WorldWideScience

Sample records for radiation protection surveys

  1. Survey of radiation protection programmes for transport

    International Nuclear Information System (INIS)

    The survey of radiation protection programmes for transport has been jointly performed by three scientific organisations I.P.S.N. (France), G.R.S. ( Germany), and N.R.P.B. (United kingdom) on behalf of the European Commission and the pertaining documentation summarises the findings and conclusions of the work that was undertaken with the principal objectives to provide guidance on the establishment, implementation and application of radiation protection programmes for the transport of radioactive materials by operators and the assessment and evaluation of such programmes by the competent authority and to review currently existing radiation protection programmes for the transport of radioactive materials. (N.C.)

  2. Regulations concerning radiation protection and survey

    International Nuclear Information System (INIS)

    The many and always increasing applications of Atomic Energy for peaceful uses set many safety and security problems relatively to the workers, populations, and locating of the sites in general. A comparative study of the radiation hazards to which the people working in the 'Commissariat a l'energie atomique' installations were exposed during 1957 and the results obtained concerning individual and collective safety and security were extremely satisfactory owing to a continuous control and supervision. 2. However a few contamination and irradiation incidents - exposed subsequently as well as the way they were dealt with - show the necessity of a circumstantial regulation inside of an atomic center to establish the responsibility of the service in charge of the control of the radiation and the responsibility of the services using radioactive products with regard to contamination by radioactive materials. 3. Abstract of the different practical safety and security regulations concerning holding, manipulation, transport and stocking of radioactive materials. Pursuant to the recommendations of the International Commission on Radiologic Protection, the radioelements are classified according to the danger that can occur from them in comparison with the Pu with regard to: - radioactive noxiousness; specific activity per unit of mass; contamination hazards. 4. The service in charge of radiation protection plays the important part of a technical adviser for the construction of specialized laboratories and sees to the keeping of protection regulations. 5. Data essential to radiation protection are given to the people using radioactive materials; particularly: - a table of the radioisotopes and the hazards occurring from them; - radiation hazards regarding ? ray emitted by irradiated Pu; - radiation hazards regarding ? ray emitted by irradiated Th. 6. As the hazards occasioned by irradiated uranium have already been studied, the case of a low and total irradiation will only be considered with regard to recuperation of uranium after simple machining. (author)

  3. A survey of research programs in radiation protection in Canada

    International Nuclear Information System (INIS)

    A survey of research programs in Canada concerned with radiation protection was conducted in 1991-92 by the Joint Subcommittee on Regulatory Research (JSCRR) of the Atomic Energy Control Board (AECB) Advisory Committees on Radiological Protection and on Nuclear Safety. The purpose of this survey was to determine the current state of funding for this type of research in Canada. Funding for health-related radiation research in Canada is critical to establishing and maintaining a supply of trained professionals who can provide competent advice on health-related problems in radiation protection. The present report is an analysis of the information received in this survey. This survey concludes with the recommendation that the organization and definition of subprograms for the AECB Regulatory Research and Support Program should be completed as soon as possible. In this report the JSCRR should assist AECB staff in preparing a report in which priorities for research related to radiation protection are indicated. The sources of information noted at the end of the Discussion section of this report should be considered for this purpose. (author). 15 refs., 3 tabs

  4. A knowledge and awareness level survey of radiation protection among the radiation workers in Henan Province

    International Nuclear Information System (INIS)

    Full text: Objective: To reveal the knowledge and awareness level of radiation protection among radiation workers in Henan province and to explore the methods to improve it. Methods: A questionnaire survey was carried out among 208 radiation workers. Results: The correct rate of the answer to radiation protection knowledge from radiation workers in Henan province is 53.78%. Most of them (88.9%) realized that it is important to protect patients and their companions. They adhere to the principles of justification of medial exposure and optimization of radiation protection and follow the management system of radiation protection. However, a few workers didn't follow the principles strictly. Sometime, during the radio diagnosis and radiotherapy services, the patients and their companions were not well protected from the radiation, and some patients were given unnecessary X-ray examine. Even worse, some workers did not attach importance to the regulations of radiation protection and disobey them frequently. Again, some hospital leaders disregard the regulation of radiation protection and didn't follow the regulation of health surveillance and radiation protection monitoring properly. And those behaviors and attitude, in fact, influence some workers' attitude to radiation protection. Conclusion: The level of radiation protection knowledge and awareness among the radiation workers in Henan province needs to be improved. It is necessary to strengthen radiation protection knowledge by strengthening training, and to improve safety awareness among the radiation staff, and, more important, the hospital leaders as well. (author)

  5. Survey of Radiation Protection Awareness among Radiation Workers in Shiraz Hospitals

    OpenAIRE

    F. Amirzadeh; S.H.R. Tabatabaie

    2005-01-01

    Introduction: Ionizing radiations are the hazardous agents in the workplace and all forms of ionizing radiation produce some type of injuries. Awareness of application of protection guidelines and knowledge of the principles of radiation protection can play an important role in health of employees. Survey of radiation employee’s levels of awareness and practical behavior is essential and should be standardized. Methods: The hospitals were visited to determine the number of radiation employees...

  6. Survey of Radiation Protection Education and Training in Finland in 2003

    International Nuclear Information System (INIS)

    The current state and need for radiation protection training in Finland have been surveyed by the Radiation and Nuclear Safety Authority STUK. The survey sought to determine whether the current requirements for radiation protection training had been met, and to promote radiation protection training. Details of the scope and quality of present radiation protection training were requested from all educational institutes and organizations providing radiation protection training. The survey covered both basic and further training, special training of radiation safety officers, and supplementary training. The questionnaire was sent to 77 educational organization units, 66 per cent of which responded. Radiation workers and radiation safety officers were asked about radiation protection knowledge and needs for additional training. The questionnaire was sent to 880 radiation users and 170 radiation safety officers, 70 per cent of whom responded. The survey covered all professional groups and fields of the use of ionizing radiation except nuclear energy. The amount of radiation protection training in basic and further (specialization) training in the same vocational or academic degree varied remarkably by educational organization. The average amounts of radiation protection included in most professional degrees met the requirements. 32 per cent of workers considered their radiation protection training inadequate for their duties, and 48 per cent had completed no supplementary training in radiation protection over the last five years. Nurses working in public sector hospitals and physicians working in health centres had the greatest need for radiation protection training. 78 per cent of radiation workers in industry felt that they had sufficient radiation protection training. Co-operation between educational organizations is necessary to harmonize radiation protection training. Guidance of the Ministry of Education (the competent authority for education) is needed in this area, and the Radiation and Nuclear Safety Authority STUK should also be involved. (Author)

  7. Radiation protection

    International Nuclear Information System (INIS)

    This work define procedures and controls about ionizing radiations. Between some definitions it found the following topics: radiation dose, risk, biological effects, international radioprotection bodies, workers exposure, accidental exposure, emergencies and radiation protection

  8. On the awareness of radiation protection. A questionnaire survey of junior college students of radiological technology

    International Nuclear Information System (INIS)

    A questionnaire survey on the awareness of radiation protection was conducted to improve our curriculum of radiation protection education, which seems to be important for the safe administrative control systems and handling techniques of radiation. A total of 426 students answered our questionnaire during the period of 1994 to 1999. They were 80 first-year, 114 second-year and 232 third-year students. The facility values of 4 questions on the influence of radiation to a human body were 50.2%, 30.3%, 28.9% and 7.0%. There was no statistically significant difference among different age groups. The facility values of 3 questions on the dose limitation of occupation exposure were 50.5% (on the effective dose equivalent), 36.4% (on the tissue dose equivalent to skin), and 40.9% (on the crystalline lens). On safe handling of radiation, only 35.7% of students correctly answered that they use a plastic board to protect themselves from ?-ray, while 77.0% correctly answered the question on the decontamination method of radioactive substance from the skin. The results show the students' lack of knowledge on radiation protection. Those involved in basic science education and radiation protection education, therefore, need to clarify their teaching content and offer explicit explanations on the proper dose of radiation, effects to exposure dose, interaction between different materials and radiation. (author)

  9. Knowledge in Radiation Protection: a Survey of Professionals in Medical Imaging, Radiation Therapy and Nuclear Medicine Units in Yaounde

    International Nuclear Information System (INIS)

    Medical use of ionizing radiation is now the most common radiation source of the population at the global level. The knowledge and practices of health professionals working with X-rays determine the level and quality of implementation of internationally and nationally recommended measures for radiation protection of patients and workers. The level of implementation and enforcement of international recommendations in African countries is an issue of concern due to weak laws and regulations and regulatory bodies. We report the results of a cross-sectional survey of health professionals working with ionizing radiation in Yaounde, the capital city of Cameroon. More than 50% of these professionals have a moderate level of knowledge of the norms and principles of radiation protection and more than 80% have never attended a continuing professional development workshop on radiation protection. (authors)

  10. Radiation Protection

    Science.gov (United States)

    Grupen, Claus

    Radiation protection is a very important aspect for the application of particle detectors in many different fields, like high energy physics, medicine, materials science, oil and mineral exploration, and arts, to name a few. The knowledge of radiation units, the experience with shielding, and information on biological effects of radiation are vital for scientists handling radioactive sources or operating accelerators or X-ray equipment. This article describes the modern radiation units and their conversions to older units which are still in use in many countries. Typical radiation sources and detectors used in the field of radiation protection are presented. The legal regulations in nearly all countries follow closely the recommendations of the International Commission on Radiological Protection (ICRP). Tables and diagrams with relevant information on the handling of radiation sources provide useful data for the researcher working in this field.

  11. Radiation Protection

    International Nuclear Information System (INIS)

    Major achievements of SCK-CEN's Radiation Protection Department in 2000 are described. The main areas for R and D of the department remain neutron dosimetry and neutron activation analysis, safeguards information handling and non-destructive assay techniques. Further activities include low-level radioactivity measurements in environmental and biological samples and radiation protection research. Finally, achievements in decision strategy research and social sciences in nuclear research are reported

  12. Concepts of radiation protection

    International Nuclear Information System (INIS)

    This seventh chapter presents the concepts and principles of safety and radiation protection, emergency situations; NORM and TENORM; radiation protection care; radiation protection plan; activities of the radiation protection service; practical rules of radiation protection and the radiation symbol

  13. Principles of radiation protection and legal basis for workers and public protection - a description of the Federal Radiation Survey

    International Nuclear Information System (INIS)

    The consequences of traditional mining and uranium industry, public concern and the need for decisions on restoration and remediation of radioactive-contaminated sites require systematic investigations and objective evaluations of the existing radiological situation. With this intention a comprehensive Federal project has been lauched to study the contributions of the geologic conditions and mining activities to the radiation exposure of the public. The responsibility for the whole project was delegated to the Federal Office for Radiation Protection (BfS). Topics covered in this paper include: Radiological evaluation and legal basis of the radiological protection for workers and for the public; Radiological protection for workers and the public in case of remedial actions

  14. Radiation protection

    CERN Multimedia

    2005-01-01

    The section of the Radiation Protection Group in charge of shipping radioactive material would like to remind users that all radioactive material leaving CERN must be checked for radioactivity and must be shipped according to the procedure given at http://cern.ch/service-rp-shipping Do not hesitate to contact us for any question or control. Radioactive Shipping Service: service-rp-shipping@cern.ch Tél. 73171

  15. Radiation protection

    CERN Multimedia

    2005-01-01

    The section of the Radiation Protection Group in charge of shipping radioactive material would like to remind users that all radioactive material leaving CERN must be checked for radioactivity and must be shipped according to the procedure given at http://cern.ch/service-rp-shipping Do not hesitate to contact us for any question or control. Radioactive Shipping Service: service-rp-shipping@cern.ch Tel. 73171

  16. Radiation protection

    CERN Multimedia

    Radioactive Shipping Service

    2005-01-01

    The section of the radiation protection group in charge of shipping radioactive material would like to remind users that all radioactive material leaving CERN must be checked for radioactivity and must be shipped according to the procedure given at http://cern.ch/service-rp-shipping Do not hesitate to contact us for any question or control. Radioactive Shipping Service: service-rp-shipping@cern.ch Tél. 73171

