WorldWideScience

Sample records for radiation protection surveys

  1. Survey of radiation protection programmes for transport

    The survey of radiation protection programmes for transport has been jointly performed by three scientific organisations I.P.S.N. (France), G.R.S. ( Germany), and N.R.P.B. (United kingdom) on behalf of the European Commission and the pertaining documentation summarises the findings and conclusions of the work that was undertaken with the principal objectives to provide guidance on the establishment, implementation and application of radiation protection programmes for the transport of radioactive materials by operators and the assessment and evaluation of such programmes by the competent authority and to review currently existing radiation protection programmes for the transport of radioactive materials. (N.C.)

  2. Chemical protection against ionizing radiation: a survey of possible mechanisms

    A comparative survey is given of the hypotheses which have been proposed to explain the protecting and sensitizing action of chemical substances towards ionizing radiation such as gamma radiation or x radiation

  3. Regulations concerning radiation protection and survey

    The many and always increasing applications of Atomic Energy for peaceful uses set many safety and security problems relatively to the workers, populations, and locating of the sites in general. A comparative study of the radiation hazards to which the people working in the 'Commissariat a l'energie atomique' installations were exposed during 1957 and the results obtained concerning individual and collective safety and security were extremely satisfactory owing to a continuous control and supervision. 2. However a few contamination and irradiation incidents - exposed subsequently as well as the way they were dealt with - show the necessity of a circumstantial regulation inside of an atomic center to establish the responsibility of the service in charge of the control of the radiation and the responsibility of the services using radioactive products with regard to contamination by radioactive materials. 3. Abstract of the different practical safety and security regulations concerning holding, manipulation, transport and stocking of radioactive materials. Pursuant to the recommendations of the International Commission on Radiologic Protection, the radioelements are classified according to the danger that can occur from them in comparison with the Pu with regard to: - radioactive noxiousness; specific activity per unit of mass; contamination hazards. 4. The service in charge of radiation protection plays the important part of a technical adviser for the construction of specialized laboratories and sees to the keeping of protection regulations. 5. Data essential to radiation protection are given to the people using radioactive materials; particularly: - a table of the radioisotopes and the hazards occurring from them; - radiation hazards regarding γ ray emitted by irradiated Pu; - radiation hazards regarding γ ray emitted by irradiated Th. 6. As the hazards occasioned by irradiated uranium have already been studied, the case of a low and total irradiation will only

  4. A survey of research programs in radiation protection in Canada

    A survey of research programs in Canada concerned with radiation protection was conducted in 1991-92 by the Joint Subcommittee on Regulatory Research (JSCRR) of the Atomic Energy Control Board (AECB) Advisory Committees on Radiological Protection and on Nuclear Safety. The purpose of this survey was to determine the current state of funding for this type of research in Canada. Funding for health-related radiation research in Canada is critical to establishing and maintaining a supply of trained professionals who can provide competent advice on health-related problems in radiation protection. The present report is an analysis of the information received in this survey. This survey concludes with the recommendation that the organization and definition of subprograms for the AECB Regulatory Research and Support Program should be completed as soon as possible. In this report the JSCRR should assist AECB staff in preparing a report in which priorities for research related to radiation protection are indicated. The sources of information noted at the end of the Discussion section of this report should be considered for this purpose. (author). 15 refs., 3 tabs

  5. Survey of Radiation Protection Education and Training in Finland in 2003

    The current state and need for radiation protection training in Finland have been surveyed by the Radiation and Nuclear Safety Authority STUK. The survey sought to determine whether the current requirements for radiation protection training had been met, and to promote radiation protection training. Details of the scope and quality of present radiation protection training were requested from all educational institutes and organizations providing radiation protection training. The survey covered both basic and further training, special training of radiation safety officers, and supplementary training. The questionnaire was sent to 77 educational organization units, 66 per cent of which responded. Radiation workers and radiation safety officers were asked about radiation protection knowledge and needs for additional training. The questionnaire was sent to 880 radiation users and 170 radiation safety officers, 70 per cent of whom responded. The survey covered all professional groups and fields of the use of ionizing radiation except nuclear energy. The amount of radiation protection training in basic and further (specialization) training in the same vocational or academic degree varied remarkably by educational organization. The average amounts of radiation protection included in most professional degrees met the requirements. 32 per cent of workers considered their radiation protection training inadequate for their duties, and 48 per cent had completed no supplementary training in radiation protection over the last five years. Nurses working in public sector hospitals and physicians working in health centres had the greatest need for radiation protection training. 78 per cent of radiation workers in industry felt that they had sufficient radiation protection training. Co-operation between educational organizations is necessary to harmonize radiation protection training. Guidance of the Ministry of Education (the competent authority for education) is needed in this

  6. Radiation protection

    This work define procedures and controls about ionizing radiations. Between some definitions it found the following topics: radiation dose, risk, biological effects, international radioprotection bodies, workers exposure, accidental exposure, emergencies and radiation protection

  7. On the awareness of radiation protection. A questionnaire survey of junior college students of radiological technology

    A questionnaire survey on the awareness of radiation protection was conducted to improve our curriculum of radiation protection education, which seems to be important for the safe administrative control systems and handling techniques of radiation. A total of 426 students answered our questionnaire during the period of 1994 to 1999. They were 80 first-year, 114 second-year and 232 third-year students. The facility values of 4 questions on the influence of radiation to a human body were 50.2%, 30.3%, 28.9% and 7.0%. There was no statistically significant difference among different age groups. The facility values of 3 questions on the dose limitation of occupation exposure were 50.5% (on the effective dose equivalent), 36.4% (on the tissue dose equivalent to skin), and 40.9% (on the crystalline lens). On safe handling of radiation, only 35.7% of students correctly answered that they use a plastic board to protect themselves from β-ray, while 77.0% correctly answered the question on the decontamination method of radioactive substance from the skin. The results show the students' lack of knowledge on radiation protection. Those involved in basic science education and radiation protection education, therefore, need to clarify their teaching content and offer explicit explanations on the proper dose of radiation, effects to exposure dose, interaction between different materials and radiation. (author)

  8. Radiation Protection

    ... Radiation Dose & Risk Low-Activity Radioactive Waste Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) Contact Us to ask a question, provide feedback, or report a problem. Main menu Learn the Issues Air Chemicals and ...

  9. Radiation protection

    A NRPB leaflet in the 'At-a-Glance' series explains in a simple but scientifically accurate way what radiation is, the biological effects and the relative sensitivity of different parts of the human body. The leaflet then discusses radiation protection principles, radiation protection in the UK and finally the effectiveness of this radiation protection as judged by a breakdown of the total dose received by an average person in the UK, a heavy consumer of Cumbrian seafood, an average nuclear industry worker and an average person in Cornwall. (UK)

  10. Radiation Protection

    Major achievements of SCK-CEN's Radiation Protection Department in 2000 are described. The main areas for R and D of the department remain neutron dosimetry and neutron activation analysis, safeguards information handling and non-destructive assay techniques. Further activities include low-level radioactivity measurements in environmental and biological samples and radiation protection research. Finally, achievements in decision strategy research and social sciences in nuclear research are reported

  11. Principles of radiation protection and legal basis for workers and public protection - a description of the Federal Radiation Survey

    The consequences of traditional mining and uranium industry, public concern and the need for decisions on restoration and remediation of radioactive-contaminated sites require systematic investigations and objective evaluations of the existing radiological situation. With this intention a comprehensive Federal project has been lauched to study the contributions of the geologic conditions and mining activities to the radiation exposure of the public. The responsibility for the whole project was delegated to the Federal Office for Radiation Protection (BfS). Topics covered in this paper include: Radiological evaluation and legal basis of the radiological protection for workers and for the public; Radiological protection for workers and the public in case of remedial actions

  12. Concepts of radiation protection

    This seventh chapter presents the concepts and principles of safety and radiation protection, emergency situations; NORM and TENORM; radiation protection care; radiation protection plan; activities of the radiation protection service; practical rules of radiation protection and the radiation symbol

  13. Radiation protection

    Radioactive Shipping Service

    2005-01-01

    The section of the radiation protection group in charge of shipping radioactive material would like to remind users that all radioactive material leaving CERN must be checked for radioactivity and must be shipped according to the procedure given at http://cern.ch/service-rp-shipping Do not hesitate to contact us for any question or control. Radioactive Shipping Service: service-rp-shipping@cern.ch Tél. 73171

  14. Radiation protection

    2005-01-01

    The section of the Radiation Protection Group in charge of shipping radioactive material would like to remind users that all radioactive material leaving CERN must be checked for radioactivity and must be shipped according to the procedure given at http://cern.ch/service-rp-shipping Do not hesitate to contact us for any question or control. Radioactive Shipping Service: service-rp-shipping@cern.ch Tél. 73171

  15. Radiation protection

    2005-01-01

    The section of the Radiation Protection Group in charge of shipping radioactive material would like to remind users that all radioactive material leaving CERN must be checked for radioactivity and must be shipped according to the procedure given at http://cern.ch/service-rp-shipping Do not hesitate to contact us for any question or control. Radioactive Shipping Service: service-rp-shipping@cern.ch Tel. 73171

  16. Radiation protection

    Three main pillars underpin the IAEA's mission: Safety and Security - The IAEA helps countries to upgrade their infrastructure for nuclear and radiation safety and security, and to prepare for and respond to emergencies. Work is keyed to international conventions, the development of international standards and the application of these standards. The aim is to protect people and the environment from the harmful effects of exposure to ionizing radiation. Science and Technology - The IAEA is the world's focal point for mobilizing peaceful applications of nuclear science and technology for critical needs in developing countries. The work contributes to alleviating poverty, combating disease and pollution of the environment and to other goals of sustainable development. Safeguards and Verification - The IAEA is the nuclear inspectorate, with more than four decades of verification experience. Inspectors work to verify that nuclear material and activities are not diverted towards military purposes. Quantities and Units: Dose equivalent is the product of absorbed dose of radiation and quality factor (Q). For absorbed dose in rads, dose equivalent is in rems. If absorbed dose is in gray, the dose equivalent is in sievert. Quality factor is defined without reference to any particular biological end point. Quality factors are recommended by committees such as the International Commission on Radiological Protection (ICRP) or the National Council on Radiation Protection and Measurements (NCRP), based on experimental RBE values but with some judgment exercised. Effective Dose Equivalent: It is the sum of the weighted dose equivalents for all irradiated tissues, in which the weighting factors represent the different risks of each tissue to mortality from cancer and hereditary effects. Committed dose equivalent: It is the integral over 50 years of dose equivalent following the intake of a radionuclide. Collective effective dose equivalent: It is a quantity for a population and is

  17. Survey of radiation protection programmes for transport; Etude des programmes de radioprotection pour les transports de matieres radioactives

    Lizot, M.T.; Perrin, M.L.; Sert, G. [CEA Fontenay-aux-Roses, Inst. de Protection et de Surete Nucleaire, Dept. de Protection et de Surete Nucleaire, 92 (France); Lange, F.; Schwarz, G.; Feet, H.J.; Christ, R. [Gesellschaft fur Anlagen-und Reaktorsicherheit, GRS, mbH, Cologne (Germany); Shaw, K.B.; Hughes, J.S.; Gelder, R. [National Radiological Protection Board (NRPB), Oxon, OX (United Kingdom)

    2001-07-01

    The survey of radiation protection programmes for transport has been jointly performed by three scientific organisations I.P.S.N. (France), G.R.S. ( Germany), and N.R.P.B. (United kingdom) on behalf of the European Commission and the pertaining documentation summarises the findings and conclusions of the work that was undertaken with the principal objectives to provide guidance on the establishment, implementation and application of radiation protection programmes for the transport of radioactive materials by operators and the assessment and evaluation of such programmes by the competent authority and to review currently existing radiation protection programmes for the transport of radioactive materials. (N.C.)

  18. Proposal of a survey of radiation protection procedures during breast feeding

    Contamination can occur by breast milk ingestion involving mothers subjected to diagnostic procedures or treatment with radiopharmaceuticals, which can reach high concentrations in milk causing significant absorbed doses to the children organs. Besides internal dose, close contact between the baby and his mother give rise to external exposures. In Brazil, 7% of diagnostic procedures use 131I or 123I for thyroid imaging and 84% of these were hold by women. For 131I, 67Ga and 201Tl, is recommended breast feeding cessation. The present work proposes a survey of the state of the art of radiation protection to breast feeding infants. It was planned interviews with nuclear medicine staff applying a questionnaire in order to assess specific procedures to women in reproductive age. This is 'on progress work'. (author)

  19. The use of roentgen diagnostics in chiropractor activities. Project based survey according to new regulations regarding radiation protection and use of radiation

    An audit has been performed in 17 chiropractic enterprises according to new radiation protection legislation. Before the audits a survey of the use of diagnostic imaging in Norwegian chiropractic enterprises was carried out. This report summarizes the results of the survey and the findings at the audits. (Author)

  20. Survey and analysis of radiation safety management systems at medical institutions. Second report. Radiation measurement, calibration of radiation survey meters, and periodic check of installations, equipment, and protection instruments

    We carried out a questionnaire survey to determine the actual situation of radiation safety management measures in all medical institutions in Japan that had nuclear medicine facilities. The questionnaire consisted of questions concerning the evaluation of shielding capacity; radiation measurement; periodic checks of installations, equipment, and protection instruments; and the calibration of radiation survey meters. The analysis was undertaken according to region, type of establishment, and number of beds. The overall response rate was 60 percent. For the evaluation of shielding capacity, the outsourcing rate was 53 percent of the total. For the radiation measurements of ''leakage radiation dose and radioactive contamination'' and contamination of radioactive substances in the air'', the outsourcing rates were 28 percent and 35 percent of the total, respectively (p<0.001, according to region and establishment). For the periodic check of radiation protection instruments, the implementation rate was 98 percent, and the outsourcing rate was 32 percent for radiation survey meters and 47 percent for lead aprons. The non-implemented rate for calibration of radiation survey meters was 25 percent of the total (p<0.001, according to region and establishment). The outsourcing rate for calibration of radiation survey meters accounted for 87 percent of the total, and of these medical institutions, 72 percent undertook annual calibration. The implementation rate for patient exposure measurement was 20 percent of the total (p<0.001, according to number of beds), and of these medical institutions 46 percent recorded measurement outcome. (author)

  1. Radiation. Protection. Health. Proceedings

    The topics of the meeting are the diagnostic and therapeutic application of ionizing radiations, the application of radiation in research, industry and engineering and radiation protection. The volume includes the following chapters: Radiation protection and society, radiation protection infrastructure, population and environment, metrology and measuring techniques, 1. Workshop on population and environment, NORM and radon, 2. Update: dose - extent of damage - limiting value definition, radiation protection for personnel (except medicine), radiation protection in medicine.

  2. Radiation protection in nuclear reactors

    Full text: People are exposed to ionizing radiation in many different forms: cosmic rays that penetrate earth atmosphere or radiation from soil and mineral resources are natural forms of ionizing radiation. Other forms are produced artificially using radioactive materials for various beneficial applications in medicine, industry and other fields. The greatest concerns about ionizing radiation are tied to its potential health effects and a system of radiation protection has been developed to protect people from harmful radiation. The promotion of radiation protection is one of the International Atomic Energy Agency main activities. Radiation protection concerns the protection of workers, members of public, and patients undergoing diagnosis and therapy against the harmful effects of ionizing radiation. The report covers the responsibility of radiation protection officer in Egypt Second Research Reactor (ETRR-2) in Inshas - Egypt, also presents the protection against ionizing radiation from external sources, including types of radiation, sources of radiation (natural - artificial), and measuring units of dose equivalent rate. Also covers the biological effects of ionizing radiation, personal monitoring and radiation survey instruments and safe transport of radioactive materials. The report describes the Egypt Second Research Reactor (ETRR-2), the survey instruments used, also presents the results obtained and gave a relations between different categories of data. (author)

  3. Radiation protection of nuclear medicine workers in the Czech Republic in 2003 -some results of SONS and questionnaire survey II

    Our paper presents the most. important data concerning an equipment of 45 nuclear medicine departments (depts.) with radiation protection facilities and aids. The results of the questionnaire survey mentioned in our previous paper are briefly summarized here. A relatively low radiation burden of nuclear medicine staff suggests the standard of radiation protection measures to be relatively good in our country. However, our survey shows some shortcomings, especially the following ones: (1) some depts. need equipment for the preparation and dispensing of radiopharmaceuticals; (2) syringe shields for injection of beta-emitters such as 90Y are missing Iargely; (3) at some depts. shielding of staff from the patient containing a radiopharmaceutical is either missing or insufficient. Some deficiencies, including those not mentioned here, cannot be considered too significant. If syringe shields for beta-emitters are not available, Pb shields can be provisionally used. It would be desirable to replace the Pb shields by tungsten ones having the same effectiveness as Pb shields but smaller dimensions enabling a more comfortable injections (of course, tungsten syringe shields were available at four depts. which administered 18F-FDG in 2003). An acquaintance of depts. with the results of our survey is believed to stimulate nuclear medicine workers to improve further radiation protection in compliance with legislative requirements. (authors)

  4. The German Radiation Protection Ordinance of 2000: a survey and comparison with the former regulations

    The radiation protection standards defined by the European Union in May 1996, as well as the EU directive for the protection of patients, effective since June 1997, have to be incorporated into the law and administrative regulations of the Federal Republic of Germany by the 13th of May 2000. The German BMU, the ministry responsible for nuclear safety and radiation protection, presented the draft law for departmental consultation about the amendment of the StlSchV in December 1999. This draft law is the basis of the expert discussions of the meeting. One major change for instance is that for the first time, a broad classification system has been applied, which facilitates orientation. (orig./CB)

  5. Assessment of radiation protection training needs and capabilities in Europe: Results of the ENETRAP survey

    Full text: Maintaining a high level of competencies in the field of radiation protection is crucial for the future safe application of ionising radiation and to ensure the protection of workers, the public and the environment. Although working with a variety of responsibilities and specific professional aims, practitioners dealing with applications of ionizing radiation have three common needs with regard to radiological protection: basic education and training providing the required level of understanding of artificial and natural radiation; a standard for the recognition of skills and experience; and an opportunity to fine-tune and test acquired knowledge on a regular basis. The wide variety of the national approaches of the E and T programs in radiological protection in Europe hampers a common European methodology concerning these issues. This is particularly true for the Qualified Expert. Although, in this specific case, the fundamentals of the E and T programs are given by a European directive, the national differences in for instance, level, duration, subjects, practical and theoretical proportions in a program etc. create a barrier for the mutual recognition of this expert. The development of a common European radiation protection and safety culture and, based on that, the mutual recognition of radiation protection courses and the acquired competencies of radiation protection experts becomes crucial in a world of dynamic markets and increasing workers' mobility. A sustainable Education and Training (E and T) infrastructure is an essential component to combat the decline in expertise and to ensure the continuation of the high level of radiation protection knowledge in the future. Such infrastructure has to be built in such a way that both the initial training ('Education') and the unceasing maintenance of the level of competencies ('Training') are available. In answer to the need to develop a common European radiation protection and safety culture and, based

  6. Atoms, Radiation, and Radiation Protection

    Turner, James E

    2007-01-01

    Atoms, Radiation, and Radiation Protection offers professionals and advanced students a comprehensive coverage of the major concepts that underlie the origins and transport of ionizing radiation in matter. Understanding atomic structure and the physical mechanisms of radiation interactions is the foundation on which much of the current practice of radiological health protection is based. The work covers the detection and measurement of radiation and the statistical interpretation of the data. The procedures that are used to protect man and the environment from the potential harmful effects of

  7. Ethical problems in radiation protection

    In this report the authors survey existing international radiation-protection recommendations and standards of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the authors review ethical thinking on seven key issues related to radiation protection and ethics. They formulate each of these seven issues in terms of alternative ethical stances: (1) equity versus efficiency, (2) health versus economics, (3) individual rights versus societal benefits, (4) due process versus necessary sacrifice, (5) uniform versus double standards, (6) stake holder consent versus management decisions, and (7) environmental stewardship versus anthropocentric standards

  8. Ethical problems in radiation protection

    Shrader-Frechette, K.; Persson, Lars

    2001-05-01

    In this report the authors survey existing international radiation-protection recommendations and standards of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the authors review ethical thinking on seven key issues related to radiation protection and ethics. They formulate each of these seven issues in terms of alternative ethical stances: (1) equity versus efficiency, (2) health versus economics, (3) individual rights versus societal benefits, (4) due process versus necessary sacrifice, (5) uniform versus double standards, (6) stake holder consent versus management decisions, and (7) environmental stewardship versus anthropocentric standards.

  9. Radiation protection standards

    The present paper deals with: Objectives and basic concepts of radiation protection, basic radiobiological considerations, the ICRP system of dose limitation and with operational radiation protection (limits, reference levels, occupational exposure). (RW)

  10. On ethical issues in radiation protection

    From an ethical viewpoint the author surveys existing international radiation protection recommendations and standards. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the author discusses ethical thinking on seven key issues related to radiation protection and ethics. (author)

  11. Argentine radiation protection society

    The Argentine Radiation Protection Society (SAR) is a non profit society, member of IRPA. It was originally launched in 1987 and a formal constitution was adopted in 1983. Presently, SAR has 220 active members, professionals and technicians dedicated to a variety of disciplines related to different radiation protection aspects: medicine, industry, research and teaching. The basic SAR objectives are: to promote research and knowledge exchange on radiation protection topics and related disciplines; to promote the comprehension of radiation protection criteria with regard to existence and handling of radioactive and fissile materials and any other radiation sources; to foster the conception of radiation protection as a professional discipline and to contribute to its permanent improvement; to promote the diffusion of the information related to all radiation protection and nuclear safety aspects, and radiation protection standards and recommendations, not only within the scientific, technical and academic areas, but also to general public

  12. Radiation protection in Sudan

    The regulatory framework as established by the Sudan Atomic Energy Commission (SAEC) Act, promulgated in 1996, is described in the report. Three levels of responsibility in meeting radiation protection requirements are established: the Board, the Radiation Protection Technical Committee as the competent authority in the field of radiation protection, and the SAEC Department of Radiation Protection and Environmental Monitoring as the implementing technical body. The report also refers to environmental activities, patient doses in diagnostic radiology, the management of disused sources, emergency preparedness and orphan sources, and the national training activities in the radiation protection field. (author)

  13. Radiation protection in Bolivia

    Radiation protection in Bolivia has gone through a number of stages. Initially, in the 1970s, the focus was mainly on the analysis of environmental sources resulting from the nuclear tests carried out by France in the Pacific Ocean. Subsequently, the focus switched somewhat to radiation protection in connection with the mining of uranium and in the area of public health. During the third stage, radiation protection in other areas became important as the use of radiation sources was introduced. Finally, during the present -- fourth -- stage, radiation protection regulations are being introduced and mechanisms for the control of radiation sources are being established. (author)

  14. Ethical issues in radiation protection

    In this note the authors survey existing international radiation-protection recommendations of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection and risk assessment/management, the authors review ethical thinking on five key issues related to radiation protection and ethics. They formulate each of these five issues in terms of alternative ethical stances: (1) Equity vs. Efficiency, (2) Health vs. Economics, (3) Individual Rights vs. Societal Benefits, (4) Due Process vs. Necessary Sacrifice, and (5) Stakeholder Consent vs. Management Decisions (authors)

  15. Radiation protection research

    Vanmarcke, H

    2002-04-01

    The objectives of the research in the field of radiation protection research performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to elaborate and to improve methods and guidelines for the evaluation of restoration options for radioactively contaminated sites; (2) to develop, test and improve biosphere models for the performance assessment of radioactive waste disposal in near-surface or geological repositories; (3) to asses the impact of releases from nuclear or industrial installations; (4) to increase capabilities in mapping and surveying sites possibly or likely contaminated with enhanced levels of natural radiation; (5) to identify non nuclear industries producing NORM waste, to make an inventory of occurring problems and to propose feasible solutions or actions when required; (6) to maintain the know-how of retrospective radon measurements in real conditions and to assess radon decay product exposure by combining these techniques. Main achievements in these areas for 2001 are summarised.

  16. Radiation protection research

    The objectives of the research in the field of radiation protection research performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to elaborate and to improve methods and guidelines for the evaluation of restoration options for radioactively contaminated sites; (2) to develop, test and improve biosphere models for the performance assessment of radioactive waste disposal in near-surface or geological repositories; (3) to asses the impact of releases from nuclear or industrial installations; (4) to increase capabilities in mapping and surveying sites possibly or likely contaminated with enhanced levels of natural radiation; (5) to identify non nuclear industries producing NORM waste, to make an inventory of occurring problems and to propose feasible solutions or actions when required; (6) to maintain the know-how of retrospective radon measurements in real conditions and to assess radon decay product exposure by combining these techniques. Main achievements in these areas for 2001 are summarised

  17. Radiation protection forum

    The National Director of the Nuclear Regulatory Authority and Radiation Protection of Uruguay in the first forum for radiation protection set out the following themes: activity of regulatory body, radiation safety, physical security, safeguards, legal framework, committed substantive program, use of radiation, risks and benefits, major sources of radiation, the national regulatory framework, national inventory of sources, inspections, licensing, import and export of sources control , radioactive transport, materials safety, agreements, information and teaching, radiological emergencies and prompt response.

  18. The Radiation Protection Act

    The new Radiation Protection Act (1988:220) entered into force in Sweden on July 1st, 1988. This book presents the Act as well as certain regulations connected to it. As previously, the main responsibility for public radiation protection will rest with one central radiation protection authority. According to the 1988 Act, the general obligations with regard to radiation protection will place a greater responsibility than in the past on persons carrying out activities involving radiation. Under the act, it is possible to adjust the licensing and supervisory procedures to the level of danger of the radiation source and the need for adequate competence, etc. The Act recognises standardised approval procedures combined with technical regulations for areas where the risks are well known. The Act contains several rules providing for more effective supervision. The supervising authority may in particular decide on the necessary regulations and prohibitions for each individual case. The possibilities of using penal provisions have been extended and a rule on the mandatory execution of orders has been introduced. The Ordinance on Radiation Protection (1988:293) designates the National Institute of Radiation Protection (SSI) as the central authority referred to in the Radiation Protection Act. The book also gives a historic review of radiation protection laws in Sweden, lists regulations issued by SSI and presents explanations of radiation effects and international norms in the area. (author)

  19. Optimization of radiation protection

    The Symposium presentations were divided into three sessions devoted to the following topics: the role of optimization of radiation protection (10 papers), application of the principle of optimization of radiation protection (26 papers), methods and techniques in the optimization of radiation protection (7 papers). An additional session was devoted to the presentation of a summary statement and to an extended discussion by a panel of senior experts on the question of whether optimization (ALARA) is meeting its objective

  20. Radiation Protection Handbook

    1972-01-01

    A handbook which sets forth the Kennedy Space Center radiation protection policy is presented. The book also covers administrative direction and guidance on organizational and procedural requirements of the program. Only ionizing radiation is covered.

  1. Radiation protection survey of research and development activities initiated after the Chernobyl accident. Review report

    The compilation of research and development activities in the various fields of radiation protection in OECD Member countries which have been undertaken or planned specifically to address open questions arising from the Chernobyl reactor accident experience shows a potential for international cooperative arrangements and/or coordination between national programmes. Both the preliminary review of the answers, which only cover a part of the relevant activities in OECD Member countries, and a computerized literature search indicate that the multidisciplinarity of the research area under consideration will call for special efforts to efficiently implement new models and new quantitative findings from the different fields of activity to provide an improved basis for emergency management and risk assessment. Further improvements could also be achieved by efforts to initiate new activities to close gaps in the programmes under way, to enhance international cooperation, and to coordinate the evaluation of the results. This preliminary review of the answers of 17 Member countries to the questionnaire on research and development activities initiated after the Chernobyl accident is not sufficient as a basis for a balanced decision on those research areas most in need for international cooperation and coordination. It may however serve as a guide for the exploration of the potential for international cooperative arrangements and/or coordination between national programmes by the CRPPH. Even at this preliminary stage, several specific activities are proposed to the NEA/OECD by Member countries. Whole body counting and the intercomparison of national data bases on the behaviour of radionuclides in the environment did attract most calls for international cooperation sponsored by the NEA

  2. Radiation protection practices and related continuing professional education in dental radiography: A survey of practitioners in the North-east of England

    Davies, Ceri [Clinical Radiology, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW (United Kingdom)]. E-mail: ceri@2xclarks.clara.co.uk; Grange, Stuart [School of Allied Health Professions, Faculty of Health and Social Care, University of the West of England, Glenside Campus, Blackberry Hill, Stapleton, Bristol, BS16 1DD (United Kingdom)]. E-mail: stuart2.grange@uwe.ac.uk; Trevor, Margaret M. [School of Health and Social Care, University of Teesside, Middlesbrough, Tees Valley, TS1 3BA (United Kingdom)]. E-mail: m.trevor@tees.ac.uk

    2005-11-01

    Purpose: To establish the level of implementation of recommendations from the National Radiological Protection Board, relating to best radiation protection practice in dental radiography within general dental practices in the North-east of England. To survey the opinion of practitioners on the availability of related post-graduate courses in the region. Methods: A postal survey in the form of a self-reported questionnaire was mailed to all practices in the North-east of England in November 2000. The questionnaire, consisting of closed and open-ended questions, was to be completed where possible by the resident radiation protection supervisor. Results: Two hundred and sixteen practices responded to the questionnaire, a response rate of 53%. The survey revealed variation in the standards of application of best radiation protection practice. Some 23% of practitioners had not attended any post-graduate courses on radiation protection since qualifying. Post-graduate education provision on radiation protection in the region was considered insufficient by 51% of respondents. Conclusions: It is concluded that a significant proportion of practices were not making full use of opportunities to reduce dose to their patients. In addition, a small number of practices had untrained staff acting as the Radiation Protection Supervisor. A significant proportion of practitioners had not been updated in radiation protection practices within a 5-year period, and this may account for the failure to implement best radiographic practice. Over half felt that there was insufficient availability of post-graduate courses in radiation protection. The regional provision of continuing professional education in this field may need development.

  3. Radiation protection practices and related continuing professional education in dental radiography: A survey of practitioners in the North-east of England

    Purpose: To establish the level of implementation of recommendations from the National Radiological Protection Board, relating to best radiation protection practice in dental radiography within general dental practices in the North-east of England. To survey the opinion of practitioners on the availability of related post-graduate courses in the region. Methods: A postal survey in the form of a self-reported questionnaire was mailed to all practices in the North-east of England in November 2000. The questionnaire, consisting of closed and open-ended questions, was to be completed where possible by the resident radiation protection supervisor. Results: Two hundred and sixteen practices responded to the questionnaire, a response rate of 53%. The survey revealed variation in the standards of application of best radiation protection practice. Some 23% of practitioners had not attended any post-graduate courses on radiation protection since qualifying. Post-graduate education provision on radiation protection in the region was considered insufficient by 51% of respondents. Conclusions: It is concluded that a significant proportion of practices were not making full use of opportunities to reduce dose to their patients. In addition, a small number of practices had untrained staff acting as the Radiation Protection Supervisor. A significant proportion of practitioners had not been updated in radiation protection practices within a 5-year period, and this may account for the failure to implement best radiographic practice. Over half felt that there was insufficient availability of post-graduate courses in radiation protection. The regional provision of continuing professional education in this field may need development

  4. Radiation protection of workers

    Niu, Shengli

    2011-01-01

    Provides information about the size of the workforce affected by, and the occupational activities associated with, exposure to radiation and the relevant ILO instruments on the protection of workers. Mentions the ILO Convention on Radiation Protection, 1960 (No. 115), and its accompanying Recommendation (No. 114).

  5. Implantation of inspection and radiation protection plan

    Methods, means and procedures adopted by Petrobras engineering service to survey safety radiation protection of the companies that carry out radiographic services of PETROBRAS are showed. The systematic used in certification of personel, procedures, audits and field survey concerning radiation protection, are described. (C.M.)

  6. Radiation protection infrastructure

    A prerequisite for the safe use of ionizing radiation in a country is the availability of an adequate infrastructure to achieve the desired degree of protection. The extent of such an infrastructure, generally comprising regulatory mechanisms and technical capabilities for application and enforcement of regulations, has to be commensurate with the stage of technological development. The expanding application of ionizing radiation in medicine, industry and research calls for vigorous promotion of effective radiation protection efforts, not only to prevent any unsafe practices but also to assess correctly and provide authoritative information on the safety of adopted practices. Experience reveals that radiation protection practices vary considerably from one country to another. The regulatory structures and type of organization with regard to radiation protection are very different, depending on a number of factors such as the constitutional framework, the legal and administrative systems of the country concerned, the state of technical development, the status of application of radiation sources, the existence of research and associated institutions, and the technical skills and financial resources available. Radiation protection principles evolve with time as further experience is gained and as new research evidence becomes available. Regulation of radiation protection has to take account of such changes and adapt to changing conditions. Forty-eight papers from 29 Member States and two International Organizations were presented in nine scientific sessions. Topics included radiation protection regulation and licensing notification, registration, inspection and control programmes, education and training, the role of supporting institutions such as national laboratories and research institutes, the role of professional associations, the contribution of radiation protection services, and international activities. A concluding panel addressed development strategies to

  7. Radiation protection in space

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space

  8. Optimisation of radiation protection

    Optimisation of radiation protection is one of the key elements in the current radiation protection philosophy. The present system of dose limitation was issued in 1977 by the International Commission on Radiological Protection (ICRP) and includes, in addition to the requirements of justification of practices and limitation of individual doses, the requirement that all exposures be kept as low as is reasonably achievable, taking social and economic factors into account. This last principle is usually referred to as optimisation of radiation protection, or the ALARA principle. The NEA Committee on Radiation Protection and Public Health (CRPPH) organised an ad hoc meeting, in liaison with the NEA committees on the safety of nuclear installations and radioactive waste management. Separate abstracts were prepared for individual papers presented at the meeting

  9. Radiation protection at CERN

    Forkel-Wirth, Doris; Roesler, Stefan; Silari, Marco; Streit-Bianchi, Marilena; Theis, Christian; Vincke, Heinz; Vincke, Helmut

    2013-01-01

    This paper gives a brief overview of the general principles of radiation protection legislation; explains radiological quantities and units, including some basic facts about radioactivity and the biological effects of radiation; and gives an overview of the classification of radiological areas at CERN, radiation fields at high-energy accelerators, and the radiation monitoring system used at CERN. A short section addresses the ALARA approach used at CERN.

  10. RADIATION PROTECTION IN IRAN

    R. Abedinzadih; H. Parnianpour

    1980-01-01

    This paper presents the current activities on radiation protection in Iran. According to the Atomic Energy Organization Law of Iran the radiological safety is ascribed to the Atomic Energy Organization of Iran (A E O I) and the Radiation Protection Department (R P D) is the responsible organ within AEOI. R P D since it's establishment in 1975, with the aim to ensure the protection of man and his environment against any harmful effects of radiations, has embarked on a national development...

  11. Ethics and radiation protection

    Some of the major problems in radiation protection are closely connected to issues that have a long, independent tradition in moral philosophy. This contribution focuses on two of these issues. One is the relationship between the protection of individuals and optimisation on the collective level, and the other is the relative valuation of future versus immediate damage. Some of the intellectual tools that have been developed by philosophers can be useful in radiation protection. On the other hand, philosophers have much to learn from radiation protectors, not least when it comes to finding pragmatic solutions to problems that may be intractable in principle

  12. Radiation Protection Proclamation

    A proclamation of the Government of Ethiopia, cited as the radiation protection proclamation number 79/1993 was prepared with the objective to establish a national radiation protection authority that formulates policies, controls and supervises activities involving all sources of radiation and lay down laws governing such activities in order to ensure public safety against associated hazards while allowing radiation related activities to be carried out for the benefit of the public . The Authority is guided by an inter-ministerial board and is accountable to the Ethiopian Science and Technology Commission

  13. Radiation protection textbook

    This textbook of radiation protection presents the scientific bases, legal and statutory measures and technical means of implementation of the radioprotection in the medical and industrial sectors, research and nuclear installations. It collects the practical information (organization, analysis of post, prevention, evaluation and risks management, the controls, the training and the information) usually scattered and the theoretical knowledge allowing every person using ionizing radiation: To analyze jobs in controlled areas, to watch the respect for the current regulations, to participate in the training and in the information of the staffs exposed to intervene in accidental situation. This third edition is widely updated and enriched by the most recent scientific and legal data concerning, notably, the human exposure, the dosimetry, the optimization of the radiation protection and the epidemiological inquiries. The contents is as follows: physics of ionizing radiation, ionizing radiation: origin and interaction with matter, dosimetry and protection against ionizing radiation, detection and measurement of ionizing radiation, radiobiology, legal measures relative to radiation protection, human exposure of natural origin, human exposure of artificial origin, medical, dental and veterinarian radiology, radiotherapy, utilization of unsealed sources in medicine and research, electronuclear industry, non nuclear industrial and aeronautical activities exposing to ionizing radiation, accidental exposures. (N.C.)

  14. The workers radiation protection

    This file gathers contributions and points of view from different actors of the workers radiation protection, included two foreign contributions making reference to Spanish and British practices. (N.C.)

  15. Radiation Protection: introduction

    The abstract gives an overview and introduction to the activities of SCK-CEN's Radiation Protection department. Main strategic developments and achievements in the field of life sciences, policy supports and medical applications are summarised

  16. Physics for radiation protection

    Martin, James E

    2013-01-01

    A much-needed working resource for health physicists and other radiation protection professionals, this volume presents clear, thorough, up-to-date explanations of the basic physics necessary to address real-world problems in radiation protection. Designed for readers with limited as well as basic science backgrounds, Physics for Radiation Protection emphasizes applied concepts and carefully illustrates all topics through examples as well as practice problems. Physics for Radiation Protection draws substantially on current resource data available for health physics use, providing decay schemes and emission energies for approximately 100 of the most common radionuclides encountered by practitioners. Excerpts of the Chart of the Nuclides, activation cross sections, fission yields, fission-product chains, photon attenuation coefficients, and nuclear masses are also provided.

  17. Radiation Protection Group

    2006-01-01

    The Radioactive Waste Section of the Radiation Protection Group wishes to inform you that the Radioactive Waste Treatment Centre will be closed on the afternoon of Tuesday 19 December 2006. Thank-you for your understanding.

  18. Radiation protection in medicine

    Vano, E.; Holmberg, O.; Perez, M. R.; Ortiz, P.

    2016-08-01

    Diagnostic, interventional and therapeutic used of ionizing radiation are beneficial for hundreds of millions of people each year by improving health care and saving lives. In March 2001, the first International Conference on the Radiological Protection of Patients was held in Malaga, Spain, which led to an international action plan for the radiation protection of patients. Ten years after establishing the international action plan, the International Conference on Radiation Protection in Medicine: Setting the Scene for the Next Decade was held in Bonn, Germany, in December 2012. the main outcome of this conference was the so called Bonn Call for Action that identifies then priority actions to enhance radiation protection in medicine for the next decade. The IAEA and WHO are currently working in close cooperation to foster and support the implementation of these ten priority actions in Member States, but their implementation requires collaboration of national governments, international agencies, researchers, educators, institutions and professional associations. (Author)

  19. Radiation protection and monitoring

    The present paper deals with the following topics: - Radiological quantities and units - Principles of radiological protection - Limits of doses and activity uptake - Activity discharges and monitoring - Radiation exposure and its calculation - Environmental monitoring - Personnel dosimetry. (orig./RW)

  20. Radiation protection in the dental profession

    A survey, conducted by the Health and Safety Executive (HSE), on the standard of radiation protection in the dental profession in the United Kingdom is described. The results are compared with UK advisory standards. The preliminary survey results were reported in the professional press and each participating dental practitioner received comments and advice concerning the basic requirements for radiation protection. The method of survey has been broadened to form the basis of inspection of dental radiography by the HSE. (H.K.)

  1. Radiation Protection. Chapter 24

    Chapter 21, in describing basic radiation biology and radiation effects, demonstrates the need to have a system of radiation protection that allows the many beneficial uses of radiation to be realized while ensuring detrimental radiation effects are either prevented or minimized. This can be achieved with the twin objectives of preventing the occurrence of deterministic effects and of limiting the probability of stochastic effects to a level that is considered acceptable. In a radiology facility, consideration needs to be given to the patient, the staff involved in performing the radiological procedures, members of the public and other staff that may be in the radiology facility, carers and comforters of patients undergoing procedures, and persons who may be undergoing a radiological procedure as part of a biomedical research project. This chapter discusses how the objectives given above are fulfilled through a system of radiation protection and how such a system should be applied practically in a radiology facility

  2. Radiation Protection in Guatemala

    The tasks connected with radiation protection are allocated to the National Institute for Nuclear Energy in Guatemala. Regulatory measures are further needed to identify the responsibilities of various authorities to ensure that all radiation workers are provided with personal dosemeters. (author)

  3. Radiation protection glossary

    The glossary is intended to be used as a terminology standard for IAEA documentation on radiation protection. An effort has been made to use definitions contained in internationally accepted publications such as recommendations of the International Commission on Radiological Protection (ICRP), standards of the International Organization for Standardization (ISO) and of the International Electrotechnical Commission (IEC), reports of the International Commission on Radiation Units and Measurements (ICRU), with only slight modifications in order to tailor them more closely to IAEA needs. The glossary is restricted to ionizing radiation

  4. Radiation Protection Dosimetry

    The contributions presented during the seminar provided clear evidence that radiation protection of the patient plays an increasingly important role for manufacturers of radiological equipment and for regulatory bodies, as well as for radiologists, doctors and assistants. The proceedings of this seminar reflect the activities and work in the field of radiation protection of the patient and initiate further action in order to harmonize dosimetric measurements and calculations, to ameliorate education and training, to improve the technical standards of the equipment and to give a push to a more effective use of ionising radiation in the medical sector

  5. The use of roentgen diagnostics in chiropractor activities. Project based survey according to new regulations regarding radiation protection and use of radiation; Bruk av roentgendiagnostikk i norske kiropraktorvirksomheter. Prosjektrettet tilsyn etter ny forskrift om straalevern og bruk av straaling

    Raaum, Aud; Widmark, Anders

    2005-12-15

    An audit has been performed in 17 chiropractic enterprises according to new radiation protection legislation. Before the audits a survey of the use of diagnostic imaging in Norwegian chiropractic enterprises was carried out. This report summarizes the results of the survey and the findings at the audits. (Author)

  6. Project Radiation Protection - East

    The Swedish Government has allocated SEK 37.1 million for cooperation projects in radiation protection with countries in Central and Eastern Europe, particularly the Baltic states (Estonia, Latvia, Lithuania) and Russia. The Swedish Radiation Protection Inst. (SSI) is in charge of this program, which is often referred to as Radiation Protection - East. The general background of this cooperation program, its objectives, practical organization of the work etc. have been presented in the following reports: SSI Report No.93-08: Projekt Straalskydd Oest - Laegesrapport (March 1993); SSI Report No.93-29: Swedish Cooperation Program for Radiation Protection in Eastern and Central Europe (November 1993). The present report summarizes the work carried out up to and including September 1994. The more than 70 cooperation projects have been divided into the following categories: Upgrading of national authorities; Emergency preparedness, early warning; Nuclear power and research reactors; Instrumentation; Decommissioning, waste, environmental control; General radiation protection; Other projects; Project management and administrative support. Project criteria and a simple program for quality assurance and follow-up are presented briefly. A status report, including an economic overview, is given for all ongoing or already finished projects, together with future plans and a suggested budget for the next fiscal year

  7. Principles of Radiation Protection Concepts

    The contents of this chapter are follows - Radiation Protection Concepts: justification, dose limitation, optimisation, potential exposures, situation requiring intervention; Special Considerations. Protection from Radiation Hazards, Remove the Hazard, Prevent the Hazard, Guard the Worker, Implementation of Radiation Protection and Safety Measures, Distance, Shielding, Time, Monitoring Programme, Safety System. Radiation Protection in Radiological Service: Specific Requirement in Diagnostic Radiological Service

  8. Radiation protection and instrumentation

    Bailey, J. V.

    1975-01-01

    Radiation was found not to be an operational problem during the Apollo program. Doses received by the crewmen of Apollo missions 7 through 17 were small because no major solar-particle events occurred during those missions. One small event was detected by a radiation sensor outside the Apollo 12 spacecraft, but no increase in radiation dose to the crewmen inside the spacecraft was detected. Radiation protection for the Apollo program was focused on both the peculiarities of the natural space radiation environment and the increased prevalence of manmade radiation sources on the ground and onboard the spacecraft. Radiation-exposure risks to crewmen were assessed and balanced against mission gain to determine mission constraints. Operational radiation evaluation required specially designed radiation detection systems onboard the spacecraft in addition to the use of satellite data, solar observatory support, and other liaison. Control and management of radioactive sources and radiation-generating equipment was important in minimizing radiation exposure of ground-support personnel, researchers, and the Apollo flight and backup crewmen.

  9. National congress of radiation protection

    The congress of radiation protection tackled different areas of radiation protection. The impact of ionizing radiations on environment coming from radioactive activities. The biological radiation effects, the dosimetry, the different ways of doing relative to radiation protection,the risks analysis and the communications with populations, information about accidents and the lessons learned from them are included in this congress. (N.C.)

  10. Foundations for radiation protection

    Full text; In 1996, the IAEA published the latest edition of the International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources (Basic Safety Standards or BSS) comprising basic requirements to be filled in all activities involving radiation exposure. The standards define internationally harmonized requirements and provide practical guidance for public authorities and services, employers and workers, specialized radiation protection bodies, enterprises and health and safety communities. In the same year, the IAEA, through the technical cooperation programme, launched the Model Project on Upgrading Radiation Protection Infrastructure, a global initiative designed to help Member States establish the infrastructure needed to adhere to the BSS. To address the complexity of this task, the radiation protection team identified key elements, known as Thematic Safety Areas. These are: 1. Legislative Framework and Regulatory Infrastructure, Draft and put into effect radiation protection laws and regulations and establish and empower a national regulatory authority. 2. Occupational Exposure Control Protect the health and safety of each individual who faces the risk of radiation exposure in the workplace through individual and workplace monitoring programmes, including dose assessment, record keeping of doses and quality management. 3. Medical Exposure Control: Develop procedures and activities to control the exposure of patients undergoing diagnosis and/or treatment via diagnostic and interventional radiology, nuclear medicine or radiotherapy through staff training, provision of basic quality control equipment, and the establishment of quality assurance programmes. 4. Public and Environmental Exposure Control: Develop means to protect both the public and the environment including: a) programmes to register, inventory and provide safe storage of unused radioactive sources and material; b) procedures to control and safely

  11. Level of compliance with the radiation protection regulation-A survey among Norwegian hospitals and X-ray institutes

    To identify the level of compliance with the new radiation protection regulation among Norwegian health care enterprises (HCEs). Totally, 41 HCEs were authorised to use advanced X-ray equipment for medical purposes during 2005-07. Follow-up inspections with 14 HCEs were carried out during 2007-09. Main topics for the inspections were those requirements identified as most challenging to implement in the authorisation process. Totally, 192 non-conformities with the regulation were revealed during the authorisation process. The inspections revealed that 93 % of the inspected HCEs had non-conformities with the regulation. Most common non-conformities dealt with skills in radiation protection, establishment of local diagnostic reference levels, access to medical physicists and performance of quality control of X-ray equipment. Inspections are an effective tool for implementation of regulation the requirements at the HCEs, thus improving radiation protection awareness. (authors)

  12. Radiation protection in radionuclide investigations

    The subject is covered in sections: introduction; radiation and radioactivity; alpha particles; beta particles; neutrons; electromagnetic radiation; units of radioactivity and radiation; biological effects of radiation; the philosophy of radiation protection (ALARA principle); practical aspects of radiation protection; work with unsealed radiation sources; radionuclide studies in experimental animals; radiation safety during clinical investigations; legislative control of radiation work; radioactive waste disposal; emergency procedures; conclusion. (U.K.)

