, compacts and posters) are retrievable as separate records. (HP)

  11. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety Guides together reflect the current internationally accepted principles and recommended practices in occupational radiation protection, with account taken of the major changes that have occurred over the past decade. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The present Safety Guide provides general guidance on the establishment of an effective radiation protection programme for occupational exposure, in accordance with the requirements of the Basic Safety Standards and appropriate for the sources of radiation likely to be encountered in the workplaces in question

  12. Radiation Protection Infrastructure In Madagascar

    International Nuclear Information System (INIS)

    Radiation sources are widely used in medicine, industry, research and education in Madagascar. Safety and security of these sources are the main statutory functions of the Regulatory Authority as defined by the regulations in Radiation Protection in Madagascar. These functions are carried out through the system of notification, authorization and inspection, inventory of radiation source and emergency preparedness. The law no 97-041 on radiation protection and radioactive waste management in Madagascar was promulgated on 2nd January 1998. It governs all activities related to the peaceful use of nuclear energy in Madagascar in order to protect the public, the environment and for the safety of radiation sources. This law complies with the International Basic Safety Standards for protection against ionising Radiation and for the Safety of Radiation Sources (BSS, IAEA Safety Series no 115). Following the promulgation of the law, four decrees have been enacted by the Malagasy Government. With an effective implementation of these decrees, the ANPSR will be the Highest Administrative Authority in the Field of Radiation Protection and Waste Management in Madagascar. This Regulatory Authority is supported by an Executive Secretariat, assisted by the OTR for Radiation Protection and the OCGDR for Managing Radioactive Waste.The paper includes an overview of the regulatory infrastructure and the organizations of radiation protection in Madagascar

  13. Ethical issues in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Lars (ed.)

    2000-03-15

    Ethical theories are relevant to the current recommendations and standards for radiation protection. Radiation protection is not only a matter for science. It is also a problem of philosophy. In order for protection regulations to be respected, it must correspond to widely accepted ethical values among those who are affected by the regulations. The workshop covered the following issues: Problems in Present Protection Policy, ICRP Protection Policy - A Historical Perspective, Radiation Risk - What we know and what we believe, Present ICRP Recommendations, Ethical Values in the Context of ICRP Recommendations, Collective Responsibility for Invisible Harm, Environmental Protection - Ethical Issues, The Global Change of Values, and Procedural justice and Radiation Protection. Six workshop contributions and a workshop summary are presented in this report.

  14. Ethical issues in radiation protection

    International Nuclear Information System (INIS)

    Ethical theories are relevant to the current recommendations and standards for radiation protection. Radiation protection is not only a matter for science. It is also a problem of philosophy. In order for protection regulations to be respected, it must correspond to widely accepted ethical values among those who are affected by the regulations. The workshop covered the following issues: Problems in Present Protection Policy, ICRP Protection Policy - A Historical Perspective, Radiation Risk - What we know and what we believe, Present ICRP Recommendations, Ethical Values in the Context of ICRP Recommendations, Collective Responsibility for Invisible Harm, Environmental Protection - Ethical Issues, The Global Change of Values, and Procedural justice and Radiation Protection. Six workshop contributions and a workshop summary are presented in this report

  15. Radiation protection and radiation fear

    International Nuclear Information System (INIS)

    Some data are cited from Japanese statistics analyzing the genetic injuries stemming from the nuclear explosion in Hiroshima. It is shown that neither the number of the unsuccesful pregnancies nor the mortality of the born offsprings increased in those cases there the mother or the father had been exposed to 1-100 rad radiation. There was no significant difference in the chromosomal aberrations amoung the children of irradiated and control parents. (L.E.)

  16. Bioassay programs for radiation protection

    International Nuclear Information System (INIS)

    This report discusses the rationale for the establishment of bioassay programs as a means of protection for radiation workers in the nuclear industry. The bioassay program of the Radiation Protection Bureau is described for the years 1966-1978 and plans for future changes are outlined. (auth)

  17. Ethics in radiation protection

    International Nuclear Information System (INIS)

    Ethics is a branch of philosophy. Its object is the study of both moral and immoral behaviour in order to make well founded judgements and to arrive at adequate recommendations. The Collins English Dictionary provides the following definitions of the word ethic: Ethic: a moral principle or set of moral values held by an individual or group; Ethics(singular): the philosophical study of the moral value of human conduct and of the rules and principles that ought to govern it; Ethics(pleural): a social, religious or civil code of behaviour considered correct, especially that of a particular group, profession or individual; Ethics(pleural): the moral fitness of a decision, course of action, etc. Ethics has a two-fold objective: Firstly it evaluates human practices by calling upon moral standards; it may give prescriptive advice on how to act morally in a specific kind of situation. This implies analysis and evaluation. Sometimes this is known as Normative ethics. The second is to provide therapeutic advice, suggesting solutions and policies. It must be based on well-informed opinions and requires a clear understanding of the vital issues. In the medical world, we are governed by the Hippocratic Oath. Essentially this requires medical practitioners (doctors) to do good, not harm. There is great interest and even furore regarding ethics in radiation protection

  18. Obligatory Radiation Protection Course

    CERN Multimedia

    SC Unit

    2008-01-01

    Since February 2008, participation in the radiation protection course has been a prerequisite for obtaining a CERN personal dosimeter for all Staff Members and Users. All Staff and Users holding a personal dosimeter were informed by the Bulletin and by a personal e-mail sent in February 2008 that they were required to participate in the course before the annual exchange of their dosimeter. Many people had not done so by that time and the Dosimetry Service exceptionally classified them for 2 months as short-term visitors (VCT), a category of monitored personnel to whom the training requirement does not presently apply. As all personnel concerned have since had time to participate in an RP course, this "grace period" will no longer be granted as of 1 October 2008 and the RP course must be completed before the personal dosimeter is exchanged. For newcomers to CERN, and for those returning to CERN after an absence of more than 1 year, one registration as a VCT for two months ...

  19. Mining and radiation protection law

    International Nuclear Information System (INIS)

    The following radiation protection recommendations, guidelines and standards under international law must be considered: - ICRP recommendations (in particular no. 24, 26, 32); - IAEA Safety series; - Euratom standards 1980/84. Investigations of the legal position in the Federal Republic of Germany must comprise: - AtG of 1959/1976; - Radiation Protection Ordinance in its wording of 1976 which is in force; - Federal Mining Act of 1980. Since both mining law and radiation protection law are involved, the homogeneity and possible concurrence of operative legal regulations must be investigated. The following problems must be discussed: - scope of application of the Radiation Protection Ordinance and of the Federal Mining Act with respect to the search for, production of, processing and transport, import and export as well as the possession of radioactive minerals; also waste disposal; - terminology, - application of protection regulations of the Radiation Protection Ordinance for mining activities (radiation protection policies, persons responsible for radiation protection, environmental protection, physical control, medical control etc.); - government supervision. (orig./HP)

  20. Portable radiation protection enclosure device

    International Nuclear Information System (INIS)

    A self-supporting radiation shield is described comprising: a radiation protective sheet; and frame means supporting said radiation protective sheet, said frame means including arcuate skeletal means, about which said radiation protective sheet is wrapped, for defining a partial enclosure which protects front and side portions of a user's body from radiation when the user is positioned within said partial enclosure and for increasing the stability of said shield wherein said frame means includes an arcuate tubular base member, an arcuate tubular chest member and a plurality of vertically oriented tubular connecting members which connect said tubular base member and said tubular chest member in substantially parallel, spaced relation, with said partial enclosure being defined by said arcuate tubular chest and base members as being cylindrical to an extent sufficient to protect substantially all of said front and side portions of the user's body

  1. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  2. Radiation protection guidelines for radiation emergencies

    International Nuclear Information System (INIS)

    The system of dose limitation and present guidance for emergency workers and guidance for intervention on behalf of the public are discussed. There are three elements for the system of dose limitation: justification, optimization and dose limits. The first element is basically a political process in this country. Justification is based on a risk-benefit analysis, and justification of the use of radioactive materials or radiation is generally not within the authority of radiation protection managers. Radiation protection managers typically assess detriments or harm caused by radiation exposure and have very little expertise in assessing the benefits of a particular practice involving nuclear material

  3. Occupational safety meets radiation protection

    International Nuclear Information System (INIS)

    The cooperation circle ''Synergies in operational Security'' is a joint working group of the Association of German Safety Engineers (VDSI) and the German-Swiss Professional Association for Radiation Protection (FS). The tasks of the KKSyS are arising from the written agreement of the two associations. This includes work on technical issues. In this regard, the KKSyS currently is dealing with the description of the interface Occupational Safety / Radiation Protection. ''Ignorance is no defense'' - the KKSyS creates a brochure with the working title ''Occupational Safety meets radiation protection - practical guides for assessing the hazards of ionizing radiation.'' The target groups are entrepreneurs and by them instructed persons to carry out the hazard assessment. Our aim is to create practical guides, simple to understand. The practical guides should assist those, who have to decide, whether an existing hazard potential through ionizing radiation requires special radiation protection measures or whether the usual measures of occupational safety are sufficient. (orig.)

  4. The new Radiation Protection Ordinance

    International Nuclear Information System (INIS)

    The new Radiation Protection Ordinance promulgated October 13, 1976, will combine the provisions of the older First and Second Radiation Protection Ordinances and thereby define uniform rules for the whole field of radiation protection law through concentration, harmonization and the publication of amendments. Recommendations by international agencies and the recent Basic Euratom Standards were taken into account. The new provisions concentrate on the extension of the technical scope of validity and the general principle of radiation protection, the three levels of government supervision, the establishment of a permissible incident planning dose for nuclear power plants, rules on radiological protection at work and the protection of the public and the environment, and the disposal of radioactive waste. (orig.)

  5. The Radiation Protection Authority's air filter stations

    International Nuclear Information System (INIS)

    The Norwegian Radiation Protection Authority currently has five air filter stations located at various sites throughout Norway. The stations are important for surveying airborne radioactivity, and for the assessment and composition of any emissions in the case of mishaps and accidents. There are similar stations throughout Europe, and the inter-state collaboration makes it possible to track any emissions of radioactive substances. (Author)

  6. Scientific aspects of radiation protection

    International Nuclear Information System (INIS)

    A brief review is given of the basic radiation physics background knowledge required to aid the understanding of the scientific aspects of radiation protection. The different types of electromagnetic and particulate radiation are described together with general information on ray energy, radioactivity units and radionuclide half-life. (U.K.)

  7. The history of radiation protection

    International Nuclear Information System (INIS)

    This paper is a subjective, selective cavalcade of some events and individuals which, in the author's opinion, have greatly influenced the development of the art of radiation protection as we see it today. The presentation is divided into time periods which have so much in common that they deserve separate treatment. 'Radiation' in this presentation means ionising radiation. (author)

  8. European Radiation Protection Course - Basics

    International Nuclear Information System (INIS)

    Radiation protection is a major challenge in the industrial applications of ionising radiation, both nuclear and non-nuclear, as well as in other areas such as the medical and research domains. The overall objective of this textbook is to participate to the development of European high-quality scheme and good practices for education and training in radiation protection (RP), coming from the new Council Directive 2013/59/Euratom laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation. These ERPTS (European Radiation Protection Training Scheme) reflects the needs of the Radiation Protection Expert (RPE) and the Radiation Protection Officer (RPO), specifically with respect to the Directive 2013/59/Euratom in all sectors where ionising radiation are applied. To reflect the RPE training scheme, six chapters have been developed in this textbook: Radioactivity and nuclear physics; Interaction of ionising radiation with matter; Dosimetry; Biological effects of ionising radiation; Detection and measurement of ionising radiation; Uses of sources of ionising radiation. The result is a homogeneous textbook, dealing with the ERPTS learning outcomes suggested by ENETRAPII project (European Network on Education and Training in Radiological Protection II) from the 7. Framework Programme. A cyber-book is also part of the whole training material to develop the concept of 'learning more' (http://www.rpe-training.eu). The production of this first module 'basics' training material, in the combined form of a textbook plus a cyber-book as learning tools, will contribute to facilitate mutual recognition and enhanced mobility of these professionals across the European Union. (authors)

  9. Safety Culture on radiation protection

    International Nuclear Information System (INIS)

    It can be defined radiation protection culture as the set of technical and social standards applied to the management of the operation of a nuclear facility concerning the reduction of the exposure to radiation of workers and members of the public, together with the behaviour and attitudes of the individuals from the organization towards that objective. Because the basic principles of radiation protection are self-evident and are totally justified, and the thesis drawn from the article is that no effective radiation protection culture yet exists within the organization, it must be concluded that what is wrong from the system are the attitudes and behavior of the individuals. In this article some factors and elements needed to motivate all persons within the organization towards the creation of a radiation protection culture are delineated and presented. (Author)

  10. An introduction to radiation protection

    CERN Document Server

    Martin, Alan; Beach, Karen; Cole, Peter

    2012-01-01

    The sixth edition of this established text takes the reader through the general background to the subject, the technical principles underlying the control of radiation hazards, radiation detection and measurement and the biological effects of radiation. These are followed by a consideration of radiation protection issues in the nuclear industry, the non-nuclear sector and the medical field. Further specialised topics include risk assessment, waste management and decommissioning, radiological incidents and emergencies, relevant legislation and organizational issues.

  11. Radiation protection education in Europe

    International Nuclear Information System (INIS)

    Education in Radiation Protection varies considerably in the different European Countries. As there is free movement of staff and services in between these European Countries one of the main objectives of the European Union is to compare the different implementations and to identify similarities. Therefore, in this paper the German and Swiss Radiation Protection Systems are explained and the relevant topics of the Revision of the European Basic Safety Standard are presented. Additionally a bilateral pilot project is described which compares the lowest level radiation protection courses in Germany and The Netherlands and possible future developments are outlined. (orig.)

  12. Geothermal energy and radiation protection

    International Nuclear Information System (INIS)

    The thermal ground waters used for geothermal energy production contain natural radionuclides. The thereby required radiation protection measures during the operation of a geothermal plant and at the disposal of the resulting radioactive residues are described. (orig.)

  13. Protective device against radioactive radiation

    International Nuclear Information System (INIS)

    The easily transported and erected radiation protection walls for maintenance and assembly work consist of water walls with a thickness of 30 cm (lead equivalent), which are assembled from square parts. The latter consist of glued air mattresses. (HP)

  14. Radiation protection in civil defence

    International Nuclear Information System (INIS)

    The brochure contains the information given to the participants of an advanced training course in civil defence, on the subject of radiation protection. The course was held by teachers of Bundesverband fuer den Selbstschutz (BVS). (orig.)

  15. Epistemology of radiation protection

    International Nuclear Information System (INIS)

    The scientific committee had assess Status of levels, effects and risks of ionizing radiation for General assembly, scientific community and public. The review of levels, sources and exposures. The natural sources of radiation include cosmic rays, terrestrial and artificial sources include medical issues, military activities, civil nuclear power occupational exposure and accidents. The global average exposure is 80% natural source, 20% medical examination 0.2% weapon fallout < 0.1% cherbonyl accidents and < 0.1 nuclear power. The effects of radiation incudes health effects, hereditable effects, bystander effects, and abscopal effects. The randon risks include lancer risk, plant and animal

  16. Healing Arts Radiation Protection Act

    International Nuclear Information System (INIS)

    The Healing Arts Radiation Protection Act is concerned with regulating the registration, installation, operation, inspection and safety of X-ray machines. The Act provides for the establishment of the Healing Arts Radiation Protection Commission which is responsible for reporting on all the above matters to the Ontario Minister of Health. In addition the board is responsible for the continuing development of an X-ray safety code and for the submission of an annual report of their activities to the minister

  17. Radiation protection in medical applications

    International Nuclear Information System (INIS)

    Full text: The goal of this paper is to identify the areas in which radiation protection is actually needed and the relative importance of protection measures. A correlation between the different medical applications of the ionizing radiations and the associated risks, mainly due to ignorance, has been a constant throughout the history of mankind. At the beginning, the accidents were originated in research nuclear laboratories working on the atomic bomb, while the incidents occurred in medical areas because of virtual ignorance of the harmful effects on humans. The 60's were characterized by the oil fever, which produced innumerable accidents due to the practice of industrial radiography; in the 70's the use of radiations on medical applications was intensified, to such and extent that a new type of victim appeared: the patient. Unfortunately, during 80's and 90's the number of accidents in different medical practices has increased, projecting the occurred in Zaragoza (Spain) on 1990 with a linear accelerator for radiotherapy treatments. In some developed countries, foreseeing the probability of producing biological effects as a result of different radiology practices, more strict security rules are adopted to guarantee the application of the three principles of the radioprotection: justification, optimization and limitation of individual dose. In this way, in the U.S.A., the Joint Commission on Accreditation of Health Care Organization (JCAHO), favors a vigilance politics in the different departments of Radiodiagnostic and Nuclear Medicine to secure an effective management in security, communications and quality control, in which the medical physicists play an important role. One of the requirements for example is to attach the value of entrance exposition dose in the radiological diagnostic report. So, the doses in the different organs are compared with the tabulated doses. Basically, a quality control programme is designed to minimize the risks for patients, workers and the public in general, maximizing the quality of the diagnostic information. To achieve this goal, external advise on quality control, radioprotection training, personal monitoring, environmental survey and technical supports must be added to the physician staff. In diagnostic areas, using radiography and computed tomography, the doses of the operators are 2 mSv/yr on average; in mammography and odontology they do not exceed 0.5 mSv/yr; in fluoroscopy they vary between 2 and 4 mSv/yr; in the services of radiotherapy and brachytherapy they vary between 1 and 2 mSv/yr, in spite of the high dose rates present, and finally in nuclear medicine the average doses are 1 mSv/yr. Bearing in mind, that the annual permissible weighed dose is 20 mSv/yr, the value of the dose absorbed by the professional that work in the areas, is optimal. The weak point of radiation protection philosophy in medical applications is in the work of interventional physicians who take part in a lot of angiography procedures for about half and hour with each patient. This staff, have no full time dedication like the radiologist physicians and therefore haven't enough knowledge about the radiations and besides they are outside the personal dosimetry systems. Actually they are the highest risk group among physicians who use ionizing radiations in routine work and to whom the efforts in radio sanitary policies must be directed. (author)

  18. Radiation protection information

    International Nuclear Information System (INIS)

    From the measurements and discussion presented in this report, the following conclusions may be drawn: The population doses from naturally occuring radiation is on average lower in Denmark and much lower in Iceland than in the other Nordic countries. In Sweden, Finland and Norway the largest contributors to the population doses from naturally occuring radiation are radon daughters in indoor air. For Denmark and Iceland, radon daughters contribute about the same to the total effective dose equivalent as the external gamma radiation. Some groups of people in the Nordic countries are highly exposed to radon daughters. In some cases, the received doses are very high (higher than the dose limit for radiation workers). From the conclusions above, the radon daughter problem should be given priority, at least in Sweden, Finland and Norway, especially regarding the search for population groups receiving the highest doses

  19. Optimization of radiation protection in diagnostic radiology

    International Nuclear Information System (INIS)

    Radiation protection in diagnostic radiology has high priority in most countries. Doses to patients are relatively high, although many possibilities for dose reduction have been suggested. Less effort is needed to reduce patient doses than reducing doses to persons involved in many other uses of radiation. As in many other fields, the rapid development of techniques continuously provides new problems for radiation protection in diagnostic radiology. But there are more basic reasons for the difficulties encountered: (a) Reduction of dose is usually considered beneficial unless the cost is too high. In diagnostic radiology, however, an easily obtained dose reduction might destroy diagnostic quality and cause more harm than the dose would do. (b) Assessments of collective patient dose have heavy uncertainties, owing to differences in age, anatomy, etc. It is difficult to verify trends by such measurements. (c) Too much emphasis on patient protection might cause exaggerated anxiety resulting in refusals to undergo necessary examinations. (d) Protection measures must be compatible with the intense workload and need for quick decisions during X ray examinations. These and other difficulties imply that normal tools of the radiation protection trade are more blunt than usual. For the optimization procedures recommended by the ICRP, new modes could be useful. In Sweden, a systematic use of the width of the distribution of doses from certain examinations has been tested with some success in so-called 'investigational surveys'. So far, only dental X ray units, full size chest units and mammography screening units have been surveyed, but further work is planned. Although the surveys often give information about national collective patient dose, this is not the primary purpose. Instead, the width of the interval observed for a certain parameter indicates its priority in radiation protection. Additionally, the position of an individual value in the interval is useful in the planning of local quality assurance activities. (author). 12 refs, 2 figs, 2 tabs

  20. The workers radiation protection

    International Nuclear Information System (INIS)

    This report gives the situation of I.R.S.N. activities in 2004: agreements of dosimetry organisms and studies of working place relative to ionizing radiation and the situation in 2004 of occupational exposure to ionizing radiation. In an other part are studies the evolution of the analysis of the situation of working dosimetry and some thoughts about the possibilities of surveillance strategy. (N.C.)

  1. Radiation protection, 1975. Annual EPA review of radiation protection activities

    International Nuclear Information System (INIS)

    The EPA, under its Federal Guidance authorities, is responsible for advising the President on all matters pertaining to radiation and, through this mechanism, to provide guidance to other Federal agencies on radiation protection matters. Highlights are presented of significant radiation protection activities of all Federal agencies which were completed in 1975, or in which noteworthy progress was made during that period, and those events affecting members of the public. State or local activities are also presented where the effects of those events may be more far-reaching. At the Federal level significant strides have been made in reducing unnecessary radiation exposure through the efforts of the responsible agencies. These efforts have resulted in the promulgation of certain standards, criteria and guides. Improved control technologies in many areas make it feasible to reduce emissions at a reasonable cost to levels below current standards and guides. This report provides information on the significant activities leading to the establishment of the necessary controls for protection of public health and the environment. Radiation protection activities have been undertaken in other areas such as medical, occupational and consumer product radiation. In the context of radiation protection, ancillary activities are included in this report in order to present a comprehensive overview of the events that took place in 1975 that could have an effect on public health, either directly or indirectly. Reports of routine or continuing radiation protection operations may be found in publications of the sponsoring Federal agencies, as can more detailed information about activities reported in this document. A list of some of these reports is included

  2. Introduction to radiation protection dosimetry

    CERN Document Server

    Sabol, Josef

    1995-01-01

    One essential characteristic of life is the exchange of matter and energy between organisms and their environment. Radiation is a form of energy that has always been around in nature and will forever be the companion of human beings throughout life. In order to assess the impact of radiation exposures properly, it is essential to introduce appropriate quantities and units which can then be used for quantification of exposures from various sources. In principle, radiation protection is mainly aimed at controlling radiation exposure, while radiation dosimetry deals primarily with the measurement

  3. Radiation protection in pediatric radiology

    International Nuclear Information System (INIS)

    The book covers all the basic concepts concerned with minimizing the radiation dose to patients, parents, and personnel, while producing radiographic studies of diagnostic quality. Practical information about tissues at risk, radiation risks specific to children, performance of radiographic and fluoroscopic examination, gonadal protection, pregnancy, immobilization of children, mobile radiography, and equipment considerations including those pertaining to computed tomography and dental radiography are given

  4. Radiation protection in thorium industry

    International Nuclear Information System (INIS)

    The evaluation of radiation doses in a monazite processing plant (thorium production cycle) aiming to getting information on the exposure levels to beta and gamma radiation, is discussed. It is observed that, excluding places where monazite is stored,or during transportation, or in silos, or waste deposits, or in places where high activity materials are stored or treated, the externa exposure stay below the maximum pemissible limit. Some recommendations are made based on the results found and according to radiation protection standards

  5. 10 CFR 39.67 - Radiation surveys.

    Science.gov (United States)

    2010-01-01

    ...2010-01-01 false Radiation surveys. 39...67 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS...the logging tool detector or by using a survey...shall conduct a radiation survey,...

  6. Radiation Protection. Chapter 3

    International Nuclear Information System (INIS)

    Medical exposure is the largest human-made source of radiation exposure, accounting for more than 95% of radiation exposure. Furthermore, the use of radiation in medicine continues to increase worldwide — more machines are accessible to more people, the continual development of new technologies and new techniques adds to the range of procedures available in the practice of medicine, and the role of imaging is becoming increasingly important in day to day clinical practice. The introduction of hybrid imaging technologies, such as positron emission tomography/computed tomography (PET/CT) and single photon emission computed tomography (SPECT)/CT, means that the boundaries between traditional nuclear medicine procedures and X ray technologies are becoming blurred. Worldwide, the total number of nuclear medicine examinations is estimated to be about 35 million per year

  7. Radiation Protection Research: Radiobiology

    Energy Technology Data Exchange (ETDEWEB)

    Desaintes, C

    2000-07-01

    The main objectives of research in the field of radiobiology and epidemiology performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to study cancer mortality in nuclear workers in Belgium; to document the feasibility of retrospective cohort studies in Belgium; (2) to participate in the IARC study; (3) to elucidate the molecular basis of the effects of ionising radiation in the mammalian embryo during the early phases of its development; (4) to assess the genetic risk of maternal exposure to ionizing radiation; (5) to elucidate the cellular mechanisms leading to brain damage after prenatal irradiation; (6) to advise authorities and to provide the general population with adequate information concerning the health risk arising from radiation exposure. Progress and major achievements in these topical areas in 1999 are reported.

  8. Radiation Protection Research: Radiobiology

    International Nuclear Information System (INIS)

    The main objectives of research in the field of radiobiology and epidemiology performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to study cancer mortality in nuclear workers in Belgium; to document the feasibility of retrospective cohort studies in Belgium; (2) to participate in the IARC study; (3) to elucidate the molecular basis of the effects of ionising radiation in the mammalian embryo during the early phases of its development; (4) to assess the genetic risk of maternal exposure to ionizing radiation; (5) to elucidate the cellular mechanisms leading to brain damage after prenatal irradiation; (6) to advise authorities and to provide the general population with adequate information concerning the health risk arising from radiation exposure. Progress and major achievements in these topical areas in 1999 are reported

  9. Radiation protection and health effects

    International Nuclear Information System (INIS)

    The use of ionizing radiation in nuclear medicine carries with it a responsibility to both patient and personnel to maximize the diagnostic and therapeutic benefit while minimizing the potential for any adverse health effects. Shortly after the discovery of the x-ray in 1895 the potential for acute health hazards of ionizing radiation became apparent. However, the risks of ionizing radiation were poorly understood and many early users did not believe that anyone could be hurt by something that could not be detected by any of the human senses. Many experiments on the biologic effects of ionizing radiation began in the early 1900s, and the first radiation protection standards were proposed by the British Roentgen Society in 1915. We now realize that these pioneers had a very limited knowledge of the potential hazards and radiation protection principles. Today more scientific data are available on the health effects of, detection of, and protection from ionizing radiation than any other physical agent or chemical known. In addition, use of many forms of ionizing radiation is heavily regulated at both national and state levels. This paper discusses how maternal contamination with radionuclides may cause irradiation of the fetus even if the radionuclide is not transferred across the placenta. This is mostly true for radionuclides that decay yielding relatively penetrating radiations

  10. Dutch policy on radiation protection

    International Nuclear Information System (INIS)

    In March 1990 a Dutch policy-document on occupational and environmental protection against ionizing radiation was agreed upon by the council of ministers (Radiation Protection and Risk management; 1990). The main consequences of the paper are an extension of policy to the emissions and waste of natural radionuclides of all industries and radon in dwellings, lower standards in terms of dose for workers and the public by a factor of two and a half, and risk management as a tool for environmental protection including source upperbounds in terms of risk. (author)

  11. Proceedings of Asia congress on radiation protection

    International Nuclear Information System (INIS)

    203 articles were collected in the proceedings. The contents of the proceedings included the principle and practices of radiation protection, biological effects of radiation, radiation monitoring, protection in medical and other fields, radiation dosimetry, nuclear energy and the environment, natural radiation, radioactive waste management, and other radiation protection issues

  12. Current radiation protection law

    International Nuclear Information System (INIS)

    The paper reviews the dynamic development of the law on radiological protection, showing that legislation in this field develops along a spiral line starting from non-governmental level to the level of governmental international agencies, going full circle to the level of national legislation. This process which generally takes several years is subject to political, psychological, economic, and ecologic impacts in addition to technical and scientific impacts which frequently require amendments of the law, so that the dynamic development may have a negative aspect in terms of reliability of the law. The paper discusses recent amendments of the law on radiological protection and legislative initiatives taken after the Chernobyl reactor accident. (RST)

  13. Radiation protection and ecology

    International Nuclear Information System (INIS)

    The activities developed at Instituto de Radioprotecao e Dosimetria from the Comissao Nacional de Energia Nuclear in the field of developing and using radiation monitoring techniques and/or radioactive materials in health, industry, research and teaching, are presented. (E.G.)

  14. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Addresses all aspects of radiation protection in nuclear medicine. Covers current technologies and principles. An ideal textbook for students and a ready source of information for nuclear medicine specialists and medical physics experts. One of a series of three books on the fundamentals of modern nuclear medicine (physics, safety, and imaging). This book explains clearly and in detail all aspects of radiation protection in nuclear medicine. After an introductory chapter on the general role of radiation protection, measurement quantities and units are discussed, and detectors and dosimeters, described. Radiation biology and radiation dosimetry are then addressed, with the inclusion of a chapter specifically devoted to biology and dosimetry for the lens of the eye. Discussion of radiation doses to patients and to embryos, fetuses, and children forms a central part of the book. Phantom models, biokinetic models, calculations, and software solutions are all considered, and a further chapter focuses on quality assurance and reference levels. Occupational exposure also receives detailed attention. Exposure resulting from the production, labeling, and injection of radiopharmaceuticals and from contact with patients is discussed and shielding calculations are explained. The book closes by considering exposure of the public and summarizing the ''rules of thumb'' for radiation protection in nuclear medicine. This is an ideal textbook for students and a ready source of useful information for nuclear medicine specialists and medical physics experts.

  15. Radiation protection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Soeren [Lund Univ., Skane Univ. Hospital Malmoe (Sweden). Medical Radiation Physics; Hoeschen, Christoph (eds.) [Helmholtz Zentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt GmbH, Neuherberg (Germany)

    2013-07-01

    Addresses all aspects of radiation protection in nuclear medicine. Covers current technologies and principles. An ideal textbook for students and a ready source of information for nuclear medicine specialists and medical physics experts. One of a series of three books on the fundamentals of modern nuclear medicine (physics, safety, and imaging). This book explains clearly and in detail all aspects of radiation protection in nuclear medicine. After an introductory chapter on the general role of radiation protection, measurement quantities and units are discussed, and detectors and dosimeters, described. Radiation biology and radiation dosimetry are then addressed, with the inclusion of a chapter specifically devoted to biology and dosimetry for the lens of the eye. Discussion of radiation doses to patients and to embryos, fetuses, and children forms a central part of the book. Phantom models, biokinetic models, calculations, and software solutions are all considered, and a further chapter focuses on quality assurance and reference levels. Occupational exposure also receives detailed attention. Exposure resulting from the production, labeling, and injection of radiopharmaceuticals and from contact with patients is discussed and shielding calculations are explained. The book closes by considering exposure of the public and summarizing the ''rules of thumb'' for radiation protection in nuclear medicine. This is an ideal textbook for students and a ready source of useful information for nuclear medicine specialists and medical physics experts.

  16. Radiation survey meters used for environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bjerke, H. (ed.) (Norwegian Radiation Protection Authority, NRPA (Norway)); Sigurdsson, T. (Icelandic Radiation Safety Authority, Geislavarnir Rikisins, GR (IS)); Meier Pedersen, K. (National Board of Health, Statens Institut for Straalebeskyttelse (SIS) (Denmark)); Grindborg, J.-E.; Persson, L. (Swedish Radiation Safety Authority, Straalsaekerhetsmyndigheten (SSM) (Sweden)); Siiskonen, T.; Hakanen, A.; Kosunen, A. (Radiation and Nuclear Safety Authority, Saeteilyturvakeskus (STUK) (Finland))

    2012-01-15

    The Nordic dosimetry group set up the GammaRate project to investigate how its expertise could be used to assure appropriate usage of survey meters in environmental monitoring. Considerable expertise in calibrating radiation instruments exists in the Nordic radiation protection authorities. The Swedish, Finnish, Danish and Norwegian authorities operate Secondary Standard Dosimetry Laboratories (SSDLs) that provide users with calibration traceable to internationally recognised primary standards. These authorities together with the Icelandic authorities have formally cooperated since 2002 in the field of radiation dosimetry. Dosimetry is the base for assesment of risk from ionising radiation and calibration of instruments is an imported part in dosimetry. The Nordic dosimetry group has been focused on cancer therapy. This work extends the cooperation to the dosimetry of radiation protection and environmental monitoring. This report contains the formal, theoretical and practical background for survey meter measurements. Nordic standards dosimetry laboratories have the capability to provide traceable calibration of instruments in various types of radiation. To verify and explore this further in radiation protection applications a set of survey instruments were sent between the five Nordic countries and each of the authority asked to provide a calibration coefficient for all instruments. The measurement results were within the stated uncertainties, except for some results from NRPA for the ionchamber based instrument. The comparison was shown to be a valuable tool to harmonize the calibration of radiation protection instruments in the Nordic countries. Dosimetry plays an important role in the emergency situations, and it is clear that better traceability and harmonised common guidelines will improve the emergency preparedness and health. (Author)

  17. Radiation survey meters used for environmental monitoring

    International Nuclear Information System (INIS)

    The Nordic dosimetry group set up the GammaRate project to investigate how its expertise could be used to assure appropriate usage of survey meters in environmental monitoring. Considerable expertise in calibrating radiation instruments exists in the Nordic radiation protection authorities. The Swedish, Finnish, Danish and Norwegian authorities operate Secondary Standard Dosimetry Laboratories (SSDLs) that provide users with calibration traceable to internationally recognised primary standards. These authorities together with the Icelandic authorities have formally cooperated since 2002 in the field of radiation dosimetry. Dosimetry is the base for assesment of risk from ionising radiation and calibration of instruments is an imported part in dosimetry. The Nordic dosimetry group has been focused on cancer therapy. This work extends the cooperation to the dosimetry of radiation protection and environmental monitoring. This report contains the formal, theoretical and practical background for survey meter measurements. Nordic standards dosimetry laboratories have the capability to provide traceable calibration of instruments in various types of radiation. To verify and explore this further in radiation protection applications a set of survey instruments were sent between the five Nordic countries and each of the authority asked to provide a calibration coefficient for all instruments. The measurement results were within the stated uncertainties, except for some results from NRPA for the ionchamber based instrument. The comparison was shown to be a valuable tool to harmonize the calibration of radiation protection instruments in the Nordic countries. Dosimetry plays an important role in the emergency situations, and it is clear that better traceability and harmonised common guidelines will improve the emergency preparedness and health. (Author)

  18. Biological Research for Radiation Protection

    International Nuclear Information System (INIS)

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about ornithine decarboxylase and its controlling proteins, thioredoxin, peroxiredoxin, S-adenosymethionine decarboxylase, and glutamate decarboxylase 67KD effect on the cell death triggered ionizing radiation and H2O2(toxic agents). In this study, to elucidate the role of these proteins in the ionizing radiation (or H2O2)-induced apoptotic cell death, we utilized sensesed (or antisensed) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation and H2O2(or paraquat). We also investigated whether genisteine(or thiamine) may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation (may enhance the preventing effect radiation or paraquat-induced damage) because such compounds are able to potentiate the cell-killing or cell protecting effects. Based on the above result, we suggest that the express regulation of theses genes have potentially importance for sensitizing the efficiency of radiation therapy of cancer or for protecting the radiation-induced damage of normal cells

  19. Biological Research for Radiation Protection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kug Chan; Jung, Il Lae; Choi, Yong Ho; Kim, Jin Sik; Moon, Myung Sook; Byun, Hee Sun; Phyo, Ki Heon; Kim, Sung Keun

    2005-04-15

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about ornithine decarboxylase and its controlling proteins, thioredoxin, peroxiredoxin, S-adenosymethionine decarboxylase, and glutamate decarboxylase 67KD effect on the cell death triggered ionizing radiation and H{sub 2}O{sub 2}(toxic agents). In this study, to elucidate the role of these proteins in the ionizing radiation (or H{sub 2}O{sub 2})-induced apoptotic cell death, we utilized sensesed (or antisensed) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation and H{sub 2}O{sub 2}(or paraquat). We also investigated whether genisteine(or thiamine) may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation (may enhance the preventing effect radiation or paraquat-induced damage) because such compounds are able to potentiate the cell-killing or cell protecting effects. Based on the above result, we suggest that the express regulation of theses genes have potentially importance for sensitizing the efficiency of radiation therapy of cancer or for protecting the radiation-induced damage of normal cells.