  17. Radiation protection in Hesse

    International Nuclear Information System (INIS)

    A survey is given on the tasks of the administration of Land Hesse in the field of radiation protection. The responsible authorities are the Social Ministry and its subordinate agencies, in particular the Industrial Control Office and the Inspection Office for Industrial Administration. The measures taken by the authorities are subject to the Atomic Energy Act and its executive regulations such as the 1st Radiation Protection Ordinance governing the use of radioactive materials and radiation protection in nuclear facilities, the 2nd Radiation Protection Ordinance for the use of radioactive materials and X-ray equipment in schools, and the X-ray Ordinance for the use of X-ray installations and stray radiation. The competence for licensing and control of nuclear reactors and other applications of nuclear fuels is in the hands of the Ministry of Economy and Technology. The licences are granted in accordance with the Social Ministry and the Ministry of the Interior. (ORU/AK)

  18. Survey of radiation protection programmes for transport; Etude des programmes de radioprotection pour les transports de matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Lizot, M.T.; Perrin, M.L.; Sert, G. [CEA Fontenay-aux-Roses, Inst. de Protection et de Surete Nucleaire, Dept. de Protection et de Surete Nucleaire, 92 (France); Lange, F.; Schwarz, G.; Feet, H.J.; Christ, R. [Gesellschaft fur Anlagen-und Reaktorsicherheit, GRS, mbH, Cologne (Germany); Shaw, K.B.; Hughes, J.S.; Gelder, R. [National Radiological Protection Board (NRPB), Oxon, OX (United Kingdom)

    2001-07-01

    The survey of radiation protection programmes for transport has been jointly performed by three scientific organisations I.P.S.N. (France), G.R.S. ( Germany), and N.R.P.B. (United kingdom) on behalf of the European Commission and the pertaining documentation summarises the findings and conclusions of the work that was undertaken with the principal objectives to provide guidance on the establishment, implementation and application of radiation protection programmes for the transport of radioactive materials by operators and the assessment and evaluation of such programmes by the competent authority and to review currently existing radiation protection programmes for the transport of radioactive materials. (N.C.)

  19. Proposal of a survey of radiation protection procedures during breast feeding

    International Nuclear Information System (INIS)

    Contamination can occur by breast milk ingestion involving mothers subjected to diagnostic procedures or treatment with radiopharmaceuticals, which can reach high concentrations in milk causing significant absorbed doses to the children organs. Besides internal dose, close contact between the baby and his mother give rise to external exposures. In Brazil, 7% of diagnostic procedures use 131I or 123I for thyroid imaging and 84% of these were hold by women. For 131I, 67Ga and 201Tl, is recommended breast feeding cessation. The present work proposes a survey of the state of the art of radiation protection to breast feeding infants. It was planned interviews with nuclear medicine staff applying a questionnaire in order to assess specific procedures to women in reproductive age. This is 'on progress work'. (author)

  20. The use of roentgen diagnostics in chiropractor activities. Project based survey according to new regulations regarding radiation protection and use of radiation

    International Nuclear Information System (INIS)

    An audit has been performed in 17 chiropractic enterprises according to new radiation protection legislation. Before the audits a survey of the use of diagnostic imaging in Norwegian chiropractic enterprises was carried out. This report summarizes the results of the survey and the findings at the audits. (Author)

  1. Legal fundamentals of radiation protection

    International Nuclear Information System (INIS)

    A short survey is presented of national radiation protection law in the FRG (First Radiation Protection Ordinance, X-Ray Ordinance), international radiation protection law (EURATOM basic standards, OECD norms, ILO Conventions, international recommendations (ICRP, ICRU), and of guidelines and regulations in science and technology. Dealt with in more detail are the chapters of the amendment amending the Radiation Protetction Ordinance, the sections applying to medical technologists and hospital nursing staff being looked at in particular. (HP)

  2. Survey and analysis of radiation safety management systems at medical institutions. Second report. Radiation measurement, calibration of radiation survey meters, and periodic check of installations, equipment, and protection instruments

    International Nuclear Information System (INIS)

    We carried out a questionnaire survey to determine the actual situation of radiation safety management measures in all medical institutions in Japan that had nuclear medicine facilities. The questionnaire consisted of questions concerning the evaluation of shielding capacity; radiation measurement; periodic checks of installations, equipment, and protection instruments; and the calibration of radiation survey meters. The analysis was undertaken according to region, type of establishment, and number of beds. The overall response rate was 60 percent. For the evaluation of shielding capacity, the outsourcing rate was 53 percent of the total. For the radiation measurements of ''leakage radiation dose and radioactive contamination'' and contamination of radioactive substances in the air'', the outsourcing rates were 28 percent and 35 percent of the total, respectively (p<0.001, according to region and establishment). For the periodic check of radiation protection instruments, the implementation rate was 98 percent, and the outsourcing rate was 32 percent for radiation survey meters and 47 percent for lead aprons. The non-implemented rate for calibration of radiation survey meters was 25 percent of the total (p<0.001, according to region and establishment). The outsourcing rate for calibration of radiation survey meters accounted for 87 percent of the total, and of these medical institutions, 72 percent undertook annual calibration. The implementation rate for patient exposure measurement was 20 percent of the total (p<0.001, according to number of beds), and of these medical institutions 46 percent recorded measurement outcome. (author)

  3. [Survey and analysis of radiation safety management systems at medical institutions--second report: radiation measurement, calibration of radiation survey meters, and periodic check of installations, equipment, and protection instruments].

    Science.gov (United States)

    Ohba, Hisateru; Ogasawara, Katsuhiko; Aburano, Tamio

    2006-01-20

    We carried out a questionnaire survey to determine the actual situation of radiation safety management measures in all medical institutions in Japan that had nuclear medicine facilities. The questionnaire consisted of questions concerning the evaluation of shielding capacity; radiation measurement; periodic checks of installations, equipment, and protection instruments; and the calibration of radiation survey meters. The analysis was undertaken according to region, type of establishment, and number of beds. The overall response rate was 60 percent. For the evaluation of shielding capacity, the outsourcing rate was 53 percent of the total. For the radiation measurements of "leakage radiation dose and radioactive contamination" and "contamination of radioactive substances in the air," the outsourcing rates were 28 percent and 35 percent of the total, respectively (poutsourcing rate was 32 percent for radiation survey meters and 47 percent for lead aprons. The non-implemented rate for calibration of radiation survey meters was 25 percent of the total (poutsourcing rate for calibration of radiation survey meters accounted for 87 percent of the total, and of these medical institutions, 72 percent undertook annual calibration. The implementation rate for patient exposure measurement was 20 percent of the total (p<0.001, according to number of beds), and of these medical institutions 46 percent recorded measurement outcome. PMID:16456509

  4. Experience in Radiation Protection Monitoring

    International Nuclear Information System (INIS)

    This paper describes the experience in radiation protection monitoring acquired in the Thai Office of Atomic Energy for Peace. The subjects discussed are the film badge service, reactor monitoring, survey meters and neutron monitors. (author)

  5. Radiation protection of nuclear medicine workers in the Czech Republic in 2003 -some results of SONS and questionnaire survey II

    International Nuclear Information System (INIS)

    Our paper presents the most. important data concerning an equipment of 45 nuclear medicine departments (depts.) with radiation protection facilities and aids. The results of the questionnaire survey mentioned in our previous paper are briefly summarized here. A relatively low radiation burden of nuclear medicine staff suggests the standard of radiation protection measures to be relatively good in our country. However, our survey shows some shortcomings, especially the following ones: (1) some depts. need equipment for the preparation and dispensing of radiopharmaceuticals; (2) syringe shields for injection of beta-emitters such as 90Y are missing Iargely; (3) at some depts. shielding of staff from the patient containing a radiopharmaceutical is either missing or insufficient. Some deficiencies, including those not mentioned here, cannot be considered too significant. If syringe shields for beta-emitters are not available, Pb shields can be provisionally used. It would be desirable to replace the Pb shields by tungsten ones having the same effectiveness as Pb shields but smaller dimensions enabling a more comfortable injections (of course, tungsten syringe shields were available at four depts. which administered 18F-FDG in 2003). An acquaintance of depts. with the results of our survey is believed to stimulate nuclear medicine workers to improve further radiation protection in compliance with legislative requirements. (authors)

  6. The German Radiation Protection Ordinance of 2000: a survey and comparison with the former regulations

    International Nuclear Information System (INIS)

    The radiation protection standards defined by the European Union in May 1996, as well as the EU directive for the protection of patients, effective since June 1997, have to be incorporated into the law and administrative regulations of the Federal Republic of Germany by the 13th of May 2000. The German BMU, the ministry responsible for nuclear safety and radiation protection, presented the draft law for departmental consultation about the amendment of the StlSchV in December 1999. This draft law is the basis of the expert discussions of the meeting. One major change for instance is that for the first time, a broad classification system has been applied, which facilitates orientation. (orig./CB)

  7. Survey of radiation protection creiteria following the accident at the Fukushima Dai-ichi Nuclear Power Plant

    International Nuclear Information System (INIS)

    After the accident at Fukushima Dai-ichi Nuclear Power Plant, various numerical criteria relevant to radiation protection were defined. We surveyed these criteria through internet. As a result of survey, the following 13 items were identified: (1) criteria for taking stable iodine tablets, (2) criteria for the screening of surface contamination, (3) evacuation area, sheltering area, etc., (4) activity concentrations in food, drinking water,etc., (5) dose limit for radiation workers engaged in emergency work, (6) guideline levels of radioactive substances in bathing areas, (7) criteria for use of school buildings and schoolyards, (8) restriction on planting rice, (9) acceptable activity concentrations in feedstuff, (10) acceptable activity concentrations in compost, (11) criteria for export containers and ships, (12) criteria for contaminated waste, (13) standards for radiation workers engaged in decontamination work. In this report, the basis of and issues on these criteria are summarized. (author)

  8. On ethical issues in radiation protection

    International Nuclear Information System (INIS)

    From an ethical viewpoint the author surveys existing international radiation protection recommendations and standards. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the author discusses ethical thinking on seven key issues related to radiation protection and ethics. (author)

  9. Ethical problems in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Shrader-Frechette, K.; Persson, Lars

    2001-05-01

    In this report the authors survey existing international radiation-protection recommendations and standards of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the authors review ethical thinking on seven key issues related to radiation protection and ethics. They formulate each of these seven issues in terms of alternative ethical stances: (1) equity versus efficiency, (2) health versus economics, (3) individual rights versus societal benefits, (4) due process versus necessary sacrifice, (5) uniform versus double standards, (6) stake holder consent versus management decisions, and (7) environmental stewardship versus anthropocentric standards.