  13. Radiation protection - thirty years after

    In this paper is discussed some questions in the field of Radiation Protection as like: historical prologue of radiations discovery and it's systematics; radiation and radiation protection; ALARA principle and 'de minimis' approach; radiation risks and dose limits and radiation and chemicals a risk comparison (author)

  14. Radiation protection in Qatar

    Full text: The State of Qatar has become a member State of IAEA since 1974. Later the Department of Industrial Development (DID) beam the focal point and the competent authority regarding all aspects of the peaceful application of Nuclear Technology. In July, 2000 the Supreme Council was established and charged with all matters related to environmental protection. The Supreme Council joined the IAEA Projects on upgrading protection infrastructure in West Asia region. A preliminary research was initiated to discover where radiation sources are being used, and the legal framework, if any, to regulate their use. The research indicated that radiation sources were being used in the industrial practices (well logging, industrial radiography and nuclear gauges) and in medical practices (mainly diagnostic radiology). The research also indicated that there was virtually no legal framework to regulate them. In less than five years, the State of Qatar was able to issue the radiation protection law, three sets of regulations, namely: Radiation Protection Regulations, Radioactive Waste Management Regulations and the Safe Transport of Radioactive Materials Regulations. In addition, several specific regulation work, dose limits and radiation protection officers were issued. A radiation Protection Department, comprising three sections was established. We are providing individual exposure monitoring for most of the radiation workers in the public sector and some in the private sector. We have set up a proper licensing and inspections procedures, where our inspectors are enforcing the law. More recently, we established an early warning network for nuclear of radiological emergencies, consisting of 6 transplantable stations, five mobile stations and two navigating stations. This year, the network was augmented with five fixed station and an advanced early warning centre, which provides early warning via multiple means (MMS, Fax, E-mail and audio alarms). Last year we signed a nuclear

  15. Lectures on radiation protection

    All important subjects of radiation protection are presented in concise form; the explanations may serve as lecture manuscripts. The lectures are divided into 16 to 19 teaching units. Each teaching unit is supplemented by a slide to be projected on a screen while the text is read. This method of visual teaching has already been tried with good results in medicine and medical engineering. Pictures of the slides are given in the text so that the book may also be used for self-studies. The main facts are summarized at the end of each lesson. The finished book will consist of 8 lessons; the first three of these discuss 1. Radiation effects and hazards 2. Dose definitions and units and their role in radiology and radiation protection 3. Dose limits and legal specifications. (orig.)

  16. Radiation protecting glove

    The radiation protecting gloves of the present invention comprise a neutron shielding material made of natural or synthetic rubber incorporated with neutron shielding materials. For the neutron shielding materials, those having first neutron moderating effect and those having thermal neutron absorbing effect can be used properly. As the materials having first neutron moderating effect, gadolinium oxide power, zirconium hydride powder or the like is used. Further, as the thermal neutron absorbing material, boron carbide powder or the like is used. As the natural or synthetic rubber for the substrate, neoprene rubber, butadiene rubber or hyperlon rubber may be used for instance. Thus, a radiation protection gloves having neutron protecting function can be obtained. (I.N.)

  17. Fundamentals of health physics for the radiation-protection officer

    The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs

  18. Fundamentals of health physics for the radiation-protection officer

    Murphy, B.L.; Traub, R.J.; Gilchrist, R.L.; Mann, J.C.; Munson, L.H.; Carbaugh, E.H.; Baer, J.L.

    1983-03-01

    The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs. (ACR)

  19. Environmental Radiation Protection in Medical Institutions

    The study aimed to measure the levels of radiation protection for radiologists in medical institutions in three environmental categories (physical, administrative and social) and to establish a data base which can be used to increase awareness of environmental radiation protection in medical institutions within Korea. The study surveyed 10% of radiologists working in radiology departments in medical institutions which are supervised by the National Dose Registry overseen by the Korean Food and Drug Administration(KFDA). This study found that the level of environmental radiation protection was higher in the capital area and in larger hospitals. On the other hand, the study shows environmental radiation protection was lower in the Youngnam area and in clinics. Results from the questionnaires indicate the level of environmental radiation protection was higher when radiologists were given an individual dosimeter but lowest when the radiation protection apron quality test was conducted. Environmental radiation protection is an important factor for radiologists to conduct activities in a safe and protected environment. However, this study shows there are differences in the level of environmental radiation protection in medical institutions and location within Korea. In particular, the level of environmental radiation protection was lower in clinics, appropriate intervention strategies befitting these conditions are needed based on medical institution classification and location in order to improve the level of environmental protection

  20. Radiation Protection: Introduction

    As a federal research Centre, SCK-CEN has the statutory assignment to give priority to research related to safety, radioactive waste management, protection of man and environment, management of fissile and other strategic materials and social implications as part of the pursuit of sustainable development and to develop and gather the necessary knowledge and spread this knowledge through formation and communication. At the Division of Radiation Protection at SCK-CEN we are therefore active to maintain and enhance knowledge and expertise in each aspect of radiation protection: we study the risk of exposure - the way that radioactive materials spread in the environment and the potential for human contact - and the risk from exposure - how radiation affects human health; we perform health physics measurements; we are involved in emergency planning and preparedness and support to risk governance and decision taking. These activities are supported by radiation specific analysis and measurement techniques. These activities are not performed in isolation but in context of national and international collaborations or demands

  1. Enhancing radiation protection

    When a new radiotherapy center in Gezira, Sudan, delivers its first therapeutic dose to a cancer patient, two things happen: A young man begins to regain his health and looks forward to being better able to support his family and contribute to his community; and a developing nation realizes an important step toward deriving the social and economic benefits of nuclear science. The strategic application of nuclear technology in particular fields- human health, industry, food and agriculture, energy, water resources and environmental protection - has enormous potential to help shape the future of developing countries. But past radiological incidents, several of which involved high levels of exposure or death (Bolivia, Brazil, Cost Rica, Georgia, Ghana, Morocco, Panama and Thailand), underscore the inherent and very serious risks. For this reason, the IAEA's Departments of Technical Cooperation and Nuclear Safety and Security partner closely, particularly in the area of radiation protection. They strive to consider every minute detail in the equation that brings together radiation sources, modern technologies, people and the environment. Launched in 1996, the Model Project on Upgrading Radiation Protection Infrastructure (the Model Project) aimed to help Member States: achieve capacities that underpin the safe and secure application of nuclear technologies; establish a legislative framework and regulatory infrastructure; develop exposure control mechanisms to protect workers, medical patients, the public and the environment; and achieve preparedness and planned response to radiological emergencies. In fact, the hospital scenario above typically marks several years of intense collaboration amongst scientists, legislators, regulators, politicians and administrators from both Member States and the IAEA, orchestrated and aided by regional managers and technical experts from the IAEA. As radiation protection team members can attest, every application of nuclear technology

  2. Radiation protection - the employer

    A brief report is given of a paper presented at the symposium on 'Radiation and the Worker - where do we go from here' in London 1983. The paper concerned the employers' viewpoint on the draft of the proposed Ionising Radiations Regulations in the Health and Safety Commission Consultative Document. It was concluded that there was already a very good standard of radiological protection in the UK and that any improvements could therefore only be fringe improvements, although the cost to the employer of introducing and implementing the new proposed Regulations was bound to be high. (U.K.)

  3. Protection from Space Radiation

    Tripathi, R. K.; Wilson, J. W.; Shinn, J. L.; Singleterry, R. C.; Clowdsley, M. S.; Cucinotta, F. A.; Badhwar, G. D.; Kim, M. Y.; Badavi, F. F.; Heinbockel, J. H.

    2000-01-01

    The exposures anticipated for our astronauts in the anticipated Human Exploration and Development of Space (HEDS) will be significantly higher (both annual and carrier) than any other occupational group. In addition, the exposures in deep space result largely from the Galactic Cosmic Rays (GCR) for which there is as yet little experience. Some evidence exists indicating that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate [1,2]. The purpose of this presentation is to evaluate our current understanding of radiation protection with laboratory and flight experimental data and to discuss recent improvements in interaction models and transport methods.

  4. Radiation safety and protection

    Grzywacz, R.B.

    1988-10-01

    Often overlooked are the consequences of low-level radiation. This article increases awareness of the short- and long-term effects of x-rays on the podiatrist, his staff and patients. Protection can be achieved for all concerned by using the radiographic techniques, low-cost ways for dosage reduction, and monitoring devices discussed. A good x-ray examination should always provide the best diagnostic information while minimizing risk.7 references.

  5. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure.

    Olav Christophersen

    2012-02-01

    Full Text Available There are several animal experiments showing that high doses of ionizing radiation lead to strongly enhanced leakage of taurine from damaged cells into the extracellular fluid, followed by enhanced urinary excretion. This radiation-induced taurine depletion can itself have various harmful effects (as will also be the case when taurine depletion is due to other causes, such as alcohol abuse or cancer therapy with cytotoxic drugs, but taurine supplementation has been shown to have radioprotective effects apparently going beyond what might be expected just as a consequence of correcting the harmful consequences of taurine deficiency per se. The mechanisms accounting for the radioprotective effects of taurine are, however, very incompletely understood. In this article an attempt is made to survey various mechanisms that potentially might be involved as parts of the explanation for the overall beneficial effect of high levels of taurine that has been found in experiments with animals or isolated cells exposed to high doses of ionizing radiation. It is proposed that taurine may have radioprotective effects by a combination of several mechanisms: 1 during the exposure to ionizing radiation by functioning as an antioxidant, but perhaps more because it counteracts the prooxidant catalytic effect of iron rather than functioning as an important scavenger of harmful molecules itself, 2 after the ionizing radiation exposure by helping to reduce the intensity of the post-traumatic inflammatory response, and thus reducing the extent of tissue damage that develops because of severe inflammation rather than as a direct effect of the ionizing radiation per se, 3 by functioning as a growth factor helping to enhance the growth rate of leukocytes and leukocyte progenitor cells and perhaps also of other rapidly proliferating cell types, such as enterocyte progenitor cells, which may be important for immunological recovery and perhaps also for rapid repair of various

  6. Radiological protection survey results about radiodiagnosis protection practices in Cuba

    In order to identify radiation protection current situation in national X-ray diagnostic practice , the State (cuban) Supervision System for Radiation and Nuclear Safety carried out in 1992 a survey which was planned for projection of future regulatory activities in this field. Survey covers the most important aspects related to radiation protection of occupationally exposed workers, patients and general population. Surveyed sample included a total of 52 X-ray units, sited in 7 dental clinics, 2 polyclinics and 13 hospitals, from 7 provinces of the country. Results showed that the organization of radiation protection in terms of personnel specially designated to carry out surveillance and control activities and level of documentation is deficient. Survey evidenced the general lack of safety and quality culture among technologists and radiologists which is mainly reflected in non regular application of basic patient protection measures (shielding, collimation, use of proper filtration among others) and non regular execution of basic quality inspection of employed radiographic systems. (authors). 4 refs., 1 fig

  7. Some perspectives on radiation protection

    A brief review of the history and organizational structure of the NCRP is given. Summaries are given of a number of NCRP radiation protection guides dealing with hazards from 85Kr, radiation exposures from consumer products, basic radiation protection criteria, and doses from natural background radiation

  8. Radiation protection and monitoring

    The safety, the quality and efficiency of the radiological monitoring systems for block one and two of the NPP Mochovce, designed and delivered by the general designer, should be increased by EUCOM Siemens. Modern, accident resistant and/or more powerful monitoring systems have been designed by Siemens will be added to the existing systems. To achieve this radiation measuring units will be installed inside the hermetic zone, in the reactor hall, at the stack, at the release water system and in the environment in the vicinity of the NPP. The presentation, the storage distribution and the processing of all measuring results also will be optimised by installing a modern high-performance computer system, the so-called Central Radiological Computer System 'CRCS', featuring a high availability. The components will be installed in the relevant control rooms all over the plant. With this computer system it is easy to control the radiation level inside and outside the NPP during normal operation and during and after an accident. Special programs, developed by Siemens support the staff by interpreting the consequences of radioactive releases into the environment and by initiating protection procedures during and after an accident. All functions of the system are available for emergency protection drills and training the staff interruption of the normal control procedure. For the personal protection a digital personal dosimetry system completely considering with the requirements of ICRP 60 and several contamination monitors will be installed. (authors)

  9. Radiation protection training in Switzerland

    An increasing number of radiation protection experts and of professionally exposed workers is temporarily or permanently working in a country other than the one where they received their radiation protection education or training. They all face the problem and the difficulties of recognition of radiation protection training programs by other countries. For this reason the German-Swiss Radiation Protection Association (Fachverband fuer Strahlenschutz; FS) made a proposal to IRPA for an action on the mutual recognition of radiation protection education in Europe. In a first step contacts were made with two other European Associations of France and UK in order to establish a joint working group. (orig.)

  10. Radiation protection - a perspective

    Both the natural and manmade sources of radiation contribute to the dose received by the occupational workers and the members of public. During last century the number of manmade sources have increased considerably. Ionising radiations emitted by these sources have been put to large number of uses in the field of medicine, industry, agriculture and research. Exposure to radiation can lead to both deterministic and stochastic effects. Though it is difficult to quantify the risk due to exposure to low levels of radiation, however because of the vast data available for high exposures, it is possible to have some idea of the risk. These data have helped in deciding the dose limits for both the workers and members of public. Exposure can be both internal and external. Different methods are used to estimate internal dose and external dose. Philosophy of radiation protection as envisaged by ICRP is discussed in the paper. Various methods of protection, which will help in implementing the concept of ALARA, are outlined. Immediate biological effects of radiation depend upon the quantum of dose received. Effects at various levels of doses are given in the paper. Acute radiation syndrome is also discussed in the paper. Symptoms of low doses chronic exposure may not manifest initially but can be seen after a long latent period, in the form of cancer, though with a very low probability. As per ICRP risk/Sv for excess probability of fatal cancer for workers is 4.00 x 10-2 and for public is 5.00 x 10-2. A nuclear emergency may lead to exposure of persons and contamination of the area. Various types emergencies are described in the paper. In an emergency there are various pathways through which exposure can take place. A detailed emergency preparedness plan should include details of the monitoring to be followed, assessment of the situation as it develops, procedure for communication with various agencies, plans for evacuation, etc. Establishment of an emergency response center

  11. Occupational radiation protection software

    This paper presents a reflection on the basic essentials of a Radiation Work Permit (RWP). Based on the latest WANO Recommendations, this paper considers the RWP as a complete process rather than a simple administrative procedure. This process is implemented via software which is also presented in this paper. The software has been designed to achieve the following objectives: - To configure the radiological map of the plant. To plan radiological surveillance, to input data, to update radiological signposting and mandatory protective clothing in each area of the station. All this information can be checked from any personnel computer connected to a network. - To collect radiological data by means of a palmtop (PDA) and to upload it to a personnel computer, thereby speeding up the job and reducing human errors. - To implement the RWP by allowing on-line consultation of the permitted individual doses of the workers and the planned collective dose for each job. The software also supplies the radiological information to the workers. - To collect and arrange pictures, maps and sketches of equipment placed in rooms or in areas of the plant. - To allow the software to be used in real time from different workstations. - High reliability and speed of working. - Flexible data enquiry. The software provides a number of standard data enquiries such as numbers of workers on each job and their individual dose received...etc. It also allows data to be exported to other well-known software applications such as Excel and Access for further data analysis. The software has been designed by radiation protection professionals and developed by computer programmers who were integrated into the radiological work environment. The software would fulfill Occupational Radiation Protection Department requirements. (author)

  12. Quo vadis, radiation protection?

    The evaluation of potential health risks resulting from radiation exposures in the range of less than approx. 100 mSv is of major importance also for a broader acceptance of nuclear power. As a consequence of new draft reports and recommendations by renowned institutions, a fundamental debate has arisen about a necessary paradigm shift away from the linear dose-response hypothesis without any threshold level, and the so-called collective dose derived from it, in favor of a more meaningful radiobiological concept. Important insights can be gained from basic differences in the biological effects of low and high doses, but also from a conclusive assessment of the radiological consequences of the Chernobyl accident. Radiation protection in nuclear facilities is a routine service affair in the interest of strict observance of official limits and attempts to underrun, as far as possible, even restrictive boundary levels. If scientific developments in the field of the effects of low and very low radiation doses are to be taken into account, it is necessary instead to review critically the basic facts. In the light of this situation, it may be indicated to look at some recent developments in view of a clearly apparent paradigm shift in the evaluation of the risks of radiation exposure, and as a supplement to earlier reports. (orig.)

  13. Radiation protection considerations

    Adorisio, C; Urscheler, C; Vincke, H

    2015-01-01

    This chapter summarizes the legal Radiation Protection (RP) framework to be considered in the design of HiLumi LHC. It details design limits and constraints, dose objectives and explains how the As Low As Reasonably Achievable (ALARA) approach is formalized at CERN. Furthermore, features of the FLUKA Monte Carlo code are summarized that are of relevance for RP studies. Results of FLUKA simulations for residual dose rates during Long Shutdown 1 (LS1) are compared to measurements demonstrating good agreement and providing proof for the accuracy of FLUKA predictions for future shutdowns. Finally, an outlook for the residual dose rate evolution until LS3 is given.

  14. Review of the results of routine radiation protection surveys of radiography-only diagnostic x-ray machines, February 1987-May 1991

    The results are given of routine radiation protection surveys performed during the period February 1987-May 1991 by National Radiation Laboratory (NRL) health physicists on 432 radiography-only x-ray machines used in medical diagnosis and 92 used in chiropractic diagnosis. Compliance was high with the more explicit radiation protection requirements of the NRL codes of safe practice for the use of x-rays in diagnosis, viz, x-ray beam filtration, timer function, x-ray tube leakage, protective barrier and x-ray room shieldings. However, for those aspects of the codes dealing with x-ray machine performance there were less satisfactory results. While compliance for reproducibility of radiation output was >99%, it fell to 91% for accuracy of exposure timers, to 84% for linearity of x-ray output with adjacent mA and mAs settings, and from 70% for kilovoltage calibrations of multi-pulse x-ray machines to 54% for kilovoltage calibrations of 1- and 2- pulse machines. (author). 24 refs., 15 tabs., 5 figs

  15. Radiation protection code of practice

    A collection of legal and regulatory material governing Jordan's radiation protection activities. The full text of Jordan's Nuclear Energy and Radiation Protection Law (No. 14 for 1987) is given, along with relevant regulations which are enforced in Jordan. The regulations cover the areas of shielding radiology rooms, defining radiation work, decontamination in the event of laboratory scale radiological accidents, radioactive waste disposal, personnel dosimetry, assigning radiation protection officers, licensing, and inspection. (A.M.H.). 12 tabs., 6 figs

  16. Survey and evaluation of the external research and development programme 1977-1983 of the Swedish Radiation Protection Institute

    A review of the external research programme of SSI is undertaken. The main research programme is in this report divided into five subprogrammes according to the main programmes of the Institute. This report covers research projects reported 1977-1983. An evaluation of the impact of the R and D programme is included in the report. The external R and D research programme of SSI has had an important impact on the radiation protection work in Sweden. The methods for evaluation of research programmes are also discussed in the report

  17. New Approaches to Radiation Protection

    Rosen, Eliot M.; Day, Regina; Singh, Vijay K.

    2015-01-01

    Radioprotectors are compounds that protect against radiation injury when given prior to radiation exposure. Mitigators can protect against radiation injury when given after exposure but before symptoms appear. Radioprotectors and mitigators can potentially improve the outcomes of radiotherapy for cancer treatment by allowing higher doses of radiation and/or reduced damage to normal tissues. Such compounds can also potentially counteract the effects of accidental exposure to radiation or delib...

  18. Radiation protection and society

    The radiological protection of population, living on the contaminated territories, is actual 10 years after the Chernobyl accident. Eventually, the whole system of countermeasures application is aimed to protect society as a complex community of individuals . The variety of levels of society, i.e. family, settlement on the whole, can be considered as certain harmonic systems differing in their public consciousness levels and lifestyles, this explain the difference in their 'behaviour' in terms of radiation protection and attitude to the information obtained. Each level of society possesses a certain degree of liberty of choice, that finally influence the magnitude and the character of dose distribution within certain population groups. In general, the dose distribution in the settlement can be explained only on the bases of 'family' analysis. This concerns the rural settlement as a society too. All rural settlement can be divided into two or three classes: with low, high and intermediate social features. Small settlements (< 100 persons), where the advanced in age persons with low material income and high degree of natural economy are applied to the first class. This results in higher doses (2-3 fold), than in the settlements with higher social level. The analysis shows that in socially 'waning' settlements the countermeasures are less efficient and the term of their action is shorter. (this class is the largest, About 50% among all the rural settlements). Due to the deterioration of the economic situation in the Republic of Belarus after 1991-1992 resulted in the increase of doses mainly in the habitants first of all of this class of settlements. It seems problematic to increase countermeasures efficiency in this class of settlements without the refuse of the accustomed lifestyle and radical improvement of social-demographic and economic conditions. The present material shows the necessity of the differential approach based on 'society-analysis' in the

  19. Pregnancy and Radiation Protection

    Several modalities are currently utilized for diagnosis and therapy, by appropriate application of x-rays. In diagnostic radiology, interventional radiology, radiotherapy, interventional cardiology, nuclear medicine and other specialties radiation protection of a pregnant woman as a patient, as well as a member of the operating personnel, is of outmost importance. Based on radiation risk, the termination of pregnancy is not justified if foetal doses are below 100 mGy. For foetal doses between 100 and 500 mGy, a decision is reached on a case by case basis. In Diagnostic Radiology, when a pregnant patient takes an abdomen CT, then an estimation of the foetus' dose is necessary. However, it is extremely rare for the dose to be high enough to justify an abortion. Radiographs of the chest and extremities can be done at any period of pregnancy, provided that the equipment is functioning properly. Usually, the radiation risk is lower than the risk of not undergoing a radiological examination. Radiation exposure in uterus from diagnostic radiological examinations is unlikely to result in any deleterious effect on the child, but the possibility of a radiation-induced effect can not be entirely ruled out. The effects of exposure to radiation on the foetus depend on the time of exposure, the date of conception and the absorbed dose. Finally, a pregnant worker can continue working in an x-ray department, as long as there is reasonable assurance that the foetal dose can be kept below 1 mGy during the pregnancy. Nuclear Medicine diagnostic examinations using short-lived radionuclides can be used for pregnant patient. Irradiation of the foetus results from placental transfer and distribution of radiopharmaceuticals in the foetal tissues, as well as from external irradiation from radioactivity in the mother's organ and tissues. As a rule, a pregnant patient should not undergo therapy with radionuclide, unless it is crucial for her life. In Radiotherapy, the patient, treating

  20. Pregnancy and Radiation Protection

    Gerogiannis, J.; Stefanoyiannis, A. P.

    2010-01-01

    Several modalities are currently utilized for diagnosis and therapy, by appropriate application of x-rays. In diagnostic radiology, interventional radiology, radiotherapy, interventional cardiology, nuclear medicine and other specialties radiation protection of a pregnant woman as a patient, as well as a member of the operating personnel, is of outmost importance. Based on radiation risk, the termination of pregnancy is not justified if foetal doses are below 100 mGy. For foetal doses between 100 and 500 mGy, a decision is reached on a case by case basis. In Diagnostic Radiology, when a pregnant patient takes an abdomen CT, then an estimation of the foetus' dose is necessary. However, it is extremely rare for the dose to be high enough to justify an abortion. Radiographs of the chest and extremities can be done at any period of pregnancy, provided that the equipment is functioning properly. Usually, the radiation risk is lower than the risk of not undergoing a radiological examination. Radiation exposure in uterus from diagnostic radiological examinations is unlikely to result in any deleterious effect on the child, but the possibility of a radiation-induced effect can not be entirely ruled out. The effects of exposure to radiation on the foetus depend on the time of exposure, the date of conception and the absorbed dose. Finally, a pregnant worker can continue working in an x-ray department, as long as there is reasonable assurance that the foetal dose can be kept below 1 mGy during the pregnancy. Nuclear Medicine diagnostic examinations using short-lived radionuclides can be used for pregnant patient. Irradiation of the foetus results from placental transfer and distribution of radiopharmaceuticals in the foetal tissues, as well as from external irradiation from radioactivity in the mother's organ and tissues. As a rule, a pregnant patient should not undergo therapy with radionuclide, unless it is crucial for her life. In Radiotherapy, the patient, treating

  1. Radiation risks and radiation protection at CRNL

    Radiation exposure is an occupational hazard at CRNL. The predicted health effects of low levels of radiation are described and compared with other hazards of living. Data related to the health of radiation workers are also considered. Special attention is given to the expected effects of radiation on the unborn child. Measures taken to protect CRNL employees against undue occupational exposure to radiation are noted

  2. Radiation protection and quality management

    The book contains the following contributions: Radiation protection: an aspect of the governmental assignment to guarantee and regulate the public safety and law and order; the regulation amendment concerning X radiation and the new radiation protection ordinance; biological radiation effects; dosimetry; modern diagnostic radiology; the vindicatory indication; experiences of applied radiation protection in X-ray diagnostics: multislice computer tomography, X-ray examination and angiography; networking imaging; vindicatory indication in radiotherapy: for malign diseases and for benign diseases; medical appointments; quality management in health care; quality management in practice and clinics; personal management in health care - a challenging assignment under the aspects of resource control and quality. Appendices: Regulation concerning X radiation protection and remarks; regulation concerning ionising radiation protection: excerpts and remarks

  3. Plowshare radiation protection guidance

    The recommendations of the ICRP and the NCRP were developed primarily for occupational radiation exposures. They were later modified and applied to non-occupational exposures of populations. These, with appropriate interpretations, can be used to provide Plowshare radiation protection guidance. Exposures from Plowshare operations will tend to be acute, arising from radionuclides of relatively short half-life, but will have some chronic aspects due to small amounts of long-lived radionuclides generated. In addition, the neutron activation process of Plowshare technology will produce radionuclides not commonly encountered in routine nuclear energy programs. How these radionuclides contribute to personnel exposure is known for only a few situations that may not be representative of Plowshare exposure. Further complications arise from differences in radionuclide deposition and physiological sensitivity among individuals of different ages and states of health in the exposed population. All parameters necessary to evaluate such exposures are not available, even for good quantitative approximations, resulting in the need for interpretive experience. (author)

  4. Personal Radiation Protection System

    McDonald, Mark; Vinci, Victoria

    2004-01-01

    A report describes the personal radiation protection system (PRPS), which has been invented for use on the International Space Station and other spacecraft. The PRPS comprises walls that can be erected inside spacecraft, where and when needed, to reduce the amount of radiation to which personnel are exposed. The basic structural modules of the PRPS are pairs of 1-in. (2.54-cm)-thick plates of high-density polyethylene equipped with fasteners. The plates of each module are assembled with a lap joint. The modules are denoted bricks because they are designed to be stacked with overlaps, in a manner reminiscent of bricks, to build 2-in. (5.08-cm)-thick walls of various lengths and widths. The bricks are of two varieties: one for flat wall areas and one for corners. The corner bricks are specialized adaptations of the flat-area bricks that make it possible to join walls perpendicular to each other. Bricks are attached to spacecraft structures and to each other by use of straps that can be tightened to increase the strengths and stiffnesses of joints.

  5. Radiation protective clothing

    The present invention concerns radiation protective clothings suitable for medical protective clothings, aprons, etc. A primary sheet comprises a lead-incorporated organic polymer layer having a less frictional layer on one side and a contamination-resistant layer on the other side. A secondary sheet comprises a lead-incorporated organic polymer layer having a less frictional layer on one side and a comfortable skin-feeling layer on the other side. The less frictional layers of the primary and the secondary layer are laminated so as to be in contact with each other. Then, they are formed so that the comfortable skin-feeling layer of the secondary sheet is on the inner side, in other words, on the side of a wearer, and the contamination-resistant layer of the primary sheet is on the outer side. With such a constitution, although it involves the lead-incorporated organic polymer sheets of a large weight, it is comfortable to wear because of excellent flexibility and causes less feeling of fatigue even during wearing for a long period of time. (I.N.)

  6. Regulations concerning radiation protection and survey; Donnees de la surveillance et regles qui en resultent en matiere de protection contre les rayonnements

    Duhamel; Lavie; Fitoussi [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The many and always increasing applications of Atomic Energy for peaceful uses set many safety and security problems relatively to the workers, populations, and locating of the sites in general. A comparative study of the radiation hazards to which the people working in the 'Commissariat a l'energie atomique' installations were exposed during 1957 and the results obtained concerning individual and collective safety and security were extremely satisfactory owing to a continuous control and supervision. 2. However a few contamination and irradiation incidents - exposed subsequently as well as the way they were dealt with - show the necessity of a circumstantial regulation inside of an atomic center to establish the responsibility of the service in charge of the control of the radiation and the responsibility of the services using radioactive products with regard to contamination by radioactive materials. 3. Abstract of the different practical safety and security regulations concerning holding, manipulation, transport and stocking of radioactive materials. Pursuant to the recommendations of the International Commission on Radiologic Protection, the radioelements are classified according to the danger that can occur from them in comparison with the Pu with regard to: - radioactive noxiousness; specific activity per unit of mass; contamination hazards. 4. The service in charge of radiation protection plays the important part of a technical adviser for the construction of specialized laboratories and sees to the keeping of protection regulations. 5. Data essential to radiation protection are given to the people using radioactive materials; particularly: - a table of the radioisotopes and the hazards occurring from them; - radiation hazards regarding {gamma} ray emitted by irradiated Pu; - radiation hazards regarding {gamma} ray emitted by irradiated Th. 6. As the hazards occasioned by irradiated uranium have already been studied, the case of a low and

  7. Radiation protection, measurements and methods

    The introductory lectures discuss subjects such as radiation protection principles and appropriate measuring techniques; methods, quantities and units in radiation protection measurement; technical equipment; national and international radiation protection standards. The papers presented at the various sessions deal with: Dosimetry of external radiation (27 papers); Working environment monitoring and emission monitoring (21 contributions); Environmental monitoring (19 papers); Incorporation monitoring (9 papers); Detection limits (4 papers); Non-ionizing radiation, measurement of body dose and biological dosimetry (10 papers). All 94 contributions (lectures, compacts and posters) are retrievable as separate records. (HP)

  8. Occupational radiation protection. Safety guide

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  9. Radiation Protection Infrastructure In Madagascar

    Radiation sources are widely used in medicine, industry, research and education in Madagascar. Safety and security of these sources are the main statutory functions of the Regulatory Authority as defined by the regulations in Radiation Protection in Madagascar. These functions are carried out through the system of notification, authorization and inspection, inventory of radiation source and emergency preparedness. The law no 97-041 on radiation protection and radioactive waste management in Madagascar was promulgated on 2nd January 1998. It governs all activities related to the peaceful use of nuclear energy in Madagascar in order to protect the public, the environment and for the safety of radiation sources. This law complies with the International Basic Safety Standards for protection against ionising Radiation and for the Safety of Radiation Sources (BSS, IAEA Safety Series no 115). Following the promulgation of the law, four decrees have been enacted by the Malagasy Government. With an effective implementation of these decrees, the ANPSR will be the Highest Administrative Authority in the Field of Radiation Protection and Waste Management in Madagascar. This Regulatory Authority is supported by an Executive Secretariat, assisted by the OTR for Radiation Protection and the OCGDR for Managing Radioactive Waste.The paper includes an overview of the regulatory infrastructure and the organizations of radiation protection in Madagascar

  10. Radiation Protection Training in Lithuania

    Jankauskiene, D.

    2003-07-01

    Radiation Protection Training is an important component of Radiation Protection and serves for human radiation safety. According to the Lithuanian Law on Radiation Protection the legal persons and enterprises without the status of legal persons to conduct practices with sources or which workers work under exposure must organize at their own expenses a compulsory training and assessment of knowledge of the workers engaging in activities with the sources and radiation protection officers. Such training has been started in 1999. In Lithuania there are few institutions executing Radiation Protection training. Under requirements of legal act On Frequency and Procedure of Compulsory Training and Assessment Knowledge of the Workers Engage in Activities with the Sources of Ionising Radiation and Radiation Protection Officers these institutions have to prepare and coordinate training programs with the Radiation Protection Center. There are adopted different educating programs for Radiation Protection Training to the Workers and Radiation Protection Officers depending on character of work and danger of sources. The duration of Training is from 30 to 270 hours. The Training shall be renewed every five years passing 30 hors course. To ensure the adequate quality of training a great deal of attention is paid to qualifying the lectures. For this purpose, it was established an Evaluation commission to estimate the adequacy of lecturer's knowledge to requirements of Training programs. After passing exams the lectures get the qualification confirming certificates. The main task of our days is to establish and arrange the National Training Centre on Radiation Protection Training that would satisfy requirements and recommendations of legal documents of IAEA and EU for such kind of institutions of institutions. (Author)

  11. Radiation Protection Training in Lithuania

    Radiation Protection Training is an important component of Radiation Protection and serves for human radiation safety. According to the Lithuanian Law on Radiation Protection the legal persons and enterprises without the status of legal persons to conduct practices with sources or which workers work under exposure must organize at their own expenses a compulsory training and assessment of knowledge of the workers engaging in activities with the sources and radiation protection officers. Such training has been started in 1999. In Lithuania there are few institutions executing Radiation Protection training. Under requirements of legal act On Frequency and Procedure of Compulsory Training and Assessment Knowledge of the Workers Engage in Activities with the Sources of Ionising Radiation and Radiation Protection Officers these institutions have to prepare and coordinate training programs with the Radiation Protection Center. There are adopted different educating programs for Radiation Protection Training to the Workers and Radiation Protection Officers depending on character of work and danger of sources. The duration of Training is from 30 to 270 hours. The Training shall be renewed every five years passing 30 hors course. To ensure the adequate quality of training a great deal of attention is paid to qualifying the lectures. For this purpose, it was established an Evaluation commission to estimate the adequacy of lecturer's knowledge to requirements of Training programs. After passing exams the lectures get the qualification confirming certificates. The main task of our days is to establish and arrange the National Training Centre on Radiation Protection Training that would satisfy requirements and recommendations of legal documents of IAEA and EU for such kind of institutions of institutions. (Author)

  12. Ethical issues in radiation protection

    Persson, Lars (ed.)

    2000-03-15

    Ethical theories are relevant to the current recommendations and standards for radiation protection. Radiation protection is not only a matter for science. It is also a problem of philosophy. In order for protection regulations to be respected, it must correspond to widely accepted ethical values among those who are affected by the regulations. The workshop covered the following issues: Problems in Present Protection Policy, ICRP Protection Policy - A Historical Perspective, Radiation Risk - What we know and what we believe, Present ICRP Recommendations, Ethical Values in the Context of ICRP Recommendations, Collective Responsibility for Invisible Harm, Environmental Protection - Ethical Issues, The Global Change of Values, and Procedural justice and Radiation Protection. Six workshop contributions and a workshop summary are presented in this report.

  13. Ethical issues in radiation protection

    Ethical theories are relevant to the current recommendations and standards for radiation protection. Radiation protection is not only a matter for science. It is also a problem of philosophy. In order for protection regulations to be respected, it must correspond to widely accepted ethical values among those who are affected by the regulations. The workshop covered the following issues: Problems in Present Protection Policy, ICRP Protection Policy - A Historical Perspective, Radiation Risk - What we know and what we believe, Present ICRP Recommendations, Ethical Values in the Context of ICRP Recommendations, Collective Responsibility for Invisible Harm, Environmental Protection - Ethical Issues, The Global Change of Values, and Procedural justice and Radiation Protection. Six workshop contributions and a workshop summary are presented in this report

  14. Mining and radiation protection law

    The following radiation protection recommendations, guidelines and standards under international law must be considered: - ICRP recommendations (in particular no. 24, 26, 32); - IAEA Safety series; - Euratom standards 1980/84. Investigations of the legal position in the Federal Republic of Germany must comprise: - AtG of 1959/1976; - Radiation Protection Ordinance in its wording of 1976 which is in force; - Federal Mining Act of 1980. Since both mining law and radiation protection law are involved, the homogeneity and possible concurrence of operative legal regulations must be investigated. The following problems must be discussed: - scope of application of the Radiation Protection Ordinance and of the Federal Mining Act with respect to the search for, production of, processing and transport, import and export as well as the possession of radioactive minerals; also waste disposal; - terminology, - application of protection regulations of the Radiation Protection Ordinance for mining activities (radiation protection policies, persons responsible for radiation protection, environmental protection, physical control, medical control etc.); - government supervision. (orig./HP)

  15. Ethics in radiation protection

    Ethics is a branch of philosophy. Its object is the study of both moral and immoral behaviour in order to make well founded judgements and to arrive at adequate recommendations. The Collins English Dictionary provides the following definitions of the word ethic: Ethic: a moral principle or set of moral values held by an individual or group; Ethics(singular): the philosophical study of the moral value of human conduct and of the rules and principles that ought to govern it; Ethics(pleural): a social, religious or civil code of behaviour considered correct, especially that of a particular group, profession or individual; Ethics(pleural): the moral fitness of a decision, course of action, etc. Ethics has a two-fold objective: Firstly it evaluates human practices by calling upon moral standards; it may give prescriptive advice on how to act morally in a specific kind of situation. This implies analysis and evaluation. Sometimes this is known as Normative ethics. The second is to provide therapeutic advice, suggesting solutions and policies. It must be based on well-informed opinions and requires a clear understanding of the vital issues. In the medical world, we are governed by the Hippocratic Oath. Essentially this requires medical practitioners (doctors) to do good, not harm. There is great interest and even furore regarding ethics in radiation protection

  16. Obligatory Radiation Protection Course

    SC Unit

    2008-01-01

    Since February 2008, participation in the radiation protection course has been a prerequisite for obtaining a CERN personal dosimeter for all Staff Members and Users. All Staff and Users holding a personal dosimeter were informed by the Bulletin and by a personal e-mail sent in February 2008 that they were required to participate in the course before the annual exchange of their dosimeter. Many people had not done so by that time and the Dosimetry Service exceptionally classified them for 2 months as short-term visitors (VCT), a category of monitored personnel to whom the training requirement does not presently apply. As all personnel concerned have since had time to participate in an RP course, this "grace period" will no longer be granted as of 1 October 2008 and the RP course must be completed before the personal dosimeter is exchanged. For newcomers to CERN, and for those returning to CERN after an absence of more than 1 year, one registration as a VCT for two months ...

  17. Radiation protection in nuclear medicine

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  18. Radiation protection of the patient

    Every irradiation contributes to increasing the risk and cost-benefit considerations went into radiation protection work. The stochastic effect of cancer induction is the main concern in today's work on radiation protection of the patient. In radiation therapy, doses to the target volume (tumour and nearby healthy tissues) are part of the therapy and not a matter of radiation protection; doses to distant organs need, however, to be minimised to reduce the risk of developing radiation induced cancer later in life. The present recommendations by the ICRP are gathered in three publications for patients in diagnostic radiology, radiotherapy and nuclear medicine, respectively. This article discusses some of the social and economical aspects of diagnostic radiology, reviews its biological effects and gives risk estimates according to the ICRP 60. The concepts of radiation protection are also discussed and some of the strategies for dose reduction adopted by the European Union are outlined

  19. Natural radioactivity and radiation protection

    It is one of the most important realizations of Radiation Protection during the past 25 years that additional radiation exposure of man caused by civilisation and industrial development is mostly due to natural radionuclides. The author points out some experiences and problems of importance to Radiation protection with relation to Radon in mining and houses, old uranium mining dumps, balneological application of natural radionuclides, and aviation at great heights. (orig.)

  20. Competence in radiation protection - acquisition, maintaining, extending

    A survey is given on current initiatives, supranational in the EU and national in Germany and Switzerland, for education and training in radiation protection with the aim of maintaining and enlarging professional competence. Successively, individual studying possibilities and courses as well as some experiences with guidelines for professional knowledge in Germany are described. (orig.)

  1. Microdosimetry concepts in radiation protection

    Microdosimetry based on low pressure tissue-equivalent proportional counters is a powerful technique for the determination of micro dosimetric distribution of energy deposition and quality of ionizing radiation. In this paper the basic concepts of micro dosimetry are reviewed and discussed. The emphasis is given to their application for radiation protection of mixed (n,y) radiation field

  2. The Radiation Protection in Guatemala

    A brief account of the activities on radiation safety carried out by the General Directorate of Nuclear Energy of Guatemala in the period 1991-1992 is presented. The activities are reported under organization, activities on occupational radiation protection in medicine, industry and research, personnel monitoring, radiation metrology, regulations and international cooperation are described

  3. European Radiation Protection Course - Basics

    Radiation protection is a major challenge in the industrial applications of ionising radiation, both nuclear and non-nuclear, as well as in other areas such as the medical and research domains. The overall objective of this textbook is to participate to the development of European high-quality scheme and good practices for education and training in radiation protection (RP), coming from the new Council Directive 2013/59/Euratom laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation. These ERPTS (European Radiation Protection Training Scheme) reflects the needs of the Radiation Protection Expert (RPE) and the Radiation Protection Officer (RPO), specifically with respect to the Directive 2013/59/Euratom in all sectors where ionising radiation are applied. To reflect the RPE training scheme, six chapters have been developed in this textbook: Radioactivity and nuclear physics; Interaction of ionising radiation with matter; Dosimetry; Biological effects of ionising radiation; Detection and measurement of ionising radiation; Uses of sources of ionising radiation. The result is a homogeneous textbook, dealing with the ERPTS learning outcomes suggested by ENETRAPII project (European Network on Education and Training in Radiological Protection II) from the 7. Framework Programme. A cyber-book is also part of the whole training material to develop the concept of 'learning more' (http://www.rpe-training.eu). The production of this first module 'basics' training material, in the combined form of a textbook plus a cyber-book as learning tools, will contribute to facilitate mutual recognition and enhanced mobility of these professionals across the European Union. (authors)

  4. Safety Culture on radiation protection

    It can be defined radiation protection culture as the set of technical and social standards applied to the management of the operation of a nuclear facility concerning the reduction of the exposure to radiation of workers and members of the public, together with the behaviour and attitudes of the individuals from the organization towards that objective. Because the basic principles of radiation protection are self-evident and are totally justified, and the thesis drawn from the article is that no effective radiation protection culture yet exists within the organization, it must be concluded that what is wrong from the system are the attitudes and behavior of the individuals. In this article some factors and elements needed to motivate all persons within the organization towards the creation of a radiation protection culture are delineated and presented. (Author)

  5. Biophysical modelling in radiation protection

    Biophysical models have historically provided essential concepts by which risk estimates have been extrapolated from observations in humans and animals to the low radiation levels of prime relevance in radiation protection. But there remain major uncertainties, and modelling has an essential continuing role to reduce these and seek alternative approaches in the light of advancing knowledge. Particularly important are the capabilities of single radiation tracks in cells, and the great differences between radiations, in perturbing biological processes. (author)

  6. An introduction to radiation protection

    Martin, Alan; Beach, Karen; Cole, Peter

    2012-01-01

    The sixth edition of this established text takes the reader through the general background to the subject, the technical principles underlying the control of radiation hazards, radiation detection and measurement and the biological effects of radiation. These are followed by a consideration of radiation protection issues in the nuclear industry, the non-nuclear sector and the medical field. Further specialised topics include risk assessment, waste management and decommissioning, radiological incidents and emergencies, relevant legislation and organizational issues.

  7. Status of radiation protection at different hospitals in Nepal

    Adhikari, Kanchan P.; Jha, L.N.; Galan, Montenegro P.

    2012-01-01

    Nepal has a long history of medical radiology since1923 but unfortunately, we still do not have any Radiation Protection Infrastructure to control the use of ionizing radiations in the various fields. The objective of this study was an assessment of the radiation protection in medical uses of ionizing radiation. Twenty-eight hospitals with diagnostic radiology facility were chosen for this study according to patient loads, equipment and working staffs. Radiation surveys were also done at five...

  8. Radiation control area protection clothes database program

    Radiation protection personnel sets have been classified into a recycle and a disposal by the process of rad-survey and laundry. Most of all, a large number of protection clothes have been accompanied with some difficulties in making an inventory. To improve the problem, we have a plan to employ a database program to keep track of those information such as contamination, inventories, daily logs ets.. We could expect the program to make the process simple as well as promote the radiation safety management work in more effective way

  9. Geothermal energy and radiation protection

    The thermal ground waters used for geothermal energy production contain natural radionuclides. The thereby required radiation protection measures during the operation of a geothermal plant and at the disposal of the resulting radioactive residues are described. (orig.)