  20. Microdosimetry and radiation protection

    International Nuclear Information System (INIS)

    The Pacific Northwest Laboratory has developed an instrument, the Total Dose Meter, to determine the dose equivalent from penetrating ionizing radiations in mixed radiation fields, such as neutrons and gamma rays. This device is intended to be used as an alarming personnel monitor to determine the total dose equivalent, and uses a single cylindrical tissue equivalent proportional counter (TEPC) detector. The TEPC is operated at very low pressures so that it measures the energy deposition distribution in a tissue-like site only 1 micrometer in diameter. The present instrument uses algorithms to determine neutron quality factors using the currently accepted values. If the recommendations of ICRU-40 are adopted, the algorithms in the microprocessor can be changed to determine the new values of quality factor for neutrons and for photons

  1. Radiation protection Ordinance

    International Nuclear Information System (INIS)

    This Ordinance lays down the licensing system for activities in Switzerland involving possible exposure to radiation, with the exception of nuclear installations, fuels and radioactive waste which, under the 1959 Atomic Energy Act, are subject to licensing. The Ordinance applies to the production, handling, use, storage, transport, disposal, import and export of radioactive substances and devices and articles containing them; and generally to any activity involving hazards caused by ionizing radiation. The Federal Public Health Office is the competent authority for granting licences. Provision is also made for the administrative conditions to be complied with for obtaining such licences as well as for technical measures required when engaged in work covered by the Ordinance. This consolidated version of the Ordinance contains all the successive amendments up to 26 September 1988. (NEA)

  2. Problems of radiation protection

    International Nuclear Information System (INIS)

    A brief review is presented on the dose-dependent radiation injuries and possibilities of the classical chemical radioprotectors. Data are given on different substances of biological origin, including some natural for the body admixtures with a confirmed radioprotective action: biogenic amines (serotonin, mexamine), adenylic nucleotides, amino acids, polyamines, immunomodulators (bacterial endotoxines), prostaglandins, leucotrienes, antioxidants, vitamines (A, E, B2, B6, P, biotin, flavenoids), natural fats, plant oils and unsaturated fat acids, extracts from green seaweeds and adaptogens. 81 refs

  3. 7. Radiation protection

    International Nuclear Information System (INIS)

    The methods are presented of calculations of the dose and dose equivalent and designs are described and calculations given of the shielding for point and non-point gamma radiation sources. Gusev's universal attenuation tables are given. Brief-ly discussed is the shielding of alpha, beta and heavy charged particles. The transport method and the Monte Carlo method for calculations of neutron shielding are explained. (M.D.)

  4. Indium 111. Radiation protection

    International Nuclear Information System (INIS)

    The radiopharmaceutucal 111In-oxine is used in labelling of different blood cells and proteins. Due to its liquid state, there is always a risk for contamination during handling procedures. The aim of the project was to evaluate the contamination risks, when using this radiopharmaceutical. The investigation includes calculations of the absorved dose to the skin after a contamination of 111In-oxine, including the radionuclide impurity 114Inm/114In. Investigations of 288 protection gloves shows that there is always a risk for contamination, when working with 111In-oxine. On the protection gloves, we found activities normally ranging from a 100 Bq up to a few kBq. Noticeable is the contamination on the vials, already before their use. Besides 111 In we found most of the radionuclides used in nuclear medicine, with activities up to tens of kBq. The radionuclide impurity was cleary detectable but below the recommended value. The penetration of 111In-oxine protection gloves of latex was negligible. Measurements of penetration in skin was evaluated with two independent methods; in vivo using a surface barrier detector, and by autoradiography. The measured penetration was less than a few micrometers. Calculation from the experimental contamination values show that the absorbed dose to the basal cell layer could be in order of several Gy. (authors)

  5. Radiation protection and the public

    International Nuclear Information System (INIS)

    For many years, the Fachverband fuer Strahlenschutz strives to be seen and recognized by the public as a competent group of experts. In spite of some partial success, this goal has not been reached to the extent desired. The reasons for that do lie, according to the author, at the least with the Fachverband. They are rather to be found within two features inherent to radiation protection itself. One of them is the difficult and frequently conflicting role of a referee between benefit and risk of radiation. This role implies that the independence and integrity of radition protection is often grossly misjudged by the public. The other problem is the widely differing composition of radiation protection representatives with regard to origin, education and professional field of activity. This makes it for the public almost impossible to perceive a clear and unambiguous image of radiation protection. Therefore, a successful communication with the public cannot be achieved merely by improving the contact with the media and by better mastering its rules, as the Fachverband is trying. It furthermore requires a change of thinking with regard to the whole structure of communication. The author clarifies this further in the article. In addition to that, each radiation protection representative who takes public relations seriously as a task of this profession, must be ready to observe three rules: Sound stories, openness - particularly when dealing with controversial issues -, and absolute personal and professional integrity. (orig.)

  6. Encouraging the radiation protection practice

    International Nuclear Information System (INIS)

    The radiological protection of workers occupationally exposed to ionizing radiation (X-ray diagnoses, Nuclear Medicine, Radiotherapy and Dental) is essential to minimize the appearance of radiation effects. The ways to reduce the potential for exposure of workers are: Time, Distance , and Shielding. The most important purpose of radiation protection is to provide safe conditions for activities involving ionizing radiation, basic safety conditions that must be observed in professional practice. The professional must have full knowledge of the subject and deepen in the revision of norms and guidelines related to radiation protection establish by the Vigilancia Sanitaria - ANVISA, and Comissao Nacional de Energia Nuclear - CNEN, Brazil. The study was conducted in a technical school for the Technical Training Course in Radiology, where the students are invited to think deeply about the radiation protection of themselves, the patients and the environment. Developed since July 2012, with the participation of 30 students, with a leading class -three teachers assisting in the development of the project . With this project there was an awareness of both students, as instructors stage accompanying the daily lives of students and their own colleagues. Following the same objective in 2013 the project continues with more adept at radioprotection

  7. Radiation protection material

    International Nuclear Information System (INIS)

    The material, capable of being cast into the shape and thickness desired, is resistant to radiation (300 x 106 rad and 1 x 1017 n/cm2 while retaining its H2 content). It is composed of a silicon elastomer base material to which particles from BC, boric acid and/or boron oxide are homogeneously admixed with a volume percentage between 5 and 75. For each purpose the particles are of constant size respectively. The sizes lie between 0.18 mm (80 mesh) and 0.05 mm (300 mesh). (DG)

  8. Radiation protection in pediatric radiology

    International Nuclear Information System (INIS)

    Because of the high growth rate of cell systems in phases of radiation exposure radiological investigations on children should not be considered unless there is a strong indication. The National Council on Radiation Protection and Measurements has worked out recommendations on radiation protection which have been published as an NCRP report. This report is most important even outside the USA. The present translation is aimed to contribute to better understanding of the bases and aims of radiation protection during radiological investigations on children. It addresses not only those physicians who carry out radiological investigations on children themselves but also all physicians requiring such investigations. For these physicians, but also for parents who are worried about the radiation risk to their children the report should be a useful source of information and decision aid ensuring, on the one hand, that necessary radiological investigations are not shunned for unjustified fear of radiation and that, on the other hand, all unnecessary exposure of children to radiation is avoided. Thus, it is to be hoped, the quality of pediatric radiological diagnostics will be improved. (orig./MG)

  9. Radiation protection in mines

    International Nuclear Information System (INIS)

    The main objective of the research project was to investigate and develop methods at the Muellenbach test mine which allow optimal protection against radon and its daughter products considering both economic and mining aspects. Theoretical models as well as investigations in the laboratory and underground have shown that good ventilation offers an effective protection against radon and its daughters. Other methods such as wetting of broken rock and variation of the blasting pattern as well as the application of positive ventilating pressure were of minor influence on radon emanation. The sealing of rock surfaces showed satisfactory results in laboratory tests (radon emanation rate was reduced up to 98%), however underground its application appears to be limited and unsuitable for stoping operations. The airstream helmet (type AH 1) tested underground proved to be effective as a dust filter but because of its ergonomic and safety disadvantages its application in uranium mining is limited. Its efficiency as far as the reduction of radon daughters is concerned should be tested after the ergonomic disadvantages have been eliminated. The research work done has shown that cavitation models developed are of practical value for the determination of radon and its daughter concentrations as well as for mine ventilation planning. The report presented emphasizes that the nuclide measurements carried out underground and the knowledge gained about the behaviour of radio nuclides in the mine atmosphere are transferable to other mining branches for instance to coal and fluorspar mining. (orig./HP)

  10. Actual global problems of radiation protection

    International Nuclear Information System (INIS)

    Personal views on some actual problems in radiation protection are given in this paper. Among these problems are: evolution methodology used in radiation protection regulations; radiation protection, nuclear energy and safety, and new approaches to the process of the hazardous substances management. An interesting fact relating to the X-ray, radiation protection and Nikola Tesla are given also. (author)

  11. The new Federal Radiation Protection Authority

    International Nuclear Information System (INIS)

    On March 22, 1988, the German government decided to establish a Federal Radiation Protection Authority in order to centralize radiation protection tasks. The new Federal Radiation Protection Authority is to help the Federal Environmental Minister with his tasks in the fields of radiation protection, nuclear waste management, and nuclear safety. (orig./HP)

  12. 78 FR 59982 - Revisions to Radiation Protection

    Science.gov (United States)

    2013-09-30

    ... COMMISSION Revisions to Radiation Protection AGENCY: Nuclear Regulatory Commission. ACTION: Standard review..., ``Radiation Protection Design Features,'' and Section 12.5, ``Operational Radiation Protection Program..., ``Radiation Protection Design Features,'' (ADAMS Accession No. ML13151A475); and Section 12.5,...

  13. Radiation protection in dental radiography

    International Nuclear Information System (INIS)

    The text passages of the Radiation Protection Ordinance and the relevant regulations that are of significance to dental radiography are presented in the book and are extensively discussed, so that many a practical advice can be found, and information on applicability in practice. The information given on the radiation exposure as a result of natural background radiation and in particular as a result of dental radiography is presented in a way suitable for passing on this information to patients who nowadays ask for better and more information prior to treatment. General protective measures and structural measures are discussed along with the means available for protecting the patient and the personnel. An annex lists the addresses of authorities having competence in this subject field and hence may be consulted. (orig./HP)

  14. Philosophy of radiological protection and radiation hazard protection law

    International Nuclear Information System (INIS)

    The radiation protection and the human safety in radiation facilities are strictly controlled by law. There are rules on the radiation measurement, too. In the present review, philosophy of the radiological protection and the radiation hazard protection law is outlined with reference to ICRP recommendations. (J.P.N.)

  15. Regulatory requirements for radiation protection

    International Nuclear Information System (INIS)

    Regulatory requirements for radiation protection have evolved and matured over several decades. Owing to the wide adoption of the recommendations of the International Commission on Radiation Protection (ICRP), there is international agreement on the principles to be followed for radiation protection. This foundation will be increasingly important owing to the growing need for international agreements and standards for radiation protection and radioactive materials management. During the infancy of the commercial nuclear industry, primary reliance was placed on protection of the individual, both in the work force and as a member of the public. With the growth of nuclear power in the 1960s and 1970s, environmental impact assessments and expert reviews of bio-effects data have focused attention on statistical risks to large population groups and the use of the collective dose commitment concept to estimate potential effects. The potential release of long-lived radionuclides from the nuclear fuel cycle requires further consideration of radionuclide accumulation in the biosphere and calls for controls conceived and implemented at the international level. The initial development efforts regarding these concerns already have been instituted by the ICRP and the IAEA. However, formal international agreements and a unified set of international standards may be required to implement the recommendations of these groups. Further international efforts in radiation protection are also called for in developing waste management practices, radioactive effluent control technology, and in-site selection for fuel-cycle plants and waste dispersal facilities. Since very low dose rates and doses will be involved, it will be useful to re-examine dose-effect relationships and to develop explicit societal goals for health protection. Improved criteria and methodologies for ''as low as readily achievable'' will also be required. (author)

  16. Traceability of radiation protection instruments

    International Nuclear Information System (INIS)

    Radiation protection instruments are used in daily measurement of dose and activities in workplaces and environments for safety management. The requirements for calibration certificates with traceability are increasing for these instruments to ensure the consistency and reliabilities of the measurement results. The present traceability scheme of radiation protection instruments for dose and activity measurements is described with related IEC/ISO requirements. Some examples of desirable future calibration systems with recent new technologies are also discussed to establish the traceability with reasonable costs and reliabilities. (authors)

  17. 1993 Radiation Protection Workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The 1993 DOE Radiation Protection Workshop was conducted from April 13 through 15, 1993 in Las Vegas, Nevada. Over 400 Department of Energy Headquarters and Field personnel and contractors from the DOE radiological protection community attended the Workshop. Forty-nine papers were presented in eleven separate sessions: Radiological Control Manual Implementation, New Approaches to Instrumentation and Calibration, Radiological Training Programs and Initiatives, External Dosimetry, Internal Dosimetry, Radiation Exposure Reporting and Recordkeeping, Air Sampling and Monitoring Issues, Decontamination and Decommissioning of Sites, Contamination Monitoring and Control, ALARA/Radiological Engineering, and Current and Future Health Physics Research. Individual papers are indexed separately on the database.

  18. 1993 Radiation Protection Workshop: Proceedings

    International Nuclear Information System (INIS)

    The 1993 DOE Radiation Protection Workshop was conducted from April 13 through 15, 1993 in Las Vegas, Nevada. Over 400 Department of Energy Headquarters and Field personnel and contractors from the DOE radiological protection community attended the Workshop. Forty-nine papers were presented in eleven separate sessions: Radiological Control Manual Implementation, New Approaches to Instrumentation and Calibration, Radiological Training Programs and Initiatives, External Dosimetry, Internal Dosimetry, Radiation Exposure Reporting and Recordkeeping, Air Sampling and Monitoring Issues, Decontamination and Decommissioning of Sites, Contamination Monitoring and Control, ALARA/Radiological Engineering, and Current and Future Health Physics Research. Individual papers are indexed separately on the database

  19. ICRP-Radiation protection principles and practice

    International Nuclear Information System (INIS)

    A brief survey is given of the history of ICRP, its basic standards and recommendations and their rationale, from its foundation in 1928 to the latest major review of its recommendation in 1977. In this time the basic radiation standard for whole body irradiation of a radiation worker has dropped from the equivalent of 50 r per year (in 1934) through 15 rem per year (1954) to 5 rem per year in 1958. ICRP recommendations include maximum permissible doses for particular organs and a comprehensive list of derived limits governing the intake of radionuclides into the body, and dose limits for members of the public. Emphasis in current radiation protection practice is on avoiding all unnecessary exposures and keeping doses as far below dose limits as is reasonably achievable. The use of cost-benefit analysis to optimize protection and some of its inherent difficulties, is discussed

  20. Nordic society for radiation protection

    International Nuclear Information System (INIS)

    The key themes of teh 12th ordinary general meeting of the Nordic Society for Radiation Protection were: RADIATION - ENVIRONMENT - INFORMATION. A number of outstanding international experts accepted to contribute on the meetings first day with invited presentations, which focussed on these themes. In all 38 oral presentations and 28 posters are included in the present Proceedings, which furthermore contains a resume of discussions from the special session on 'Controllable Dose'. (EHS)

  1. Course on radiation protection: technical level

    International Nuclear Information System (INIS)

    The course handbook on radiation protection, technical level, prepared by scientists of the Nuclear Regulatory Authority (ARN) of the Argentina Republic, describes the subjects in 22 chapters and 5 annexes. These topics detailed in the text have the following aspects: radioactivity elements, interaction of the radiation and the matter, radio dosimetry, internal contamination dosimetry, principles of radiation detection, biological radiation effects, fundamentals of radiation protection, dose limits, optimization, radiation protection and its organization, radioprotection to the public, radiation protection fundamentals for interventions, radiation shielding, contamination protection systems, radioactive waste management, criticality accidents, safe transport of radioactive materials, X-rays, regulatory aspects, industrial and medical applications of radiation, quality systems

  2. Activities of Radiation Protection Centre in 2000

    CERN Document Server

    Radiat. Prot. Cent. Vilnius

    2001-01-01

    Description of the activities of Radiation Protection Centre in 2000 is presented. Radiation Protection Centre is responsible for radiation protection issues. Currently there are six departments at Radiation Protection Centre: two in Vilnius - Department of Radiation Protection Supervision and Control and Department of Programs and Expertise, and four in the districts. Brief information on subject controlled by each departments is provided focusing on main achievements and events.

  3. Radiation protection training and education in Europe; Strahlenschutzausbildung in Europa

    Energy Technology Data Exchange (ETDEWEB)

    Boersma, Hielke Freerk [Groningen Univ. (Netherlands). Office of the Univ. Health, Safety and Environment; Ham, Ulla [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany); Holl, Matthias [Strahlenschutzschulung, Andernach (Germany); Jahn, Swen-Gunnar [Eidgenoessisches Nuklearsicherheitsinspektorat (ENSI), Villigen (Switzerland); Neuwirth, Johannes [Seibersdorf Laboratories (Austria); Schmitt-Hannig, Annemarie [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany). Fachbereich Strahlenschutz und Gesundheit; Schoenhacker, Stefan [Bundesministerium fuer Inneres, Traiskirchen (Austria). Abt. 1/9 - Zivilschutzschule; Vahlbruch, Jan-Willem [Leibniz Univ. Hannover (Germany). Inst. fuer Radiooekologie und Strahlenschutz (IRS)

    2013-09-01

    First, a comprehensive survey is given on the development and the present situation of radiation protection education and training, followed by exemplary reports from the individual countries Germany, Switzerland, Austria and the Netherlands. (orig.)

  4. Radiation leaking protection device

    International Nuclear Information System (INIS)

    Purpose: To prevent radioactivity from leaking outside of a reactor container by way of pipeways passing therethrough, by supplying pressurized fluid between each of a plurality of valves for separating the pipeways. Constitution: Pressurized fluid is supplied between each of a plurality of valves for separating pipeways. For instance, water in a purified water tank is pressurized by a pressure pump and the pressure of the pressurized water is controlled by a differential pressure detector, a pressure controller and a pressure control valve. In the case if a main steam pipe is ruptured outside of the reactor container or to be repaired, the separation valves are wholly closed and then the pressurizing device is actuated to supply pressurized water containing no radioactivity from the purified water tank to the position between the valves. The pressure in the pressurized water is controlled such that it is always higher by a predetermined level than the pressure in the reactor. This prevents the radioacitivity in the reactor core from leaking outside of the container passing through the valves, whereby radiation exposure in the working can be reduced and the circumferential contamination upon accident of pipeway rupture can be decreased. (Kawakami, Y.)

  5. Radiation safety. [Criteria for radiation protection standards

    Energy Technology Data Exchange (ETDEWEB)

    Auxier, J.A.

    1977-01-01

    Data available on the biological effects of radiation on man are reviewed, with emphasis on dose response to low LET and high LET radiation sources, and the effects of dose rate. Existing guides for radiation protection were formulated largely on the basis of tumor induction in the bone of radium dial painters, but the ICRP/NCRP annual dose guides of 5 rem/yr are of the same general magnitude as the doses received in several parts of the world from the natural radiation environment. Because of the greater sensitivity of rapidly dividing cells and the assumption that radiation occupations would not begin before the age of eighteen, maximum exposure levels were set as 5 (N-18) rem/yr, where N is the exposed worker's age in years. However, in the case of the natural radiation environment, exposure commences, in a sense, with the exposure of the ovum of the individual's mother; and the ovum is formed during the fetal development of the mother. In occupational exposures, the professional health physicist has always practiced the as low as practical philosophy, and exposures have generally averaged far below the guidelines. The average annual exposure of the radiation worker in modern plants and laboratories is approximately equal to the average natural radiation environment exposure rate and far lower than the natural radiation environment in many parts of the world. There are numerous complications and uncertainties in quantifying radiation effects on humans, however, the greatest is that due to having to extrapolate from high dose levels at which effects have been measured and quantified, to low levels at which most exposures occur but at which no effects have been observed.

  6. Ionizing radiation: Protection and dosimetry

    International Nuclear Information System (INIS)

    This guidebook explores the basics of the interaction of radiation with matter both from the physical and chemical aspects and the relation to biological effects. Calculations of absorbed doses and dose equivalent and ways to minimize exposure and optimization of radiation protection in light of the latest international recommendations are discussed and examples are shown. Frequently used dosimeters, radiation detectors with an emphasis on TL and chemical dosimeters and the dosimetry of fast neutron beams with special attention on medical uses in neutron therapy are discussed. The latest data on exposure resulting from natural and man-made sources in the environment is also covered

  7. Antioxidants and biological radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Lenten, K.J.; Greenstock, C.L. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    1998-07-01

    Antioxidants and antioxidant enzymes, by combatting oxygen radical-mediated radiation-induced oxidative stress, may prevent the accumulation of damage involved in tumor initiation, promotion and progression, and thus serve to protect us against ionizing radiation. We are testing the possible role of dietary antioxidants, and other biological response modifiers, in determining individual radiation response. These experiments use the fluorescent protein beta-phycoerythrin as a target and biomolecular marker for radiation-induced oxidative stress. Antioxidants are ranked according to their radioprotectiveness by their ability to compete with beta-phycoerythrin for radiolytic oxygen radicals. Samples of blood serum from cancer patients have been analyzed using this technique. There is a trend towards decreasing antioxidant levels with increasing donor age, and this is consistent with data showing an increasing radiosensitivity with age. We are presently monitoring antioxidant and antioxidant enzyme levels in atomic radiation workers and the general public, in order to assess whether they influence individual radiosensitivity. Knowledge of this source of biological response modification will be useful in applying radiation protection practices to those individuals or groups most at risk, and for estimating individual risks associated with radiation exposure. (author)

  8. Antioxidants and biological radiation protection

    International Nuclear Information System (INIS)

    Antioxidants and antioxidant enzymes, by combatting oxygen radical-mediated radiation-induced oxidative stress, may prevent the accumulation of damage involved in tumor initiation, promotion and progression, and thus serve to protect us against ionizing radiation. We are testing the possible role of dietary antioxidants, and other biological response modifiers, in determining individual radiation response. These experiments use the fluorescent protein beta-phycoerythrin as a target and biomolecular marker for radiation-induced oxidative stress. Antioxidants are ranked according to their radioprotectiveness by their ability to compete with beta-phycoerythrin for radiolytic oxygen radicals. Samples of blood serum from cancer patients have been analyzed using this technique. There is a trend towards decreasing antioxidant levels with increasing donor age, and this is consistent with data showing an increasing radiosensitivity with age. We are presently monitoring antioxidant and antioxidant enzyme levels in atomic radiation workers and the general public, in order to assess whether they influence individual radiosensitivity. Knowledge of this source of biological response modification will be useful in applying radiation protection practices to those individuals or groups most at risk, and for estimating individual risks associated with radiation exposure. (author)

  9. Priority issues in radiation protection

    International Nuclear Information System (INIS)

    Current radiation protection is based on the recommendations presented in ICRP Publication 60 produced in 1991, which was a consolidation of several ideas that were discussed in the years prior to publication. Conceptually, ICRP Publication 60 is based on a stipulated linear, non-threshold relationship between the probability of severe harm and radiation dose at low doses, and on this basis ICRP Publication 60 develops a coherent system of protection based on controlled and accepted risk. The current system of protection presents new protection quantities, and in addition a quantity (effective dose) that can be readily converted into risk, representing the result of several tissue exposures to different types of radiation. ICRP Publication 60 has made clear that the present system of protection distinguishes between practices, which increase doses and risks, and interventions, which reduce doses and risks. In the first case the increases are subject to control, while in the second the decision to intervene is guided by the principle of doing more good than harm. The control of the introduction and the performance of a practice are subject to the principles of justification, optimization of protection and individual dose limits for single sources of radiation or for a stipulated combination of sources. While these principles are well known, there is still substantial confusion, which can be exemplified by statements such as 'this protection system forces us to spend enormous amounts of money to reduce trivial risks'. This is nonsense, owing to the optimization principle. Also, there is confusion in trying to set limits in intervention situations, where there is no dose increase to control

  10. XXX. Days of Radiation Protection. Conference Proceedings of the 30-th Days of Radiation Protection

    International Nuclear Information System (INIS)

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 107 papers are published. The Conference consists of following sections: Effects of ionizing radiation; Regulation of radiation protection; Dosimetry and Metrology of ionizing radiation; Radiation protection in nuclear Power plants; Medical exposure and radiation protection in diagnostic radiology, nuclear medicine and radiation oncology; Natural radioactivity issues in radiation protection; Education, societal aspects and public involvement in radiation protection, trends and perspectives

  11. European radiation protection in the Essen practice test

    International Nuclear Information System (INIS)

    The proceeding of the meeting European radiation protection in the Essen practice test includes contributions to the following issues: basic radiation protection standards; clearance values and permitted activities; optimization, guidance values for dose limits; radon and radiation protection standards; radiation protection - eye lens; RPE (radiation protection expert)/RPO (radiation protection officer); environmental radiation protection; radiation protection in medicine.

  12. Radiation protection in veterinary radiology

    International Nuclear Information System (INIS)

    This Code of Practice is designed to give guidance to veterinary surgeons in ensuring that workers and members of the public are adequately protected from the hazards of ionising radiation arising from the use of x-ray equipment in veterinary practice. (author)

  13. Radiation protection and radiological cleanliness

    International Nuclear Information System (INIS)

    The improvement of radiation protection goes through the management, the way of doing at work, the rigor in daily activities; recent difficulties show that the vigilance must not be relaxed. That is what should allow to E.D.F to progress beyond the only application of regulation by the implication of everybody. (N.C.)

  14. Radiation protection in nuclear facilities

    International Nuclear Information System (INIS)

    Close ties exist between nuclear safety and radiation protection. Nuclear safety is made up of all the arrangements taken to prevent accidents occurring in nuclear facilities, these accidents would certainly involved a radiological aspect. Radiation protection is made up of all the arrangements taken to evaluate and reduce the impact of radiation on workers or population in normal situations or in case of accident. In the fifties the management of radiological hazards was based on the quest for minimal or even zero risk. This formulation could lead to call some activities in question whereas the benefits for the whole society were evident. Now a new attitude more aware of the real risks and of no wasting resources prevails. This attitude is based on the ALARA principle whose purpose is to maintain the exposure to radiation as low as reasonably achievable taking into account social and economic concerns. This document regroups articles illustrating different aspects of the radiation protection in nuclear facilities such as a research center, a waste vitrification workshop and a nuclear power plant. The surveillance of radiological impacts of nuclear sites on environment is examined, a point is made about the pending epidemiologic studies concerning La Hague complex. (A.C.)

  15. Radiation protection in developing countries

    International Nuclear Information System (INIS)

    Radiation protection in developing countries has to be seen as a small fraction of the larger socio-economic aspects of the North-South problem. There are excessive radiation protection efforts in a few countries, adequate efforts in about 10%, and almost 90% of all countries (with about three quarters of the world population) in which radiation protection is totally insufficient or non-existent, despite a large number of radiation sources and radiation workers, in particular in medicine. Despite all differences, these countries have some problems in common: Determination of priorities and organisational structures, lack of funds, qualified experts, and infratructure, brain drain, climatic factors, etc. Some possibilities are pointed out, how external help (bilateral or through IAEA) can be useful, provided certain minimal conditions can be met by a country. Examples would be assistance in establishing and implementing of meaningful regulations and control structures, adequate training and consulting, selection of simple and rugged instrumentation, exchange of experiences, and international quality assurance tests. (orig.)

  16. Radiation protection in veterinary medicine

    International Nuclear Information System (INIS)

    Diagnostic radiology is an essential part of present-day veterinary practice. The need for radiation protection exists because occupational exposure to ionizing radiation can result in deleterious effects that may manifest themselves not only in exposed individuals but in their descendants as well. These are respectively called somatic and genetic effects. Somatic effects are characterized by observable changes occurring in the body organs of the exposed individual. These changes may appear from within a few hours to many years later, depending on the amount and duration of exposure of the individual. In veterinary medicine, the possibility that anyone may be exposed to enough radiation to create somatic effect is extremely remote. Genetic effects are more a cause for concern at the lower doses used in veterinary radiology. Although the radiation doses may be small and appear to cause no observable damage, the probability of chromosomal damage in the germ cells, with the consequence of mutations, does exist. These mutations may give rise to genetic defects and therefore make these doses significant when applied to a large number of individuals. There are two main aspects of the problem to be considered. First, personnel working with X-ray equipment must be protected from excessive exposure to radiation during their work. Secondly, personnel in the vicinity of veterinary X-ray facilities and the general public require adequate protection

  17. Radiation protection of medical staff

    International Nuclear Information System (INIS)

    The continuing increase in the worldwide use of X-ray imaging has implications for radiation protection of medical staff. Much of the increased usage could be viewed as simply a workload issue with no particular new challenges. However, advances in technology and developments in techniques have seen an increase in the number of X-ray procedures in which medical personnel need to maintain close physical contact with the patient during radiation exposures. The complexity of many procedures means the potential for significant occupational exposure is high, and appropriate steps must be taken to ensure that actual occupational exposures are as low as reasonably achievable. Further attention to eye protection may be necessitated if a lowering of the dose limit for the lens of the eye is implemented in the near future. Education and training in radiation protection as it applies to specific situations, established working procedures, availability and use of appropriate protective tools, and an effective monitoring programme are all essential elements in ensuring that medical personnel in X-ray imaging are adequately and acceptably protected.

  18. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Aspects of radiation protection in nuclear medicine and the role of the Dutch Society for Nuclear Medicine in these are discussed. With an effective dose-equivalence of averaged 3 mSv per year per nuclear medical examination and about 200.000 examinations per year in the Netherlands, nuclear medicine contributes only to a small degree to the total averaged radiation dose by medical treating. Nevertheless from the beginning, besides to protection of environment and personnel, much attention has been spent by nuclear physicians to dose reduction with patients. Replacing of relatively long living radionuclides like 131I by short living radionuclides like 99mTc is an example. In her education and acknowledgement policy the Dutch Society for Nuclear Medicine spends much attention to aspects of radiation reduction. (author). 3 tabs

  19. Regulations for radiation protection in industrial radiography

    International Nuclear Information System (INIS)

    These Regulations specify that responsibility for applying radiation protection regulations in industrial radiography rests with the owner of the establishment who will designate a radiation protection officer to this effect. They provide for the organisation of radiation protection, including the measures to be observed, exposure limits, etc. The competent authority for these questions is the State Institute of Radiation Hygiene

  20. 78 FR 5813 - 2013 Assuring Radiation Protection

    Science.gov (United States)

    2013-01-28

    ... HUMAN SERVICES Food and Drug Administration 2013 Assuring Radiation Protection AGENCY: Food and Drug... protection program. The goal of the 2013 Assuring Radiation Protection will be to coordinate Federal, State... radiation protection. The recipient will establish committees, in accordance with Federal statutes...