  10. Ethical problems in radiation protection

    International Nuclear Information System (INIS)

    In this report the authors survey existing international radiation-protection recommendations and standards of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the authors review ethical thinking on seven key issues related to radiation protection and ethics. They formulate each of these seven issues in terms of alternative ethical stances: (1) equity versus efficiency, (2) health versus economics, (3) individual rights versus societal benefits, (4) due process versus necessary sacrifice, (5) uniform versus double standards, (6) stake holder consent versus management decisions, and (7) environmental stewardship versus anthropocentric standards

  11. Survey and analysis of radiation safety management systems at medical institutions. Initial report. Radiation protection supervisor, radiation safety organization, and education and training

    International Nuclear Information System (INIS)

    In this study, a questionnaire survey was carried out to determine the actual situation of radiation safety management systems in Japanese medical institutions with nuclear medicine facilities. The questionnaire consisted of questions concerning the Radiation Protection Supervisor license, safety management organizations, and problems related to education and training in safety management. Analysis was conducted according to region, type of establishment, and number of beds. The overall response rate was 60%, and no significant difference in response rate was found among regions. Medical institutions that performed nuclear medicine practices without a radiologist participating accounted for 10% of the total. Medical institutions where nurses gave patients intravenous injections of radiopharmaceuticals as part of the nuclear medicine practices accounted for 28% of the total. Of these medical institutions, 59% provided education and training in safety management for nurses. The rate of acquisition of Radiation Protection Supervisor licenses was approximately 70% for radiological technologists and approximately 20% for physicians (regional difference, p=0.02). The rate of medical institutions with safety management organizations was 71% of the total. Among the medical institutions (n=208) without safety management organizations, approximately 56% had 300 beds or fewer. In addition, it became clear that 35% of quasi-public organizations and 44% of private organizations did not provide education and training in safety management (p<0.001, according to establishment). (author)

  12. Atoms, Radiation, and Radiation Protection

    CERN Document Server

    Turner, James E

    2007-01-01

    Atoms, Radiation, and Radiation Protection offers professionals and advanced students a comprehensive coverage of the major concepts that underlie the origins and transport of ionizing radiation in matter. Understanding atomic structure and the physical mechanisms of radiation interactions is the foundation on which much of the current practice of radiological health protection is based. The work covers the detection and measurement of radiation and the statistical interpretation of the data. The procedures that are used to protect man and the environment from the potential harmful effects of

  13. Radiation and radiation protection

    International Nuclear Information System (INIS)

    The brochure explains the major types of radiation, the radiation sources, effects, uses, and risks, as well as the regulatory system adopted by the government in order to keep the risks as low as possible. (orig./DG)

  14. Radiation protection seminar

    International Nuclear Information System (INIS)

    The Radiation Protection Seminar, was organized by the Argentina Association of Biology and Nuclear Medicine, and Bacon Laboratory, the 20 june 2012, in the Buenos Aires city of Argentina. In this event were presented some papers on the following topics: methods of decontamination, radiation protection of patients; concepts of radiation protection and dosimetry.

  15. Ethical issues in radiation protection

    International Nuclear Information System (INIS)

    In this note the authors survey existing international radiation-protection recommendations of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection and risk assessment/management, the authors review ethical thinking on five key issues related to radiation protection and ethics. They formulate each of these five issues in terms of alternative ethical stances: (1) Equity vs. Efficiency, (2) Health vs. Economics, (3) Individual Rights vs. Societal Benefits, (4) Due Process vs. Necessary Sacrifice, and (5) Stakeholder Consent vs. Management Decisions (authors)

  16. Radiation protection research

    Energy Technology Data Exchange (ETDEWEB)

    Vanmarcke, H

    2002-04-01

    The objectives of the research in the field of radiation protection research performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to elaborate and to improve methods and guidelines for the evaluation of restoration options for radioactively contaminated sites; (2) to develop, test and improve biosphere models for the performance assessment of radioactive waste disposal in near-surface or geological repositories; (3) to asses the impact of releases from nuclear or industrial installations; (4) to increase capabilities in mapping and surveying sites possibly or likely contaminated with enhanced levels of natural radiation; (5) to identify non nuclear industries producing NORM waste, to make an inventory of occurring problems and to propose feasible solutions or actions when required; (6) to maintain the know-how of retrospective radon measurements in real conditions and to assess radon decay product exposure by combining these techniques. Main achievements in these areas for 2001 are summarised.

  17. Radiation protection research

    International Nuclear Information System (INIS)

    The objectives of the research in the field of radiation protection research performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to elaborate and to improve methods and guidelines for the evaluation of restoration options for radioactively contaminated sites; (2) to develop, test and improve biosphere models for the performance assessment of radioactive waste disposal in near-surface or geological repositories; (3) to asses the impact of releases from nuclear or industrial installations; (4) to increase capabilities in mapping and surveying sites possibly or likely contaminated with enhanced levels of natural radiation; (5) to identify non nuclear industries producing NORM waste, to make an inventory of occurring problems and to propose feasible solutions or actions when required; (6) to maintain the know-how of retrospective radon measurements in real conditions and to assess radon decay product exposure by combining these techniques. Main achievements in these areas for 2001 are summarised

  18. Radiation protection forum

    International Nuclear Information System (INIS)

    The National Director of the Nuclear Regulatory Authority and Radiation Protection of Uruguay in the first forum for radiation protection set out the following themes: activity of regulatory body, radiation safety, physical security, safeguards, legal framework, committed substantive program, use of radiation, risks and benefits, major sources of radiation, the national regulatory framework, national inventory of sources, inspections, licensing, import and export of sources control , radioactive transport, materials safety, agreements, information and teaching, radiological emergencies and prompt response.

  19. Optimization of radiation protection

    International Nuclear Information System (INIS)

    The Symposium presentations were divided into three sessions devoted to the following topics: the role of optimization of radiation protection (10 papers), application of the principle of optimization of radiation protection (26 papers), methods and techniques in the optimization of radiation protection (7 papers). An additional session was devoted to the presentation of a summary statement and to an extended discussion by a panel of senior experts on the question of whether optimization (ALARA) is meeting its objective

  20. Radiation Protection Handbook

    Science.gov (United States)

    1972-01-01

    A handbook which sets forth the Kennedy Space Center radiation protection policy is presented. The book also covers administrative direction and guidance on organizational and procedural requirements of the program. Only ionizing radiation is covered.

  1. Protective legislation, ionizing radiation and health: a new appraisal and international survey

    International Nuclear Information System (INIS)

    Restrictive regulations (protective legislation) on employment conditions of female workers limiting maximum hours of work and prohibiting certain toxic exposures have existed for decades. In some countries, such as the United States, Canada and the Nordic countries, the growth of civil rights and equal opportunity legislation has led to their elimination, either in fact or in practice, and only a small number of disparate regulations for male and female workers still exist. Most other industrialized countries, as well as the International Labour Office of the United Nations, still have active restrictive rules for women's employment. However, restrictive regulation is an area of active policy debate around the world. International examples of the debate on protective legislation are given here. A specific case study of the occupational health standards governing exposure to ionizing radiation is used and its technical rationale discussed as an illustration of the basic issues. These include: overbroad categorization of all women as potential childbearers, no matter what their childbearing intentions; failure to recognize the full range of potential adverse health effects to males; disparate application of the restrictive regulations, generally to occupations or areas of employment that are traditionally held by men, while traditional female jobs with the same exposures are excluded from the regulatory restriction

  2. Radiation protection to firemen

    International Nuclear Information System (INIS)

    The basic Knowledge about ionizing radiation oriented for firemen, are presented. The mainly damage and effects caused by radiation exposure as well as the method of radiation protection are described in simple words. The action to be taken in case of fire involving radiation such as vehicles transporting radioactive materials are emphasized. (author)

  3. Radiation protection practice

    International Nuclear Information System (INIS)

    Proceeding from the physical fundamentals, this manual summarizes practical aspects of radiation protection including radiation doses to man, maximum permissible levels, responsibility, training, licensing, X-ray application, handling of sealed and unsealed sources, radiation monitoring, medical surveillance, and emergency measures. Small chapters are devoted to the transport of radioactive materials, to the management of radioactive wastes and to radiation protection problems associated with the construction and operation of nuclear power plants. The appendix contains a compilation of titles of current GDR regulations and standards in radiation protection

  4. Radiation protection practices and related continuing professional education in dental radiography: A survey of practitioners in the North-east of England

    International Nuclear Information System (INIS)

    Purpose: To establish the level of implementation of recommendations from the National Radiological Protection Board, relating to best radiation protection practice in dental radiography within general dental practices in the North-east of England. To survey the opinion of practitioners on the availability of related post-graduate courses in the region. Methods: A postal survey in the form of a self-reported questionnaire was mailed to all practices in the North-east of England in November 2000. The questionnaire, consisting of closed and open-ended questions, was to be completed where possible by the resident radiation protection supervisor. Results: Two hundred and sixteen practices responded to the questionnaire, a response rate of 53%. The survey revealed variation in the standards of application of best radiation protection practice. Some 23% of practitioners had not attended any post-graduate courses on radiation protection since qualifying. Post-graduate education provision on radiation protection in the region was considered insufficient by 51% of respondents. Conclusions: It is concluded that a significant proportion of practices were not making full use of opportunities to reduce dose to their patients. In addition, a small number of practices had untrained staff acting as the Radiation Protection Supervisor. A significant proportion of practitioners had not been updated in radiation protection practices within a 5-year period, and this may account for the failure to implement best radiographic practice. Over half felt that there was insufficient availability of post-graduate courses in radiation protection. The regional provision of continuing professional education in this field may need development

  5. Regulations in radiation protection

    International Nuclear Information System (INIS)

    On the occasion of the twenty fifth anniversary of the Dutch Society for Radiation Protection, a symposium was held about Regulations in Radiation Protection. The program consisted of six contributions of which four are included in this publication. The posters presented are published in NVS-nieuws, 1985, vol. 11(5). (G.J.P.)

  6. Radiation protection infrastructure

    International Nuclear Information System (INIS)

    A prerequisite for the safe use of ionizing radiation in a country is the availability of an adequate infrastructure to achieve the desired degree of protection. The extent of such an infrastructure, generally comprising regulatory mechanisms and technical capabilities for application and enforcement of regulations, has to be commensurate with the stage of technological development. The expanding application of ionizing radiation in medicine, industry and research calls for vigorous promotion of effective radiation protection efforts, not only to prevent any unsafe practices but also to assess correctly and provide authoritative information on the safety of adopted practices. Experience reveals that radiation protection practices vary considerably from one country to another. The regulatory structures and type of organization with regard to radiation protection are very different, depending on a number of factors such as the constitutional framework, the legal and administrative systems of the country concerned, the state of technical development, the status of application of radiation sources, the existence of research and associated institutions, and the technical skills and financial resources available. Radiation protection principles evolve with time as further experience is gained and as new research evidence becomes available. Regulation of radiation protection has to take account of such changes and adapt to changing conditions. Forty-eight papers from 29 Member States and two International Organizations were presented in nine scientific sessions. Topics included radiation protection regulation and licensing notification, registration, inspection and control programmes, education and training, the role of supporting institutions such as national laboratories and research institutes, the role of professional associations, the contribution of radiation protection services, and international activities. A concluding panel addressed development strategies to strengthen radiation protection infrastructure and explored how the IAEA could best assist to overcome identified shortcomings. Refs, figs and tabs

  7. Radiation protection in space

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, E.A. [Lawrence Berkeley Lab., CA (United States); Fry, R.J.M. [Oak Ridge National Lab., TN (United States)

    1995-02-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space.

  8. Radiation protection survey of research and development activities initiated after the Chernobyl accident. Review report

    International Nuclear Information System (INIS)

    The compilation of research and development activities in the various fields of radiation protection in OECD Member countries which have been undertaken or planned specifically to address open questions arising from the Chernobyl reactor accident experience shows a potential for international cooperative arrangements and/or coordination between national programmes. Both the preliminary review of the answers, which only cover a part of the relevant activities in OECD Member countries, and a computerized literature search indicate that the multidisciplinarity of the research area under consideration will call for special efforts to efficiently implement new models and new quantitative findings from the different fields of activity to provide an improved basis for emergency management and risk assessment. Further improvements could also be achieved by efforts to initiate new activities to close gaps in the programmes under way, to enhance international cooperation, and to coordinate the evaluation of the results. This preliminary review of the answers of 17 Member countries to the questionnaire on research and development activities initiated after the Chernobyl accident is not sufficient as a basis for a balanced decision on those research areas most in need for international cooperation and coordination. It may however serve as a guide for the exploration of the potential for international cooperative arrangements and/or coordination between national programmes by the CRPPH. Even at this preliminary stage, several specific activities are proposed to the NEA/OECD by Member countries. Whole body counting and the intercomparison of national data bases on the behaviour of radionuclides in the environment did attract most calls for international cooperation sponsored by the NEA

  9. Optimisation of radiation protection

    International Nuclear Information System (INIS)

    Optimisation of radiation protection is one of the key elements in the current radiation protection philosophy. The present system of dose limitation was issued in 1977 by the International Commission on Radiological Protection (ICRP) and includes, in addition to the requirements of justification of practices and limitation of individual doses, the requirement that all exposures be kept as low as is reasonably achievable, taking social and economic factors into account. This last principle is usually referred to as optimisation of radiation protection, or the ALARA principle. The NEA Committee on Radiation Protection and Public Health (CRPPH) organised an ad hoc meeting, in liaison with the NEA committees on the safety of nuclear installations and radioactive waste management. Separate abstracts were prepared for individual papers presented at the meeting

  10. Radiation protection at CERN

    OpenAIRE

    Forkel-Wirth, Doris; Roesler, Stefan; Silari, Marco; Streit-Bianchi, Marilena; Theis, Christian; Vincke, Heinz; Vincke, Helmut

    2013-01-01

    This paper gives a brief overview of the general principles of radiation protection legislation; explains radiological quantities and units, including some basic facts about radioactivity and the biological effects of radiation; and gives an overview of the classification of radiological areas at CERN, radiation fields at high-energy accelerators, and the radiation monitoring system used at CERN. A short section addresses the ALARA approach used at CERN.