  10. Epistemology of radiation protection

    The scientific committee had assess Status of levels, effects and risks of ionizing radiation for General assembly, scientific community and public. The review of levels, sources and exposures. The natural sources of radiation include cosmic rays, terrestrial and artificial sources include medical issues, military activities, civil nuclear power occupational exposure and accidents. The global average exposure is 80% natural source, 20% medical examination 0.2% weapon fallout < 0.1% cherbonyl accidents and < 0.1 nuclear power. The effects of radiation incudes health effects, hereditable effects, bystander effects, and abscopal effects. The randon risks include lancer risk, plant and animal

  11. Radiation protection aspects of calibration laboratory for radiation monitoring instruments

    Radiation sources are widely used in various fields such as Medical, Industrial and Research etc. It is inevitable that radiation exposures will be received by the users of these radiation sources while handling the sources. It is essential to keep these exposures within the prescribed dose limits by the Atomic Energy Regulatory Board (AERB) to safe guard the radiation workers from the hazardous effects of radiation. Hence, the user institutions need to measure the radiation levels in and around the radiation installations using appropriate radiation monitoring instruments. There are several hundreds of Radiation Monitoring Instruments (RMIs) such as hand held radiation survey meters (RSM), area monitors, direct reading dosimeters (DRDs), secondary standard dosimeters (SSD) are being used by radiation facilities. Properly calibrated RMIs will provide the necessary confidence to the users of radiation sources in assessing the hazard potential. Periodic calibration of RMIs is a requirement under the Atomic Energy (Radiation Protection) Rules. As the number of users and in turn RMIs has been continuously increasing, AERB has initiated several regulatory measures in ensuring safe handling of radiation sources as well as establishment of calibration facilities

  12. Radiation protection in nuclear medicine

    Radiation protection in nuclear medicine in this project is concerned with the reduction of doses to workers, patients and members of the public. Protection of workers is achieved by adopting good personal habits, good housekeeping, proper use of personal protective devices and equipment, attend training and have continuous education. Exposure to radiation of workers and the members of the public are minimised by proper management of radioactive waste and safe transport of radioactive material. The design and shielding of a nuclear medicine department shall further provide for the protection of the worker, the patient and the general public. Protection of patient is achieved by justifying the procedure, delivering the minimum radiation dose possible to the patient while obtaining the best image quality and applying guidance levels. Special considerations shall be given to pregnant and breast-feeding patients. Quality assurance programme through image quality, radiopharmaceutical quality and patient records on nuclear medicine procedures shall provide assurance to the patient. (au)

  13. Healing Arts Radiation Protection Act

    The Healing Arts Radiation Protection Act is concerned with regulating the registration, installation, operation, inspection and safety of X-ray machines. The Act provides for the establishment of the Healing Arts Radiation Protection Commission which is responsible for reporting on all the above matters to the Ontario Minister of Health. In addition the board is responsible for the continuing development of an X-ray safety code and for the submission of an annual report of their activities to the minister

  14. Radiation protection in medical applications

    , workers and the public in general, maximizing the quality of the diagnostic information. To achieve this goal, external advise on quality control, radioprotection training, personal monitoring, environmental survey and technical supports must be added to the physician staff. In diagnostic areas, using radiography and computed tomography, the doses of the operators are 2 mSv/yr on average; in mammography and odontology they do not exceed 0.5 mSv/yr; in fluoroscopy they vary between 2 and 4 mSv/yr; in the services of radiotherapy and brachytherapy they vary between 1 and 2 mSv/yr, in spite of the high dose rates present, and finally in nuclear medicine the average doses are 1 mSv/yr. Bearing in mind, that the annual permissible weighed dose is 20 mSv/yr, the value of the dose absorbed by the professional that work in the areas, is optimal. The weak point of radiation protection philosophy in medical applications is in the work of interventional physicians who take part in a lot of angiography procedures for about half and hour with each patient. This staff, have no full time dedication like the radiologist physicians and therefore haven't enough knowledge about the radiations and besides they are outside the personal dosimetry systems. Actually they are the highest risk group among physicians who use ionizing radiations in routine work and to whom the efforts in radio sanitary policies must be directed. (author)

  15. Radiation protection, 1975. Annual EPA review of radiation protection activities

    The EPA, under its Federal Guidance authorities, is responsible for advising the President on all matters pertaining to radiation and, through this mechanism, to provide guidance to other Federal agencies on radiation protection matters. Highlights are presented of significant radiation protection activities of all Federal agencies which were completed in 1975, or in which noteworthy progress was made during that period, and those events affecting members of the public. State or local activities are also presented where the effects of those events may be more far-reaching. At the Federal level significant strides have been made in reducing unnecessary radiation exposure through the efforts of the responsible agencies. These efforts have resulted in the promulgation of certain standards, criteria and guides. Improved control technologies in many areas make it feasible to reduce emissions at a reasonable cost to levels below current standards and guides. This report provides information on the significant activities leading to the establishment of the necessary controls for protection of public health and the environment. Radiation protection activities have been undertaken in other areas such as medical, occupational and consumer product radiation. In the context of radiation protection, ancillary activities are included in this report in order to present a comprehensive overview of the events that took place in 1975 that could have an effect on public health, either directly or indirectly. Reports of routine or continuing radiation protection operations may be found in publications of the sponsoring Federal agencies, as can more detailed information about activities reported in this document. A list of some of these reports is included

  16. Protective prostheses during radiation therapy

    Current applications and complications in the use of radiotherapy for the treatment of oral malignancy are reviewed. Prostheses are used for decreasing radiation to vital structures not involved with the lesion but located in the field of radiation. With a program of oral hygiene and proper dental care, protective prostheses can help decrease greatly the morbidity seen with existing radiotherapy regimens

  17. Radiation protection in pediatric radiology

    The book covers all the basic concepts concerned with minimizing the radiation dose to patients, parents, and personnel, while producing radiographic studies of diagnostic quality. Practical information about tissues at risk, radiation risks specific to children, performance of radiographic and fluoroscopic examination, gonadal protection, pregnancy, immobilization of children, mobile radiography, and equipment considerations including those pertaining to computed tomography and dental radiography are given

  18. Radiation Protection Department. Specific activities

    The Radiation Protection Department is formed of two groups. The physical measurement group is charged with the radioprotection control, radioelement analysis, monitoring the working posts, expertise (accelerators, irradiators, etc), research and development. The dosimetry group is charged with measurements of individual exposure to ionizing radiations, by means of films, dosimeters and FLi

  19. Federal Office for Radiation Protection

    Presented are organization and tasks of the departments of the BfS: 1) Press and Public Information; 2) Self-Surveillance of the Morsleben Repository (ERAM); 3) Quality Assurance Monitoring; 4) Central Department (administration, legal concerns); 5) Department Radiation Hygiene; 6) Department Radiation Protection; 7) Department Nuclear Safety; 8) Department Nuclear Waste Management and Transport. (HP)

  20. Radiation protection training resources guide

    The Guide contains inhouse and externally produced training resurces that are used by DOE contractors in training their employees: e.g., radiation protection technicians, radiation workers, instructors, and first line supervisors. It includes inhouse courses, external resources, training contacts, TRADE activities, and regulations, standards, and guidelines

  1. Chemical protection against ionizing radiation

    Maisin, J. R.

    Some of the problems related to chemical protection against ionizing radiation are discussed with emphasis on : definition, classification, degree of protection, mechanisms of action and toxicity. Results on the biological response modifyers (BRMs) and on the combination of nontoxic (i.e. low) doses of sulphydryl radioprotectors and BRMs are presented.

  2. Radiation protection and health effects

    The use of ionizing radiation in nuclear medicine carries with it a responsibility to both patient and personnel to maximize the diagnostic and therapeutic benefit while minimizing the potential for any adverse health effects. Shortly after the discovery of the x-ray in 1895 the potential for acute health hazards of ionizing radiation became apparent. However, the risks of ionizing radiation were poorly understood and many early users did not believe that anyone could be hurt by something that could not be detected by any of the human senses. Many experiments on the biologic effects of ionizing radiation began in the early 1900s, and the first radiation protection standards were proposed by the British Roentgen Society in 1915. We now realize that these pioneers had a very limited knowledge of the potential hazards and radiation protection principles. Today more scientific data are available on the health effects of, detection of, and protection from ionizing radiation than any other physical agent or chemical known. In addition, use of many forms of ionizing radiation is heavily regulated at both national and state levels. This paper discusses how maternal contamination with radionuclides may cause irradiation of the fetus even if the radionuclide is not transferred across the placenta. This is mostly true for radionuclides that decay yielding relatively penetrating radiations

  3. Proceedings of Asia congress on radiation protection

    203 articles were collected in the proceedings. The contents of the proceedings included the principle and practices of radiation protection, biological effects of radiation, radiation monitoring, protection in medical and other fields, radiation dosimetry, nuclear energy and the environment, natural radiation, radioactive waste management, and other radiation protection issues

  4. Radiation Protection Research: Radiobiology

    The main objectives of research in the field of radiobiology and epidemiology performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to study cancer mortality in nuclear workers in Belgium; to document the feasibility of retrospective cohort studies in Belgium; (2) to participate in the IARC study; (3) to elucidate the molecular basis of the effects of ionising radiation in the mammalian embryo during the early phases of its development; (4) to assess the genetic risk of maternal exposure to ionizing radiation; (5) to elucidate the cellular mechanisms leading to brain damage after prenatal irradiation; (6) to advise authorities and to provide the general population with adequate information concerning the health risk arising from radiation exposure. Progress and major achievements in these topical areas in 1999 are reported

  5. Radiation Protection. Chapter 3

    Medical exposure is the largest human-made source of radiation exposure, accounting for more than 95% of radiation exposure. Furthermore, the use of radiation in medicine continues to increase worldwide — more machines are accessible to more people, the continual development of new technologies and new techniques adds to the range of procedures available in the practice of medicine, and the role of imaging is becoming increasingly important in day to day clinical practice. The introduction of hybrid imaging technologies, such as positron emission tomography/computed tomography (PET/CT) and single photon emission computed tomography (SPECT)/CT, means that the boundaries between traditional nuclear medicine procedures and X ray technologies are becoming blurred. Worldwide, the total number of nuclear medicine examinations is estimated to be about 35 million per year

  6. Radiation Protection Research: Radiobiology

    Desaintes, C

    2000-07-01

    The main objectives of research in the field of radiobiology and epidemiology performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to study cancer mortality in nuclear workers in Belgium; to document the feasibility of retrospective cohort studies in Belgium; (2) to participate in the IARC study; (3) to elucidate the molecular basis of the effects of ionising radiation in the mammalian embryo during the early phases of its development; (4) to assess the genetic risk of maternal exposure to ionizing radiation; (5) to elucidate the cellular mechanisms leading to brain damage after prenatal irradiation; (6) to advise authorities and to provide the general population with adequate information concerning the health risk arising from radiation exposure. Progress and major achievements in these topical areas in 1999 are reported.

  7. Radiation survey meters used for environmental monitoring

    The Nordic dosimetry group set up the GammaRate project to investigate how its expertise could be used to assure appropriate usage of survey meters in environmental monitoring. Considerable expertise in calibrating radiation instruments exists in the Nordic radiation protection authorities. The Swedish, Finnish, Danish and Norwegian authorities operate Secondary Standard Dosimetry Laboratories (SSDLs) that provide users with calibration traceable to internationally recognised primary standards. These authorities together with the Icelandic authorities have formally cooperated since 2002 in the field of radiation dosimetry. Dosimetry is the base for assesment of risk from ionising radiation and calibration of instruments is an imported part in dosimetry. The Nordic dosimetry group has been focused on cancer therapy. This work extends the cooperation to the dosimetry of radiation protection and environmental monitoring. This report contains the formal, theoretical and practical background for survey meter measurements. Nordic standards dosimetry laboratories have the capability to provide traceable calibration of instruments in various types of radiation. To verify and explore this further in radiation protection applications a set of survey instruments were sent between the five Nordic countries and each of the authority asked to provide a calibration coefficient for all instruments. The measurement results were within the stated uncertainties, except for some results from NRPA for the ionchamber based instrument. The comparison was shown to be a valuable tool to harmonize the calibration of radiation protection instruments in the Nordic countries. Dosimetry plays an important role in the emergency situations, and it is clear that better traceability and harmonised common guidelines will improve the emergency preparedness and health. (Author)

  8. Radiation survey meters used for environmental monitoring

    Bjerke, H. (ed.) (Norwegian Radiation Protection Authority, NRPA (Norway)); Sigurdsson, T. (Icelandic Radiation Safety Authority, Geislavarnir Rikisins, GR (IS)); Meier Pedersen, K. (National Board of Health, Statens Institut for Straalebeskyttelse (SIS) (Denmark)); Grindborg, J.-E.; Persson, L. (Swedish Radiation Safety Authority, Straalsaekerhetsmyndigheten (SSM) (Sweden)); Siiskonen, T.; Hakanen, A.; Kosunen, A. (Radiation and Nuclear Safety Authority, Saeteilyturvakeskus (STUK) (Finland))

    2012-01-15

    The Nordic dosimetry group set up the GammaRate project to investigate how its expertise could be used to assure appropriate usage of survey meters in environmental monitoring. Considerable expertise in calibrating radiation instruments exists in the Nordic radiation protection authorities. The Swedish, Finnish, Danish and Norwegian authorities operate Secondary Standard Dosimetry Laboratories (SSDLs) that provide users with calibration traceable to internationally recognised primary standards. These authorities together with the Icelandic authorities have formally cooperated since 2002 in the field of radiation dosimetry. Dosimetry is the base for assesment of risk from ionising radiation and calibration of instruments is an imported part in dosimetry. The Nordic dosimetry group has been focused on cancer therapy. This work extends the cooperation to the dosimetry of radiation protection and environmental monitoring. This report contains the formal, theoretical and practical background for survey meter measurements. Nordic standards dosimetry laboratories have the capability to provide traceable calibration of instruments in various types of radiation. To verify and explore this further in radiation protection applications a set of survey instruments were sent between the five Nordic countries and each of the authority asked to provide a calibration coefficient for all instruments. The measurement results were within the stated uncertainties, except for some results from NRPA for the ionchamber based instrument. The comparison was shown to be a valuable tool to harmonize the calibration of radiation protection instruments in the Nordic countries. Dosimetry plays an important role in the emergency situations, and it is clear that better traceability and harmonised common guidelines will improve the emergency preparedness and health. (Author)

  9. New trends in radiation protection

    The introduction of new concepts such as the effective dose equivalent, the collective dose and the dose commitment, and the application of the basic principles of justification, optimization and individual dose limitation has had a major impact on the planning and implementation of radiation protection during the last few years. The basic principles are summarized in ICRP Publication 26. It is a chalenge to research in radiobiology, genetics and health physics to explore the scientific foundation of the current principles of radiation protection. The most interesting trend to-day, however, is the observation that the principles applied in radiation protection have now been generally recognized and accepted to the extent that they become utilized in the protection of man against non-radioactive carcinogenic substances and environmental pollutants. (author)

  10. Radon, radiation effects and radiation protection

    Epidemiological studies among Rn-exposed miners revealed a significant increase in lung tumour occurrence with increased exposure to radon daughters. Radiation exposure of the lungs also is given through inhalation of Rn-decay products released from the building material of residential houses. The resulting lung cancer risk is one of the major issues of radiation protection of the population. Extensive data collections are available on Rn-concentrations in room air. Building planning and design should make better use of these data, particularly for selection of materials and design of the basement and foundation of buildings, as radon daughters are the major source of radiation exposure of the population. (DG)

  11. Radiation protection in nuclear medicine

    Mattsson, Soeren [Lund Univ., Skane Univ. Hospital Malmoe (Sweden). Medical Radiation Physics; Hoeschen, Christoph (eds.) [Helmholtz Zentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt GmbH, Neuherberg (Germany)

    2013-07-01

    Addresses all aspects of radiation protection in nuclear medicine. Covers current technologies and principles. An ideal textbook for students and a ready source of information for nuclear medicine specialists and medical physics experts. One of a series of three books on the fundamentals of modern nuclear medicine (physics, safety, and imaging). This book explains clearly and in detail all aspects of radiation protection in nuclear medicine. After an introductory chapter on the general role of radiation protection, measurement quantities and units are discussed, and detectors and dosimeters, described. Radiation biology and radiation dosimetry are then addressed, with the inclusion of a chapter specifically devoted to biology and dosimetry for the lens of the eye. Discussion of radiation doses to patients and to embryos, fetuses, and children forms a central part of the book. Phantom models, biokinetic models, calculations, and software solutions are all considered, and a further chapter focuses on quality assurance and reference levels. Occupational exposure also receives detailed attention. Exposure resulting from the production, labeling, and injection of radiopharmaceuticals and from contact with patients is discussed and shielding calculations are explained. The book closes by considering exposure of the public and summarizing the ''rules of thumb'' for radiation protection in nuclear medicine. This is an ideal textbook for students and a ready source of useful information for nuclear medicine specialists and medical physics experts.

  12. Aerial radiation survey

    Aerial gamma spectrometry surveys are the most effective, comprehensive and preferred tool to delimit the large area surface contamination in a radiological emergency either due to a nuclear accident or following a nuclear strike. The airborne survey apart from providing rapid and economical evaluation of ground contamination over large areas due to larger ground clearance and higher speed, is the only technique to overcome difficulties posed by ground surveys of inaccessible region. The aerial survey technique can also be used for searching of lost radioactive sources, tracking of radioactive plume and generation of background data on the Emergency Planning Zone (EPZ) of nuclear installations

  13. Semiconductor spectrometer for radiation protection

    The radiation fields on aircraft board and for other radiation protection application are complexes they contain the particles with energies up to few hundreds MeV. Obviously, one distinguishes the components with low resp. high linear energy transfer (LET). Recently, we have acquired a new measuring instrument, MDU-LIULIN, an energy deposition spectrometer base on a Si-detector. The spectrometer was originally developed and largely tested onboard of cosmic vehicles, its sensitive element is a Si-diode. The spectrometer has been calibrated in photon, neutron and high-energy radiation reference fields (CERN). The energy deposited in the detector by a particle is analysed by a 256-channel spectrum analyser, it permits to distinguish the contribution of different types of radiation to integral dosimetry quantities. The spectrometer has been, since April 2000 used for some radiation protection applications, mostly on aircraft board. Results obtained are presented, discussed and analysed. Materials and methods. (authors)

  14. Biological Research for Radiation Protection

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about ornithine decarboxylase and its controlling proteins, thioredoxin, peroxiredoxin, S-adenosymethionine decarboxylase, and glutamate decarboxylase 67KD effect on the cell death triggered ionizing radiation and H2O2(toxic agents). In this study, to elucidate the role of these proteins in the ionizing radiation (or H2O2)-induced apoptotic cell death, we utilized sensesed (or antisensed) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation and H2O2(or paraquat). We also investigated whether genisteine(or thiamine) may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation (may enhance the preventing effect radiation or paraquat-induced damage) because such compounds are able to potentiate the cell-killing or cell protecting effects. Based on the above result, we suggest that the express regulation of theses genes have potentially importance for sensitizing the efficiency of radiation therapy of cancer or for protecting the radiation-induced damage of normal cells

  15. Biological Research for Radiation Protection

    Kim, In Gyu; Kim, Kug Chan; Jung, Il Lae; Choi, Yong Ho; Kim, Jin Sik; Moon, Myung Sook; Byun, Hee Sun; Phyo, Ki Heon; Kim, Sung Keun

    2005-04-15

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about ornithine decarboxylase and its controlling proteins, thioredoxin, peroxiredoxin, S-adenosymethionine decarboxylase, and glutamate decarboxylase 67KD effect on the cell death triggered ionizing radiation and H{sub 2}O{sub 2}(toxic agents). In this study, to elucidate the role of these proteins in the ionizing radiation (or H{sub 2}O{sub 2})-induced apoptotic cell death, we utilized sensesed (or antisensed) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation and H{sub 2}O{sub 2}(or paraquat). We also investigated whether genisteine(or thiamine) may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation (may enhance the preventing effect radiation or paraquat-induced damage) because such compounds are able to potentiate the cell-killing or cell protecting effects. Based on the above result, we suggest that the express regulation of theses genes have potentially importance for sensitizing the efficiency of radiation therapy of cancer or for protecting the radiation-induced damage of normal cells.

  16. Radiation protection in interventional radiology

    The application of ionizing radiation in medicine seems to be a safe procedure for patients as well as for occupational exposition to personnel. The developments in interventional radiology with fluoroscopy and dose-intensive interventions require intensified radiation protection. It is recommended that all available tools should be used for this purpose. Besides the options for instruments, x-ray protection at the intervention table must be intensively practiced with lead aprons and mounted lead glass. A special focus on eye protection to prevent cataracts is also recommended. The development of cataracts might no longer be deterministic, as confirmed by new data; therefore, the International Commission on Radiological Protection (ICRP) has lowered the threshold dose value for eyes from 150 mSv/year to 20 mSv/year. Measurements show that the new values can be achieved by applying all X-ray protection measures plus lead-containing eyeglasses. (orig.)

  17. Radiation protection Ordinance

    This Ordinance lays down the licensing system for activities in Switzerland involving possible exposure to radiation, with the exception of nuclear installations, fuels and radioactive waste which, under the 1959 Atomic Energy Act, are subject to licensing. The Ordinance applies to the production, handling, use, storage, transport, disposal, import and export of radioactive substances and devices and articles containing them; and generally to any activity involving hazards caused by ionizing radiation. The Federal Public Health Office is the competent authority for granting licences. Provision is also made for the administrative conditions to be complied with for obtaining such licences as well as for technical measures required when engaged in work covered by the Ordinance. This consolidated version of the Ordinance contains all the successive amendments up to 26 September 1988. (NEA)

  18. Problems of radiation protection

    A brief review is presented on the dose-dependent radiation injuries and possibilities of the classical chemical radioprotectors. Data are given on different substances of biological origin, including some natural for the body admixtures with a confirmed radioprotective action: biogenic amines (serotonin, mexamine), adenylic nucleotides, amino acids, polyamines, immunomodulators (bacterial endotoxines), prostaglandins, leucotrienes, antioxidants, vitamines (A, E, B2, B6, P, biotin, flavenoids), natural fats, plant oils and unsaturated fat acids, extracts from green seaweeds and adaptogens. 81 refs

  19. 7. Radiation protection

    The methods are presented of calculations of the dose and dose equivalent and designs are described and calculations given of the shielding for point and non-point gamma radiation sources. Gusev's universal attenuation tables are given. Brief-ly discussed is the shielding of alpha, beta and heavy charged particles. The transport method and the Monte Carlo method for calculations of neutron shielding are explained. (M.D.)

  20. Radiation protection principles of NCRP.

    Kase, Kenneth R

    2004-09-01

    The current recommendations of the National Council on Radiation Protection and Measurements (NCRP) relative to ionizing radiation are based on radiation protection principles that developed historically as information about radiation effects on human populations became available. Because the NCRP Charter states that the NCRP will cooperate with the International Commission on Radiological Protection (ICRP), the basic principles and recommendations for radiation protection of the NCRP are closely coupled with those of the ICRP. Thus, the fundamental principles of justification, optimization, and dose limitation as initially stated in ICRP Publication 26 have been adopted and applied by the NCRP in its recommendations. ICRP and NCRP recommendations on dose limitation for the general public and for occupationally exposed individuals are based on the same analyses of radiation risk, and, while similar, there are differences reflecting the aspects of radiation application and exposure circumstances unique to the United States. The NCRP has recently extended its guidance to address exposure to individuals engaged in space activities. Several reports have been issued or are in preparation to provide recommendations on dose limitation and the development of radiation safety programs to apply the radiation protection principles in space activities. The biological basis for these recommendations is provided in these and accompanying NCRP reports. Recommendations for the application of basic radiation protection principles have been made in many reports over the years. Those that are most current appear in approximately 50 reports published in the last 15 y. These address radiation safety practices in industrial and medical institutions, control of radionuclides in the environment, protection of the public, and assessment of radiation risk. Some of the aspects of these recommendations will be discussed. Current recommendations related to radiation safety practice are based

  1. Indium 111. Radiation protection

    The radiopharmaceutucal 111In-oxine is used in labelling of different blood cells and proteins. Due to its liquid state, there is always a risk for contamination during handling procedures. The aim of the project was to evaluate the contamination risks, when using this radiopharmaceutical. The investigation includes calculations of the absorved dose to the skin after a contamination of 111In-oxine, including the radionuclide impurity 114Inm/114In. Investigations of 288 protection gloves shows that there is always a risk for contamination, when working with 111In-oxine. On the protection gloves, we found activities normally ranging from a 100 Bq up to a few kBq. Noticeable is the contamination on the vials, already before their use. Besides 111 In we found most of the radionuclides used in nuclear medicine, with activities up to tens of kBq. The radionuclide impurity was cleary detectable but below the recommended value. The penetration of 111In-oxine protection gloves of latex was negligible. Measurements of penetration in skin was evaluated with two independent methods; in vivo using a surface barrier detector, and by autoradiography. The measured penetration was less than a few micrometers. Calculation from the experimental contamination values show that the absorbed dose to the basal cell layer could be in order of several Gy. (authors)

  2. Encouraging the radiation protection practice

    The radiological protection of workers occupationally exposed to ionizing radiation (X-ray diagnoses, Nuclear Medicine, Radiotherapy and Dental) is essential to minimize the appearance of radiation effects. The ways to reduce the potential for exposure of workers are: Time, Distance , and Shielding. The most important purpose of radiation protection is to provide safe conditions for activities involving ionizing radiation, basic safety conditions that must be observed in professional practice. The professional must have full knowledge of the subject and deepen in the revision of norms and guidelines related to radiation protection establish by the Vigilancia Sanitaria - ANVISA, and Comissao Nacional de Energia Nuclear - CNEN, Brazil. The study was conducted in a technical school for the Technical Training Course in Radiology, where the students are invited to think deeply about the radiation protection of themselves, the patients and the environment. Developed since July 2012, with the participation of 30 students, with a leading class -three teachers assisting in the development of the project . With this project there was an awareness of both students, as instructors stage accompanying the daily lives of students and their own colleagues. Following the same objective in 2013 the project continues with more adept at radioprotection

  3. Actual global problems of radiation protection

    Personal views on some actual problems in radiation protection are given in this paper. Among these problems are: evolution methodology used in radiation protection regulations; radiation protection, nuclear energy and safety, and new approaches to the process of the hazardous substances management. An interesting fact relating to the X-ray, radiation protection and Nikola Tesla are given also. (author)

  4. 78 FR 59982 - Revisions to Radiation Protection

    2013-09-30

    ... COMMISSION Revisions to Radiation Protection AGENCY: Nuclear Regulatory Commission. ACTION: Standard review..., ``Radiation Protection Design Features,'' and Section 12.5, ``Operational Radiation Protection Program..., ``Radiation Protection Design Features,'' (ADAMS Accession No. ML13151A475); and Section 12.5,...

  5. Radiation protection for human population

    Are given the results of researches carried out in Belarus in 1996 on the following directions: study of features of formation of the population irradiation doze; definition of collective irradiation dozes of the population of Belarus for 10 years after the Chernobyl accident and forecast of risk of radiation induced diseases; study of influence of the radioactive contamination on agricultural ecosystems; development of technologies of manufacture on the contaminated soils of plant and cattle-breeding production and food products with the permissible contents of radionuclides in according to the requirements of radiation protection; development and perfection of complex technologies, ways and means of decontamination, processing and burial of radioactive wastes; development and substantiation of actions for increase of radiation security of the population of Belarus; development of combined system of an estimation on problems of radiation protection of the population living on contaminated territories

  6. Radiation protection/shield design

    Radiation protection/shielding design of a nuclear facility requires a coordinated effort of many engineering disciplines to meet the requirements imposed by regulations. In the following discussion, the system approach to Clinch River Breeder Reactor Plant (CRBRP) radiation protection will be described, and the program developed to implement this approach will be defined. In addition, the principal shielding design problems of LMFBR nuclear reactor systems will be discussed in realtion to LWR nuclear reactor system shielding designs. The methodology used to analyze these problems in the U.S. LMFBR program, the resultant design solutions, and the experimental verification of these designs and/or methods will be discussed. (orig.)

  7. 1993 Radiation Protection Workshop: Proceedings

    The 1993 DOE Radiation Protection Workshop was conducted from April 13 through 15, 1993 in Las Vegas, Nevada. Over 400 Department of Energy Headquarters and Field personnel and contractors from the DOE radiological protection community attended the Workshop. Forty-nine papers were presented in eleven separate sessions: Radiological Control Manual Implementation, New Approaches to Instrumentation and Calibration, Radiological Training Programs and Initiatives, External Dosimetry, Internal Dosimetry, Radiation Exposure Reporting and Recordkeeping, Air Sampling and Monitoring Issues, Decontamination and Decommissioning of Sites, Contamination Monitoring and Control, ALARA/Radiological Engineering, and Current and Future Health Physics Research. Individual papers are indexed separately on the database

  8. 1993 Radiation Protection Workshop: Proceedings

    1993-12-31

    The 1993 DOE Radiation Protection Workshop was conducted from April 13 through 15, 1993 in Las Vegas, Nevada. Over 400 Department of Energy Headquarters and Field personnel and contractors from the DOE radiological protection community attended the Workshop. Forty-nine papers were presented in eleven separate sessions: Radiological Control Manual Implementation, New Approaches to Instrumentation and Calibration, Radiological Training Programs and Initiatives, External Dosimetry, Internal Dosimetry, Radiation Exposure Reporting and Recordkeeping, Air Sampling and Monitoring Issues, Decontamination and Decommissioning of Sites, Contamination Monitoring and Control, ALARA/Radiological Engineering, and Current and Future Health Physics Research. Individual papers are indexed separately on the database.

  9. Nordic society for radiation protection

    The key themes of teh 12th ordinary general meeting of the Nordic Society for Radiation Protection were: RADIATION - ENVIRONMENT - INFORMATION. A number of outstanding international experts accepted to contribute on the meetings first day with invited presentations, which focussed on these themes. In all 38 oral presentations and 28 posters are included in the present Proceedings, which furthermore contains a resume of discussions from the special session on 'Controllable Dose'. (EHS)

  10. Course on radiation protection: technical level

    The course handbook on radiation protection, technical level, prepared by scientists of the Nuclear Regulatory Authority (ARN) of the Argentina Republic, describes the subjects in 22 chapters and 5 annexes. These topics detailed in the text have the following aspects: radioactivity elements, interaction of the radiation and the matter, radio dosimetry, internal contamination dosimetry, principles of radiation detection, biological radiation effects, fundamentals of radiation protection, dose limits, optimization, radiation protection and its organization, radioprotection to the public, radiation protection fundamentals for interventions, radiation shielding, contamination protection systems, radioactive waste management, criticality accidents, safe transport of radioactive materials, X-rays, regulatory aspects, industrial and medical applications of radiation, quality systems

  11. ICRP-Radiation protection principles and practice

    A brief survey is given of the history of ICRP, its basic standards and recommendations and their rationale, from its foundation in 1928 to the latest major review of its recommendation in 1977. In this time the basic radiation standard for whole body irradiation of a radiation worker has dropped from the equivalent of 50 r per year (in 1934) through 15 rem per year (1954) to 5 rem per year in 1958. ICRP recommendations include maximum permissible doses for particular organs and a comprehensive list of derived limits governing the intake of radionuclides into the body, and dose limits for members of the public. Emphasis in current radiation protection practice is on avoiding all unnecessary exposures and keeping doses as far below dose limits as is reasonably achievable. The use of cost-benefit analysis to optimize protection and some of its inherent difficulties, is discussed

  12. Radiation protection training and education in Europe; Strahlenschutzausbildung in Europa

    Boersma, Hielke Freerk [Groningen Univ. (Netherlands). Office of the Univ. Health, Safety and Environment; Ham, Ulla [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany); Holl, Matthias [Strahlenschutzschulung, Andernach (Germany); Jahn, Swen-Gunnar [Eidgenoessisches Nuklearsicherheitsinspektorat (ENSI), Villigen (Switzerland); Neuwirth, Johannes [Seibersdorf Laboratories (Austria); Schmitt-Hannig, Annemarie [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany). Fachbereich Strahlenschutz und Gesundheit; Schoenhacker, Stefan [Bundesministerium fuer Inneres, Traiskirchen (Austria). Abt. 1/9 - Zivilschutzschule; Vahlbruch, Jan-Willem [Leibniz Univ. Hannover (Germany). Inst. fuer Radiooekologie und Strahlenschutz (IRS)

    2013-09-01

    First, a comprehensive survey is given on the development and the present situation of radiation protection education and training, followed by exemplary reports from the individual countries Germany, Switzerland, Austria and the Netherlands. (orig.)

  13. Antioxidants and biological radiation protection

    Antioxidants and antioxidant enzymes, by combatting oxygen radical-mediated radiation-induced oxidative stress, may prevent the accumulation of damage involved in tumor initiation, promotion and progression, and thus serve to protect us against ionizing radiation. We are testing the possible role of dietary antioxidants, and other biological response modifiers, in determining individual radiation response. These experiments use the fluorescent protein beta-phycoerythrin as a target and biomolecular marker for radiation-induced oxidative stress. Antioxidants are ranked according to their radioprotectiveness by their ability to compete with beta-phycoerythrin for radiolytic oxygen radicals. Samples of blood serum from cancer patients have been analyzed using this technique. There is a trend towards decreasing antioxidant levels with increasing donor age, and this is consistent with data showing an increasing radiosensitivity with age. We are presently monitoring antioxidant and antioxidant enzyme levels in atomic radiation workers and the general public, in order to assess whether they influence individual radiosensitivity. Knowledge of this source of biological response modification will be useful in applying radiation protection practices to those individuals or groups most at risk, and for estimating individual risks associated with radiation exposure. (author)

  14. Antioxidants and biological radiation protection

    Lenten, K.J.; Greenstock, C.L. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    1998-07-01

    Antioxidants and antioxidant enzymes, by combatting oxygen radical-mediated radiation-induced oxidative stress, may prevent the accumulation of damage involved in tumor initiation, promotion and progression, and thus serve to protect us against ionizing radiation. We are testing the possible role of dietary antioxidants, and other biological response modifiers, in determining individual radiation response. These experiments use the fluorescent protein beta-phycoerythrin as a target and biomolecular marker for radiation-induced oxidative stress. Antioxidants are ranked according to their radioprotectiveness by their ability to compete with beta-phycoerythrin for radiolytic oxygen radicals. Samples of blood serum from cancer patients have been analyzed using this technique. There is a trend towards decreasing antioxidant levels with increasing donor age, and this is consistent with data showing an increasing radiosensitivity with age. We are presently monitoring antioxidant and antioxidant enzyme levels in atomic radiation workers and the general public, in order to assess whether they influence individual radiosensitivity. Knowledge of this source of biological response modification will be useful in applying radiation protection practices to those individuals or groups most at risk, and for estimating individual risks associated with radiation exposure. (author)

  15. XXX. Days of Radiation Protection. Conference Proceedings of the 30-th Days of Radiation Protection

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 107 papers are published. The Conference consists of following sections: Effects of ionizing radiation; Regulation of radiation protection; Dosimetry and Metrology of ionizing radiation; Radiation protection in nuclear Power plants; Medical exposure and radiation protection in diagnostic radiology, nuclear medicine and radiation oncology; Natural radioactivity issues in radiation protection; Education, societal aspects and public involvement in radiation protection, trends and perspectives

  16. Radiation protection in technical radiography

    In on-site inspections, e.g. double-plate radiography of circumferential pipe welds Ir-192 is most frequently used. Methods, controlled area, possible personnel doses, and radiation protection measures for the inspection and construction personnel are briefly discussed. (HP)

  17. [Radiation protection in interventional cardiology].

    Durán, Ariel

    2015-01-01

    INTERVENTIONAL: cardiology progress makes each year a greater number of procedures and increasing complexity with a very good success rate. The problem is that this progress brings greater dose of radiation not only for the patient but to occupationally exposed workers as well. Simple methods for reducing or minimizing occupational radiation dose include: minimizing fluoroscopy time and the number of acquired images; using available patient dose reduction technologies; using good imaging-chain geometry; collimating; avoiding high-scatter areas; using protective shielding; using imaging equipment whose performance is controlled through a quality assurance programme; and wearing personal dosimeters so that you know your dose. Effective use of these methods requires both appropriate education and training in radiation protection for all interventional cardiology personnel, and the availability and use of appropriate protective tools and equipment. Regular review and investigation of personnel monitoring results, accompanied as appropriate by changes in how procedures are performed and equipment used, will ensure continual improvement in the practice of radiation protection in the interventional suite. PMID:26169040

  18. Radiation protection in veterinary radiology

    This Code of Practice is designed to give guidance to veterinary surgeons in ensuring that workers and members of the public are adequately protected from the hazards of ionising radiation arising from the use of x-ray equipment in veterinary practice. (author)

  19. Chemical protection against ionizing radiation

    Over 40 years have passed since the research of the Manhattan Project suggested the possibility of chemical protection against ionizing radiation. During that time, much has been learned about the nature of radiation-induced injury and the factors governing the expression of that injury. Thousands of compounds have been tested for radioprotective efficacy, and numerous theories have been proposed to account for these actions. The literature on chemical radioprotection is large. In this article, the authors consider several of the mechanisms by which chemicals may protect against radiation injury. They have chosen to accent this view of radioprotector research as opposed to that research geared toward developing specific molecules as protective agents because they feel that such an approach is more beneficial in stimulating research of general applicability. This paper describes the matrix of biological factors upon which an exogenous radioprotector is superimposed, and examines evidence for and against various mechanisms by which these agents may protect biological systems against ionizing radiation. It concludes with a brief outlook for research in chemical radioprotection

  20. Radiation protection in veterinary medicine

    Diagnostic radiology is an essential part of present-day veterinary practice. The need for radiation protection exists because occupational exposure to ionizing radiation can result in deleterious effects that may manifest themselves not only in exposed individuals but in their descendants as well. These are respectively called somatic and genetic effects. Somatic effects are characterized by observable changes occurring in the body organs of the exposed individual. These changes may appear from within a few hours to many years later, depending on the amount and duration of exposure of the individual. In veterinary medicine, the possibility that anyone may be exposed to enough radiation to create somatic effect is extremely remote. Genetic effects are more a cause for concern at the lower doses used in veterinary radiology. Although the radiation doses may be small and appear to cause no observable damage, the probability of chromosomal damage in the germ cells, with the consequence of mutations, does exist. These mutations may give rise to genetic defects and therefore make these doses significant when applied to a large number of individuals. There are two main aspects of the problem to be considered. First, personnel working with X-ray equipment must be protected from excessive exposure to radiation during their work. Secondly, personnel in the vicinity of veterinary X-ray facilities and the general public require adequate protection

  1. Mining and radiation protection law

    The article deals with the hazards of ionising radiation in the mining sector for the mining employees, the neighbouring population and the environment, with regard to prospecting, mining and processing radioactive ores. Due attention must also be paid to stockpiles, radioactive waste and imports of radioactive minerals. International radiation protection laws are to be applied on the basis of Euratom, IAEA, OECP/NEA and ICRP. The national law to be applied is Basic Law, Atomic Energy Law, and the Radiation Protection Ordinance of 1976. This law includes all activities having to do with mining of radioactive minerals, transport, imports and exports and waste management. Last not least, questions concerning the supervision carried out by the state and the administration are dealt with. (HSCH)

  2. Radiation protection standards in space

    Sinclair, Warren K.

    Radiation protection standards for the individual exposed to ionizing radiation in his/her daily work have evolved over more than 50 years since the first recommendations on limits by the NCRP and the ICRP. Initial standards were based on the absence of observable harm, notably skin erythema, but have since been modified as other concerns, such as leukemia and genetic effects, became more important. More recently, the general carcinogenic effect of radiation has become the principal concern at low doses. Genetic effects are also of concern in the younger individual. Modern radiation protection practices take both of these risks into account. Quantification of these risks improves as new information emerges. The study of the Japanese survivors of the atomic bombs continues to yield new information and the recent revisions in the dosimetry are about to be completed. The special circumstances of space travel suggest approaches to limits not unlike those for radiation workers on the ground. One approach is to derive a career limit based on the risks of accident faced by many nonradiation workers in a lifetime. The career limit can be apportioned according to the type of mission. The NCRP is considering this and other approaches to the specification of radiation standards in space.

  3. Environmental damage valuation as radiation protection tool

    Environmental radiation protection procedures do not have global consensus. Aiming the development of consensus mechanisms to guide environmental radiation protection procedures, it appears that the approaches used by non-radioactive environmental protection are very promising. Among these approaches, environmental valuation procedures are commonly employed, and are very proper for environmental radiation protection. (author)

  4. 78 FR 5813 - 2013 Assuring Radiation Protection

    2013-01-28

    ... HUMAN SERVICES Food and Drug Administration 2013 Assuring Radiation Protection AGENCY: Food and Drug... protection program. The goal of the 2013 Assuring Radiation Protection will be to coordinate Federal, State... radiation protection. The recipient will establish committees, in accordance with Federal statutes...

  5. Environmental damage valuation as radiation protection tool

    Environmental radiation protection procedures do not have global consensus. In researching mechanisms to guide environmental radiation protection procedures consensus searching, the approaches used by non-radioactive environmental protection are very promising. Among the approaches, environmental valuation procedures are commonly employed, and are very proper for environmental radiation protection. (author)

  6. Future of Radiation Protection Regulations.

    Doss, Mohan

    2016-03-01

    THERE IS considerable disagreement in the scientific community regarding the carcinogenicity of low-dose radiation (LDR), with publications supporting opposing points of view. However, major flaws have been identified in many of the publications claiming increased cancer risk from LDR. The data generally recognized as the most important for assessing radiation effects in humans, the atomic bomb survivor data, are often cited to raise LDR cancer concerns. However, these data no longer support the linear no-threshold (LNT) model after the 2012 update but are consistent with radiation hormesis. Thus, a resolution of the controversy regarding the carcinogenicity of LDR appears to be imminent, with the rejection of the LNT model and acceptance of radiation hormesis. Hence, for setting radiation protection regulations, an alternative approach to the present one based on the LNT model is needed. One approach would be to determine the threshold dose for the carcinogenic effect of radiation from existing data and establish regulations to ensure radiation doses are kept well below the threshold dose. This can be done by setting dose guidelines specifying safe levels of radiation doses, with the requirement that these safe levels, referred to as guidance levels, not be exceeded significantly. Using this approach, a dose guidance level of 10 cGy for acute radiation exposures and 10 cGy y for exposures over extended periods of time are recommended. The concept of keeping doses as low as reasonably achievable, known as ALARA, would no longer be required for low-level radiation exposures not expected to exceed the dose guidance levels significantly. These regulations would facilitate studies using LDR for prevention and treatment of diseases. Results from such studies would be helpful in refining dose guidance levels. The dose guidance levels would be the same for the public and radiation workers to ensure everyone's safety. PMID:26808881

  7. Assessment of radiation protection practices among radiographers in Lagos, Nigeria

    Cletus Uche Eze; Livinus Chibuzo Abonyi; Jerome Njoku; Nicholas Kayode Irurhe; Oluwabola Olowu

    2013-01-01

    Background: Use of ionising radiation in diagnostic radiography could lead to hazards such as somatic and genetic damages. Compliance to safe work and radiation protection practices could mitigate such risks. The aim of the study was to assess the knowledge and radiation protection practices among radiographers in Lagos, Nigeria. Materials and Methods: The study was a prospective cross sectional survey. Convenience sampling technique was used to select four x-ray diagnostic centres in four te...

  8. Radiation Protection Services Division: progress report for 1992-1993

    This report describes the work of the Radiation Protection Services Division during 1993, for implementation of radiation safety in all institutions in India using radiation sources in medical, industrial and research applications. It gives information about personnel monitoring using photographic film and TLD badges, neutron monitoring badges, advisory and licensing services, regulation, transport of radioactive materials and periodic protection survey. About 33 publications by the staff of the Division are also listed. (author). 4 tabs

  9. Radiation protection at new reactors

    Brissaud, A. [EDF INDUSTRY, Basic Design Department, EDF-SEPTEN, VILLEURBANNE Cedex (France)

    2000-05-01

    The theoritical knowledge and the feedback of operating experience concerning radiations in reactors is now considerable. It is available to the designer in the form of predictive softwares and data bases. Thus, it is possible to include the radiation protection component throughout all the design process. In France, the existing reactors have not been designed with quantified radiation protection targets, although considerable efforts have been made to reduce sources of radiation illustrated by the decrease of the average dose rates (typically a factor 5 between the first 900 MWe and the last 1300 MWe units). The EDF ALARA PROJECT has demonstrated that good practises, radiation protection awareness, careful work organization had a strong impact on operation and maintenance work volume. A decrease of the average collective dose by a factor 2 has been achieved without noticeable modifications of the units. In the case of new nuclear facilities projects (reactor, intermediate storage facility,...), or special operations (such as steam generator replacement), quantified radiation protection targets are included in terms of collective and average individual doses within the frame of a general optimization scheme. The target values by themselves are less important than the application of an optimization process throughout the design. This is because the optimization process requires to address all the components of the dose, particularly the work volume for operation and maintenance. A careful study of this parameter contributes to the economy of the project (suppression of unecessary tasks, time-saving ergonomy of work sites). This optimization process is currently applied to the design of the EPR. General radiation protection provisions have been addressed during the basic design phase by applying general rules aiming at the reduction of sources and dose rates. The basic design optimization phase has mainly dealt with the possibility to access the containment at full

  10. Training courses on radiation protection

    Many Member States are developing or already have developed their own national training programmes. The IAEA is actively involved in promoting training in radiological protection, and this report has been prepared to provide the guidance that may be required in this development. The original version of the report on this subject was published in 1964 as Technical Reports Series No. 31 entitled ''Training in Radiological Protection: Curricula and Programming''. In 1975 a second version was published entitled ''Training in Radiological Protection for Nuclear Programmes'' as Technical Reports Series No. 166. This publication is intended mainly for use by persons who are responsible for organizing training programmes in radiation protection. It also reflects the policy of the Agency to have continuing standardized training in radiation protection. In addition to a small change in the title of the report, some concepts and ideas which are no longer applicable have been omitted and new information included. An important part of this report is the list of courses now offered in many Member States

  11. Radiation Protection in Paediatric Radiology

    Over the past decade and a half, special issues have arisen regarding the protection of children undergoing radiological examinations. These issues have come to the consciousness of a gradually widening group of concerned professionals and the public, largely because of the natural instinct to protect children from unnecessary harm. Some tissues in children are more sensitive to radiation and children have a long life expectancy, during which significant pathology can emerge. The instinct to protect children has received further impetus from the level of professional and public concern articulated in the wake of media responses to certain publications in the professional literature. Many institutions have highlighted the need to pay particular attention to the special problems of protecting paediatric patients. The International Commission on Radiological Protection has noted it and the IAEA's General Safety Requirements publication, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards (BSS), requires it. This need has been endorsed implicitly in the advisory material on paediatric computed tomography scanning issued by bodies such as the US Food and Drug Administration and the National Cancer Institute in the United States of America, as well as by many initiatives taken by other national and regional radiological societies and professional bodies. A major part of patient exposure, in general, and paediatric exposure, in particular, now arises from practices that barely existed two decades ago. For practitioners and regulators, it is evident that this innovation has been driven both by the imaging industry and by an ever increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practice lag (inevitably) behind industrial and clinical innovations. This Safety Report is designed to consolidate and provide timely advice on

  12. Radiation protection dosimetry and calibrations

    At the SCK-CEN different specialised services are delivered for a whole range of external and internal customers in the radiation protection area. For the expertise group of radiation protection dosimetry and calibrations, these services are organized in four different laboratories: dosimetry, anthropogammametry, nuclear calibrations and non-nuclear calibrations. The services are given by a dedicated technical staff who has experience in the handling of routine and specialised cases. The scientific research that is performed by the expertise group makes sure that state-of-the-art techniques are being used, and that constant improvements and developments are implemented. Quality Assurance is an important aspect for the different services, and accreditation according national and international standards is achieved for all laboratories

  13. Chemical radioprotectors in radiation protection

    The different demands for the ways of the administration of chemical radioprotectors as a cystamine or WR-2721 (amifostine, gammaphos, Ethyol) e.g. S-containing compounds, their distribution and further pharmacological properties of protective agents in mentioned indications are discussed in presented lecture. A special attention is concerned on the practical use of chemical radioprotectors in the emergency and clean-up workers after a radiation accident or nuclear catastrophes. (author)

  14. Ethical aspects of radiation protection

    The conflicting interests of technology and mostly prevent technicians and scientists from orientating themselves by clearly formulated rules of ethical acting. The many attempts which have been made therefore at introducing a binding 'Hippocratic oath' failed without exception. Based on many years of experience the author tries to derive some simple ethical principles from the maxims of action which apply to radiation protection, thus contributing a new aspect to the ethics discussion. (orig.)

  15. Protection against radiations. EURATOM directive

    This directive gives the general principles of the protection of persons against ionizing radiations during medical exposures in following cases: exposure of patients in a diagnosis or therapy purpose, exposure in the field of professional medical surveillance, exposure in the case of medical screening programs, exposure of sane volunteer persons in the frame of medical research, exposure of persons in the case of medico-legal proceeding. (N.C.)

  16. Workstations studies and radiation protection

    This day on the workstations studies for the workers follow-up, was organised by the research and health section. Devoted to the company doctors, for the competent persons in radiation protection, for the engineers of safety, it presented examples of methodologies and applications in the medical, industrial domain and the research, so contributing to a better understanding and an application of regulatory measures. The analysis of the workstation has to allow a reduction of the exposures and the risks and lead to the optimization of the medical follow-up. The agenda of this day included the different subjects as follow: evolution of the regulation in matter of demarcation of the regulated zones where the measures of workers protection are strengthened; presentation of the I.R.S.N. guide of help to the realization of a workstation study; implementation of a workstation study: case of radiology; the workstation studies in the research area; Is it necessary to impose the operational dosimetry in the services of radiodiagnostic? The experience feedback of a competent person in radiation protection (P.C.R.) in a hospital environment; radiation protection: elaboration of a good practices guide in medical field; the activities file in nuclear power plant: an evaluation tool of risks for the prevention. Methodological presentation and examples; insulated workstation study; the experience feedback of a provider; Contribution of the ergonomics to the determiners characterization in the ionizing radiation exposure situations;The workstations studies for the internal contamination in the fuel cycle facilities and the consideration of the results in the medical follow-up; R.E.L.I.R. necessity of workstation studies; the consideration of the human factor. (N.C.)