  1. Future of Radiation Protection Regulations.

    Science.gov (United States)

    Doss, Mohan

    2016-03-01

    THERE IS considerable disagreement in the scientific community regarding the carcinogenicity of low-dose radiation (LDR), with publications supporting opposing points of view. However, major flaws have been identified in many of the publications claiming increased cancer risk from LDR. The data generally recognized as the most important for assessing radiation effects in humans, the atomic bomb survivor data, are often cited to raise LDR cancer concerns. However, these data no longer support the linear no-threshold (LNT) model after the 2012 update but are consistent with radiation hormesis. Thus, a resolution of the controversy regarding the carcinogenicity of LDR appears to be imminent, with the rejection of the LNT model and acceptance of radiation hormesis. Hence, for setting radiation protection regulations, an alternative approach to the present one based on the LNT model is needed. One approach would be to determine the threshold dose for the carcinogenic effect of radiation from existing data and establish regulations to ensure radiation doses are kept well below the threshold dose. This can be done by setting dose guidelines specifying safe levels of radiation doses, with the requirement that these safe levels, referred to as guidance levels, not be exceeded significantly. Using this approach, a dose guidance level of 10 cGy for acute radiation exposures and 10 cGy y for exposures over extended periods of time are recommended. The concept of keeping doses as low as reasonably achievable, known as ALARA, would no longer be required for low-level radiation exposures not expected to exceed the dose guidance levels significantly. These regulations would facilitate studies using LDR for prevention and treatment of diseases. Results from such studies would be helpful in refining dose guidance levels. The dose guidance levels would be the same for the public and radiation workers to ensure everyone's safety. PMID:26808881

  2. Applied radiation biology and protection

    International Nuclear Information System (INIS)

    Written by two eminent expects in the field with many years of teaching experience between them, this book presents a concise coverage of the physical and biological basics of radiation biology and protection. The book begins with a description of the methods of particle detection and dosimetric evaluation. The effects of ionizing radiation on man are treated from the initial physico-chemical phase of interaction to their conceivable pathological consequences. Regulations, limits and safeguards on nuclear power plants, radioisotope installations and medical centers which make use of ionizing radiation are given and the risks of exposure to natural, industrial and scientific radiation sources evaluated. The final chapter takes a look at some of the more important nuclear accidents, including Windscale, Three Mile Island, and Chernobyl, and describes basic procedures to be carried out in the eventuality of a nuclear emergency. Twelve chapters have been processed separately for inclusion in the appropriate data bases

  3. Radiation Protection Services Division: progress report for 1992-1993

    International Nuclear Information System (INIS)

    This report describes the work of the Radiation Protection Services Division during 1993, for implementation of radiation safety in all institutions in India using radiation sources in medical, industrial and research applications. It gives information about personnel monitoring using photographic film and TLD badges, neutron monitoring badges, advisory and licensing services, regulation, transport of radioactive materials and periodic protection survey. About 33 publications by the staff of the Division are also listed. (author). 4 tabs

  4. Radiation Protection and Monitoring Services at the Bandung Reactor Centre

    International Nuclear Information System (INIS)

    A description Is given of the Radiation Protection Service at the Bandung Reactor Centre, Including such activities as monitoring the radiation from the TRIGA MARK II (250-kW) reactor which is measured in the reactor hall and on the reactor deck. Another area surveyed by the Protection Service is the Radioisotope Laboratory. Also discussed are problems concerning instrument failure and the availability of man power To meet the safety requirements, the Protection Service is attempting to manufacture its own Instruments. (author)

  5. Epistemological basis of radiation protection

    International Nuclear Information System (INIS)

    Full text: Regarding natural phenomena understood or not, the absolute truth must be somewhere. In fact, there is no evidence that neither nature nor the phenomena that it includes were 'created' to be understood. Except for the fact that Man appeared through the same process, with his curiosity, capacity to perceive and manipulate, his greed for power and fears. In general, the attitude towards questions for which the absolute truth has not been reached varies from ignorance/indifference to the search of knowledge through scientific methodology, and may even be based on beliefs. The fact that the interaction between ionizing radiations and living beings results in biological effect is true. That the biological effect of high doses of radiation, absorbed outside the context of medicine, is hazardous for the irradiated individuals also seems to be true. That any dose is dangerous, or not, is debatable: the available information and knowledge are not consistent enough to end the question; and so, the absolute truth remains hidden. Radiological Protection is founded on the principle that any increase of dose results in an increase in the risk of cancer, and that this risk must be kept as low as possible. It is therefore based on this 'belief' that the international organisms of radiological protection emit recommendations aiming the protection of people and the environment. What is interesting about this question is that because of restrictions imposed by regulating agencies, populations, members of the public and the environment are properly protected against harmful effects of ionizing radiations, which makes the truth no longer interesting. Radiological Protection is a requirement associated to all activities involving nuclear energy. It satisfies several interests and opposes others. The greater the opposed interests and the perception that the absolute truth can represent dialectic advantage to one of the parts, the greater the perception of the importance of its revelation. In the present study, two initiatives of search for the truth were analyzed: the initiative of the Brazilian National Congress, through the creation of a working group in charge of evaluating the radiological protection in the country; and WONUC's initiative to create a publication focused exclusively on the effect of low doses of ionizing radiation. In relation to the understanding of the biological effects of the radiations, the document underlines the difficulty of all those involved in accepting the evidence that the truth related to this question was not reached. In respect to the initiative of the WONUC, the International Journal of Low Radiation is now in its 4th volume; publishing works that oppose the official belief that any dose is harmful. (author)

  6. Biological protection against nuclear radiation

    International Nuclear Information System (INIS)

    This monograph is addressed to physicists, chemists, engineers, under-, graduated and enrolled towards PhD degree students, wishing to orient their activity towards research, design, education or production in nuclear power and nuclear technology field. Specifically, the work deals with the biological protection against nuclear radiations. The chapter 1 presents selectively the nuclear radiation types, the interaction of neutrons, gamma radiations and charged particles with matter. Particularly focused is the issue of biological effects of nuclear radiations and the implied permissible limits of irradiation. Chapter 2 describes one of the most intense sources of nuclear radiation, namely, the reactor core; reviewed are the reactor neutron spectra, as well as, the spectra of primary and secondary radiations. Chapter 3 deals with the activation process as a source of nuclear radiations; analyzed are the processes of activation of coolant, structural elements and soils, as well as the tritium production. Chapter 4 treats the nuclear fission process and formation of fission products, another major source of radiations. The principal features of fission products are mentioned such as: decay characteristics, fission yields, fission product activity, decay heat. Chapter 5 tackles the problem of influence of geometric form of the source upon radiation flux spatial distribution. In chapter 6 briefly are described the elements of neutron transport theory, diffusion equation, neutron slowing-down, age theory, i.e. all the knowledge implied in neutron attenuation calculation in shields. Chapter 7 deals with gamma radiation attenuation in shields, namely, spatial distribution of gamma-ray dose rates from point-like sources in an infinite medium, gamma radiation build-up factors, etc. In chapter 8 the phenomenon of heating of biological shields due to nuclear radiation is described. Calculation of heat rate generated by gamma and neutron radiation is sketched. Chapter 9 treats the non-homogeneities in biological shields at nuclear reactors and several methods for calculating non-homogeneous shields are presented. Chapter 10 describes the principal materials used as biological shielding against nuclear radiations, such as steel, lead, light water, concrete, etc. as well as, their behaviour in radiation fields. In the chapter 11 several examples of evaluating the dose rates and designing biological shieldings are given. Finally, chapter 12 gives definition of nuclear safety, events and nuclear accidents. Here also aspects of the Chernobyl accident are presented. Six appendices are added containing data of general use such as level and decay schemes, attenuation coefficients, data referring to U-235 fission products, etc. The work represents a compact and coherent synthesis of the main shielding calculation methods offering at the same time the necessary numerical data. An up-date comprehensive reference list completes this monograph

  7. Training courses on radiation protection

    International Nuclear Information System (INIS)

    Many Member States are developing or already have developed their own national training programmes. The IAEA is actively involved in promoting training in radiological protection, and this report has been prepared to provide the guidance that may be required in this development. The original version of the report on this subject was published in 1964 as Technical Reports Series No. 31 entitled ''Training in Radiological Protection: Curricula and Programming''. In 1975 a second version was published entitled ''Training in Radiological Protection for Nuclear Programmes'' as Technical Reports Series No. 166. This publication is intended mainly for use by persons who are responsible for organizing training programmes in radiation protection. It also reflects the policy of the Agency to have continuing standardized training in radiation protection. In addition to a small change in the title of the report, some concepts and ideas which are no longer applicable have been omitted and new information included. An important part of this report is the list of courses now offered in many Member States

  8. Practical methods for radiation survey in nuclear installations

    International Nuclear Information System (INIS)

    This study is placed to those who are responsible to perform radiation survey in the nuclear installations, especially the beginners. Therefore, it gives a comprehensive view to all-important aspects related to their work starting from the structure of atoms to the practical steps for radiation survey works. So, it clarify how to perform personal monitoring, methods for monitoring surface contamination, methods for measuring radioactivity of gases and radioactive aerosols in air, monitoring radiation doses, measuring radiation influences in workplaces and finally measuring internal exposure of radiation workers in nuclear installations. Finally, The study shows some cases of breaches of radiation protection rules in some American nuclear installations and describes the final results of these breaches. The aim of this is to assure that any breach or ignore to radiation protection principles may produce bad results, and there is no leniency in implementing environmental radiation protection principles. (author)

  9. Development of radiation protection on TENORM

    International Nuclear Information System (INIS)

    Some of technologically enhanced naturally occurring radioactive material (TENORM), such as radon and monazite sand, gradually became a target for radiological protection. In order to regulate TENORM safely and economically, it is essential to consider the characteristics of TENORM such as ubiquity, huge volume, and very low activity levels. In this paper, radiation protection principles and standards for NORM/TENORM are summarized based on the reports published by the international organizations (e.g. ICRP and IAEA) to assist the development of national regulatory framework. The survey results on the present Japanese situations on industries related to NORM/TENORM are provided, and the categorization for NORM/TENORM, which is established by the Radiation Council of Japan, is explained how to control NORM/TENORM based on their exposure doses instead of their activity levels. Finally, basic processes to solve the problems related to NORM/TENORM are discussed. (author)

  10. Radiation protection in research reactors

    International Nuclear Information System (INIS)

    Nuclear research reactors are essential facilities in the development of nuclear technology and they also play a major role in the design and development of necessary infrastructure for nuclear power programme. At BARC-Trombay, three research reactors, Apsara, Cirus and Dhruva are in operation. In this the radiation protection programme as practised in the research reactors are brought out. Some examples of the steps taken over the years in reducing occupational exposures are given. Research reactors being used for multiple purposes, extra precautions required to be taken in regard to radiation safety in use of the experimental facilities by researchers are also described. (author)

  11. Radiation protection and reactor safety

    International Nuclear Information System (INIS)

    The Chernobyl reactor accident caused bewilderment, fear and anxiety among the population. How safe are reactors? Which precautions to protect lives and health have been taken? These questions are posed particularly in the areas of radiation protection, reactor safety, supply and waste management of nuclear power plants and other nuclear installations. For all these areas the present report contains an analysis of facts; it informs about political measures during the 11th legislative period of the German Bundestag, and shows prospects of future developments. (orig.)

  12. Radiation Protection in Paediatric Radiology

    International Nuclear Information System (INIS)

    Over the past decade and a half, special issues have arisen regarding the protection of children undergoing radiological examinations. These issues have come to the consciousness of a gradually widening group of concerned professionals and the public, largely because of the natural instinct to protect children from unnecessary harm. Some tissues in children are more sensitive to radiation and children have a long life expectancy, during which significant pathology can emerge. The instinct to protect children has received further impetus from the level of professional and public concern articulated in the wake of media responses to certain publications in the professional literature. Many institutions have highlighted the need to pay particular attention to the special problems of protecting paediatric patients. The International Commission on Radiological Protection has noted it and the IAEA's General Safety Requirements publication, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards (BSS), requires it. This need has been endorsed implicitly in the advisory material on paediatric computed tomography scanning issued by bodies such as the US Food and Drug Administration and the National Cancer Institute in the United States of America, as well as by many initiatives taken by other national and regional radiological societies and professional bodies. A major part of patient exposure, in general, and paediatric exposure, in particular, now arises from practices that barely existed two decades ago. For practitioners and regulators, it is evident that this innovation has been driven both by the imaging industry and by an ever increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practice lag (inevitably) behind industrial and clinical innovations. This Safety Report is designed to consolidate and provide timely advice on dealing with the special problems involved. The approach adopted is developed within the IAEA framework of statutory responsibility to establish standards for the protection of people against exposure to ionizing radiation and to provide for the application of these standards. The BSS issued by the IAEA require the radiation protection of patients undergoing medical exposures through justification of the procedures involved and optimization of protection and safety. This challenge is taken up here by adding paediatric radiology to the areas dealt with in recent IAEA publications. These are specifically Safety Reports Series Nos 39 and 40 on diagnostic radiology and nuclear medicine, respectively, and Safety Reports Series Nos 58-61 and 63 on newer medical imaging techniques and other initiatives in justification of procedures and optimization of protection and safety. The advice of the IAEA is intended in particular for professionals, practitioners, and teachers and trainers in the area, as well as physicians referring children for examinations. Resource materials and training materials are available cost free on the IAEA's Radiation Protection of Patients web site (http://rpop.iaea.org).

  13. Radioprotectors and Immunomodulators for Protection against Radiation

    International Science & Technology Center (ISTC)

    Development of New Generation of Radioprotectors, Immunomodulators, and Radiation Sensitizers for Human Protection Against Ionizing Radiation and Efficiency Improvement of Radiotherapy of Malignant Cells

  14. Chemical radioprotectors in radiation protection

    International Nuclear Information System (INIS)

    The different demands for the ways of the administration of chemical radioprotectors as a cystamine or WR-2721 (amifostine, gammaphos, Ethyol) e.g. S-containing compounds, their distribution and further pharmacological properties of protective agents in mentioned indications are discussed in presented lecture. A special attention is concerned on the practical use of chemical radioprotectors in the emergency and clean-up workers after a radiation accident or nuclear catastrophes. (author)

  15. Ethical aspects of radiation protection

    International Nuclear Information System (INIS)

    The conflicting interests of technology and mostly prevent technicians and scientists from orientating themselves by clearly formulated rules of ethical acting. The many attempts which have been made therefore at introducing a binding 'Hippocratic oath' failed without exception. Based on many years of experience the author tries to derive some simple ethical principles from the maxims of action which apply to radiation protection, thus contributing a new aspect to the ethics discussion. (orig.)

  16. Workstations studies and radiation protection

    International Nuclear Information System (INIS)

    This day on the workstations studies for the workers follow-up, was organised by the research and health section. Devoted to the company doctors, for the competent persons in radiation protection, for the engineers of safety, it presented examples of methodologies and applications in the medical, industrial domain and the research, so contributing to a better understanding and an application of regulatory measures. The analysis of the workstation has to allow a reduction of the exposures and the risks and lead to the optimization of the medical follow-up. The agenda of this day included the different subjects as follow: evolution of the regulation in matter of demarcation of the regulated zones where the measures of workers protection are strengthened; presentation of the I.R.S.N. guide of help to the realization of a workstation study; implementation of a workstation study: case of radiology; the workstation studies in the research area; Is it necessary to impose the operational dosimetry in the services of radiodiagnostic? The experience feedback of a competent person in radiation protection (P.C.R.) in a hospital environment; radiation protection: elaboration of a good practices guide in medical field; the activities file in nuclear power plant: an evaluation tool of risks for the prevention. Methodological presentation and examples; insulated workstation study; the experience feedback of a provider; Contribution of the ergonomics to the determiners characterization in the ionizing radiation exposure situations;The workstations studies for the internal contamination in the fuel cycle facilities and the consideration of the results in the medical follow-up; R.E.L.I.R. necessity of workstation studies; the consideration of the human factor. (N.C.)

  17. The IAEA radiation protection laboratories

    International Nuclear Information System (INIS)

    During the reported period, the activities of the Radiation Protection Laboratory Unit (RPLU) have been considerably extended. Being foreseen, at the beginning, as dealing only with internal matters, its responsibilities are now covering outside work, allowing to accumulate a great deal of expertise. Its staff has now reached a very high technical level, largely recognized. It is to expect that RPLU activities will continue to expand, for the following reasons, among which: The implementation of the new ICRP recommendations will most probably lead to monitor larger groups of people, and to look for new dosimetry concepts, the probable increase of practical training needs, specially in developing countries where national radiation protection infrastructures are being developed. In this field, the RPLU could certainly do more than it presently does, taking advantage of the Seibersdorf Training Center facilities, the increase of external interventions. The RPLU should also put more efforts on activities related to radiation protection monitoring equipment. Since frequently requested to give advices in this field, in the frame of Technical Cooperation programmes, it seems logic to develop comparison and test works in this matter

  18. Excellence through radiation protection practices

    International Nuclear Information System (INIS)

    The nuclear generation program at Ontario Hydro was initiated in the early 1960s. Over the last two decades the program has expanded to a planned capacity of ? 14,000 MW(electric) by 1992. Each of the nuclear stations consists of four identical reactor units and they range in size from 520 to 880 MW(electric). The overall objectives of Ontario Hydro's radiation protection program are stated as follows: (1) to prevent detrimental nonstochastic health effects to employees and the public; (2) to limit detrimental stochastic health effects occurring in employees or the public to levels as low as reasonably achievable (ALARA), social and economic factors being taken into account; and (3) to provide a level of health and safety that is as good as, or better than, comparable safe industries. Although many elements of the radiation protection program are similar to those adopted by other electrical utilities around the world, there are some unique features that have played an important part in the improvements achieved. These include: management commitment, design responsibility, radiation protection training, operations control, and work planning. The issues that need to be addressed in striving for overall excellence in radiological safety over the next decade are summarized

  19. Survey of the authorities competent for licensing and supervision in the field of radiation protection under the terms of the Atomic Energy Act (As of January 1980)

    International Nuclear Information System (INIS)

    Contents: 1. Portfolio of the Federal Minister of Defence. 2. Handling of other radioactive substances, equipment for the generation of ionizing radiation and activities in installations owned by third parties: 2.1 Licensing authorities; 2.2 competent authorities for the acception and documentation of notifications required under sections 4, sub-section 1, 17 sub-section 1, of the Radiation Protection Ordinance; 2.3 authorities competent for the registration of radiation records; 2.4 supervisory authorities. 3. Carriage of radioactive substances: 3.1 Federal authorities responsible for licensing and supervisions; 3.2 Land authorities responsible for licensing; 3.3 Land authorities responsible for supervision. 4. Permits concerning the design of equipment. 5. Import and export of radioactive substances: 5.1 Licensing authorities; 5.2 supervisory authorities. 6. Competent authorities in accordance with section 63 sub-section 3 paragraph 1 of the Radiation Protection Ordinance (monitoring stations) and according to the provisions of Land legislation. 7. Licensing and supervisory authorities for the treatment, processing or any other use of nuclear fuels under section 9 of the Atomic Energy Act. 8. Competences of the Laender in the implementation of the Atomic Energy Act and the Radiation Protection Ordinance. (orig.)

  20. Basic radiation protection technology. 3rd edition

    International Nuclear Information System (INIS)

    The sum of many small changes in the third edition of Basic Radiation Protection Technology results in a significant improvement over the second edition. While much of the text is virtually the same, there are two new appendices, almost a full chapter on the new 10CFR20, and many revisions throughout the book. The content is divided into three major sections: the basic science topics (radioactivity, interaction, effects, etc.), instrumentation (detectors, dosimetry, environmental monitoring), and protection (principles, surveys, waste, emergencies, regulations). The technical content of the specialized chapters is strongly oriented to the power reactor community, although there are excellent discussions of x-ray generation and applications, of medical nuclides, of accelerators, and of industrial applications in the chapters on sources and protection. The basic nature of much of the content makes it useable for persons working in other specialties

  1. Basic standards for radiation protection

    International Nuclear Information System (INIS)

    The basic standards for radiation protection have been based, for many years, on the recommendations of the International Commission of Radiological Protection. The three basic standards recommended by the Commission may be summarized as ''justification, optimization of protection and adherence to dose limitations. The applications of these basic principles to different aspects of protection are briefly summarized and the particular ways in which they have been applied to waste described in more detail. The application of dose limits, both in the control of occupational exposure and in regulating routine discharges of radioactive effluents is straight forward in principle although the measurement and calculational requirements may be substantial. Secondary standards such as derived limits may be extremely useful and the principles underlying their derivation will be described. Optimization of protection is inherently a more difficult concept to apply in protection and the various techniques used will be outlined by with particular emphasis on the use of cost benefit analysis are recommended by the ICRP. A review will be given of the problems involved in extending these basic concepts of the ICRP to probabilistic analyses such as those required for assessing the consequences of accidents or disruptive events in long term repositories. The particular difficulties posed by the very long timescales involved in the assessment of waste management practices will be discussed in some detail. (orig./RW)

  2. Units for radiation protection work

    International Nuclear Information System (INIS)

    ICRU has defined special measurable (operational) quantities for radiation protection. A consequence of using the operational quantities is that hand-held and personal dosemeters can give different measuring results in the same radiation situation. The differences vary and are caused by the geometry of the radiation field. The units have well documented relations to e.g. the ICRP effective dose and equivalent dose to an organ or tissue. Therefore, it is possible to estimate these doses from a measured value of e.g. the ambient dose equivalent. ICRU and ICRP have recently reviewed these relations in two important commonly issued reports (Report 57 and Publication 74). This report tries to show the value of understanding these units and their relations and is primarily meant to be used for educational purposes. 11 refs

  3. Radiation protection for human spaceflight

    International Nuclear Information System (INIS)

    Cosmic radiation exposure is one of the most significant risks associated with human space exploration. Except for the principles of justification and optimization (ALARA), the concepts of terrestrial radiation protection are of limited applicability to human spaceflight, as until now only few experimentally verified data on the biological effectiveness of heavy ions and the dose distribution within the human body exist. Instead of applying the annual dose limits for workers on ground also to astronauts, whose careers are of comparatively short duration, the overall lifetime risk is used as a measure. For long-term missions outside Earth's magnetic field, the acceptable level of risk has not yet been defined, since there is not enough information available to estimate the risk of effects to the central nervous system and of potential non-cancer radiation health hazards. (orig.)

  4. Radiation Protection Legislation in the Nordic Countries

    International Nuclear Information System (INIS)

    Recent alterations in the radiation protection laws of the Nordic countries are presented. The report amends the previous SS-report 87-37 with the title Radiation Protection and Atomic Energy Legislation in the Nordic Countries. (au)

  5. Development of radiation protection standards

    International Nuclear Information System (INIS)

    Radiation protection standards are based on the best available knowledge, caution, and perception. Dose limits for occupational exposure have decreased as knowledge was gained about radiation effects: from 0.6 Sv (60 rem)/year for 1900-1930 to 50 mSv (5 rem)/year in 1958 (the level still used as of 1990). Current dose limits for public exposure range from 1 mSv to 5 mSv, depending on frequency of exposure. For the embryo and fetus, dose limits are 0.5 mSv/mo and 5 mSv for the entire gestation. In the 1970s, the concept of acceptable risk and that of a non-threshold dose-response relationship became the basis for setting dose limits. Three principles of radiation protection are that (a) dose levels should not exceed acceptable levels, (b) optimal dose levels should be as low as reasonably achievable, and (c) radiation should not be used unless it produces a positive net benefit. Although no dose limits have been set for patients undergoing diagnostic and therapeutic radiologic procedures, such measures must provide a net benefit to patients at optimal dose levels

  6. New Radiation Protection training room

    CERN Multimedia

    HSE Unit

    2013-01-01

    From now on, the theory and practical components of the Radiation Protection training, developed by the RP Group and offered by the HSE Unit’s Safety Training team to people working in a Controlled Radiation Area, will take place in a dedicated teaching room, designed specifically for this kind of training.   The new room is in the Safety Training Centre on the Prévessin site and has been open since 16 October. It has an adjoining workshop that, like the room itself, can accommodate up to 12 people. It is also equipped with an interactive board as well as instruments and detectors to test for ionising radiation. This room is located near the recently inaugurated LHC tunnel mock-up where practical training exercises can be carried out in conditions almost identical to those in the real tunnel. To consult the safety training catalogue and/or sign up for Radiation Protection training, please go to: https://cta.cern.ch For further information, please contact the Safety Trainin...

  7. Report to the government of Zambia. Radiation protection

    International Nuclear Information System (INIS)

    At the request of the Government of the Republic of Zambia, the International Atomic Energy Agency set up a technical assistance project to supply an expert plus some equipment, commencing 1 October 1971 and of one year's duration. The project was to expand Zambia's radiation protection service through monitoring of radiation doses, radiation sources, and premises, and provide advise related to the safe handling of sources of ionizing radiation. Upon arrival the expert found that some of these activities had been initiated. The key measures therefore were to establish channels of communication and authority, survey the state of radiation safety and protective measures, and coordination of protective and control measures. On these lines the Ionising Radiation Act is stated to show how its establishment and organizational structure could assist in the implementation of radiation protection measures. maps

  8. State Supervision and Control of Radiation Protection

    CERN Document Server

    2001-01-01

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 1999-2001 is presented.

  9. State Radiation Protection Supervision and Control

    CERN Document Server

    2002-01-01

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 2002 is presented.

  10. IAEA programmes for radiation protection

    International Nuclear Information System (INIS)

    The present IAEA radiation protection programmes are described: the resources allocated to those contained within the Principal Programme on Technological Safety and on Physical Security amount to 105.429.000 US dollars for the biannual 2004-2005 period: that is: a specific radiological safety programme (radiological protection and safety of radiation sources) combined with a programme on radioactive materials transport safety, and another programme on the safe management of radioactive waste. The Programme on Radiological and Transport Safety contains sub-programmes on: improvements on radiological and transport safety infrastructures at national and global levels, information and communication networks on radiological safety, application of safety standards on IAEA's operations, occupational radiation protection, radiological protection of the patient, safety on the transport of radioactive materials and preparation and response to nuclear or radiological emergency situations. The Programme on Radioactive Waste also includes sub-programmes on: the improvement of radioactive waste infrastructures at national and global levels, networks of information and communication on radioactive waste management, safety policies and approaches for the final disposal of radioactive waste, technologies for the final disposal of radioactive waste, releases of radioactive materials to the environment under safe conditions, safe management of residual radioactive materials, technologies for the safe closure of installations and rehabilitation of sites and the safe management of sealed out-of-use sources. Finally, there are described the consultations with experts from IAEA Member States conducted during a great number of international Conferences, and the conversion of the received recommendations into Action plans, that approach the IAEA programmes to the changing needs of the world and to the scientific discoveries which are been produced. (Author)

  11. Space radiation protection: Destination Mars.

    Science.gov (United States)

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure. PMID:26432587

  12. Radiation protection enrollments and degrees, 1981

    International Nuclear Information System (INIS)

    This report presents data on the number of students enrolled and the degrees awarded in academic year 1980-81 from 61 U.S. universities offering degree programs in radiation protection or related areas that would enable students to work in the health physics field. The report includes historical survey data for the last decade and provides information such as trends by degree level, foreign national student participation, female and minority student participation, and placement of graduates. Also included is a listing of the universities by type of program and number of students

  13. Operational radiation protection: A guide to optimization

    International Nuclear Information System (INIS)

    The purpose of this publication is to provide practical guidance on the application of the dose limitation system contained in the Basic Safety Standards for Radiation Protection to operational situations both in large nuclear installations and in much smaller facilities. It is anticipated that this Guide will be useful to both the management and radiation protection staff of operations in which there is a potential for occupational radiation exposures and to the competent authorities with responsibilities for providing a programme of regulatory control. Contents: Dose limitation system; Optimization and its practical application to operational radiation protection; Major elements of an effective operational radiation protection programme; Review of selected parts of the basic safety standards with special reference to operational radiation protection; Optimization of radiation protection; Techniques for the systematic appraisal of operational radiation protection programmes. Refs and figs

  14. An introduction to radiation protection principles

    International Nuclear Information System (INIS)

    The purpose of the document is to outline the fundamentals of radiation protection, to describe methods that enable employees to work safely with radiation and to aquaint employees with CRNL's radiation and industrial safety organization

  15. Radiation protection problems with dental radiological equipment

    International Nuclear Information System (INIS)

    With the advent of the EC Patient Directive, the importance of surveying and optimising patient exposure for diagnostic imaging procedures is paramount. In the field of dentistry there has been a heightened interest in areas of equipment performance and patient exposure. This interest, coupled with a number of dental radiation safety incidents investigated by our department, and the issuing of a Code of Practice for Radiological Protection in Dentistry by the Department of Health, led to the establishment in our department, of an evaluation protocol for the performance and operation of dental X ray equipment. The protocol was used to perform a survey on over 100 dental X ray units in use in the Public Sector in Ireland. This presentation will report on the radiation incidents mentioned above. It will detail the protocol and furnish the results and conclusions of the survey. The survey has made it possible to establish clearly the necessary steps required to ensure compliance with requirements. In addition, the corrective steps taken by the dental authorities will be presented and the overall impact of the regulations and the programme consequent on them will be reviewed. (Author)

  16. Radiation protection enrollments and degrees, 1979 and 1980

    International Nuclear Information System (INIS)

    Public concern over the effects of low-level radiation and other aspects of the use of nuclear energy has grown in recent years, and the demand for radiation protection has continued to increase. Radiation Protection Enrollments and Degrees presents the results of the latest survey of institutions offering degree programs in this field. Students obtaining such degrees are vital to the development of industry, medicine, research, power production, construction, and agriculture. These surveys assist state and federal governments in their search for such personnel

  17. Radiation protection enrollments and degrees, 1979 and 1980

    Energy Technology Data Exchange (ETDEWEB)

    Gove, R.M.; Little, J.R.; Shirley, D.L.

    1981-07-01

    Public concern over the effects of low-level radiation and other aspects of the use of nuclear energy has grown in recent years, and the demand for radiation protection has continued to increase. Radiation Protection Enrollments and Degrees presents the results of the latest survey of institutions offering degree programs in this field. Students obtaining such degrees are vital to the development of industry, medicine, research, power production, construction, and agriculture. These surveys assist state and federal governments in their search for such personnel.

  18. Radiation protection in hospitals of Equatorial Guinea

    International Nuclear Information System (INIS)

    With a population of four hundred thousand (400.000) inhabitants and distributed in a territory of 28 thousand (28.000) km2, the use of ionizing radiations for medical practice in Equatorial Guinea is few and decreasing. It is used for diagnostic practices in the main hospitals of the country, where the work burden is not over 20 patients per day. The political, social and economical embryonic development of the country until recently had a negative influence on indicators and health organisations, so that even now the country does not have any radiological protection law, this shortness, in addition with the old architectural structure that x ray tools is lodging, as well as dosimetrical lack of employed staff, put this staff under risk of electromagnetic energy. This is to show the present survey of medical activities with ionizing radiation and to request technical support for implementing suitably the basic standards of radiation protection which will help us as basis for the elaboration outline law, on radiological protection in accordance with the new guidelines of the International Atomic Energy Agency. (author)

  19. SSDL for radiation protection of Thailand

    International Nuclear Information System (INIS)

    In Thailand, the Atomic Energy for Peace Act was enacted by the King in 1961, and Office of Atomic Energy for Peace was established to serve as the secretariat of the Atomic Energy for Peace Commission of Thailand. The import and export of radioactive materials, and the owners and users of radioactive materials must be licensed by the OAEP. The program for establishing the SSDL to calibrate radiation protection instruments started in 1981, and was completed in 1990. The calibration of survey meters and direct reading personnel dosimeters has been provided since 1986. The average number of the devices calibrated by the SSDL per month is shown. The categories of radiation utilization in Thailand are nucleonic gauging and control, nondestructive testing, oil and coal logging, radiation technology and research. The capability of the SSDL and the calibrated radiation measuring instruments for respective categories of utilization are reported. The number of the instruments used for radiography was 217, followed by 171 for nucleonic gauging and control. With the increasing use of radioactive materials, the work of radiation safety must be improved. Together with the license authority, the SSDL must expand its activity to assure the safe handling of radiation sources. (K.I.)

  20. General rules for radiation protection within the CEA

    International Nuclear Information System (INIS)

    This report first describes the organisation, scope of application and principles of radiation protection within the CEA. The second part proposes an overview of rules applicable to workers exposed to ionizing radiation. These rules concern the personnel classification, exposure limits, individual control, and training of workers in radiation protection. The third part addresses the technical rules for premise laying-out: protection zoning, indicators aimed at controlling the compliance of premise classification, radiological survey and control of premise classification. The fourth part addresses the modalities of access, stay and operation in regulated zone. The next part indicates and comments arrangements specific to ionizing radiation sources and to ionizing radiation emitting equipment (authorization and possession modalities, training, certification, controls, operation zoning, etc.), specific orders (radiological control of wastes, hardware, tools and equipment management), rules related to abnormal occupational situations (alarms, contamination event, radiological events), and the different studies and analysis of radiation protection implemented during the different phases of an installation lifetime

  1. Radiation protection in dental practice

    International Nuclear Information System (INIS)

    The radiation protection in the dental practice is discussed in the light of results of an investigation into the radiation burden in the Netherlands resulting from dental x-ray radiographs. Although it has appeared that the number of dental x-ray radiographs has increased strongly the past decennia ( up till now about 0.4 per inhabitant per annum), the average dose per annum has been reduced with respect to the one in 1920 with at least a factor 45. This dose reduction has been achieved in the dental practice voluntary by, among other things, optimization, filtration, enlarging of the distance between focus and skin, reduction of the beam surface and the use of sensitive x-ray films. (author). 1 fig

  2. Radiation protection in dental radiography

    International Nuclear Information System (INIS)

    In considering the special provisions required in dental radiography, investigations were conducted in Iran. Radiation dose levels in dental radiography were found to be high. Patient exposure from intraoral radiographic examination was calculated, using 50kV X-ray. Thermoluminescent dosimeters were fastened to the nasion, eyes, lip, philtrum, thyroid, gonads and to the right and left of the supra-orbital, infra-orbital temporomandibular joints of live patients. The highest exposure value was for the lower lip. Recommendations concerning educational training and protection of staff and patients were included

  3. SI units in radiation protection

    International Nuclear Information System (INIS)

    In the field of radiation protection all hitherto used units for activity, activity concentrations, exposure, absorbed dose, and dose rates have to be replaced by SI units during the next years. For this purpose graphs and conversion tables are given as well as recommendations on unit combinations preferentially to be used. As to the dose equivalent, it is suggested to introduce a new special unit being 100 times greater than the rem, instead of maintaining the rem or using the gray for both absorbed dose and dose equivalent. Measures and time schedule relating to the gradual transition to SI units in measuring techniques, training, and publishing et cetera are explained. (author)

  4. Amendments to ordinances in Radiation Protection Law

    International Nuclear Information System (INIS)

    The last major reform of the German Radiation Protection Ordinance took place on July 26, 2001. The 'First Ordinance Amending Ordinances in Radiation Protection Law' now proposed is to cover primarily the necessary changes and supplements resulting from experience in the execution of the ordinances. They mainly relate to these issues: (1) the scope of application of the Radiation Protection Ordinance and of the x-ray Ordinance in medical research (2) the scope of application of the Radiation Protection Ordinance and the -ray Ordinance in unjustified types of activities (3) electronic communication ('e-government') (4) changes in the provisions about permits and announcements in the Radiation Protection Ordinance (5) new clearance levels in the Radiation Protection Ordinance (6) cross-border transports of 'NORM' materials (7) other changes in the scope of application of the Radiation Protection Ordinance (8) other changes in the x-ray area. (orig.)

  5. Arduino based radiation survey meter

    Science.gov (United States)

    Rahman, Nur Aira Abd; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Muzakkir, Amir; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee

    2016-01-01

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr-1). Conversion factor (CF) value for conversion of CPM to μSvhr-1 determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr.

  6. Radiation protection brochure for persons occupationally exposed to radiation

    International Nuclear Information System (INIS)

    This brochure is intended to convey basic knowledge on radiation protection according to the requirements of the ordinance on radiation protection. It is addressed to persons occupationally exposed to radiation under section 20a of the ordinance on radiation protection. These include e.g. persons employed in nuclear power plants (such as operating personnel, maintenance and repair personnel, test engineers etc.), furthermore persons handling radioactive materials (e.g. in radio-isotope laboratories) or using ionizing radiation (e.g. in the case of non-destructive material testings with gamma irradiation devices or accelerators). Persons receiving professional training in nuclear plants also belong to that group of persons. The booklet is meant to provide appropriate information. It is no substitute for the required instruction on radiation protection. It points out the legal, physical and biological bases of radiation protection, natural and civilizing radiation exposure, dose limits and radiation protection areas as well as general safety measures. (orig./HSCH)

  7. Strengthening radiation protection of the infrastructure

    International Nuclear Information System (INIS)

    The author expounds the necessity of strengthening the infrastructure of radiation protection in China. It points out the following should be done: setting the law of radiation protection and the safety of radiation sources, clarifying and defining the responsibilities of the regulatory authorities, changing the situation of multiple and repeated inspection, establishing a harmonious radiation protection organization combining relative subjects, improving licences procedure of safety and fully playing the advisory role of specialists

  8. Assessment of radiation protection practices among radiographers in Lagos, Nigeria

    Science.gov (United States)

    Eze, Cletus Uche; Abonyi, Livinus Chibuzo; Njoku, Jerome; Irurhe, Nicholas Kayode; Olowu, Oluwabola

    2013-01-01

    Background: Use of ionising radiation in diagnostic radiography could lead to hazards such as somatic and genetic damages. Compliance to safe work and radiation protection practices could mitigate such risks. The aim of the study was to assess the knowledge and radiation protection practices among radiographers in Lagos, Nigeria. Materials and Methods: The study was a prospective cross sectional survey. Convenience sampling technique was used to select four x-ray diagnostic centres in four tertiary hospitals in Lagos metropolis. Data were analysed with Epi- info software, version 3.5.1. Results: Average score on assessment of knowledge was 73%. Most modern radiation protection instruments were lacking in all the centres studied. Application of shielding devices such as gonad shield for protection was neglected mostly in government hospitals. Most x-ray machines were quite old and evidence of quality assurance tests performed on such machines were lacking. Conclusion: Radiographers within Lagos metropolis showed an excellent knowledge of radiation protection within the study period. Adherence to radiation protection practices among radiographers in Lagos metropolis during the period studied was, however, poor. Radiographers in Lagos, Nigeria should embrace current trends in radiation protection and make more concerted efforts to apply their knowledge in protecting themselves and patients from harmful effects of ionising radiation. PMID:24665152

  9. Radiation protection of non-human species

    International Nuclear Information System (INIS)

    The effects of radiation on non-human species, both animals and plants, have long been investigated. In the disposal of radioactive wastes, the protection of non-human species has been investigated. Yet no radiation protection standard for exposure of animals and plants per se has been agreed. The International Commission on Radiological Protection has long taken the view that, if human beings are properly protected from radiation, other species will thereby be protected to the extent necessary for their preservation. However, the International Atomic Energy Agency has found it necessary to investigate the protection of non-human species where radioactivity is released to an environment unpopulated by human beings. It is proposed that the basis of such protection, and the knowledge of radiation effects on non-human species on which it is based, suggest a practical radiation protection standard for non-human species. (1 tab.)

  10. XXVII. Days of Radiation Protection. Conference Proceedings

    International Nuclear Information System (INIS)

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 83 papers are published

  11. Evolution of the radiation protection system

    International Nuclear Information System (INIS)

    The evolution of the system of radiological protection: justification for new ICRP recommendations, thoughts of the SFRP work group about the evolution of the system of radiation protection proposed by the ICRP, protection of environment against ionizing radiations seen by the ICRP are the three parts of this chapter. (N.C.)