  11. RADIATION PROTECTION IN IRAN

    OpenAIRE

    R. Abedinzadih; H. Parnianpour

    1980-01-01

    This paper presents the current activities on radiation protection in Iran. According to the Atomic Energy Organization Law of Iran the radiological safety is ascribed to the Atomic Energy Organization of Iran (A E O I) and the Radiation Protection Department (R P D) is the responsible organ within AEOI. R P D since it's establishment in 1975, with the aim to ensure the protection of man and his environment against any harmful effects of radiations, has embarked on a national development...

  12. Radiation protection in the dental profession

    International Nuclear Information System (INIS)

    A survey, conducted by the Health and Safety Executive (HSE), on the standard of radiation protection in the dental profession in the United Kingdom is described. The results are compared with UK advisory standards. The preliminary survey results were reported in the professional press and each participating dental practitioner received comments and advice concerning the basic requirements for radiation protection. The method of survey has been broadened to form the basis of inspection of dental radiography by the HSE. (H.K.)

  13. Radiation Protection Proclamation

    International Nuclear Information System (INIS)

    A proclamation of the Government of Ethiopia, cited as the radiation protection proclamation number 79/1993 was prepared with the objective to establish a national radiation protection authority that formulates policies, controls and supervises activities involving all sources of radiation and lay down laws governing such activities in order to ensure public safety against associated hazards while allowing radiation related activities to be carried out for the benefit of the public . The Authority is guided by an inter-ministerial board and is accountable to the Ethiopian Science and Technology Commission

  14. Radiation Protection Group

    CERN Multimedia

    2006-01-01

    The Radioactive Waste Section of the Radiation Protection Group wishes to inform you that the Radioactive Waste Treatment Centre will be closed on the afternoon of Tuesday 19 December 2006. Thank-you for your understanding.

  15. Physics for radiation protection

    CERN Document Server

    Martin, James E

    2013-01-01

    A much-needed working resource for health physicists and other radiation protection professionals, this volume presents clear, thorough, up-to-date explanations of the basic physics necessary to address real-world problems in radiation protection. Designed for readers with limited as well as basic science backgrounds, Physics for Radiation Protection emphasizes applied concepts and carefully illustrates all topics through examples as well as practice problems. Physics for Radiation Protection draws substantially on current resource data available for health physics use, providing decay schemes and emission energies for approximately 100 of the most common radionuclides encountered by practitioners. Excerpts of the Chart of the Nuclides, activation cross sections, fission yields, fission-product chains, photon attenuation coefficients, and nuclear masses are also provided.

  16. Radiation protection textbook

    International Nuclear Information System (INIS)

    This textbook of radiation protection presents the scientific bases, legal and statutory measures and technical means of implementation of the radioprotection in the medical and industrial sectors, research and nuclear installations. It collects the practical information (organization, analysis of post, prevention, evaluation and risks management, the controls, the training and the information) usually scattered and the theoretical knowledge allowing every person using ionizing radiation: To analyze jobs in controlled areas, to watch the respect for the current regulations, to participate in the training and in the information of the staffs exposed to intervene in accidental situation. This third edition is widely updated and enriched by the most recent scientific and legal data concerning, notably, the human exposure, the dosimetry, the optimization of the radiation protection and the epidemiological inquiries. The contents is as follows: physics of ionizing radiation, ionizing radiation: origin and interaction with matter, dosimetry and protection against ionizing radiation, detection and measurement of ionizing radiation, radiobiology, legal measures relative to radiation protection, human exposure of natural origin, human exposure of artificial origin, medical, dental and veterinarian radiology, radiotherapy, utilization of unsealed sources in medicine and research, electronuclear industry, non nuclear industrial and aeronautical activities exposing to ionizing radiation, accidental exposures. (N.C.)

  17. International trends in radiation protection

    International Nuclear Information System (INIS)

    The great uranium debate throughout the industrialised world has intensified awareness of the biological hazards from ionizing radiation. It is therefore appropriate to use this awareness to draw attention to medical X-Radiation which today represents the most significant risk to future generations. There is ample legislation to control proliferation of nuclear development but in diagnostic radiology proliferation is unlimited; most international surveys indicate an unchecked annual growth rate of 15%. The article looks at risk hypotheses, dose measurements and the responsibilities of practising radiographers, and also reviews the international situation as reported at the 1977 world congress of radiation protection

  18. Radiation protection in dentistry

    International Nuclear Information System (INIS)

    The X-ray Ordinance as of January 8, 1987 defines the principles to be observed in dental radiology; these are explained in the chapter, refering to radiation protection by technical and structural means, dosimetry and monitoring, and health physics to protect patients and the personnel. (DG)

  19. Radiation Protection Dosimetry

    International Nuclear Information System (INIS)

    The contributions presented during the seminar provided clear evidence that radiation protection of the patient plays an increasingly important role for manufacturers of radiological equipment and for regulatory bodies, as well as for radiologists, doctors and assistants. The proceedings of this seminar reflect the activities and work in the field of radiation protection of the patient and initiate further action in order to harmonize dosimetric measurements and calculations, to ameliorate education and training, to improve the technical standards of the equipment and to give a push to a more effective use of ionising radiation in the medical sector

  20. Radiation protection glossary

    International Nuclear Information System (INIS)

    The glossary is intended to be used as a terminology standard for IAEA documentation on radiation protection. An effort has been made to use definitions contained in internationally accepted publications such as recommendations of the International Commission on Radiological Protection (ICRP), standards of the International Organization for Standardization (ISO) and of the International Electrotechnical Commission (IEC), reports of the International Commission on Radiation Units and Measurements (ICRU), with only slight modifications in order to tailor them more closely to IAEA needs. The glossary is restricted to ionizing radiation

  1. Instructed officers Radiation Protection

    International Nuclear Information System (INIS)

    This law contains instructions on the prevention of radiological and contains 4 articles Article I: describe the responsibilities of the institutions that operate within the scope of radiological protection in terms of the number of radiation protection officers and personal Supervisors who available in the practices radiation field. Article II: talking about the conditions of radiation protection officers that must be available in the main officers and working field in larg institutions and thecondition of specific requirements for large enterprises of work permits in the field of radiological work that issued by the Council. Article III: the functions and duties of officers in the prevention of radiological oversee the development of radiation protection programmes in the planning stages, construction and preparing the rules of local labour and what it lead of such tasks.Article IV: radiation protection officers powers: to modify and approve the programme of prevention and radiation safety at the company, stop any unsafe steps, amend the steps of the usage, operation of materials, devices and so on

  2. [National survey of radiation protection for workers in positron emission tomography facilities in Japan-1st report: occupational role assignment, radiation exposure to medical workers].

    Science.gov (United States)

    Watanabe, Hiroshi; Satou, Tsutomu; Senzui, Norio; Kimura, Fumiharu; Sano, Miyako; Hoshi, Tsunehiko; Itou, Atsushi; Naka, Kouji; Sagawa, Ryou

    2009-03-20

    We have investigated the role assignment and radiation exposure of medical workers (including receptionists) in PET (positron emission tomography) facilities in Japan using a questionnaire. The survey period was from October 1st to November 15th 2006. The response rate for the questionnaire was 60.0% (72/120 facilities). Nurses were engaged in the intravenous administration of radioactive FDG in 66.9% of PET facilities. In 89.5% of PET facilities, radiological technologists mainly performed the PET examination. The average radiation exposure to medical workers was 0.13 mSv/month (n: 709, S.D.: 0.16) as the effective dose. It was shown that radiation exposure was significantly different depending on the occupation and content of work (pfacility was 0.60 [mSv month(-1)], which was 4.6 times higher than the average dose of 0.13 [mSv month(-1)]. We have clarified the actual conditions of radiation protection in PET facilities in Japan for the first time. PMID:19367061

  3. National survey of radiation protection for workers in positron emission tomography facilities in Japan. 1st Report. Occupational role assignment, radiation exposure to medical workers

    International Nuclear Information System (INIS)

    We have investigated the role assignment and radiation exposure of medical workers (including receptionists) in PET (positron emission tomography) facilities in Japan using a questionnaire. The survey period was from October 1st to November 15th 2006. The response rate for the questionnaire was 60.0% (72/120 facilities). Nurses were engaged in the intravenous administration of radioactive fluorodeoxyglucose (FDG) in 66.9% of PET facilities. In 89.5% of PET facilities, radiological technologists mainly performed the PET examination. The average radiation exposure to medical workers was 0.13 mSv/month (n: 709, standard deviation (S.D.): 0.16) as the effective dose. It was shown that radiation exposure was significantly different depending on the occupation and content of work (p-1], which was 4.6 times higher than the average dose of 0.13 [mSv month-1]. We have clarified the actual conditions of radiation protection in PET facilities in Japan for the first time. (author)

  4. Concepts in radiation protection

    International Nuclear Information System (INIS)

    This monograph provides basic notions and principles in dosimetry and radiation protection in compliance with two fundamental works: IAEA Safety Series No.115 - International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources - and Publication no. 60 of International Commission on Radiological Protection. After the review of quantities and units necessary in radiation protection, the book presents the new values of dose limits as well as the values of 'radiation weighting factor', 'tissue weighting factor' and 'conversion factor intake-dose' (committed effective dose per unit intake) by ingestion and inhalation for 30 most important radionuclides. The new values of dose limits, lower than the old values, are a challenge for the radiation protection, especially of the 'public' where the dose limit diminished by a factor of five relative to the earlier edition. The new value of dose limit for public, 1 mSv per year (obviously over the natural exposure of 2.4 mSv per year), imposes new action ways and levels in radiation protection, especially in some cases of exacerbated natural radioactivity. The book provides the calculus of external exposure with the Gamma constant expressed in adequate units, to make the calculation easier. In the calculus of protection shield for gamma sources one uses a method, which while approximate helps save time. The calculus of internal exposure is made using the conversion factor intake-dose. Finally, the 'dosimetric watch' of the natural and artificial radioactivity of the atmosphere, hydrosphere and biosphere is intended to comply with the International Basic Safety Standards. Each chapter ends with a set of illustrative problems which enhances the reader's understanding of underlying concepts and current methods used in the field

  5. Project Radiation Protection - East

    International Nuclear Information System (INIS)

    The Swedish Government has allocated SEK 37.1 million for cooperation projects in radiation protection with countries in Central and Eastern Europe, particularly the Baltic states (Estonia, Latvia, Lithuania) and Russia. The Swedish Radiation Protection Inst. (SSI) is in charge of this program, which is often referred to as Radiation Protection - East. The general background of this cooperation program, its objectives, practical organization of the work etc. have been presented in the following reports: SSI Report No.93-08: Projekt Straalskydd Oest - Laegesrapport (March 1993); SSI Report No.93-29: Swedish Cooperation Program for Radiation Protection in Eastern and Central Europe (November 1993). The present report summarizes the work carried out up to and including September 1994. The more than 70 cooperation projects have been divided into the following categories: Upgrading of national authorities; Emergency preparedness, early warning; Nuclear power and research reactors; Instrumentation; Decommissioning, waste, environmental control; General radiation protection; Other projects; Project management and administrative support. Project criteria and a simple program for quality assurance and follow-up are presented briefly. A status report, including an economic overview, is given for all ongoing or already finished projects, together with future plans and a suggested budget for the next fiscal year

  6. National congress of radiation protection

    International Nuclear Information System (INIS)

    The congress of radiation protection tackled different areas of radiation protection. The impact of ionizing radiations on environment coming from radioactive activities. The biological radiation effects, the dosimetry, the different ways of doing relative to radiation protection,the risks analysis and the communications with populations, information about accidents and the lessons learned from them are included in this congress. (N.C.)