  17. Excellence through radiation protection practices

    The nuclear generation program at Ontario Hydro was initiated in the early 1960s. Over the last two decades the program has expanded to a planned capacity of ∼ 14,000 MW(electric) by 1992. Each of the nuclear stations consists of four identical reactor units and they range in size from 520 to 880 MW(electric). The overall objectives of Ontario Hydro's radiation protection program are stated as follows: (1) to prevent detrimental nonstochastic health effects to employees and the public; (2) to limit detrimental stochastic health effects occurring in employees or the public to levels as low as reasonably achievable (ALARA), social and economic factors being taken into account; and (3) to provide a level of health and safety that is as good as, or better than, comparable safe industries. Although many elements of the radiation protection program are similar to those adopted by other electrical utilities around the world, there are some unique features that have played an important part in the improvements achieved. These include: management commitment, design responsibility, radiation protection training, operations control, and work planning. The issues that need to be addressed in striving for overall excellence in radiological safety over the next decade are summarized

  18. Radiation Protection Legislation in the Nordic Countries

    Recent alterations in the radiation protection laws of the Nordic countries are presented. The report amends the previous SS-report 87-37 with the title Radiation Protection and Atomic Energy Legislation in the Nordic Countries. (au)

  19. New Radiation Protection training room

    HSE Unit

    2013-01-01

    From now on, the theory and practical components of the Radiation Protection training, developed by the RP Group and offered by the HSE Unit’s Safety Training team to people working in a Controlled Radiation Area, will take place in a dedicated teaching room, designed specifically for this kind of training.   The new room is in the Safety Training Centre on the Prévessin site and has been open since 16 October. It has an adjoining workshop that, like the room itself, can accommodate up to 12 people. It is also equipped with an interactive board as well as instruments and detectors to test for ionising radiation. This room is located near the recently inaugurated LHC tunnel mock-up where practical training exercises can be carried out in conditions almost identical to those in the real tunnel. To consult the safety training catalogue and/or sign up for Radiation Protection training, please go to: https://cta.cern.ch For further information, please contact the Safety Trainin...

  20. Regulation on expert knowledge in radiation protection

    The regulation is to be applied to licenses according to paragraphs 3, 15, 16, 20, 20a of the Radiation Protection Law, paragraphs 6, 7, 9 of the Atomic Law, to notices according to paragraphs 4, 17 of the Radiation Protection Law as well as in the prospecting, mining and processing of radioactive minerals. It regulates the extent and evidence of the special knowledge required for radiation protection of radiological safety officers and personnel responsible for radiation protection. (orig./HP)

  1. State Supervision and Control of Radiation Protection

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 1999-2001 is presented

  2. State Radiation Protection Supervision and Control

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 2002 is presented

  3. An introduction to radiation protection principles

    The purpose of the document is to outline the fundamentals of radiation protection, to describe methods that enable employees to work safely with radiation and to aquaint employees with CRNL's radiation and industrial safety organization

  4. Radiation protection enrollments and degrees, 1981

    This report presents data on the number of students enrolled and the degrees awarded in academic year 1980-81 from 61 U.S. universities offering degree programs in radiation protection or related areas that would enable students to work in the health physics field. The report includes historical survey data for the last decade and provides information such as trends by degree level, foreign national student participation, female and minority student participation, and placement of graduates. Also included is a listing of the universities by type of program and number of students

  5. Operational radiation protection: A guide to optimization

    The purpose of this publication is to provide practical guidance on the application of the dose limitation system contained in the Basic Safety Standards for Radiation Protection to operational situations both in large nuclear installations and in much smaller facilities. It is anticipated that this Guide will be useful to both the management and radiation protection staff of operations in which there is a potential for occupational radiation exposures and to the competent authorities with responsibilities for providing a programme of regulatory control. Contents: Dose limitation system; Optimization and its practical application to operational radiation protection; Major elements of an effective operational radiation protection programme; Review of selected parts of the basic safety standards with special reference to operational radiation protection; Optimization of radiation protection; Techniques for the systematic appraisal of operational radiation protection programmes. Refs and figs

  6. Radiation protection - radiographer's role and responsibilities

    Ever since discovery of x-rays, radiographers has been the prime user of radiation. With the passage of time, the harmful effects of radiation were detected. Some of radiographers, radiologists and public were affected by radiation, but today with enough knowledge of radiation, the prime responsibility of radiation protection lies with the radiographers only. The radiologist and physicist are also associated with radiation protection to some extent

  7. Radiation protection, dosimetry and archaeometry

    The activities performed by the radiation protection, dosimetry and archeometry group of the Atomic Institute of the Austrian Universities during 1999-2001 are briefly described, they include: internal radiation protection (a pilot project based on select x-ray diagnostics investigations where the surface dose was measured and compared against the EU standards), dose rates for patients and personnel during radiological check up, environmental monitoring. In the field of dosimetry, a new dosimeter material (CaF2:Tm was investigated), an active and a passive Bonner-Kugel-spectrometer to measure the neutron spectrum and their dose at high altitudes was built. In the project phantom during 600 days the energy distribution and equivalent dose in a human phantom was measured. Dosimetry and spectrometry (neutrons) on high mountains and airplanes were performed. Earlier cells apoptosis after irradiation with 60Co gamma radiation and neutrons was investigated and age estimation was performed on samples from middle Neolithic period, Bronze age an Roman empire. (nevyjel)

  8. Patient Radiation Protection in Radiotherapy

    The Role of Radiotherapy is treatment modalities for cancer which is generally assumed that 50 to 60% of cancer patients will benefit from radiotherapy. It constitutes a peaceful application of ionizing radiation and an essential part of cancer management. The two aims of radiation protection Prevention is of deterministic effect and Reduction of the probability of stochastic effects. The Shielding fundamentals is to limit radiation exposure of staff, patients, visitors and the public to acceptable levels it also optimize protection of patients, staff and the public. Diagnosis is important for target design and the dose required for cure or palliation while Simulator is often used twice in the radiotherapy process where Patient data acquisition - target localization, contours, outlines and Verification. The Prescription is the responsibility of individual clinicians, depending on the patient’s condition, equipment available, experience and training. An ultimate check of the actual treatment given can only be made by using in vivo dosimetry. Treatment records must be kept of all relevant aspects of the treatment – including Session and Summary Record information, Records all treatment parameters, Dose Calculations and Dose Measurements

  9. Radiation protection enrollments and degrees, 1979 and 1980

    Public concern over the effects of low-level radiation and other aspects of the use of nuclear energy has grown in recent years, and the demand for radiation protection has continued to increase. Radiation Protection Enrollments and Degrees presents the results of the latest survey of institutions offering degree programs in this field. Students obtaining such degrees are vital to the development of industry, medicine, research, power production, construction, and agriculture. These surveys assist state and federal governments in their search for such personnel

  10. Radiation protection problems with dental radiological equipment

    With the advent of the EC Patient Directive, the importance of surveying and optimising patient exposure for diagnostic imaging procedures is paramount. In the field of dentistry there has been a heightened interest in areas of equipment performance and patient exposure. This interest, coupled with a number of dental radiation safety incidents investigated by our department, and the issuing of a Code of Practice for Radiological Protection in Dentistry by the Department of Health, led to the establishment in our department, of an evaluation protocol for the performance and operation of dental X ray equipment. The protocol was used to perform a survey on over 100 dental X ray units in use in the Public Sector in Ireland. This presentation will report on the radiation incidents mentioned above. It will detail the protocol and furnish the results and conclusions of the survey. The survey has made it possible to establish clearly the necessary steps required to ensure compliance with requirements. In addition, the corrective steps taken by the dental authorities will be presented and the overall impact of the regulations and the programme consequent on them will be reviewed. (Author)

  11. Radiation protection in hospitals of Equatorial Guinea

    With a population of four hundred thousand (400.000) inhabitants and distributed in a territory of 28 thousand (28.000) km2, the use of ionizing radiations for medical practice in Equatorial Guinea is few and decreasing. It is used for diagnostic practices in the main hospitals of the country, where the work burden is not over 20 patients per day. The political, social and economical embryonic development of the country until recently had a negative influence on indicators and health organisations, so that even now the country does not have any radiological protection law, this shortness, in addition with the old architectural structure that x ray tools is lodging, as well as dosimetrical lack of employed staff, put this staff under risk of electromagnetic energy. This is to show the present survey of medical activities with ionizing radiation and to request technical support for implementing suitably the basic standards of radiation protection which will help us as basis for the elaboration outline law, on radiological protection in accordance with the new guidelines of the International Atomic Energy Agency. (author)

  12. General rules for radiation protection within the CEA

    This report first describes the organisation, scope of application and principles of radiation protection within the CEA. The second part proposes an overview of rules applicable to workers exposed to ionizing radiation. These rules concern the personnel classification, exposure limits, individual control, and training of workers in radiation protection. The third part addresses the technical rules for premise laying-out: protection zoning, indicators aimed at controlling the compliance of premise classification, radiological survey and control of premise classification. The fourth part addresses the modalities of access, stay and operation in regulated zone. The next part indicates and comments arrangements specific to ionizing radiation sources and to ionizing radiation emitting equipment (authorization and possession modalities, training, certification, controls, operation zoning, etc.), specific orders (radiological control of wastes, hardware, tools and equipment management), rules related to abnormal occupational situations (alarms, contamination event, radiological events), and the different studies and analysis of radiation protection implemented during the different phases of an installation lifetime

  13. Arduino based radiation survey meter

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr−1). Conversion factor (CF) value for conversion of CPM to μSvhr−1 determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr

  14. Arduino based radiation survey meter

    Rahman, Nur Aira Abd; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Muzakkir, Amir; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee

    2016-01-01

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr-1). Conversion factor (CF) value for conversion of CPM to μSvhr-1 determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr.

  15. Arduino based radiation survey meter

    Rahman, Nur Aira Abd, E-mail: nur-aira@nm.gov.my; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee [Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Muzakkir, Amir [Sinaran Utama Teknologi Sdn Bhd, 43650, Bandar Baru Bangi, Selangor (Malaysia)

    2016-01-22

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr{sup −1}). Conversion factor (CF) value for conversion of CPM to μSvhr{sup −1} determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr.

  16. Radiation protection in dental practice

    The radiation protection in the dental practice is discussed in the light of results of an investigation into the radiation burden in the Netherlands resulting from dental x-ray radiographs. Although it has appeared that the number of dental x-ray radiographs has increased strongly the past decennia ( up till now about 0.4 per inhabitant per annum), the average dose per annum has been reduced with respect to the one in 1920 with at least a factor 45. This dose reduction has been achieved in the dental practice voluntary by, among other things, optimization, filtration, enlarging of the distance between focus and skin, reduction of the beam surface and the use of sensitive x-ray films. (author). 1 fig

  17. Radiation carcinogenesis and radiological protection

    With the publication of the latest recommendations of the International Commission on Radiological Protection, several new issues have arisen. The Commission arrives at its recommendations for dose limits using a theoretical or predictive method making use of the data on risks of cancer in populations who have been accidentally or iatrogenically exposed. The issues of importance in this method are discussed, particularly the concept of acceptable risk. An aternative method for setting dose limits, a pragmatic method, involves the study of the cancer incidence in radiation workers and a comparison with cancer incidence in other occupations and industries

  18. Radiation protection in dental radiography

    In considering the special provisions required in dental radiography, investigations were conducted in Iran. Radiation dose levels in dental radiography were found to be high. Patient exposure from intraoral radiographic examination was calculated, using 50kV X-ray. Thermoluminescent dosimeters were fastened to the nasion, eyes, lip, philtrum, thyroid, gonads and to the right and left of the supra-orbital, infra-orbital temporomandibular joints of live patients. The highest exposure value was for the lower lip. Recommendations concerning educational training and protection of staff and patients were included

  19. Radiation Worker Protection by Exposure Scheduling

    Blankenbecler, Richard

    2011-01-01

    The discovery of the protective adaptive response of cells to a low dose of radiation suggests applications to radiation worker/first responder protection. Its use in cancer radiotherapy has been discussed in a separate publication. This paper describes simple changes in scheduling that can make use of these beneficial adaptive effects for protection. No increase in total exposure is necessary, only a simple change in the timing of radiation exposure. A low dose of radiation at a sufficient d...

  20. Radiation protection in newer imaging technologies

    Not even a week passes without a paper getting published in peer reviewed journals on radiation protection in newer imaging technologies that either did not exist 10 y ago or were not established for routine use. Computed tomography (CT) happens to be a common element in most of these technologies. Radiation protection is high on the agenda of manufacturers and researchers and that is becoming a driving force for users and international organisations. The media and thus the public have their own share in increasing the momentum. The slice war seems to be shifting to dose war. Manufacturers are now chasing the target of sub-mSv CT. The era of two digit mSv effective dose for a CT procedure is far from losing ground, although cardiac CT within 5 mSv seems possible. A few years ago the change in technology was faster than adoption of dose management but currently even the development of dose reduction techniques is faster than its adoption. There is dearth of large scale surveys of practice and lack of surveys with change in technology. (authors)

  1. Assessment of radiation protection practices among radiographers in Lagos, Nigeria

    Cletus Uche Eze

    2013-01-01

    Full Text Available Background: Use of ionising radiation in diagnostic radiography could lead to hazards such as somatic and genetic damages. Compliance to safe work and radiation protection practices could mitigate such risks. The aim of the study was to assess the knowledge and radiation protection practices among radiographers in Lagos, Nigeria. Materials and Methods: The study was a prospective cross sectional survey. Convenience sampling technique was used to select four x-ray diagnostic centres in four tertiary hospitals in Lagos metropolis. Data were analysed with Epi- info software, version 3.5.1. Results: Average score on assessment of knowledge was 73%. Most modern radiation protection instruments were lacking in all the centres studied. Application of shielding devices such as gonad shield for protection was neglected mostly in government hospitals. Most x-ray machines were quite old and evidence of quality assurance tests performed on such machines were lacking. Conclusion: Radiographers within Lagos metropolis showed an excellent knowledge of radiation protection within the study period. Adherence to radiation protection practices among radiographers in Lagos metropolis during the period studied was, however, poor. Radiographers in Lagos, Nigeria should embrace current trends in radiation protection and make more concerted efforts to apply their knowledge in protecting themselves and patients from harmful effects of ionising radiation.

  2. Radiation protection of non-human species

    The effects of radiation on non-human species, both animals and plants, have long been investigated. In the disposal of radioactive wastes, the protection of non-human species has been investigated. Yet no radiation protection standard for exposure of animals and plants per se has been agreed. The International Commission on Radiological Protection has long taken the view that, if human beings are properly protected from radiation, other species will thereby be protected to the extent necessary for their preservation. However, the International Atomic Energy Agency has found it necessary to investigate the protection of non-human species where radioactivity is released to an environment unpopulated by human beings. It is proposed that the basis of such protection, and the knowledge of radiation effects on non-human species on which it is based, suggest a practical radiation protection standard for non-human species. (1 tab.)

  3. XXVII. Days of Radiation Protection. Conference Proceedings

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 83 papers are published

  4. Principles and methods of radiation protection

    The history of radiation protection in Czechoslovakia is briefly outlined and the principles thereof are shown. The individual types of radiation effects, ie., early and delayed effects, are listed according to their symptoms. The concepts of the so-called stochastic and nonstochastic effects are explained in detail. The classification of radiation effects and the life-long risk coefficients of malignant tumours induced by radiation are tabulated. The criteria and methods of radiation protection are treated in detail with reference to ICRP recommendations and the Decree of the Ministry of Health of the Czech Socialist Republic on health protection from ionizing radiations. (L.O.)

  5. Radiation protection programme progress report 1988

    The progress report of the radiation protection programme outlines the research work carried out in 1988 under contracts between the Commission of the European Communities and research groups in the Member States. Results of more than 350 projects are reported. They are grouped into six sectors: Radiation dosimetry and its interpretation; Behaviour and control of radionuclides in the environment; Nonstochastic effects of ionizing radiation; Radiation carcinogenesis; Genetic effects of ionizing radiation; Evaluation of radiation risks and optimization of protection. Within the framework programme, the aim of this scientific research is to improve the conditions of life with respect to work and protection of man and his environment and to assure a safe production of energy, i.e.: (i) to improve methods necessary to protect workers and the population by updating the scientific basis for appropriate standards; (ii) to prevent and counteract harmful effects of radiation; (iii) to assess radiation risks and provide methods to cope with the consequences of radiation accidents

  6. XXX. Days of Radiation Protection. Presentations of the 30-th Days of Radiation Protection

    The publication was presented only on the Internet as proceedings of presentations presented on the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 97 presentations are published. The Conference consists of the following sections: Effects of ionizing radiation; Regulation of radiation protection; Dosimetry and Metrology of ionizing radiation; Radiation protection in nuclear Power plants; Medical exposure and radiation protection in diagnostic radiology, nuclear medicine and radiation oncology; Natural radioactivity issues in radiation protection; Education, societal aspects and public involvement in radiation protection, trends and perspectives

  7. Computer applications in radiation protection

    Computer applications in general and diagnostic radiology in particular are becoming more widespread. Their application to the field of radiation protection in medical imaging, including quality control initiatives, is similarly becoming more widespread. Advances in computer technology have enabled departments of diagnostic radiology to have access to powerful yet affordable personal computers. The application of databases, expert systems and computer-based learning is under way. The executive information systems for the management of dose and QA data that are under way at IRS are discussed. An important consideration in developing these pragmatic software tools has been the range of computer literacy within the end user group. Using interfaces have been specifically designed to reflect the requirements of many end users who will have little or no computer knowledge. (Author)

  8. Scientific communication and radiation protection

    It is important that the population has correct knowledge about nuclear energy to protect oneself against ionizing radiations and to reduce the subjective perception that the public has about the nuclear and the risk itself. The public information is vital and we should make tremendous efforts to improve the information as well as this one to reduce the accident risk. The local commissions of information have been created by the government to inform the public about the risk linked to each energy equipment (hydroelectric engineering works, underground gas works, power plants over 1000 megawatts) and naturally nuclear power plants. We find here the description of the Cadarache local commission of information. (N.C.)

  9. Radiation protection issues for EPR reactor

    As part of the EPR (European Pressurized Reactor) project being deployed at Flamanville, EDF has pro actively made the decision to focus on radiation protection Radiation Protection aspects right from the start of the design phase, as it has done with nuclear safety. The approach adopted for managing Radiation Protection-significant activities has been to include all involved stakeholders - designers, licensee and contractor companies - in the three successive phases, starting with a survey among workers and designers, followed by a proposal review, and finally ending with the decision-making phase entrusted to an ALARA committee. The Radiation Protection target set by EDF for this new reactor is to engage in an effort of continuous improvement and optimisation, through benchmarking with the best performing plants of the fleet. The collective dose target is currently set at 0.35 Man Sv/year per unit. In addition to other aspects, efforts will focus on shortening the duration of the highest-dose jobs, with a new challenge being set for work performed in the reactor building during normal operations, the aim being to improve plant availability. The plan is for work to be performed 7 days prior to shutting down the reactor and 3 days afterwards, in order to make logistical arrangements for forthcoming jobs. Without this reduction, the estimated drop is currently 4.5% of annual dose. For this purpose, two areas have been set up in the E.P.R.'s reactor building: one no-go area for containing leaks from the primary circuit, and one accessible area for normal operations, separated from the no-go area by purpose-built ventilation equipment and facilities. To offer protection against radioactive flux (neutrons and high energy), Radiation Protection studies have resulted in the installation of a concrete floor and of nuclear shielding at the outlets of primary circuit pipes. Steam generator bunkers and pumps have also been reinforced. All these measures will ensure that the

  10. New radiation protection legislation in Sweden

    The objective of the new Act is to protect humans, animals and the environment from the harmful effects of ionizing as well as non-ionizing radiation. As previously, the main responsibility for public radiation protection will rest with a single central radiation protection authority. According to the Act, the general obligations with regard to radiation protection will assign greater responsibility than in the past to persons carrying out activities involving radiation. Persons engaged in such activities will be responsible for the safe processing and storage of radioactive waste. The Act also contains rules governing decommissioning of technical equipment capable of generating radiation. The Act contains several rules providing for more effective supervision. The supervisory authority may, in particular, decide on the necessary regulations and prohibitions for each individual case. The scope for using penal provisions has been extended and a rule on the mandatory execution of orders regarding radiation protection measures has been introduced. (authors)

  11. Medical Ethics and Protection from Excessive Radiation

    Among artificial sources of ionic radiation people are most often exposed to those emanating from X-ray diagnostic equipment. However, responsible usage of X-ray diagnostic methods may considerably reduce the general exposure to radiation. A research on rational access to X-ray diagnostic methods conducted at the X-ray Cabinet of the Tresnjevka Health Center was followed by a control survey eight years later of the rational methods applied, which showed that the number of unnecessary diagnostic examining was reduced for 34 % and the diagnostic indications were 10-40 $ more precise. The results therefore proved that radiation problems were reduced accordingly. The measures applied consisted of additional training organized for health care workers and a better education of the population. The basic element was then the awareness of both health care workers and the patients that excessive radiation should be avoided. The condition for achieving this lies in the moral responsibility of protecting the patients' health. A radiologist, being the person that promotes and carries out this moral responsibility, should organize and hold continual additional training of medical doctors, as well as education for the patients, and apply modern equipment. The basis of such an approach should be established by implementing medical ethics at all medical schools and faculties, together with the promotion of a wider intellectual and moral integrity of each medical doctor. (author)

  12. 33. Days of Radiation Protection. Presentations

    The publication has been set up as presentations of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on the current problems in radiation protection and radioecology. On the web-page totally 103 presentations or posters are published. The Conference consists of the following sections: (I) Effects of ionizing radiation (radiology, health effects, risk factors); (II) General aspects of radiation protection (recommendations and legislative in radiation protection); (III): Dosimetry and metrology of ionizing radiation (metrology, instrumentation, use of computational methods); (IV) Radiation protection in nuclear power industry (working environment in the nuclear industry, the impact on the environment, nuclear power shutdown management); (V) Emergency management (emergencies, accidents, waste); (VI) Radiation load and protection in diagnostics, nuclear medicine and radiation oncology (burden on patients, staff, size of population exposure from medical sources of ionizing radiation, security, and quality control, optimization); (VII) Natural sources of radiation in workplaces and the environment (radon and other radionuclides, the risk estimation, optimization); (VIII) Education (new trends in education of radiation experts, medical physicists and stake-holders).

  13. Structure and Responsibilities of Radiation Protection Centre

    Constitution of Radiation Protection Centre (RPC) in Lithuania is presented. RPC was established in 1997, in 1999 the Government granted the status of the regulatory authority of Lithuania on radiation protection issues. Currently there are two departments at RPC: two in Vilnius - Department of Radiation Protection Supervision and Control and Department of Programs and Expertise, and four in the districts. Main tasks of RPC are listed

  14. Radiation protection in nuclear energy. V.1

    The conference was convened to provide a forum for the exchange of international views on the principles of radiation protection for regulators and practitioners, to highlight issues of current importance, to examine the problems encountered in applying the principles of radiation protection, and, where possible, to identify generic solutions. A special session entitled ''The dose-response relationship: implications for nuclear energy'', and a panel on ''Radiation protection education and training'' were included in the conference programme. Refs, figs and tabs

  15. Radiation Protection in Dental Radiology

    Dentists undertake large numbers of diagnostic X ray examinations, but the generally accepted view is that radiation doses are low. Nonetheless, most dental radiology is performed outside radiology departments in independent practices, where self-referral is normal, paediatric patients form a large proportion of those exposed and quality assurance procedures may be lacking. While dental radiology encompasses a small range of techniques, the recent introduction of cone beam computed tomography (CBCT) promises to increase collective doses attributable to dental radiology in the future. While effective doses in well controlled research studies are quite low, dose audits suggest that the ‘real world’ situation is not so straightforward. In terms of justification, dentists are influenced in their use of diagnostic X rays by non-clinical factors. Referral criteria are available, but evidence for compliance is low. In terms of optimization, newer equipment and modified techniques should lead to lower doses, but their adoption is slow. There are particular optimization issues with CBCT, where some equipment gives little scope for exposure adjustment. The difficult challenges of radiation protection in dental radiology require efforts in education of dentists and increased awareness of evidence based guidelines, including audit of compliance with good practice. Regular dose audits and the setting of diagnostic reference levels are valuable tools, as long as they are followed by individualized feedback to dentists on optimization strategies. (author)

  16. New general radiation protection training course

    2008-01-01

    Some members of CERN personnel, including users, may have to work in supervised or controlled radiation areas, or may be involved in activities involving the use of radioactive sources. According to CERN Safety Rules all persons whose work may be associated with ionising radiation risk must be adequately trained. This training must ensure that workers are informed about the potential health risks which could result from radiation exposure, the basic principles of radiation protection and the relevant radiation protection regulations as well as safe working methods and techniques in radiation zones. Therefore the Organization organises mandatory general and work-specific radiation protection (RP) courses for its personnel. These courses are also open to contractors’ personnel, in addition to the RP training they must receive from their employers. Based on the results of a pilot project, an improved general radiation protection course has been prepared. This new ½ day cours...

  17. New general radiation protection training course

    2008-01-01

    Some members of CERN personnel, users included, may have to work in supervised or controlled radiation areas, or may be concerned with activities involving the use of radioactive sources. According to CERN Safety rules all persons whose work may encounter ionising radiation risk must be adequately trained. This training must ensure that workers are informed about the potential health risks which could result from radiation exposure, about the basic principles of radiation protection and of the relevant radiation protection regulations as well as about safe working methods and techniques in radiation zones. Therefore the Organization organises mandatory general and work-specific radiation protection (RP) courses addressed to its personnel. These courses are also open to contractors’ personnel, in addition to the RP training they must receive from their employers. Based on the results of a pilot project, an improved general radiation protection course has been prepared. This...

  18. Biological research for radiation protection

    Kim, In Gyu; Kim, Kug Chan; Shim, Hae Won; Oh, Tae Jeong; Park, Seon Young; Lee, Kang Suk

    2000-04-01

    The work scope of Biological research for the radiation protection had contained the search of biological microanalytic methods for assessing the health effect by {gamma}-radiation and toxic agents, the standardization of human T-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in the hypoxanthine (guanine) phosphoribosyl transferase (HPRT) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods using reverse transcriptase has been developed to analyze the mutant gene induced by {gamma}-radiation and chemical (pentachlorophenol) agent exposure, and to investigate the point mutations in the HPRT gene locus of T-lymphocytes. The HPRT T-cell clonal assay revealed that it could not differentiate {gamma}-irradiation from pentachlorophenol, because the frequency of somatic mutations induced by both damaging agents increased in a dose-dependent manner. The analysis of DNA sequence alterations of HPRT mutant clones clearly showed that both damaging agents induced different mutational spectra in the HPRT locus of T-cells. The large deletions, which account for 75 percent of the analyzed mutants, are characteristic mutations induced by {gamma}-irradiation. By contrast, point mutations such as base substitutions and insertion, come up to 97 percent in the case of pentachlorophenol-treated cells. The point mutation frequencies at 190 base pair and 444 base pair positions are 3-6 folds as high as in those at other mutation positions. It may be that these mutation sites are hot spots induced by pentachlorophenol. These results suggest that the HPRT mutation spectrum can be used as a potential bio marker for assessing a specific environmental risk. (author)

  19. Biological research for radiation protection

    The work scope of Biological research for the radiation protection had contained the search of biological microanalytic methods for assessing the health effect by γ-radiation and toxic agents, the standardization of human T-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in the hypoxanthine (guanine) phosphoribosyl transferase (HPRT) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods using reverse transcriptase has been developed to analyze the mutant gene induced by γ-radiation and chemical (pentachlorophenol) agent exposure, and to investigate the point mutations in the HPRT gene locus of T-lymphocytes. The HPRT T-cell clonal assay revealed that it could not differentiate γ-irradiation from pentachlorophenol, because the frequency of somatic mutations induced by both damaging agents increased in a dose-dependent manner. The analysis of DNA sequence alterations of HPRT mutant clones clearly showed that both damaging agents induced different mutational spectra in the HPRT locus of T-cells. The large deletions, which account for 75 percent of the analyzed mutants, are characteristic mutations induced by γ-irradiation. By contrast, point mutations such as base substitutions and insertion, come up to 97 percent in the case of pentachlorophenol-treated cells. The point mutation frequencies at 190 base pair and 444 base pair positions are 3-6 folds as high as in those at other mutation positions. It may be that these mutation sites are hot spots induced by pentachlorophenol. These results suggest that the HPRT mutation spectrum can be used as a potential bio marker for assessing a specific environmental risk. (author)

  20. Nevada Test Site Radiation Protection Program

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  1. The Radiation Protection Service in Asuncion

    This report details the activities of radiation protection services concerning radioisotopes, personal monitoring and film dosimetry service. Historical, organizational and regulatory aspects are also covered. (author)

  2. 100 years of ionizing radiation protection

    The development of radiation protection from the end of 19. century and evolution of opinion about injurious effect of ionizing radiation were presented. Observations of undesirable effects of ionizing radiation exposition, progress of radiobiology and dosimetry directed efforts toward radiation protection. These activities covered, at the beginning, limited number of persons and were subsequently extended to whole population. The current means, goals and regulations of radiological control have been discussed

  3. Basic principles of radiation protection in Canada

    The major goal of radiation protection in Canada is to ensure that individuals are adequately protected against the harm that might arise from unwarranted exposure to ionizing radiation. This report deals with the basic principles and organizations involved in protection against ionizing radiation. Three basic principles of radiation protection are: 1) that no practice shall be adopted unless its introduction produces a positive net benefit for society, 2) that all exposures shall be kept as low as reasonably achievable, relevant economic and social factors being taken into account, and 3) that doses to individuals should not exceed specified annual limits. The limit for radiation workers is currently 50 mSv per year, and exposures of the general public should not exceed a small fraction of that of radiation workers. Other specific areas in radiation protection which have received considerable attention in Canada include limitations on collective dose (the sum of the individual doses for all exposed individuals), exemption rules for extremely small radiation doses or amounts of radioactive materials, occupational hazards in uranium mining, and special rules for protection of the foetus in pregnant female radiation workers. Implementation of radiation protection principles in Canada devolves upon the Atomic Energy Control Board, the Department of National Health and Welfare, provincial authorities, licensees and radiation workers. A brief description is given of the roles of each of these groups

  4. Radiation Protection Group annual report (1995)

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1995. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  5. Radiation Protection Group annual report (1996)

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1996. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  6. Radiation Protection Group annual report (1997)

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1997. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  7. Radiation Protection Group annual report (1998)

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1998. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  8. Principles of radiation protection in medical thinking

    The authors consider the issue of principles of radiation protection in medicine as being of great interest for the following reasons: health care practitioners exposed to ionizing radiation represent 75% of all world-wide radiation exposed workers; they are also the ones who, by their radiological practice lead to medical exposure of the population (which represents the largest part among artificial exposure to ionizing radiation of the public - about 11%); the superior medical staff are the advisors and prescribers for radiological investigations and treatments. The authors' experience shows that training in radiation protection system is weak, leading sometimes to abusive use of ionizing radiation in both diagnostic and treatment. Medical staff's perception on the importance and role of radiation protection principles is sometimes distorted by unskilled backgrounds in the field. There are recommendations and regulations on radiation protection principles in the relevant legislation, but there are situations in which they are formally considered, or they are regarded as an obligation and not as a form of personal and patient protection. At a national level, the expansion of informing the public about the principles of radiation protection and its role is required by introducing a corresponding training since elementary school. A beneficial aspect that has developed recently is the introduction of radiation protection courses within university and postgraduate training. They are important for a correct and updated training on the principles of radiation protection, a field in which there are permanent updates and changes, and new concepts are set, such as the 'culture of radiation protection'. Medical thinking and medical research have had a contribution on developing and upgrading the radiation protection principles. (authors)

  9. Radiation protection and safety infrastructures in Albania

    The paper intends to present the evolution and actual situation of radiation protection and safety infrastructure in Albania, focusing in its establishing and functioning in accordance with BBS and other important documents of specialized international organizations. There are described the legal framework of radiation safety, the regulatory authority, the services as well the practice of their functioning. The issue of the establishing and functioning of the radiation safety infrastructure in Albania was considered as a prerequisite for a good practices development in the peaceful uses of radiation sources . The existence of the adequate legislation and the regulatory authority, functioning based in the Basic Safety Standards (BSS), are the necessary condition providing the fulfilment of the most important issues in the mentioned field. The first document on radiation protection in Albania stated that 'for the safe use of radiation sources it is mandatory that the legal person should have a valid permission issued by Radiation Protection Commission'. A special organ was established in the Ministry of Health to supervise providing of the radiation protection measures. This organization of radiation protection showed many lacks as result of the low efficiency . The personnel monitoring, import, transport, waste management and training of workers were in charge of Institute of Nuclear Physics (INP). In 1992 an IAEA RAPAT mission visited Albania and proposed some recommendations for radiation protection improvements. The mission concluded that 'the legislation of the radiation protection should be developed'. In 1995 Albania was involved in the IAEA Model Project 'Upgrading of Radiation Protection Infrastructure'. This project, which is still in course, intended to establish the modern radiation safety infrastructures in the countries with low efficiency ones and to update and upgrade all aspects related with radiation safety: legislation and regulations, regulatory

  10. Status of radiation protection at different hospitals in Nepal

    Nepal has a long history of medical radiology since 1923 but unfortunately, we still do not have any radiation protection infrastructure to control the use of ionizing radiations in the various fields. The objective of this study was an assessment of the radiation protection in medical uses of ionizing radiation. Twenty-eight hospitals with diagnostic radiology facility were chosen for this study according to patient loads, equipment and working staffs. Radiation surveys were also done at five different radiotherapy centers. Questionnaire for radiation workers were used; radiation dose levels were measured and an inventory of availability of radiation equipment made. A corollary objective of the study was to create awareness in among workers on possible radiation health hazard and risk. It was also deemed important to know the level of understanding of the radiation workers in order to initiate steps towards the establishment of Nepalese laws, regulation and code of radiological practice in this field. Altogether, 203 radiation workers entertained the questionnaire, out of which 41 are from the Radiotherapy and 162 are from diagnostic radiology. The radiation workers who have participated in the questionnaire represent more than 50% of the radiation workers working in this field in Nepal. Almost all X-ray, CT and Mammogram installations were built according to protection criteria and hence found safe. Radiation dose level at the reference points for all the five radiotherapy centers are within safe limit. Around 65% of the radiation workers have never been monitored for radiation. There is no quality control program in any of the surveyed hospitals except radiotherapy facilities. (author)

  11. The IRPA [International Radiation Protection Association] perspective

    The development of guidelines, recommendations, standards, and criteria in radiation protection is the task of many government and nongovernment organizations. These standards are used in all applications of ionizing and nonionizing radiations and also relate to natural sources as well as accidental sources of radiations. The primary purpose of the International Radiation Protection Association (IRPA) is to serve as a medium for international communication and cooperation in radiation protection with the goal of advancing sound and effective radiation protection in all parts of the world. The IRPA is an association of 30 independent associate societies active in 35 countries, and the organization is governed by its 13,000 individual members who elect the general assembly. To encourage this process, IRPA has set up formal links with the international organizations and, for example, occupies an observer position on committees of the International Commission on Radiological Protection (ICRP) and the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD)

  12. First Asian regional congress on radiation protection

    Due to the rapid progress in the development of nuclear energy and its applications in medicine, agriculture and industry, the potential danger to targe groups of population due to radiation hazards has increased. Thus, radiation protection has become an important aspects of industrial and public hygiene. The article reviews the deliberations of the First Asian Regional Congress on Radiation Protection which was held during 15-20 December 1974 at the Bhabha Atomic Research Centre. 190 papers were presented on the following broad subjects: (1) organization of radiation protection services on a countrywide scale and significant problems and experiences; (2) research and cooperation, mutual assistance, education and training; (3) personnel monitoring; (4) nuclear industry risks and benefits; (5) radiation protection legislation and (6) panel discussions and regional international cooperation in the field of radiation protection. (S.K.K.)

  13. Project Radiation protection, Annual report 1994

    According to the action plan for the period 1991-1995, the main objective of this project during 1994 was to provide operational basis, methods and procedures for solving the radiation protection problems that might appear under routine working conditions and handling of radiation sources. The aim was also to provide special methods for action in case of accidents that could affect the employed staff and the population. Overall activity was directed to maintaining and providing personnel, instrumentation, and methods for the following special radiation protection measures: operational control of the radiation field and contamination; calibration of the radiation and dosimetry instruments-secondary dosimetry metrology laboratory; instrumentation and measuring systems for radiation protection; control of environmental transfer of radioactive material; medical radiation protection

  14. Manual for medical problems of radiation protection

    The manual deals comprehensively and topically with the theoretical and practical fundamentals of radiation protection of the population considering the present knowledge in the fields of radiobiology and radiation protection medicine. The subject is covered under the following headings: (1) physics of ionizing radiations, (2) biological radiation effects, (3) the acute radiation syndrome, (4) medical treatment of the acute radiation syndrome, (5) combined radiation injuries, and (6) prophylaxis and therapy of injuries caused by fission products of nuclear explosions. The book is of interest to medical doctors, medical scientists, and students in medicine who have to acquire special knowledge in the field of radiation protection and it is of value as a reference book in daily routine

  15. Radiation protection for nurses. Regulations and guidelines

    Rules and regulations of federal agencies and state radiation protection programs provide the bases for hospital policy regarding radiation safety for nurses. Nursing administrators should work with the radiation safety officer at their institutions to ensure that radiation exposures to staff nurses will be as low as reasonably achievable and that special consideration will be given to pregnant nurses. Nurses' fears about their exposure to radiation can be greatly reduced through education

  16. An introduction to radiation protection principles

    The fundamentals of radiation hazards and their control are outlined. This report is for use by all radiation workers at CRNL and copies are available for all who want one. The purposes of the document are to outline the fundamentals of radiation protection, to describe methods that enable employees to work safely with radiation and to acquaint employees with the CRNL radiation and industrial safety organization

  17. SI units in radiation protection

    International System of Units abbreviated as SI units has been adopted by most of the countries of the world. Following this development, the implementation of SI units has become mandatory with a transition period of about ten years. Some of the journals have already adopted the SI units and any material sent for publication to them must use only these. International Commission on Radiation Units and Measurement (ICRU) published letters in several journals including Physics in Medicine and Biology, Health Physics, British Journal of Radiology, etc. outlining the latest recommendations on SI units to elicit the reactions of scientists in the general field of radiological sciences. Reactions to the letters were numerous as can be seen in the correspondence columns of these journals for the last few years and ranged from great misgivings and apprehension to support and appreciation. SI units have also been the subject of editorial comments in several journals. On the basis of a survey of this literature, it may be said that there was general agreement on the long term advantage of SI units inspite of some practical difficulties in their use particularly in the initial stages. This report presents a review of SI units in radiological sciences with a view to familiarize the users with the new units in terms of the old. A time table for the gradual changeover to the SI units is also outlined. (auth.)

  18. Radiation protection is international. The role of IRPA as world-wide radiation protection organization

    Compared with other international organisations equally dealing with various aspects of radiation protection, IRPA is distinguished by its basic democratic structure of individual members, and by its exclusive concentration on the scientific and practical implications of radiation protection. IRPA recognizes as main tasks presently the promotion of communication, education and setting of professional standards in radiation protection worldwide. (orig.)

  19. Summary of radiation protection in exploitation

    This document proposes a large and detailed overview of notions and practices regarding radiation protection in relationship with an NPP exploitation framework. It presents the main notions: matter structure, radioactivity, interactions between matter and radiations, types of ionizing radiation, magnitudes and measurement units, exposure modes, main principles of radiation protection, means of protection against internal and external exposures. The second part proposes an overview of the origin of radiological risks in a nuclear power plant. This origin can be found in fission products, activation products, actinides, designed protections, or circuit contaminations. These radiological risks are more precisely identified and described in terms of detection and prevention (internal exposure risk, contamination risk, iodine-related risk, alpha radiation-related risk, access to the reactor building). The next part addresses the medical and radiological follow-up of exposed workers by a special medical control, by an individual exposure control, by a specific control of female personnel, and by attention to exceptional exposures. Measurement means are presented (detection principles, installation continuous control, workspaces control, personnel contamination control, follow-up of individual dose) as well as collective and individual protection means. The management of radiation protection is addressed through a presentation of decision and management structures for radiation protection, and of EDF objectives and ambitions in this domain. The organization of radiation protection during exploitation is described: responsibilities for radiation protection in a nuclear power station, requirements for workers, preparation of interventions in controlled zone, work execution in controlled zone, zone controls and radiological cleanness of installations. The two last chapters address issues and practices of radiation protection in the case of deconstruction or dismantling, and

  20. Radiation Protection in PET-CT

    The presentation is based on the following areas: radiological monitoring installations in the production of PET radiopharmaceuticals, personal dose, dosage advertising, nuclear medicine, PET, radiation protection of patients, requirements for medical practice, regulatory aspects, dose calculation, shields, quantities, center Cudim, cyclotron and synthesis of radiopharmaceuticals, biological effects of radiation protection practices.

  1. 76 FR 4258 - Occupational Radiation Protection; Revision

    2011-01-25

    ... Part 835 RIN 1901-AA-95 Occupational Radiation Protection; Revision AGENCY: Department of Energy...) proposes to revise the values in an appendix to its Occupational Radiation Protection requirements. The... are given in appendix C. DOE first published, a final rule on December 14, 1993, (58 FR...

  2. Radiation protection laws in the Nordic countries

    Sweden has since 1988 a totally revised radiation protection law and Finland has recently enacted a new law. The legal situation of the Nordic countries in the radiation protection field is reviewed with the main emphasis on the Swedish law. (author)

  3. Benchmarking in radiation protection in pharmaceutical industries

    A benchmarking on radiation protection in seven pharmaceutical companies in Germany and Switzerland was carried out. As the result relevant parameters describing the performance and costs of radiation protection were acquired and compiled and subsequently depicted in figures in order to make these data comparable. (orig.)