  12. Promoting comprehension and understanding of radiation protection

    International Nuclear Information System (INIS)

    A radiation protection organization needs to explain its work to the public and certain professional and political groups. The way the National Radiological Protection Board (NRPB) does this is described against a background of situations specific to the organization and its work. The main is to explain radiation protection in a way that is comprehensible and believable

  13. Radiation protection. 1985 revised version. 8. ed.

    International Nuclear Information System (INIS)

    The new 1985 version of the information brochure takes into account experience gained during performance of courses in radiation protection. The brochure presents clear and concise information on aspects and subjects such as: scientific fundamentals, interaction between radiation and matter, biological radiation effects, the relevant legislation (Radiation Protection Ordinance, X-Ray Ordinance), measuring principles and equipment, calibration of equipment, rules for the safe handling of ionizing radiation and sealed or unsealed radiation sources, transport of radioactive substances, handling of X-ray device, and protective measures for the case of incidents or accidents. (DG)

  14. Measures of radiation protection in the operation of nuclear power plants in the German Democratic Republic

    International Nuclear Information System (INIS)

    A survey is given on the provisions concerning (a) radiation protection at nuclear power plants in the GDR including the instructions applying within the plant, (b) the organization of radiation protection services, and (c) the measures of radiation protection surveillance inside and outside the plant during operation. (author)

  15. Radiation protection programme progress report 1988

    International Nuclear Information System (INIS)

    The progress report of the radiation protection programme outlines the research work carried out in 1988 under contracts between the Commission of the European Communities and research groups in the Member States. Results of more than 350 projects are reported. They are grouped into six sectors: Radiation dosimetry and its interpretation; Behaviour and control of radionuclides in the environment; Nonstochastic effects of ionizing radiation; Radiation carcinogenesis; Genetic effects of ionizing radiation; Evaluation of radiation risks and optimization of protection. Within the framework programme, the aim of this scientific research is to improve the conditions of life with respect to work and protection of man and his environment and to assure a safe production of energy, i.e.: (i) to improve methods necessary to protect workers and the population by updating the scientific basis for appropriate standards; (ii) to prevent and counteract harmful effects of radiation; (iii) to assess radiation risks and provide methods to cope with the consequences of radiation accidents

  16. XXX. Days of Radiation Protection. Presentations of the 30-th Days of Radiation Protection

    International Nuclear Information System (INIS)

    The publication was presented only on the Internet as proceedings of presentations presented on the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 97 presentations are published. The Conference consists of the following sections: Effects of ionizing radiation; Regulation of radiation protection; Dosimetry and Metrology of ionizing radiation; Radiation protection in nuclear Power plants; Medical exposure and radiation protection in diagnostic radiology, nuclear medicine and radiation oncology; Natural radioactivity issues in radiation protection; Education, societal aspects and public involvement in radiation protection, trends and perspectives

  17. The surveying of radiation environments

    International Nuclear Information System (INIS)

    A number of conceptual frameworks have been suggested for relating the results of an environmental survey to personal dose. Environmental parameters such as exposure, MADE and dose index have been defined by international committees, others such as maximum permissible fluence and dose ceiling have been suggested in the open literature. These approaches can be shown to fall into two groups. In one group the survey parameters are additive, accurately measurable, but not directly related to peak dose equivalent in the body, whereas in the other they are neither measurable nor additive but are directly related to peak dose equivalent. The advantages and disadvantages of the two approaches are discussed and contrasted. In application to a specific radiation environment it can be shown that one type of approach can (and frequently does in practice) lead to significant over-estimation of personal dose

  18. Radiation protection education and training in several ionising radiation applications

    OpenAIRE

    Rafecas Jorba, Immaculada

    2012-01-01

    Ionising radiation (IR) applications are quiet common among several areas of knowledge, medicine or industry. Medical X-rays, Nuclear Medicine, Xrays used in non-destructive testing or applications in research are a few examples. These radiations originate from radioactive materials or radiation emitting devices. Radiation Protection education and training (E&T) is of paramount importance to work safely in areas that imply the use of IR. The Technical Unit for Radiation Protection at the U...

  19. Computer applications in radiation protection

    International Nuclear Information System (INIS)

    Computer applications in general and diagnostic radiology in particular are becoming more widespread. Their application to the field of radiation protection in medical imaging, including quality control initiatives, is similarly becoming more widespread. Advances in computer technology have enabled departments of diagnostic radiology to have access to powerful yet affordable personal computers. The application of databases, expert systems and computer-based learning is under way. The executive information systems for the management of dose and QA data that are under way at IRS are discussed. An important consideration in developing these pragmatic software tools has been the range of computer literacy within the end user group. Using interfaces have been specifically designed to reflect the requirements of many end users who will have little or no computer knowledge. (Author)

  20. The radiation protection officer in medicine and engineering

    International Nuclear Information System (INIS)

    Subjects: Function and tasks of the radiation protection officers; Behaviour in radiation protection areas; Radiation protection in practice; Staff training and motivation; Measuring equipment; Radiation protection plans - structural, apparative and staff-related; Explanations of radiation protection legislation. This practical guide makes the many requirements on radiation protection easier and more transparent. (orig.)

  1. Radiation protection issues for EPR reactor

    International Nuclear Information System (INIS)

    As part of the EPR (European Pressurized Reactor) project being deployed at Flamanville, EDF has pro actively made the decision to focus on radiation protection Radiation Protection aspects right from the start of the design phase, as it has done with nuclear safety. The approach adopted for managing Radiation Protection-significant activities has been to include all involved stakeholders - designers, licensee and contractor companies - in the three successive phases, starting with a survey among workers and designers, followed by a proposal review, and finally ending with the decision-making phase entrusted to an ALARA committee. The Radiation Protection target set by EDF for this new reactor is to engage in an effort of continuous improvement and optimisation, through benchmarking with the best performing plants of the fleet. The collective dose target is currently set at 0.35 Man Sv/year per unit. In addition to other aspects, efforts will focus on shortening the duration of the highest-dose jobs, with a new challenge being set for work performed in the reactor building during normal operations, the aim being to improve plant availability. The plan is for work to be performed 7 days prior to shutting down the reactor and 3 days afterwards, in order to make logistical arrangements for forthcoming jobs. Without this reduction, the estimated drop is currently 4.5% of annual dose. For this purpose, two areas have been set up in the E.P.R.'s reactor building: one no-go area for containing leaks from the primary circuit, and one accessible area for normal operations, separated from the no-go area by purpose-built ventilation equipment and facilities. To offer protection against radioactive flux (neutrons and high energy), Radiation Protection studies have resulted in the installation of a concrete floor and of nuclear shielding at the outlets of primary circuit pipes. Steam generator bunkers and pumps have also been reinforced. All these measures will ensure that the accessible area can be posted as a green area (dose rate < 25 ?Sv/h), with a neutron dose rate of less than 2.5 ?Sv/h. In order to optimise radiation exposure on the EPR, efforts have focused on two parameters factored into dose calculation: dose rate and work volume exposed to radiation. The main R.P. design upgrades are improvements upon the most recent N4 plant series. In order to ensure radiological cleanliness, contamination must be contained as close to the source as possible on working units. This type of zoning is essentially aimed at enabling the plant to generate conventional waste from the radiologically controlled area in order to reduce the quantity of nuclear waste produced, to reduce nuclear waste volumes during the dismantling phase and to reduce the number of areas with a contamination risk, thereby preventing the transfer of contamination to areas outside the plant. In total, this optimisation effort has resulted in a saving of 21% when comparing the reference dose with the optimised EPR dose. A strategic priority for the EDF Group, radiation protection is gradually becoming less and less confined to the happy few, and is becoming a cross-functional area where multi-disciplinary team work is of paramount importance from the very start of the design phase. (authors)

  2. Occupational radiation protection legislation in Israel

    International Nuclear Information System (INIS)

    Various governmental agencies, including the Ministry of Health, the Ministry of Labor and the Israel AEC are responsible for the control of the use of radioactive materials and medical X-ray machines in Israel. Present legislation deals mainly with the legal aspects of the purchase, transport and possession of radioactive materials and the purchase and operation of medical X-ray machines. No legislation refers explicitly to the protection of the worker from ionizing (and non-ionizing) radiation. A special group of experts appointed by the Minister of Labor recently worked out a comprehensive draft law concerning all legal aspects of occupational radiation protection in Israel. Among the main chapters of the draft are: general radiation protection principles, national radiation protection standards, medical supervision of radiation workers, personal monitoring requirements. The present situation with regard to radiation hazard control in Israel and details of the proposed radiation protection law is discussed. (Author)

  3. Medical Ethics and Protection from Excessive Radiation

    International Nuclear Information System (INIS)

    Among artificial sources of ionic radiation people are most often exposed to those emanating from X-ray diagnostic equipment. However, responsible usage of X-ray diagnostic methods may considerably reduce the general exposure to radiation. A research on rational access to X-ray diagnostic methods conducted at the X-ray Cabinet of the Tresnjevka Health Center was followed by a control survey eight years later of the rational methods applied, which showed that the number of unnecessary diagnostic examining was reduced for 34 % and the diagnostic indications were 10-40 $ more precise. The results therefore proved that radiation problems were reduced accordingly. The measures applied consisted of additional training organized for health care workers and a better education of the population. The basic element was then the awareness of both health care workers and the patients that excessive radiation should be avoided. The condition for achieving this lies in the moral responsibility of protecting the patients' health. A radiologist, being the person that promotes and carries out this moral responsibility, should organize and hold continual additional training of medical doctors, as well as education for the patients, and apply modern equipment. The basis of such an approach should be established by implementing medical ethics at all medical schools and faculties, together with the promotion of a wider intellectual and moral integrity of each medical doctor. (author)

  4. Structure and Responsibilities of Radiation Protection Centre

    International Nuclear Information System (INIS)

    Constitution of Radiation Protection Centre (RPC) in Lithuania is presented. RPC was established in 1997, in 1999 the Government granted the status of the regulatory authority of Lithuania on radiation protection issues. Currently there are two departments at RPC: two in Vilnius - Department of Radiation Protection Supervision and Control and Department of Programs and Expertise, and four in the districts. Main tasks of RPC are listed

  5. Radiation protection in nuclear energy. V.1

    International Nuclear Information System (INIS)

    The conference was convened to provide a forum for the exchange of international views on the principles of radiation protection for regulators and practitioners, to highlight issues of current importance, to examine the problems encountered in applying the principles of radiation protection, and, where possible, to identify generic solutions. A special session entitled ''The dose-response relationship: implications for nuclear energy'', and a panel on ''Radiation protection education and training'' were included in the conference programme. Refs, figs and tabs

  6. 33. Days of Radiation Protection. Presentations

    International Nuclear Information System (INIS)

    The publication has been set up as presentations of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on the current problems in radiation protection and radioecology. On the web-page totally 103 presentations or posters are published. The Conference consists of the following sections: (I) Effects of ionizing radiation (radiology, health effects, risk factors); (II) General aspects of radiation protection (recommendations and legislative in radiation protection); (III): Dosimetry and metrology of ionizing radiation (metrology, instrumentation, use of computational methods); (IV) Radiation protection in nuclear power industry (working environment in the nuclear industry, the impact on the environment, nuclear power shutdown management); (V) Emergency management (emergencies, accidents, waste); (VI) Radiation load and protection in diagnostics, nuclear medicine and radiation oncology (burden on patients, staff, size of population exposure from medical sources of ionizing radiation, security, and quality control, optimization); (VII) Natural sources of radiation in workplaces and the environment (radon and other radionuclides, the risk estimation, optimization); (VIII) Education (new trends in education of radiation experts, medical physicists and stake-holders).

  7. Biological research for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kug Chan; Shim, Hae Won; Oh, Tae Jeong; Park, Seon Young; Lee, Kang Suk

    2000-04-01

    The work scope of Biological research for the radiation protection had contained the search of biological microanalytic methods for assessing the health effect by {gamma}-radiation and toxic agents, the standardization of human T-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in the hypoxanthine (guanine) phosphoribosyl transferase (HPRT) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods using reverse transcriptase has been developed to analyze the mutant gene induced by {gamma}-radiation and chemical (pentachlorophenol) agent exposure, and to investigate the point mutations in the HPRT gene locus of T-lymphocytes. The HPRT T-cell clonal assay revealed that it could not differentiate {gamma}-irradiation from pentachlorophenol, because the frequency of somatic mutations induced by both damaging agents increased in a dose-dependent manner. The analysis of DNA sequence alterations of HPRT mutant clones clearly showed that both damaging agents induced different mutational spectra in the HPRT locus of T-cells. The large deletions, which account for 75 percent of the analyzed mutants, are characteristic mutations induced by {gamma}-irradiation. By contrast, point mutations such as base substitutions and insertion, come up to 97 percent in the case of pentachlorophenol-treated cells. The point mutation frequencies at 190 base pair and 444 base pair positions are 3-6 folds as high as in those at other mutation positions. It may be that these mutation sites are hot spots induced by pentachlorophenol. These results suggest that the HPRT mutation spectrum can be used as a potential bio marker for assessing a specific environmental risk. (author)

  8. Biological research for radiation protection

    International Nuclear Information System (INIS)

    The work scope of Biological research for the radiation protection had contained the search of biological microanalytic methods for assessing the health effect by ?-radiation and toxic agents, the standardization of human T-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in the hypoxanthine (guanine) phosphoribosyl transferase (HPRT) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods using reverse transcriptase has been developed to analyze the mutant gene induced by ?-radiation and chemical (pentachlorophenol) agent exposure, and to investigate the point mutations in the HPRT gene locus of T-lymphocytes. The HPRT T-cell clonal assay revealed that it could not differentiate ?-irradiation from pentachlorophenol, because the frequency of somatic mutations induced by both damaging agents increased in a dose-dependent manner. The analysis of DNA sequence alterations of HPRT mutant clones clearly showed that both damaging agents induced different mutational spectra in the HPRT locus of T-cells. The large deletions, which account for 75 percent of the analyzed mutants, are characteristic mutations induced by ?-irradiation. By contrast, point mutations such as base substitutions and insertion, come up to 97 percent in the case of pentachlorophenol-treated cells. The point mutation frequencies at 190 base pair and 444 base pair positions are 3-6 folds as high as in those at other mutation positions. It may be that these mutation sites are hot spots induced by pentachlorophenol. These results suggest that the HPRT mutation spectrum can be used as a potential bio marker for assessing a specific environmental risk. (author)

  9. Radiation protection in dental surgery: regulation approach

    International Nuclear Information System (INIS)

    This work deals with the regulatory aspects and measures of radiation protection in dental surgery in order to reduce the exposure of patients and surgeons to ionizing radiations during the use of radiographic apparatuses. (J.S.)

  10. New general radiation protection training course

    CERN Document Server

    2008-01-01

    Some members of CERN personnel, including users, may have to work in supervised or controlled radiation areas, or may be involved in activities involving the use of radioactive sources. According to CERN Safety Rules all persons whose work may be associated with ionising radiation risk must be adequately trained. This training must ensure that workers are informed about the potential health risks which could result from radiation exposure, the basic principles of radiation protection and the relevant radiation protection regulations as well as safe working methods and techniques in radiation zones. Therefore the Organization organises mandatory general and work-specific radiation protection (RP) courses for its personnel. These courses are also open to contractors’ personnel, in addition to the RP training they must receive from their employers. Based on the results of a pilot project, an improved general radiation protection course has been prepared. This new ½ day cours...

  11. New general radiation protection training course

    CERN Multimedia

    2008-01-01

    Some members of CERN personnel, users included, may have to work in supervised or controlled radiation areas, or may be concerned with activities involving the use of radioactive sources. According to CERN Safety rules all persons whose work may encounter ionising radiation risk must be adequately trained. This training must ensure that workers are informed about the potential health risks which could result from radiation exposure, about the basic principles of radiation protection and of the relevant radiation protection regulations as well as about safe working methods and techniques in radiation zones. Therefore the Organization organises mandatory general and work-specific radiation protection (RP) courses addressed to its personnel. These courses are also open to contractors’ personnel, in addition to the RP training they must receive from their employers. Based on the results of a pilot project, an improved general radiation protection course has been prepared. This...

  12. Basic concepts on environmental radiation protection

    International Nuclear Information System (INIS)

    This chapter makes an overview on basic concepts of environmental radiation protection, approaching the system of protection for practices, evaluation oc the environmental radiologic impact, environmental monitoring, models and exposures pathways

  13. Nevada Test Site Radiation Protection Program

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  14. Radiation protection activities and status in Asia

    International Nuclear Information System (INIS)

    The status of radiation protection practices in Asian countries is monitored by different means, e.g. the IAEA technical cooperation activities, by an overall assessment of conditions in a country by RAPAT missions, and on the basis of data collected through various regional activities. The radiation protection situation in Asia is very heterogeneous. There is a group of countries with very well developed radiation protection practices and advanced in the application of the Basic Safety Standards, but the majority of Asian member states still need improvement, several lacking the necessary fundamental infrastructure for radiation protection

  15. The Radiation Protection Service in Asuncion

    International Nuclear Information System (INIS)

    This report details the activities of radiation protection services concerning radioisotopes, personal monitoring and film dosimetry service. Historical, organizational and regulatory aspects are also covered. (author)

  16. Radiation protection in the Brazilian universities

    International Nuclear Information System (INIS)

    A research covering 91 institutions was undertaken in order to elucidate how radiation protection were indeed fulfilled. A questionary including technical administrative and legal subjects was sent by mail and 36% of which were answered propitiating substantial data for analysis. Only in few cases universities have knowledge of basic procedures in radiation protection, claiming for the elaboration of a plan that could guide supervisors and workers in radiation protection in these institution. Based on the tree analysis technique proposed by IAEA, a Reference Radiation protection Program has been elaborated and proposed for Brazilian universities. (author). 14 refs, 1 figs

  17. 100 years of ionizing radiation protection

    International Nuclear Information System (INIS)

    The development of radiation protection from the end of 19. century and evolution of opinion about injurious effect of ionizing radiation were presented. Observations of undesirable effects of ionizing radiation exposition, progress of radiobiology and dosimetry directed efforts toward radiation protection. These activities covered, at the beginning, limited number of persons and were subsequently extended to whole population. The current means, goals and regulations of radiological control have been discussed

  18. Basic principles of radiation protection in Canada

    International Nuclear Information System (INIS)

    The major goal of radiation protection in Canada is to ensure that individuals are adequately protected against the harm that might arise from unwarranted exposure to ionizing radiation. This report deals with the basic principles and organizations involved in protection against ionizing radiation. Three basic principles of radiation protection are: 1) that no practice shall be adopted unless its introduction produces a positive net benefit for society, 2) that all exposures shall be kept as low as reasonably achievable, relevant economic and social factors being taken into account, and 3) that doses to individuals should not exceed specified annual limits. The limit for radiation workers is currently 50 mSv per year, and exposures of the general public should not exceed a small fraction of that of radiation workers. Other specific areas in radiation protection which have received considerable attention in Canada include limitations on collective dose (the sum of the individual doses for all exposed individuals), exemption rules for extremely small radiation doses or amounts of radioactive materials, occupational hazards in uranium mining, and special rules for protection of the foetus in pregnant female radiation workers. Implementation of radiation protection principles in Canada devolves upon the Atomic Energy Control Board, the Department of National Health and Welfare, provincial authorities, licensees and radiation workers. A brief description is given of the roles of each of these groups

  19. Radiation Protection Group annual report (1997)

    International Nuclear Information System (INIS)

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1997. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  20. Radiation Protection Group annual report (1998)

    International Nuclear Information System (INIS)

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1998. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  1. Principles of radiation protection in medical thinking

    International Nuclear Information System (INIS)

    The authors consider the issue of principles of radiation protection in medicine as being of great interest for the following reasons: health care practitioners exposed to ionizing radiation represent 75% of all world-wide radiation exposed workers; they are also the ones who, by their radiological practice lead to medical exposure of the population (which represents the largest part among artificial exposure to ionizing radiation of the public - about 11%); the superior medical staff are the advisors and prescribers for radiological investigations and treatments. The authors' experience shows that training in radiation protection system is weak, leading sometimes to abusive use of ionizing radiation in both diagnostic and treatment. Medical staff's perception on the importance and role of radiation protection principles is sometimes distorted by unskilled backgrounds in the field. There are recommendations and regulations on radiation protection principles in the relevant legislation, but there are situations in which they are formally considered, or they are regarded as an obligation and not as a form of personal and patient protection. At a national level, the expansion of informing the public about the principles of radiation protection and its role is required by introducing a corresponding training since elementary school. A beneficial aspect that has developed recently is the introduction of radiation protection courses within university and postgraduate training. They are important for a correct and updated training on the principles of radiation protection, a field in which there are permanent updates and changes, and new concepts are set, such as the 'culture of radiation protection'. Medical thinking and medical research have had a contribution on developing and upgrading the radiation protection principles. (authors)

  2. Radiation protection: Principles, recommendations and regulations. [Scandinavia

    Energy Technology Data Exchange (ETDEWEB)

    Reitan, J.B. (Statens Inst. for Straalehygiene, Oslo (Norway))

    1989-08-01

    Radiation protection is a highly international dicipline with a high degree of international harmonization. Especially within the Nordic countries there is general agreement upon principles and standards, despite the actual practice may differ slightly. The basic recommendations of the International Commission on Radiological Protection (ICRP) are accepted by the regulatory bodies and should be followed by all users of radiation. The users are in principle responsible for the radiation protection standard and activities themselves. Because most companies or hospitals lack sufficient expertise by themselves, they must rely upon recommendations from others. Primarily they should contact the national radiation protection agency. However, due to the international harmonization of radiation protection, information from other national or international agencies may be used with confidence. All users of radiation in the Nordic countries are obliged to act according to recognition and assessment of both risks and benefits, and they are responsible for updating their knowledge.

  3. Radiation protection: Principles, recommendations and regulations

    International Nuclear Information System (INIS)

    Radiation protection is a highly international dicipline with a high degree of international harmonization. Especially within the Nordic countries there is general agreement upon principles and standards, despite the actual practice may differ slightly. The basic recommendations of the International Commission on Radiological Protection (ICRP) are accepted by the regulatory bodies and should be followed by all users of radiation. The users are in principle responsible for the radiation protection standard and activities themselves. Because most companies or hospitals lack sufficient expertise by themselves, they must rely upon recommendations from others. Primarily they should contact the national radiation protection agency. However, due to the international harmonization of radiation protection, information from other national or international agencies may be used with confidence. All users of radiation in the Nordic countries are obliged to act according to recognition and assessment of both risks and benefits, and they are responsible for updating their knowledge

  4. Sense and purpose of radiation protection training

    International Nuclear Information System (INIS)

    Training in radiation protection is of great significance in connection with the activities of the executive, the federal army and emergency organizations in emergency operations for the protection of the population in the case of large-scale radioactive contamination due to diverse causes. The presently valid legal situation of radiation protection training is presented in connection with the expected modification in the amendment to the SSVO. The special situation of radiation protection training for the executive, the federal army and emergency organizations is described and discussed in connection with the new aspects outlined in the draft of the new radiation protection regulation. In conclusion, problems arising in the conveyance of basic knowledge in radiation protection are illustrated by means of a concrete example. (author)

  5. Manual on radiation protection in hospitals and general practice. Basic protection requirements

    International Nuclear Information System (INIS)

    The manual as a whole deals with the radiation protection of patients, occupationally exposed persons, and the public. Volume 1, on basic protection requirements, is a general review common to all medical applications of ionizing radiation and radionuclides. Radiation protection is required for patients and staff, and with regard to medical research and chemical trials of new methods; radiation equipment and operating procedures are discussed in connection with diagnostic x-ray installations, x-ray beam therapy, gamma-ray installations for teletherapy, brachytherapy, unsealed sources for therapeutic use, and the diagnostic use of unsealed sources in nuclear medicine. In planning of radiation facilities, attention is paid to levels at which medical care is given, the centralization and decentralization of radiation facilities, diagnostic x-ray facilities and therapy facilities, and nuclear medicine and therapy with unsealed sources. Shielding design is discussed applicable to diagnostic radiology, radiotherapy, nuclear medicine and the therapeutic use of radionuclides. Assignment of responsibilities, legal responsibilities, safety checks, refresher courses and symposia are discussed in the context of organizing radiation protection. Radiation surveys are necessary, and such surveys are described for x-ray and gamma-ray beams, sealed radioactive sources and nuclear medicine. A whole section is devoted to personnel monitoring and health surveillance. An annex gives a list of commonly used radionuclides, another deals with the design of protective shielding

  6. Status of radiation protection at different hospitals in Nepal

    International Nuclear Information System (INIS)

    Nepal has a long history of medical radiology since 1923 but unfortunately, we still do not have any radiation protection infrastructure to control the use of ionizing radiations in the various fields. The objective of this study was an assessment of the radiation protection in medical uses of ionizing radiation. Twenty-eight hospitals with diagnostic radiology facility were chosen for this study according to patient loads, equipment and working staffs. Radiation surveys were also done at five different radiotherapy centers. Questionnaire for radiation workers were used; radiation dose levels were measured and an inventory of availability of radiation equipment made. A corollary objective of the study was to create awareness in among workers on possible radiation health hazard and risk. It was also deemed important to know the level of understanding of the radiation workers in order to initiate steps towards the establishment of Nepalese laws, regulation and code of radiological practice in this field. Altogether, 203 radiation workers entertained the questionnaire, out of which 41 are from the Radiotherapy and 162 are from diagnostic radiology. The radiation workers who have participated in the questionnaire represent more than 50% of the radiation workers working in this field in Nepal. Almost all X-ray, CT and Mammogram installations were built according to protection criteria and hence found safe. Radiation dose level at the reference points for all the five radiotherapy centers are within safe limit. Around 65% of the radiation workers have never been monitored for radiation. There is no quality control program in any of the surveyed hospitals except radiotherapy facilities. (author)

  7. New Croatian Act on Ionizing Radiation Protection

    International Nuclear Information System (INIS)

    According to the new Croatian Act on ionizing radiation protection which is in a final stage of genesis, Ministry of Health of the Republic of Croatia is the governmental body responsible for all aspects relating sources of ionizing radiation in Croatia: practices, licenses, users, transport, in medicine and industry as well, workers with sources of ionizing radiation, emergency preparedness in radiological accidents, storage of radioactive wastes, x-ray machines and other machines producing ionizing radiation and radioactive materials in the environment. Ministry of Health is responsible to the Government of the Republic of Croatia, closely collaborating with the Croatian Radiation Protection Institute, health institution for the performance of scientific and investigation activities in the field of radiation protection. Ministry of Health is also working together with the Croatian Institute for the Occupational Health. More emphasis has been laid on recent discussion among the world leading radiation protection experts on justification of the last recommendations of the ICRP 60 publication. (author)

  8. Project Radiation protection, Annual report 1994

    International Nuclear Information System (INIS)

    According to the action plan for the period 1991-1995, the main objective of this project during 1994 was to provide operational basis, methods and procedures for solving the radiation protection problems that might appear under routine working conditions and handling of radiation sources. The aim was also to provide special methods for action in case of accidents that could affect the employed staff and the population. Overall activity was directed to maintaining and providing personnel, instrumentation, and methods for the following special radiation protection measures: operational control of the radiation field and contamination; calibration of the radiation and dosimetry instruments-secondary dosimetry metrology laboratory; instrumentation and measuring systems for radiation protection; control of environmental transfer of radioactive material; medical radiation protection

  9. New radiation protection calibration facility at CERN

    International Nuclear Information System (INIS)

    The CERN radiation protection group has designed a new state-of-the-art calibration laboratory to replace the present facility, which is >20 y old. The new laboratory, presently under construction, will be equipped with neutron and gamma sources, as well as an X-ray generator and a beta irradiator. The present work describes the project to design the facility, including the facility placement criteria, the 'point-zero' measurements and the shielding study performed via FLUKA Monte Carlo simulations. This paper describes the project, the shielding study and the background measurements performed for the new CERN RP calibration facility. The neutron measurements show that the chosen location is well suited for the laboratory. The shielding study and the design met the RP area classification requirements as well as the calibration needs. The neutron and gamma irradiator configuration will also allow the gamma sensitivity of neutron survey meters to be tested in a mixed field. (authors)

  10. SI units in radiation protection

    International Nuclear Information System (INIS)

    International System of Units abbreviated as SI Units has been adopted by most of the countries of the world. Following this development, the implementation of SI units has become mandatory with a transition period of about ten years. Some of the journals have already adopted the SI units and any material sent for publication to them must use only these. International Commission on Radiation Units and Measurement (ICRU) published letters in several journals including 'Physics in Medicine and Biology', 'Health Physics', 'British Journal of Radiology', etc. outlining the latest recommendations on SI units to elicit the reactions of scientists in the general field of radiological sciences. Reactions to the letters were numerous as can be seen in the correspondence columns of these journals for the last few years and ranged from great misgivings and apprehension to support and appreciation. SI units have also been the subject of editorial comments in several journals. On the basis of a survey of this literature, it may be said that there was general agreement on the long term advantage of SI units inspite of some practical difficulties in their use particular in the initial stages. This report presents a review of SI units in radiological sciences with a view to familiarize the users with the new units in terms of the old. A timetable for the gradual changeover to the SI units is also outlined. (author)

  11. SI units in radiation protection

    International Nuclear Information System (INIS)

    International System of Units abbreviated as SI units has been adopted by most of the countries of the world. Following this development, the implementation of SI units has become mandatory with a transition period of about ten years. Some of the journals have already adopted the SI units and any material sent for publication to them must use only these. International Commission on Radiation Units and Measurement (ICRU) published letters in several journals including Physics in Medicine and Biology, Health Physics, British Journal of Radiology, etc. outlining the latest recommendations on SI units to elicit the reactions of scientists in the general field of radiological sciences. Reactions to the letters were numerous as can be seen in the correspondence columns of these journals for the last few years and ranged from great misgivings and apprehension to support and appreciation. SI units have also been the subject of editorial comments in several journals. On the basis of a survey of this literature, it may be said that there was general agreement on the long term advantage of SI units inspite of some practical difficulties in their use particularly in the initial stages. This report presents a review of SI units in radiological sciences with a view to familiarize the users with the new units in terms of the old. A time table for the gradual changeover to the SI units is also outlined. (auth.)

  12. Protection during work with ionizing radiation sources

    International Nuclear Information System (INIS)

    The publication has been set up as a textbook for training courses dealing with health protection during work with ionizing radiation, designed for supervisory staff and persons directly responsible for activities which involve the handling of ionizing radiation sources. The book consists of a preface and the following chapters: (1) Fundamentals of ionizing radiation physics; (2) Quantities and units used in ionizing radiation protection; (3) Principles of ionizing radiation dosimetry; (4) Biological effects of ionizing radiation; (5) An overview of sources of public irradiation; (6) Principles and methods of health protection against ionizing radiation; (7) Examples of technical applications of sources of ionizing radiation; (8) Personnel and working environment monitoring; (9) Documentation maintained at sites with ionizing radiation sources; (10) Methods of personnel protection against external irradiation and internal radionuclide contamination; (11) Radiation incidents and accidents; (12) Health care of personnel exposed to the ionizing radiation risk; (12) Additional radiation protection requirements in handling radioactive substances other than sealed sources; (13) Measurement and metrology. (P.A.)

  13. Radiation protection is international. The role of IRPA as world-wide radiation protection organization

    International Nuclear Information System (INIS)

    Compared with other international organisations equally dealing with various aspects of radiation protection, IRPA is distinguished by its basic democratic structure of individual members, and by its exclusive concentration on the scientific and practical implications of radiation protection. IRPA recognizes as main tasks presently the promotion of communication, education and setting of professional standards in radiation protection worldwide. (orig.)

  14. Summary of radiation protection in exploitation

    International Nuclear Information System (INIS)

    This document proposes a large and detailed overview of notions and practices regarding radiation protection in relationship with an NPP exploitation framework. It presents the main notions: matter structure, radioactivity, interactions between matter and radiations, types of ionizing radiation, magnitudes and measurement units, exposure modes, main principles of radiation protection, means of protection against internal and external exposures. The second part proposes an overview of the origin of radiological risks in a nuclear power plant. This origin can be found in fission products, activation products, actinides, designed protections, or circuit contaminations. These radiological risks are more precisely identified and described in terms of detection and prevention (internal exposure risk, contamination risk, iodine-related risk, alpha radiation-related risk, access to the reactor building). The next part addresses the medical and radiological follow-up of exposed workers by a special medical control, by an individual exposure control, by a specific control of female personnel, and by attention to exceptional exposures. Measurement means are presented (detection principles, installation continuous control, workspaces control, personnel contamination control, follow-up of individual dose) as well as collective and individual protection means. The management of radiation protection is addressed through a presentation of decision and management structures for radiation protection, and of EDF objectives and ambitions in this domain. The organization of radiation protection during exploitation is described: responsibilities for radiation protection in a nuclear power station, requirements for workers, preparation of interventions in controlled zone, work execution in controlled zone, zone controls and radiological cleanness of installations. The two last chapters address issues and practices of radiation protection in the case of deconstruction or dismantling, and in the case of transportation of radioactive materials and objects. Appendices contain information of biological effects of ionizing radiations, main regulatory texts, and involved international and French bodies

  15. Radiation protection for nurses. Regulations and guidelines

    International Nuclear Information System (INIS)

    Rules and regulations of federal agencies and state radiation protection programs provide the bases for hospital policy regarding radiation safety for nurses. Nursing administrators should work with the radiation safety officer at their institutions to ensure that radiation exposures to staff nurses will be as low as reasonably achievable and that special consideration will be given to pregnant nurses. Nurses' fears about their exposure to radiation can be greatly reduced through education

  16. An introduction to radiation protection principles

    International Nuclear Information System (INIS)

    The fundamentals of radiation hazards and their control are outlined. This report is for use by all radiation workers at CRNL and copies are available for all who want one. The purposes of the document are to outline the fundamentals of radiation protection, to describe methods that enable employees to work safely with radiation and to acquaint employees with the CRNL radiation and industrial safety organization

  17. Radiation protection for physicians. 2. rev. ed.

    International Nuclear Information System (INIS)

    The book is focussed on the advanced training of physicians with respect to radiation protection in the context of modern radiological techniques and nuclear medicine. The book is structured in the following chapters: physics of radiation, X-ray diagnostics and quality of an X-ray image, X--ray devices and methods, radiation dosimetry, quality control, natural and man-made radiation exposures, organizational and legal measures, biological radiation effects, practical experiences, comments concerning regulations

  18. Radiation protection laws in the Nordic countries

    International Nuclear Information System (INIS)

    Sweden has since 1988 a totally revised radiation protection law and Finland has recently enacted a new law. The legal situation of the Nordic countries in the radiation protection field is reviewed with the main emphasis on the Swedish law. (author)

  19. Radiation protection calculations for diagnostic medical equipment

    International Nuclear Information System (INIS)

    The standards DIN 6812 and DIN 6844 define the radiation protection requirements to be met by biomedical radiography equipment or systems for nuclear medicine. The paper explains the use of a specific computer program for radiation protection calculations. The program offers menu-controlled calculation, with free choice of the relevant nuclides. (DG)

  20. 76 FR 4258 - Occupational Radiation Protection; Revision

    Science.gov (United States)

    2011-01-25

    ... Part 835 RIN 1901-AA-95 Occupational Radiation Protection; Revision AGENCY: Department of Energy...) proposes to revise the values in an appendix to its Occupational Radiation Protection requirements. The... are given in appendix C. DOE first published, a final rule on December 14, 1993, (58 FR...