  7. Radiation protection optimization of workers

    International Nuclear Information System (INIS)

    This report presents the contribution of CEPN (study center on protection evaluation in nuclear area) to the Days of the French Radiation Protection Society (SFRP) on optimization of workers radiation protection in electronuclear, industrial and medical areas

  8. Principles of radiation protection

    International Nuclear Information System (INIS)

    In the rapidly developing areas of occupational and public health devoted to the protection of people from both immediate and delayed harmful (and sometimes Irreversible) effects of radiation exposure, industrial hygienists, radiological physicists and radiologists must now assume the additional responsibility of protection against radiation. Everyone during his life will have had one or more X-rays taken for diagnostic purposes. The doses received, depending upon the site, are not harmful to the individual, from the genetic aspect, however, the increasing use of X-ray examinations does present a danger,since almost the whole population is involved. Rapid progress in the development of nuclear energy and the practical extension of its use in medicine, agriculture and industry are steadily increasing the potential danger of large groups of the population being exposed to radiation, and radiation hazards are becoming an important aspect of industrial and public hygiene. WHO is concerned with the overall evaluation of population exposure from peaceful uses of atomic energy and through medical practice, the evaluation of radiation risks,and the control of medical radiation exposure. WHO stimulates and provides technical assistance for the development of appropriate programs of radiation protection with respect to the agricultural, industrial and medical applications of radioisotopes. X-rays and radium. (author)

  9. Project Radiation Protection - East

    International Nuclear Information System (INIS)

    The Swedish Government has allocated SEK 11 million for support in radiation protection to Central and Eastern Europe, particularly the Baltic states and Russia. The Swedish Radiation Protection Institute is in charge of this program, commonly referred to as Radiation Protection - East. The support will be given in the form of consultancy services, measurement equipment, computer hardware and software, etc. Some 40 projects have been initiated and prioritized in discussions with relevant parties in the East, and bilateral protocols on cooperation have been signed. Most of the projects are in progress and some have already been finalized. An introduction to the aims, organization and practical experience of the work is given in this report, together with a presentation of all ongoing and planned projects. A financial statement and a quick glance at suggested future projects conclude the report

  10. The principles of radiation protection

    International Nuclear Information System (INIS)

    The aim of radiation protection is to avoid or to reduce the risks linked to ionizing radiation. In order to reduce these risks, the radiation protection uses three great principles: justification, optimization and limitation of radiation doses. to apply these principles, the radiation protection has regulatory and technical means adapted to three different categories of people: public, patients and workers. The nuclear safety authority elaborates the regulation, and carries out monitoring of the reliable application of radiation protection system. (N.C.)

  11. Radiation protection and instrumentation

    Science.gov (United States)

    Bailey, J. V.

    1975-01-01

    Radiation was found not to be an operational problem during the Apollo program. Doses received by the crewmen of Apollo missions 7 through 17 were small because no major solar-particle events occurred during those missions. One small event was detected by a radiation sensor outside the Apollo 12 spacecraft, but no increase in radiation dose to the crewmen inside the spacecraft was detected. Radiation protection for the Apollo program was focused on both the peculiarities of the natural space radiation environment and the increased prevalence of manmade radiation sources on the ground and onboard the spacecraft. Radiation-exposure risks to crewmen were assessed and balanced against mission gain to determine mission constraints. Operational radiation evaluation required specially designed radiation detection systems onboard the spacecraft in addition to the use of satellite data, solar observatory support, and other liaison. Control and management of radioactive sources and radiation-generating equipment was important in minimizing radiation exposure of ground-support personnel, researchers, and the Apollo flight and backup crewmen.

  12. Radiation protection in Switzerland

    International Nuclear Information System (INIS)

    Switzerland's present radiation protection regulations are based on only two paragraphs of the atomic law but have been very successful in practice. A new radiation protection law, separated from nuclear legislation and valid for all application of ionizing radiation and radioctive materials, was proposed and drafted by the Federal Commission on Radiation Protection and has now been accepted by parliament with only minor modifications. The draft of the revised regulations which also will cover all applications, should be ready for consultations next year. Both the law (which contains principles but no figures such as limits) and the regulations incorporate the latest state of ICRP recommendations and are formulated in such a way as to allow application of or quick adaptation to the new basic ICRP recommendation expected for 1991. The legislation is flexible, with a relatively low regulation density and leaves sufficient room for professional judgement on a case by case basis both for authorities and for the specialists responsible for radiation protection in practice. (orig./HSCH)

  13. Foundations for radiation protection

    International Nuclear Information System (INIS)

    Full text; In 1996, the IAEA published the latest edition of the International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources (Basic Safety Standards or BSS) comprising basic requirements to be filled in all activities involving radiation exposure. The standards define internationally harmonized requirements and provide practical guidance for public authorities and services, employers and workers, specialized radiation protection bodies, enterprises and health and safety communities. In the same year, the IAEA, through the technical cooperation programme, launched the Model Project on Upgrading Radiation Protection Infrastructure, a global initiative designed to help Member States establish the infrastructure needed to adhere to the BSS. To address the complexity of this task, the radiation protection team identified key elements, known as Thematic Safety Areas. These are: 1. Legislative Framework and Regulatory Infrastructure, Draft and put into effect radiation protection laws and regulations and establish and empower a national regulatory authority. 2. Occupational Exposure Control Protect the health and safety of each individual who faces the risk of radiation exposure in the workplace through individual and workplace monitoring programmes, including dose assessment, record keeping of doses and quality management. 3. Medical Exposure Control: Develop procedures and activities to control the exposure of patients undergoing diagnosis and/or treatment via diagnostic and interventional radiology, nuclear medicine or radiotherapy through staff training, provision of basic quality control equipment, and the establishment of quality assurance programmes. 4. Public and Environmental Exposure Control: Develop means to protect both the public and the environment including: a) programmes to register, inventory and provide safe storage of unused radioactive sources and material; b) procedures to control and safely manage radioactive waste; c) mechanisms to ensure that foodstuffs and other consumer goods being exported/imported comply with national safety standards; and d) tools to monitor radiation levels in the environment (i.e., in air, soil and water). 5. Emergency Preparedness and Response: Mitigate the impact of radiological and/or nuclear emergencies by developing capabilities for preparedness and response through a national emergency plan. This includes training qualified personnel, ensuring technical capabilities are in place and allocating sufficient resources to facilitate an efficient response. (IAEA)

  14. Radiation protection for nurses

    International Nuclear Information System (INIS)

    Various aspects of radiation protection relevant to nurses are presented. The different radioisotopes used in internal radiotherapy and scintiscanning techniques and any necessary precautions which should be observed when nursing these patients are described. General information is also given on nuclear and atomic terminology, the physical half-life of radioisotopes, radiation dose as a function of distance, shielding, film badges and the maximum permissible dose. (U.K.)

  15. Radiation protection - thirty years after

    International Nuclear Information System (INIS)

    In this paper is discussed some questions in the field of Radiation Protection as like: historical prologue of radiations discovery and it's systematics; radiation and radiation protection; ALARA principle and 'de minimis' approach; radiation risks and dose limits and radiation and chemicals a risk comparison (author)

  16. Fundamentals of health physics for the radiation-protection officer

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, B.L.; Traub, R.J.; Gilchrist, R.L.; Mann, J.C.; Munson, L.H.; Carbaugh, E.H.; Baer, J.L.

    1983-03-01

    The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs. (ACR)

  17. Fundamentals of health physics for the radiation-protection officer

    International Nuclear Information System (INIS)

    The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs

  18. Radiation protection in Qatar

    International Nuclear Information System (INIS)

    Full text: The State of Qatar has become a member State of IAEA since 1974. Later the Department of Industrial Development (DID) beam the focal point and the competent authority regarding all aspects of the peaceful application of Nuclear Technology. In July, 2000 the Supreme Council was established and charged with all matters related to environmental protection. The Supreme Council joined the IAEA Projects on upgrading protection infrastructure in West Asia region. A preliminary research was initiated to discover where radiation sources are being used, and the legal framework, if any, to regulate their use. The research indicated that radiation sources were being used in the industrial practices (well logging, industrial radiography and nuclear gauges) and in medical practices (mainly diagnostic radiology). The research also indicated that there was virtually no legal framework to regulate them. In less than five years, the State of Qatar was able to issue the radiation protection law, three sets of regulations, namely: Radiation Protection Regulations, Radioactive Waste Management Regulations and the Safe Transport of Radioactive Materials Regulations. In addition, several specific regulation work, dose limits and radiation protection officers were issued. A radiation Protection Department, comprising three sections was established. We are providing individual exposure monitoring for most of the radiation workers in the public sector and some in the private sector. We have set up a proper licensing and inspections procedures, where our inspectors are enforcing the law. More recently, we established an early warning network for nuclear of radiological emergencies, consisting of 6 transplantable stations, five mobile stations and two navigating stations. This year, the network was augmented with five fixed station and an advanced early warning centre, which provides early warning via multiple means (MMS, Fax, E-mail and audio alarms). Last year we signed a nuclear security agreement for cooperation with IAEA. Based on this agreement, the Agency assisted the state of Qatar to establish a very comprehensive boarder monitoring network, covering all land, sea and air ports. The information from all monitors is transferred in real time to two centres; one at the Ministry of Interior, while the being the early warning centre at the Supreme Council. The Supreme Council is currently considering, with the assistance of IAEA, establishing a regional training centre of excellence for radiation protection. (author)

  19. Environmental radiation protection standards

    International Nuclear Information System (INIS)

    The principles involved in the setting of radiological protection standards are reviewed, and the differences in procedures used by various countries in implementing them are outlined. Standards are taken here to mean the specific numerical limits relating to radiation doses to people or to amounts of radioactive material released into the environment. (author)

  20. Guidelines for radiation protection

    International Nuclear Information System (INIS)

    Guidelines for radiation protection originate from numerous federal, state, and local agencies. Guidelines in radiation protection can be either mandatory or advisory. Regulations by federal, state, and local governments for the use of radioactive materials define operating practices. Adherence to these regulations is required by law and there are penalties for noncompliance. Regulations generally constitute the minimum requirements for good practice and are usually supplemented by less formal recommendations from regulatory agencies and advisory groups. The regulatory guides published by the Nuclear Regulatory Commission (NRC) and by radiation control groups of agreement states are intended to assist the user of radioactive material in maintaining compliance with regulations. These guides recommend good practice but are not mandatory in that the user can propose alternatives to the regulatory agencies to meet the regulations. Many groups serve in an advisory capacity in formulating reports and recommendations for the safe use of radioactive material. The most prominent and influential among these are the National Council in Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). Often the recommendations of these advisory groups evolve into either regulatory guidelines or regulations for the use of radioactive materials. At the present time, the backbone of the Nuclear Regulatory Commission's regulations relating to the medical use of radionuclides, Standards for Protection Against Radiation (10CFR20) and Human Use of Byproduct Material (10CFR35), are undergoing extensive review with major revisions anticipated within the very near future. These proposed changes could have a significant impact on the practice of nuclear medicine

  1. Radiation Protection: Introduction

    International Nuclear Information System (INIS)