  4. Radiation protection culture: a global challenge

    The central motto 'Radiation Protection Culture-A Global Challenge' of the fourth European IRPA Congress is discussed on the basis of the IRPA Guiding Principles Establishing a Radiation Protection Culture and the contributions presented in the plenary sessions of the conference. (authors)

  5. Status of occupational radiation protection in Lithuania

    The state infrastructure of radiation protection is still being created after Lithuania regained its independence and in connection with recommendations laid out in the ICRP-60 publication and IAEA recommendations and requirements of legislation of European Community. The new laws, namely: the Law on Radiation Protection, the Law on Nuclear Energy, the Law on Radioactive Waste Management and different regulations were approved. The Radiation Protection Centre of Ministry of Health is the regulatory authority responsible for the radiation protection of public and of workers using sources of ionizing radiation in Lithuania. One of its responsibilities is the supervision and control of occupational radiation protection, which includes keeping the State Registry of sources of ionizing radiation and exposure of workers, licensing of users, inspection in workplaces, monitoring and investigating results of personal dosimetry. Lithuania is famous as the most nuclear country in the world. Ignalina Nuclear Power Plant produces up to 75% of Lithuanian electricity. There are two RBMK (Chernobyl type) reactors of 1500 MW in the plant. However, when considering problems of occupational radiation protection and safety of sources it should be emphasised that we have more than 800 users that use more than 46000 of radioactive sources with higher or lower activity. Status of the occupational radiation protection in Lithuania is presented in the paper. (author)

  6. Compartment models in radiation protection

    Full text: This paper presents a brief review of the use of compartment models in radiation protection. These models are widely used for modelling the transport of radionuclides in plants, crops, man and animals. Special models are used for the human respiratory tract, gastro-intestinal tract and skeleton, and for particular radionuclides (e.g. transport of strontium, caesium and iodine in sheep and cattle) or groups of radionuclides (e.g. the actinides). Compartment models are also used for assessing the effects of intakes of radionuclides by man in the natural environment, in the workplace, as a result of medical treatment, or as a result of planned or accidental releases of radionuclides to the environment. They are also used for modelling the transport of radionuclides in rivers, estuaries and enclosed seas. Examples of compartment models currently used for some of these applications are presented, and their limitations are discussed. The methods and assumptions used in solving the equations associated with these models are briefly discussed, with particular reference to the problem of assessing the effects of intakes of radionuclides by man

  7. Regional radiation protection initiatives by Australia

    Australia both through the auspices of the IAEA and from Government Aid Grants has contributed to the improvement of radiation protection throughout the Asia/Pacific region. The assistance has been in the form of training and improvement to radiation protection infrastructures. The presentation describes the objectives, scope and diversity of the radiation protection infrastructure program and the benefits to the large number of persons included in the program. An outline of the current IAEA program is also discussed together with an explanation of how the program will assist national regulators in the education of radiation workers, in hazardous operations such as industrial radiography

  8. Radiation protection guidelines for space missions

    The original recommendations for radiation protection guidelines were made by the National Academy of Sciences in 1970. Since that time the US crews have become more diverse in their makeup and much has been learned about both radiation-induced cancer and other late effects. While far from adequate there is now some understanding of the risks that high-Z and -energy (HZE) particles pose. For these reasons it was time to reconsider the radiation protection guidelines for space workers. This task was undertaken recently by National Council on Radiation Protection (NCRP). 42 refs., 2 figs., 9 tabs

  9. Radiation protection: Measurement, modelling, documentation. Proceedings

    The focus of this conference is on the practical aspects of radiation protection and embraces a ''core business'' of radiation protection, namely: measuring, modeling, documentation, and all the activities and good professional practices in this context. The radiation protection experts and the radiation safety officers who contributed papers to this conference are ''practitioners'' in their fields. To round up the subject matter, there are papers dealing with legal aspects, elaborating on recent regulatory provisions and requirements, and papers dicsussing new approaches in designing and disseminating information to the public. (orig./CB)

  10. Activities of Moroccan Radiation Protection Association

    Encourage activities and information exchange in the field of radiation protection and related areas; Assist in informing both the public and the professionals on the problems and requirements related to radiation protection for the protection of man and the environment; Promote professional training in radiation protection. The use of nuclear technology in medicine, agriculture and industry is very advanced in Morocco. This technological progress has been accompanied by fairly detailed legislation and significant involvement on the part of Morocco in international conventions and agreements

  11. Protection aspects in ionising radiation applications

    Availability of (i) locally made and good quality equipment which satisfy stringent radiation protection standards, (2) tailor-made programmes for training of physicists, physicians, engineers, technologists and researchers in radiation safety and the resultant production of adequate number of well trained personnel (who as users are also made to be involved in decision making on radiation protection programmes and policies), (3) codes, guides, manuals and brochures on radiation safety in different disciplines, and (4) legal and administrative backing for the radiation protection efforts at the governmental level for optimal regulation - not over regulate or over police - should be considered as the real positive points of radiation protection infrastructure in the country. 11 tabs

  12. Occupational radiation protection. IAEA functions and policies

    The paper describes the functions and polices of the IAEA with regard to occupational radiation protection, which in fact reflect the international approach of the United Nations family to this problem. An international regime on occupational radiation protection has been growing on the bases of international legally binding conventions, international standards and international provisions for the application of these standards. The IAEA has been instrumental in establishing a corpus of occupational radiation protection standards that has a long and fructiferous history. The corpus now comprises one set of basic policy fundamentals on radiation protection, one basic international requirement, the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, one basic guide on general occupational radiation protection, and several supporting guides establishing procedures, inter alia, for monitoring for external radiation and for internal contamination. The United Nations Scientific Committee on the Effects of Atomic Radiation provides the global scientific estimates of the biological effects attributable to radiation exposure and the International Commission on Radiological Protection the basic recommendations on radiation protection that are taken into account in the formulation of the international standards. The International Labour Organization (ILO) harmonizes the interests of governments, workers and employers and provides this essential input into the standards. The IAEA establishes the international standards in co-operation with the ILO and other specialized United Nations organizations. The paper finally describes a number of controversial occupational protection issues which are still being discussed internationally and the author considers that the Conference presents an ideal forum in which to tackle these issues and search for a consensual approach to their solution. (author)

  13. Rules and regulations of radiation protection

    The finality of this legislative text is to guarantee the radiation protection of the exposed personnel, of the people in general and the environment against the ionizing radiations risks. Its scope includes all the natural and juridical persons that work with ionizing radiation sources into the peruvian territory

  14. An outlook to radiation protection development

    Radiation protection and safety have developed over many decades as the effects of ionizing radiation have been better and better understood. Some events in the last decade had essential impact on radiation protection policy/philosophy and related safety standards. Among them are available data of some long term radio-epidemiological studies of populations exposed to radiation. Investigations of the survivors of the atomic bombing of Hiroshima and Nagasaki illustrated that exposure to radiation has also a potential for the delayed induction of malignancies. They also showed that irradiation of pregnant women may result with certain mental damage in foetus. Several big radiation accidents which appeared in the last decade also had an impact on developments in radiation protection philosophy and practices. A well known Chernobyl accident showed that limited knowledge was available at the time of the accident on transfer of radionuclides in a specific environment, radioecological effects and pathways of highly radioactive atmospheric precipitation generated during the accident on various components of the environment. New scientific data indicated also that in some parts of human environment there are measurable effects of chronic exposure resulting from natural radiation. UNSCEAR is periodically publishing the most valuable set of data as compilation, and disseminates information on the health effects of radiation and on levels of radiation exposure due to different sources. These data are also the best guidelines for the necessary improvements and updating of radiation protection practices and philosophies. The latest ICRP-60 publication and recently issued International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources are reflecting many of the above mentioned findings. On the other hand the use of radiation sources is increasing day by day, and many new facilities applying radiation in radiotherapy

  15. Radiation protection in occupational health

    The document is a training manual for physicians entering the field of occupational medicine for radiation workers. Part 1 contains the general principles for the practice of occupational health, namely health surveillance and the role of the occupational physician in the workplace, and Part 2 provides the essential facts necessary to understand the basic principles of radiation physics, radiobiology, dosimetry and radiation effects which form the basis for occupational radiation health

  16. A Model for Protective Behavior against the Harmful Effects of Radiation based on Medical Institution Classifications

    This study surveyed a total of 1,322 radiation technologist in health care institutions throughout Korea. This is a comparative study conducted on the levels of protective behavior against the harmful effects of radiation in heath care institutions which indicated that university hospitals and general hospitals showed higher level of protective behavior than for medical practitioners. This study found university hospitals have the following 7 characteristics to manage protective behavior against the harmful effects of radiation, protective environment, self-efficacy by distinction of task , self-efficacy, expectation of the protective behavior, the number of patients, level of the education related to the protection of the harmful effects of radiation and protective attitude. While general hospitals have the following 3 characteristics protective environment, expectation of the protective behavior and protective attitude. Hospitals have the following 4 characteristics protective environment, expectation of the protective behavior, protective attitude and self-efficacy and medical clinics have characteristics protective environment

  17. Comments to the German society's for radiation protection (Gesellschaft fur Strahlenschutz) proposed principles for radiation protection

    The German Society for Radiation Protection (in German Gesellschaft fur Strahlenschutz) is a separate society for radiation protection in Germany in addition to the leading society named Association of German and Swiss Radiation Protection Specialists (in German Fachverband fur Strahlenschutz). The Society is an international professional society. There are several hundreds members of the German Society for Radiation Protection. The German Society for Radiation Protection is not a member of IRPA (the International Radiation Protection Society). The IRPA member is the Association of German and Swiss Radiation Protection Specialists. According to information given on the web site of the Society for Radiation Protection (www.gfstrahlenschutz.de) the Society was founded in 1990 because in the opinion of the founding members the older professional societies and associations have not adequately considered and implemented the present knowledge of radiation risks and radiation protection. In accordance with its statutes the society pursues besides other aims the best possible protection of humans and the environment from the detrimental action of ionising and non-ionising radiation. The dealing with ionising and non-ionising radiation can according to the Society only be justified on the basis of biological and medical state of the art knowledge

  18. Preparing the radiation protection worker to meet multiple needs

    At the Oak Ridge National Laboratory (ORNL) the radiation protection worker aids in protecting personnel and their surrounding environment from the hazards of radiation. These individuals use their technical knowledge, skills, and abilities to survey and monitor various project-related activities. They must also provide guidance in project design, development, and implementation. These combined efforts assure that protective measures are taken in accordance with applicable standards. The ORNL performance-based training program enhances the skills of the worker. The program incorporates job specific information on the diverse facilities and activities monitored with basic fundamentals of radiation protection. Successful completion of this program includes passing both a qualification exam and an on-the-job skills review. This paper details the structure of such a program and explains the strategies taken to reach the program's goals. 4 refs., 2 tabs

  19. Radiation protection in Spanish nuclear installations

    Radiation Protection was born as a discipline at the same time as the use of ionizing radiation, once the potential harmful effects on living beings of this new phenomenon was recognized. The evolution of the use of the nuclear energy at an industrial scale brought about the evolution of this discipline , initially in association with responsibilities relating to hygiene and safety at work and subsequently as an independent responsibility within organizations involved in nuclear electricity production. From the very beginning, in the year 1968, the Spanish nuclear plant organizations included specific resources for the radiation protection of both the plant workers and the general public living around the installations. Since that time, however, radiation protection organizations and technology have evolved considerably. The purpose of this article is to present a general overview of the current status of the radiation protection activities carried out at Spanish nuclear power plants. (Author)

  20. The revised German radiation protection ordinance

    Since August 2001, German radiation protection law is governed by a new Radiation Protection Ordinance, implementing two new Euratom Directives and taking into account new scientific developments, which provides a comprehensive basis for the protection of man and the environment. The Ordinance has been completely restructured; however, it is still a very complex piece of legislation comprising 118 provisions and 14 annexes, some of them highly technical. Reduced dose limits for occupationally exposed persons and members of the public, a detailed provision on clearance of radioactive substances, a new part aiming at the protection of man and the environment against ionising radiation emanating from natural sources, and regulations dealing with the protection of consumers in connection with the addition of radioactive substances to consumer goods are some of the centre pieces of the new legislation which shall contribute significantly to the further prevention or at least minimisation of the adverse effects of radiation exposure. (orig.)

  1. From regulations towards radiation protection culture

    Compliance with the technical standards and specifications is a necessary but not sufficient condition for quality in radiation protection. Reaching this quality objective is not a matter of forcing improvements by a regulatory policy of reducing dose limits, but of promoting a real radiation protection culture. The spread of such a radiological protection culture encourages the deliberate adoption in everyday practice of behaviour likely to reduce exposure to ionizing radiation as loser as reasonably achievable. The aim of this paper is to demonstrate that the need to diffuse a radiological protection culture is inspired by the philosophy behind the system recommended by ICPR Publication 60 on the management of residual radiological risk and, in particular by the behavioural and incentive approach implied by the optimization principle. Special attention will be given to the fundamentals likely to contribute in a definition of radiation protection culture. (author)

  2. Improving patient radiation protection in medical practices

    A number of severe radiation protection accidents have occurred in France in recent months in radiotherapy departments, resulting in serious pathologies among the exposed patients and the death of one person. These accidents, allied to the fact that use of ionizing radiation for medical purposes is the leading source of human exposure, justify the priority the A.S.N. gives to radiation protection of patients and its supervision. This file gathers four parts in relation with radiation protection in the medical field. he first one concerns the radiation accidents and the lessons learned from them. The second part is devoted to the point of view of medical actors. The third part is in relation with the challenges of new techniques. The last part concerns the exposures and the radiation doses. (N.C.)

  3. Radiation protection in the hospital environment

    The hospital environment contains numerous sources of ionizing radiation that may contribute to public and occupational radiation exposure. Radiation exposure from x rays is minimized through engineering design, administrative controls, and quality control. Exposure from patients that contain therapeutic quantities is minimized by isolation in appropriately controlled private rooms. Administrative controls are relied on for controlling radiation exposure from diagnostic nuclear medicine patients. Hospital radiation installations must be planned and periodically reviewed to take advantage of the latest developments in radiation protection and to keep public and occupational exposure as low as reasonably achievable

  4. Quantitative risk in radiation protection standards

    The bases for developing quantitative assessment of exposure risks in the human being, and the several problems that accompany the assessment and introduction of the risk of exposure to high and low LET radiation into radiation protection, will be evaluated. The extension of the pioneering radiation protection philosophies to the control of other hazardous agents that cannot be eliminated from the environment will be discussed, as will the serious misunderstandings and misuse of concepts and facts that have inevitably surrounded the application to one agent alone, of the protection philosophy that must in time be applied to a broad spectrum of potentially hazardous agents. (orig.)

  5. Radiation protection in a pluralistic society

    The relative importance of any particular radiation protection issue may well result from honest and deeply-held convictions which result from different educational, societal, economic and political orientations. This may lead to apparently and truly conflicting national agendas for radiation protection needs. A variety of radiation protection issues in the USA are examined with an understanding that each of us may have a rather singular and isolated perspective. These issues include 'de minimis' probability of causation, risk models, SI units and lifetime dose equivalent. (U.K.)

  6. Blended learning specialists in radiation protection

    In this paper, we present a blended learning Radiation Protection Technician through an approved degree from the Polytechnic University of Valencia, which covers the knowledge and skills of functions relating to operators and supervisors in various areas and skilled workers to be to perform their work in technical units or Radiation Protection Radiation Protection Services. The benefits of this work are those related to achieving quality training flexible and adapted to follow the check off the person conducting the course, adapted to internal and external training of the applicant companies.

  7. Radiation protection at the Cadarache research center

    This article recalls the French law about radiation protection and its evolution due to the implementation of the 2013/59-EURATOM directive that separates the missions of counsel from the more operative missions of the person appointed as 'competent in radiation protection'. The organisation of the radiation protection of the Cadarache research center is presented. The issue of sub-contracting and the respect of an adequate standard of radioprotection is detailed since 2 facilities operated by AREVA are being dismantled on the site. (A.C.)

  8. Radiation protection in medical imaging and radiation oncology

    Stoeva, Magdalena S

    2016-01-01

    Radiation Protection in Medical Imaging and Radiation Oncology focuses on the professional, operational, and regulatory aspects of radiation protection. Advances in radiation medicine have resulted in new modalities and procedures, some of which have significant potential to cause serious harm. Examples include radiologic procedures that require very long fluoroscopy times, radiolabeled monoclonal antibodies, and intravascular brachytherapy. This book summarizes evidence supporting changes in consensus recommendations, regulations, and health physics practices associated with these recent advances in radiology, nuclear medicine, and radiation oncology. It supports intelligent and practical methods for protection of personnel, the public, and patients. The book is based on current recommendations by the International Commission on Radiological Protection and is complemented by detailed practical sections and professional discussions by the world’s leading medical and health physics professionals. It also ...

  9. Protection of outside workers against ionising radiation

    This HSE information sheet is aimed at employers of outside workers, managers of contractors, health physics staff, appointed safety representatives, radiation protection advisers (RPA) and radiation protection supervisors (RIPS), employers in control of controlled areas which outside workers may enter, and outside workers themselves. This guidance supplements that in the Approved Code of Practice (ACOP) supporting the Ionising Radiations Regulations 1999 (IRR99) available from HSE Books, ISBN 0 7176 1746 7. IRR99 include provisions for outside workers that were previously required under the Ionising Radiations (Outside Workers) Regulations 1993 (OWR), which were revoked when IRR99 came into effect

  10. Radiation protection training of radiation safety officers in Finland in 2008

    The Radiation and Nuclear Safety Authority (STUK) carried out a survey on the radiation protection training of radiation safety officers (RSO) in Finland in 2008. The aim of the survey was to obtain information on the conformity and uniformity of the training provided in different training organisations. A previous survey concerning radiation protection training was carried out in 2003. That survey determined the training needs of radiation users and radiation safety officers as well the radiation protection training included in vocational training and supplementary training. This report presents the execution and results of the survey in 2008. According to the responses, the total amount of RSO training fulfilled the requirements presented in Guide ST 1.8 in the most fields of competence. The emphasis of the RSO training differed between organisations, even for training in the same field of competence. Certain issues in Guide ST 1.8 were dealt quite superficially or even not at all in some training programmes. In some fields of competence, certain matters were entirely left to individual study. No practical training with radiation equipment or sources was included in the RSO training programme of some organisations. Practical training also varied considerably between organisations, even within the same field of competence. The duties in the use of radiation were often considered as practical training with radiation equipment and sources. Practical training from the point of view of a radiation safety officer was brought up in the responses of only one organisation. The number of questions and criteria for passing RSO exams also varied between organisations. Trainers who provided RSO training for the use of radiation in health care sectors had reached a higher vocational training level and received more supplementary training in radiation protection in the previous 5 years than trainers who provided RSO training for the use of radiation in industry, research, and

  11. Radiation risk and radiation protection concepts

    The revised dosimetry for the survivors of Hiroshima and Nagasaki implies an increased risk from low LET radiation compared with that currently used. During its meeting in 1987 the ICRP stated that the new data at present do not require any change in the dose limits. However, two other factors can cause larger changes in the present risk estimates. Firstly, for some types of cancer the relative risk model seems to describe the observed data better than the absolute risk model currently used by the ICRP. Secondly, the shape of the dose-response relationship considerably influences the derived risks. In the present paper the factor causing a substantial increase in radiation risk are analyzed. Conclusions are drawn in how far a change in the currently recommended dose limits seems to be necessary. (author)

  12. Introduction to radiation protection. 5. ed.

    The 5th revised edition of the compendium of radiation protection is divided into 3 chapters. In addition to the introduction of the SI units the old units of measurement are used in order to facilitate the transition. The 1st chapter comprehends introductory remarks on the history of radiation protection and a review of radiation exposure of man. In the 2nd chapter - comprising physical and technical fundamentals of radiation protection - types and properties of ionizing radiation and its interaction with matter dosimetry and dose units as well as radiation measurement are discussed. The 3rd chapter deals with tasks and measures of radiation protection including legislation, licensing, responsibility, dosimetric and medical supervision of occupationally exposed personnel in the GDR, and safe handling of sealed and unsealed sources with special regard to X-ray application in medicine. The supplement includes definitions of technical terms and a compilation of titles of current GDR regulations and standards concerning radiation protection. References and a register are added

  13. Radiation Protection and Safety infrastructure in Albania

    On 1995 Albania Parliament approved the Radiation Protection Act, which established the Radiation Protection Commission as Regulatory Body and Radiation Protection Office as an executive office. The licensing of private and public companies is a duty of RPC and the inspections, enforcement, import - export control, safety and security of radioactive materials, are tasks of RPO. Regulations on licence and inspection, safe handling of radioactive sources, radioactive waste management and transport of radioactive materials have been approved. The Codes of practice in diagnostic radiology, radiotherapy and nuclear medicine have been prepared. Institute of Nuclear Physics carry out monitoring of personal dosimetry, response to the radiological emergencies, calibration of dosimetric equipment's, management of radioactive waste, etc. Based in the IAEA documents, a new Radiation Protection Act is under preparation

  14. Effective dose: a radiation protection quantity

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  15. Some fundamental philosophy in radiation protection

    It is a presentation by the author at the Seminar on propaganda and Implementation of 'Regulations for Radiation Protection' sponsored by National Environmental Protection Agency and Institute of Standardization CNNC. The key points are: (1) The sources for different purposes and with different uncontrollable extents can be separately handled and controled, and be practically and reasonable protected individually; (2) The emphasis is laid on the dose limits for stochastic effects recommended by ICRP not the biological quantities based on medical results. Meanwhile, the social, ecomonic and technical factors shold also be considered. This is a supplementation of ALARA principle; (3) The licensing and registering system is an important measure to ensure that radiation sources are under control of responsible persons at all times, which is a system of technical management that needs to be perfected in practice; (4) The principal task of radiation protection is to keep all radiation exposures as low as reasonably achievable, based on existing informations, knowledges and experiences

  16. Radiation protection regulatory authority in Lithuania

    Mastauskas, A.; Tumosiene, K. [Radiation Protection Centre, Vilnius (Lithuania)

    2005-09-15

    The purpose of this presentation is to present the legislation system and radiation protection regulatory authority in Lithuania, its responsibilities and tasks, development, principles and priorities, experiences and etc.

  17. Research on radiation effect and radiation protection at JAEA

    Researches on radiation effect and radiation protection at JAEA have been carried out in different sections. In recent years, the organizations were rearranged to attain better research circumstances, and new research programs started. At present, radiation effect studies focus on radiation effect mechanisms at atomic, molecular and cellular levels including simulation studies, and protection studies focus on dosimetry for conditions difficult to cover with currently used methods and data as well as the related basic studies. The outlines of the whole studies and also some descriptions on selected subjects will be given in this paper. (author)

  18. Operational radiation protection and monitoring programme

    All the tasks of the Radiation Protection Department at the Nuclear Power Plant are mentioned and described. These tasks determine the necessary manpower and qualification of the personnel. Certain organizational structures are required to guarantee the effective work of this department. The Radiation Protection Department of the Biblis Nuclear Power Station and its tasks, manpower, organization etc. serves to illustrate the material covered by this lecture. (orig./RW)

  19. Knowledge plus Attitude in Radiation Protection

    Since the introduction of the Basic Safety Standards recommendations, the scope of the radiation protection was broadening. On behalf of the incorporation of radiation protection of the patient in medical exposures, the different groups of professionals involved: physicians, medical physicists, radiation protection officers, regulators, etc., have to work together. The objective of radiation protection, that is, to reduces doses from practices, to prevent potential exposures, to detect its occurrence as well as to evaluate and spread such abnormal situations, will be obtained only if it were possible to joint two basic conditions: knowledge and attitude. It should be well known the differences between the backgrounds needed to be for example, a medical physicist or an R.P.O., However, their attitude to solve an eventual problem involving radiation protection should be the same; as well as the behavior of the specialized physician and regulators, in order to add towards common goals. In this work, we show as an example the curricula contents about radiation protection of the cancer of medical physics in the Universidad Nacional de San Martin (UNSAM), and the corresponding module on medical exposures from the Post-Graduate course on Radiation Protection and Nuclear Safety, held since the 80s in Buenos Aires by the National Commission of Atomic Energy, ARN, IAEA, and the Universidad de Buenos Aires. On the other hand, we describe different attitudes which leads or could start major radiological accidents, regardless the level of knowledge in radiation protection. We conclude that the larger numbers of accidents are due to problems in the attitude than in the level of knowledge of the person involved. Consequently; we suggest emphasizing the discussion on how to generate positive attitudes in every professional involucrated, independently of its cognitive profile or level. (Author) 2 refs

  20. Opportunities for fuzzy logic in radiation protection

    This paper points at applications of fuzzy logic currently under development at the radiation protection research unit at the nuclear research center SCK/CEN. The illustrated applications are snapshots of the wide research area of radiation protection and radiological optimization. As such, it is not the intention of this paper to give a complete overview of fuzzy logic applications in these fields, but rather to try to reveal future opportunities for further developing fuzzy logic in nuclear science

  1. ALARA in the radiation protection training

    This part treats especially the question of the training in radiation protection. The electro nuclear sector has given an ALARA principle culture and succeeded to sensitize each level of hierarchy, but for small industry, the research and the medical world the same method appears more difficult to use. It seems better to reinforce the importance of the competent person and to include a training in radiation protection on the initial formation in numerous professional categories. (N.C.)

  2. Strengthening the radiation protection culture: a priority of EDF radiation protection policy

    Full text of publication follows: In order to improve the management of radiation protection at EDF nuclear power plants, the Human Factors Group of the Research and Development Division of EDF has performed some studies on the appropriation process of the radiation protection requirements. These studies have notably shown that an efficient application of the radiation protection requirements lies on a comprehension by all workers of the meaning of these requirements. Furthermore, they should not be applied under the constraint or because of the fear of a sanction, but the workers need to perceive and understand the benefits in terms of protection associated with the radiation protection requirements. The strengthening of the radiation protection culture is therefore a key element of the radiation protection policy developed by EDF. This culture lies on an awareness of the health risks potentially associated with low levels of ionising radiations, as well as on the knowledge of tools, techniques and good practices developed to control the level of exposures and improve the radiation protection. Various type of actions have been undertaken to reinforce among the relevant players (exposed and non-exposed workers, contractors, all levels of management,... ) an awareness of radiation protection in order to integrate it in their day to day work: elaboration of a 'radiation protection system of reference' explaining how the radiation protection regulatory requirements are applied at EDF, publication of a 'radiation protection handbook' available for all workers (including contractors), training sessions, creation of networks of specialists from the various nuclear power plants on specific radiation protection issues, organisation of feed-back experience forum, etc. Beyond these specific actions, i t is also important to ensure a support and an assistance on the field by dedicated specialists. In this perspective, the health physicists have to play a key role in order to

  3. Radiation. Protection. Health. Proceedings; Strahlen. Schutz. Gesundheit. Tagungsband

    Hajek, Michael [International Atomic Energy Agency, Wien (Austria); Maringer, Franz Josef; Steurer, Andreas [Bundesamt fuer Eich- und Vermessungswesen, Wien (Austria); Schwaiger, Martina [Seibersdorf Labor GmbH, Seibersdorf (Austria); Timal, Guenter (ed.) [Bundesministerium fuer Inneres, Wien (Austria)

    2015-07-01

    The topics of the meeting are the diagnostic and therapeutic application of ionizing radiations, the application of radiation in research, industry and engineering and radiation protection. The volume includes the following chapters: Radiation protection and society, radiation protection infrastructure, population and environment, metrology and measuring techniques, 1. Workshop on population and environment, NORM and radon, 2. Update: dose - extent of damage - limiting value definition, radiation protection for personnel (except medicine), radiation protection in medicine.

  4. 75 FR 31458 - Infrastructure Protection Data Call Survey

    2010-06-03

    ... SECURITY National Protection and Programs Directorate Infrastructure Protection Data Call Survey AGENCY... Protection and Programs Directorate (NPPD), Office of Infrastructure Protection (IP), Infrastructure... Directorate is soliciting comments concerning New Information Collection Request, Infrastructure...

  5. Radiation protection in dental practice

    This guide provides the dentist and dental support personnel with basic information on the safe use of x-rays in dental radiography. Included in this CODE are specific recommendations for eliminating unnecessary radiation exposure of both patients and staff

  6. Radiation protection. Radioactivity and health

    This booklet makes an attempt at elucidating the mutual influence of radioactivity and health in a way which is understandable to the non-expert. The basics of radioactivity are briefly explained by way of introduction, the next item to be described is exposure of man to natural and artificial radiation. Somatic and genetic effects of radiation on man are subsequently discussed. The whole area of radioecology - starting with radioactive discharge from nuclear plants and going on to the determination of man's exposure to radiation - is covered and supplemented by a description of the risks of radiation therapy. All this serves to describe the results of long-term research on questions of the radiobiological risks in an understandable way and provide useful information about this eminently important area. (orig./HP)

  7. Views of the radiation protection professionals

    In general, the radiation protection professional is an adequately trained person who uses his/her technical or scientific experience and skills to protect human beings (and increasingly, the environment) against the harmful effects of ionizing radiation. These persons may be users of radiation in industry, medicine or science; they may be employed as radiation protection officers or consultants, or they may work within the regulatory or authority infrastructures. They may also be independent experts. In spite of the general goals they have in common, their priorities and their views may vary considerably. Confidence is an indispensable prerequisite for successful communication concerning the development of future recommendations in radiation protection. The process of confidence building is difficult. It requires a clarification of the different roles and interests of all parties involved, i.e. policy, economy, public and safety. The willingness to accept a new concept will be increased perceptibly if relevant persons or groups of persons (stakeholders) are already involved in the selection of alternatives. Radiation protection professionals are important partners in the process initiated by the International Committee on Radiological Protection (ICRP), discussing recommendations to come

  8. Occupational radiation protection in nuclear facilities

    This paper presents an overview of the global situation in terms of occupational exposures in worldwide nuclear facilities from 1974 to 1990 and highlights some specific issues for radiation protection over the next decades. The stages and facilities considered in this presentation of the evolution of occupational exposures are the following: uranium enrichment and conversion facilities, nuclear fuel fabrication plants, reactor operation and nuclear fuel reprocessing plants. The data presented are based on the United Nations Scientific Committee on the Effects of Atomic Radiation 2000 Report and the International System on Occupational Exposure database, and illustrated in some cases with respect to the French situation for nuclear power plants. Reflections on the status of the 'as low as reasonably achievable' (ALARA) principle are proposed, showing that ALARA has been the driving force of radiation protection. Two issues for the future of occupational radiation protection are discussed: the case of itinerant workers and the decommissioning of nuclear facilities. The conclusion addresses the need to continue spreading the radiation protection culture among the various actors and the development of networks of actors, in order to favour the sharing of experiences in radiation protection practices and to create a dynamic of progress for the protection of workers. (author)

  9. Radiation protection program of Petrobras

    Risks present in oil industry require specific control programs, specialy when using radioactive sources. Main uses of ionizing radiation in oil industry are in process control systems, industrial radiography and oilwell logging. A comprehensive and sistemic program is presented in order to assure the safe use of ionizing radiation in these activities. Principal subjects of this program are the control of radioactive sources, personel training in order to difuse knowledge at operations level and procedures standardization. (author)

  10. Radiation protection: the french regulation

    The French legislation concerning workmen, population and environment protection against the harm ful consequences of irradiation originated from nuclear power plant activities is presented. (A.L.S.L.)

  11. Perspectives of the new radiation protection ordinance in medicine

    The revised guideline Radiation Protection in Medicine regulates specified licensing and control by responsible authorities in medical radiation protection under the legal basis of the Radiation Protection Ordinance. The new focal points in the guideline (justification of radiation treatment, personal education, quality assurance) are the basis for an optimised medical radiation protection in future. (orig.)

  12. What are the purposes of radiation protection?

    In this paper author deals with principles of radiation protection, cancer risk, lowest doses of radiation associated with cancer, the question of threshold, repair of damage, probability distribution of the risk coefficient per 1 Sv and other problems. (J.K.)

  13. Ionizing radiation, genetic risks and radiation protection

    With one method of risk estimation, designed as the doubling dose method, the estimates of total genetic risk (i.e., over all generation) for a population continuously exposed at a rate of 0.01 Gy/generation of low LET irradiation are about 120 cases of Mendelian and chromosomal diseases/106 live births and about the same number of cases for multifactorial diseases (i.e., a total of 240 cases/106). These estimates provide the basis for risk coefficients for genetic effects estimated by ICRP (1991) in its Publication 60. These are: 1.0%/Sv for the general population (which is 40% of 240/106/0.01 Gy), and 0.6%/Sv for radiation workers (which is 60% of that for the general population). The results of genetic studies carried out on the Japanese survivors of A-bombs have shown no significant adverse effects attributable to parental radiation exposures. The studies of Gardner and colleagues suggest that the risk of leukaemia in children born to male workers in the nuclear reprocessing facility in Sellafield, U.K., may be increased. However, this finding is at variance with the results from the Japanese studies and at present, does not lend itself to a simple interpretation based on radiobiological principles. In the light of recent advances in the molecular biology of naturally-occurring human Mendelian diseases and what we presently know about multifactorial diseases, arguments are advanced to support the thesis that (i) current risk estimates for Mendelian diseases may be conservative and (ii) an overall doubling dose for all adverse genetic effects may be higher than the 1 Gy currently used (i.e., the relative risks are probably lower). (author)

  14. Radiation protection for industrial radiography in the aerospace industry

    The Boeing Company employs 80 industrial radiographers, operates 90 radiation sources, and takes 10,000 exposures per month. This paper describes the major components of Boeing's radiation protection program: hazard analysis, facilities and equipment design, program administration, and evaluation. In the hazard analysis, each source of radiation is analyzed to determine its hazard and relationship to both man and the environment around it. Once the degree of the hazard is known, facilities and equipment are designed to contain the hazard. This can be anything from a four foot concrete shielded room for an industrial radiographic accelerator, to a piece of rope that isolates an Iridium-192 source during a field radiographic inspection on an aircraft. The administrative functions provide the necessary records, command media, and a radiation source certification program. This certification authorizes the source of radiation to be used under specific conditions agreed upon by both the Radiation Protection Organization and Industrial Radiography Management. The radiation protection program is evaluated through medical exams, personnel monitoring, and area radiation surveys. (H.K.)

  15. Radiation protection in equine radiography

    During radiography of the carpus of horses calcium fluoride thermoluminescent dosemeters were used to measure the radiation exposure to the hand of an assistant positioning the x-ray film. Three portable x-ray machines and a mobile machine were used during the recordings. The effects of x-ray machine, radiographic technique, and lead rubber gloves upon radiation exposure to the hand were investigated. The size of the primary beam of the x-ray machine was found to be the major factor in determining the dose of radiation received by the hand. The highest radiation exposures were recorded when using two portable machines which were fitted with beam limiting devices that permitted only one primary beam size. The lowest exposures were measured when radiographs were taken with the mobile machine that was fitted with a light beam diaphragm. The control of primary beam size with a light beam diaphragm was found to be the most effective method of reducing radiation dosage to the hand. It is strongly recommended that for equine radiography a light beam diaphragm be fitted to and used on all x-ray machines, and a cassette holder be used to keep the hands out of the primary beam. (author)

  16. Radiation protection and the safety of radiation sources

    These Safety Fundamentals cover the protection of human beings against ionizing radiation (gamma and X rays and alpha, beta and other particles that can induce ionization as they interact with biological materials), referred to herein subsequently as radiation, and the safety of sources that produce ionizing radiation. The Fundamentals do not apply to non-ionizing radiation such as microwave, ultraviolet, visible and infrared radiation. They do not apply either to the control of non-radiological aspects of health and safety. They are, however, part of the overall framework of health and safety

  17. Goals for Medical Radiation Protection in 2020

    The key issues covered during the round table discussion addressed the means necessary to narrow the gap between evidence and practice, the need to develop improved tools for radiation dosimetry and protection, the improvement of safety education and training, and subsequently the establishment of specialists, as well as improving criteria for individual and population screening (heart, lung, colon, breast). Specific attention was given to: (i) the situation in developing countries, where access to proper imaging must be improved; (ii) the fact that training in diagnostic imaging and radiation protection is part of the safety culture; and (iii) the need to normalize education requirements for radiation, which is a high priority. (author)

  18. Report on radiation protection in Croatia

    The Ministry of Health in the Republic of Croatia is in charge of radiation protection, and the new Ionizing Radiation Protection Act defines the responsibilities of the different organizations and institutions. The report explains the existing national system of notification and registration in Croatia and some of the main provisions of the above referred Act. Reference is made to the national provisions for the management of disused sources, recovery or control of orphan sources, and to the national inventory of radiation sources in the country with the data collected during 1998 and 1999. (author)

  19. Radiation protection in dental radiology. A textbook

    The textbook presents the basic principles and knowledge of X-radiation and its applications and is intended for radiological personnel in dentistry or in medical practice specializing in the treatment of maxillo-facial disease. The book discusses in detail all medical and technical aspects of X-ray equipment and their applications, the properties and uses of the films and screens, and processing techniques. There also are chapters dealing with the means available for radiation protection, and with the legal radiation protection provisions to be observed. (DG)

  20. Calibration of radiation protection monitoring equipment

    The facilities and equipment required for calibrating radiation protection monitoring equipment are both complex and expensive. The staff required to operate the equipment and perform the standardization have to be experienced, well trained and technically competent in the use of secondary or primary radiation standards and equipment. Thus an organization cannot commit considerable resources to perform calibration work purely for academic or scientific reasons. In most cases it must be justified by legal requirements pertaining within the country. These legal requirements on measuring devices for radiation protection purposes may be broadly divided into those relating to instruments intended for area monitoring and to those intended for individual monitoring

  1. Introduction to radiation protection dosimetry

    This manual gives in a first part up-to-date definitions and knowledge upon the most significant radiation quantities, including their interpretation which are of a major importance for the topic. In a second part, radiation hazards (for public and occupational exposure) are compared and discussed for natural and man-made sources. The concept of quantities and units is developed, as well as the analysis of exposures from various sources. This book is designed not only for nuclear industry, but also for medical practice and environmental comprehension. refs

  2. Radiation protection in Baden-Wuerttemberg

    The tasks of radiation protection and nuclear safety to be looked after by the land Baden-Wuerttemberg consist essentially in licensing and control activities carried out by the Federal Government. With regard to radiation protection the focal points of the second medium-term programme of the Laender Government Baden-Wuerttemberg are: 1. the technical development plan 'power plant sites', 2. construction of nuclear power plants in the borderline areas of neighbouring foreign countries, 3. disposal of radioactive waste, 4. pollution protection measures against nuclear power plants, 5. safety measures when dealing with radioactive materials outside nuclear power plants. (GL)

  3. Qualification criteria for persons responsible for radiation protection

    A survey of the qualification criteria included in the German atomic law (Atomic Energy Act, Radiological Protection Ordinance and X-ray Protection Ordinance) for persons responsible for radiation protection is given. Especially the various activities for which a health physics officer is required, the range of qualification in each case and the way the qualification has to be proved, are pointed out. Also the different guides that are issued to complete the legal requirements are mentioned. The definitions of the term qualification for health physics given in the different guides are cited and it is shown, that the qualification of a healt physics officer has to be based on the three criteria (I) vocational training. (II) professional experience and (III) the necessary knowledge in radiation protection. (orig./HP)

  4. Radiation protection by superoxide dismutase

    Protection of X-irradiated mice by bovine superoxide dismutase is enhanced when the enzyme is given intravenously both before and after the exposure. With the combined treatment, the LDsub(50(30)) dose is increased from 734 +- 8 to 1144 +- 15 rad for a dose reduction factor of 1.56 +- 0.04. This protection occurs in a dose range where haematological damage is an important contributor to animal lethality. The proliferative capacity of bone marrow stem cells, X-irradiated in air, is protected by exogenous superoxide dismutase. The enzyme increased the D0 from 105 +- 6 to 290 +- 34 rad, an increase that represents 83% of the oxygen enhancement ratio of 3.3. In N2 and N20, the D0 of the stem cells is 348 +- 50 and 327 +- 55 rad, respectively, and the enzyme does not significantly change these values. (author)

  5. Management information system on radiation protection

    Grossi, Pablo Andrade; Souza, Leonardo Soares de; Figueiredo, Geraldo Magela, E-mail: pabloag@cdtn.b, E-mail: lss@cdtn.b, E-mail: gmf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Considering the flux complexity and the multi source information of all radiation protection activities on nuclear organizations, an effective management information system based on technology, information and people is necessary to improve the safety on all processes and operations subjected to radiation risks. An effective management information system is an essential tool to highlight the strengths and weaknesses and identify behaviors and trends on the activities requiring radiation protection programs. Such kind of distinct knowledge is useful to reach an effective management and support the human decision-making on nuclear organization. This paper presents a management information system based on Brazilian directives and regulations on radiation protection. Due to its generic characteristics, this radiation protection control system can be implemented on any nuclear organization by reediting the non restricted parameters which could differ considering all facilities and laboratories expected on-site with diverse technologies applications. This system can be considered as a powerful tool applied on the continuous management of radiation protection activities on nuclear organizations and research institutes as well as for long term planning, not only indicating how the safety activities are going, but why they are not going as well as planned where that is the case. (author)

  6. Radiation and heredity: genetic aspects of protection against radiation

    Primary radiogenetic effects and delayed genetic radiation effects are considered. Experimental and published data on possibility to protect organisms and populations against single and long-term (during life of several generations) effect of ionizing radiation are given. Problem concerning population adaptation to low dose irradiation is discussed. 490 refs., 28 figs., 43 tabs

  7. Radiation protection. Basic concepts of ICRP

    The title subject is easily explained. Main international organizations for radiation protection are United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), International Commission on Radiological Protection (ICRP) and International Atomic Energy Agency (IAEA). The UNSCEAR objectively summarizes and publishes scientific findings; ICRP, an NGO, takes part in recommending the radiological protection from the expertized aspect; and IAEA, a UN autonomy, aims at peaceful usage of atomic power. These organizations support the legal regulation and standard of nations. The purpose of the ICRP recommendation (Pub. 103, 2007) is to contribute to the appropriate protection of radiation hazardous effects, which are assumed to be linearly proportional (the model of linear no-threshold, LNT) that radiation risk exists even at the lowest dose. When a change in the single cell results in hazardous alteration, the causative effects are called stochastic effects, which include the mutation leading to cancer formation and genetic effect in offspring (not observed in man). ICRP says the validity of LNT for the stochastic effects essentially from the protective aspect, although epidemiological data support it at >100 mSv exposure. The deterministic effects are caused by loss of cell itself or of its function, where the threshold is defined to be the dose causing >1% of disorder or death. Radiation protective system against exposure is on the situation (programmed, emergent and natural), category (occupational, public and medical) and 3 principles of justification, optimization and application of dose limit. (T.T.)

  8. Radiation protection by medicinal plants

    The development of effective non-toxic radioprotective agents is of considerable interest in the improvement of radiotherapy of cancer and protection against unplanned exposures. The synthetic drugs developed in post-world war II have had serious constrains in clinical applicable due to their toxicity at the optimal protective dose. Search for non-toxic protectors from natural sources have indicated that some of the commonly used medicinal plants and the poly herbal formulation could prove to be valuable sources of clinically useful radioprotectors as their ratio of effective dose to toxic dose is very high

  9. Proceedings of the Tenth Radiation Physics and Protection Conference

    The publication has been set up as proceedings of the Radiation Physics and Protection Conference.. The conference consists Natural Radiation Sources; Radiation Detection and Measurements; Applied Radiation Physics; Radiation Medical Physics and Biophysics; Radiation Dosimetry; Operational Radiation Protection; Radiation Shielding; Transport of Radioactive Materials; Nuclear and Radiation Physics; Medical Physics and Public Protection Against Radiological Attack. This conference consists of 402 p., figs., tabs., refs.

  10. Radiation protection in medical and biomedical research

    The human exposure to ionizing radiation in the context of medical and biomedical research raises specific ethical challenges whose resolution approaches should be based on scientific, legal and procedural matters. Joint Resolution MINSAP CITMA-Regulation 'Basic Standards of Radiation Safety' of 30 November 2001 (hereafter NBS) provides for the first time in Cuba legislation specifically designed to protect patients and healthy people who participate in research programs medical and biomedical and exposed to radiation. The objective of this paper is to demonstrate the need to develop specific requirements for radiation protection in medical and biomedical research, as well as to identify all the institutions involved in this in order to establish the necessary cooperation to ensure the protection of persons participating in the investigation

  11. Radiation Protection Quantities for Near Earth Environments

    Clowdsley, Martha S.; Wilson, John W.; Kim, Myung-Hee; Anderson, Brooke M.; Nealy, John E.

    2004-01-01

    As humans travel beyond the protection of the Earth's magnetic field and mission durations grow, risk due to radiation exposure will increase and may become the limiting factor for such missions. Here, the dosimetric quantities recommended by the National Council on Radiation Protection and Measurements (NCRP) for the evaluation of health risk due to radiation exposure, effective dose and gray-equivalent to eyes, skin, and blood forming organs (BFO), are calculated for several near Earth environments. These radiation protection quantities are evaluated behind two different shielding materials, aluminum and polyethylene. Since exposure limits for missions beyond low Earth orbit (LEO) have not yet been defined, results are compared to limits recommended by the NCRP for LEO operations.

  12. Development of radiation protection and measurement technology

    Chang, Si Young; Lee, T. Y.; Kim, J. L.; Kim, B. H.; Lee, B. J.; Chung, K. K.; Lee, K. C.; Chung, R. I.; Han, Y. D.; Kim, J. S.; Lee, H. S.; Kim, C. K.; Yoon, K. S.; Jeong, D. Y.; Yoon, S. C.; Yoon, Y. C.; Lee, S. Y.; Kim, J. S.; Seo, K. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, J. K.; Lee, J. K. [Hanyang Univ., Seoul (Korea, Republic of)

    1997-07-01

    Reference X-, gamma, beta and neutron radiation fields complying with the ISO and ANSI standards have been established and evaluated to provide a basic technical support in national radiation protection dosimetry program and to provide calibration measurement devices. Personal dose evaluation algorithm has been developed with these reference radiation fields, which comply well with both domestic and the new ANSI N13.11, to evaluate accurate personal dose equivalents. A personal internal dosimetry algorithm which can estimate the intakes of radionuclides from the results of in vivo bioassay and the resulting internal doses has been developed and verified its performance. It was also evaluated to be equality excellent compared with those being used in foreign countries and used to make a computer code for internal dose evaluation which can be run with PC under the Windows environment. A BOMAB phantom for precise calibration of in vivo system has been also designed, fabricated and test-evaluated. Based on the ALARA concept of the optimization principle of radiation protection, a method for estimating the cost for radiation protection has been studied and an objective monetary cost of detriment due to radiation exposure, called {alpha} value ($/man-Sv) has been derived and proposed based on the Korean socio-economic situation and human risk factors to provide basic data for the radiation protection optimization study in Korea. (author). 100 refs., 104 tabs., 69 figs.

  13. Development of radiation protection and measurement technology

    Reference X-, gamma, beta and neutron radiation fields complying with the ISO and ANSI standards have been established and evaluated to provide a basic technical support in national radiation protection dosimetry program and to provide calibration measurement devices. Personal dose evaluation algorithm has been developed with these reference radiation fields, which comply well with both domestic and the new ANSI N13.11, to evaluate accurate personal dose equivalents. A personal internal dosimetry algorithm which can estimate the intakes of radionuclides from the results of in vivo bioassay and the resulting internal doses has been developed and verified its performance. It was also evaluated to be equality excellent compared with those being used in foreign countries and used to make a computer code for internal dose evaluation which can be run with PC under the Windows environment. A BOMAB phantom for precise calibration of in vivo system has been also designed, fabricated and test-evaluated. Based on the ALARA concept of the optimization principle of radiation protection, a method for estimating the cost for radiation protection has been studied and an objective monetary cost of detriment due to radiation exposure, called α value ($/man-Sv) has been derived and proposed based on the Korean socio-economic situation and human risk factors to provide basic data for the radiation protection optimization study in Korea. (author). 100 refs., 104 tabs., 69 figs

  14. Radiation protection program of PETROBRAS

    A broad and systemic program is presented aiming the control of ionizing radiation usage in activities such as measurement of operational variables, industrial radiography and well logging. Main aspects of this program are: control of radioactive sources utilization; personnel back up training in order to spread knowledge at the operation level, and standardization of procedures. (author)

  15. Radiation protection principles observance in Iranian dental schools

    In recent decades many guidelines has been conducted by radiation protection organizations about radiation protection in dentistry. This study aimed to evaluate the observance of these guidelines in educational clinics of all dental schools in Iran. Material and Methods: In this cross-sectional study a self-administered questionnaire, based on National Radiation Protection Board and European Commission guidelines, was conducted. The radiology departments of all dental school (18 schools) were surveyed in this study. The questionnaire was consisted of 3 sections including intraoral radiography, extra oral radiography and implementation of quality control programs. Results: In the case of the existence of radiation protection facilities (such as lead apron, thyroid shield and lead impacted walls) the use of high speed films and existence of automatic processor in dental schools, there was a proper condition. The main problem was related to lack of regular quality control and quality assurance programs. Digital radiography systems were employed in none of the schools and it was occasionally used for research purposes at some of them. Conclusions: This study has emphasized on the need for further consideration of radiation protection principles in dental schools, especially on the field of quality control and quality assurance programs.