  1. Anticarcinogenesis and radiation protection 2

    International Nuclear Information System (INIS)

    The dramatic decrease in the incidence of stomach cancer in industrialized countries during the past 50 years, which is yet to be fully explained, and the observation that carcinogenesis in laboratory animals can be inhibited by antioxidants, retinoids, and caloric restriction, among other influences, challenge us to press on in the search for practical means to prevent cancer. It is in relation to this goal that the studies summarized in this book have special significance. This book is based on the invited and contributed papers presented at the Third International Conference on Anticarcinogenesis and Radiation Protection, held on October 15--21, 1989, in Dubrovnik, Yugoslavia. They cover a broad range of investigations into the mechanisms and inhibition of carcinogenesis. In keeping with recent advances in our understanding of the importance of oncogenes and tumor-suppressor genes in carcinogenesis, many of the reports focus on mutations and related changes at the level of DNA. At the same time, however, other reports deal with nutritional, immunological, endocrinological, and epidemiological aspects. In all, the various reports address carcinogenesis and its inhibition at virtually every level of biological organization. Included in this compendium are timely reviews of diverse and promising research strategies for cancer prevention, as pursued by investigators in different parts of the world

  2. Radiation protection guidelines for space missions

    International Nuclear Information System (INIS)

    The original recommendations for radiation protection guidelines were made by the National Academy of Sciences in 1970. Since that time the US crews have become more diverse in their makeup and much has been learned about both radiation-induced cancer and other late effects. While far from adequate there is now some understanding of the risks that high-Z and -energy (HZE) particles pose. For these reasons it was time to reconsider the radiation protection guidelines for space workers. This task was undertaken recently by National Council on Radiation Protection (NCRP). 42 refs., 2 figs., 9 tabs

  3. INES rating of radiation protection related events

    International Nuclear Information System (INIS)

    In this presentation, based on the draft Manual, a short review of the use of the INES rating of events concerning radiation protection is given, based on a new INES User's Manual edition. The presentation comprises a brief history of the scale development, general description of the scale and the main principles of the INES rating. Several examples of the use of the scale for radiation protection related events are mentioned. In the presentation, the term 'radiation protection related events' is used for radiation source and transport related events outside the nuclear installations. (authors)

  4. Radiation protection guidelines for space missions

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1987-01-01

    The original recommendations for radiation protection guidelines were made by the National Academy of Sciences in 1970. Since that time the US crews have become more diverse in their makeup and much has been learned about both radiation-induced cancer and other late effects. While far from adequate there is now some understanding of the risks that high-Z and -energy (HZE) particles pose. For these reasons it was time to reconsider the radiation protection guidelines for space workers. This task was undertaken recently by National Council on Radiation Protection (NCRP). 42 refs., 2 figs., 9 tabs.

  5. Activities of Moroccan Radiation Protection Association

    International Nuclear Information System (INIS)

    Encourage activities and information exchange in the field of radiation protection and related areas; Assist in informing both the public and the professionals on the problems and requirements related to radiation protection for the protection of man and the environment; Promote professional training in radiation protection. The use of nuclear technology in medicine, agriculture and industry is very advanced in Morocco. This technological progress has been accompanied by fairly detailed legislation and significant involvement on the part of Morocco in international conventions and agreements

  6. Radiobiology and radiation protection: relationship and problems

    International Nuclear Information System (INIS)

    The mutual relationships between radiobiology and radiation protection are discussed. Viewed from this standpoint are questions connected with the possibility for extrapolating of animal radiobiological data to man. Consideration is given to the possibility for substantiating the radiation protection standards in normal and accidental situations. Also dealt with is the issue of applicability of 'dose-response' and 'response-time' relationships in substantiating the limiting levels for radiation exposure to workers and the general public. The problem of determining limiting levels for decision making in the event of radiation accident based on radiobiological and epidemiological data is also examined. A major question concerns utilization, based on radiobiological experimental evidence, of various types of radioprotectors in view of meeting the needs of radiation protection. Based on radiobiological and epidemiological data, an assessment is also made of the radiation risk entailing human exposure to low-level and high-level radiation. (author)

  7. Educational system in the radiation protection

    International Nuclear Information System (INIS)

    A general characteristic of the existing university plans and programs is a partial approach to radiation protection without a unique frame on the basis of which, certain colleges could adjust their distinctive characteristics and could analyze this multidisciplinary field which is present in our contemporary lives. We must seriously take into account the consequences of our 'ignorance' towards this field. The present 'disorganized state' in the educational system concerning radiation protection, when many professions are 'fighting' for leading roles and 'exclusive rights' in applying measures for radiation protection: physicians, chemists, doctors and others, must be regulated on international and national scales by applying powerful authority of international organizations. The key to solving this problem is found in defining minimal common bases of educational plans and programs from the field of radiation protection that would be unique for all colleges that are directly or indirectly connected to this domain. The following step could be made towards organizing specialist and graduate studies at university levels for all schools that have incorporated basis for radiation protection into their plans and programs. Lastly, as special form of continuous education in the field of radiation protection , multidisciplinary basic and specialized courses should be organized internationally intended to solve specific problems of utilization of ionising radiation sources and integral radiation protection. (author)

  8. Radiation protection training in health care

    International Nuclear Information System (INIS)

    The Guide presents the content and minimum amount of radiation protection training for health care staff with respect to the use of ionizing radiation. This Guide does not apply to training with respect to non-ionizing radiation and its use

  9. Using of ionizing radiation in environment protection

    International Nuclear Information System (INIS)

    In this paper, there is given the review of application of the radiation chemistry techniques in the environment protection . Using of sources of ionization radiation in underground water, drinking water and waste waters as well as in exhaust gases radiation processing and treatment are reviewed

  10. Radiation protection around high energy proton accelerators

    International Nuclear Information System (INIS)

    Proton accelerators are intense radiation sources because of the particle beam itself, secondary radiation and structure activation. So radiation protection is required around these equipment during running time but even during downtime. This article presents some estimated values about structure and air activation and applies the Moyer model to get dose rate behind shielding. (A.C.)

  11. Rules and regulations of radiation protection

    International Nuclear Information System (INIS)

    The finality of this legislative text is to guarantee the radiation protection of the exposed personnel, of the people in general and the environment against the ionizing radiations risks. Its scope includes all the natural and juridical persons that work with ionizing radiation sources into the peruvian territory

  12. An outlook to radiation protection development

    International Nuclear Information System (INIS)

    Radiation protection and safety have developed over many decades as the effects of ionizing radiation have been better and better understood. Some events in the last decade had essential impact on radiation protection policy/philosophy and related safety standards. Among them are available data of some long term radio-epidemiological studies of populations exposed to radiation. Investigations of the survivors of the atomic bombing of Hiroshima and Nagasaki illustrated that exposure to radiation has also a potential for the delayed induction of malignancies. They also showed that irradiation of pregnant women may result with certain mental damage in foetus. Several big radiation accidents which appeared in the last decade also had an impact on developments in radiation protection philosophy and practices. A well known Chernobyl accident showed that limited knowledge was available at the time of the accident on transfer of radionuclides in a specific environment, radioecological effects and pathways of highly radioactive atmospheric precipitation generated during the accident on various components of the environment. New scientific data indicated also that in some parts of human environment there are measurable effects of chronic exposure resulting from natural radiation. UNSCEAR is periodically publishing the most valuable set of data as compilation, and disseminates information on the health effects of radiation and on levels of radiation exposure due to different sources. These data are also the best guidelines for the necessary improvements and updating of radiation protection practices and philosophies. The latest ICRP-60 publication and recently issued International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources are reflecting many of the above mentioned findings. On the other hand the use of radiation sources is increasing day by day, and many new facilities applying radiation in radiotherapy, radiodiagnostic, nuclear medicine, industry, agriculture and hydrology were established. This increases the number of people involved in radiation practices and requires additional attention to regulators

  13. A Model for Protective Behavior against the Harmful Effects of Radiation based on Medical Institution Classifications

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Ok; Kwon, Deok Mun [Daegu Health College, Daegu (Korea, Republic of); Dong, Kyung Rae [Gwangju Health College University, Gwangju (Korea, Republic of); Han, Seung Moo [Kyung Hee University, Seoul (Korea, Republic of)

    2010-12-15

    This study surveyed a total of 1,322 radiation technologist in health care institutions throughout Korea. This is a comparative study conducted on the levels of protective behavior against the harmful effects of radiation in heath care institutions which indicated that university hospitals and general hospitals showed higher level of protective behavior than for medical practitioners. This study found university hospitals have the following 7 characteristics to manage protective behavior against the harmful effects of radiation, protective environment, self-efficacy by distinction of task , self-efficacy, expectation of the protective behavior, the number of patients, level of the education related to the protection of the harmful effects of radiation and protective attitude. While general hospitals have the following 3 characteristics protective environment, expectation of the protective behavior and protective attitude. Hospitals have the following 4 characteristics protective environment, expectation of the protective behavior, protective attitude and self-efficacy and medical clinics have characteristics protective environment.

  14. A Model for Protective Behavior against the Harmful Effects of Radiation based on Medical Institution Classifications

    International Nuclear Information System (INIS)

    This study surveyed a total of 1,322 radiation technologist in health care institutions throughout Korea. This is a comparative study conducted on the levels of protective behavior against the harmful effects of radiation in heath care institutions which indicated that university hospitals and general hospitals showed higher level of protective behavior than for medical practitioners. This study found university hospitals have the following 7 characteristics to manage protective behavior against the harmful effects of radiation, protective environment, self-efficacy by distinction of task , self-efficacy, expectation of the protective behavior, the number of patients, level of the education related to the protection of the harmful effects of radiation and protective attitude. While general hospitals have the following 3 characteristics protective environment, expectation of the protective behavior and protective attitude. Hospitals have the following 4 characteristics protective environment, expectation of the protective behavior, protective attitude and self-efficacy and medical clinics have characteristics protective environment

  15. Radiation protection in occupational health

    International Nuclear Information System (INIS)

    The document is a training manual for physicians entering the field of occupational medicine for radiation workers. Part 1 contains the general principles for the practice of occupational health, namely health surveillance and the role of the occupational physician in the workplace, and Part 2 provides the essential facts necessary to understand the basic principles of radiation physics, radiobiology, dosimetry and radiation effects which form the basis for occupational radiation health

  16. Comments to the German society's for radiation protection (Gesellschaft fur Strahlenschutz) proposed principles for radiation protection

    International Nuclear Information System (INIS)

    The German Society for Radiation Protection (in German Gesellschaft fur Strahlenschutz) is a separate society for radiation protection in Germany in addition to the leading society named Association of German and Swiss Radiation Protection Specialists (in German Fachverband fur Strahlenschutz). The Society is an international professional society. There are several hundreds members of the German Society for Radiation Protection. The German Society for Radiation Protection is not a member of IRPA (the International Radiation Protection Society). The IRPA member is the Association of German and Swiss Radiation Protection Specialists. According to information given on the web site of the Society for Radiation Protection (www.gfstrahlenschutz.de) the Society was founded in 1990 because in the opinion of the founding members the older professional societies and associations have not adequately considered and implemented the present knowledge of radiation risks and radiation protection. In accordance with its statutes the society pursues besides other aims the best possible protection of humans and the environment from the detrimental action of ionising and non-ionising radiation. The dealing with ionising and non-ionising radiation can according to the Society only be justified on the basis of biological and medical state of the art knowledge

  17. Preparing the radiation protection worker to meet multiple needs

    International Nuclear Information System (INIS)

    At the Oak Ridge National Laboratory (ORNL) the radiation protection worker aids in protecting personnel and their surrounding environment from the hazards of radiation. These individuals use their technical knowledge, skills, and abilities to survey and monitor various project-related activities. They must also provide guidance in project design, development, and implementation. These combined efforts assure that protective measures are taken in accordance with applicable standards. The ORNL performance-based training program enhances the skills of the worker. The program incorporates job specific information on the diverse facilities and activities monitored with basic fundamentals of radiation protection. Successful completion of this program includes passing both a qualification exam and an on-the-job skills review. This paper details the structure of such a program and explains the strategies taken to reach the program's goals. 4 refs., 2 tabs

  18. Implementation of the Radiation Protection Ordinance

    International Nuclear Information System (INIS)

    Implementation of the radiation protection ordinance. Here: Radiation protection guidelines for the use of radioactive substances and the operation of apparatus for the generation of ionizing radiation and of irradiation devices with radioactive sources in medical therapy (Radiation Protection guideline in nuclear medicine). Meeting of Laender committee on nuclear energy-Radiation protection - October 6/7, 1992. The guidelines refer to the following subjects: 1) Application of unsealed radioactive substances for examination and treatment of man, 2) Application of sealed radioactive substances for medical examinations (bone density scanning e.g.). 3) Application of sealed radioactive substances for interstitial and intracavitary treatment or contact therapy, and for implantations. 4) Application of sealed radioactive substances in irradiation equipment for brachytherapy (medical, remote-controlled after loading sytems). 5) Application of sealed radioactive substances in gamma radiation equipment for radiation therapy (teletherapy). 6) Operation of systems for the generation of ionizing radiation for radiation therapy (teletherapy) (as e.g. electron accelerators, neutron generators, cyclotrons). The guidelines also are applicable to quality assurance in the application of radioactive substances, in the operation of systems and equipment for the generation of ionizing radiation, in nuclear medicine and in radiation therapy. (orig./HP)

  19. Radiation protection programme for nuclear gauges

    International Nuclear Information System (INIS)

    Ionizing radiation including the use of nuclear gauges can be very hazardous to humans and steps must be taken to minimize the risks so as to prevent deterministic effects and limiting chances for stochastic effects. The availability of a Radiation Protection Programme and its effective implementation ensures appropriate safety and security provisions for sealed radiation sources and promotes a safety culture within a facility that utilizes these sources. This study aims at establishing a guide on the radiation protection programme in nuclear gauges that comply with national requirements derived from current international recommendations. Elements that form part of a radiation protection programme are covered in detail as well as recommendations. The overall objective is to protect people (operators and the public) and the environment from the harmful effects of these sources if they are not properly controlled. Nuclear gauges for well logging and X-ray based gauges are outside the scope of this study. (au)

  20. From regulations towards radiation protection culture

    International Nuclear Information System (INIS)

    Compliance with the technical standards and specifications is a necessary but not sufficient condition for quality in radiation protection. Reaching this quality objective is not a matter of forcing improvements by a regulatory policy of reducing dose limits, but of promoting a real radiation protection culture. The spread of such a radiological protection culture encourages the deliberate adoption in everyday practice of behaviour likely to reduce exposure to ionizing radiation as loser as reasonably achievable. The aim of this paper is to demonstrate that the need to diffuse a radiological protection culture is inspired by the philosophy behind the system recommended by ICPR Publication 60 on the management of residual radiological risk and, in particular by the behavioural and incentive approach implied by the optimization principle. Special attention will be given to the fundamentals likely to contribute in a definition of radiation protection culture. (author)

  1. Training aspects contributing to radiation protection

    International Nuclear Information System (INIS)

    Radiation Protection assumes special significance with increasing use of radioactive materials and processes. Scientific and industrial organisations dealing with radioactive materials have prime responsibility of ensuring effective control of all activities which may lead to radiation exposure. Training of all the persons involved in the work associated with radioactivity is absolutely necessary to develop radiation protection skill, radiation measurement proficiency and special precautions to be taken in abnormal situations. NPCIL having responsibility for design, construction, operation and de-commissioning of nuclear power plants, employs about 10,000 workers on several project/station sites all over the country. NPCIL has developed a good training system to accurately control the exposure of workers to radiation. This paper covers the system and other relevant details of radiation protection training organised by NPCIL. (author)

  2. Improving patient radiation protection in medical practices

    International Nuclear Information System (INIS)

    A number of severe radiation protection accidents have occurred in France in recent months in radiotherapy departments, resulting in serious pathologies among the exposed patients and the death of one person. These accidents, allied to the fact that use of ionizing radiation for medical purposes is the leading source of human exposure, justify the priority the A.S.N. gives to radiation protection of patients and its supervision. This file gathers four parts in relation with radiation protection in the medical field. he first one concerns the radiation accidents and the lessons learned from them. The second part is devoted to the point of view of medical actors. The third part is in relation with the challenges of new techniques. The last part concerns the exposures and the radiation doses. (N.C.)

  3. Radiation Protection at Light Water Reactors

    CERN Document Server

    Prince, Robert

    2012-01-01

    This book is aimed at Health Physicists wishing to gain a better understanding of the principles and practices associated with a light water reactor (LWR) radiation protection program. The role of key program elements is presented in sufficient detail to assist practicing radiation protection professionals in improving and strengthening their current program. Details related to daily operation and discipline areas vital to maintaining an effective LWR radiation protection program are presented. Programmatic areas and functions important in preventing, responding to, and minimizing radiological incidents and the importance of performing effective incident evaluations and investigations are described. Elements that are integral in ensuring continuous program improvements are emphasized throughout the text.

  4. Radiation protection at the Cadarache research center

    International Nuclear Information System (INIS)

    This article recalls the French law about radiation protection and its evolution due to the implementation of the 2013/59-EURATOM directive that separates the missions of counsel from the more operative missions of the person appointed as 'competent in radiation protection'. The organisation of the radiation protection of the Cadarache research center is presented. The issue of sub-contracting and the respect of an adequate standard of radioprotection is detailed since 2 facilities operated by AREVA are being dismantled on the site. (A.C.)

  5. Blended learning specialists in radiation protection

    International Nuclear Information System (INIS)

    In this paper, we present a blended learning Radiation Protection Technician through an approved degree from the Polytechnic University of Valencia, which covers the knowledge and skills of functions relating to operators and supervisors in various areas and skilled workers to be to perform their work in technical units or Radiation Protection Radiation Protection Services. The benefits of this work are those related to achieving quality training flexible and adapted to follow the check off the person conducting the course, adapted to internal and external training of the applicant companies.

  6. Radiation protection research projects. Status report 2007

    International Nuclear Information System (INIS)

    In Behalf of the German Federal Environment Ministry (BMU) the BfS (Bundesamt fuer Strahlenschutz) assigns research contracts concerning radiation protection topics. The results of these research projects are supposed to provide decision support for the development of radiation protection regulations and other specific radiation protection tasks of the BMU. The BfS is basically charged for the planning, the technical and administrative prearrangements, the assignment, the expert monitoring and the technical evaluation of the results. The report is the compiled information on the results or intermediate results (status reports) of these research projects for the year 2007

  7. Radiation protection in the hospital environment

    International Nuclear Information System (INIS)

    The hospital environment contains numerous sources of ionizing radiation that may contribute to public and occupational radiation exposure. Radiation exposure from x rays is minimized through engineering design, administrative controls, and quality control. Exposure from patients that contain therapeutic quantities is minimized by isolation in appropriately controlled private rooms. Administrative controls are relied on for controlling radiation exposure from diagnostic nuclear medicine patients. Hospital radiation installations must be planned and periodically reviewed to take advantage of the latest developments in radiation protection and to keep public and occupational exposure as low as reasonably achievable

  8. Radiation protection at reactors RA and RB

    International Nuclear Information System (INIS)

    Radiation protection activities at the RA and RB reactors are imposed by the existing legal regulations and international recommendations in this field. This annual report contains five parts which cover the following topics: Radiation safety, dosimetry control and technical radiation protection at reactors RA and RB; Handling of radioactive waste, actions and decontamination; Control of the environment (surroundings of RA and RB reactors) and meteorological measurements; Control of internal contamination and internal exposure; Health control od personnel exposed to radiation. Personnel as well as financial data are part of this report

  9. Radiation exposure and protection during angiography

    International Nuclear Information System (INIS)

    The authors describe the radiological techniques during angiography examinations in their hospital. For every technique they measured the radiation exposure and dose to the staff of doctors, assistants and nurses in their standard positions in the room and the radiation dose at various points on their bodies. The results are critically discussed and alternative protection devices are analysed, since there are many difficulties concerning the employ of usual radiation protection systems. Cardiologists, above all, are given some recomandations to reduce radiation exposure without prejudicing the exam results

  10. Workbook for radiation protection in medical radiography

    CERN Document Server

    Statkiewicz Sherer, Mary Alice; Ritenour, E Russell 0

    2013-01-01

    Enhance your understanding of radiation physics and radiation protection! Corresponding to the chapters in Radiation Protection in Medical Radiography, 7th Edition, by Mary Alice Statkiewicz Sherer, this workbook provides a clear, comprehensive review of all the material included in the text. Practical exercises help you apply your knowledge to the practice setting. It is well written and easy to comprehend"". Reviewed by: Kirsten Farrell, University of Portsmouth   Date: Nov 2014 A comprehensive review includes coverage of all the material included in the text, including x-radiation int

  11. Radiation protection day - Book of abstracts

    International Nuclear Information System (INIS)

    This document brings together the abstracts of all presentations given at the Radiation protection day organised in May 2000 by the French association for radiation protection techniques and sciences (ATSR) on the topic of the new European and French radiation protection regulations and their conditions of application in hospitals. Content: 1 - Presentation of the Office of Protection against Ionizing Radiations (O.P.R.I.), status of texts and evolution, practical implementation of operational dosimetry (Alain Valero, O.P.R.I.); 2 - Presentation of the Radiation Protection Service of the Army (S.P.R.A.) and its role in French army's hospitals (Jean-Baptiste Fleutot, S.P.R.A.); 3 - 96/29 European directive and water quality - transposition in French law (Daniel Robeau, I.P.S.N. Fontenay-Aux-Roses); 4 - Presentation of an automatized active dosimetry system (Michel Deron, G.E.M. System); 5 - Euratom 97/43 Directive from June 30, 1997 - assessment of the existing framework for patients protection in medical environment (Pierre Muglioni, APAVE Nord Ouest); 6 - Specificities of the ionising radiations risk in medical environment - presentation of a ionising radiations risk assessment grid (Marie-Christine Soula, Labour regional direction Ile de France); 7 - Low dose effects (B. Le Guen, E.D.F. G.D.F.); 8 - Operational dosimetry in the medical domain - the Saphydose dosemeter (Frederico Felix - Saphymo); 9 - Positrons and radiation protection (Luc Cinotti - C.E.R.M.E.P.); 10 - Workplace studies in medical environment - areas and personnel classification (Jean-Claude Houy, Sandrine Laugle, Eugene Marquis Cancer Centre Rennes); 11 - Experience feedback after 4 years of active dosimetry in a nuclear medicine service (Albert Lisbona, Centre Rene Gauducheau Nantes/Saint-Herblain); 12 - Operational dosimetry as it is performed today in CNRS laboratories (Helene Dossier - C.N.R.S. Orsay); 13 - Radiation protection in submarine naval forces (Pierre Laroche, Army's health service - S.S.A)

  12. Radiation protection in medical imaging and radiation oncology

    CERN Document Server

    Stoeva, Magdalena S

    2016-01-01

    Radiation Protection in Medical Imaging and Radiation Oncology focuses on the professional, operational, and regulatory aspects of radiation protection. Advances in radiation medicine have resulted in new modalities and procedures, some of which have significant potential to cause serious harm. Examples include radiologic procedures that require very long fluoroscopy times, radiolabeled monoclonal antibodies, and intravascular brachytherapy. This book summarizes evidence supporting changes in consensus recommendations, regulations, and health physics practices associated with these recent advances in radiology, nuclear medicine, and radiation oncology. It supports intelligent and practical methods for protection of personnel, the public, and patients. The book is based on current recommendations by the International Commission on Radiological Protection and is complemented by detailed practical sections and professional discussions by the world’s leading medical and health physics professionals. It also ...

  13. Radiation protection training of radiation safety officers in Finland in 2008

    International Nuclear Information System (INIS)

    The Radiation and Nuclear Safety Authority (STUK) carried out a survey on the radiation protection training of radiation safety officers (RSO) in Finland in 2008. The aim of the survey was to obtain information on the conformity and uniformity of the training provided in different training organisations. A previous survey concerning radiation protection training was carried out in 2003. That survey determined the training needs of radiation users and radiation safety officers as well the radiation protection training included in vocational training and supplementary training. This report presents the execution and results of the survey in 2008. According to the responses, the total amount of RSO training fulfilled the requirements presented in Guide ST 1.8 in the most fields of competence. The emphasis of the RSO training differed between organisations, even for training in the same field of competence. Certain issues in Guide ST 1.8 were dealt quite superficially or even not at all in some training programmes. In some fields of competence, certain matters were entirely left to individual study. No practical training with radiation equipment or sources was included in the RSO training programme of some organisations. Practical training also varied considerably between organisations, even within the same field of competence. The duties in the use of radiation were often considered as practical training with radiation equipment and sources. Practical training from the point of view of a radiation safety officer was brought up in the responses of only one organisation. The number of questions and criteria for passing RSO exams also varied between organisations. Trainers who provided RSO training for the use of radiation in health care sectors had reached a higher vocational training level and received more supplementary training in radiation protection in the previous 5 years than trainers who provided RSO training for the use of radiation in industry, research, and education and training. Those trainers who had received no supplementary training or whose supplementary training was not known were more involved in training for the industrial, research, and education and training sectors than for the health care sectors. Experiences with and feedback on Guide ST 1.8 and its applicability were also collected in this survey. The results of the survey and feedback will be used when Guide ST 1.8 is revised. (orig.)

  14. The reform of radiation protection in Morocco

    International Nuclear Information System (INIS)

    Occupational, public and environmental radiation protection is a major challenge in diverse applications of ionising radiation (industrial, medical, research). There is a considerable international pressure for states to strengthen their regulatory control of radiation safety in order to avoid major radiation accidents, or radiation sources becoming lost or getting in the wrong hands. Covering the safety of radiation in industry, medicine and research, the Moroccan government has made a great effort to strengthen the radiation protection infrastructure and human competency. The IAEA code of conduct and basic safety standards requires that national legislation creates a regulatory authority whose regulatory functions are effectively independent of any government department or other agency that promotes any of the practices regulated. Currently all of the regulatory powers lie with the ministry of health. In order to meet the internationally agreed standards of radiation safety, a new independent Moroccan nuclear safety authority will be established with high level of competencies in radiation protection and its role to ensure the protection of workers, the public and the environment. This paper aims to map out a possible regulatory change and review of the function and structure of the regulatory authority. (authors)

  15. Radiation Protection and Safety infrastructure in Albania

    International Nuclear Information System (INIS)

    On 1995 Albania Parliament approved the Radiation Protection Act, which established the Radiation Protection Commission as Regulatory Body and Radiation Protection Office as an executive office. The licensing of private and public companies is a duty of RPC and the inspections, enforcement, import - export control, safety and security of radioactive materials, are tasks of RPO. Regulations on licence and inspection, safe handling of radioactive sources, radioactive waste management and transport of radioactive materials have been approved. The Codes of practice in diagnostic radiology, radiotherapy and nuclear medicine have been prepared. Institute of Nuclear Physics carry out monitoring of personal dosimetry, response to the radiological emergencies, calibration of dosimetric equipment's, management of radioactive waste, etc. Based in the IAEA documents, a new Radiation Protection Act is under preparation

  16. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  17. Radiation Protection of Children of Belarus

    International Science & Technology Center (ISTC)

    Radiation Protection of Children of Belarus. Development of Recommendations on the Basis of the Research of the Effectiveness of Effects of Radioprotectors on Children from Radiocontaminated Regions of Belarus

  18. The new German radiation protection ordinance 2001

    International Nuclear Information System (INIS)

    On 1 August 2001, the new German Radiation Protection Ordinance entered into force, thereby replacing the former Ordinance of the same name (see Nuclear Law Bulletin No. 16, 18, 19, 28, 44, 52 and 59). Implementing two new Council Directives - the Euratom Basic Safety Standards and Directive 97/43/Euratom on health protection of individuals in relation to medical exposure (see Nuclear Law Bulletin No. 60), and taking into account new scientific developments, the new Ordinance provides a comprehensive basis for the protection of man and the environment. Under German law, the legal basis for radiation protection is the 1959 Atomic Energy Act (the consolidated text of this Act including amendments up to 1985 was published in the Supplement to Nuclear Law Bulletin No. 36). This Act governs the two comprehensive ordinances covering radiation protection: the 1989 Radiation Protection Ordinance and the 1987 X-ray Ordinance (see Nuclear Law Bulletin No. 39, 47 and 59). Both ordinances had to be revised in order to harmonize them with the new Euratom directives. The revision of the X-ray Ordinance is expected to be accomplished in early 2002, and only then will the implementation of the said Euratom directives be complete. To permit full implementation of the European requirements, the main legal basis for the Ordinance, the Atomic Energy Act, had to be amended. Compared to the Radiation Protection Ordinance of 1989, the new Ordinance has been completely re-structured to enhance its clarity and implementation. It is still, however, a very complex, technical piece of legislation, comprising 118 provisions and 14 annexes. As a result of this new Ordinance, a whole range of other ordinances needs to be harmonized with the new radiation protection provisions. Due to the scientific and legal complexity of the underlying questions, it took five years to revise the Ordinance. Thus, the European deadline for implementation of the directives was - as in other Member states of the European Union - not met. During the negotiating process, however, a sound basis for a comprehensive revision of the Ordinance was formed. The German Radiation Protection Commission discussed the draft Ordinance and issued two recommendations which were taken into account during drafting of the Ordinance. As Germany is a federal State, the constituencies (Laender) took part in the discussion from the very beginning. Moreover, opinions of other Federal ministries concerned had to be taken into account, and trade unions, other institutions, scientists and individuals competent in the field of radiation protection were heard. Not only scientific and technical aspects of radiation protection were taken into account but also pragmatic approaches, legal issues and the experience of the constituencies in implementing radiation protection legislation. (author)

  19. Radiation protection program for assistance of victims of radiation accidents

    International Nuclear Information System (INIS)

    The principles aspects of a radiological protection program for hospitals in case of medical assistance to external and internal contaminated persons are showed. It is based on the experience obtained at Centro Medico Naval Marcilio Dias during the assistance to the victims of Goiania accident in 1987. This paper describes the basic infrastructure of a nursery and the radiation protection procedures for the access control of people and materials, area and personal monitoring, decontamination and the support activities such as calibration of radiation monitors and waste management. Is is also estimated the necessary radiation protection materials and the daily quantity of waste generated. (author)

  20. Federal radiation protection regulations: An industry viewpoint

    International Nuclear Information System (INIS)

    Regulations and standards to protect the public and workers from ionizing radiation have been in transition for a number of years, although most of the basic limits in use have remained essentially unchanged over the past 25 years or so. Legislation, political changes, new scientific data, advances in scientific concepts, and finally, public perception and resulting pressures have all been factors in the modifications that have been implemented or considered for radiation protection regulations in recent years. During this period, radiation exposures to both the public and the work force have been reduced through program management and improved technology. Based on activities of the AIF Subcommittee on Radiation Protection, this paper reviews pertinent NRC and EPA regulations, standards and guidance as well as NCRP recommendations and provide some analyses of these in terms of their potential effect on nuclear industry operations. Comments include suggestions where minor changes in Federal agency approaches to radiation regulation might be made for the public benefit

  1. Current situation of radiation protection in Vietnam

    International Nuclear Information System (INIS)

    Vietnam was one of the earliest countries, who applied ionizing radiation in medicine, since 1923, Dr. Marie Curie had supplied radium sources to Hanoi cancer hospital for radiotherapy. However, we did not give sufficient attention to radiation protection involving, e.g. technology, legislation, until 1980s. Recently with the strong support from International Atomic Energy Agency (IAEA) and Vietnam government nuclear technology has been strongly and widely developed in different branches and radiation protection situation in Vietnam has been improved step by step. Strategy for Peaceful Utilization of Atomic Energy up to 2020 approved by the prime minister on January 3th, 2006 confirms that nuclear power plant will be put in operation by 2020. To ensure the implementation of the strategy, the first priority should be given to radiation protection and nuclear safety. This paper presents shortly some activities of radiation safety in Vietnam. The requirements for developing this field in Vietnam are also discussed. (author)

  2. National radiation protection programme for occupational exposure

    International Nuclear Information System (INIS)

    Radiation Protection in Ecuador, as an important part of the whole context of protection against occupational health damage, since 1979 has become a relevant aspect in our government's concerns and policy. Programs have been developed in order to register machines, sources, activities and ionizing radiation users in all fields throughout the country. Plans have been implemented to improve workers safety from occupational exposure: personal thermoluminescense dosimetry, training courses, technical studies to get the best protection in working places, coordination with health institutions to make tests and evaluations to control occupational health, personal and institutional licensing and others. We also have supplied advice on Radiation Protection in the use of radiodiagnosis and radiotherapy, nuclear medicine, radionmunoassay and in industrial, educational and research applications, mainly in matters of shielding, technical meetings, and design of personal protections and safety procedures. (author)

  3. Protection against Ionizing Radiation, No. 1420

    International Nuclear Information System (INIS)

    This publication is a compilation of national legislative and regulatory provisions on radiation protection in force on 15 November 1978. In addition to the in extenso texts on the subject, only the relevant provisions in laws and regulations with a more general scope have been reproduced. This comprehensive compilation expands and updates a previous collection by the Official Gazette of the French Republic which covered only decrees and orders on the protection of workers against the hazards of ionizing radiation. (NEA)

  4. ALARA in the radiation protection training

    International Nuclear Information System (INIS)

    This part treats especially the question of the training in radiation protection. The electro nuclear sector has given an ALARA principle culture and succeeded to sensitize each level of hierarchy, but for small industry, the research and the medical world the same method appears more difficult to use. It seems better to reinforce the importance of the competent person and to include a training in radiation protection on the initial formation in numerous professional categories. (N.C.)

  5. Opportunities for fuzzy logic in radiation protection

    International Nuclear Information System (INIS)

    This paper points at applications of fuzzy logic currently under development at the radiation protection research unit at the nuclear research center SCK/CEN. The illustrated applications are snapshots of the wide research area of radiation protection and radiological optimization. As such, it is not the intention of this paper to give a complete overview of fuzzy logic applications in these fields, but rather to try to reveal future opportunities for further developing fuzzy logic in nuclear science

  6. Strengthening the radiation protection culture: a priority of EDF radiation protection policy

    International Nuclear Information System (INIS)

    Full text of publication follows: In order to improve the management of radiation protection at EDF nuclear power plants, the Human Factors Group of the Research and Development Division of EDF has performed some studies on the appropriation process of the radiation protection requirements. These studies have notably shown that an efficient application of the radiation protection requirements lies on a comprehension by all workers of the meaning of these requirements. Furthermore, they should not be applied under the constraint or because of the fear of a sanction, but the workers need to perceive and understand the benefits in terms of protection associated with the radiation protection requirements. The strengthening of the radiation protection culture is therefore a key element of the radiation protection policy developed by EDF. This culture lies on an awareness of the health risks potentially associated with low levels of ionising radiations, as well as on the knowledge of tools, techniques and good practices developed to control the level of exposures and improve the radiation protection. Various type of actions have been undertaken to reinforce among the relevant players (exposed and non-exposed workers, contractors, all levels of management,... ) an awareness of radiation protection in order to integrate it in their day to day work: elaboration of a 'radiation protection system of reference' explaining how the radiation protection regulatory requirements are applied at EDF, publication of a 'radiation protection handbook' available for all workers (including contractors), training sessions, creation of networks of specialists from the various nuclear power plants on specific radiation protection issues, organisation of feed-back experience forum, etc. Beyond these specific actions, i t is also important to ensure a support and an assistance on the field by dedicated specialists. In this perspective, the health physicists have to play a key role in order to foster the appropriation of the radiation protection culture. For this reason, the structure and the skills of the health physics departments was reinforced and their presence on the field increased. The improvement of radiation protection performances at EDF nuclear power plants is strongly relying on a commitment of all the players involved. Their motivation and vigilance have to be sustained so that their involvement is not merely occasional, but fits into a continuous process. The sharing of a common radiation protection culture is essential as it develops individual and collective behaviours oriented towards a common objective: improving radiation protection and maintaining the levels of exposure as low as reasonably achievable. (author)

  7. Genetic topics in radiation protection

    International Nuclear Information System (INIS)

    The effects of mutations induced by ionizing radiation on human health can be subdivided into decrease of general viability, malformations and embryonic death. Reasons are given for the recommendation why a man whose gonads had been exposed to radiation should refrain from procreation for a couple of months. An analysis of the frequency of chromosome aberrations induced in lymphocytes can provide an estimate of the dose received during an accidental exposure. Radiation induced chronicmyeloid leukaemia is probably based on the induction of an aberration involving chromosome 22 in a bone marrow cell (deletion, translocation). The relationship between the frequency of radiation induced point mutations and the DNA content of the genome of the species studied so far is discussed. (orig.)