    As a federal research Centre, SCK-CEN has the statutory assignment to give priority to research related to safety, radioactive waste management, protection of man and environment, management of fissile and other strategic materials and social implications as part of the pursuit of sustainable development and to develop and gather the necessary knowledge and spread this knowledge through formation and communication. At the Division of Radiation Protection at SCK-CEN we are therefore active to maintain and enhance knowledge and expertise in each aspect of radiation protection: we study the risk of exposure - the way that radioactive materials spread in the environment and the potential for human contact - and the risk from exposure - how radiation affects human health; we perform health physics measurements; we are involved in emergency planning and preparedness and support to risk governance and decision taking. These activities are supported by radiation specific analysis and measurement techniques. These activities are not performed in isolation but in context of national and international collaborations or demands

  2. Enhancing radiation protection

    International Nuclear Information System (INIS)

    When a new radiotherapy center in Gezira, Sudan, delivers its first therapeutic dose to a cancer patient, two things happen: A young man begins to regain his health and looks forward to being better able to support his family and contribute to his community; and a developing nation realizes an important step toward deriving the social and economic benefits of nuclear science. The strategic application of nuclear technology in particular fields- human health, industry, food and agriculture, energy, water resources and environmental protection - has enormous potential to help shape the future of developing countries. But past radiological incidents, several of which involved high levels of exposure or death (Bolivia, Brazil, Cost Rica, Georgia, Ghana, Morocco, Panama and Thailand), underscore the inherent and very serious risks. For this reason, the IAEA's Departments of Technical Cooperation and Nuclear Safety and Security partner closely, particularly in the area of radiation protection. They strive to consider every minute detail in the equation that brings together radiation sources, modern technologies, people and the environment. Launched in 1996, the Model Project on Upgrading Radiation Protection Infrastructure (the Model Project) aimed to help Member States: achieve capacities that underpin the safe and secure application of nuclear technologies; establish a legislative framework and regulatory infrastructure; develop exposure control mechanisms to protect workers, medical patients, the public and the environment; and achieve preparedness and planned response to radiological emergencies. In fact, the hospital scenario above typically marks several years of intense collaboration amongst scientists, legislators, regulators, politicians and administrators from both Member States and the IAEA, orchestrated and aided by regional managers and technical experts from the IAEA. As radiation protection team members can attest, every application of nuclear technology carries special considerations and unique challenges. And each country is equally distinct in terms of needs, technical capacity, availability of financial resources and adequately trained personnel (at both regulatory and user organizations), and overall infrastructure

  3. Protection from Space Radiation

    Science.gov (United States)

    Tripathi, R. K.; Wilson, J. W.; Shinn, J. L.; Singleterry, R. C.; Clowdsley, M. S.; Cucinotta, F. A.; Badhwar, G. D.; Kim, M. Y.; Badavi, F. F.; Heinbockel, J. H.

    2000-01-01

    The exposures anticipated for our astronauts in the anticipated Human Exploration and Development of Space (HEDS) will be significantly higher (both annual and carrier) than any other occupational group. In addition, the exposures in deep space result largely from the Galactic Cosmic Rays (GCR) for which there is as yet little experience. Some evidence exists indicating that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate [1,2]. The purpose of this presentation is to evaluate our current understanding of radiation protection with laboratory and flight experimental data and to discuss recent improvements in interaction models and transport methods.

  4. Radiation protection dosimetry

    International Nuclear Information System (INIS)

    This book is divided into two parts. The first contains up-to-date definitions of the most significant radiation quantities including their interpretations which are of exceptional importance in any branch of radiation protection dosimetry. In the second part, the exposures of both individuals and the population at large to various types of natural and man-made sources are compared and discussed. The concept of quantities and units as well as analysis of exposures from various sources such environment is based on the latest, highly regarded authentic sources in such as ICRU, ICRP, IAEA and particularly UNSCEAR reports and recommendations

  5. Radiological protection survey results about radiodiagnosis protection practices in Cuba

    International Nuclear Information System (INIS)

    In order to identify radiation protection current situation in national X-ray diagnostic practice , the State (cuban) Supervision System for Radiation and Nuclear Safety carried out in 1992 a survey which was planned for projection of future regulatory activities in this field. Survey covers the most important aspects related to radiation protection of occupationally exposed workers, patients and general population. Surveyed sample included a total of 52 X-ray units, sited in 7 dental clinics, 2 polyclinics and 13 hospitals, from 7 provinces of the country. Results showed that the organization of radiation protection in terms of personnel specially designated to carry out surveillance and control activities and level of documentation is deficient. Survey evidenced the general lack of safety and quality culture among technologists and radiologists which is mainly reflected in non regular application of basic patient protection measures (shielding, collimation, use of proper filtration among others) and non regular execution of basic quality inspection of employed radiographic systems. (authors). 4 refs., 1 fig

  6. On ethical issues in radiation protection. Radiation protection recommendations and standards seen from an ethical perspective

    International Nuclear Information System (INIS)

    International radiation protection recommendations and standards of the ICRP, the IAEA, the European Union and the ILO are surveyed from an ethical perspective. The authors come to the conclusion that the insights of ethical theories provide a number of ways in which current recommendations and standards for radiation protection could improve. (orig.)

  7. Radiation protection and safe working

    International Nuclear Information System (INIS)

    If hazardous effects caused by ionising radiation are likely to occur in an industrial plant, the person responsible for radiation protection has to assign radiation protection specialists. Radiation protection specialist and safety expert work together in the platn. An efficient co-operation of these two is necessary for obtaining a real total view of the conventional dangers and the dangers due to radiation. (orig.)

  8. 76 FR 4258 - Occupational Radiation Protection; Revision

    Science.gov (United States)

    2011-01-25

    ...1901-AA-95 Occupational Radiation Protection; Revision AGENCY: Department...appendix to its Occupational Radiation Protection requirements. The derived...part 835), Occupational Radiation Protection, are designed to...

  9. The national radiation protection infrastructure

    International Nuclear Information System (INIS)

    The state system of radiation protection is still being created after Lithuania regained its independancy and in connection with recommendations laid in the ICRP-60 publication and requirements of legislation of European Community. A new regulation institutions was established and a number of laws and regulations related to radiation protection was prepared. The Radiation Protection Centre of Ministry of Health is the regulatory authority responsible for radiation protection of public and of workers using sources of ionizing radiation in Lithuania. A new Radiation Protection Law, Nuclear Energy Law, Radioactive Waste Management Law and different regulations was approved. Preparation of legislation, creation of state system of radiation protection and its upgrading allow to presume that the necessary level of radiation protection is to be achieved. (au)

  10. Some perspectives on radiation protection

    International Nuclear Information System (INIS)

    A brief review of the history and organizational structure of the NCRP is given. Summaries are given of a number of NCRP radiation protection guides dealing with hazards from 85Kr, radiation exposures from consumer products, basic radiation protection criteria, and doses from natural background radiation

  11. Radiation protection, optimization and justification

    International Nuclear Information System (INIS)

    Nine articles in the field of radiation protection relative to the medical examinations concern the new legislation in radiation protection, the optimization of this one in order to reduce the radiation doses delivered to the patients, the side effects induced by irradiation and to give an evaluation of the medical exposure of french population to ionizing radiations. (N.C.)

  12. Radiation protection training in Switzerland

    International Nuclear Information System (INIS)

    An increasing number of radiation protection experts and of professionally exposed workers is temporarily or permanently working in a country other than the one where they received their radiation protection education or training. They all face the problem and the difficulties of recognition of radiation protection training programs by other countries. For this reason the German-Swiss Radiation Protection Association (Fachverband fuer Strahlenschutz; FS) made a proposal to IRPA for an action on the mutual recognition of radiation protection education in Europe. In a first step contacts were made with two other European Associations of France and UK in order to establish a joint working group. (orig.)

  13. Occupational radiation protection software

    International Nuclear Information System (INIS)

    This paper presents a reflection on the basic essentials of a Radiation Work Permit (RWP). Based on the latest WANO Recommendations, this paper considers the RWP as a complete process rather than a simple administrative procedure. This process is implemented via software which is also presented in this paper. The software has been designed to achieve the following objectives: - To configure the radiological map of the plant. To plan radiological surveillance, to input data, to update radiological signposting and mandatory protective clothing in each area of the station. All this information can be checked from any personnel computer connected to a network. - To collect radiological data by means of a palmtop (PDA) and to upload it to a personnel computer, thereby speeding up the job and reducing human errors. - To implement the RWP by allowing on-line consultation of the permitted individual doses of the workers and the planned collective dose for each job. The software also supplies the radiological information to the workers. - To collect and arrange pictures, maps and sketches of equipment placed in rooms or in areas of the plant. - To allow the software to be used in real time from different workstations. - High reliability and speed of working. - Flexible data enquiry. The software provides a number of standard data enquiries such as numbers of workers on each job and their individual dose received...etc. It also allows data to be exported to other well-known software applications such as Excel and Access for further data analysis. The software has been designed by radiation protection professionals and developed by computer programmers who were integrated into the radiological work environment. The software would fulfill Occupational Radiation Protection Department requirements. (author)

  14. Radiation protection code of practice

    International Nuclear Information System (INIS)

    A collection of legal and regulatory material governing Jordan's radiation protection activities. The full text of Jordan's Nuclear Energy and Radiation Protection Law (No. 14 for 1987) is given, along with relevant regulations which are enforced in Jordan. The regulations cover the areas of shielding radiology rooms, defining radiation work, decontamination in the event of laboratory scale radiological accidents, radioactive waste disposal, personnel dosimetry, assigning radiation protection officers, licensing, and inspection. (A.M.H.). 12 tabs., 6 figs

  15. Regulations concerning radiation protection and survey; Donnees de la surveillance et regles qui en resultent en matiere de protection contre les rayonnements

    Energy Technology Data Exchange (ETDEWEB)

    Duhamel; Lavie; Fitoussi [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The many and always increasing applications of Atomic Energy for peaceful uses set many safety and security problems relatively to the workers, populations, and locating of the sites in general. A comparative study of the radiation hazards to which the people working in the 'Commissariat a l'energie atomique' installations were exposed during 1957 and the results obtained concerning individual and collective safety and security were extremely satisfactory owing to a continuous control and supervision. 2. However a few contamination and irradiation incidents - exposed subsequently as well as the way they were dealt with - show the necessity of a circumstantial regulation inside of an atomic center to establish the responsibility of the service in charge of the control of the radiation and the responsibility of the services using radioactive products with regard to contamination by radioactive materials. 3. Abstract of the different practical safety and security regulations concerning holding, manipulation, transport and stocking of radioactive materials. Pursuant to the recommendations of the International Commission on Radiologic Protection, the radioelements are classified according to the danger that can occur from them in comparison with the Pu with regard to: - radioactive noxiousness; specific activity per unit of mass; contamination hazards. 4. The service in charge of radiation protection plays the important part of a technical adviser for the construction of specialized laboratories and sees to the keeping of protection regulations. 5. Data essential to radiation protection are given to the people using radioactive materials; particularly: - a table of the radioisotopes and the hazards occurring from them; - radiation hazards regarding {gamma} ray emitted by irradiated Pu; - radiation hazards regarding {gamma} ray emitted by irradiated Th. 6. As the hazards occasioned by irradiated uranium have already been studied, the case of a low and total irradiation will only be considered with regard to recuperation of uranium after simple machining. (author) [French] 1. L'utilisation croissante de l'energie nucleaire sous toutes ses formes a des fins pacifiques pose des problemes de securite vis-a-vis des travailleurs, des populations et des sites en general. Une etude comparee des risques d'irradiation auxquels le personnel du Commissariat a l'Energie atomique (CEA) a ete expose au cours de l'annee 1957 et des resultats du controle des radiations par les moyens de detection collectifs ou individuels montre que les installations du CEA ont une influence negligeable sur la sante, en raison de la surveillance exercee. 2. Cependant, quelques incidents de contamination et d'irradiation - sommairement indiques ainsi que la maniere dont ils ont ete regles - rendent necessaire l'elaboration d'une reglementation precise definissant les responsabilites respectives, au sein d'un etablissement nucleaire, des services utilisateurs et du Service charge de la Protection contre les Radiations, en matiere de prevention de la contamination. 3. Un ensemble coherent de regles pratiques de prevention et de protection relatives a la detention, la manipulation, le transport et le stockage de sources radioactives scellees ou non scellees, est presente. A cette fin, a partir des recommandations de la Commission Internationale de Protection Radiologique et compte tenu: - de leur nocivite radioactive; de leur activite specifique par unite de masse et du risque de contamination; les radioelements ont ete classes suivant le danger qu'ils presentent par rapport au plutonium. 4. Le Service charge de la Protection contre les Radiations intervient comme conseiller des la conception des laboratoires specialises et veille ensuite a ce que les prescriptions reglementaires de securite soient observees. 5. Des donnees elaborees, indispensables a la protection contre les rayonnements, sont mises a la disposition des utilisateurs en particulier: - table des radio-isotopes et des dangers associes,