  16. Survey of women's awareness about radiation

    A project in a voluntary group 'Women's Energy Network' conducted two questionnaire surveys on Japanese women's awareness about radiation. The survey was conducted to investigate how women(non-experts) perceive radiation and radioactivity, what is their image about radiation, to what extent they are aware of the use of radiation in their daily life, and whether they find nuclear related information useful or not. The results of those surveys have led WEN to publish a booklet entitled 'Our Life and Radiation' to be used for public communication and to hold public forums in various cities in Japan. The first survey was conducted in 2001 to those living in big cities such as Tokyo and Osaka and to those living in the area where the nuclear power plant is installed. The response rate was 72.4% (1,028 out of 1,419). The second one was done in 2005 to those living in Tokyo and other big cities. The response rate was 84.7% (888 our of 983). It was derived from the two surveys that they were not so much aware of various applications of radiation for daily use (awareness rate was low), but they considered those information would be useful when it becomes available for them and they were interested in knowing about it. As for the image of radiation, about 80% have shown fear when they see or hear a word 'radiation'. This report provides the result of questionnaire surveys on women's awareness about radiation conducted by 'Our Daily Life and Radiation' project in Women's Energy Network. (author)

  17. Radiation Protection Elephants in the Room

    As our system of radiological protection evolves, several significant issues loom within radiation protection discussions and publications. These issues influence the nature of epidemiological and radiobiological research and the establishment of radiation protection recommendations, standards, and regulations. These issues are like the proverbial elephants in the room. They are large, and it is unwise to ignore them. This paper discusses the impact of three young elephants as they make their presence increasingly obvious: increased cancer susceptibility from early-life exposure to radiation, terrorism and fear of radiation, and patient safety. Increased cancer susceptibility from early-life exposure to radiation is emerging as a discussion topic related to the safety of computed tomography (CT) and other medical modalities. Shortly after publication of CT dose data, manufacturers were helping to reduce doses to children by increasing flexibility for adjustment of technique factors. Also, radiation epidemiological data are being used in the development of guidance on exposure to chemical carcinogens during early life. Re-emergence of public fear of radiation has been fueled by threats of radiological dispersion devises and confusing messages about personal decontamination, emergency room acceptance or rejection of contaminated victims, and environmental clean-up. Finally, several professional publications have characterized risk of medical radiation exposure in terms of patient deaths even though epidemiological data do not support such conclusions. All three of these elephants require excellent science and sophisticated data analysis to coax them from the room. Anecdotal communications that confuse the public should be avoided. These are not the only elephants in the room, but these three are making their presence increasingly obvious. This paper discusses the need for radiation protection professionals to rely on good science in the evolution of the system of

  18. Radiation protection activities around the CERN accelerators

    The staff of the Survey Section of Radiation Protection (RP) working around the CERN accelerators were as usual very busy. The LEP2 programme is now fully on its way, with the installation of additional superconducting RF cavities carried out during both the winter and summer shutdowns. The LEP energy per beam was thus increased to 80.5 GeV in summer and to 86 GeV in autumn. ACOL and LEAR ended their operational life on 19 December producing, for the last time, antiprotons for the experiments in the South Hall; all experiments will be dismantled in 1997. This programme will be partly replaced by the future Antiproton Decelerator, which was approved by the Research Board in November. Several experiments also came to their end in the North and West Experimental Areas of the SPS. NA44 (in EHN1) and NA47 (in EHN2) ended this year. All experiments installed in beam lines HI, H3, XI and X3 in the West Area also terminated, as these beam lines will be dismantled in the course of 1997 to make room for test facilities for the LHC. Several modifications in the West and North Experimental Areas have already been undertaken at the end of the year and will be continued in 1997. Some equipment installed in the West Area will be moved to the North Area. In addition to routine work, several measurements of synchrotron radiation were made in LEP for the two new energy levels reached in 1996. A number of dedicated measurements were also undertaken in EHN1 (North Area) at the end of the year, during the lead-ion run which closed the physics period. A detailed assessment of releases of radioactivity from the ISOLDE facility was also made

  19. Radiation protection training for users of ionizing radiation in Hungary

    According to the current and previous regulation related to the safety use of ionizing radiation, the personnel involved must obtain special qualification in radiation protection. In Hungary the radiation protection training are performed by appropriately certified training centers on basic, advanced and comprehensive levels. Certification of the training centers is given by the competent radiological health/radiation protection authority. The office of the Chief Medical Officer is the certifying authority for advanced and comprehensive levels training, as well as competent Regional Radiological Health Authority is responsible for basic level courses. The content and length of courses are specified in the regulation for all three levels of industrial, laboratory and medical users, in general. Some of the universities, technical and medical oriented are certified for advanced training for students as gradual course. Recently in Hungary there are 47 certified training centers for advanced and comprehensive courses, where the trainers should have a five years job experience in radiation protection and successful completion of comprehensive level course in radiation protection. (authors)

  20. Radiation protection in the application of ionizing radiation in industry

    There is a substantial increase in the use of ionizing radiation in industry throughout the country especially in the last five years or so. With this growth in the number of users and activity of sources used, and together with the introduction of the new Atomic Energy Licensing Act (AELA) in 1984, the question of radiation safety and protection of workers and members of the public in general, can no longer be taken lightly. It has to be dealt with effectively. In this paper, a general discussion and clarification on certain practical aspects of radiation protection as recommended by the International Atomic Energy Agency (IAEA) is presented. Amongst the topics chosen are those on area monitoring, personnel monitoring, leak testing of sealed sources and training of personnel. Also presented in the paper is a brief discussion about UTN's experience in giving out radiation protection services to various agencies throughout the country. (author)

  1. Characteristics of radiation protection legislation

    The laws on radiological protection have special characteristics. They can exist laws that regulate dangerous activities that will be also applicable, if it corresponds to the activities that involve radioactive materials. But a law of radiological protection should exist. It foresees the existence of an appropriate regulatory body and specialized institutions, definitions, infractions and sanctions then the respective regulations will be elaborated for the different applications. The objective is to contribute to the development of the nuclear energy in the country and to provide the regulatory basis that assures a reasonable security for radioactive installations. The essential objectives of these laws are: 1. to establish the legislative framework for the development and employment of nuclear energy, without risks, according with treaties and conventions that the countries have approved. 2. To fix the fundamental principles and the conditions of their setting in practice allowing to a specific regulation determining application procedures. 3. To create a structure of regulation of enough authority to be able to control and to watch over in an effective way the authorized activities 4. To guarantee an appropriate financial protection against the derived damages of accidents or nuclear incidents. (author)

  2. Regulatory System of Radiation Protection in Taiwan

    After the radioactive contaminated buildings incident occurred in Taiwan in 1993, the competent authority for radiation protection the Atomic Energy Council (AEC) started to review the structured problem of radiation protection regulatory system. Through several years' investigation and study, the AEC has improved two important tools in radiation protection regulatory system, i.e., control regulations and actual practice, and made them more rigorous and efficient. This paper will make a brief introduction of the efforts that Taiwan has made in this respect. Taiwan's radiation protection control was based on the Atomic Energy Law promulgated in 1968, but the control idea and authorization scope were not sufficient to appropriately respond to the highly developed economy and democracy in Taiwan. After several years' legislative process, the Ionizing Radiation Protection Law (IRP Law) was promulgated and entered into force on February 1, 2003. This IRP Law specifically emphasizes categorized risk management of radiation sources, establishment of personnel licenses and training system, enhancement of public safety control, and implementation of quality assurance program for medical exposure. The Legislative Yuan (Congress) fully authorized the competent authority to establish various technological control regulations according to control necessity without prior review by the Legislative Yuan in advance. As to the penalties of the violations of the IRP Law, the AEC adopts high-rated administrative fines and applies the Criminal Law to those who seriously contaminate the environment. In actual practice, the AEC has constructed a Radiation Protection Control Information System compatible with the IRP Law that fully combines the functions of computers and Internet. The information of facility operators who own radiation sources, radiation protection specialists, and operating personnel are entered into this system, starting from the submission of application of the

  3. Public understanding of radiation protection concepts

    The Chernobyl accident in April 1986 clearly showed that communication with the public was one of the areas where there was a strong need for improvement, particularly concerning the nature and extent of the information provided by national authorities. The countermeasures adopted by public health authorities also raised difficulties in terms of public understanding and acceptance due, in part, to the perception of discrepancies in national, regional or local response to the accident, but also to a more basic lack of comprehension of the complex radiation protection considerations involved. In an attempt to help improve the situation, the NEA Committee on Radiation Protection and Public Health decided to organise a Workshop on public communication in the event of a nuclear accident, centered on radiation protection issues. The purpose of this Workshop was to analyse appropriate methods and language to be used when explaining to the public the scientific concepts underlying radiation risks and radiation protection, and the technical rationale for the choice of protective actions in an emergency. Separate abstracts were prepared for individual papers presented at the meeting

  4. Radiation protection in nuclear energy. V.2

    The conference was convened to provide a forum for the exchange of international views on the principles of radiation protection for regulators and practitioners, to highlight issues of current importance, to examine the problems encountered in applying the principles of radiation protection, and, where possible, to identify generic solutions. The highlights of the conference were the sessions on the interface between nuclear safety and radiation protection, the evolution of radiation protection principles, exemption rules and accident experiences. The special session on the practical implications of the linear dose-response relationships also provoked particular interest. Although the session on optimization and decision aiding did not reveal any new developments, it did indicate an increasing emphasis on the optimization of radiation protection. A clear trend towards attaining lower collective doses per unit practice over a given time period, despite the increase in nuclear power plant capacity, is also apparent, although very few data on job-related worker doses have been published to date in the open literature. From the regulators' viewpoint, a very strong desire was expressed for a move towards regulatory strategies that exempt practices and sources causing insignificant individual and collective doses. Refs, figs and tabs

  5. The new German radiation protection ordinance

    According to European law, the Basic Safety Standards (BSS) published by the European Council in 1996 and the Council Directive on health protection of individuals against dangers of ionising radiation in relation to medical exposure had to be transferred into national law within due time. In 2001 the new Ordinance for the Implementation of the Euratom Guidelines on Radiation Protection] was published, which replaces the old Radiation Protection Ordinance. The new German Ordinance adapts the European Directive to German law, covering the general principles but even giving more details in many fields of radiation protection. The BSS scope certainly is much broader than the prescriptions important for the field of radiation protection in nuclear power plants. According to the scope of this workshop on occupational exposure in nuclear power plants - and as the BSS most probably will be quite familiar to all of you - after a short general overview on relevant contents of the German Ordinance, this presentation will focus on the main issues important in the operation of NPP and especially on some areas which may give rise to necessary changes caused by the new Ordinance. (A.L.B.)

  6. Implementation experience of the radiation protection infrastructure in Lithuania

    A national radiation protection infrastructure has been created in Lithuania in order to ensure radiation protection in the country and to comply with the IAEA and European Union requirements and recommendations regarding radiation protection. The new laws, namely, the Law on Radiation Protection, the Law on Nuclear Energy, the Law on Radioactive Waste Management, and different regulations were approved. The Radiation Protection Centre of the Ministry of Health is the regulatory authority responsible for radiation protection both of members of the public and employees associated with the nuclear industry in Lithuania. According to the Law on Radiation Protection, the Radiation Protection Centre is a body coordinating the activities of executive and other bodies of public administration and local government in the field of radiation protection, exercising State supervision and control of radiation protection, monitoring and expert examination of public exposure. Problems connected with establishing the national radiation infrastructure in Lithuania are presented and their solution is discussed. (author)

  7. IAEA occupational radiation protection programme: current status

    As stated in Art.III.A.6 of its Statute, the International Atomic Energy Agency (commonly referred to as the Agency) is authorized to establish or adopt, in consultation and, where appropriate, in collaboration with the competent organs of the United Nations and with the specialized agencies concerned, standards of safety for protection of health and minimization of danger to life and property (including such standards for labour conditions), and to provide for the application of these standards to its own operation as well as to the operations making use of materials, services, equipment, facilities, and information made available by the Agency or at its request or under its control or supervision. The Agency s Occupational Radiation Protection Programme aims at harmonizing infrastructures for the control of radiation exposure of workers and for optimizing radiation protection in situation s of exposures due to external radiation and intakes of radionuclides from both artificial and natural sources of radiation. Under its regular and technical cooperation programmes, the Agency has been assigning high priority to both the establishment of safety standards for labour conditions and for the application of these standards through, Interalia, direct assistance under its technical cooperation (TC) programme, the rendering of services, the promotion of education and training, the fostering of information exchange and the coordination of research and development. The purpose of this paper is to present the current status and future IAEA activities in support of occupational radiation protection. (authors)

  8. Research priorities for occupational radiation protection

    The Subpanel on Occupational Radiation Protection Research concludes that the most urgently needed research is that leading to the resolution of the potential effects of low-level ionizing radiation. This is the primary driving force in setting appropriate radiation protection standards and in directing the emphasis of radiation protection efforts. Much has already been done in collecting data that represents a compendium of knowledge that should be fully reviewed and understood. It is imperative that health physics researchers more effectively use that data and apply the findings to enhance understanding of the potential health effects of low-level ionizing radiation and improve the risk estimates upon which current occupational radiation protection procedures and requirements depend. Research must be focused to best serve needs in the immediate years ahead. Only then will we get the most out of what is accomplished. Beyond the above fundamental need, a number of applied research areas also have been identified as national priority issues. If effective governmental focus is achieved on several of the most important national priority issues, important occupational radiation protection research will be enhanced, more effectively coordinated, and more quickly applied to the work environment. Response in the near term will be enhanced and costs will be reduced by: developing microprocessor-aided open-quotes smartclose quotes instruments to simplify the use and processing of radiation data; developing more sensitive, energy-independent, and tissue-equivalent dosimeters to more accurately quantify personnel dose; and developing an improved risk assessment technology base. This can lead to savings of millions of dollars in current efforts needed to ensure personnel safety and to meet new, more stringent occupational guidelines

  9. New radiobiological, radiation risk and radiation protection paradigms

    The long-standing conventional paradigm for radiobiology has formed a logical basis for the standard paradigm for radiation risk of cancer and heritable effects and, from these paradigms, has developed the internationally applied system for radiation protection, but with many simplifications, assumptions and generalizations. A variety of additional radiobiological phenomena that do not conform to the standard paradigm for radiobiology may have potential implications for radiation risk and radiation protection. It is suggested, however, that the current state of knowledge is still insufficient for these phenomena, individually or collectively, to be formulated systematically into a new paradigm for radiobiology. Additionally, there is at present lack of direct evidence of their relevance to risk for human health, despite attractive hypotheses as to how they might be involved. Finally, it remains to be shown how incorporation of such phenomena into the paradigm for radiation protection would provide sufficient added value to offset disruption to the present widely applied system. Further research should aim for better mechanistic understanding of processes such as radiation-induced genomic instability (for all radiation types) and bystander effects (particularly for low-fluence high-LET particles) and also priority should be given to confirmation, or negation, of the relevance of the processes to human health risks from radiation.

  10. Radiation Protection Service in Ceylon

    The main application of radiation in Ceylon is in medicine, both diagnostic and therapeutic. About 40 government hospitals have a total of 120 diagnostic X-ray installations. The Cancer Hospital at Maharagama represents the only therapy installation on the island, and possesses three deep X-ray therapy units, one superficial X-ray unit and two cobalt-60 units. It also has facilities for the use of radium and iodine-131 in therapy. In addition, radioisotopes are used for diagnosis at this institute. (author)

  11. Chemical radiation protection in mammals and humans

    The development and the present situation in experimental research with animals as well as in clinical application in the field of chemical radioprotection are described. The efficacy of radioprotective substances in the case of acute radiation death, of radiation-induced changes in various tissues and organs as well as in late effects are reported. The mechanisms of actions are discussed. By comparison of radiation reactions in protected and unprotected animals radioprotective factors can be determined. Such factors depend, among other parameters, on the kind of the radioprotective agent and its dose, on the radiation reaction, on the quality of radiation as well as on the radiation dose. Up to now thiophosphate WR 2721 proved to be the most efficient substance. It was observed that the application of this compound yielded a protection factor of up to 2.7 for the acute radiation death in mice. The disadvantage of radioprotective agents must be seen in their side effects. Despite this behaviour thiophosphate, amongst others, is being tested in clinical radiotherapy. In order to apply radioprotective substances in foreseen emergency or catastrophic situations a number of demands were postulated. As yet, none of the tested radioprotectors meet these demands. Therefore, NATO has refrained from keeping radioprotective agents in reserve up to now. On the other hand, the USSR has included the radioprotective agent cystamine in their civil defence protection kit. (orig.)

  12. 10 CFR 20.1101 - Radiation protection programs.

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and...

  13. 10 CFR 835.101 - Radiation protection programs.

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Radiation protection programs. 835.101 Section 835.101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative Requirements § 835.101 Radiation protection programs. (a) A DOE activity shall be conducted in compliance with a documented radiation protection program (RPP)...

  14. Abstracts of 20. International Symposium Radiation Protection Physics

    51 papers are presented as titles with abstracts which are processed individually for the INIS data base. They deal with general aspects of radiation protection physics, international activities in radiation protection, solid state dosimetry, models and calculation methods in radiation protection, and measuring techniques in radiation protection

  15. Radiation protection of the environment - new trends

    Recent trends in the radiation protection of the environment focusing on basic changes of the protection philosophy from the egocentric to ecocentric approach are presented and discussed. The globalization of the economy is accompanied by global contamination of the environment that requires changes in the attitude of the protection of the total environment, i.e. protection of humans, fauna and flora, all ecosystems and the Earth in general, as well as the cosmic space. This complex approach is illustrated on the radiation protection of the environment that has always been in the forefront in developing protection philosophy, methodology and standards, which later has also been applied to the protection of the environment caused by non-radioactive contaminants, such as heavy metals and organic compounds. High radiation doses delivered to biota are illustrated on shellfish and fish collected in the Mururoa and Fangataufa lagoons (affected by series of nuclear weapons tests), and on fish in Novaya Zemlya bays (affected by dumping of nuclear reactors and radioactive wastes). On the methodological site an example is discussed focusing on the in situ sea-bed radionuclide mapping and seawater monitoring using submersible gamma-ray spectrometers operating with NaI(Tl) and HPGe detectors which has proved to be important pre-requisite for estimation of the spatial distribution of radionuclides in the water column and on the sea floor, as well as for optimisation of sediment sampling for studying the radionuclide distribution with depth

  16. Workplace analysis and radiation protection

    This document gathers the slides of the available presentations given during this conference day. Fifteen presentations out of 16 are assembled in the document and deal with: 1 - the evolution of doses received by workers (J. Feuardent); 2 - evaluation of extremities dosimetry among interventional radiology practitioners (L. Donadille); 3 - practical guide for the realisation of workplace dosimetry studies presenting a ionizing radiation exposure risk: and example in nuclear medicine (J.L. Rehel); 4 - workplace studies in radiotherapy-curietherapy (D. Donnarieix); 5 - from dosimetry to physical intensity: the case of heat insulation activities (A. Garrigou and C. Piccadaci); 6 - the consideration of human factor during facility modifications (V. Gauthereau); 7 - how to carry out a workplace analysis in gamma-graphy? (F. Truchi); 8 - workplace studies in the framework of dismantling activities (J. Chardin); 9 - team synergy (F. Debouck); 10 - adaptation of individual dosimetry to the workplace: the case of external exposure (I. Clairand); 11 - technical aspects of the evaluation of ionizing radiations exposure induced by a new interventional radiology procedure (J.C. Amabile); 12 - the point of view of a radioprotection skilled person in a nuclear medicine service (J.M. Vrigneaud); 13 - workplace studies for the unique document (F. Roussille); 14 - occupational exposure to manufactured nano-particles: issues and knowledge status (O. Witschger); 15 - toxicological risk of nano-particles: 'health impact'? (S. Chevillard). (J.S.)

  17. Radiation Protection at Light Water Reactors

    Prince, Robert

    2012-01-01

    This book is aimed at Health Physicists wishing to gain a better understanding of the principles and practices associated with a light water reactor (LWR) radiation protection program. The role of key program elements is presented in sufficient detail to assist practicing radiation protection professionals in improving and strengthening their current program. Details related to daily operation and discipline areas vital to maintaining an effective LWR radiation protection program are presented. Programmatic areas and functions important in preventing, responding to, and minimizing radiological incidents and the importance of performing effective incident evaluations and investigations are described. Elements that are integral in ensuring continuous program improvements are emphasized throughout the text.

  18. National congress of radiation protection; Congres national de radioprotection

    NONE

    2001-07-01

    The congress of radiation protection tackled different areas of radiation protection. The impact of ionizing radiations on environment coming from radioactive activities. The biological radiation effects, the dosimetry, the different ways of doing relative to radiation protection,the risks analysis and the communications with populations, information about accidents and the lessons learned from them are included in this congress. (N.C.)

  19. Current Challenges in Radiation Protection in Medicine

    Radiation protection professionals in medical facilities and practices are being challenged by new imaging technologies that use x-rays or radioactive materials. These include faster computerized tomography (CT) scanners, new interventional techniques that use extended fluoroscopy time, increased use of positron emission tomography (PET), and digital imaging techniques. More frequently these technologies are being fused into a single procedure, such as combined CT and PET scanning. Radiation Protection professionals are challenged to (1) be aware of developing technologies and clinical techniques, (2) analyze the potential radiation risks to patients and staff, (3) initiate necessary radiation safety training for medical staff, and (4) be involved in planning, dose measurement and optimization of the procedure to achieve appropriate dose control and ALARA

  20. Melatonin as Protection Against Radiation Injury

    Zetner, D; Andersen, L P H; Rosenberg, J

    2016-01-01

    Introduction: Radiation is widely used in the treatment of various cancers and in radiological imaging procedures. Ionizing radiation causes adverse effects, leading to decreased quality of life in patients, by releasing free radicals that cause oxidative stress and tissue damage. The sleep......-hormone melatonin is a free radical scavenger, and induces several anti-oxidative enzymes. This review investigates the scientific literature on the protective effects of melatonin against exposure to ionizing radiation, and discusses the clinical potential of melatonin as prophylactic treatment against ionizing...... radiation damage. Methods: A systematic literature search was performed and included experimental or clinical studies written in English that investigated the protective effects of melatonin against gamma or X-ray irradiation in vivo. Studies were excluded if patients were treated with chemotherapy...

  1. Management of radiation protection at big institutes. Radiation protection is tailor-made work

    Attention has been paid to the organization and planning of radiation protection in universities and academic hospitals in the Netherlands. It appears that a uniform model can not be given. It is recommended to draft a basic document per institute, in which the main features of the radioprotective care are presented., focusing on the quality of the radiation protection organization and the imbedding of radiation experts in the institutes

  2. Radiation protection and risk assessment

    In its publications 22 and 26, ICRP recommends a method of optimization that requires that first the risks of the considered activity be quantitatively assessed. This paper deals with the transportation of radioactive material. Several aspects are examined: assessing risk quantitatively (as an expected number of health effects), determining the most cost-effective alternative options and applying the method to a practical example. Two of the possible applications of the results are presented in the case of transportation of UF6 in France: 1) the cost-effectiveness analysis of a set of alternative protection measures and 2) the comparison between such measures affecting risks in nuclear transportation and other measures dealing with different steps of the whole uranium fuel cycle. (HK)

  3. Current trends in radiation protection

    Organizers of the 11. IRPA International Congress have wished to take advantage of this occasion to launch a new series of books dedicated to review the current important problems of concerns in radioprotection. The four editors have combined their efforts to assemble within this book contributions from the worldwide and most famous specialists in their respective fields. Their signatures lead to the insurance of a first class information. all aspects of radioprotection are treated, through synthetic articles accessible to all. Very didactic, this book will be useful to radioprotection professionals willing to take the stake of all aspects within their profession, but also to engineers, physicists, physicians, researchers, and non-specialist people who will find here a thorough synthesis of all aspects of radiological protection. (author)

  4. International regulations for radiation protection

    A review of the development of the IAEA Radiological Protection standards is given. The basic features of the latest revision recently adopted by the governing bodies of the sponsoring organizations, i.e. IAEA, WHO, ILO, NEA/OECD are discussed and some of the features of the future Agency programme for its implementation will be outlined. In particular, attention will be given to development of the basic principles for setting release limits of radioactive materials into the environment. An important aspect of this is when the release of radioactive materials into the environment crosses international boundaries. The Agency is best suited to try to reach a consensus on the minimum monetary value for the unit collective dose. (orig./RW)

  5. Third conference on radiation protection and dosimetry

    1991-01-01

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  6. Radiation protection measurement. Philosophy and implementation

    A selection from the proceedings of the International Symposium held by the U.K. Society for radiological protection in June 1974 was presented. The central theme was the philosophy of radiation protection measurement and its interpretation although some specific areas of good health physics practice were included. The 28 papers selected were chosen to be either representative of the central theme or of wider interest. The papers have been grouped in 6 main sections: philosophy of measurements; interpretation of measurements; implementation by legislation and monitoring; radiation exposure and control; reactor safety and siting; accidents

  7. Third conference on radiation protection and dosimetry

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations

  8. Radiation protection supervisors certification in Brazil

    In order to accomplish its legal assignments CNEN certifies the qualification of radiation protection supervisors. The current certification process is presented and discussed in this paper. This paper discusses the main points of the certification process including: knowledge tests, stake holder's communication, standards, supervisor responsibilities and profiles. The importance of safety certification of nuclear facilities and radiation protection of public individuals and workers are also discussed. Taking into account the characteristics of the Brazilian Nuclear program, the future improvements and goals in the certification process is also presented. (author)

  9. Radiation protection and fuzzy set theory

    In radiation protection we encounter a variety of sources of uncertainties which are due to fuzziness in our cognition or perception of objects. For systematic treatment of this type of uncertainty, the concepts of fuzzy sets or fuzzy measures could be applied to construct system models, which may take into consideration both subjective or intrinsic fuzziness and objective or extrinsic fuzziness. The theory of fuzzy sets and fuzzy measures is still in a developing stage, but its concept may be applied to various problems of subjective perception of risk, nuclear safety, radiation protection and also to the problems of man-machine interface and human factor engineering or ergonomic

  10. Radiation protection, public policies and education

    The objective of this paper is to inform about the aspects of radiation protection public policies concerning the public spheres and the ordinary population. It is known that information has been considered a very important good in several knowledge areas. However, the efficiency of their transmission mechanisms should be periodically evaluated, checking existing critical and stagnation points. Nuclear area can be mentioned as a historically typical case, where the public policies assume relevant importance as tool for promotion, control and education of the population in general. Considering the polemic nature of such subject, it is clear that there is a need for conducting the construction of educational contents taking in account the educator training necessities. The addressing of radiation protection aspects applied to nuclear techniques conducts, for example, to the awareness on the benefits of radiation and its industrial and medical applications, which are established considering the worldwide adopted basic principles of radiation protection. Such questions, concerned with (or related to) public policies, establish a link between radiation protection and education, themes explored in this article to provide a better view of the current Brazilian scenario. (author)

  11. Radiation protection training programmes Spanish approach

    Radiation Protection Programmes are being considered the best way to promote safety culture and to spread and propagate European basic safety standards. It is widely accepted that training is an important tool to upgrade competence for radiation exposed workers. The Spanish Radiation Protection Education and Training Programmes provide a solid and integrated educational model, which takes into account the variety of applied fields, the different levels of responsibilities, the technological and methodological advances, as well as the international tendencies. The needs for a specialised training on Radiation Protection (RP) for exposed workers appears into the Spanish regulation in 1964. National initial training programmes are well established since 1972. Individual certifications, based on personal licences are required for exposed workers. The Spanish regulation also includes continuous and on the job RP training. The educational programmes are being continuously updating and improving. CIEMAT plays an important role in RP Spanish training, improving and modifying the previous RP courses and developing new programmes in order to complete the RP training levels. To achieve Radiation Protection objectives, new technological media for educational methods and material are taking into account. Nevertheless, Spanish RP education and training model has to be improved in some aspects. The purpose of this paper is to analyse the situation and the future needs to be considered in order to complete the RP training processes

  12. Radiation protection optimization and work management

    The influence quantification of bound factors to work management, and the obtained results when you apply the dosimetric economical evaluation model of the radiation protection experiments, prove that ALARA principle application musn't bound to actions on the radiation sources, but that you can find a wide act field in the irradiation work volume management topics. 53 refs., 5 tabs., 10 figs., 4 appendixes

  13. Thermoluminescence Dosimetry Applied to Radiation Protection

    Christensen, Poul; Bøtter-Jensen, Lars; Majborn, Benny

    1982-01-01

    This is a general review of the present state of the development and application of thermoluminescence dosimetry (TLD) for radiation protection purposes. A description is given of commonly used thermoluminescent dosimeters and their main dosimetric properties, e.g. energy response, dose range......, fading, and LET dependence. The applications of thermoluminescence dosimetry in routine personnel monitoring, accident dosimetry, u.v. radiation dosimetry, and environmental monitoring are discussed with particular emphasis on current problems in routine personnel monitoring. Finally, the present state...

  14. Radiation Protection and Civil defence Department

    This conference involves subjects of radiation protection, programming of civil defence, on the implementation of 1990 ICRP recommendation, thermoluminescence properties of bone equivalent calcium phosphate ceramics, potassium body burdens in occupational users of egyptian nuclear research centre, transport of radionuclides in fresh water stream, water treatment process for nuclear reactor, research activities related to internal contamination and bioassay and experience and environmental radiation monitoring in inshass. it contains of figures and tables

  15. Radiation protection in neighbouring countries in Central Europe. Proceedings

    This proceeding is published in 3 volumes. Volume 1 covers the topics: (1) Environmental protection, and (2) Radiation Dosimetry. Volume 2 covers the topics: (3) Radiation Protection in Medical Exposures, (4) Radiation Protection in Applications of Radioisotopes and Nuclear Technology, (5) Radioactive Waste Management and Decommissioning, (6) Radiation Monitoring, and (7) Emergency Planning and Preparedness. Volume 3 covers the topics: (8) Operational Radiation Protection, (9) Non Ionising Radiation, (10) Radiation Protection Principles and Policies, (11) Natural Radiation, (12) Radiation Exposure Control: Methods and Means, and (13) Public Education and Information. (blahsl)

  16. Evolution of Radiation Protection System in Kenya

    Promulgation of radiation protection legislation in Kenya dates back to 1982, was revised in 1985 and became operational in 1986. This law, the Radiation Protection Act, establishes the Radiation Protection Board as the National Regulatory Authority, with an executive Inspectorate headed by the Secretary to the Board. Subsidiary legislation on radiological practices and standards were subsequently published. The Inspectorate carries out the National programme for notification, authorization, inspection and enforcement. Nuclear applications for peaceful purposes in Kenya are on the increase in all major fields of socio-economic development. Provision of regulatory services, guidance and enforcement procedures, has had a net growth over the last fifteen years. However, staff retention has been declining over the years in a market where job opportunities, with relatively high incentives, are high either inside or outside the country. Human and equipment resource development has therefore not kept pace and this has hampered effective and efficient provision of services. The poor status of the economy has had its impact on delivery of quality, effective and efficient radiation protection services. Provision of radiation services and acquisition of radiation detection and measurement equipment in the country has been generally lacking dating as far back as 1995. During the period 1989 to present, Kenya's Regulatory Authority, the Radiation Protection Board, undertook to provide personal monitoring, quality assurance, radioanalysis, and equipment calibration. Over the years these services have stalled due to outdated equipment most of which have broken down. A maintenance and calibration service for nuclear equipment is an expensive cross-boarder issue. Budgetary constraints, insufficient human and equipment resources, and a perennial 'brain drain' has placed limitations to the effectiveness and efficiency of implementation of the National programmes and slowed the

  17. National congress of radiation protection - SFRP 2005

    The nine tutorial sessions are: first one, the new recommendations of the ICRP; second one, effects on health of ionizing radiations with the following subjects ( the dose-response relationship and the estimation of carcinogen effects of ionizing radiation low doses; effect of dose rate on the induction and repair of radioinduced DNA double strand break; interest of global approach in radiation protection; molecular signature of the radioinduction in the thyroid tumors: example of radioinduced thyroid tumors after radiotherapy; incidence of child leukemia near the nuclear facilities: results of a multi sites study in France; genome instability and mutations induction after ionizing irradiation: consequences for the progeny; D.T.P.A encapsulation, an efficient strategy for the plutonium decorporation among the rat); the third one, non-ionizing radiation with the following subjects (can the exposure to a magnetic field of 100 μ T at 50 Hz be detected in the human physiological shiver; evaluation of the population exposure to the magnetic fields of 50 Hz: what indicators to choose; experimental study of the immunity of implantable defibrillators to the low frequencies electro-magnetic perturbations; DNA damages induced by the Ar F laser; dosimetry with a phantom in gel of human head); fourth session concerns the regulatory aspects; the fifth one presents the radiation protection and the radioactive waste management; the sixth session concerns the public and patients radiation protection; the seventh one treats the radiation protection in professional area with the following subjects ( optimization of radiation protection in the underground uranium mine of Cominak in Niger; revealing by multi parameters capillaroscopy, of micro vascular alterations of fingers among interventional radiologists; use of radioactive and chemical probes in biological research; uncertainties on doses and D.P.U.I.; monitoring of work areas. Evaluation of workers exposure towards a particular

  18. Evolution of Radiation Protection System in Kenya

    Maina, J. A. W.

    2004-07-01

    Promulgation of radiation protection legislation in Kenya dates back to 1982, was revised in 1985 and became operational in 1986. This law, the Radiation Protection Act, establishes the Radiation Protection Board as the National Regulatory Authority, with an executive Inspectorate headed by the Secretary to the Board. Subsidiary legislation on radiological practices and standards were subsequently published. The Inspectorate carries out the National programme for notification, authorization, inspection and enforcement. Nuclear applications for peaceful purposes in Kenya are on the increase in all major fields of socio-economic development. Provision of regulatory services, guidance and enforcement procedures, has had a net growth over the last fifteen years. However, staff retention has been declining over the years in a market where job opportunities, with relatively high incentives, are high either inside or outside the country. Human and equipment resource development has therefore not kept pace and this has hampered effective and efficient provision of services. The poor status of the economy has had its impact on delivery of quality, effective and efficient radiation protection services. Provision of radiation services and acquisition of radiation detection and measurement equipment in the country has been generally lacking dating as far back as 1995. During the period 1989 to present, Kenya's Regulatory Authority, the Radiation Protection Board, undertook to provide personal monitoring, quality assurance, radioanalysis, and equipment calibration. Over the years these services have stalled due to outdated equipment most of which have broken down. A maintenance and calibration service for nuclear equipment is an expensive cross-boarder issue. Budgetary constraints, insufficient human and equipment resources, and a perennial 'brain drain' has placed limitations to the effectiveness and efficiency of implementation of the National programmes and

  19. Application of radioprotectors in radiation protection

    Kljajic, R.R.; Masic, Z.S. [Scientific Veterinary Inst., Novi Sad (Yugoslavia)

    2000-05-01

    Application of the ionizing radiation in almost all the fields of human activities enlarged the knowledge of their harming influence on the living beings. At the same time there have been many investigations of different chemical means that could successfully be used in protection from radiation. Until today several hundreds of different chemical compounds have been considered to be a potential chemical radioprotector. Analyzing the results of investigating great number of potential radioprotective compounds, it can be said that those containing sulfur provide the most effective protection. That are aminothiols, aminodisulphides, derivatives of thiourea, thiosulphuric and thiophosphate acid, dithiocarbamates, thiazolines, some of biogen amines and their derivates. Among the investigated compounds there is a certain number that, under some circumstances, has shown a protective effect on the experimental animals. In the work comparative investigation of the protective effect of cistaphosa (WR-638) and gamaphosa (WR-2721) have been researched on the big experimental animals, radiated with a high level of X-radiation. Well protective influence of both radioprotectors has been proven but gamafos showed higher efficiency. (author)

  20. Application of radioprotectors in radiation protection

    Application of the ionizing radiation in almost all the fields of human activities enlarged the knowledge of their harming influence on the living beings. At the same time there have been many investigations of different chemical means that could successfully be used in protection from radiation. Until today several hundreds of different chemical compounds have been considered to be a potential chemical radioprotector. Analyzing the results of investigating great number of potential radioprotective compounds, it can be said that those containing sulfur provide the most effective protection. That are aminothiols, aminodisulphides, derivatives of thiourea, thiosulphuric and thiophosphate acid, dithiocarbamates, thiazolines, some of biogen amines and their derivates. Among the investigated compounds there is a certain number that, under some circumstances, has shown a protective effect on the experimental animals. In the work comparative investigation of the protective effect of cistaphosa (WR-638) and gamaphosa (WR-2721) have been researched on the big experimental animals, radiated with a high level of X-radiation. Well protective influence of both radioprotectors has been proven but gamafos showed higher efficiency. (author)

  1. Radiation protection at workplaces with increased natural radiation exposure in Greece: recording, monitoring and protection measures

    Greek Atomic Energy Commission (GAEC) is the regulatory, advisory and competent authority on radiation protection matters. It is the authority responsible for the introduction of Radiation Protection regulations and monitoring of their implementation. In 1997, within the frame of its responsibilities the Board of the GAEC appointed a task group of experts to revise and bring the present Radiation Protection Regulations into line with the Basic Safety Standards (BSS) 96/29/Euratom Directive and the 97/43/Euratom Directive (on health protection of individuals against the dangers of ionising radiation in relation to medical exposure). Concerning the Title 7. of the new European BSS Directive, which refers to the Radiation Protection at work places with increased levels of natural radiation exposure, the Radiation Protection Regulations provides that the authority responsible for recording, monitoring and introducing protection measures at these places is the GAEC. Practices where effective doses to the workers due to increased natural radiation levels, may exceed 1mSv/y, have to be specified and authorised by the GAEC. The identification procedure is ongoing

  2. Understanding of radiation protection in medicine. Pt. 2. Occupational exposure and system of radiation protection

    Using a questionnaire we investigated whether radiation protection is correctly understood by medical doctors (n=140) and nurses (n=496). Although medical exposure is usually understood by medical doctors and dentists, their knowledge was found to be insufficient. Sixty-eight percent of medical doctors and 50% of dentists did not know about the system of radiation protection. Dose monitoring was not correctly carried out by approximately 20% of medical staff members, and medical personnel generally complained of anxiety about occupational exposure rather than medical exposure. They did not receive sufficient education on radiation exposure and protection in school. In conclusion, the results of this questionnaire suggested that they do not have adequate knowledge about radiation exposure and protection. The lack of knowledge about protection results in anxiety about exposure. To protect oneself from occupational exposure, individual radiation doses must be monitored, and medical practice should be reconsidered based on the results of monitoring. To eliminate unnecessary medical and occupational exposure and to justify practices such as radiological examinations, radiation protection should be well understood and appropriately carried out by medical doctors and dentists. Therefore, the education of medical students on the subject of radiation protection is required as is postgraduate education for medical doctors, dentists and nurses. (author)

  3. Radiation protection guidelines for space missions

    Fry, R. J.; Nachtwey, D. S.

    1988-01-01

    The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem).

  4. Management in the protection from ionizing radiation

    There are numerous types and forms of endangering working and living environment, ranging from natural disasters to nuclear accidents. Challenges of the New Age determined that most of the countries reviewed its strategic decisions in the system of protection from ionizing radiation and nuclear safety and defined in a new way the threats, which could considerably imperil health of the population and national interests as well. Excessive radiation of the population became a serious and actual problem in the era of increasingly mass application of ionizing radiation, especially in medicine. The goal of this work is to reduce the risk through using knowledge and existing experiences, in particular when it comes to ionizing radiation in medicine. Optimization of the protection in radiology actually means an effort to find the compromise between quality information provided by diagnostics procedure and quality effects of therapy procedure on one side and dose of radiation received by patients on the other. Criteria for the quality management in the protection from ionizing radiation used in diagnostic radiology was given by the European Commission: European Guidelines on Quality Criteria for Diagnostic Radiographic Images, EUR, 16260. (author)

  5. Radiation protection training and information for workers

    The meeting reported in these proceedings was organized to discuss the specific problems of providing information and training on radiation protection to workers exposed to radiation, intervention staff and workers likely to be affected by an activity involving ionizing radiation. Particular emphasis was placed on the need to harmonize basic training on radiation protection in the context of 1992. It seemed advisable for technical training on radiation protection to be introduced into secondary education. To this end, the Commission was asked to draw up a guide for apprentices and students. In view of the growing diversification of activities involving the use of radioactive substances, the Commission was called upon to intensify its efforts in order to ensure that relevant information and training was provided in all firms to workers exposed to ionizing radiation, and to produce guides for specific categories of workers, such as those responsible for the transport of radioactive materials or those likely to be involved in organizing measures in the event of a radiological emergency

  6. 2009 Canadian Radiation Oncology Resident Survey

    Purpose: Statistics from the Canadian post-MD education registry show that numbers of Canadian radiation oncology (RO) trainees have risen from 62 in 1999 to approximately 150 per year between 2003 and 2009, contributing to the current perceived downturn in employment opportunities for radiation oncologists in Canada. When last surveyed in 2003, Canadian RO residents identified job availability as their main concern. Our objective was to survey current Canadian RO residents on their training and career plans. Methods and Materials: Trainees from the 13 Canadian residency programs using the national matching service were sought. Potential respondents were identified through individual program directors or chief resident and were e-mailed a secure link to an online survey. Descriptive statistics were used to report responses. Results: The eligible response rate was 53% (83/156). Similar to the 2003 survey, respondents generally expressed high satisfaction with their programs and specialty. The most frequently expressed perceived weakness in their training differed from 2003, with 46.5% of current respondents feeling unprepared to enter the job market. 72% plan on pursuing a postresidency fellowship. Most respondents intend to practice in Canada. Fewer than 20% of respondents believe that there is a strong demand for radiation oncologists in Canada. Conclusions: Respondents to the current survey expressed significant satisfaction with their career choice and training program. However, differences exist compared with the 2003 survey, including the current perceived lack of demand for radiation oncologists in Canada.

  7. Applying radiation health effects data to radiation protection policies

    Data from the peer-reviewed scientific literature establish a sound basis to define a low-dose, low-dose-rate, dose-response. These data include human health dose-response studies; immunologically 'whole' animal studies; and cellular and molecular biological studies of complete biological systems for the relevant immunological and physiological responses. Initiatives are required to constructively apply these data to both radiation research and radiation protection policies. First, current low level radiation health effects research must apply existing data to define research projects to integrate and confirm existing dose-response data, with specific emphasis on the biological bases that exist in definitive and reproducible cellular and biological dose-response. Second, dose-response assessment must identify and incorporate all existing substantial and confirmed data, including natural radiation sources, to establish the bases for radiation protection policy for interventions to protect public health and safety. A preliminary assessment of these data is applied to: 1) Specify research that can be constructively applied to describe radiation health effects dose-response. 2) Apply health effects dose-response to radiation and radioactivity applications policies to maximize radiation health effects interventions for occupational applications, medical applications, and other radiation and radioactive materials applications controls to cost-effectively assure public health and safety. An assessment of the proposed revisions to ICRP radiation protection policies is provided that associates the basis for administrative limits with the previous proposal of the US NRC for a 'Below Regulatory Concern' (BRC) policy. This proposal ignores the context of the fact that very low levels of radiation exposure are far within the variations of natural radiation exposures, and therefore can have no gross net consequences. The equivalent failure of the BRC proposal resulted in quick

  8. Operational radiation protection for European astronauts

    Since the early times of human spaceflight radiation has been, besides the influence of microgravity on the human body, recognized as a main health concern to the astro- and cosmonauts. The radiation environment that the crew experiences during a space flight differs significantly to that found on earth due to particles of greater potential for biological damage. High-energetic charged particles, such as protons, helium nuclei ('alpha particles') and heavier ions up to iron, originating from several sources, such as galactic cosmic radiation (GCR), energetic solar particle events (SPE) as well as protons and electrons trapped in the earth radiation belts, are the main contributors. The exposure that the crew receives during a space flight significantly exceeds exposures routinely received by terrestrial radiation workers. The European Space Agency's (ESA) Astronaut Center (EAC) in Cologne, Germany, is home of the European Astronaut Corps. Part of the EAC is the Crew Medical Support Office (CMSO or HSF-AM) responsible for ensuring the health and well being of the European Astronauts. A sequence of activities is conducted to protect astro- and cosmonauts health, including those targeting to mitigate adverse effects of space radiation. All health related activities are part of a multinational Medical Operations (MedOps) concept, which is executed by the different Space Agencies participating in the human spaceflight program to the International Space Station (ISS). This article will give an introduction of the current measures for radiation monitoring and protection of astro- and cosmonauts. The operational guidelines that shall ensure proper implementation and execution of those radiation protection measures will be addressed. Operational hardware for passive and active radiation monitoring and for personal dosimetry, as well as operational procedures that are applied, will be described. (author)

  9. Relations between radiation risks and radiation protection measuring techniques

    Relations between radiation risks and radiation protection measuring techniques are considered as components of the radiation risk. The influence of the exposure risk on type and extent of radiation protection measurements is discussed with regard to different measuring tasks. Based upon measuring results concerning the frequency of certain external and internal occupational exposures in the GDR, it has been shown that only a small fraction of the monitored persons are subjected to a high exposure risk. As a consequence the following recommendations are presented: occupationally exposed persons with small exposure risk should be monitored using only a long-term desimeter (for instance a thermoluminescence desimeter). In the case of internal exposure, the surface and air contamination levels should be controlled so strictly that routine measurements of internal contamination need not be performed

  10. Electron microscopy - principles of radiation protection

    This 8 minute programme explains the nature of the possible radiation hazard in Electron Microscopy and outlines the ways in which modern equipment is designed and made so that in normal use the worker is not exposed to radiation. The interlock principle is explained and illustrated by an example from the field of X-ray crystallography. By filming machines while they were dismantled for servicing, details of several internal safety devices have been included. In this way workers who normally use the equipment as a 'black box' get some insight into the principles and practice of radiation protection in the field. (author)

  11. Training for Radiation Protection in Interventional Radiology

    Program in radiological equipment has incorporated more powerful x-ray sources into the standard Fluoroscopy and CT systems. Expanding use of interventional procedures carries extensive use of fluoroscopy and CT which are both associated with excessive radiation exposure to the patient and personnel. During cases of Intravenous CT Angiography and direct Intraarterial CT Angiography, one may substitute a substantial number of diagnostic angiography checks. Basic training in interventional radiology hardly includes some of the fundamentals of radiation protection. Radiation Protection in Interventional Radiology must be implemented in daily practice and become an integral part of procedure planning strategy in each and every case. Interventional radiological most master all modern imaging modalities in order to choose the most effective, but least hazardous one. In addition, one must be able to use various imaging techniques (Fluoroscopy, CTA, MM and US) as a stand-alone method, as well as combine two techniques or more. Training programs for fellows: K-based simulation of procedures and radiation protection. Special attention should be taken in the training institutions and a basic training in radiation protection is advised before the trainee is involved in the practical work. Amendment of techniques for balloon and stent deployment with minimal use of fluoroscopy. Attention to the differences between radiation protection in cardiovascular and nonvascular radiology with special measures that must be taken for each one of them (i.e., peripheral angiography vs. stenting, Endo luminal Aortic Stent Graft, or nonvascular procedures such as biliary or endo urological stenting or biliary intervention). A special emphasis should be put on the training techniques of Interventional Radiologists, both beginners and experienced. Patient dose monitoring by maintaining records of fluoroscopic time is better with non-reset timer, but is optional. Lee of automated systems that

  12. Seventh meeting of radiation protection skilled persons

    This document gathers the slides of the available presentations given during these conference days. Twenty-three presentations out of 25 are assembled in the document and deal with: 1 - the evolution of workers' international protection rules against ionizing radiation risks (C. Bardelay); 2 - presentation of the report of the working group on radiation protection (P. Barbey); 3 - position of the French nuclear safety authority and of the labor general direction about the position of permanent expert groups in radiation protection concerning the expected evolutions in the occupation and training of radioprotection skilled persons (RSP), (T. Lahaye); 4 - experience feedback: RSP in surgery operating theater - a sometimes delicate intervention (S. Balduyck); 5 - workplace analysis in dental surgery: constraints and specificities (D. Le Denmat); 6 - workplace analysis: tritium atmospheric contamination (S. Rigaud); 7 - revision of the NFC 15-160 standard relative to radiology facilities (J.L. Rehel); 8 - example of area tele-dosimetry usage - the Pitie Salpetriere hospital experiment (C. Chatellier and C. Barret); 9 - contribution of radio-attenuation lead gloves in interventional radiology (J. Guersen); 10 - zoning in the medical domain: encountered problems typology and evaluation of possible solutions (Degrange, J.P.); 11 - management of used sealed sources distributed by the CEA and CISBIO (B. Sevestre); 12 - how to perform a measurement in radiation protection - how about measurement uncertainty (M. Ammerich); 13 - national campaign of control about the application of workers radiation protection rules (T. Lahaye); 14 - transparency and inspection approach in local nuclear applications: gamma-graphy, research, nuclear medicine, interventional radiography and radiotherapy (S. Rodde and C. Marchal); 15 - local/regional networks of RSPs and radiation protection actors: 2008 audit results and recent evolutions (C. Lefaure); 16 - role and missions of the external RSP

  13. Protective substance of plants against ionizing radiation

    The invention is aimed at the increase in the efficiency of plant protection from ionizing radiation. Solution of cadmium chloride in the concentration 1x10-4-5x10-4 M Cd2+ is used for steeping seeds at the temperature 18-22 deg for 6 h before γ-irradiation as a means of plant protection. The protective effect of cadmium is judged on according to the survivability of plants grown from cadmium treated and irradiated seeds, as compared with survivability of plants grown from non-irradiated and irradiated seeds

  14. Radiation protection and safety in industrial radiography

    The use of ionizing radiation, particularly in medicine and industry, is growing throughout the world, with further expansion likely as technical developments result from research. One of the longest established applications of ionizing radiation is industrial radiography, which uses both X radiation and gamma radiation to investigate the integrity of equipment and structures. Industrial radiography is widespread in almost all Member States. It is indispensable to the quality assurance required in modern engineering practice and features in the work of multinational companies and small businesses alike. Industrial radiography is extremely versatile. The equipment required is relatively inexpensive and simple to operate. It may be highly portable and capable of being operated by a single worker in a wide range of different conditions, such as at remote construction sites, offshore locations and cross-country pipelines as well as in complex fabrication facilities. The associated hazards demand that safe working practices be developed in order to minimize the potential exposure of radiographers and other persons who may be in the vicinity of the work. The use of shielded enclosures (fixed facilities), with effective safety devices, significantly reduces any radiation exposures arising from the work. This Safety Report summarizes good and current state of the art practices in industrial radiography and provides technical advice on radiation protection and safety. It contains information for Regulatory Authorities, operating organizations, workers, equipment manufacturers and client organizations, with the intention of explaining their responsibilities and means to enhance radiation protection and safety in industrial radiography

  15. Importance of plants in radiation protection

    Radioactive substances from nuclear programme structures are one of the major toxicant causing serious health hazards. These manmade radiations include X-ray machines radioactive fall-outs, nuclear reactor waste, TV, computers etc. Effect of radiation may be somatic and genetic. Most genetic effects are brought by manmade radiations. Plants on one hand using the electromagnetic radiation from sun for one of the most important vital activity of earth called Photosynthesis and on the other hand protecting us from harmful radiations. There are however, many natural compounds with radio-protective activity. Such compounds include sulfhydryl-containing compounds and anti-oxidant nutrients such as vitamins C and E, beta-carotene, N-acetylcysteine and selenium, along with a range of phytochemicals found in plants such as Ginkgo biloba, Vitis vinifera (Grape), Ocimum sanctum (Tulsi or holy basil). Some plants have capacity to absorb harmful radiation of computers like Aloe, Cactus, etc. Such study can be helpful in minimizing radiation pollution. Present review paper emphasizing Botanical, Ecological and Economic aspects of some plants. (author)

  16. Proceedings of the workshop on 'radiation protection in LINACs'

    The proceedings contain seven reports on electron and proton accelerators currently used in Japan. The first report describes the 'Present Condition of Linac Facilities in Japan -- Questionnaire Survey'. It summarizes results of a questionnaire survey on 400 facilities where accelerators are used for research, industrial or medical applications. The second one deals with 'Radiation Protection at Nuclear Physics Research Institute of Tohoku University'. Safety measures taken in the institute are described. The third report outlines 'Radiation Protection at Linac Facility in Tokai Laboratory of Japan Atomic Energy Research Institute, focusing on equipment, radiation management, and safety measures. The fourth report, titled 'Proton Linac at High Energy Physics Research Institute', outlines major features of the facilities in the institute, radiation safety measures, etc. The fifth one describes the 'Safety Management at Electrotechnical Laboratory', centering on the equipment used, radiation management, and safety measures. The sixth one outlines major features of 'Electron Linac at Industrial Science Research Institute of Osaka University'. The seventh report describes the 'Present Condition of Neutron Generator (KURRI-LINAC)'. (N.K.)