  8. Radiation protection in dental practice

    International Nuclear Information System (INIS)

    This guide provides the dentist and dental support personnel with basic information on the safe use of x-rays in dental radiography. Included in this CODE are specific recommendations for eliminating unnecessary radiation exposure of both patients and staff

  9. Radiation protection: the french regulation

    International Nuclear Information System (INIS)

    The French legislation concerning workmen, population and environment protection against the harm ful consequences of irradiation originated from nuclear power plant activities is presented. (A.L.S.L.)

  10. Occupational radiation protection in nuclear facilities

    International Nuclear Information System (INIS)

    This paper presents an overview of the global situation in terms of occupational exposures in worldwide nuclear facilities from 1974 to 1990 and highlights some specific issues for radiation protection over the next decades. The stages and facilities considered in this presentation of the evolution of occupational exposures are the following: uranium enrichment and conversion facilities, nuclear fuel fabrication plants, reactor operation and nuclear fuel reprocessing plants. The data presented are based on the United Nations Scientific Committee on the Effects of Atomic Radiation 2000 Report and the International System on Occupational Exposure database, and illustrated in some cases with respect to the French situation for nuclear power plants. Reflections on the status of the 'as low as reasonably achievable' (ALARA) principle are proposed, showing that ALARA has been the driving force of radiation protection. Two issues for the future of occupational radiation protection are discussed: the case of itinerant workers and the decommissioning of nuclear facilities. The conclusion addresses the need to continue spreading the radiation protection culture among the various actors and the development of networks of actors, in order to favour the sharing of experiences in radiation protection practices and to create a dynamic of progress for the protection of workers. (author)

  11. Views of the radiation protection professionals

    International Nuclear Information System (INIS)

    In general, the radiation protection professional is an adequately trained person who uses his/her technical or scientific experience and skills to protect human beings (and increasingly, the environment) against the harmful effects of ionizing radiation. These persons may be users of radiation in industry, medicine or science; they may be employed as radiation protection officers or consultants, or they may work within the regulatory or authority infrastructures. They may also be independent experts. In spite of the general goals they have in common, their priorities and their views may vary considerably. Confidence is an indispensable prerequisite for successful communication concerning the development of future recommendations in radiation protection. The process of confidence building is difficult. It requires a clarification of the different roles and interests of all parties involved, i.e. policy, economy, public and safety. The willingness to accept a new concept will be increased perceptibly if relevant persons or groups of persons (stakeholders) are already involved in the selection of alternatives. Radiation protection professionals are important partners in the process initiated by the International Committee on Radiological Protection (ICRP), discussing recommendations to come

  12. Radiation protection program of Petrobras

    International Nuclear Information System (INIS)

    Risks present in oil industry require specific control programs, specialy when using radioactive sources. Main uses of ionizing radiation in oil industry are in process control systems, industrial radiography and oilwell logging. A comprehensive and sistemic program is presented in order to assure the safe use of ionizing radiation in these activities. Principal subjects of this program are the control of radioactive sources, personel training in order to difuse knowledge at operations level and procedures standardization. (author)

  13. General approach to radiation protection

    International Nuclear Information System (INIS)

    Since early studies on x-rays and radioactive minerals, that exposure to high levels of radiation can cause clinical damage to the tissues of the human body and it is also presumed that exposure even at low dose levels may cause non-threshold health effects in the exposed group. It is hence essential that the activities involving exposure to radiation be subject to certain standards of safety

  14. Radiation protection topsy-turvy

    International Nuclear Information System (INIS)

    Considerable attention, and money, is directed at reducing public exposure to radiation from nuclear installations, much less attention is paid to the levels of exposure from medical sources. The approximate doses from medical sources are given and ways that the doses can be reduce (eg carbon fibre grids, rare earth screens, better working procedures) are discussed. The case for spending money to reduce levels of radiation exposure in medicine is argued. (author)

  15. Research on radiation effect and radiation protection at JAEA

    International Nuclear Information System (INIS)

    Researches on radiation effect and radiation protection at JAEA have been carried out in different sections. In recent years, the organizations were rearranged to attain better research circumstances, and new research programs started. At present, radiation effect studies focus on radiation effect mechanisms at atomic, molecular and cellular levels including simulation studies, and protection studies focus on dosimetry for conditions difficult to cover with currently used methods and data as well as the related basic studies. The outlines of the whole studies and also some descriptions on selected subjects will be given in this paper. (author)

  16. The Development of Radiation Protection in China

    International Nuclear Information System (INIS)

    The Development of Radiation Protection in China Liu Hua, Zhaorong Shang 1.National Nuclear Safety Administration, SEPA 2.Nuclear Safety Center, SEPA Body of Abstract: It was over 40 years history for the application of nuclear technology in China. There are 11 nuclear power units in operation, 17 civilian research reactors in operation, and several nuclear fuel cycle facilities. A nuclear program of development of nuclear power plants is under planing. According to the program, China will build about 20 nuclear power plants in next 20 years in the policy of standard design, local manufacture, and advanced technology with the international cooperation. And there are several tens of nuclear facilities are in the face of decommissioning. Beside them, a mass amount of radiation sources and irradiation facilities are in operation. All of the facilities have potential to release the radiation materials to environment. A large amount of radiation waste has been produced during the past 40 years from these facilities. Several fatal and in-fatal accidents have occurred, and some accidents happened with environment pollution of radiation. In order to protect public and environment, China has made great efforts to strengthen the radiation protection. The paper presents the progress and development legislation system, regulatory control, occupational radiation protection and monitoring for radiation environment. (Author)

  17. Radiation protection and safety infrastructures in Albania

    International Nuclear Information System (INIS)

    The paper intends to present the evolution and actual situation of radiation protection and safety infrastructure in Albania, focusing in its establishing and functioning in accordance with BBS and other important documents of specialized international organizations. There are described the legal framework of radiation safety, the regulatory authority, the services as well the practice of their functioning. (author)

  18. Medical aspects of radiation protection law contribution to Austrian radiation protection law

    International Nuclear Information System (INIS)

    Some medical aspects of the radiation protection law, esp. in conjunction with medical surveillance of persons exposed to radiation, are dealt with. The discussion refers to the countries of the European Community and Austria and Switzerland. (VJ)

  19. Radiation protection for industrial radiography in the aerospace industry

    International Nuclear Information System (INIS)

    The Boeing Company employs 80 industrial radiographers, operates 90 radiation sources, and takes 10,000 exposures per month. This paper describes the major components of Boeing's radiation protection program: hazard analysis, facilities and equipment design, program administration, and evaluation. In the hazard analysis, each source of radiation is analyzed to determine its hazard and relationship to both man and the environment around it. Once the degree of the hazard is known, facilities and equipment are designed to contain the hazard. This can be anything from a four foot concrete shielded room for an industrial radiographic accelerator, to a piece of rope that isolates an Iridium-192 source during a field radiographic inspection on an aircraft. The administrative functions provide the necessary records, command media, and a radiation source certification program. This certification authorizes the source of radiation to be used under specific conditions agreed upon by both the Radiation Protection Organization and Industrial Radiography Management. The radiation protection program is evaluated through medical exams, personnel monitoring, and area radiation surveys. (H.K.)

  20. Radiation protection in equine radiography

    International Nuclear Information System (INIS)

    During radiography of the carpus of horses calcium fluoride thermoluminescent dosemeters were used to measure the radiation exposure to the hand of an assistant positioning the x-ray film. Three portable x-ray machines and a mobile machine were used during the recordings. The effects of x-ray machine, radiographic technique, and lead rubber gloves upon radiation exposure to the hand were investigated. The size of the primary beam of the x-ray machine was found to be the major factor in determining the dose of radiation received by the hand. The highest radiation exposures were recorded when using two portable machines which were fitted with beam limiting devices that permitted only one primary beam size. The lowest exposures were measured when radiographs were taken with the mobile machine that was fitted with a light beam diaphragm. The control of primary beam size with a light beam diaphragm was found to be the most effective method of reducing radiation dosage to the hand. It is strongly recommended that for equine radiography a light beam diaphragm be fitted to and used on all x-ray machines, and a cassette holder be used to keep the hands out of the primary beam. (author)

  1. Radiation chemistry and environmental protection

    International Nuclear Information System (INIS)

    A combination of different technological methods in one plant is usually economically advantageous in industry. Such a general approach is also useful in solving ecological problems by methods of radiation technology. This method of cleaning 'harsh' sufactants and 'mold' products and a stage of subsequent biological purification of these products from the water. Combining radiation and adsorption techniques is also promising. A relatively large number of examples can now be cited. At the same time, purely radiational technologies are also possible. The authors discuss one of these technologies in more detail. This concerns electron-beam scrubbing of sulfur dioxide and nitrogen oxides from the gases from electric power plants. This method can also be used for scrubbing sulfur dioxide from waste gases from sulfuric acid and metallurgical plants

  2. Ionizing radiation, genetic risks and radiation protection

    International Nuclear Information System (INIS)

    With one method of risk estimation, designed as the doubling dose method, the estimates of total genetic risk (i.e., over all generation) for a population continuously exposed at a rate of 0.01 Gy/generation of low LET irradiation are about 120 cases of Mendelian and chromosomal diseases/106 live births and about the same number of cases for multifactorial diseases (i.e., a total of 240 cases/106). These estimates provide the basis for risk coefficients for genetic effects estimated by ICRP (1991) in its Publication 60. These are: 1.0%/Sv for the general population (which is 40% of 240/106/0.01 Gy), and 0.6%/Sv for radiation workers (which is 60% of that for the general population). The results of genetic studies carried out on the Japanese survivors of A-bombs have shown no significant adverse effects attributable to parental radiation exposures. The studies of Gardner and colleagues suggest that the risk of leukaemia in children born to male workers in the nuclear reprocessing facility in Sellafield, U.K., may be increased. However, this finding is at variance with the results from the Japanese studies and at present, does not lend itself to a simple interpretation based on radiobiological principles. In the light of recent advances in the molecular biology of naturally-occurring human Mendelian diseases and what we presently know about multifactorial diseases, arguments are advanced to support the thesis that (i) current risk estimates for Mendelian diseases may be conservative and (ii) an overall doubling dose for all adverse genetic effects may be higher than the 1 Gy currently used (i.e., the relative risks are probably lower). (author)

  3. Report on radiation protection in Croatia

    International Nuclear Information System (INIS)

    The Ministry of Health in the Republic of Croatia is in charge of radiation protection, and the new Ionizing Radiation Protection Act defines the responsibilities of the different organizations and institutions. The report explains the existing national system of notification and registration in Croatia and some of the main provisions of the above referred Act. Reference is made to the national provisions for the management of disused sources, recovery or control of orphan sources, and to the national inventory of radiation sources in the country with the data collected during 1998 and 1999. (author)

  4. Beta emitters and radiation protection

    DEFF Research Database (Denmark)

    Jødal, Lars

    2009-01-01

    general, and specifically determine proper shielding for 90Y, while comparing to 177Lu and 131I. The aim is achieved through the application of physical principles combined with results from practical experience. MATERIAL AND METHODS. Typical and maximal electron ranges were calculated for 131I, 177Lu...... preparing 90Y-Zevalin were measured. CONCLUSIONS. Good laboratory practice is important to keep radiation doses low. To reduce bremsstrahlung, 90Y should not be shielded by lead but instead perspex (10 mm) or aluminium (5 mm). Bremsstrahlung radiation can be further reduced by adding a millimetre of lead on...

  5. The amendment of the Radiation Protection Ordinance

    International Nuclear Information System (INIS)

    By taking over ICRP recommendations via the EC law into the national law a harmonization of the Radiation Protection Law will be reached within the EC. This does not exclude that in individual cases the national law can be more severe than the EC law. The amendments of the basic EC standards in 1980/84 served as a model for the admendments of the Radiation Protection Ordinance. The amendments consider an EC directive issued in 1984 for the first time for the medical application of radioactive substances and ionizing rays, a dose limit related to the entire working life, population protection and the regulations on waste treatment. (orig./DG)

  6. Status of technical radiation protection units

    International Nuclear Information System (INIS)

    The aim of this report is to analyse the current situation of Radiological Protection technical Units until December 2008 and to carry out an evaluation on the quality the services provided to clients in terms of nuclear safety and radiation protection at nuclear facilities and radioactive and medical radiodiagnostics facilities in accordance with the function assigned to them by the CSN. these are set forth in the Rules of Health Protection against ionising radiation and the RD 1976/1999 on quality criteria applied to radiodiagnostics. (Author)

  7. Radiography room design and radiation protection

    International Nuclear Information System (INIS)

    Shielding solutions of radiography room should be able to meet the relevant requirements of protection, and not too conservative to waste resources. According to the actual of radiography room, introducing the overall design and shielding solutions of 60Co radiography room, 192lr radiography room, and X-ray radiography room; calculating on the thickness of lead door, the walls, and roofs. Introducing radiography room used for radiation protection measures: Introducing radiation protection measures used in radiography room. The results show that the design and shielding solutions, dose limits and safety measures for radiography room content the relevant requirements. (authors)

  8. Radiation protection in Baden-Wuerttemberg

    International Nuclear Information System (INIS)

    The tasks of radiation protection and nuclear safety to be looked after by the land Baden-Wuerttemberg consist essentially in licensing and control activities carried out by the Federal Government. With regard to radiation protection the focal points of the second medium-term programme of the Laender Government Baden-Wuerttemberg are: 1. the technical development plan 'power plant sites', 2. construction of nuclear power plants in the borderline areas of neighbouring foreign countries, 3. disposal of radioactive waste, 4. pollution protection measures against nuclear power plants, 5. safety measures when dealing with radioactive materials outside nuclear power plants. (GL)

  9. Proposal of a survey of radiation protection procedures during breast feeding;Proposta de um levantamento do estado da arte da radioprotecao para lactantes submetidas a procedimento com radiofarmacos e respectivos bebes

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Liliane dos; Oliveira, Silvia M. Velasques de [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Servico de Monitoracao Individual Interna

    2009-07-01

    Contamination can occur by breast milk ingestion involving mothers subjected to diagnostic procedures or treatment with radiopharmaceuticals, which can reach high concentrations in milk causing significant absorbed doses to the children organs. Besides internal dose, close contact between the baby and his mother give rise to external exposures. In Brazil, 7% of diagnostic procedures use {sup 131}I or {sup 123}I for thyroid imaging and 84% of these were hold by women. For {sup 131}I, {sup 67}Ga and {sup 201}Tl, is recommended breast feeding cessation. The present work proposes a survey of the state of the art of radiation protection to breast feeding infants. It was planned interviews with nuclear medicine staff applying a questionnaire in order to assess specific procedures to women in reproductive age. This is 'on progress work'. (author)

  10. Management information system on radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Grossi, Pablo Andrade; Souza, Leonardo Soares de; Figueiredo, Geraldo Magela, E-mail: pabloag@cdtn.b, E-mail: lss@cdtn.b, E-mail: gmf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Considering the flux complexity and the multi source information of all radiation protection activities on nuclear organizations, an effective management information system based on technology, information and people is necessary to improve the safety on all processes and operations subjected to radiation risks. An effective management information system is an essential tool to highlight the strengths and weaknesses and identify behaviors and trends on the activities requiring radiation protection programs. Such kind of distinct knowledge is useful to reach an effective management and support the human decision-making on nuclear organization. This paper presents a management information system based on Brazilian directives and regulations on radiation protection. Due to its generic characteristics, this radiation protection control system can be implemented on any nuclear organization by reediting the non restricted parameters which could differ considering all facilities and laboratories expected on-site with diverse technologies applications. This system can be considered as a powerful tool applied on the continuous management of radiation protection activities on nuclear organizations and research institutes as well as for long term planning, not only indicating how the safety activities are going, but why they are not going as well as planned where that is the case. (author)

  11. Management information system on radiation protection

    International Nuclear Information System (INIS)

    Considering the flux complexity and the multi source information of all radiation protection activities on nuclear organizations, an effective management information system based on technology, information and people is necessary to improve the safety on all processes and operations subjected to radiation risks. An effective management information system is an essential tool to highlight the strengths and weaknesses and identify behaviors and trends on the activities requiring radiation protection programs. Such kind of distinct knowledge is useful to reach an effective management and support the human decision-making on nuclear organization. This paper presents a management information system based on Brazilian directives and regulations on radiation protection. Due to its generic characteristics, this radiation protection control system can be implemented on any nuclear organization by reediting the non restricted parameters which could differ considering all facilities and laboratories expected on-site with diverse technologies applications. This system can be considered as a powerful tool applied on the continuous management of radiation protection activities on nuclear organizations and research institutes as well as for long term planning, not only indicating how the safety activities are going, but why they are not going as well as planned where that is the case. (author)

  12. The person entrusted with radiation protection

    International Nuclear Information System (INIS)

    The article, as can be inferred from the title, deals with the general protection regulations of the third part of the Radiation Protection Ordinance. In this part the legislator attends, mainly in the sections 29, 30, 31, much more detailed than in the former Ordinance under section 20 to the complex of the licensee's radiation protection responsibility and the obligation to appoint somebody for radiation protection. The following points have been reorganized: 1) Establishing the know-how and the reliability of the person put in charge; 2) the obligation of the person put in charge to inform those responsible of flaws which might impair radiation protection; 3) the prohibition to obstruct or handicap the person put in charge when doing his duty (sub-section 3 section 31); 4) a model to solve conflicts between those responsible and those put in charge; 5) a much wider catalogue of duties according to section 31, to be carried out by those responsible and those entrusted with radiation protection. (orig./HP)

  13. Radiation protection training in Ontario Hydro

    International Nuclear Information System (INIS)

    Ontario Hydro provides extensive training for its rapidly growing nuclear staff at a nuclear training center and at nuclear stations and radiation protection training, the responsibility of the health physics department, forms an important part of the training. Radiological safety responsibility is shared by all staff and several levels of radiation protection training are offered. RPT number3 is a basic course to prepare the individual to look after his own radiological safety on the job. RPT number2 provides a more detailed understanding and prepares experienced personnel to be responsible for the radiological safety of others. RPT number1 is an advanced course for persons with significant responsibility for radiological safety. Training in station radiation protection procedures is also offered at each station by a radiation control supervisor. Radiation protection qualifications are awarded on the basis of training and experience. All training emphasizes the capabilities to anticipate, assess and protect in radioactive work areas. A practical training facility has been constructed and completely fitted with instruments and protective equipment and provides a radioactive environment where trainees demonstrate exposure and contamination control

  14. Radiation protection in medical and biomedical research

    International Nuclear Information System (INIS)

    The human exposure to ionizing radiation in the context of medical and biomedical research raises specific ethical challenges whose resolution approaches should be based on scientific, legal and procedural matters. Joint Resolution MINSAP CITMA-Regulation 'Basic Standards of Radiation Safety' of 30 November 2001 (hereafter NBS) provides for the first time in Cuba legislation specifically designed to protect patients and healthy people who participate in research programs medical and biomedical and exposed to radiation. The objective of this paper is to demonstrate the need to develop specific requirements for radiation protection in medical and biomedical research, as well as to identify all the institutions involved in this in order to establish the necessary cooperation to ensure the protection of persons participating in the investigation

  15. Radiation Protection Quantities for Near Earth Environments

    Science.gov (United States)

    Clowdsley, Martha S.; Wilson, John W.; Kim, Myung-Hee; Anderson, Brooke M.; Nealy, John E.

    2004-01-01

    As humans travel beyond the protection of the Earth's magnetic field and mission durations grow, risk due to radiation exposure will increase and may become the limiting factor for such missions. Here, the dosimetric quantities recommended by the National Council on Radiation Protection and Measurements (NCRP) for the evaluation of health risk due to radiation exposure, effective dose and gray-equivalent to eyes, skin, and blood forming organs (BFO), are calculated for several near Earth environments. These radiation protection quantities are evaluated behind two different shielding materials, aluminum and polyethylene. Since exposure limits for missions beyond low Earth orbit (LEO) have not yet been defined, results are compared to limits recommended by the NCRP for LEO operations.

  16. Bases and trends in radiation protection policy

    International Nuclear Information System (INIS)

    The objective of radiation protection is to prevent detrimental non-stochastic effects and to limit the probability of stochastic effects to levels deemed to be acceptable. For this purpose, the International Commission on Radiological Protection (ICRP) has suggested the three principles of justification of practice, optimization of protection, and individual dose limitation. The ICRP dose limits are individual-related, but the practical limitation of dose contributions from specified sources is source-related, as is that of collective dose. This may be needed in optimization analyses if proportionality between radiation health detriment and collective dose can be assumed. Limitation of the collective dose commitment per unit of practice may be an useful method for control of the highest future per caput dose. These bases of current radiation protection policy are reviewed, together with some indications of trends, including probabilistic approaches

  17. Radiation protection 1/87

    International Nuclear Information System (INIS)

    There is a paper on medical first aid after radiation accidents and another on positive effects of low-dose irradiation which are treated separately. In addition there are four contributions on question of conventional X-ray diagnosis. (G.Q.)

  18. Development of radiation protection and measurement technology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Si Young; Lee, T. Y.; Kim, J. L.; Kim, B. H.; Lee, B. J.; Chung, K. K.; Lee, K. C.; Chung, R. I.; Han, Y. D.; Kim, J. S.; Lee, H. S.; Kim, C. K.; Yoon, K. S.; Jeong, D. Y.; Yoon, S. C.; Yoon, Y. C.; Lee, S. Y.; Kim, J. S.; Seo, K. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, J. K.; Lee, J. K. [Hanyang Univ., Seoul (Korea, Republic of)

    1997-07-01

    Reference X-, gamma, beta and neutron radiation fields complying with the ISO and ANSI standards have been established and evaluated to provide a basic technical support in national radiation protection dosimetry program and to provide calibration measurement devices. Personal dose evaluation algorithm has been developed with these reference radiation fields, which comply well with both domestic and the new ANSI N13.11, to evaluate accurate personal dose equivalents. A personal internal dosimetry algorithm which can estimate the intakes of radionuclides from the results of in vivo bioassay and the resulting internal doses has been developed and verified its performance. It was also evaluated to be equality excellent compared with those being used in foreign countries and used to make a computer code for internal dose evaluation which can be run with PC under the Windows environment. A BOMAB phantom for precise calibration of in vivo system has been also designed, fabricated and test-evaluated. Based on the ALARA concept of the optimization principle of radiation protection, a method for estimating the cost for radiation protection has been studied and an objective monetary cost of detriment due to radiation exposure, called {alpha} value ($/man-Sv) has been derived and proposed based on the Korean socio-economic situation and human risk factors to provide basic data for the radiation protection optimization study in Korea. (author). 100 refs., 104 tabs., 69 figs.

  19. Development of radiation protection and measurement technology

    International Nuclear Information System (INIS)

    Reference X-, gamma, beta and neutron radiation fields complying with the ISO and ANSI standards have been established and evaluated to provide a basic technical support in national radiation protection dosimetry program and to provide calibration measurement devices. Personal dose evaluation algorithm has been developed with these reference radiation fields, which comply well with both domestic and the new ANSI N13.11, to evaluate accurate personal dose equivalents. A personal internal dosimetry algorithm which can estimate the intakes of radionuclides from the results of in vivo bioassay and the resulting internal doses has been developed and verified its performance. It was also evaluated to be equality excellent compared with those being used in foreign countries and used to make a computer code for internal dose evaluation which can be run with PC under the Windows environment. A BOMAB phantom for precise calibration of in vivo system has been also designed, fabricated and test-evaluated. Based on the ALARA concept of the optimization principle of radiation protection, a method for estimating the cost for radiation protection has been studied and an objective monetary cost of detriment due to radiation exposure, called α value ($/man-Sv) has been derived and proposed based on the Korean socio-economic situation and human risk factors to provide basic data for the radiation protection optimization study in Korea. (author). 100 refs., 104 tabs., 69 figs

  20. Radiation protection principles observance in Iranian dental schools

    International Nuclear Information System (INIS)

    In recent decades many guidelines has been conducted by radiation protection organizations about radiation protection in dentistry. This study aimed to evaluate the observance of these guidelines in educational clinics of all dental schools in Iran. Material and Methods: In this cross-sectional study a self-administered questionnaire, based on National Radiation Protection Board and European Commission guidelines, was conducted. The radiology departments of all dental school (18 schools) were surveyed in this study. The questionnaire was consisted of 3 sections including intraoral radiography, extra oral radiography and implementation of quality control programs. Results: In the case of the existence of radiation protection facilities (such as lead apron, thyroid shield and lead impacted walls) the use of high speed films and existence of automatic processor in dental schools, there was a proper condition. The main problem was related to lack of regular quality control and quality assurance programs. Digital radiography systems were employed in none of the schools and it was occasionally used for research purposes at some of them. Conclusions: This study has emphasized on the need for further consideration of radiation protection principles in dental schools, especially on the field of quality control and quality assurance programs.

  1. Proceedings of the Tenth Radiation Physics and Protection Conference

    International Nuclear Information System (INIS)

    The publication has been set up as proceedings of the Radiation Physics and Protection Conference.. The conference consists Natural Radiation Sources; Radiation Detection and Measurements; Applied Radiation Physics; Radiation Medical Physics and Biophysics; Radiation Dosimetry; Operational Radiation Protection; Radiation Shielding; Transport of Radioactive Materials; Nuclear and Radiation Physics; Medical Physics and Public Protection Against Radiological Attack. This conference consists of 402 p., figs., tabs., refs.

  2. Radiation protection and the safety of radiation sources

    International Nuclear Information System (INIS)

    These Safety Fundamentals cover the protection of human beings against ionizing radiation (gamma and X rays and alpha, beta and other particles that can induce ionization as they interact with biological materials), referred to herein subsequently as radiation, and the safety of sources that produce ionizing radiation. The Fundamentals do not apply to non-ionizing radiation such as microwave, ultraviolet, visible and infrared radiation. They do not apply either to the control of non-radiological aspects of health and safety. They are, however, part of the overall framework of health and safety

  3. Radiation and heredity: genetic aspects of protection against radiation

    International Nuclear Information System (INIS)

    Primary radiogenetic effects and delayed genetic radiation effects are considered. Experimental and published data on possibility to protect organisms and populations against single and long-term (during life of several generations) effect of ionizing radiation are given. Problem concerning population adaptation to low dose irradiation is discussed. 490 refs., 28 figs., 43 tabs

  4. Is radiation protection for the unborn child guaranteed by radiation protection for female workers?

    International Nuclear Information System (INIS)

    ICRP Publication 88 recommends doses to embryo and fetus from intakes of radionuclides by the mother for various intake scenarios. Mainly by answering the question 'Is radiation protection for the unborn child guaranteed by radiation protection for female workers?' it has been assessed if the intake scenarios given in ICRP Publication 88 are adequate for radiation protection purposes. This is generally the case, but the consideration of an additional chronic intake scenario for early pregnancy would be helpful. It is demonstrated that following chronic intake by inhalation, for most radionuclides radiation protection for (female) workers is also adequate for protection of the unborn child, considered as a member of the public. However, there are a number of radionuclides for which possible intakes in routine operations should be more restricted (up to 1% of the annual limits on intake for workers in the case of nickel isotopes) to ensure radiation protection for the unborn child. (author)

  5. Radiation Protection Elephants in the Room

    International Nuclear Information System (INIS)

    As our system of radiological protection evolves, several significant issues loom within radiation protection discussions and publications. These issues influence the nature of epidemiological and radiobiological research and the establishment of radiation protection recommendations, standards, and regulations. These issues are like the proverbial elephants in the room. They are large, and it is unwise to ignore them. This paper discusses the impact of three young elephants as they make their presence increasingly obvious: increased cancer susceptibility from early-life exposure to radiation, terrorism and fear of radiation, and patient safety. Increased cancer susceptibility from early-life exposure to radiation is emerging as a discussion topic related to the safety of computed tomography (CT) and other medical modalities. Shortly after publication of CT dose data, manufacturers were helping to reduce doses to children by increasing flexibility for adjustment of technique factors. Also, radiation epidemiological data are being used in the development of guidance on exposure to chemical carcinogens during early life. Re-emergence of public fear of radiation has been fueled by threats of radiological dispersion devises and confusing messages about personal decontamination, emergency room acceptance or rejection of contaminated victims, and environmental clean-up. Finally, several professional publications have characterized risk of medical radiation exposure in terms of patient deaths even though epidemiological data do not support such conclusions. All three of these elephants require excellent science and sophisticated data analysis to coax them from the room. Anecdotal communications that confuse the public should be avoided. These are not the only elephants in the room, but these three are making their presence increasingly obvious. This paper discusses the need for radiation protection professionals to rely on good science in the evolution of the system of radiological protection. (Author) 32 refs

  6. Radiation Protection Elephants in the Room

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, R. J.

    2004-07-01

    As our system of radiological protection evolves, several significant issues loom within radiation protection discussions and publications. These issues influence the nature of epidemiological and radiobiological research and the establishment of radiation protection recommendations, standards, and regulations. These issues are like the proverbial ''elephants in the room''. They are large, and it is unwise to ignore them. This paper discusses the impact of three young elephants as they make their presence increasingly obvious: increased cancer susceptibility from early-life exposure to radiation, terrorism and fear of radiation, and patient safety. Increased cancer susceptibility from early-life exposure to radiation is emerging as a discussion topic related to the safety of computed tomography (CT) and other medical modalities. Shortly after publication of CT dose data, manufacturers were helping to reduce doses to children by increasing flexibility for adjustment of technique factors. Also, radiation epidemiological data are being used in the development of guidance on exposure to chemical carcinogens during early life. Re-emergence of public fear of radiation has been fueled by threats of radiological dispersion devises and confusing messages about personal decontamination, emergency room acceptance or rejection of contaminated victims, and environmental clean-up. Finally, several professional publications have characterized risk of medical radiation exposure in terms of patient deaths even though epidemiological data do not support such conclusions. All three of these elephants require excellent science and sophisticated data analysis to coax them from the room. Anecdotal communications that confuse the public should be avoided. These are not the only elephants in the room, but these three are making their presence increasingly obvious. This paper discusses the need for radiation protection professionals to rely on good science in the evolution of the system of radiological protection. (Author) 32 refs.

  7. Radiation protection activities around the CERN accelerators

    International Nuclear Information System (INIS)

    The staff of the Survey Section of Radiation Protection (RP) working around the CERN accelerators were as usual very busy. The LEP2 programme is now fully on its way, with the installation of additional superconducting RF cavities carried out during both the winter and summer shutdowns. The LEP energy per beam was thus increased to 80.5 GeV in summer and to 86 GeV in autumn. ACOL and LEAR ended their operational life on 19 December producing, for the last time, antiprotons for the experiments in the South Hall; all experiments will be dismantled in 1997. This programme will be partly replaced by the future Antiproton Decelerator, which was approved by the Research Board in November. Several experiments also came to their end in the North and West Experimental Areas of the SPS. NA44 (in EHN1) and NA47 (in EHN2) ended this year. All experiments installed in beam lines HI, H3, XI and X3 in the West Area also terminated, as these beam lines will be dismantled in the course of 1997 to make room for test facilities for the LHC. Several modifications in the West and North Experimental Areas have already been undertaken at the end of the year and will be continued in 1997. Some equipment installed in the West Area will be moved to the North Area. In addition to routine work, several measurements of synchrotron radiation were made in LEP for the two new energy levels reached in 1996. A number of dedicated measurements were also undertaken in EHN1 (North Area) at the end of the year, during the lead-ion run which closed the physics period. A detailed assessment of releases of radioactivity from the ISOLDE facility was also made

  8. Radiation protection in pediatric radiology

    International Nuclear Information System (INIS)

    The purpose of this report is to make available a source of practical information regarding the manner in which radiologic examinations in children should be conducted to reduce the radiation dose to these patients and those responsible for their care. The report is mainly for the use of pediatricians, radiologists, radiologic technologists, and other physicians and medical practitioners who order or use radiological methods in examining children

  9. Accreditation of ionizing radiation protection programs

    International Nuclear Information System (INIS)

    There are over one million workers in the United States who have the potential to be exposed to ionizing radiation. Therefore, it is necessary to determine accurately the quantity of radiation to which they may have been exposed. This quantity if measured by personnel dosimeters that are carried by individuals requiring radiation monitoring. Accreditation of the organizations which evaluate this quantity provides official recognition of the competence of these organizations. Accreditation programs in the field of ionizing radiation protection have been in operation for a number of years, and their experience has demonstrated that such programs can help to improve performance

  10. A European handbook for teachers on radiation and radiation protection

    International Nuclear Information System (INIS)

    The Commission of the European Communities (Directorate General XI) has taken several initiatives to assist Member States, one of them being the development of a handbook for teachers on radiation and radiation protection, in order to give teachers a clear, scientifically valid and objective set of materials to enable those who so wish to includes courses on radiation protection in their teaching programmes. The draft handbook has been tested in five countries and is to be published in English and French in 1993. Translations in all Community languages are envisaged

  11. Radiation protection technology. Specific course for authorized radiation protection representatives according the qualification guidelines technology for the radiation protection regulations (StrlSchV) and X-ray regulation (RoeV)

    International Nuclear Information System (INIS)

    The technical course on radiation protection technology covers the following topics: (1) general radiation protection, (2) licensing, notifications, (3) scientific fundamentals, (4) dosimetry, radiation monitoring, control monitoring, book-keeping; (5) technical radiation protection, (6) radiation protection calculations.