  16. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure

    Science.gov (United States)

    Christophersen, Olav Albert

    2012-01-01

    There are several animal experiments showing that high doses of ionizing radiation lead to strongly enhanced leakage of taurine from damaged cells into the extracellular fluid, followed by enhanced urinary excretion. This radiation-induced taurine depletion can itself have various harmful effects (as will also be the case when taurine depletion is due to other causes, such as alcohol abuse or cancer therapy with cytotoxic drugs), but taurine supplementation has been shown to have radioprotective effects apparently going beyond what might be expected just as a consequence of correcting the harmful consequences of taurine deficiency per se. The mechanisms accounting for the radioprotective effects of taurine are, however, very incompletely understood. In this article an attempt is made to survey various mechanisms that potentially might be involved as parts of the explanation for the overall beneficial effect of high levels of taurine that has been found in experiments with animals or isolated cells exposed to high doses of ionizing radiation. It is proposed that taurine may have radioprotective effects by a combination of several mechanisms: (1) during the exposure to ionizing radiation by functioning as an antioxidant, but perhaps more because it counteracts the prooxidant catalytic effect of iron rather than functioning as an important scavenger of harmful molecules itself, (2) after the ionizing radiation exposure by helping to reduce the intensity of the post-traumatic inflammatory response, and thus reducing the extent of tissue damage that develops because of severe inflammation rather than as a direct effect of the ionizing radiation per se, (3) by functioning as a growth factor helping to enhance the growth rate of leukocytes and leukocyte progenitor cells and perhaps also of other rapidly proliferating cell types, such as enterocyte progenitor cells, which may be important for immunological recovery and perhaps also for rapid repair of various damaged tissues, especially in the intestines, and (4) by functioning as an antifibrogenic agent. A detailed discussion is given of possible mechanisms involved both in the antioxidant effects of taurine, in its anti-inflammatory effects and in its role as a growth factor for leukocytes and nerve cells, which might be closely related to its role as an osmolyte important for cellular volume regulation because of the close connection between cell volume regulation and the regulation of protein synthesis as well as cellular protein degradation. While taurine supplementation alone would be expected to exert a therapeutic effect far better than negligible in patients that have been exposed to high doses of ionizing radiation, it may on theoretical grounds be expected that much better results may be obtained by using taurine as part of a multifactorial treatment strategy, where it may interact synergistically with several other nutrients, hormones or other drugs for optimizing antioxidant protection and minimizing harmful posttraumatic inflammatory reactions, while using other nutrients to optimize DNA and tissue repair processes, and using a combination of good diet, immunostimulatory hormones and perhaps other nontoxic immunostimulants (such as beta-glucans) for optimizing the recovery of antiviral and antibacterial immune functions. Similar multifactorial treatment strategies may presumably be helpful in several other disease situations (including severe infectious diseases and severe asthma) as well as for treatment of acute intoxications or acute injuries (both mechanical ones and severe burns) where severely enhanced oxidative and/or nitrative stress and/or too much secretion of vasodilatory neuropeptides from C-fibres are important parts of the pathogenetic mechanisms that may lead to the death of the patient. Some case histories (with discussion of some of those mechanisms that may have been responsible for the observed therapeutic outcome) are given for illustration of the likely validity of these concepts and their relevance both for treatment of severe infections and n

  17. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure.

    Directory of Open Access Journals (Sweden)

    Olav Christophersen

    2012-02-01

    Full Text Available There are several animal experiments showing that high doses of ionizing radiation lead to strongly enhanced leakage of taurine from damaged cells into the extracellular fluid, followed by enhanced urinary excretion. This radiation-induced taurine depletion can itself have various harmful effects (as will also be the case when taurine depletion is due to other causes, such as alcohol abuse or cancer therapy with cytotoxic drugs, but taurine supplementation has been shown to have radioprotective effects apparently going beyond what might be expected just as a consequence of correcting the harmful consequences of taurine deficiency per se. The mechanisms accounting for the radioprotective effects of taurine are, however, very incompletely understood. In this article an attempt is made to survey various mechanisms that potentially might be involved as parts of the explanation for the overall beneficial effect of high levels of taurine that has been found in experiments with animals or isolated cells exposed to high doses of ionizing radiation. It is proposed that taurine may have radioprotective effects by a combination of several mechanisms: 1 during the exposure to ionizing radiation by functioning as an antioxidant, but perhaps more because it counteracts the prooxidant catalytic effect of iron rather than functioning as an important scavenger of harmful molecules itself, 2 after the ionizing radiation exposure by helping to reduce the intensity of the post-traumatic inflammatory response, and thus reducing the extent of tissue damage that develops because of severe inflammation rather than as a direct effect of the ionizing radiation per se, 3 by functioning as a growth factor helping to enhance the growth rate of leukocytes and leukocyte progenitor cells and perhaps also of other rapidly proliferating cell types, such as enterocyte progenitor cells, which may be important for immunological recovery and perhaps also for rapid repair of various damaged tissues, especially in the intestines, and 4 by functioning as an antifibrogenic agent. A detailed discussion is given of possible mechanisms involved both in the antioxidant effects of taurine, in its anti-inflammatory effects and in its role as a growth factor for leukocytes and nerve cells, which might be closely related to its role as an osmolyte important for cellular volume regulation because of the close connection between cell volume regulation and the regulation of protein synthesis as well as cellular protein degradation. While taurine supplementation alone would be expected to exert a therapeutic effect far better than negligible in patients that have been exposed to high doses of ionizing radiation, it may on theoretical grounds be expected that much better results may be obtained by using taurine as part of a multifactorial treatment strategy, where it may interact synergistically with several other nutrients, hormones or other drugs for optimizing antioxidant protection and minimizing harmful posttraumatic inflammatory reactions, while using other nutrients to optimize DNA and tissue repair processes, and using a combination of good diet, immunostimulatory hormones and perhaps other nontoxic immunostimulants (such as beta-glucans for optimizing the recovery of antiviral and antibacterial immune functions. Similar multifactorial treatment strategies may presumably be helpful in several other disease situations (including severe infectious diseases and severe asthma as well as for treatment of acute intoxications or acute injuries (both mechanical ones and severe burns where severely enhanced oxidative and/or nitrative stress and/or too much secretion of vasodilatory neuropeptides from C-fibres are important parts of the pathogenetic mechanisms that may lead to the death of the patient. Some case histories (with discussion of some of those mechanisms that may have been responsible for the observed therapeutic outcome are given for illustration of the likely validity of these concepts and their relevance both for treatment of severe infection

  18. New Approaches to Radiation Protection

    OpenAIRE

    ROSEN, ELIOT M.; Day, Regina; Singh, Vijay K

    2015-01-01

    Radioprotectors are compounds that protect against radiation injury when given prior to radiation exposure. Mitigators can protect against radiation injury when given after exposure but before symptoms appear. Radioprotectors and mitigators can potentially improve the outcomes of radiotherapy for cancer treatment by allowing higher doses of radiation and/or reduced damage to normal tissues. Such compounds can also potentially counteract the effects of accidental exposure to radiation or delib...

  19. Survey and evaluation of the external research and development programme 1977-1983 of the Swedish Radiation Protection Institute

    International Nuclear Information System (INIS)

    A review of the external research programme of SSI is undertaken. The main research programme is in this report divided into five subprogrammes according to the main programmes of the Institute. This report covers research projects reported 1977-1983. An evaluation of the impact of the R and D programme is included in the report. The external R and D research programme of SSI has had an important impact on the radiation protection work in Sweden. The methods for evaluation of research programmes are also discussed in the report

  20. Radiation protection and quality management

    International Nuclear Information System (INIS)

    The book contains the following contributions: Radiation protection: an aspect of the governmental assignment to guarantee and regulate the public safety and law and order; the regulation amendment concerning X radiation and the new radiation protection ordinance; biological radiation effects; dosimetry; modern diagnostic radiology; the vindicatory indication; experiences of applied radiation protection in X-ray diagnostics: multislice computer tomography, X-ray examination and angiography; networking imaging; vindicatory indication in radiotherapy: for malign diseases and for benign diseases; medical appointments; quality management in health care; quality management in practice and clinics; personal management in health care - a challenging assignment under the aspects of resource control and quality. Appendices: Regulation concerning X radiation protection and remarks; regulation concerning ionising radiation protection: excerpts and remarks

  1. The International radiation protection: the national authorities of radiation protection

    International Nuclear Information System (INIS)

    In October 2005, in the issue number 167 of 'Controle' dedicated to the International actors in radiation protection (ICRU, UNSCEAR, ICRP, IAEA...), we observed an international relative consensus on the basic concepts of radiation protection although these organisations act quite often independently of each other. But we also observed major differences in the implementation of the international recommendations in radiation protection. In order to progress rigorously and objectively in the direction of a necessary harmonization of radiation protection at the international level, it is useful to give the floor to the heads of the national authorities of radiation protection in the world. The major issues are the role of national authorities in the drawing up of international standards of radiation protection, the independence of control, the interface between nuclear safety and radiation protection, the international harmonization of practices of control and especially the harmonization of the training of radiation protection inspectors. The transparency regarding the control, the credibility of controllers and the justification of some practices with exposure to ionizing radiations were also proposed as subjects requiring reflection. (N.C.)

  2. National Sessions of Radiation Protection

    International Nuclear Information System (INIS)

    The Radioprotection Argentine Society (SAR) was organized the National Sessions on Radiation Protection 2012 in order to continue the exchange in the radiation protection community in the country, on work areas that present a challenge to the profession. The new recommendations of the ICRP and the IAEA Safety Standards (2011), among others, includes several topics that are necessary to develop. The SAR wants to encourage different organizations from Argentina, to submit projects that are developing in order to strengthen radiation protection.

  3. Pregnancy and Radiation Protection

    International Nuclear Information System (INIS)

    Several modalities are currently utilized for diagnosis and therapy, by appropriate application of x-rays. In diagnostic radiology, interventional radiology, radiotherapy, interventional cardiology, nuclear medicine and other specialties radiation protection of a pregnant woman as a patient, as well as a member of the operating personnel, is of outmost importance. Based on radiation risk, the termination of pregnancy is not justified if foetal doses are below 100 mGy. For foetal doses between 100 and 500 mGy, a decision is reached on a case by case basis. In Diagnostic Radiology, when a pregnant patient takes an abdomen CT, then an estimation of the foetus' dose is necessary. However, it is extremely rare for the dose to be high enough to justify an abortion. Radiographs of the chest and extremities can be done at any period of pregnancy, provided that the equipment is functioning properly. Usually, the radiation risk is lower than the risk of not undergoing a radiological examination. Radiation exposure in uterus from diagnostic radiological examinations is unlikely to result in any deleterious effect on the child, but the possibility of a radiation-induced effect can not be entirely ruled out. The effects of exposure to radiation on the foetus depend on the time of exposure, the date of conception and the absorbed dose. Finally, a pregnant worker can continue working in an x-ray department, as long as there is reasonable assurance that the foetal dose can be kept below 1 mGy during the pregnancy. Nuclear Medicine diagnostic examinations using short-lived radionuclides can be used for pregnant patient. Irradiation of the foetus results from placental transfer and distribution of radiopharmaceuticals in the foetal tissues, as well as from external irradiation from radioactivity in the mother's organ and tissues. As a rule, a pregnant patient should not undergo therapy with radionuclide, unless it is crucial for her life. In Radiotherapy, the patient, treating oncologist, other team and family members should carefully discuss for the decision of abortion. Important factors must be considered such as the stage and aggressiveness of the tumour, the location of the tumour, the stage of pregnancy, various therapies etc.