  17. Radiation Protection of Patients in Computed Tomography

    The use of radiation for medical diagnostic examinations contributes over 95% of human-made radiation exposure and is only exceeded by natural background as a source of exposure to the world’s population. In fact, for several developed countries, the increased use of high dose X ray technology, in particular, computed tomography (CT), has resulted in a situation in which the annual collective and per capita doses of ionizing radiation due to diagnostic radiology have exceeded those from natural background radiation. In light of this marked increase in worldwide collective effective dose from medical diagnostic procedures, and with CT scans accounting for half of this, there is great emphasis on the subject of radiation protection of patients in CT

  18. A new career path in radiation protection training. Certified power plant shift supervisor. Radiation protection

    Apart from theoretical knowledge, effective day-to-day radiation protection operations also require a certain measure of practical experience. Therefore, the professional degree of 'Certified Radiation Worker', issued by the Chamber of Industry and Commerce (CIC) Aachen, Germany, established at an early stage. In order to provide experienced radiation protection specialists with an attractive career path, POWERTECH TRAINING CENTER e.V., in co-operation with VGB PowerTech. e.V., the Paul Scherrer Institute (Switzerland) and the Swiss Atomic Energy Agency (ENSI), has devised a new power plant shift supervisor training course specialising in radiation protection. The vocational training degree called 'Certified Power Plant Shift Supervisor - Radiation Protection' is awarded after successful completion of the advanced training examination conducted by the CIC in Essen, Germany. (orig.)

  19. European radiation protection in the Essen practice test; Europaeischer Strahlenschutz im Essener Praxistest

    Lorenz, Bernd; Ludwig, Sabine; Peinsipp, Norbert (eds.)

    2013-07-01

    The proceeding of the meeting European radiation protection in the Essen practice test includes contributions to the following issues: basic radiation protection standards; clearance values and permitted activities; optimization, guidance values for dose limits; radon and radiation protection standards; radiation protection - eye lens; RPE (radiation protection expert)/RPO (radiation protection officer); environmental radiation protection; radiation protection in medicine.

  20. A Survey on Health Protection Situation in Radiation Therapy Institutions of Huangpu District,Shanghai%上海市黄浦区放射诊疗机构卫生防护现状调查

    邵迎辉; 李国春; 徐敏

    2012-01-01

    [ Objective ] To investigate the current operation and health protection status of the radiation therapy institutions in Huangpu District, and to provide scientific basis for the supervision and management in the future. [ Methods ] A full coverage questionnaire survey and a field inspection were conducted in radiation therapy institutions of Huangpu District from April to August 2010. [ Results ] There were 54 radiation therapy institutions in Huangpu District with 50 health administrators and 170 radiation equipment, together with 396 radiology staff in total, in which 242 were males and 154 were females. The crew consisted of 292 diagnostic X-ray staff (73.74%), 56 interventional staff (14-14%), 20 nuclear medicine staff (5.05%), and 28 radiotherapy staff (7.07%). The medical examination rate of the employees was 100%, the monitoring rate of personal radiation absorption was 99.7%, and the inspection rate of the quality of radiation equipment was only 6.89%. [ Conclusion ) The overall health protection status in radiation therapy institutions of Huangpu District is good. However, insufficient radiation health administrators and low inspection rate of radiation equipment quality remain to be further improved.%[目的]通过对上海市黄浦区放射诊疗机构运行现状、卫生防护现状的调查,为加强日后监督管理工作的针对性提供科学依据. [方法] 2010年4月至8月,以问卷调查及现场检查方式对上海市黄浦区放射诊疗机构进行全覆盖调查. [结果]该区共有放射诊疗机构54家,设置放射卫生管理员50名,拥有各类放射诊疗设备170台.放射诊疗工作人员共396人,其中男性242人,女性154人.从事X射线影像诊断者292人,占73.74%;从事介入放射学者56人,占14.14%;从事核医学者20人,占5.05%;从事放射治疗者28人,占7.07%.放射诊疗工作人员体检率100%,个人受照射剂量监测率99.7%.放射诊疗设备质量检测率为6.89%. [结论]该

  1. Protective role of plants against harmful radiation

    The rapid technological advancement has increased human exposure to ionizing radiations enormously. Ionizing radiations produces deleterious effects in the living organisms. Widespread use of radiation in diagnosis therapy, industry, energy sector and inadvertent exposure during air and space travel, nuclear accidents and nuclear terror attacks requires safeguard against human exposures. Lead shielding and other physical measures can be used in such situations but with difficulty to manage; thus pharmacological intervention could be the most prudent strategy to protect humans against the harmful effect of ionizing radiations. These pharmacological agents are radioprotectives; The development of radioprotective agents has been the subject of intense research in view of their potential for use within a radiation environment. However, no ideal, safe synthetic radio protectors are available to date, so the search for alternative sources including plants has been ongoing. In Ayurveda, the traditional Indian system of medicine, several plants have been used to treat free radical-mediated ailments and, therefore, it is logical to expect that such plants may also render some protection against radiation damage. This all is due to antioxidant enzymes, nitroxides, and melatonin, antiemetic, anti-inflammatory. haemopoitic and immunostimulant compounds. Some of the plants which are found to be radioprotective are Centella asiatica, Ginkgo biloba, Hippophae rhamnoides, Ocimum sanctum, Podophyllurn hexandrum, Tinospora cordifolia, Emblica officinalis, Phyllanthus amarus, etc. So there is an urgent need to identify and characterize the many of the plants in relation to the radioprotection. Besides these medicinal plants there are also some fruits and vegetables which are having good response against harmful radiations such as Kiwifruit Actinidia deliciosa (Actinidaceae), Cape Gooseberry Physalis peruviana (Solanaceae). They protect against the radiation-induced damage by

  2. Chile 2000: Radiation protection status and trends

    The current Chilean radiation protection infrastructure is quite complex because firstly, the laws, regulations and standards in force are based on former ICRP26 recommendations;and secondly, the designation of multiple competent authorities, i.e. the Chilean Nuclear Energy Commission, the Ministry of Mining, and some divisions of the Ministry of Health, complicates the harmonization of radiation protection criteria. Furthermore, some departments of these competent authorities are operators of nuclear or radioactive facilities and none of them has the competence to ratify either first or second order regulations. Consequently, the Chilean Nuclear Energy Commission is presently developing a programme to review all current national regulations to submit to the Government for consideration. The main objectives of the revision are to: update the legal framework; include safety commitments taken on by subscription to international treaties, conventions and agreements; improve the regulations with the BSS and ICRP based new recommendations on radiation protection; work towards the establishment of a single, independent national regulatory authority. This paper presents the current Chilean status of radiation protection status and suggests how to update it. (author)

  3. Implication on future priorities in radiation protection

    As a result of the consequences of the Chernobyl accident, the aspects of health effects from radiation as well as the protection norms are reviewed. In particular the radioprotection of the workers and the population, the emergency planning and the information of the public at national and international levels are discussed. (A.F.)

  4. Radiation protection: Philosophy, recommendations and practice

    The philosophy developed by the International Commission on Radiological Protection for the control of human radiation exposure will be described. The application of the ICRP recommendations to the authorization and control of the disposal of radioactive wastes to the sea will be discussed in the context of the practice in the United Kingdom. (author)

  5. Medical radiation protection practice within the EEC

    The Proceedings of this meeting give a comparative overview of current legislation and practice in the European Member States. This publication represents the most comprehensive collection of data on the legal and administrative aspects of medical radiation protection within the EEC. (author)

  6. 76 FR 20489 - Occupational Radiation Protection

    2011-04-13

    ...The Department of Energy (DOE) today amends the values in appendix C to its Occupational Radiation Protection requirements. The derived air concentration values for air immersion are calculated using several parameters. One of these, exposure time, is better represented by the hours in the workday, rather than the hours in a calendar day, and is therefore used in the revised...

  7. Industrial radiation protection: what it is happening

    This paper presents the standard NE-06.04 of CNEN (Comissao Nacional de Energia Nuclear - Brazil) about open and close industrial radiography installations licensing. This review does not substitute CNEN-6/73 resolution, only specificy in details, how those installations must actuate with reference to the company radiation protection plan. (C.M.)

  8. Performance of radiation survey meters in X- and gamma-radiation fields

    The aim of this work was to investigate the different types of radiation detectors commonly used for radiation protection purposes as survey meters. The study was performed on survey meters that use different detectors as ionisation chamber, Geiger Mueller (GM) counter and scintillation detector. For each survey meter, energy dependence and angular response in X- and gamma-radiation fields was tested. The following commercially available survey meters were investigated: ionisation chambers Victoreen 451P, Babyline 31 and VA-J-15A, Geiger counter MRK-M87, 6150 AD6 and FAG FH 40F2 and scintillation counter 6150 ADB. As a source of gamma radiation, 137Cs and 60Co were used whereas X-ray radiation fields were generated using an X-ray unit. The radiation characteristics of the survey meters were mostly in compliance with references estimated by standard IEC 1017-2. However, some of them showed larger deviation at lower energies. GM counters exhibit strong energy dependence for low-energy photons. (authors)

  9. Radiation protection awareness in dentistry students

    Complete text of publication follows. Dentistry students were assessed in one of the school of dentistry in Iran. 11% of responders had attended a radiation protection course. This study showed that those who have attended this course had improved knowledge of ALARA principle, assessment of the impact of digital imaging in patient dose reduction and usage of personal dosimeter systems. Course attendance made no considerable difference to knowledge of the patient dose, dose reduction techniques and annual permissible dose limits of general public and radiation workers. The results of this study revealed that the majority of students have not received adequate radiation protection teaching and even if a course has been attended, overall knowledge is still poor and formal teaching at undergraduate level should be corrected in the future.

  10. Special radiation protection aspects of medical accelerators

    Silari, Marco

    2001-01-01

    Radiation protection aspects relevant to medical accelerators are discussed. An overview is first given of general safety requirements. Next. shielding and labyrinth design are discussed in some detail for the various types of accelerators, devoting more attention to hadron machines as they are far less conventional than electron linear accelerators. Some specific aspects related to patient protection are also addressed. Finally, induced radioactivity in accelerator components and shielding walls is briefly discussed. Three classes of machines are considered: (1) medical electron linacs for 'conventional' radiation therapy. (2) low energy cyclotrons for production of radionuclides mainly for medical diagnostics and (3) medium energy cyclotrons and synchrotrons for advanced radiation therapy with protons or light ion beams (hadron therapy). (51 refs).

  11. Radiation risks : the ethics of health protection

    Since the inception of commercial uses of nuclear technology, radiation protection standards established by regulatory agencies have reflected moral concerns based on two assumptions: (1) that the linear, zero-threshold hypothesis derives from scientific data in radiobiology which are virtually conclusive; (2) it is morally better for public health protection to assume that any radiation exposure, no matter how small, has some harmful effect which can and ought to be prevented. In the past few years these beliefs and related assumptions have received closer scrutiny, revealing hidden reasons for regulatory selection of radiation risks as objects of paramount ethical concern, with the result that greater risks to health have escaped comparison and mitigation. Based on this scrutiny this brief paper explores two questions: Are presupposed assumptions ethically justified on grounds of scientific evidence and ethical consistency? and should moral objections claiming to invalidate comparative risk assessments be accepted or rejected?

  12. Person competent in radiation protection - changing profiles

    Any entity (enterprise, laboratory, university, hospital,...), in which ionising radiations are used or produced, has to hire a person competent in radiation protection (PCR). This person has 6 main missions: 1) assessing the risks, 2) taking adequate protection measures, 3) delimiting risk areas around radiation sources (zoning), 4) informing and training the staff, 5) ensuring the dosimetric follow-up of the workers, and 6) ensuring the adequate follow-up of the equipment (periodic controls, maintenance). In France between 8000 and 15000 PCRs operate and most work partially in this activity. According to the sector where they work, PCRs' profiles can be very different: from technician to engineer but all have passed the same specific certification. Now, the new law imposes 3 levels of certification according to the risks involved in the sector: for instance the lowest level for the transport sector and the highest level for the management of radioactive wastes. (A.C.)

  13. Patients radiation protection in medical imaging. Conference proceedings

    This document brings together the available presentations given at the conference organised by the French society of radiation protection about patients radiation protection in medical imaging. Twelve presentations (slides) are compiled in this document and deal with: 1 - Medical exposure of the French population: methodology and results (Bernard Aubert, IRSN); 2 - What indicators for the medical exposure? (Cecile Etard, IRSN); 3 - Guidebook of correct usage of medical imaging examination (Philippe Grenier, Pitie-Salpetriere hospital); 4 - Radiation protection optimization in pediatric imaging (Hubert Ducou-Le-Pointe, Aurelien Bouette (Armand-Trousseau children hospital); 5 - Children's exposure to image scanners: epidemiological survey (Marie-Odile Bernier, IRSN); 6 - Management of patient's irradiation: from image quality to good practice (Thierry Solaire, General Electric); 7 - Dose optimization in radiology (Cecile Salvat (Lariboisiere hospital); 8 - Cancer detection in the breast cancer planned screening program - 2004-2009 era (Agnes Rogel, InVS); 9 - Mammographic exposures - radiobiological effects - radio-induced DNA damages (Catherine Colin, Lyon Sud hospital); 10 - Breast cancer screening program - importance of non-irradiating techniques (Anne Tardivon, Institut Curie); 11 - Radiation protection justification for the medical imaging of patients over the age of 50 (Michel Bourguignon, ASN); 12 - Search for a molecular imprint for the discrimination between radio-induced and sporadic tumors (Sylvie Chevillard, CEA)

  14. Research report on radiation protection 1981

    In this research report on radiation protection the results achieved in 1981 of the research and development projects assisted by the Federal Minister of the Interior are made accessible above all to the scientists and engineers participating in this research program as well as to the research institutions on the field of radiation protection, to the members of the commission on radiological protection and of the commission for reactor safety and to the supervising and licensing authorities. The report is a compilation of individual reports, which are composed by the consignees respectively the recipients of the allowances themselves as a documentation of the progress of their works. Each individual report contains informations concerning the objectives of the project, works carried out, results achieved and further work planned. (orig.)

  15. Radiation protection and dosimetry: basis. 9. ed.

    A revised book 'Radiation Protection and Dosimetry: Fundamentals, prepared to meet the training courses offered by the Instituto de Radioprotecao e Dosimetria - IRD, Rio de Janeiro, RJ, Brazil and people interested in the subject, is presented. Concepts have been updated, especially the chapter on Radiological Magnitudes, due to upgrade of Standard CNEN-NN-3.01-Basic Guidelines on Radiological Protection, published in the Diario Oficial da Uniao on September 1, 2011. A chapter related to Waste Management, another on the Transport of Radioactive Materials and three annexes on: Standards of CNEN, Ionizing Radiation and Personnel Legislation and Determination of shields in Radiotherapy were included. Were also added several tables for use in radiological protection, to facilitate consultation

  16. Individual radiation hypersensitivity and radiological protection

    Individuals with radiation hypersensitivity represent a challenge in terms of radiological protection. ICRP has acknowledged the importance of this issue by publishing Annual No.79 on genetic susceptibility to cancer in 1998. This paper gives a comprehensive overview on the problem. Progress in molecular genetics of cancer have enlarged our knowledge on individual susceptibility to cancer and in relation to this on individual radiation sensitivity. Until now there are some clear defined inherited disorders with evidence for increased risk by high (therapeutic) doses of ionising radiation. As there is rapidly growing knowledge and understanding of the mechanism of disease, the radiation protection society should become more and more acquainted with this special question. Our paper gives a basic introduction to the principles of the mechanisms of individual radiation sensitivity in hereditary disorders. Based on demonstration of disabled tumorsupressor genes in retinoblastoma as a simple example the possible role of environmental factors in cancer development is shown. Epidemiologic data of retinoblastoma cases provide evidence for the role of ionising radiation as an environmental factor increasing the risk for secondary cancer of such patients. Consequences for radiotherapeutic and occupational medicine are highlighted. There are some fundamental rules to be observed by physicians treating patients with radiotherapy. To identify high risk patients genetic testing may be necessary, which is possible know for some hereditary disorders. Problems involving genetic testing are outlined. (author)

  17. Occupational radiation protection: Protecting workers against exposure to ionizing radiation. Contributed papers

    Occupational exposure to ionizing radiation can occur in a range of industries, mining and milling; medical institutions, educational and research establishments and nuclear fuel cycle facilities. The term 'occupational exposure' refers to the radiation exposure incurred by a worker, which is attributable to the worker's occupation and committed during a period of work. According to the latest (2000) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), an estimated 11 million workers are monitored for exposure to ionizing radiation. They incur radiation doses attributable to their occupation, which range from a small fraction of the global average background exposure to natural radiation up to several times that value. It should be noted that the UNSCEAR 2000 Report describes a downward trend in the exposure of several groups of workers, but it also indicates that occupational exposure is affecting an increasingly large group of people worldwide. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), which are co-sponsored by, inter alia, the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (NEA) and the World Health Organization (WHO), establish a system of radiation protection which includes radiation dose limits for occupational exposure. Guidance supporting the requirements of the BSS for occupational protection is provided in three interrelated Safety Guides, jointly sponsored by the IAEA and the ILO. These Guides describe, for example, the implications for employers in discharging their main responsibilities (such as setting up appropriate radiation protection programmes) and similarly for workers (such as properly using the radiation monitoring devices provided to them). The IAEA i organized its first International Conference on Occupational Radiation Protection. The

  18. Radiation protection in Swiss nuclear installations; Strahlenschutz in Schweizer Kernanlagen

    Hammer, J.; Brunell, M. [Eidgenoessisches Nuklearsicherheitsinspektorat ENSI, Brugg (Switzerland)

    2015-07-01

    Well developed measures on operational radiation protection within Swiss nuclear installations will be presented. The focus lays on competent authority actions. Results of the last ten years, including events on radiation issues, will be discussed. Finally a view on challenges for radiation protection personnel with respect to a renewed Swiss radiation protection legislation based on recent ICRP recommendations will be given.

  19. 10 CFR 35.26 - Radiation protection program changes.

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radiation protection program changes. 35.26 Section 35.26... Requirements § 35.26 Radiation protection program changes. (a) A licensee may revise its radiation protection... been reviewed and approved by the Radiation Safety Officer and licensee management; and (4)...

  20. XXXVI. Days of Radiation Protection. Book of Abstracts

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 93 abstracts are published. The Conference consists of following sections: (I) General aspects and new trends of radiation protection); (II) Radiation protection in medicine; (III): Dosimetry and metrology of external and internal radiation exposure; (IV) Regulation of radiation exposure to natural sources and control of radon exposure; (V) Radiation protection in nuclear power plants, their decommissioning and waste management; (VI) Application of radiation protection standards in the emergency management; (VII) Biological effects of ionizing radiation and risk estimation; (VIII) Education and training in radiation protection in the light of new recommendations of EU, ICRP and IAEA.

  1. Training of Radiation Protection Officers (RPO)

    Willelm Roentgen discovered X-rays in 1895 while the discovery of radioactivity was in 1896 by Henry Becqueral. The first successful use of X-rays to cure cancer was in 1899. The International Commission of Radiological Protection (ICRP) was established based on prevention of harmful radiation effects. The dose limits for deeper tissue of 1 cm and a shallow tissue of 0.007 cm were 300 and 600 mrems per week respectively. A deep dose of 5 mrems per year was recommended in ICRP publication 2 in 1959. In ICRP 26, recognized cancer as the main effect to be avoided and recommended a maximum effective dose of 50 mSv (5000 mrems) in a year. This led to the introduction of the concept of effective dose, which reconsiders the probability of stochastic effects from non-uniform irradiation. ICRP 60 issued in 1990 recommended the limit on effective dose equivalent for occupational exposure of 20mSv (2000 Mrems) average over a 5 year period (100 mSv, or 10 000 mrems in 5 Years), with a limit of 50 mSv (5000 mrems) in any single year. In 1956, International Atomic Energy Agency (IAEA) was established to promote the peaceful uses of nuclear energy. It recommends basic safety standards. IAEA is empowered to provide for the application if safety for protection against radiation. The appearance of ICRP 60 in 1990 led to the IAEA, in 1995, to publish a 3. edition of the basic Safety standards for protection against ionizing radiation and for the safety of radiation sources. This led establishment Radiation Protection course in tertiary and medicine be included during training of their personnel. After training the graduate they are appointed as Radiation Protection officers (RPO) .It was also noted that there was no formal training of RPO in mining, industries and some manufacturing companies, In-house training is conducted in nuclear facilities. NECSA Radiation Protection officers (RPO) training program include RPM, RPO2, RPO1, RPS. NECSA future training program in nuclear safety

  2. Radiation exposure and radiation protection dosimetry. Trial of a critical balance

    An overview of the state of radiation protection dosimetry of external irradiation is given. From the point of view of practical radiation protection a clear and unambiguous regulation system with unequivocal measurement and evaluation rules is more important than an apparently accurate determination of a risk equivalent radiation exposure. After a survey of the calculations of conversion coefficients between effective dose, operational quantities and primary quantities for photons and neutrons it is demanded that the results of a relevant ICRP/ICRU Task Group are published as soon as possible to create a binding and durable basis of radiation protection area and individual dosimetry. The special problem of evaluation of measured individual doses, if protective clothing in diagnostic radiology is worn, is discussed. Furthermore the following basic problems are dealt with: Required measuring ranges, state of the available measuring instruments, requirements for measurement accuracy and prototype testing. An analysis of surveillance results shows that on the one hand trivial exposures are monitored with great effort by means of personal dosemeters, on the other hand much higher exposures, on e.g. due to radon progeny, are controlled only by area monitoring. Despite the unsolved problems still to be worked on, all in all the state of radiation protection dosimetry is satisfactory. (orig.)

  3. The current state and prospects of radiation protection in CSSR

    The tasks and the role of radiation protection in the overall nuclear medicine and radiation hygiene system in Czechoslovakia is briefly described. The history of hygiene service and its place in the system of radiation protection is outlined and the mission of radiation protection is shown, namely, care of healthy living conditions vis-a-vis radiation exposure of population and health protection from the effects of the nuclear fuel cycle. (L.O.)

  4. Sustainable development and justification in radiation protection

    The advantages and disadvantages of ionizing radiation must be listed in order to be able to justify the application of this technique, based on criteria by which ionizing radiation can be assessed. In this note the development of so-called sustainability criteria, by which environmental protection aspects can be assessed, is initiated. The sustainability criteria must include the subjects integrated chain management, energy extending, quality improvement and the perception of risks, as indicated in the memo Handling of Radiation Risks. The sustainability criteria can be applied absolute (testing of the marginal values), as well as relative (choice for the least hazardous effect). An overall outline is given of the impact of applying these criteria. The most discriminative criterion appears to be the waste criterion. Generally spoken, only ionizing radiation of instruments and applications of some short-living isotopes, produced by means of accelerators, can meet this criterion. 4 figs., 2 tabs., 1 appendix, 17 refs

  5. The healing arts radiation protection guidelines

    The objective of these guidelines is to help the health professional render the risks associated with diagnostic radiation as low as reasonably achievable. The guidelines contain advice and recommendations, but no mandatory requirements. They assist radiation protection officers in establishing and maintaining a Quality Assurance Program and in carrying out other duties required by the Healing Arts Radiation Protection Act; assist staff to comply with the X-ray Safety Code in a way that will raise the standards of x-ray diagnosis and patient safety; address the relationship between the radiation exposure of the patient and the quality of the image; address the problem of protecting the patient in x-ray examinations; summarize x-ray safety problems from the point of view of the operator and other staff; indicate what remedial measures can be taken; define the quality assurance needs of x-ray users; and encourage the users of x-rays for diagnostic purposes to go beyond the scope of the Act and comply with the ALARA principle

  6. Radiation protection optimization. Advances in practical implementation

    Within the Community, protection against the dangers of ionizing radiation is regulated in conformity with the provisions of two Council Directives. One is of general application for all activities involving a hazard arising from ionizing radiation and lays down the basic safety standards for the health protection of the general public and workers against the dangers of ionizing radiation. The other is derived from the abovementioned one and lays down the basic measures for the radiation protection of persons undergoing medical examination or treatment. The Commission, in collaboration with the Spanish Ministerio de Sanidad y Consumo, the Consejo de Seguridad Nuclear and the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, organized on 12, 13 and 14 September 1988 in Madrid, the third scientific seminar on the optimization principle (Alara) which is a key element of the two abovementioned Council Directives. The seminar allowed an analysis of the progress made since the previous seminars of 1979 and 1983, in the practical implementation of the optimization principle, in relation to the design and operation of nuclear and industrial installations, natural radioactivity, medical practices and countermeasures. The report contains the 20 original contributions presented and some general considerations on the results of the seminar

  7. Radiation protection low in the draft of a code on the protection of the environment

    In September 1997 the Independent Expert Commission mandated by the German Federal Ministry of Environment, Nature and Reactor Safety has presented its Draft of a Code on the Protection of the Environment (General and Special Part). The Code contains as part of the Environmental Law provisions on nuclear energy and radiation protection. This draft is very large (it contains 775 single sections), and is therefore until now virtually unknown. It seems by this reason suitable and necessary to give a survey on the proposals offered by the Commission in this Draft concerning these fields. (orig.)

  8. International Society of Radiology and Radiation Protection

    The purpose of the International Society of Radiology (ISR), as being the global organization of radiologists, is to promote and help co-ordinate the progress of radiology throughout the world. In this capacity and as a co-operating organization of the IAEA, the ISR has a specific responsibility in the global radiological protection of patients. Globally, there are many users of medical radiation, and radiology may be practised in the most awkward circumstances. The individuals performing X ray studies as well as those interpreting them may be well trained, as in industrialized parts of the world, but also less knowledgeable, as in developing areas. The problems of radiological protection, both of patients and of radiation workers, still exist, and radiation equipment is largely diffused throughout the world. That is why a conference like this is today as important as ever. Radiation protection is achieved through education, on the one hand, and legislation, on the other. Legislation and regulation are the instruments of national authorities. The means of the ISR are education and information. Good radiological practice is something that can be taught. The ISR is doing this mainly through the biannual International Congress of Radiology (ICR), now arranged in an area of radiological need; the three previous ICRs were in China, in India and in South America; the next one is going to be in Mexico in 2002. The goal of the ICR is mainly to be an instructive and educational event, especially designed for the needs of its surrounding region. The ISR is aiming at producing educational material. The International Commission on Radiological Education (ICRE), as part of the ISR, is launching the production of a series of educational booklets, which also include radiation protection. The ICRE is actively involved in shaping and organizing the educational and scientific programme of the ICRs

  9. Occupational radiation protection: Protecting workers against exposure to ionizing radiation. Proceedings of an international conference

    Occupational exposure to ionizing radiation can occur in a range of industries, in mining and milling, in medical institutions, in educational and research establishments and in nuclear fuel cycle facilities. The term 'occupational exposure' refers to the radiation exposure incurred by a worker which is attributable to the worker's occupation and received or committed during a period of work. According to the latest (2000) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), an estimated 11 million workers worldwide are monitored for exposure to ionizing radiation. They incur radiation doses which range from a small fraction of the global average background exposure to natural radiation up to several times that value. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), which are co-sponsored by, amongst others, the IAEA, the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/NEA) and the World Health Organization (WHO), establish a system of radiation protection of which the provisions for occupational exposure are a substantial component. Guidance supporting the requirements of the BSS for occupational protection is provided in three Safety Guides, jointly sponsored by the IAEA and the ILO, and describing, for example, the implications for employers in discharging their main responsibilities (such as setting up appropriate radiation protection programmes) and similarly for workers (such as properly using the radiation monitoring devices provided to them). It should be noted, however, that radiation protection is only one factor that must be addressed in order to protect the worker's overall health and safety. The occupational radiation protection programme should be established and managed in co-ordination with other health and safety disciplines. Less than half of the occupationally exposed workers are exposed to

  10. Days of Radiation Protection 2001. Conference Proceedings of the 24th Days of Radiation Protection

    Already the 24th annual international conference 'Days of Protection from Radiation' was taking place in Jan Sverma Hotel in Demaenova dolina on 26-29 November 2001. More than 180 participants from the Slovak Republic and the Czech Republic participated in the meetings of experts on protection from radiation. Representative of IAEA Division for Protection from Radiation and the representatives of several European companies securing the project, advisory and supplier's activities in dosimetry of ionising radiation also participated in the conference. The participants discussed in 7 expert panels the issue of protection from radiation in the legislative field, in the nuclear facilities operation and in medicine. The expert part of the other panels concerned the issues of ionising radiation impact on the environment and working environment, natural radio-nuclides, including radon and biologic impacts of radiation. One separate panel was dedicated to device techniques and methods of dosimetry of ionising radiation. More than 45 expert lectures and more than 40 poster presentations were presented at the conference during 3 days. The exhibition and presentation of measuring technique products and devices and of materials used in the area of radiation protection and nuclear medicine was prepared during the course of the conference. Participation in the conference showed that a great interest in problems of protection from radiation persists. This was proved by rich lecturing activity and wide discussions on the floor and during the poster presentations. Participants were satisfied since the organisers of the event prepared a worthy event with the rich expert themes at a good organisational and social level in a beautiful environment of Low Tatras

  11. A decade of changes in radiation protection.

    Moulder, J E

    1992-04-01

    Although radiation protection standards have changed remarkably little over the past decade, there have been changes in our understanding of radiation hazards that may affect the practice of radiation medicine over the next decade. With recognition of indoor radon exposure has come a new focus for public health concerns, because it is now clear that radon rather than medical exposure is the largest controllable source of radiation exposure to the general public. Continued follow-up of irradiated populations has led to an increase in our estimate of the cancer risk for high-dose exposures; this increased risk estimate is, in turn, leading to decreases in radiation exposure limits. Although our concern about the carcinogenic risk for radiation exposure has increased, our concern about genetic consequences has decreased, because no genetic effects have yet been observed in the offspring of atomic bomb survivors. Studies of atomic bomb survivors have also led to a change in the focus of concern over prenatal radiation exposure; the principle risk now appears to be mental retardation rather than childhood cancer. PMID:1554578

  12. Chemical protection against ionizing radiation. Final report

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references

  13. Chemical protection against ionizing radiation. Final report

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references.

  14. The purpose of radiation protection monitoring

    In the early period (1942-1960) of nuclear energy programmes with which I was associated, most radiation protection standards seem to have been formulated on the assumption that there is a threshold dose of ionizing radiation below which no radiation damage is expected to result in the lifetime of the exposed individual. It was in this climate of opinion that health physics began as a profession, and levels of maximum permissible exposure (MPE) to external sources of radiation, maximum permissible concentrations in air, water and food, and maximum permissible body burdens of radionuclides inside the human body were set and enforced. Some of the levels of MPE were quite high in comparison with present standards but, fortunately, the health physicists at the national laboratories in which most radiation workers were employed were very conservative; in most cases the average annual exposures were less than 10% of the MPE levels. However, there was not much concern with the man-rem concept, as exemplified by rather high levels of radioactive waste discharged from the plants or placed in temporary holding facilities - where there was a likely possibility of seepage into the environment. This situation was understandable and justifiable at a time when the purpose of radiation protection monitoring was simply to prevent individuals from exceeding a threshold dose. The period of the recent past up to the present time (1978) has been one in which there has been a gradual change from the concept of a threshold dose hypothesis to the linear hypothesis. In this period the International Commission on Radiological Protection (ICRP) and the national standards setting bodies have pointed out that the levels they have selected are based on the linear hypothesis, but in most respects they leave us with the impression that this is most probably a conservative assumption, subject to revision when better data become available. Also, during this period, the concept of exposure As Low As

  15. Radiation Protection Using Carbon Nanotube Derivatives

    Conyers, Jodie L., Jr.; Moore, Valerie C.; Casscells, S. Ward

    2010-01-01

    BHA and BHT are well-known food preservatives that are excellent radical scavengers. These compounds, attached to single-walled carbon nanotubes (SWNTs), could serve as excellent radical traps. The amino-BHT groups can be associated with SWNTs that have carbolyxic acid groups via acid-base association or via covalent association. The material can be used as a means of radiation protection or cellular stress mitigation via a sequence of quenching radical species using nano-engineered scaffolds of SWNTs and their derivatives. It works by reducing the number of free radicals within or nearby a cell, tissue, organ, or living organism. This reduces the risk of damage to DNA and other cellular components that can lead to chronic and/or acute pathologies, including (but not limited to) cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. These derivatives can show an unusually high scavenging ability, which could prove efficacious in protecting living systems from radical-induced decay. This technique could be used to protect healthy cells in a living biological system from the effects of radiation therapy. It could also be used as a prophylactic or antidote for radiation exposure due to accidental, terrorist, or wartime use of radiation- containing weapons; high-altitude or space travel (where radiation exposure is generally higher than desired); or in any scenario where exposure to radiation is expected or anticipated. This invention s ultimate use will be dependent on the utility in an overall biological system where many levels of toxicity have to be evaluated. This can only be assessed at a later stage. In vitro toxicity will first be assessed, followed by in vivo non-mammalian screening in zebra fish for toxicity and therapeutic efficacy.

  16. Radiation and environmental protection - applications and research

    This contribution is a report about the activity in the radiation protection domain carried out in the frame of the Environmental and Civil Radiation Protection Laboratory of IRN Pitesti. In the field of radioprotection the following issues are addressed: operational radioprotection of exposed professionals (radiation monitoring by dose and dose rate measurements for the working places and personnel); gamma spectrometry and radiation field analysis; surveillance of the professional activities with open radiation sources; monitoring methodologies; dose calculations and models; operational exposure management. Concerning the open source operation, alpha, beta and gamma measurements on air and surface samples are performed in order to evaluate the contamination as well as to determine the uranium, tritium and carbon - 14 concentration in water, air, urine, etc. The environmental protection is approached by: - determining the concentration of natural uranium in environmental samples of soil, water, vegetation, etc.; - determining the concentration of the gamma emitting radionuclides of different samples as soil, water, air, vegetation, milk, fish, etc.; - 'in situ' gamma spectrometry for radionuclide concentration measurements for soil; - gross beta radioactivity measurements for different soil samples. Concerning the management of the releases in environment, procedures for monitoring the release of different radioactive effluents were established as well as a program of surveillance of radioactivity in the neighbourhood of nuclear facilities. The civil protection program includes annual exercises (accident scenarios implying the TRIGA reactor and other nuclear installations, monitoring and quarterly exercises with operation teams, planning and emergency measures, monitoring radioactivity in emergency situation, data base creation for specific data (meteorological, agricultural, demographic, etc.) to be used in the evaluation of nuclear accident radiological

  17. Neutron spectrometry for radiation protection: Three examples

    Workers and the general public are exposed to neutron radiation from a variety of sources, including fission and fusion reactors, accelerators, the nuclear fuel and nuclear weapons cycles, and cosmic rays in space, in aircraft and on the earth. Because the health effects of neutrons depend strongly on their energy, neutron spectrometry is essential for accurate risk-related neutron dosimetry. In addition, the penetration of neutrons through protective shielding changes their energy and can be difficult to calculate reliably, so the measurement of energy spectra is often needed to verify neutron transport calculations. The Environmental Measurements Laboratory has been measuring neutron energy spectra for over 20 years, primarily with multisphere (or Bonner sphere) spectrometers. Because of this experience, the Laboratory has responded to a number of requests to provide reference neutron energy spectra at critical locations in or near nuclear facilities and radiation fields. This talk will describe the author's instruments and three recent examples of their use: outside the Princeton Tokamak Fusion Test Reactor (TFTR), up to two kilometers from the Army Pulse Radiation Facility (APRF) bare reactor, and in a Canadian Forces jet aircraft at commercial aviation altitudes. All of these studies have implications beyond routine occupational radiation protection. For example, the APRF measurements are part of the broad effort to resolve the discrepancy between measured and calculated thermal neutron activation at Hiroshima, one of the most important unsolved problems in radiation dosimetry

  18. Biological research for the radiation protection

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about polyamine effect on cell death triggered ionizing radiation, H2O2 and toxic agents. In this paper, to elucidate the role of polyamines as mediator in lysosomal damage and stress(H2O2)- induced apoptosis, we utilized α-DiFluoroMethylOrnithine (DFMO), which inhibited ornithine decarboxylase and depleted intracellular putrescine, and investigated the effects of polyamine on the apoptosis caused by H2O2, ionizing radiation and paraquat. We also showed that MGBG, inhibitor of polyamine biosynthesis, treatment affected intracellular redox steady states, intracellular ROS levels and protein oxidation. Thereafter we also investigated whether MGBG may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation or H2O2 because such compounds are able to potentiate the cell-killing effects. In addition, ceruloplasmin and thioredoxin, possible antioxidant proteins, were shown to have protective effect on radiation- or H2O2(or chemicals)-induced macromolecular damage or cell death

  19. ICRP and radiation protection of medical staff

    Committee 3 (Protection in Medicine) and Committee 4 (Application of Recommendations) of the International Commission on Radiological Protection (ICRP) deal with the protection of medical staff. In the last 10 years, the Committee on Protection in Medicine has been involved in the preparation of 12 publications, some of which include specific recommendations on occupational RP. This paper summarizes the most relevant aspects of these recommendations on RP for medical staff. The most recent publication on Radiation Dose to Patients from Radiopharmaceuticals contains an annex on hand exposure in radio-pharmacies. Radiation detriment from exposure of both radiological staff and other individuals is considered as part of the justification of medical exposures and of the optimization process. ICRP advises on the uncertainty concerning the risk of cataracts and puts particular emphasis on optimization in situations of exposure of the eyes. Some recommendations on staff protection are included in the documents on computed tomography, digital radiology, pregnancy, discharge of patients after therapy and interventional radiology. The contents related to staff RP in the coming publications of the Committee (pediatric, cardiology, and fluoroscopy) are also summarized.

  20. Radiation protection programme for uranium mining

    The Radiation Protection Programme (RPP) was developed to ensure that measures are in place for the occupational protection and safety in uranium mining facility. This work has established a number of protective measures that should be taken by the individual miners, licensee and all staff. It is not known whether Kayerekera Uranium mine has the technical and administrative capability for an effective radiation protection programme. The key in the mining facility is the control of dust through various means to prevent the escape of radon gas. Personal hygiene and local operating rules have been discovered to be very important for the protection and safety of the workers. The following components have also been discovered to be vital in ensuring safety culture in the mining facility: classification of working areas, monitoring of individuals and workplace, assignment of responsibilities, emergency preparedness, education and training and health surveillance. The regulatory body (Environmental Affairs Department of Malawi) should examine the major areas outlined in the RPP for Kayerekera uranium mine to find out the effectiveness of the RPP that is in place. (au)

  1. SOI microdosemetry for mixed field radiation protection

    Radiation protection in mixed neutron/gamma fields produced by radiation sources is relevant in many industrial applications such as bore hole logging and prompt gamma neutron activation analysis, security applications and neutron radiography. Online monitoring of the dose equivalent received from a neutron/gamma source would permit real time dosemetry in industrial and medical applications. A silicon on insulator (SOI) microdosemeter has been used to determine the microdosemetric spectra from a 252Cf source which can be converted to dose equivalent. Simulations of the response of a SOI microdosemeter to the 252Cf source using GEANT4 have been performed

  2. SOI microdosemetry for mixed field radiation protection

    Prokopovich, D.A. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong NSW 2522 (Australia)], E-mail: dale.prokopovich@ansto.gov.au; Reinhard, M.I. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong NSW 2522 (Australia); Cornelius, I.M.; Rosenfeld, A.B. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong NSW 2522 (Australia)

    2008-02-15

    Radiation protection in mixed neutron/gamma fields produced by radiation sources is relevant in many industrial applications such as bore hole logging and prompt gamma neutron activation analysis, security applications and neutron radiography. Online monitoring of the dose equivalent received from a neutron/gamma source would permit real time dosemetry in industrial and medical applications. A silicon on insulator (SOI) microdosemeter has been used to determine the microdosemetric spectra from a {sup 252}Cf source which can be converted to dose equivalent. Simulations of the response of a SOI microdosemeter to the {sup 252}Cf source using GEANT4 have been performed.

  3. The new Dutch Decree on Radiation Protection

    The new title Decree concerns the implementation of guidelines with respect to basic standards for the production of the health of workers and the population against ionizing radiation and the protection of persons against the danger of ionizing radiation in case of medical exposure. The new Decree was published officially September 9, 2001, and will come into effect 4 weeks later. In this article an overview is given of the contents of the Decree and the differences with regard to older Decrees. Also attention is paid to the impact of the implementation on other, related regulations

  4. The gender problem in radiation protection

    Persson, Lars [Nobel Inst. of Physics, Stockholm (Sweden)

    2012-07-01

    Gender is a range of characteristics used to distinguish between males and females, particularly in the cases of men and women and the masculine and feminine attributes assigned to them. While the social sciences sometimes approach gender as a social construct, and some gender studies particularly do, research in the natural and medical sciences investigates whether biological differences in males and females influence the development of gender in humans. Radiation protection regulations also take into account the possibly different radiation risks of males and females. The following contribution investigates how far this is justified, and what are the consequences. (orig.)

  5. Radiation protection of vitamins in aqueous systems

    A study of the radiation induced decomposition of the B-group vitamins has been carried out in aqueous media at room temperature as well as in rigid matrices at low temperature. The detailed results on the effect of glucose and oxygen as protective additives at the different temperatures are presented in the case of Thiamine (Vitamin B1). Comparative data are given on the extent of decomposition of this and other vitamins of the B-group at room temperature and at 193 K. The importance of these results in connection with the radiation sterilization of pharmaceutical preparations is indicated. (author)

  6. Radiation protection technology with waste intermediate storage

    Based on the 1984 safety reports the concept of the federal intermediate storage was revised and adapted to meet the new official regulations and guide lines. The most important points such as building architecture and safety, type, quantity and activities with the material being stored, along with in-company flow are described and the resulting radiation exposure to the surroundings and the personnel as well as the costs revealed. Particular emphasis is placed on an improved radiation protection for the operating personnel and the combination of 200 l drums in crates in comparison to individual drum storage. Satisfying result: the above improvements increase the storage capacity keeping additional costs low. 6 figs

  7. The gender problem in radiation protection

    Gender is a range of characteristics used to distinguish between males and females, particularly in the cases of men and women and the masculine and feminine attributes assigned to them. While the social sciences sometimes approach gender as a social construct, and some gender studies particularly do, research in the natural and medical sciences investigates whether biological differences in males and females influence the development of gender in humans. Radiation protection regulations also take into account the possibly different radiation risks of males and females. The following contribution investigates how far this is justified, and what are the consequences. (orig.)

  8. Survey of Canadian hospitals radiation emergency plans

    This report documents the findings of a survey of Canadian hospitals conducted by Social Data Research Ltd. during the Spring and Summer, 1995. The main objective of the survey was to determine the state of readiness of Canadian hospitals in respect of radiation emergency planning. In addition, the AECB was interested in knowing the extent to which a report by the Group of Medical Advisors, 'GMA-3: Guidelines on Hospital Emergency Plans for the Management of Minor Radiation Accidents', which was sponsored and distributed in 1993, was received and was useful to hospital administrators and emergency personnel. A self-administered questionnaire was distributed to 598 acute care hospitals, and 274 responses were received. The main conclusion of this study is that, with the exception of a few large institutions, hospitals generally do not have specific action plans to handle minor radiation accidents. (author)

  9. Survey of international personnel radiation dosimetry programs

    In September of 1983, a mail survey was conducted to determine the status of external personnel gamma and neutron radiation dosimetry programs at international agencies. A total of 130 agencies participated in this study including military, regulatory, university, hospital, laboratory, and utility facilities. Information concerning basic dosimeter types, calibration sources, calibration phantoms, corrections to dosimeter responses, evaluating agencies, dose equivalent reporting conventions, ranges of typical or expected dose equivalents, and degree of satisfaction with existing systems was obtained for the gamma and neutron personnel monitoring programs at responding agencies. Results of this survey indicate that to provide the best possible occupational radiation monitoring programs and to improve dosimetry accuracy in performance studies, facility dosimetrists, regulatory and standards agencies, and research laboratories must act within their areas of responsibility to become familiar with their radiation monitoring systems, establish common reporting guidelines and performance standards, and provide opportunities for dosimetry testing and evaluation. 14 references, 10 tables

  10. Issues in deep space radiation protection

    Wilson, J. W.; Shinn, J. L.; Tripathi, R. K.; Singleterry, R. C.; Clowdsley, M. S.; Thibeault, S. A.; Cheatwood, F. M.; Schimmerling, W.; Cucinotta, F. A.; Badhwar, G. D.; Noor, A. K.; Kim, M. Y.; Badavi, F. F.; Heinbockel, J. H.; Miller, J.; Zeitlin, C.; Heilbronn, L.