  12. Regulatory System of Radiation Protection in Taiwan

    International Nuclear Information System (INIS)

    After the radioactive contaminated buildings incident occurred in Taiwan in 1993, the competent authority for radiation protection the Atomic Energy Council (AEC) started to review the structured problem of radiation protection regulatory system. Through several years' investigation and study, the AEC has improved two important tools in radiation protection regulatory system, i.e., control regulations and actual practice, and made them more rigorous and efficient. This paper will make a brief introduction of the efforts that Taiwan has made in this respect. Taiwan's radiation protection control was based on the Atomic Energy Law promulgated in 1968, but the control idea and authorization scope were not sufficient to appropriately respond to the highly developed economy and democracy in Taiwan. After several years' legislative process, the Ionizing Radiation Protection Law (IRP Law) was promulgated and entered into force on February 1, 2003. This IRP Law specifically emphasizes categorized risk management of radiation sources, establishment of personnel licenses and training system, enhancement of public safety control, and implementation of quality assurance program for medical exposure. The Legislative Yuan (Congress) fully authorized the competent authority to establish various technological control regulations according to control necessity without prior review by the Legislative Yuan in advance. As to the penalties of the violations of the IRP Law, the AEC adopts high-rated administrative fines and applies the Criminal Law to those who seriously contaminate the environment. In actual practice, the AEC has constructed a Radiation Protection Control Information System compatible with the IRP Law that fully combines the functions of computers and Internet. The information of facility operators who own radiation sources, radiation protection specialists, and operating personnel are entered into this system, starting from the submission of application of the radiation sources until the discard of the radiation sources such that the competent authority can efficiently control. In order to control the moving status of high-activity sources, the AEC requires the owners of high-activity sources shall report the conditions of variation to the competent authority through Internet every month. According to the IRP Law the records of penalties shall also enter this system for statistical analysis so as to be used for regulatory reference. (Author)

  13. Public understanding of radiation protection concepts

    International Nuclear Information System (INIS)

    The Chernobyl accident in April 1986 clearly showed that communication with the public was one of the areas where there was a strong need for improvement, particularly concerning the nature and extent of the information provided by national authorities. The countermeasures adopted by public health authorities also raised difficulties in terms of public understanding and acceptance due, in part, to the perception of discrepancies in national, regional or local response to the accident, but also to a more basic lack of comprehension of the complex radiation protection considerations involved. In an attempt to help improve the situation, the NEA Committee on Radiation Protection and Public Health decided to organise a Workshop on public communication in the event of a nuclear accident, centered on radiation protection issues. The purpose of this Workshop was to analyse appropriate methods and language to be used when explaining to the public the scientific concepts underlying radiation risks and radiation protection, and the technical rationale for the choice of protective actions in an emergency. Separate abstracts were prepared for individual papers presented at the meeting

  14. Radiation protection in nuclear energy. V.2

    International Nuclear Information System (INIS)

    The conference was convened to provide a forum for the exchange of international views on the principles of radiation protection for regulators and practitioners, to highlight issues of current importance, to examine the problems encountered in applying the principles of radiation protection, and, where possible, to identify generic solutions. The highlights of the conference were the sessions on the interface between nuclear safety and radiation protection, the evolution of radiation protection principles, exemption rules and accident experiences. The special session on the practical implications of the linear dose-response relationships also provoked particular interest. Although the session on optimization and decision aiding did not reveal any new developments, it did indicate an increasing emphasis on the optimization of radiation protection. A clear trend towards attaining lower collective doses per unit practice over a given time period, despite the increase in nuclear power plant capacity, is also apparent, although very few data on job-related worker doses have been published to date in the open literature. From the regulators' viewpoint, a very strong desire was expressed for a move towards regulatory strategies that exempt practices and sources causing insignificant individual and collective doses. Refs, figs and tabs

  15. Radiation protection course for physicians. Pt. 2

    International Nuclear Information System (INIS)

    The material presented is intended as a teaching aid for courses of advanced professional training in radiotherapy, specifically for the subject of radiation protection. It will further be of help as a manual for physicians specializing in radiotherapy, and also for radiological personnel, who will be glad to have at hand a systematic and comprehensive guide to radiation protection measures in radiotherapy. The material has been revised so as to offer the current state of the art, and has been improved by adding illustrations of practical value and a subject index. The material has been restricted to explaining the legal basis of radiation protection in medical therapy as far as covered by the subjects of the training course. This offered the possibility of presenting a comprehensive view of the legal provisions governing radiation protection, which originally are given in two different statutory orders, the X-ray Ordinance and the Radiation Protection Ordinance. The latest recommendations of the ICRP and related comments, rules and standards have been taken into account. (orig.)

  16. Radiation protection training for users of ionizing radiation in Hungary

    International Nuclear Information System (INIS)

    According to the current and previous regulation related to the safety use of ionizing radiation, the personnel involved must obtain special qualification in radiation protection. In Hungary the radiation protection training are performed by appropriately certified training centers on basic, advanced and comprehensive levels. Certification of the training centers is given by the competent radiological health/radiation protection authority. The office of the Chief Medical Officer is the certifying authority for advanced and comprehensive levels training, as well as competent Regional Radiological Health Authority is responsible for basic level courses. The content and length of courses are specified in the regulation for all three levels of industrial, laboratory and medical users, in general. Some of the universities, technical and medical oriented are certified for advanced training for students as gradual course. Recently in Hungary there are 47 certified training centers for advanced and comprehensive courses, where the trainers should have a five years job experience in radiation protection and successful completion of comprehensive level course in radiation protection. (authors)

  17. Viewing radiation protection in the framework of general environmental protection

    International Nuclear Information System (INIS)

    The author of the introductory contribution places the tasks of radiation protection within the framework of general environmental protection. He presents joint concepts - for instance, large-area measuring plans for radon in living-space and formaldehyde in building materials, and, for instance, protection of waters with corresponding recommendations for the chemicals industry - and sets out the political principles of the Federal German Government for the improvement of the environmental situation and, especially, for the protection of human health. He points out each citizen's own responsibility for his health, and the consumer's responsibility as regards his own consumer behaviour. As regards the protection of the population and the environment against ionizing radiation hazards, especially with regard to German nuclear power plants, the valid principle is 'safety first', and this includes the tasks with which radiologists are confronted in the event of nuclear accidents to assure transfrontier, preventive medical care. The Association of German Radiologists is requested to make special efforts to assess the radiation exposure of man. (TRV)

  18. IAEA occupational radiation protection programme: current status

    International Nuclear Information System (INIS)

    As stated in Art.III.A.6 of its Statute, the International Atomic Energy Agency (commonly referred to as the Agency) is authorized to establish or adopt, in consultation and, where appropriate, in collaboration with the competent organs of the United Nations and with the specialized agencies concerned, standards of safety for protection of health and minimization of danger to life and property (including such standards for labour conditions), and to provide for the application of these standards to its own operation as well as to the operations making use of materials, services, equipment, facilities, and information made available by the Agency or at its request or under its control or supervision. The Agency s Occupational Radiation Protection Programme aims at harmonizing infrastructures for the control of radiation exposure of workers and for optimizing radiation protection in situation s of exposures due to external radiation and intakes of radionuclides from both artificial and natural sources of radiation. Under its regular and technical cooperation programmes, the Agency has been assigning high priority to both the establishment of safety standards for labour conditions and for the application of these standards through, Interalia, direct assistance under its technical cooperation (TC) programme, the rendering of services, the promotion of education and training, the fostering of information exchange and the coordination of research and development. The purpose of this paper is to present the current status and future IAEA activities in support of occupational radiation protection. (authors)

  19. IAEA occupational radiation protection programme: current status

    Energy Technology Data Exchange (ETDEWEB)

    Deboodt, P.; Mrabit, K. [PPSS/NSRW/IAEA, Vienna (Austria)

    2006-07-01

    As stated in Art.III.A.6 of its Statute, the International Atomic Energy Agency (commonly referred to as the Agency) is authorized to establish or adopt, in consultation and, where appropriate, in collaboration with the competent organs of the United Nations and with the specialized agencies concerned, standards of safety for protection of health and minimization of danger to life and property (including such standards for labour conditions), and to provide for the application of these standards to its own operation as well as to the operations making use of materials, services, equipment, facilities, and information made available by the Agency or at its request or under its control or supervision. The Agency s Occupational Radiation Protection Programme aims at harmonizing infrastructures for the control of radiation exposure of workers and for optimizing radiation protection in situation s of exposures due to external radiation and intakes of radionuclides from both artificial and natural sources of radiation. Under its regular and technical cooperation programmes, the Agency has been assigning high priority to both the establishment of safety standards for labour conditions and for the application of these standards through, Interalia, direct assistance under its technical cooperation (TC) programme, the rendering of services, the promotion of education and training, the fostering of information exchange and the coordination of research and development. The purpose of this paper is to present the current status and future IAEA activities in support of occupational radiation protection. (authors)

  20. Implementation experience of the radiation protection infrastructure in Lithuania

    International Nuclear Information System (INIS)

    A national radiation protection infrastructure has been created in Lithuania in order to ensure radiation protection in the country and to comply with the IAEA and European Union requirements and recommendations regarding radiation protection. The new laws, namely, the Law on Radiation Protection, the Law on Nuclear Energy, the Law on Radioactive Waste Management, and different regulations were approved. The Radiation Protection Centre of the Ministry of Health is the regulatory authority responsible for radiation protection both of members of the public and employees associated with the nuclear industry in Lithuania. According to the Law on Radiation Protection, the Radiation Protection Centre is a body coordinating the activities of executive and other bodies of public administration and local government in the field of radiation protection, exercising State supervision and control of radiation protection, monitoring and expert examination of public exposure. Problems connected with establishing the national radiation infrastructure in Lithuania are presented and their solution is discussed. (author)

  1. Implementation experience of the radiation protection infrastructure In Lithuania

    International Nuclear Information System (INIS)

    A national radiation protection infrastructure has been created in Lithuania in order to ensure radiation protection and to comply with the IAEA and European Union requirements and recommendations regarding radiation protection. The new laws, namely: the Law on Radiation Protection, the Law on Nuclear Energy, the Law on Radioactive Waste Management and different regulations were approved. The Radiation Protection Centre of the Ministry of Health is the Regulatory Authority responsible for radiation protection both of public and personnel in Lithuania. According to the Law on Radiation Protection, the Radiation Protection Centre is a body co-ordinating the activities of executive and other bodies of public administration and local government in the field of radiation protection, exercising state supervision and control of radiation protection, monitoring and expert examination of public exposure. Problems connected with the establishing national radiation infrastructure in Lithuania are presented and their solution is discussed. (author)

  2. Radiation protection in the application of ionizing radiation in industry

    International Nuclear Information System (INIS)

    There is a substantial increase in the use of ionizing radiation in industry throughout the country especially in the last five years or so. With this growth in the number of users and activity of sources used, and together with the introduction of the new Atomic Energy Licensing Act (AELA) in 1984, the question of radiation safety and protection of workers and members of the public in general, can no longer be taken lightly. It has to be dealt with effectively. In this paper, a general discussion and clarification on certain practical aspects of radiation protection as recommended by the International Atomic Energy Agency (IAEA) is presented. Amongst the topics chosen are those on area monitoring, personnel monitoring, leak testing of sealed sources and training of personnel. Also presented in the paper is a brief discussion about UTN's experience in giving out radiation protection services to various agencies throughout the country. (author)

  3. Research priorities for occupational radiation protection

    International Nuclear Information System (INIS)

    The Subpanel on Occupational Radiation Protection Research concludes that the most urgently needed research is that leading to the resolution of the potential effects of low-level ionizing radiation. This is the primary driving force in setting appropriate radiation protection standards and in directing the emphasis of radiation protection efforts. Much has already been done in collecting data that represents a compendium of knowledge that should be fully reviewed and understood. It is imperative that health physics researchers more effectively use that data and apply the findings to enhance understanding of the potential health effects of low-level ionizing radiation and improve the risk estimates upon which current occupational radiation protection procedures and requirements depend. Research must be focused to best serve needs in the immediate years ahead. Only then will we get the most out of what is accomplished. Beyond the above fundamental need, a number of applied research areas also have been identified as national priority issues. If effective governmental focus is achieved on several of the most important national priority issues, important occupational radiation protection research will be enhanced, more effectively coordinated, and more quickly applied to the work environment. Response in the near term will be enhanced and costs will be reduced by: developing microprocessor-aided open-quotes smartclose quotes instruments to simplify the use and processing of radiation data; developing more sensitive, energy-independent, and tissue-equivalent dosimeters to more accurately quantify personnel dose; and developing an improved risk assessment technology base. This can lead to savings of millions of dollars in current efforts needed to ensure personnel safety and to meet new, more stringent occupational guidelines

  4. Radiation protection in pediatric radiology

    International Nuclear Information System (INIS)

    The purpose of this report is to make available a source of practical information regarding the manner in which radiologic examinations in children should be conducted to reduce the radiation dose to these patients and those responsible for thier care. The report is mainly for the use of pediatricians, radiologists, radiologic technicians, and other personnel who order or use radiological methods in examining children, Appendices contain methods for estimating doses to various organs, and doses from various examinations in pediatric radiology. The Council has adopted some units of the SI system of nomenclature. A glossary of terms is included

  5. Radiation Protection Service in Ceylon

    International Nuclear Information System (INIS)

    The main application of radiation in Ceylon is in medicine, both diagnostic and therapeutic. About 40 government hospitals have a total of 120 diagnostic X-ray installations. The Cancer Hospital at Maharagama represents the only therapy installation on the island, and possesses three deep X-ray therapy units, one superficial X-ray unit and two cobalt-60 units. It also has facilities for the use of radium and iodine-131 in therapy. In addition, radioisotopes are used for diagnosis at this institute. (author)

  6. Consequences of the new Slovenian legislation on radiation protection and nuclear safety for radiation protection training

    International Nuclear Information System (INIS)

    The paper presents brief description of the old Slovenian regulations and an overview of the new, harmonised regulations in the field of radiation protection training. The most important novelties were pointed out with possible consequences for the implementation of radiation protection training. Some suggestions on how to overcome transitional problems and how to improve training were also given. (author)

  7. Radiation protection of the environment - new trends

    International Nuclear Information System (INIS)

    Recent trends in the radiation protection of the environment focusing on basic changes of the protection philosophy from the egocentric to ecocentric approach are presented and discussed. The globalization of the economy is accompanied by global contamination of the environment that requires changes in the attitude of the protection of the total environment, i.e. protection of humans, fauna and flora, all ecosystems and the Earth in general, as well as the cosmic space. This complex approach is illustrated on the radiation protection of the environment that has always been in the forefront in developing protection philosophy, methodology and standards, which later has also been applied to the protection of the environment caused by non-radioactive contaminants, such as heavy metals and organic compounds. High radiation doses delivered to biota are illustrated on shellfish and fish collected in the Mururoa and Fangataufa lagoons (affected by series of nuclear weapons tests), and on fish in Novaya Zemlya bays (affected by dumping of nuclear reactors and radioactive wastes). On the methodological site an example is discussed focusing on the in situ sea-bed radionuclide mapping and seawater monitoring using submersible gamma-ray spectrometers operating with NaI(Tl) and HPGe detectors which has proved to be important pre-requisite for estimation of the spatial distribution of radionuclides in the water column and on the sea floor, as well as for optimisation of sediment sampling for studying the radionuclide distribution with depth

  8. Workplace analysis and radiation protection

    International Nuclear Information System (INIS)

    This document gathers the slides of the available presentations given during this conference day. Fifteen presentations out of 16 are assembled in the document and deal with: 1 - the evolution of doses received by workers (J. Feuardent); 2 - evaluation of extremities dosimetry among interventional radiology practitioners (L. Donadille); 3 - practical guide for the realisation of workplace dosimetry studies presenting a ionizing radiation exposure risk: and example in nuclear medicine (J.L. Rehel); 4 - workplace studies in radiotherapy-curietherapy (D. Donnarieix); 5 - from dosimetry to physical intensity: the case of heat insulation activities (A. Garrigou and C. Piccadaci); 6 - the consideration of human factor during facility modifications (V. Gauthereau); 7 - how to carry out a workplace analysis in gamma-graphy? (F. Truchi); 8 - workplace studies in the framework of dismantling activities (J. Chardin); 9 - team synergy (F. Debouck); 10 - adaptation of individual dosimetry to the workplace: the case of external exposure (I. Clairand); 11 - technical aspects of the evaluation of ionizing radiations exposure induced by a new interventional radiology procedure (J.C. Amabile); 12 - the point of view of a radioprotection skilled person in a nuclear medicine service (J.M. Vrigneaud); 13 - workplace studies for the unique document (F. Roussille); 14 - occupational exposure to manufactured nano-particles: issues and knowledge status (O. Witschger); 15 - toxicological risk of nano-particles: 'health impact'? (S. Chevillard). (J.S.)

  9. Beta emitters and radiation protection

    International Nuclear Information System (INIS)

    Beta emitters, such as 90Y, are increasingly being used for cancer treatment. However, beta emitters demand other precautions than gamma emitters during preparation and administration, especially concerning shielding. Aim. To discuss practical precautions for handling beta emitters in general, and specifically determine proper shielding for 90Y, while comparing to 177Lu and 131I. The aim is achieved through the application of physical principles combined with results from practical experience. Material and methods. Typical and maximal electron ranges were calculated for 131I, 177Lu, and 90Y, using data from a freely available database. Bremsstrahlung yields were calculated for 90Y shielded by lead, aluminium, or perspex. Bremsstrahlung spectrum from 90Y shielded by perspex was measured, and attenuation of spectrum by lead was calculated. Whole-body and finger doses to persons preparing 90Y-Zevalin were measured. Conclusions. Good laboratory practice is important to keep radiation doses low. To reduce Bremsstrahlung, 90Y should not be shielded by lead but instead perspex (10 mm) or aluminium (5 mm). Bremsstrahlung radiation can be further reduced by adding a millimetre of lead on the outside of the primary shielding material. If suitable shielding is used and larger numbers of handlings are divided among several persons, then handling of beta emitters can be a safe procedure

  10. Abstracts of 20. International Symposium Radiation Protection Physics

    International Nuclear Information System (INIS)

    51 papers are presented as titles with abstracts which are processed individually for the INIS data base. They deal with general aspects of radiation protection physics, international activities in radiation protection, solid state dosimetry, models and calculation methods in radiation protection, and measuring techniques in radiation protection

  11. 10 CFR 20.1101 - Radiation protection programs.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and...

  12. Radiation protection problems associated with scattered radiation from CT scanners

    International Nuclear Information System (INIS)

    Changes in computed tomography (CT) scanner design and workload have resulted in significant changes in the total associated scattered radiation on a daily basis. Increased patient throughput and number of scans per exam have required reevaluation of protective barrier requirements and have increased the concern for personnel who must remain in the room with a patient during an exam. Data from manufacturers may not be reliable for predicting personnel exposure or protective barrier requirements. The radiation environment is existing CT exam rooms at Mayo Clinic was determined with TLD-100 dosimeters. Radiation levels were found to be 0.2-16% of the values provided by the manufacturer. In addition, radiation scatter in the exam room was measured for several scanners relative to CTDI values. The scatter ratios presented allow determination of scattered radiation levels after a single CTDI measurement. This paper describes how the measured radiation environment has changed as CT scanners have become more sophisticated, and discuss the significance of measured versus predicted scattered radiation patterns for radiation protection purposes

  13. Radiation protection in diagnostic nuclear medicine

    International Nuclear Information System (INIS)

    In the field of diagnostic nuclear medicine the questions realted to radiation protection take on a complexion quite different from the one they have in all the other areas of radiological diagnosis. The reflections on the different ways of achieving effective protection from radiation will only lead to satisfactory results, if they are based on extensive, factual knowledge of the biokinetic behaviour of radionuclides or radioactive substances in the organism. Authoritative reports emphasize the importance of radiation protection measures not solely for photon emitters but also for positron emitters and give due consideration to the different problems posed by SPECT and PET. Quite apart from the quality standards mandated for the radiopharmaceuticals themselves adequate quality assurance measures must as well be taken at the clinical level for all in vivo examinations using such substances. (orig.) With 40 figs., 27 tabs

  14. National congress of radiation protection; Congres national de radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The congress of radiation protection tackled different areas of radiation protection. The impact of ionizing radiations on environment coming from radioactive activities. The biological radiation effects, the dosimetry, the different ways of doing relative to radiation protection,the risks analysis and the communications with populations, information about accidents and the lessons learned from them are included in this congress. (N.C.)

  15. International regulations for radiation protection

    International Nuclear Information System (INIS)

    A review of the development of the IAEA Radiological Protection standards is given. The basic features of the latest revision recently adopted by the governing bodies of the sponsoring organizations, i.e. IAEA, WHO, ILO, NEA/OECD are discussed and some of the features of the future Agency programme for its implementation will be outlined. In particular, attention will be given to development of the basic principles for setting release limits of radioactive materials into the environment. An important aspect of this is when the release of radioactive materials into the environment crosses international boundaries. The Agency is best suited to try to reach a consensus on the minimum monetary value for the unit collective dose. (orig./RW)

  16. Radiation protection in BNCT patients

    International Nuclear Information System (INIS)

    Full text: Boron Neutron Capture Therapy (BNCT) is a technique that selectively targets cancer cells while sparing normal tissues by virtue of the differential uptake of a 10B carrier compound in tumor. The National Atomic Energy Commission (CNEA) and the Oncology Institute 'Angel H. Roffo' (IOAR) began a BNCT programme in 2003 for treating cutaneous skin melanomas in extremities. The neutron beam used is the hyperthermal one developed at the RA-6 Reactor of the Bariloche Atomic Centre (CAB). The prescribed dose is delivered in one fraction and therefore patient positioning and knowledge of the dose received by normal tissue are crucial. 10 irradiations have been done since 2003, all of them in legs and feet and the dose prescription was determined by the maximum tolerable skin dose. Due to the characteristics of this treatment the patient body might be exposed not only to the primary beam but also to the secondary photon beam produced by neutron capture at the target itself. Thus a patient radiation-monitoring plan was implemented in order to evaluate the gamma dose delivered to sensible organs of each patient. An acrylic water-filled whole body phantom was used for preliminary gamma dose and thermal neutron flux measurements at positions related to patient's body sensible organs considering tentative patient positions. The beam port shielding was, in this way, optimized. TLD-700 and Manganese foils were used for gamma and thermal neutron detection. The TLD-700 thermal neutron response was previously evaluated by using the in-phantom beam dosimetry characterization. In-vivo dosimetry with TLD is routinely implemented in order to evaluate gamma dose to sensible organs of each patient. These organs are chosen depending on its distance from the zone to be irradiated and its radio-sensibility. All TLDs have been positioned well outside the irradiation field. Maximum gamma dose received outside the radiation field in healthy tissues was well below tolerance dose for the compromised organs. (author)

  17. Neutron spectrometry for radiation protection purposes

    International Nuclear Information System (INIS)

    Determination of the dose equivalent is required for radiation protection purposes, however such a determination is quite difficult for neutron radiation. In order to perform accurate dosimetric determinations, it is advantageous to acquire information about the neutron fluence spectrum in the workplace as well as the reference radiations used to calibrate dosimetric instruments. This information can then be used to select the appropriate dosimetric instrument, the optimum calibration condition or to establish correction factors that account for the differences in calibration and workplace conditions. For quite some time, neutron spectrometry has been used for these purposes. A brief review of the applications of spectrometers in radiation protection and some recommendations for further development are given here

  18. Current Challenges in Radiation Protection in Medicine

    International Nuclear Information System (INIS)

    Radiation protection professionals in medical facilities and practices are being challenged by new imaging technologies that use x-rays or radioactive materials. These include faster computerized tomography (CT) scanners, new interventional techniques that use extended fluoroscopy time, increased use of positron emission tomography (PET), and digital imaging techniques. More frequently these technologies are being fused into a single procedure, such as combined CT and PET scanning. Radiation Protection professionals are challenged to (1) be aware of developing technologies and clinical techniques, (2) analyze the potential radiation risks to patients and staff, (3) initiate necessary radiation safety training for medical staff, and (4) be involved in planning, dose measurement and optimization of the procedure to achieve appropriate dose control and ALARA

  19. Crop protection research with radioisotopes and radiations

    International Nuclear Information System (INIS)

    Research work carried at the Indian Agricultural Research Institute, Delhi, over the last few years in crop protection using radioisotopes and radiations is summarised. Radiations and radioisotopes have been used in investigating various entomological and plant pathological problems with the ultimate aim of ensuring crop protection for increasing productivity. Tracer techniques have been utilised to get useful information on: (1) plant pathogen movement, spread, multiplication and infection processes in the hosts in order to devise effective control measures and (2) fate of pesticides. Nuclear radiations have been used for radiation disinfestation of grains and fruits, genetic improvement of useful insects like lac insects, silk worm, etc. and also for indirect control of insects by inducing sterility. (A.K.)

  20. Third conference on radiation protection and dosimetry

    International Nuclear Information System (INIS)

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations

  1. New standards and regulations in radiation protection

    International Nuclear Information System (INIS)

    The EU directive 96/26/EURATOM was implemented in German law with the new radiation protection ordinance of August 2001 and the amended X-ray ordinance of June 2002. The contribution gives a status record of the secondary rules and regulations which will soon be completed to come into force. Some aspects of the new DIN54113-3 are presented in detail. Key aspects of German radiation protection regulations are compared on an international scale, and the standards of an internationally active producer (XYLON, Hamburg) are explained. (orig.)

  2. Radiation protection and fuzzy set theory

    International Nuclear Information System (INIS)

    In radiation protection we encounter a variety of sources of uncertainties which are due to fuzziness in our cognition or perception of objects. For systematic treatment of this type of uncertainty, the concepts of fuzzy sets or fuzzy measures could be applied to construct system models, which may take into consideration both subjective or intrinsic fuzziness and objective or extrinsic fuzziness. The theory of fuzzy sets and fuzzy measures is still in a developing stage, but its concept may be applied to various problems of subjective perception of risk, nuclear safety, radiation protection and also to the problems of man-machine interface and human factor engineering or ergonomic

  3. Third conference on radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  4. Radiation protection measurement. Philosophy and implementation

    International Nuclear Information System (INIS)

    A selection from the proceedings of the International Symposium held by the U.K. Society for radiological protection in June 1974 was presented. The central theme was the philosophy of radiation protection measurement and its interpretation although some specific areas of good health physics practice were included. The 28 papers selected were chosen to be either representative of the central theme or of wider interest. The papers have been grouped in 6 main sections: philosophy of measurements; interpretation of measurements; implementation by legislation and monitoring; radiation exposure and control; reactor safety and siting; accidents

  5. Radiation protection supervisors certification in Brazil

    International Nuclear Information System (INIS)

    In order to accomplish its legal assignments CNEN certifies the qualification of radiation protection supervisors. The current certification process is presented and discussed in this paper. This paper discusses the main points of the certification process including: knowledge tests, stake holder's communication, standards, supervisor responsibilities and profiles. The importance of safety certification of nuclear facilities and radiation protection of public individuals and workers are also discussed. Taking into account the characteristics of the Brazilian Nuclear program, the future improvements and goals in the certification process is also presented. (author)

  6. Radiation protection, public policies and education

    International Nuclear Information System (INIS)

    The objective of this paper is to inform about the aspects of radiation protection public policies concerning the public spheres and the ordinary population. It is known that information has been considered a very important good in several knowledge areas. However, the efficiency of their transmission mechanisms should be periodically evaluated, checking existing critical and stagnation points. Nuclear area can be mentioned as a historically typical case, where the public policies assume relevant importance as tool for promotion, control and education of the population in general. Considering the polemic nature of such subject, it is clear that there is a need for conducting the construction of educational contents taking in account the educator training necessities. The addressing of radiation protection aspects applied to nuclear techniques conducts, for example, to the awareness on the benefits of radiation and its industrial and medical applications, which are established considering the worldwide adopted basic principles of radiation protection. Such questions, concerned with (or related to) public policies, establish a link between radiation protection and education, themes explored in this article to provide a better view of the current Brazilian scenario. (author)

  7. Radiation protection training programmes Spanish approach

    International Nuclear Information System (INIS)

    Radiation Protection Programmes are being considered the best way to promote safety culture and to spread and propagate European basic safety standards. It is widely accepted that training is an important tool to upgrade competence for radiation exposed workers. The Spanish Radiation Protection Education and Training Programmes provide a solid and integrated educational model, which takes into account the variety of applied fields, the different levels of responsibilities, the technological and methodological advances, as well as the international tendencies. The needs for a specialised training on Radiation Protection (RP) for exposed workers appears into the Spanish regulation in 1964. National initial training programmes are well established since 1972. Individual certifications, based on personal licences are required for exposed workers. The Spanish regulation also includes continuous and on the job RP training. The educational programmes are being continuously updating and improving. CIEMAT plays an important role in RP Spanish training, improving and modifying the previous RP courses and developing new programmes in order to complete the RP training levels. To achieve Radiation Protection objectives, new technological media for educational methods and material are taking into account. Nevertheless, Spanish RP education and training model has to be improved in some aspects. The purpose of this paper is to analyse the situation and the future needs to be considered in order to complete the RP training processes

  8. Evolution of Radiation Protection System in Kenya

    International Nuclear Information System (INIS)

    Promulgation of radiation protection legislation in Kenya dates back to 1982, was revised in 1985 and became operational in 1986. This law, the Radiation Protection Act, establishes the Radiation Protection Board as the National Regulatory Authority, with an executive Inspectorate headed by the Secretary to the Board. Subsidiary legislation on radiological practices and standards were subsequently published. The Inspectorate carries out the National programme for notification, authorization, inspection and enforcement. Nuclear applications for peaceful purposes in Kenya are on the increase in all major fields of socio-economic development. Provision of regulatory services, guidance and enforcement procedures, has had a net growth over the last fifteen years. However, staff retention has been declining over the years in a market where job opportunities, with relatively high incentives, are high either inside or outside the country. Human and equipment resource development has therefore not kept pace and this has hampered effective and efficient provision of services. The poor status of the economy has had its impact on delivery of quality, effective and efficient radiation protection services. Provision of radiation services and acquisition of radiation detection and measurement equipment in the country has been generally lacking dating as far back as 1995. During the period 1989 to present, Kenya's Regulatory Authority, the Radiation Protection Board, undertook to provide personal monitoring, quality assurance, radioanalysis, and equipment calibration. Over the years these services have stalled due to outdated equipment most of which have broken down. A maintenance and calibration service for nuclear equipment is an expensive cross-boarder issue. Budgetary constraints, insufficient human and equipment resources, and a perennial 'brain drain' has placed limitations to the effectiveness and efficiency of implementation of the National programmes and slowed the attainment of the objectives of the National policy on radiation protection and waste safety. The current Radiation Protection Act is limited in scope, regulatory independence and empowerment. A new draft of the revised Act was submitted to the IAEA for review and comments. The revised version is aimed, inter alia, at meeting the principal requirements of the International Basic Safety Standards and incorporating aspects of non-ionizing radiation. The revised draft is now under discussion with stakeholders for their input before enactment. Development of a sustainable national infrastructure requires years of national effort and government commitment. Over the last two years, there has been sufficient government commitment and there have been solid achievements. Kenya has placed the issue of human resource development high on her development agenda and has provided support for expanding technical staffing of the Regulatory Authority with an initial recruitment of ten (10) Radiation Protection Officers. Other factors impacting on quality, effectiveness and efficiency of radiation protection programmes, are being appropriately addressed in order to realize a fully sustainable radiation protection infrastructure. (Author)

  9. Thermoluminescence Dosimetry Applied to Radiation Protection

    DEFF Research Database (Denmark)

    Christensen, Poul; Bøtter-Jensen, Lars; Majborn, Benny

    1982-01-01

    This is a general review of the present state of the development and application of thermoluminescence dosimetry (TLD) for radiation protection purposes. A description is given of commonly used thermoluminescent dosimeters and their main dosimetric properties, e.g. energy response, dose range......, fading, and LET dependence. The applications of thermoluminescence dosimetry in routine personnel monitoring, accident dosimetry, u.v. radiation dosimetry, and environmental monitoring are discussed with particular emphasis on current problems in routine personnel monitoring. Finally, the present state...

  10. Radiation protection optimization and work management

    International Nuclear Information System (INIS)

    The influence quantification of bound factors to work management, and the obtained results when you apply the dosimetric economical evaluation model of the radiation protection experiments, prove that ALARA principle application musn't bound to actions on the radiation sources, but that you can find a wide act field in the irradiation work volume management topics. 53 refs., 5 tabs., 10 figs., 4 appendixes

  11. Radiation Protection and Civil defence Department

    International Nuclear Information System (INIS)

    This conference involves subjects of radiation protection, programming of civil defence, on the implementation of 1990 ICRP recommendation, thermoluminescence properties of bone equivalent calcium phosphate ceramics, potassium body burdens in occupational users of egyptian nuclear research centre, transport of radionuclides in fresh water stream, water treatment process for nuclear reactor, research activities related to internal contamination and bioassay and experience and environmental radiation monitoring in inshass. it contains of figures and tables

  12. Thermoluminescence Dosimetry Applied to Radiation Protection

    DEFF Research Database (Denmark)

    Christensen, Poul; Bøtter-Jensen, Lars; Majborn, Benny

    1982-01-01

    This is a general review of the present state of the development and application of thermoluminescence dosimetry (TLD) for radiation protection purposes. A description is given of commonly used thermoluminescent dosimeters and their main dosimetric properties, e.g. energy response, dose range, fading, and LET dependence. The applications of thermoluminescence dosimetry in routine personnel monitoring, accident dosimetry, u.v. radiation dosimetry, and environmental monitoring are discussed with p...

  13. Problems of radiation protection in radiodiagnosis

    International Nuclear Information System (INIS)

    Basic trends in modern development of radiation protection in medical roentgenology are discussed. The necessity of developing such an order, which would make it possible by information acquisition to decrease essentially the dose load on patients, is noted. To established the dose limit value or control level it is necessary to have the reference initial values. The radiation dose limits of the control levels are presented and the possibility for establishing the procedure orders is considered. 14 refs., 2 tabs

  14. Radiation protection at workplaces with increased natural radiation exposure in Greece: recording, monitoring and protection measures

    International Nuclear Information System (INIS)

    Greek Atomic Energy Commission (GAEC) is the regulatory, advisory and competent authority on radiation protection matters. It is the authority responsible for the introduction of Radiation Protection regulations and monitoring of their implementation. In 1997, within the frame of its responsibilities the Board of the GAEC appointed a task group of experts to revise and bring the present Radiation Protection Regulations into line with the Basic Safety Standards (BSS) 96/29/Euratom Directive and the 97/43/Euratom Directive (on health protection of individuals against the dangers of ionising radiation in relation to medical exposure). Concerning the Title 7. of the new European BSS Directive, which refers to the Radiation Protection at work places with increased levels of natural radiation exposure, the Radiation Protection Regulations provides that the authority responsible for recording, monitoring and introducing protection measures at these places is the GAEC. Practices where effective doses to the workers due to increased natural radiation levels, may exceed 1mSv/y, have to be specified and authorised by the GAEC. The identification procedure is ongoing

  15. Abstracts of 21. International Symposium Radiation Protection Physics

    International Nuclear Information System (INIS)

    45 papers are presented as titles with abstracts which are processed individually for the INIS data base. They deal with general aspects of radiation protection physics, chiefly problems of radiation detection and measuring techniques in radiation protection

  16. Radiation protection in neighbouring countries in Central Europe. Proceedings

    International Nuclear Information System (INIS)

    This proceeding is published in 3 volumes. Volume 1 covers the topics: (1) Environmental protection, and (2) Radiation Dosimetry. Volume 2 covers the topics: (3) Radiation Protection in Medical Exposures, (4) Radiation Protection in Applications of Radioisotopes and Nuclear Technology, (5) Radioactive Waste Management and Decommissioning, (6) Radiation Monitoring, and (7) Emergency Planning and Preparedness. Volume 3 covers the topics: (8) Operational Radiation Protection, (9) Non Ionising Radiation, (10) Radiation Protection Principles and Policies, (11) Natural Radiation, (12) Radiation Exposure Control: Methods and Means, and (13) Public Education and Information. (blahsl)

  17. Radiation field quantities or dose quantities in radiation protection

    International Nuclear Information System (INIS)

    Misunderstandings of the conceptual difference between physical quantities on the one hand and their units on the other hand have for a long time delayed the formation of clear concepts for dosimetry and the rigid definition of physical quantities, thus masking the causal sequence from radiation source over radiation field to radiation effect. The physical quantities characterizing each stage are given with reference to the correlations between them. It is shown that dose quantities (exposure, absorbed dose, dose equivalent) serve best the aims of radiation protection work. Special consideration is given to the case of neutron radiation which is cimplicated by the necessary introduction of quality factors. The relation between neutron fluence and maximum dose equivalent in an irradiated body might suggest the determination of field quantities instead of dose quantities. But this can only be a practical advantage if additional information on the spectral distribution of neutrons is available. In view of the fact that radiation protection guides are given in terms of dose equivalent and that photon radiation is generally the predominant hazard and mostly presents the main contribution in mixed radiation fields, the common base for the assessment of radiation hazard should remain in dose quantities. (orig.)