    2001-01-01

    The exposures in deep space are largely from the Galactic Cosmic Rays (GCR) for which there is as yet little biological experience. Mounting evidence indicates that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate for GCR ions. The available biological data indicates that aluminum alloy structures may generate inherently unhealthy internal spacecraft environments in the thickness range for space applications. Methods for optimization of spacecraft shielding and the associated role of materials selection are discussed. One material which may prove to be an important radiation protection material is hydrogenated carbon nanofibers. c 2001. Elsevier Science Ltd. All rights reserved.

  11. 2003 survey of Canadian radiation oncology residents

    Purpose: Radiation oncology's popularity as a career in Canada has surged in the past 5 years. Consequently, resident numbers in Canadian radiation oncology residencies are at all-time highs. This study aimed to survey Canadian radiation oncology residents about their opinions of their specialty and training experiences. Methods and Materials: Residents of Canadian radiation oncology residencies that enroll trainees through the Canadian Resident Matching Service were identified from a national database. Residents were mailed an anonymous survey. Results: Eight of 101 (7.9%) potential respondents were foreign funded. Fifty-two of 101 (51.5%) residents responded. A strong record of graduating its residents was the most important factor residents considered when choosing programs. Satisfaction with their program was expressed by 92.3% of respondents, and 94.3% expressed satisfaction with their specialty. Respondents planning to practice in Canada totaled 80.8%, and 76.9% plan to have academic careers. Respondents identified job availability and receiving adequate teaching from preceptors during residency as their most important concerns. Conclusions: Though most respondents are satisfied with their programs and specialty, job availability and adequate teaching are concerns. In the future, limited time and resources and the continued popularity of radiation oncology as a career will magnify the challenge of training competent radiation oncologists in Canada

  12. 76 FR 50487 - Protected Critical Infrastructure Information (PCII) Stakeholder Survey

    2011-08-15

    ... SECURITY Protected Critical Infrastructure Information (PCII) Stakeholder Survey AGENCY: National... Information (PCII) Stakeholder Survey. DHS previously published this ICR in the Federal Register on March 31... oversees a community of stakeholders, including submitters of CII, authorized users of PCII and...

  13. Decommissioning an uranium and thorium facility: a radiation protection approach

    Decommissioning means actions taken at the end of the useful life of a facility in retiring it from service with adequate regard for the health and safety of workers and members of the public. In the present work, we introduce a radiation protection approach for the removal of radioactive material to the extent that the facility or site becomes available for use without restriction. The facility to be decommissioned is a fuel cycle pilot plant that operated with natural uranium and thorium for almost two decades and then, kept inactive for about 10 years at the Nuclear and Energy Research Institute - IPEN. Even after this long period of inactivity, it has presented significant levels of radiation and contamination spread over the floor, walls, windows, doors and ceiling. The fuel cycle pilot plant was completely dismantled, remaining only the walls and the concrete structures. In this work we present the job done to restore the area. According to each step of dismantling a continuous monitoring of the contaminated surfaces was carried out including the survey of the deep material from the floor and walls. The material identified as radioactive waste was stored into appropriated metal drums. A radiation protection team guided this stage of the work, prescribing the tasks, and the amount of material that should be removed from floors, windows and ceiling. For this, repetitive surveys had to be done. The results of monitoring and contamination levels were analysed, thus guiding the next steps of the job. In this way radiation protection team took over the tasks, running the work with the purpose of achieving acceptable levels of radiation, restoring the area for unrestricted use. (author)

  14. Radionuclide and Radiation Protection Data Handbook 1998

    This handbook provides the most up to date internal and external dosimetry information and control criteria in the form of data sheets in an easy to use format for 108 of the most commonly used radionuclides in medicine, research and industry. It is designed as a ready reference source of information, gathering together in one place, in the form of individual datasheets, the most up to date isotopic and radiation protection data. (author)

  15. Radiation protection aspects in importing metallic scraps

    The meeting deals with radiation protection problems caused by the possibility that radioactive metal scraps or radioactive sources hidden in the scraps, may arrive in a foundry. The importance of this issue and of rational and systematic solutions is showed by several accidents, happened in the past in numerous countries, by many signals in Italy and by some papers published in international scientific journals or reports issued by authorities and institutions in different countries

  16. Evaluation of surgical gloves for radiation protection

    Full text of publication follows: Accumulated doses in hands during interventionist cardiology and radiological procedures can reach high values, and even go beyond legal limits for exposed professionals after years of work, unless they use specific radiation protection methods. An important protection mean for hands is the use of surgical gloves that attenuate the radiation while maintaining the tactile sensitivity demanded by physicians.There is a wide variety of commercialized gloves for radiation protection, with different advantages and disadvantages for various uses. In this paper nine different models of gloves have been evaluated for testing its attenuation capacity for several voltages, the maintenance of tactile sensitivity, its resistance to elongation, and the apparition of pores after successive sterilizing processes. It is very important that they do not lose its initial characteristics after processes of sterilization in order to optimize the product effective cost. The attenuation values have been measured under the voltages of 60, 70, 80 and 90 KVp obtaining very different values at each voltage with different gloves. The values measured range between 34 % before any supplementary sterilization with one model of glove (for 90 KVp), and 57 % after four sterilization processes with another glove (for 60 KVp). Some gloves lose its attenuation capacity after successive sterilizations, having not been found an y significant relation with their composition. The tactile sensitivity, a decisive factor for its users, decreases as its attenuation capacity increases, and remains mostly constant after being sterilized. The tests performed allow to conclude a set of fi nal results that can facilitate the choice of the most suitable gloves according to the practical applications (the priorities being the radiation protection and the tactile sensitivity)

  17. Nevada National Security Site Radiation Protection Program

    none,

    2013-04-30

    Title 10 Code of Federal Regulations (CFR) Part 835, “Occupational Radiation Protection,” establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada National Security Site (NNSS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operations, and environmental restoration off-site projects. This RPP section consists of general statements that are applicable to the NNSS as a whole. The RPP also includes a series of appendices which provide supporting detail for the associated NNSS Tennant Organizations (TOs). Appendix H, “Compliance Demonstration Table,” contains a cross-walk for the implementation of 10 CFR 835 requirements. This RPP does not contain any exemptions from the established 10 CFR 835 requirements. The RSPC and TOs are fully compliant with 10 CFR 835 and no additional funding is required in order to meet RPP commitments. No new programs or activities are needed to meet 10 CFR 835 requirements and there are no anticipated impacts to programs or activities that are not included in the RPP. There are no known constraints to implementing the RPP. No guides or technical standards are adopted in this RPP as a means to meet the requirements of 10 CFR 835.

  18. Radiation Protection Institute Annual Report for 2013

    The report covers the activities of the Radiation Protection Institute (RPI) of the Ghana Atomic Energy Commission for the year 2013. The report is grouped under the following headings: establishment, vision and mission; personnel and organization; major activities and research projects; IAEA, Technical Cooperation and AFRA projects; ongoing research projects and programs; income and expenditure statements, physical development and human resource development, training courses, meetings and conferences. (A. B.)

  19. Radiation Protection Institute Annual Report for 2012

    The report covers the activities of the Radiation Protection Institute (RPI) of the Ghana Atomic Energy Commission for the year 2012. It is grouped under the following topics: vision and mission; personnel, major activities, research projects, IAEA Technical Cooperation and AFRA projects; ongoing research projects and programs. Also included are income and expenditure statements, physical and human resource development; IAEA training courses, national and IAEA training courses and meetings hosted; and publications. (A. B.)

  20. Radiation safety and protection in US dental hygiene programs

    A survey of radiation safety and protection measures used by programs teaching dental hygiene indicated some areas for concern. No barriers or radiation shieldings were used between operator and patient in four programs. Radiation monitoring devices were not worn by faculty operators in 16% of the programs. Fewer than half of the programs used thyroid shields for patients on a routine basis. Insufficient filtration for the kilovolt peak employed was used by 14% of the programs, and for 19% more the filtration was unknown or unspecified. Three programs used closed cones. Rectangular collimation was not used at all by 63% of the programs, and only 20% used E speed film routinely. Quality assurance for equipment maintenance and for film processing were in place at only 54% and 49% of the programs, respectively

  1. University courses on radiation protection in Estonia

    A brief overview is given on the educational courses containing topics in the field of radiation protection in the Tallinn Technical University and in the University of Tartu, Estonia. It follows from the analysis that at present there is no complete system for education or training of experts in the field. At the same time a significant deficit in specialists and experts is one of the major barriers in the development of an efficient radiation protection infrastructure in this country. A comparison of the course topics to the syllabus for the training of qualified experts recommended by EC and by IAEA demonstrates the items, which need a further development and an expanded coverage in the existing or in future courses. These items involve, e.g., operational radiation protection and its organisation, waste management, transport, quality assurance, etc. Upgrading of courses for the missing theoretical items is not difficult, but it is not sufficient. The largest void lies in the weakness / absence of an adequate basis for practical work or exercises for students. The examples of co-operation and help provided for the existing courses, especially by the Nordic countries, are encouraging. (au)

  2. Training in Radiation Protection for Interventional Radiology

    Vano, E.; Guibelalde, E.

    2002-07-01

    Several potential problems have been detected in the safety aspects for the practice of interventional radiology procedures: a) An important increase in the number cases and their complexity and the corresponding increase of installations and specialists involved; b) New X ray systems more sophisticated, with advanced operational possibilities, requiring special skills in the operators to obtain the expected benefits;c) New medical specialists arriving to the interventional arena to profit the benefits of the interventional techniques without previous experience in radiation protection. For that reason, education and training is one of the basic areas in any optimisation programme in radiation protection (RP). the medical field and especially interventional radiology requires actions to promote and to profit the benefit of the new emerging technologies for training (Internet, electronic books, etc). The EC has recently sponsored the MARTIR programme (Multimedia and Audio-visual Radiation Protection Training in Interventional Radiology) with the production of two videos on basic aspects of RP and quality control and one interactive CD-ROM to allow tailored individual training programmes. those educational tools are being distributed cost free in the main European languages. To go ahead with these actions, the EC has decided to promote during 2002, a forum with the main Medical European Societies involved in these interventional procedures. (Author)

  3. Training in Radiation Protection for Interventional Radiology

    Several potential problems have been detected in the safety aspects for the practice of interventional radiology procedures: a) An important increase in the number cases and their complexity and the corresponding increase of installations and specialists involved; b) New X ray systems more sophisticated, with advanced operational possibilities, requiring special skills in the operators to obtain the expected benefits;c) New medical specialists arriving to the interventional arena to profit the benefits of the interventional techniques without previous experience in radiation protection. For that reason, education and training is one of the basic areas in any optimisation programme in radiation protection (RP). the medical field and especially interventional radiology requires actions to promote and to profit the benefit of the new emerging technologies for training (Internet, electronic books, etc). The EC has recently sponsored the MARTIR programme (Multimedia and Audio-visual Radiation Protection Training in Interventional Radiology) with the production of two videos on basic aspects of RP and quality control and one interactive CD-ROM to allow tailored individual training programmes. those educational tools are being distributed cost free in the main European languages. To go ahead with these actions, the EC has decided to promote during 2002, a forum with the main Medical European Societies involved in these interventional procedures. (Author)

  4. Radiation survey in the International Space Station

    Narici, Livio; Casolino, Marco; Di Fino, Luca; Larosa, Marianna; Picozza, Piergiorgio; Zaconte, Veronica

    2015-12-01

    The project ALTEA-shield/survey is part of an European Space Agency (ESA) - ILSRA (International Life Science Research Announcement) program and provides a detailed study of the International Space Station (ISS) (USLab and partly Columbus) radiation environment. The experiment spans over 2 years, from September 20, 2010 to September 30, 2012, for a total of about 1.5 years of effective measurements. The ALTEA detector system measures all heavy ions above helium and, to a limited extent, hydrogen and helium (respectively, in 25 Mev-45 MeV and 25 MeV/n-250 MeV/n energy windows) while tracking every individual particle. It measures independently the radiation along the three ISS coordinate axes. The data presented consist of flux, dose, and dose equivalent over the time of investigation, at the different surveyed locations. Data are selected from the different geographic regions (low and high latitudes and South Atlantic Anomaly, SAA). Even with a limited acceptance window for the proton contribution, the flux/dose/dose equivalent results as well as the radiation spectra provide information on how the radiation risks change in the different surveyed sites. The large changes in radiation environment found among the measured sites, due to the different shield/mass distribution, require a detailed Computer-Aided Design (CAD) model to be used together with these measurements for the validation of radiation models in space habitats. Altitude also affects measured radiation, especially in the SAA. In the period of measurements, the altitude (averaged over each minute) ranged from 339 km to 447 km. Measurements show the significant shielding effect of the ISS truss, responsible for a consistent amount of reduction in dose equivalent (and so in radiation quality). Measured Galactic Cosmic Ray (GCR) dose rates at high latitude range from 0.354 ± 0.002 nGy/s to 0.770 ± 0.006 nGy/s while dose equivalent from 1.21 ± 0.04 nSv/s to 6.05 ± 0.09 nSv/s. The radiation variation

  5. Radiation survey in the International Space Station

    Narici Livio

    2015-01-01

    Full Text Available The project ALTEA-shield/survey is part of an European Space Agency (ESA – ILSRA (International Life Science Research Announcement program and provides a detailed study of the International Space Station (ISS (USLab and partly Columbus radiation environment. The experiment spans over 2 years, from September 20, 2010 to September 30, 2012, for a total of about 1.5 years of effective measurements. The ALTEA detector system measures all heavy ions above helium and, to a limited extent, hydrogen and helium (respectively, in 25 Mev–45 MeV and 25 MeV/n–250 MeV/n energy windows while tracking every individual particle. It measures independently the radiation along the three ISS coordinate axes. The data presented consist of flux, dose, and dose equivalent over the time of investigation, at the different surveyed locations. Data are selected from the different geographic regions (low and high latitudes and South Atlantic Anomaly, SAA. Even with a limited acceptance window for the proton contribution, the flux/dose/dose equivalent results as well as the radiation spectra provide information on how the radiation risks change in the different surveyed sites. The large changes in radiation environment found among the measured sites, due to the different shield/mass distribution, require a detailed Computer-Aided Design (CAD model to be used together with these measurements for the validation of radiation models in space habitats. Altitude also affects measured radiation, especially in the SAA. In the period of measurements, the altitude (averaged over each minute ranged from 339 km to 447 km. Measurements show the significant shielding effect of the ISS truss, responsible for a consistent amount of reduction in dose equivalent (and so in radiation quality. Measured Galactic Cosmic Ray (GCR dose rates at high latitude range from 0.354 ± 0.002 nGy/s to 0.770 ± 0.006 nGy/s while dose equivalent from 1.21 ± 0.04 nSv/s to 6.05 ± 0

  6. Requirements for gamma radiation survey meter calibration

    This guide describes the minimum requirements for calibrating a portable analog gamma radiation survey meter by means of a beam calibrator, with a known calibration source. If an alternative method of calibration is to be used the licensee should make a written request to the Atomic Energy Control Board that describes the calibration method to be used, and request the Board's permission to use that method in place of the requirements contained in this guide. This guide explains: the responsibility for survey meter calibration if licensees calibrate their own survey meters, use the services of a Canadian calibration agency, and use the services of a non-Canadian calibration agency; the requirements for survey meter calibration and the supporting documentation; the requirements for record-keeping; and, a calibration certificate, a calibration sticker, and a notification of failure to calibrate form, with examples

  7. Science Goals in Radiation Protection for Exploration

    Cucinotta, Francs A.

    2008-01-01

    Space radiation presents major challenges to future missions to the Earth s moon or Mars. Health risks of concern include cancer, degenerative and performance risks to the central nervous system, heart and lens, and the acute radiation syndromes. The galactic cosmic rays (GCR) contain high energy and charge (HZE) nuclei, which have been shown to cause qualitatively distinct biological damage compared to terresterial radiation, such as X-rays or gamma-rays, causing risk estimates to be highly uncertain. The biological effects of solar particle events (SPE) are similar to terresterial radiation except for their biological dose-rate modifiers; however the onset and size of SPEs are difficult to predict. The high energies of GCR reduce the effectiveness of shielding, while SPE s can be shielded however the current gap in radiobiological knowledge hinders optimization. Methods used to project risks on Earth must be modified because of the large uncertainties in projecting health risks from space radiation, and thus impact mission requirements and costs. We describe NASA s unique approach to radiation safety that applies probabilistic risk assessments and uncertainty based criteria within the occupational health program for astronauts and to mission design. The two terrestrial criteria of a point estimate of maximum acceptable level of risk and application of the principle of As Low As Reasonably Achievable (ALARA) are supplemented by a third requirement that protects against risk projection uncertainties using the upper 95% confidence level (CL) in radiation risk projection models. Exploration science goals in radiation protection are centered on ground-based research to achieve the necessary biological knowledge, and in the development of new technologies to improve SPE monitoring and optimize shielding. Radiobiology research is centered on a ground based program investigating the radiobiology of high-energy protons and HZE nuclei at the NASA Space Radiation Laboratory

  8. Recommendations for a knowledge sharing in radiation protection. Expertise in radiation protection. Extract from ' propositions for a better protection of persons against the radiation risk'

    The group of priorities in radiation protection proposes the following recommendations: to carry on the researches in France to better know the radiation effects on man health and particularly the effects in relation with low doses; to create a national network of researchers working in the field of radiobiology; to create a plan of a scientific lookout; to strengthen the expertise in the field of action principles of radiation protection; to help the development of an organization allowing an interaction between each actor of radiation protection; to organize the production of notes on radiation protection for professionals. (N.C.)

  9. Radiation protection glossary. English-Estonian and Estonian-English

    The dictionary contains more than 300 entries in the field of radiation protection and also useful information about special measurement units for quantities of interest in radiation protection (SI units and the previously used units) with their conversion factors

  10. The development of Radiation Protection Training courses in the UK

    This paper considers use of modern training materials and aids in radiation protection training activities. The development in the UK of training courses to satisfy the training requirements for Radiation Protection Advisers is also discussed. (Author)

  11. Radiation Protection in Paediatric Computed Tomography

    The number of examinations with radiation exposure has been increasing mainly due to advances in computed tomography (CT) technology, with a rapid expansion of CT utilization. Annually, 3.6 billion diagnostic and medical and dental examinations involving radiation are performed worldwide. The contribution of CT to collective dose due to medical X rays is up to 47–59%. A 2009 report of the National Council on Radiation Protection and Measurements (NCRP) estimates that 8–10% of CT examinations in the United States of America are performed on children; the growth in CT utilization is higher in the paediatric than adult population in the USA; and there is a particularly pronounced rise in adolescents undergoing chest CT in the emergency department setting for suspected pulmonary embolism or trauma. The reasons for the growing incidence of CT are new indications for CT with the advent of multidetector CT, overcautious ordering related to medico-legal problems and probably financial incentive systems

  12. Quantitative risk in radiation protection standards

    Although the overall aim of radiobiology is to understand the biological effects of radiation, it also has the implied practical purpose of developing rational measures for the control of radiation exposure in man. The emphasis in this presentation is to show that the enormous effort expended over the years to develop quantitative dose-effect relationships in biochemical and cellular systems, animals, and human beings now seems to be paying off. The pieces appear to be falling into place, and a framework is evolving to utilize these data. Specifically, quantitative risk assessments will be discussed in terms of the cellular, animal, and human data on which they are based; their use in the development of radiation protection standards; and their present and potential impact and meaning in relation to the quantity dose equivalent and its special unit, the rem

  13. Neutron measuring instruments for radiation protection

    The present report deals with selected topics from the field of neutron dosimetry for radiation protection connected with the work of the subcommittee 6802 in the Standards Committee on Radiology (NAR) of the German Standards Institute (DIN). It is a sort of material collection. The topics are: 1. Measurement of the absorbed-energy dose by a) ionization chambers in fields of mixed radiation and b) recoil-proton proportional counting tubes. 2. Measurement of the equivalent dose, neutron monitors, combination methods by a) rem-meters, b) recoil-proton counting tubes, c) recombination method, tissue-equivalent proportional counters, activation methods for high energies in fields of mixed radiation, d) personnel dosimetry by means of ionization chambers and counting tubes, e) dosimetry by means of activation methods, nuclear track films, nonphotographic nuclear track detectors and solid-state dosimeters. (orig./HP)

  14. Antihistamine provides sex-specific radiation protection

    Mickley, G.A.

    1981-04-01

    Rats suffer an early transient performance decrement immediately after a sufficiently large dose of ionizing radiation. However, it has been shown that males experience a more severe incapacitation than females. This sex difference has been attributed to the low estrogen levels in the male. In support of this notion, supplemental estrogens in castrated male rats have produced less-severe performance decrements post-irradiation. Antihistamines have also previously been shown to alleviate radiation's effect on behavior. The present study revealed that antihistamines are only effective in altering the behavioral incapacitation of sexually intact male subjects. This contrasts with previous work which indicates that estrogens can only benefit gonadectomized rats. These findings suggest that different mechanisms may underly antihistamine and estrogen radiation protection.

  15. From scientific evidence to radiation protection

    The long-term effects on health from radiation at low dose rates depend on so many biological variables that simple generalizations are unlikely to be valid for any specific individual at any specific time. Increased incidence of cancers can be observed from moderate doses at high dose rates. At lower doses and lower dose rates evidence is less clear. Advances in molecular biology in the last decade are enabling striking progress to be made in understanding the cellular mechanisms that determine the responses to radiation and their underlying genetic control. Enough is known now to conclude that any response will depend on an individual's genetic makeup and may be varied in time for a given individual, depending, inter alia on the pattern of dose in time. Faced with this uncertainty, the pragmatic approach for protection remains that of basing the level of protection simply on the magnitude of the radiation dose, albeit not with the underlying idea that with every radiation event there is a fixed probability of causing cancer. (author)

  16. The biological bases of radiation protection

    Radiation protection is based on a large number of human data collected during the past 80 years. For dose levels of a few hundred rads, risks can be evaluated very accurately. Yet it is difficult to derive from them the risks due to low doses because of the uncertainty on the dose-effect relationship. In the practice, pessimistic assumptions are used, which involves an over-estimation of risks. However, even in these unfavorable conditions, risks associated to occupational activities implying radiation exposure seem to be less important than in most industries. Radiation protection has played a historical and essential part in the quantitative assessment of risks and opened a new era of occupational medicine and environmental health investigations. Many substances, such as radiations, are mutagenic and/or carcinogenic at very low doses, and in many cases human exposure cannot be avoided. Therefore, a policy advocating refusal of any risk whatsoever and absolute safety will lure with unattainable and misleading prospects. The only method is to assess the quantitative importance of the various risks in order to decide how far a damage may be tolerable in the various cases when exposure cannot be avoided

  17. Radiation protection guidelines for the skin

    With the exception of the function of cells in the skin associated with immunocompetence nonstochastic effects have been well characterized and threshold doses are known with a precision appropriate for setting radiation protection standards. A dose limitation of 0.5 Sv per year and a working lifetime dose limit of 20 Sv should protect the worker population adequately and therefore, the current protection standards are quite adequate. The risk estimate for skin cancer is very dependent on the selection of the projection model and on the mortality rate assumed. Based on the relative risk model, a mortality rate of 0.2% and summing risks for both UVR exposed and shielded skin the risk is about twice (1.94/10-4 Sv-1) that which ICRP derived in 1977. With the absolute model the risk is considerably less, about 0.5/10-4 Sv-1. 47 refs., 3 figs., 1 tab

  18. Ionizing radiation protection regulation in Canada: the role of the Federal Provincial Territorial Radiation Protection Committee

    Canada has one of the broadest and most mature nuclear industries in the world, and is a world leader in uranium mining, and in the production of medical radioisotopes. The Canadian nuclear industry also includes: uranium milling, refining, and fuel fabrication facilities; nuclear generating stations; research reactors and related facilities; waste management facilities; and the use of radioactive materials in medicine and industry. Regulation of this broad and dynamic industry is a complex and challenging task. Canada has a cooperative system for the regulation of ionizing radiation protection covering federal, provincial, territorial, and military jurisdictions. A Federal/Provincial/Territorial Radiation Protection Committee (FPTRPC) exists to aid in cooperation between the various agencies. Their mandate encompasses regulation and guidance on all aspects of radiation protection: federal and provincial; NORM and anthropogenic; ionizing and non-ionizing. The Canadian Nuclear Safety Commission (CNSC) is the federal nuclear regulator whose mandate includes radiation protection regulation of most occupational and public exposures. The CNSC does not regulate medical (patient) exposures, some aspects of NORM, or military applications. Provincial authorities are the primary regulators with respect to doses to patients and occupational doses arising from X-rays. Health Canada plays a role in X-ray device certification, development of national guidance (e.g. on radon) and direct regulation of certain federal facilities. NORM is regulated provincially, with varying regulatory mechanisms across the provinces and territories. Radiation protection regulation for National Defence and the Canadian Armed Forces is performed by the Director General Nuclear Safety. This paper gives an overview of the structure of the regulation of ionizing radiation protection in Canada, and shares lessons learned, particularly with respect to the usefulness of the FPTRPC in helping coordinate and

  19. Evaluation of radiation protection principles observance in Iranian dental schools

    GhazikhanlouSani K.; Eskandarlou A

    2009-01-01

    "nBackground and Aim: In recent decades many guidelines has been conducted by radiation protection organizations about radiation protection in dentistry. This study was designed to evaluate the observance of these guidelines in educational clinics of all dental schools in Iran."nMaterials and Methods: In this cross-sectional study a questionnaire based on National Radiation Protection guidelines was conducted. The questionnaire consisted of questions about radiation protection princ...

  20. Production of multimedia textbook: ionizing radiation and radiation protection

    In our contribution we want to outline our plan of actions to be carried out for the creation of the first multimedia internet textbook in Slovakia in the field of ionizing radiation and radiation protection. In particular we want to describe first steps that have been performed at its realisation. This textbook would be applicable to the full-time study as well as to distance learning at traditional universities and technical universities. It will also be usable for various forms of in-service training by e-learning. Our objective is to create a modem internet textbook in radiation protection, of which production will be co- ordinated with other European Union countries. The output of our project -the multimedia textbook -will be available to all students at our university's servers and other users will have CDs at their disposal. We propose the use of this multimedia didactic means also in various forms of the distance e-learning. The main motivation for the implementation of distance courses is the necessity to update knowledge, skills and qualification in our contemporary rapidly developing world. The distance e-learning form of education can solve also the problem with the acquisition of the professional qualifications for the work with ionizing radiation. This is the reason for usage of the mentioned textbook not only as the fundamental and unified textbook for the students of universities, but also as the study material for the civil servants responsible for radiation protection, for in-service workers and providers of the professional training. (authors)

  1. IRPA Regional Congress on Radiation Protection in Central Europe

    The Congress proceedings included 93 papers. The IRPA Congress materials deals with progress the various IRPA initiatives to implement new radiation protection concepts. In accordance to this actual trends the main topics of the congress are 'Clearance levels and material release' and 'Environmental impact assessment of workplaces resp. facilities with radiation sources'. Papers and posters in all traditional radiation protection subjects (general aspects, biological effects of radiation, radiation protection in medicine, dosimetry, instrumentation, quality assurance)

  2. Radiation survey meter with integrated GPS

    A portable radiation survey meter has been designed, developed for in-situ radioactivity measurements in field areas to accomplish gamma ray surveys for geological, geochemical, and environmental mapping. The instrument measures radioactivity along with latitude, longitude, and ambient temperature. Additional significant features are variable audible alarm indications above threshold limit, in-built memory storage of the complete data, subsequent data retrieval through USB drive/PC and PC based software for data compilation. Automatic shutdown of the instrument in ideal state conserves the battery power. The acquired data along with the geographical coordinates can be integrated with geological mapping tools for data interpretation. (author)

  3. Occupational Radiation Protection in Severe Accident Management

    As an early response to the Fukushima Daiichi NPP accident, the Information System on Occupational Exposure (ISOE) Bureau decided to focus on the following issues as an initial response of the joint program after having direct communications with the Japanese official participants in April 2011: - Management of high radiation area worker doses: It has been decided to make available the experience and information from the Chernobyl accident in terms of how emergency worker / responder doses were legally and practically managed, - Personal protective equipment for highly-contaminated areas: It was agreed to collect information about the types of personnel protective equipment and other equipment (e.g. air bottles, respirators, air-hoods or plastic suits, etc.), as well as high-radiation area worker dosimetry use (e.g. type, number and placement of dosimetry) for different types of emergency and high-radiation work situations. Detailed information was collected on dose criteria which are used for emergency workers /responders and their basis, dose management criteria for high dose/dose rate areas, protective equipment which is recommended for emergency workers / responders, recommended individual monitoring procedures, and any special requirement for assessment from the ISOE participating nuclear utilities and regulatory authorities and made available for Japanese utilities. With this positive response of the ISOE official participants and interest in the situation in Fukushima, the Expert Group on Occupational Radiation Protection in Severe Accident Management (EG-SAM) was established by the ISOE Management Board in May 2011. The overall objective of the EG-SAM is to contribute to occupational exposure management (providing a view on management of high radiation area worker doses) within the Fukushima plant boundary with the ISOE participants and to develop a state-of-the-art ISOE report on best radiation protection management practices for proper radiation

  4. Discussion on several problems in evolution of radiation protection system

    As viewed from the standpoint of radiation protection practice, it is necessary that the current system of radiological protection should be made more simple and coherent. The human-based protective measures alone are far from having met the requirements of environmental protection in many circumstances. Protecting the environment from ionising radiation would be implicated in radiation protection. Collective dose is an useful indicator, of which applicable extent should be defined. Using such an quantity could help improve radiation protection level, but applicable conditions should be indicated, temporal or spatial. Natural radiation is the largest contributor to the radiation exposure of human. Occupational exposure from natural radiation should be controlled, for occupations such as underground miners and air crew. Controlling both man-made and natural radiation exposure of pregnant women and children needs to be enhanced, especially radiological diagnosis and treatment. China radiation protection community, as a whole, is paying considerable attention to the ICRP's new Recommendations. Prof. Clarke's article 'A Report on Progress towards New Recommendations', a communication from the International Commission on Radiological Protection, has been translated into Chinese and published on Radiation Protection, the Official Journal of China Radiation Protection Society with a view of intensifying awareness of the new Recommendations within more radiation protection workers and people concerned. In addition, a special meeting was convened in early 2002 to address the comments on the new Recommendations. (author)

  5. 10 CFR 20.2102 - Records of radiation protection programs.

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of radiation protection programs. 20.2102 Section 20.2102 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2102 Records of radiation protection programs. (a) Each licensee shall maintain records of...

  6. Latin American and Caribbean Federation of Radiation Protection Societies (FRALC)

    The idea of a Federation of Radiation Protection Societies in Latin America came up at the First Regional Congress on Radiation Protection and Nuclear Safety that was held in Buenos Aires (Argentina), in October 1991. At the Second Regional Congress, in Zacatecas (Mexico), in 1993, the Latin American and Caribbean Federation of Radiation Protection Societies (FRALC) was officially launched. The founder members were the Argentine Radiation Protection Society (SAR), the Brazilian Radiation Protection Society (SBPR), the Mexican Radiation Safety Society (SMSR) and the Peruvian Radiation Protection Society (SPR). Now, the FRALC has accepted as members the Radiation Protection Section of the Cuban Physics Society (SPRC) and the Uruguayan Radiation Protection Association (AUR). The basic objectives of the FRALC are: to promote the safe use of radiation and radioactive sources in Latin America and the Caribbean; to promote the foundation of new Radiation Protection Societies within the region, as mean of associating radiation protection professionals, and then, to promote of affiliation of this new societies to IRPA; to encourage the cooperation and mutual aid in the study, research and use of resources, in order to promote the radiation protection development in Latin America and the Caribbean

  7. Radiation protection safety in Uganda -- Experience and prospects of the National Radiation Protection Service

    The Uganda National Radiation Protection Service (NRPS) is a technical body under the Atomic Energy Control Board, established by Law - the Atomic Energy Decree of 1972, Decree No. 12, to oversee and enforce safety of radiation sources, practices and workers; and to protect the patients, members of the public and the environment from the dangers of ionizing radiation and radioactive wastes. The Ionizing Radiation Regulations (Standards) - Statutory Instruments Supplement No. 21 of 1996 -- back up the Law. The Law requires all users, importers and operators of radiation sources and radioactive materials to notify the NRPS for registration and licensing. The NRPS is responsible for licensing and for the regulatory enforcement of compliance to the requirements for the safety of radiation sources and practices. There are about 200 diagnostic X-ray units, two radiotherapy centres, one nuclear medicine unit, several neutron probes, about three level gauges and two non-destructive testing sources and a number of small sealed sources in teaching and research institutions. About 50% of these sources have been entered in our inventory using the RAIS software provided by the IAEA. There are about 500 radiation workers and 250 underground miners. The NRPS covers about 50% of the radiation workers. It is planned that by June 2001, all occupational workers will be monitored, bringing coverage to 100%. The Government of Uganda is making the necessary legal, administrative and technical arrangements aimed at establishing the National Radiation Protection Commission as an autonomous regulatory authority. The Atomic Energy Decree of 1972 and Regulations of 1996 are being revised to provide for the National Radiation Protection Commission and to make it comply with the requirements of the International Basic Safety Standards Safety Series No. 115. (author)

  8. Antihistamine provides sex-specific radiation protection. [Ionizing radiation

    Mickley, G.A.

    1981-04-01

    Rats suffer an early transient performance decrement immediately after a sufficiently large dose of ionizing radiation. However, it has been shown that males experience a more severe incapacitation than females. This sex difference has been attributed to the low estrogen levels in the male. In support of this notion, supplemental estrogens in castrated male rats have produced less-severe performance decrements post-irradiation. Antihistamines have also previously been shown to alleviate radiation's effect on behavior. The present study revealed that antihistamines are only effective in altering the behavioral incapacitation of sexually intact male subjects. This contrasts with previous work which indicates that estrogens can only benefit gonadectomized rats. These findings suggest that different mechanisms may underlie antihistamine and estrogen radiation protection.

  9. Stakeholders and Radiation Protection in Today's World

    In looking forward the C.R.P.P.H.(Nea 's Committee on radiation protection and public health) identified three influences that will condition the way we address emerging issues, and will alter how we address ongoing issues. These are the involvement of stakeholders in decision making processes, the evolution of radiological protection science and its changing place in risk assessment and management, and the experience gained in implementing the current system of radiological protection. First among there is the growing importance of stakeholder involvement in radiation protection decision making. This has affected the way that the principles of justification, optimization and limitation are viewed, the way the role of the radiation protection professional in risk assessment and management is viewed, and the relative importance of case specific circumstances in relation to harmonized, internationally accepted criteria. In the wake of this change, the international system of radiological protection is being updated by the ICRP, and discussions of the most appropriate direction to take are nearing their end. Second, radiological protection science continues to identify specific aspects that do not fit the conventional linear non threshold model, and which us to consider that, at the very least, the risks from different exposures and exposure situations may not be as simply and universally comparable assumed. This will affect the way that risks are managed, and all relevant stakeholder involvement processes. In addition, decisions relating to public, worker and environmental health and safety are increasingly seen as judgement social choices. Although such choices must be guided by an understanding of state-of-the-art scientific and its uncertainties, the final, choice will generally be made by society, not scientists. Third, since the issuance of ICRP Publication 60 in 1990, and the International Basic Safety Standards in 1996, extensive experience has been amassed in

  10. An introduction to radiation protection. Fourth edition

    This book is a comprehensive account of radiation hazards and their control. The presentation, which assumes no previous knowledge of the subject, is based on methods which the authors have found, over a number of years of teaching radiation protection at all levels, to be most easily understood by students. The book is intended to meet the requirements of a wide range of readers who are involved, either directly or indirectly, with ionizing radiation, including doctors, dentists, research workers, nuclear plant designers and operators. In particular the authors believe that the work is suitable for the health physics monitors and technicians who are concerned with the day-to-day control of radiation hazards in nuclear power stations, research establishments, hospitals and in industry. In the UK, the generally accepted standard of training in this type of work is that set by the City and Guilds of London Institute courses in Radiation Safety Practice which are held in various centers. The chapters of the book dealing with the general aspects of health physics are aimed a this standard. Later chapters dealing with particular aspects of the subject are more detailed. In the second half of the book there are individual chapters on the more specialized topics of nuclear reactor health physics, problems associated with X-rays and radiography, health physics in medicine, the disposal of radioactive waste and radiological emergencies. Chapters are also presented on legislation and on the organization of health physics

  11. Melatonin protection from chronic, low-level ionizing radiation.

    Reiter, Russel J; Korkmaz, Ahmet; Ma, Shuran; Rosales-Corral, Sergio; Tan, Dun-Xian

    2011-12-15

    In the current survey, we summarize the published literature which supports the use of melatonin, an endogenously produced molecule, as a protective agent against chronic, low-level ionizing radiation. Under in vitro conditions, melatonin uniformly was found to protect cellular DNA and plasmid super coiled DNA from ionizing radiation damage due to Cs(137) or X-radiation exposure. Likewise, in an in vivo/in vitro study in which humans were given melatonin orally and then their blood lymphocytes were collected and exposed to Cs(137) ionizing radiation, nuclear DNA from the cells of those individuals who consumed melatonin (and had elevated blood levels) was less damaged than that from control individuals. In in vivo studies as well, melatonin given to animals prevented DNA and lipid damage (including limiting membrane rigidity) and reduced the percentage of animals that died when they had been exposed to Cs(137) or Co(60) radiation. Melatonin's ability to protect macromolecules from the damage inflicted by ionizing radiation likely stems from its high efficacy as a direct free radical scavenger and possibly also due to its ability to stimulate antioxidative enzymes. Melatonin is readily absorbed when taken orally or via any other route. Melatonin's ease of self administration and its virtual absence of toxicity or side effects, even when consumed over very long periods of time, are essential when large populations are exposed to lingering radioactive contamination such as occurs as a result of an inadvertent nuclear accident, an intentional nuclear explosion or the detonation of a radiological dispersion device, i.e., a "dirty" bomb. PMID:22185900

  12. Optimization of radiation protection in uranium mines

    The problem is considered in the light of ICRP publication 22 viz to keep risk level 'as low as is readily achievable, economic and social considerations being taken into account'. Two aims were assigned. The former is more specific of a short term study on a particular mine. It is intended to verify how far protection procedures are relevant, considering either risk indicators - alpha energy or radon concentration. The latter aim is more general and is a consideration on the effects of aggregation procedures of miners' individual doses and of the choice of the dose-effect relationship upon the comparison of various protection programs. The doses delivered in various ventilation conditions were evaluated by means of a simulation model of air circulation in the mine; several radiation protection decisions could thus be compared at the level of their effects. The significance of the choice of the dose-effect relationship is discussed, with special emphasis on 'protection cost vs health effectiveness curves'. The cautious nature of provisions now in force is emphasized as well as the particular interest of job planning in mines as an alternative to 'technical protection' procedures

  13. Uncertainty Analysis in Space Radiation Protection

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high energy and charge (HZE) nuclei, protons, and secondary radiation including neutrons. The uncertainties in estimating the health risks from galactic cosmic rays (GCR) are a major limitation to the length of space missions, the evaluation of potential risk mitigation approaches, and application of the As Low As Reasonably Achievable (ALARA) principle. For long duration space missio ns, risks may approach radiation exposure limits, therefore the uncertainties in risk projections become a major safety concern and methodologies used for ground-based works are not deemed to be sufficient. NASA limits astronaut exposures to a 3% risk of exposure induced death (REID) and protects against uncertainties in risks projections using an assessment of 95% confidence intervals in the projection model. We discuss NASA s approach to space radiation uncertainty assessments and applications for the International Space Station (ISS) program and design studies of future missions to Mars and other destinations. Several features of NASA s approach will be discussed. Radiation quality descriptions are based on the properties of radiation tracks rather than LET with probability distribution functions (PDF) for uncertainties derived from radiobiology experiments at particle accelerators. The application of age and gender specific models for individual astronauts is described. Because more than 90% of astronauts are never-smokers, an alternative risk calculation for never-smokers is used and will be compared to estimates for an average U.S. population. Because of the high energies of the GCR limits the benefits of shielding and the limited role expected for pharmaceutical countermeasures, uncertainty reduction continues to be the optimal approach to improve radiation safety for space missions.

  14. Proceedings of the symposium on molecular biology and radiation protection

    The symposium on molecular biology and radiation protection was organized in sessions with the following titles: Radiation protection and the human genome; Molecular changes in DNA induced by radiation; Incidence of genetic changes - pre-existing, spontaneous and radiation-induced; Research directions and ethical implications. The ten papers in the symposium have been abstracted individually

  15. Radiation Protection for Lunar Mission Scenarios

    Clowdsley, Martha S.; Nealy, John E.; Wilson, John W.; Anderson, Brooke M.; Anderson, Mark S.; Krizan, Shawn A.

    2005-01-01

    Preliminary analyses of shielding requirements to protect astronauts from the harmful effects of radiation on both short-term and long-term lunar missions have been performed. Shielding needs for both solar particle events (SPEs) and galactic cosmic ray (GCR) exposure are discussed for transit vehicles and surface habitats. This work was performed under the aegis of two NASA initiatives. The first study was an architecture trade study led by Langley Research Center (LaRC) in which a broad range of vehicle types and mission scenarios were compared. The radiation analysis for this study primarily focused on the additional shielding mass required to protect astronauts from the rare occurrence of a large SPE. The second study, led by Johnson Space Center (JSC), involved the design of lunar habitats. Researchers at LaRC were asked to evaluate the changes to mission architecture that would be needed if the surface stay were lengthened from a shorter mission duration of 30 to 90 days to a longer stay of 500 days. Here, the primary radiation concern was GCR exposure. The methods used for these studies as well as the resulting shielding recommendations are discussed. Recommendations are also made for more detailed analyses to minimize shielding mass, once preliminary vehicle and habitat designs have been completed. Here, methodologies are mapped out and available radiation analysis tools are described. Since, as yet, no dosimetric limits have been adopted for missions beyond low earth orbit (LEO), radiation exposures are compared to LEO limits. Uncertainties associated with the LEO career effective dose limits and the effects of lowering these limits on shielding mass are also discussed.

  16. Organization of radiation protection in German nuclear power stations

    Using the operating handbooks of the nuclear power stations in West Germany, an examination was carried out of how far the existing organisational structure for radiation protection fulfils the requirements for protection and whether a standardisation of the organisation would provide improvements for the protection of the personnel and for the practicability of the radiation protection organisation. In particular, the parts 'Personnel operating organisation', 'Radiation protection order' and 'Maintenance order' of the operating handbook were evaluated and an audit was made of the radiation protection organisation. In general, the result of the assessment is that the organisation of radiation protection does not contradict the orders, guidelines and regulations in any of the nuclear power stations examined. Corresponding to the possibilities of regulating details of the radiation protection organisation within the undertaking, the target of 'protection of the personnel against radioactive irradiation' is achieved by the various organisation structures which are largely equal to the given example. (orig./HP)

  17. Radiation Protection Training in Intracoronary Brachytherapy

    To report the educational objectives and contents on Radiation Protection (RP) for the practice of Intracoronary Brachytherapy (ICB) procedures. The wide international experience on training programs for ICB as well as our own experience organizing several courses aimed at Cardiologists, Radio therapists and Medical Physicists has been used to elaborate specific RP objectives and contents. The objectives, differentiated for Cardiologists, Radio therapists, Medical Physicists, Nurses and Technicians, pretend to guarantee the safety and RP of both patient and staff in the procedures of ICB. The objectives are necessarily different because their RP formation and their role in the procedure are different. The general topics included in RP training programmes for ICB could be: general topics on RP (Interaction of radiation and matter, RP principles, radiobiology, etc), principles of operation of ICB and interventional X-ray equipment, quantification of radiation dose and risks, optimisation of protection of staff and patients, accidents and emergencies, regulations, responsibilities, quality assurance program, handling of ICB sources, installation and commissioning. Training programs based on the objectives presented in this paper would encourage positive safety culture in ICB and can also be used as a starting point by the Regulatory Authority for the authorization of new Installations and credentialing of professionals involved in this technique as well as for the continuous education of the staff involved. (Author) 10 refs

  18. Chernobyl accident: lessons learned for radiation protection

    Full text: The long-term nature of the consequences of the accident at the Chernobyl nuclear power plant, which was a major technological catastrophe in terms of its scope and complexity and created humanitarian, environmental, social, economic and health consequences. After more than twenty years we can conclude that Chernobyl accident was requested the big efforts of the national governments and international organisations for improvement new approaches to radiation safety, radiation protection, health care, emergency preparedness and response. During first years after accident some response actions did more harm than good because not based on international radiation protection principles, based on criteria developed during emergency and associated with mistrust, emotions, political pressure. As a result was inappropriate government reaction: unjustified relocation and decontamination - loss jobs, homes, billions of $ cost; unjustified compensation (high portion of annual national budgets). Non-radiological (e.g. detrimental economic, social and psychological) consequences was worse than direct radiological consequences. Psychological effects do not correlate with real exposure but with perception of risk. The affected people believe in threat to their health, doubt what has been reported about accident and resulted doses, got modification in life style, have somatic complains, got substance abuse (alcohol, tranquilizers, sleeping pills). The lack of accurate information and misperception of real radiation risk is believed also to have lead to change in behavior of some affected people. Possible long-term health effect due to the accidental exposure remains an issue. There is no doubt that excess thyroid cancer incidence results from exposure to radioactive iodines, mainly by iodine-131. Radiation induced thyroid cancer could easily be prevented by timely warning, effective thyroid blocking, timely restriction of consumption for contaminated food. The

  19. Radiation protection during operation of nuclear power plants

    This Guide describes a Radiation Protection Programme for nuclear power plants. It includes: (1) An outline of the basic principles as well as practical aspects of the programme; (2) A description of the responsibilities of the operating organization to establish an effective programme based upon these principles; (3) A description of the administrative and technical measures to establish and implement the programme. This Guide also deals with the operational aspects to be considered by the operating organization in reviewing design in order to facilitate implementation of the Radiation Protection Programme. This Guide covers the requirements for a Radiation Protection Programme for all operational states of the nuclear power plant. It also includes guidelines for handling planned special exposures and for coping with unplanned exposures and contamination of personnel, areas, and equipment. Additional information concerning emergency situations involving releases of radioactive materials is given in Safety Guides 50-SG-O6, ''Preparedness of the Operating Organization (Licensee) for Emergencies at Nuclear Power Plants'', and 50-SG-G6, ''Preparedness of Public Authorities for Emergencies at Nuclear Power Plants''. This Guide covers the principles of dose limitation to site personnel and to the public, but it does not include detailed instructions on the techniques used for the actual measurement and evaluation of the exposures. This Guide does not include detailed instructions on environmental surveys, but it does mention principal steps in environmental monitoring which may be required for confirmation of the acceptability of radioactive discharges

  20. Radiation protection of aviation personnel at exposure by cosmic radiation

    For determination of radiation dose of aviation personnel we used the software EPCARD (European Program Package for the Calculation of Aviation Route Doses) developed by National Research Center for Environmental Health - Institute of Radiation Protection (Neuherberg, Germany) and the software CARI 6, developed by the FAA's Civil Aerospace Medical Institute (USA). Both codes are accomplished by the Joint Aviation Authorities. Experimental measurement and estimation of radiation doses of aviation personnel at exposure by cosmic radiation were realised in the period of lowered solar activity. All-year effective dose of pilots, which worked off at least 11 months exceeds the value 1 mSv in 2007. The mean all-year effective dose of member of aviation personnel at exposure by cosmic radiation is 2.5 mSv and maximal all-year effective dose, which we measured in 2007 was 4 mSv. We assumed that in the period of increased solar activity the all-year effective doses may by higher