  18. Radiation protection training and information for workers

    International Nuclear Information System (INIS)

    The meeting reported in these proceedings was organized to discuss the specific problems of providing information and training on radiation protection to workers exposed to radiation, intervention staff and workers likely to be affected by an activity involving ionizing radiation. Particular emphasis was placed on the need to harmonize basic training on radiation protection in the context of 1992. It seemed advisable for technical training on radiation protection to be introduced into secondary education. To this end, the Commission was asked to draw up a guide for apprentices and students. In view of the growing diversification of activities involving the use of radioactive substances, the Commission was called upon to intensify its efforts in order to ensure that relevant information and training was provided in all firms to workers exposed to ionizing radiation, and to produce guides for specific categories of workers, such as those responsible for the transport of radioactive materials or those likely to be involved in organizing measures in the event of a radiological emergency

  19. Management in the protection from ionizing radiation

    International Nuclear Information System (INIS)

    There are numerous types and forms of endangering working and living environment, ranging from natural disasters to nuclear accidents. Challenges of the New Age determined that most of the countries reviewed its strategic decisions in the system of protection from ionizing radiation and nuclear safety and defined in a new way the threats, which could considerably imperil health of the population and national interests as well. Excessive radiation of the population became a serious and actual problem in the era of increasingly mass application of ionizing radiation, especially in medicine. The goal of this work is to reduce the risk through using knowledge and existing experiences, in particular when it comes to ionizing radiation in medicine. Optimization of the protection in radiology actually means an effort to find the compromise between quality information provided by diagnostics procedure and quality effects of therapy procedure on one side and dose of radiation received by patients on the other. Criteria for the quality management in the protection from ionizing radiation used in diagnostic radiology was given by the European Commission: European Guidelines on Quality Criteria for Diagnostic Radiographic Images, EUR, 16260. (author)

  20. Radiation protection guidelines for space missions

    International Nuclear Information System (INIS)

    The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem)

  1. Policies for radiation protection at nuclear facilities

    International Nuclear Information System (INIS)

    The purpose of this paper is to discuss the interface between three terms: radiological protection, nuclear safety, and radiation safety. The radiological protection is concerned with the estimation and the control of radiation doses. The term applies only to normal operation and anticipated operational occurrences (certain exposures) at nuclear facilities. Nuclear safety is primarily concerned with assessment and avoidance of accidents at Nuclear Power Plants and other facilities. Briefly, the basic tenets of nuclear safety are: - if it can happen, than that it must not matter; - if it matter, than it must not happen. The aim which radiation protection and nuclear safety regard is a net benefit obtained from safely operating of the nuclear facility and the risk to populating (and to personnel, too) must not exceed the levels considered as dangerous. The evolution of these disciplines has been able to formulate, for the last years, new and generalizing notions, which defined a new item i.e. radiation safety. Radiation safety encompasses not only anticipated situations involving certain exposures, but also unanticipated 'de factor' situations. Radiation safety is at present an essential objective and must represent a concern for Romanian experts. (Author) 3 Figs., 4 Refs

  2. Radiation protection guidelines for space missions

    Science.gov (United States)

    Fry, R. J.; Nachtwey, D. S.

    1988-01-01

    The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem).

  3. Radiation protection organization recommended by the working group regulations

    International Nuclear Information System (INIS)

    The draft recommendation for the radiation protection organization in private industry and public institutions drawn up by the working group 'Regulations' of the Fachverband fuer Strahlenschutz is presented. The requirements of the radiation protection regulations dealing with the person responsible for radiation protection and with the radiation protection officer are explained. Different possibilities for the delegation of tasks of the person responsible to authorize representatives for radiation protection are discussed. (orig.)

  4. Dietary protection during radiation therapy

    International Nuclear Information System (INIS)

    Eighteen patients receiving Cobalt 60 irradiation for abdominal or pelvic malignancies were assigned at random to eat either a semi-hydrolyzed diet (Flexical: 10 g% casein hydrolsate; 14 g% triglycerides, 20% of which medium chain; 66% disaccharides) or a normal diet. There are no significant differences between these two groups with respect to age and the ratio of ideal to actual caloric intake. The patients in the control group received on the average a total of 3,900 rd and those in the Flexical group 4,040 rd. Generally, Flexical appeared to have a significant positive effect on body weight. In addition, radiation-induced diarrhea was not a problem in the Flexical group. In the latter-group, serum proteins including immunoglobulins remained essentially unchanged during therapy while a moderate but significant fall was observed in all control patients. No significant difference between the two groups was observed with respect to peripheral blood hematocrit, red and white cell counts. However, the drop in blood lymphocytes following irradiation was significantly less in the Flexical group. The mechanisms of radioprotection are discussed. These preliminary data indicate that the nutritional and perhaps the immunological status of cancer patients receiving intensive irradiation can be maintained by dietary measures. (orig.)

  5. Operational radiation protection for European astronauts

    International Nuclear Information System (INIS)

    Since the early times of human spaceflight radiation has been, besides the influence of microgravity on the human body, recognized as a main health concern to the astro- and cosmonauts. The radiation environment that the crew experiences during a space flight differs significantly to that found on earth due to particles of greater potential for biological damage. High-energetic charged particles, such as protons, helium nuclei ('alpha particles') and heavier ions up to iron, originating from several sources, such as galactic cosmic radiation (GCR), energetic solar particle events (SPE) as well as protons and electrons trapped in the earth radiation belts, are the main contributors. The exposure that the crew receives during a space flight significantly exceeds exposures routinely received by terrestrial radiation workers. The European Space Agency's (ESA) Astronaut Center (EAC) in Cologne, Germany, is home of the European Astronaut Corps. Part of the EAC is the Crew Medical Support Office (CMSO or HSF-AM) responsible for ensuring the health and well being of the European Astronauts. A sequence of activities is conducted to protect astro- and cosmonauts health, including those targeting to mitigate adverse effects of space radiation. All health related activities are part of a multinational Medical Operations (MedOps) concept, which is executed by the different Space Agencies participating in the human spaceflight program to the International Space Station (ISS). This article will give an introduction of the current measures for radiation monitoring and protection of astro- and cosmonauts. The operational guidelines that shall ensure proper implementation and execution of those radiation protection measures will be addressed. Operational hardware for passive and active radiation monitoring and for personal dosimetry, as well as operational procedures that are applied, will be described. (author)

  6. Theoretical and practical basic training for radiation protection specialists

    International Nuclear Information System (INIS)

    The basic training in radiation protection being offered by the SAAS to radiation protection specialists (radiation protection officers and medical supervisors of radiation workers) is described. As for the radiation protection officers, it consists of three different groups of lectures, seminars and laboratory work according to the fields X-ray machines, radionuclides (general), and sealed radiation sources in process instrumentation and control engineering, respectively. The corresponding curricula are presented. (author)

  7. Seventh meeting of radiation protection skilled persons

    International Nuclear Information System (INIS)

    This document gathers the slides of the available presentations given during these conference days. Twenty-three presentations out of 25 are assembled in the document and deal with: 1 - the evolution of workers' international protection rules against ionizing radiation risks (C. Bardelay); 2 - presentation of the report of the working group on radiation protection (P. Barbey); 3 - position of the French nuclear safety authority and of the labor general direction about the position of permanent expert groups in radiation protection concerning the expected evolutions in the occupation and training of radioprotection skilled persons (RSP), (T. Lahaye); 4 - experience feedback: RSP in surgery operating theater - a sometimes delicate intervention (S. Balduyck); 5 - workplace analysis in dental surgery: constraints and specificities (D. Le Denmat); 6 - workplace analysis: tritium atmospheric contamination (S. Rigaud); 7 - revision of the NFC 15-160 standard relative to radiology facilities (J.L. Rehel); 8 - example of area tele-dosimetry usage - the Pitie Salpetriere hospital experiment (C. Chatellier and C. Barret); 9 - contribution of radio-attenuation lead gloves in interventional radiology (J. Guersen); 10 - zoning in the medical domain: encountered problems typology and evaluation of possible solutions (Degrange, J.P.); 11 - management of used sealed sources distributed by the CEA and CISBIO (B. Sevestre); 12 - how to perform a measurement in radiation protection - how about measurement uncertainty (M. Ammerich); 13 - national campaign of control about the application of workers radiation protection rules (T. Lahaye); 14 - transparency and inspection approach in local nuclear applications: gamma-graphy, research, nuclear medicine, interventional radiography and radiotherapy (S. Rodde and C. Marchal); 15 - local/regional networks of RSPs and radiation protection actors: 2008 audit results and recent evolutions (C. Lefaure); 16 - role and missions of the external RSP in dental surgery (H. Bouk'Il); 17 - status of radiation protection inspections at Paris social services and state-owned hospitals authority (D.J. Gambini); 18 - registered organisation and RSP: relations and exchanges (B. Auboiroux and P. Martel); 19 - interactions between EdF's RSP and contractor's RSP (A. Riedel); 20 - 2009 national status of workers' exposure (J. Feuardent); 21 - IRSN's Siseri system: relations with users (P. Scanff); 22 - communication as an integral part of RSP's role (M. Bof); 23 - the expected consequences of the publication no. 103 of the international commission of radiological protection (CIPR), (J. Lochard). (J.S.)

  8. Regulation on protection against ionizing radiations

    International Nuclear Information System (INIS)

    This regulation has as the objective to establish the criteria tending toward protecting the health of the population of the radiologic risks that can be derive from the employment of the ionizing radiations and similar activities. It establishes the requirements to comply with the radiactive installations, equipment transmitters of ionizing radiations, personal that works in them, operate the equipment and carry out any another similar activity such as: production, importation, exportation, transportation, transference of radioactive material or equipment generators of radiations ionizing. (S. Grainger)

  9. Electron microscopy - principles of radiation protection

    International Nuclear Information System (INIS)

    This 8 minute programme explains the nature of the possible radiation hazard in Electron Microscopy and outlines the ways in which modern equipment is designed and made so that in normal use the worker is not exposed to radiation. The interlock principle is explained and illustrated by an example from the field of X-ray crystallography. By filming machines while they were dismantled for servicing, details of several internal safety devices have been included. In this way workers who normally use the equipment as a 'black box' get some insight into the principles and practice of radiation protection in the field. (author)

  10. 2009 Canadian Radiation Oncology Resident Survey

    International Nuclear Information System (INIS)

    Purpose: Statistics from the Canadian post-MD education registry show that numbers of Canadian radiation oncology (RO) trainees have risen from 62 in 1999 to approximately 150 per year between 2003 and 2009, contributing to the current perceived downturn in employment opportunities for radiation oncologists in Canada. When last surveyed in 2003, Canadian RO residents identified job availability as their main concern. Our objective was to survey current Canadian RO residents on their training and career plans. Methods and Materials: Trainees from the 13 Canadian residency programs using the national matching service were sought. Potential respondents were identified through individual program directors or chief resident and were e-mailed a secure link to an online survey. Descriptive statistics were used to report responses. Results: The eligible response rate was 53% (83/156). Similar to the 2003 survey, respondents generally expressed high satisfaction with their programs and specialty. The most frequently expressed perceived weakness in their training differed from 2003, with 46.5% of current respondents feeling unprepared to enter the job market. 72% plan on pursuing a postresidency fellowship. Most respondents intend to practice in Canada. Fewer than 20% of respondents believe that there is a strong demand for radiation oncologists in Canada. Conclusions: Respondents to the current survey expressed significant satisfaction with their career choice and training program. However, differences exist compared with the 2003 survey, including the current perceived lack of demand for radiation oncologists in Canada.

  11. Applying radiation health effects data to radiation protection policies

    International Nuclear Information System (INIS)

    Data from the peer-reviewed scientific literature establish a sound basis to define a low-dose, low-dose-rate, dose-response. These data include human health dose-response studies; immunologically 'whole' animal studies; and cellular and molecular biological studies of complete biological systems for the relevant immunological and physiological responses. Initiatives are required to constructively apply these data to both radiation research and radiation protection policies. First, current low level radiation health effects research must apply existing data to define research projects to integrate and confirm existing dose-response data, with specific emphasis on the biological bases that exist in definitive and reproducible cellular and biological dose-response. Second, dose-response assessment must identify and incorporate all existing substantial and confirmed data, including natural radiation sources, to establish the bases for radiation protection policy for interventions to protect public health and safety. A preliminary assessment of these data is applied to: 1) Specify research that can be constructively applied to describe radiation health effects dose-response. 2) Apply health effects dose-response to radiation and radioactivity applications policies to maximize radiation health effects interventions for occupational applications, medical applications, and other radiation and radioactive materials applications controls to cost-effectively assure public health and safety. An assessment of the proposed revisions to ICRP radiation protection policies is provided that associates the basis for administrative limits with the previous proposal of the US NRC for a 'Below Regulatory Concern' (BRC) policy. This proposal ignores the context of the fact that very low levels of radiation exposure are far within the variations of natural radiation exposures, and therefore can have no gross net consequences. The equivalent failure of the BRC proposal resulted in quick political rejection of the proposed policy. It was seen as stating that, while very small radiation doses would in fact cause 'small' adverse health consequences (seen by the public and their political leaders as 'cancer deaths'), such consequences are seen as found 'acceptable' by the radiation protection authorities. Such implied but non-existent consequences are NOT seen as acceptable to the public and its political leaders. No explanation of 'context' or providing public education' can reasonably be expected to overcome the perception provided by the proposal that such trivial radiation produce 'a few deaths' that, because they are 'lost in cancer statistics' are perceived as accepted' by the radiation protection policy-makers, which results in the permanent loss of public acceptance and credibility of these organizations and individuals. This proposal considers the lack of adverse health effects from data at, e.g., variations in natural background, confirmed by medical and biological data, establish that radiation at low levels can have no relevant net adverse consequences. Such a basis can provide public assurance that appropriate radiation protection limits produce no residual public health and safety consequences. (author)

  12. Proceedings of the workshop on 'radiation protection in LINACs'

    International Nuclear Information System (INIS)

    The proceedings contain seven reports on electron and proton accelerators currently used in Japan. The first report describes the 'Present Condition of Linac Facilities in Japan -- Questionnaire Survey'. It summarizes results of a questionnaire survey on 400 facilities where accelerators are used for research, industrial or medical applications. The second one deals with 'Radiation Protection at Nuclear Physics Research Institute of Tohoku University'. Safety measures taken in the institute are described. The third report outlines 'Radiation Protection at Linac Facility in Tokai Laboratory of Japan Atomic Energy Research Institute, focusing on equipment, radiation management, and safety measures. The fourth report, titled 'Proton Linac at High Energy Physics Research Institute', outlines major features of the facilities in the institute, radiation safety measures, etc. The fifth one describes the 'Safety Management at Electrotechnical Laboratory', centering on the equipment used, radiation management, and safety measures. The sixth one outlines major features of 'Electron Linac at Industrial Science Research Institute of Osaka University'. The seventh report describes the 'Present Condition of Neutron Generator (KURRI-LINAC)'. (N.K.)

  13. Technical evaluation of the capability of present instrumentation to meet the draft ANSI standard on performance specifications for radiation protection survey instrumentation

    International Nuclear Information System (INIS)

    Existing standards and guides were reviewed. A survey of commercially available instruments determined information on types of instruments available and the manufacturers specifications. Users provided information regarding instrument preference and desired capability. Based on the above information and statistical criteria, procurement of 56 representative instrumentation was initiated. Instrument test and evaluation procedures are being developed that follow the existing, proposed, or draft standards and guides

  14. Importance of plants in radiation protection

    International Nuclear Information System (INIS)

    Radioactive substances from nuclear programme structures are one of the major toxicant causing serious health hazards. These manmade radiations include X-ray machines radioactive fall-outs, nuclear reactor waste, TV, computers etc. Effect of radiation may be somatic and genetic. Most genetic effects are brought by manmade radiations. Plants on one hand using the electromagnetic radiation from sun for one of the most important vital activity of earth called Photosynthesis and on the other hand protecting us from harmful radiations. There are however, many natural compounds with radio-protective activity. Such compounds include sulfhydryl-containing compounds and anti-oxidant nutrients such as vitamins C and E, beta-carotene, N-acetylcysteine and selenium, along with a range of phytochemicals found in plants such as Ginkgo biloba, Vitis vinifera (Grape), Ocimum sanctum (Tulsi or holy basil). Some plants have capacity to absorb harmful radiation of computers like Aloe, Cactus, etc. Such study can be helpful in minimizing radiation pollution. Present review paper emphasizing Botanical, Ecological and Economic aspects of some plants. (author)

  15. Urgent Change Needed to Radiation Protection Policy.

    Science.gov (United States)

    Cuttler, Jerry M

    2016-03-01

    Although almost 120 y of medical experience and data exist on human exposure to ionizing radiation, advisory bodies and regulators claim there are still significant uncertainties about radiation health risks that require extreme precautions be taken. Decades of evidence led to recommendations in the 1920s for protecting radiologists by limiting their daily exposure. These were shown in later studies to decrease both their overall mortality and cancer mortality below those of unexposed groups. In the 1950s, without scientific evidence, the National Academy of Sciences Biological Effects of Atomic Radiation (BEAR) Committee and the NCRP recommended that the linear no-threshold (LNT) model be used to assess the risk of radiation-induced mutations in germ cells and the risk of cancer in somatic cells. This policy change was accepted by the regulators of every country without a thorough review of its basis. Because use of the LNT model has created extreme public fear of radiation, which impairs vital medical applications of low-dose radiation in diagnostics and therapy and blocks nuclear energy projects, it is time to change radiation protection policy back into line with the data. PMID:26808879

  16. A new career path in radiation protection training. Certified power plant shift supervisor. Radiation protection

    International Nuclear Information System (INIS)

    Apart from theoretical knowledge, effective day-to-day radiation protection operations also require a certain measure of practical experience. Therefore, the professional degree of 'Certified Radiation Worker', issued by the Chamber of Industry and Commerce (CIC) Aachen, Germany, established at an early stage. In order to provide experienced radiation protection specialists with an attractive career path, POWERTECH TRAINING CENTER e.V., in co-operation with VGB PowerTech. e.V., the Paul Scherrer Institute (Switzerland) and the Swiss Atomic Energy Agency (ENSI), has devised a new power plant shift supervisor training course specialising in radiation protection. The vocational training degree called 'Certified Power Plant Shift Supervisor - Radiation Protection' is awarded after successful completion of the advanced training examination conducted by the CIC in Essen, Germany. (orig.)

  17. Design of a statewide radiation survey

    International Nuclear Information System (INIS)

    The Florida Institute of Phosphate Research (FIPR) recently sponsored a statewide survey to identify all significant land areas in Florida where the state's environmental radiation rule should be applied. Under this rule, newly constructed buildings must be tested for radiation levels unless approved construction techniques are used. Two parallel surveys - a land-based survey and a population-based survey - were designed and conducted to address the objective. Each survey included measurements in more than 3000 residences throughout the state. Other information sources that existed at the outset of the study, such as geologic profiles mapped by previous investigators and terrestrial uranium levels characterized through aerial gamma radiation surveys, were also examined. Initial data analysis efforts focused on determining the extent of evidence of radon potential for each of 67 counties in the state. Within 18 countries that were determined to have definite evidence of elevated radon potential, more detailed spatial analyses were conducted to identify areas of which the rule should apply. A total of 74 quadrangles delineated by the U.S. Geological Survey, representing about 7% of those constituting the state, were identified as having elevated radon potential and being subject to the rule

  18. Photon Monte Carlo transport in radiation protection

    International Nuclear Information System (INIS)

    When the human body is exposed to ionizing radiation, its tissues are traversed by charged particles such as, for example, secondary electrons in the case of photon radiation, or heavy ions in the case of neutron radiation. This may lead to a variety of biological effects as a consequence of energy transfer to the human cells by physical radiation interactions. Prevention of detrimental non-stochastic effects and limitation of the probability of stochastic effects to health to levels considered acceptable are now the main objectives of radiation protection. To attain these objectives, it is necessary to specify the degree of irradiation in numerical terms, firstly, to define authorized levels and regulatory limits, and secondly, to have the possibility of supervising them. This means that it is necessary to look for a suitable quantity which is proportional to radiation induced detrimental effects to health, and to define a measuring procedure applicable in practical radiation fields. As radiation effects are caused by energy deposited by charged particles, it is possible to choose the absorbed dose, D, as a relevant quantity. But since different types of radiation differ in their biological effectiveness per unit absorbed dose, it is necessary to weight D by a quality factor, Q, equal to 1 for a reference radiation (conventionally , ? radiation or hard x-rays with an energy ? 30 keV) and up to 25 for neutrons, protons and other heavier particles. The product H = QD is called the dose equivalent, and is equal to the absorbed dose of the reference radiation which causes the same biological effect as the radiation under consideration

  19. Radiation Protection in NORM Industries

    International Nuclear Information System (INIS)

    Full text: NORM is an acronym for naturally occurring radioactive materials, which include radioactive elements found in the environment. Long-lived radioactive elements of interest include uranium, thorium and potassium, and any of their radioactive decay products, such as radium and radon. These elements have always been present in the earth's crust, and nearly all materials contain trace amounts of them. However, when these materials are processed as the result of human activities, concentration or enhancement of the levels of these radionuclides may occur. The processing of raw materials by many resource-based industries may increase the concentration of radioactive substances in those materials, and enhance the potential exposure to naturally occurring radioactive materials in products, by-products, residues and wastes. The most significant industries within the EU, based on the radiological risk and economic significance are: the phosphate industry, the processing of metal ores, zircon sands and refractory materials, manufacture of rare earths, manufacture and use of thorium compounds, the titanium dioxide pigment industry and the oil and gas extraction. If the residues containing naturally occurring radionuclides are not managed properly and safely, contamination over large areas is possible given the large quantities of such residues. There are two effects of human exploitation that are relevant in the case of potential effects of NORM on human health and the environment: (1) The concentrations of NORM can be enhanced above its natural levels in a product, byproduct or residue. (2) The availability for release into the biosphere of the NORM in products, by-products or residues can be enhanced through physicochemical changes or simply due to the method by which the residues are managed. The pathways by which workers could receive a significant radiation dose are: external irradiation, inhalation of dust, inhalation of radon, ingestion of dirt and dust and skin contamination. Occupational exposure to NORM falls within the scope of the requirements for practices if the radionuclide activity concentration in the material exceeds 1 Bq/g for uranium and thorium series radionuclides (other than radon and its short-lived progeny) or 10 Bq/g for potassium-40. If the relevant activity concentration level for radon or NORM is exceeded, a 'graded approach' to regulation should be applied, being the regulation in accordance with the characteristics of the operation and the exposures involved. (authors)

  20. The Law on Precautionary Radiation Protection prevents public health protection

    International Nuclear Information System (INIS)

    On the occasion of the discussion by the German Bundesrat of the bill on Precautionary Radiation Protection, the Hessian Minister of Social Affairs denied his approval of the bill on the grounds that there are serious and numerous flaws. He considered the bill to be a more dummy put up for election propaganda, as he could not find any substantive provisions in it. The Minister in his speech explained this opinion, saying that the bill does not provide for the protection of public health, nor create the necessary conditions for an effective and coordinated emergency control in case of a radiation accident. He declared the bill to be just an instrument of warding off danger that in essence curtails important rights of participation of the Laender. (HSCH)

  1. Proceedings of the Ninth Radiation Physics and Protection Conference

    International Nuclear Information System (INIS)

    The publication has been set up as proceedings of the Radiation Physics and Protection conference, the conference contains of the following subjects: Radiation Sources and Radioactive Waste; Theoretical Radiation Physics; Experimental Radiation Physics; Radiation and Nuclear Emergency; Non Ionizing Radiation; Medical Physics; Environment; Natural Radioactivity; Radiation Effect; Dosimetry; Elemental Analysis; Radiation Instruments. This conference consists of one volume and 459 pages., figs., tabs., refs

  2. European radiation protection in the Essen practice test; Europaeischer Strahlenschutz im Essener Praxistest

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Bernd; Ludwig, Sabine; Peinsipp, Norbert (eds.)

    2013-07-01

    The proceeding of the meeting European radiation protection in the Essen practice test includes contributions to the following issues: basic radiation protection standards; clearance values and permitted activities; optimization, guidance values for dose limits; radon and radiation protection standards; radiation protection - eye lens; RPE (radiation protection expert)/RPO (radiation protection officer); environmental radiation protection; radiation protection in medicine.

  3. The responsibility of the radiation protection expert

    International Nuclear Information System (INIS)

    After having recalled the two main different types of responsibility in the French law system (civil liability and criminal responsibility), and how criminal law has been gradually introduced in companies, the author analyzes and describes how the radiation protection expert's responsibility is tightly related to that of his employer, and how both can be committed on a disciplinary and criminal level

  4. Modern accelerators - a challenge for radiation protection

    International Nuclear Information System (INIS)

    Taking BESSY, FAIR, HIT, SLS, SINQ and PROSCAN as examples, the tasks and problems of radiation protection around modern accelerator installations producing high-energy particles are discribed, and ways to their solutions are shown. This includes shielding and methods to calculate it, access controlling, measuring techniques and dosimetry, and finally the surveillance of radioactivity in exhaust air and water. (orig.)

  5. Chile 2000: Radiation protection status and trends

    International Nuclear Information System (INIS)

    The current Chilean radiation protection infrastructure is quite complex because firstly, the laws, regulations and standards in force are based on former ICRP26 recommendations;and secondly, the designation of multiple competent authorities, i.e. the Chilean Nuclear Energy Commission, the Ministry of Mining, and some divisions of the Ministry of Health, complicates the harmonization of radiation protection criteria. Furthermore, some departments of these competent authorities are operators of nuclear or radioactive facilities and none of them has the competence to ratify either first or second order regulations. Consequently, the Chilean Nuclear Energy Commission is presently developing a programme to review all current national regulations to submit to the Government for consideration. The main objectives of the revision are to: update the legal framework; include safety commitments taken on by subscription to international treaties, conventions and agreements; improve the regulations with the BSS and ICRP based new recommendations on radiation protection; work towards the establishment of a single, independent national regulatory authority. This paper presents the current Chilean status of radiation protection status and suggests how to update it. (author)

  6. Implication on future priorities in radiation protection

    International Nuclear Information System (INIS)

    As a result of the consequences of the Chernobyl accident, the aspects of health effects from radiation as well as the protection norms are reviewed. In particular the radioprotection of the workers and the population, the emergency planning and the information of the public at national and international levels are discussed. (A.F.)

  7. Industrial radiation protection: what it is happening

    International Nuclear Information System (INIS)

    This paper presents the standard NE-06.04 of CNEN (Comissao Nacional de Energia Nuclear - Brazil) about open and close industrial radiography installations licensing. This review does not substitute CNEN-6/73 resolution, only specificy in details, how those installations must actuate with reference to the company radiation protection plan. (C.M.)

  8. Conditions for radiation protection in industrial radiography

    CERN Document Server

    1999-01-01

    The leaflet specifies radiation protection requirements for industrial radiography in Norway. The regulations are directed towards companies using or distributing sealed radioactive sources, x-ray equipment or accelerators in non-destructive material testing (NDT). Technical requirements to the equipment, as well as administrative requirements for use, licensing, qualifications, handling of accidents etc. are given. (Author)

  9. Impact of Teleradiology on Radiation Protection

    International Nuclear Information System (INIS)

    Teleradiology has been in place for more than 25 years. It is probably the most developed and common telemedicine application. Many different kinds of benefits and also risks have been named over the years. The implication for radiation protection is, however, not mentioned very often. The improper use of teleradiology or scanning protocols could, of course, harm patients. (author)

  10. Monitoring radiation protection in dental practice

    International Nuclear Information System (INIS)

    The Board has become a national point of reference for radiation protection standards in dental radiology. This arises out of 20 years of operating a postal assessment service to dental practitioners and latterly also to dental equipment companies. The currently available services are described, together with a review of the experience gained and a summary of what has been achieved to date. (author)

  11. Radiation protection: Philosophy, recommendations and practice

    International Nuclear Information System (INIS)

    The philosophy developed by the International Commission on Radiological Protection for the control of human radiation exposure will be described. The application of the ICRP recommendations to the authorization and control of the disposal of radioactive wastes to the sea will be discussed in the context of the practice in the United Kingdom. (author)

  12. Radiation Protection Section (SC/SL/RP)

    CERN Multimedia

    2006-01-01

    We should like to inform you that the Radiation Protection Section (SC/SL/RP) located on the Prévessin site has moved from Building 865 (ground floor) to new premises in Wing A of Building 892 (second floor). Telephone numbers remain the same. SC/SL/RP section

  13. 76 FR 20489 - Occupational Radiation Protection

    Science.gov (United States)

    2011-04-13

    ...The Department of Energy (DOE) today amends the values in appendix C to its Occupational Radiation Protection requirements. The derived air concentration values for air immersion are calculated using several parameters. One of these, exposure time, is better represented by the hours in the workday, rather than the hours in a calendar day, and is therefore used in the revised...

  14. Radiation protection aspects in nuclear medicine

    International Nuclear Information System (INIS)

    A training program for radiation protection agents in nuclear medicine, making allowance for the rapid development in this field is discussed. In addition problems of application of open radioactive substances in medicine in the context of the present legal state in Austria are discussed. 7 refs. (Authors, translated qui)

  15. Radiation protection problems by nonionizing electromagnetic radiation in Austria

    International Nuclear Information System (INIS)

    Since about one year an interdisciplinary study group has been established to investigate possible radiation protection problems caused by nonionizing electromagnetic radiation in this country. The aim of this project is to identify major fields of concern, to establish appropriate techniques of measurement and control and eventually develop a sound basis for future legislation. The paper gives a summary on the present results of this study. (Author)

  16. Fact-finding Survey in Response to the Manipulation of Personal Alarm Dosimeter Collection Efficiency: Lessons Learned About Post-Emergency Radiation Protection from the TEPCO Fukushima Daiichi APP Accident.

    Science.gov (United States)

    Yasui, Shojiro

    2015-01-01

    During emergency work at TEPCO Fukushima Daiichi Atomic Power Plant on December 1, 2011 a subcontractor demanded that its contracted workers cover their personal alarm dosimeters (PAD) with 3-cm-thick lead plates to lower dosimeter readings. As a response, the Ministry of Health, Labour and Welfare (MHLW) conducted a fact-finding survey to identify similar cases and devise measures to prevent a recurrence of this incident. To screen the suspected cases, the MHLW extracted: a) cases in which a PAD reading was at least 15% higher than the reading obtained from a radio-photolumine-scence dosimeter (RPD), where the dose was greater than 5 mSv in a month (1813 data points), and b) dose data in which PAD readings were less than 50% of the expected dose, where exposure dose may exceed 1 mSv in a day (56 workers, 17,148 data points). From these screenings, the MHLW identified 50 instances from TEPCO and nine primary contractors, including four general contractors, two plant manufacturers, and three plant maintenance companies as the subjects of the due diligence study of exposure data, including interviews. The results of the survey provide lessons that can also be applied to transition from emergency radiation protection to normal operation, as the application of emergency dose limits had ceased on December 16, 2011, in the affected plant. Based on the results of the survey, the MHLW provided administrative guidance documents to TEPCO and 37 primary contractors. The major points of these documents include: a) identification of recorded dose values by comparison of PAD readings to RPD readings, b) storage and management of RPDs and control badges, c) circulation management of PADs and access control to the affected plant, d) estimation of planned doses and setting of alarm values of PADs, e) actions to be taken by contractors if worker dose limits are reached, and f) physical measures to prevent recurrence of the incident. PMID:25617063

  17. Protective role of plants against harmful radiation

    International Nuclear Information System (INIS)

    The rapid technological advancement has increased human exposure to ionizing radiations enormously. Ionizing radiations produces deleterious effects in the living organisms. Widespread use of radiation in diagnosis therapy, industry, energy sector and inadvertent exposure during air and space travel, nuclear accidents and nuclear terror attacks requires safeguard against human exposures. Lead shielding and other physical measures can be used in such situations but with difficulty to manage; thus pharmacological intervention could be the most prudent strategy to protect humans against the harmful effect of ionizing radiations. These pharmacological agents are radioprotectives; The development of radioprotective agents has been the subject of intense research in view of their potential for use within a radiation environment. However, no ideal, safe synthetic radio protectors are available to date, so the search for alternative sources including plants has been ongoing. In Ayurveda, the traditional Indian system of medicine, several plants have been used to treat free radical-mediated ailments and, therefore, it is logical to expect that such plants may also render some protection against radiation damage. This all is due to antioxidant enzymes, nitroxides, and melatonin, antiemetic, anti-inflammatory. haemopoitic and immunostimulant compounds. Some of the plants which are found to be radioprotective are Centella asiatica, Ginkgo biloba, Hippophae rhamnoides, Ocimum sanctum, Podophyllurn hexandrum, Tinospora cordifolia, Emblica officinalis, Phyllanthus amarus, etc. So there is an urgent need to identify and characterize the many of the plants in relation to the radioprotection. Besides these medicinal plants there are also some fruits and vegetables which are having good response against harmful radiations such as Kiwifruit Actinidia deliciosa (Actinidaceae), Cape Gooseberry Physalis peruviana (Solanaceae). They protect against the radiation-induced damage by scavenging of free radicals and increasing antioxidant status. Fractionation guided evaluation may result in the development of ideal radio protectors in the near future. (author)

  18. Automatic measuring system to survey the surface radiation contamination

    International Nuclear Information System (INIS)

    At nuclear power plants and other facilities where radioactive substances are handled, radiation protection and safety is controlled under a very strict low and regulations to reduce exposure dose to workers and to prevent environmental pollution. Control of surface contamination is one of them, and it has been obliged to measure surface radiation contaminations of items with which workers contact within a radiation control area and items carried out of the control area. The automatic measuring system to survey the surface radiation contamination measures and inspects surface radiation contaminations of the objective items, and it can be classified into various types depending upon an objective to be measured. This report introduces an all surface monitor used for workers coming out from controlled area, an equipment surface monitor used for equipment carried out from the controlled area, and laundry surface monitor which checks clothes used in the controlled area. (author)

  19. Radiation protection and safety in radiotherapy

    International Nuclear Information System (INIS)

    Soon after the discovery of X rays by Roentgen in 1895 and of natural radioactivity by Becquerel in 1896 it became apparent that ionizing radiation was not only useful for the diagnosis and treatment of disease but also harmful to human tissues. It has been recognized since early studies on X rays and radioactive minerals that exposure to high levels of radiation can cause clinical damage to tissues of the human body. In addition, long term epidemiological studies of populations exposed to radiation, especially the survivors of the atomic bombings of Hiroshima and Nagasaki in Japan in 1945, have demonstrated that exposure to radiation also has a potential for delayed effects such as induction of malignancies or damage to genetic material. Ionizing radiation and radioactive substances are natural and permanent features of the environment, and thus the risks associated with radiation exposure can only be restricted, not eliminated entirely. Additionally, the use of human-made radiation is now widespread. Sources of ionizing radiation are essential to modern health care: disposable medical supplies sterilized by intense radiation have been central to combating disease; radiology and nuclear medicine are a vital diagnostic tool; and radiotherapy is commonly part of the treatment of malignancies. Applications of ionizing radiation are growing in industry, agriculture, medicine and many other fields of industry and research, benefiting humanity. Irradiation is used around the world to preserve foodstuffs and reduce wastage, and sterilization techniques have been used to eradicate disease carrying insects and pests. Industrial radiography is in routine use, for example to examine welds, detect cracks and help prevent failure of engineered structures. The acceptance by society of the risks associated with radiation is conditional on the benefits to be gained from the use of radiation. Nonetheless, the risks must be restricted and protected against by the application of radiation safety standards. It is therefore essential that activities involving radiation exposure be subject to certain standards of safety in order to protect the individuals who are exposed to radiation, be it occupationally, for medical diagnostic or therapeutic purposes, or as members of the public

  20. Modernization and consolidation of the European radiation protection legislation. The new EURATOM radiation protection basic norm

    International Nuclear Information System (INIS)

    The European Commission has established a modernization and consolidation of the European radiation protection legislation by the development of basic safety standards for ionizing radiation protection. The new guideline offers with a single coherent document the basic standards considering according to the state-of-the-art for all relevant radiation sources, including natural sources, and allows the protection of workers, public, patients and environment for all exposure situations, planned, existing or in case of emergence. The evaluation of numerical data will be harmonized with international standards.