  4. Pregnancy and Radiation Protection

    Science.gov (United States)

    Gerogiannis, J.; Stefanoyiannis, A. P.

    2010-01-01

    Several modalities are currently utilized for diagnosis and therapy, by appropriate application of x-rays. In diagnostic radiology, interventional radiology, radiotherapy, interventional cardiology, nuclear medicine and other specialties radiation protection of a pregnant woman as a patient, as well as a member of the operating personnel, is of outmost importance. Based on radiation risk, the termination of pregnancy is not justified if foetal doses are below 100 mGy. For foetal doses between 100 and 500 mGy, a decision is reached on a case by case basis. In Diagnostic Radiology, when a pregnant patient takes an abdomen CT, then an estimation of the foetus' dose is necessary. However, it is extremely rare for the dose to be high enough to justify an abortion. Radiographs of the chest and extremities can be done at any period of pregnancy, provided that the equipment is functioning properly. Usually, the radiation risk is lower than the risk of not undergoing a radiological examination. Radiation exposure in uterus from diagnostic radiological examinations is unlikely to result in any deleterious effect on the child, but the possibility of a radiation-induced effect can not be entirely ruled out. The effects of exposure to radiation on the foetus depend on the time of exposure, the date of conception and the absorbed dose. Finally, a pregnant worker can continue working in an x-ray department, as long as there is reasonable assurance that the foetal dose can be kept below 1 mGy during the pregnancy. Nuclear Medicine diagnostic examinations using short-lived radionuclides can be used for pregnant patient. Irradiation of the foetus results from placental transfer and distribution of radiopharmaceuticals in the foetal tissues, as well as from external irradiation from radioactivity in the mother's organ and tissues. As a rule, a pregnant patient should not undergo therapy with radionuclide, unless it is crucial for her life. In Radiotherapy, the patient, treating oncologist, other team and family members should carefully discuss for the decision of abortion. Important factors must be considered such as the stage and aggressiveness of the tumour, the location of the tumour, the stage of pregnancy, various therapies etc.

  5. Health protection of radiation workers

    International Nuclear Information System (INIS)

    Essential information on the health protection of radiation workers which has accumulated since the advent of nuclear fission thirty years ago is presented in simple terms. Basic facts on ionizing radiation, its measurement, and dosimetry are presented. Acute and chronic somatic and genetic effects are discussed with emphasis on prevention. Radiation protection standards and regulations are outlined, and methods for maintaining these standards are described. Diagnosis and treatment of radiation injury from external radiation and/or internally deposited radionuclides is considered generally as well as specifically for each radioisotope. The medical supervision of radiation workers, radiation accidents, atomic power plants, and medicolegal problems is also covered. (853 references) (U.S.)

  6. Radiation risks and radiation protection at CRNL

    International Nuclear Information System (INIS)

    Radiation exposure is an occupational hazard at CRNL. The predicted health effects of low levels of radiation are described and compared with other hazards of living. Data related to the health of radiation workers are also considered. Special attention is given to the expected effects of radiation on the unborn child. Measures taken to protect CRNL employees against undue occupational exposure to radiation are noted

  7. Radiation protection and environment

    International Nuclear Information System (INIS)

    The ruling on Basic Nuclear Installations on the one hand applies to the larger production, storage or application units, of which France possesses a few tens. These regulations, set up by the Industry Ministry, are interministerial and lay down strict instructions for the control of radiation effects on the environment at the project, building then running stages of the facilities concerned. The legislation on Classified Installations on the other hand concerns large facilities other than basic nuclear installations. For certain of these facilities it calls for an administrative working permit in which are set down regulations intended to protect personnel and environment; for other smaller facilities it provides for the respect of pre-established rules. Special mention is made of the technical aspects (development of techniques and know-how) and economic aspects (realism, cost-efficiency arbitration) expressed by these regulations

  8. Radiation protection, measurements and methods

    International Nuclear Information System (INIS)

    The introductory lectures discuss subjects such as radiation protection principles and appropriate measuring techniques; methods, quantities and units in radiation protection measurement; technical equipment; national and international radiation protection standards. The papers presented at the various sessions deal with: Dosimetry of external radiation (27 papers); Working environment monitoring and emission monitoring (21 contributions); Environmental monitoring (19 papers); Incorporation monitoring (9 papers); Detection limits (4 papers); Non-ionizing radiation, measurement of body dose and biological dosimetry (10 papers). All 94 contributions (lectures, compacts and posters) are retrievable as separate records. (HP)

  9. Personal Radiation Protection System

    Science.gov (United States)

    McDonald, Mark; Vinci, Victoria

    2004-01-01

    A report describes the personal radiation protection system (PRPS), which has been invented for use on the International Space Station and other spacecraft. The PRPS comprises walls that can be erected inside spacecraft, where and when needed, to reduce the amount of radiation to which personnel are exposed. The basic structural modules of the PRPS are pairs of 1-in. (2.54-cm)-thick plates of high-density polyethylene equipped with fasteners. The plates of each module are assembled with a lap joint. The modules are denoted bricks because they are designed to be stacked with overlaps, in a manner reminiscent of bricks, to build 2-in. (5.08-cm)-thick walls of various lengths and widths. The bricks are of two varieties: one for flat wall areas and one for corners. The corner bricks are specialized adaptations of the flat-area bricks that make it possible to join walls perpendicular to each other. Bricks are attached to spacecraft structures and to each other by use of straps that can be tightened to increase the strengths and stiffnesses of joints.

  10. Plowshare radiation protection guidance

    International Nuclear Information System (INIS)

    The recommendations of the ICRP and the NCRP were developed primarily for occupational radiation exposures. They were later modified and applied to non-occupational exposures of populations. These, with appropriate interpretations, can be used to provide Plowshare radiation protection guidance. Exposures from Plowshare operations will tend to be acute, arising from radionuclides of relatively short half-life, but will have some chronic aspects due to small amounts of long-lived radionuclides generated. In addition, the neutron activation process of Plowshare technology will produce radionuclides not commonly encountered in routine nuclear energy programs. How these radionuclides contribute to personnel exposure is known for only a few situations that may not be representative of Plowshare exposure. Further complications arise from differences in radionuclide deposition and physiological sensitivity among individuals of different ages and states of health in the exposed population. All parameters necessary to evaluate such exposures are not available, even for good quantitative approximations, resulting in the need for interpretive experience. (author)

  11. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety Guides together reflect the current internationally accepted principles and recommended practices in occupational radiation protection, with account taken of the major changes that have occurred over the past decade. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The present Safety Guide provides general guidance on the establishment of an effective radiation protection programme for occupational exposure, in accordance with the requirements of the Basic Safety Standards and appropriate for the sources of radiation likely to be encountered in the workplaces in question

  12. Ethical issues in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Lars (ed.)

    2000-03-15

    Ethical theories are relevant to the current recommendations and standards for radiation protection. Radiation protection is not only a matter for science. It is also a problem of philosophy. In order for protection regulations to be respected, it must correspond to widely accepted ethical values among those who are affected by the regulations. The workshop covered the following issues: Problems in Present Protection Policy, ICRP Protection Policy - A Historical Perspective, Radiation Risk - What we know and what we believe, Present ICRP Recommendations, Ethical Values in the Context of ICRP Recommendations, Collective Responsibility for Invisible Harm, Environmental Protection - Ethical Issues, The Global Change of Values, and Procedural justice and Radiation Protection. Six workshop contributions and a workshop summary are presented in this report.

  13. Ethical issues in radiation protection

    International Nuclear Information System (INIS)

    Ethical theories are relevant to the current recommendations and standards for radiation protection. Radiation protection is not only a matter for science. It is also a problem of philosophy. In order for protection regulations to be respected, it must correspond to widely accepted ethical values among those who are affected by the regulations. The workshop covered the following issues: Problems in Present Protection Policy, ICRP Protection Policy - A Historical Perspective, Radiation Risk - What we know and what we believe, Present ICRP Recommendations, Ethical Values in the Context of ICRP Recommendations, Collective Responsibility for Invisible Harm, Environmental Protection - Ethical Issues, The Global Change of Values, and Procedural justice and Radiation Protection. Six workshop contributions and a workshop summary are presented in this report

  14. Bioassay programs for radiation protection

    International Nuclear Information System (INIS)

    This report discusses the rationale for the establishment of bioassay programs as a means of protection for radiation workers in the nuclear industry. The bioassay program of the Radiation Protection Bureau is described for the years 1966-1978 and plans for future changes are outlined. (auth)

  15. Mining and radiation protection law

    International Nuclear Information System (INIS)

    The following radiation protection recommendations, guidelines and standards under international law must be considered: - ICRP recommendations (in particular no. 24, 26, 32); - IAEA Safety series; - Euratom standards 1980/84. Investigations of the legal position in the Federal Republic of Germany must comprise: - AtG of 1959/1976; - Radiation Protection Ordinance in its wording of 1976 which is in force; - Federal Mining Act of 1980. Since both mining law and radiation protection law are involved, the homogeneity and possible concurrence of operative legal regulations must be investigated. The following problems must be discussed: - scope of application of the Radiation Protection Ordinance and of the Federal Mining Act with respect to the search for, production of, processing and transport, import and export as well as the possession of radioactive minerals; also waste disposal; - terminology, - application of protection regulations of the Radiation Protection Ordinance for mining activities (radiation protection policies, persons responsible for radiation protection, environmental protection, physical control, medical control etc.); - government supervision. (orig./HP)

  16. The Radiation Protection Authority's air filter stations

    International Nuclear Information System (INIS)

    The Norwegian Radiation Protection Authority currently has five air filter stations located at various sites throughout Norway. The stations are important for surveying airborne radioactivity, and for the assessment and composition of any emissions in the case of mishaps and accidents. There are similar stations throughout Europe, and the inter-state collaboration makes it possible to track any emissions of radioactive substances. (Author)

  17. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  18. The new Radiation Protection Ordinance

    International Nuclear Information System (INIS)

    The new Radiation Protection Ordinance promulgated October 13, 1976, will combine the provisions of the older First and Second Radiation Protection Ordinances and thereby define uniform rules for the whole field of radiation protection law through concentration, harmonization and the publication of amendments. Recommendations by international agencies and the recent Basic Euratom Standards were taken into account. The new provisions concentrate on the extension of the technical scope of validity and the general principle of radiation protection, the three levels of government supervision, the establishment of a permissible incident planning dose for nuclear power plants, rules on radiological protection at work and the protection of the public and the environment, and the disposal of radioactive waste. (orig.)

  19. Occupational safety meets radiation protection

    International Nuclear Information System (INIS)

    The cooperation circle ''Synergies in operational Security'' is a joint working group of the Association of German Safety Engineers (VDSI) and the German-Swiss Professional Association for Radiation Protection (FS). The tasks of the KKSyS are arising from the written agreement of the two associations. This includes work on technical issues. In this regard, the KKSyS currently is dealing with the description of the interface Occupational Safety / Radiation Protection. ''Ignorance is no defense'' - the KKSyS creates a brochure with the working title ''Occupational Safety meets radiation protection - practical guides for assessing the hazards of ionizing radiation.'' The target groups are entrepreneurs and by them instructed persons to carry out the hazard assessment. Our aim is to create practical guides, simple to understand. The practical guides should assist those, who have to decide, whether an existing hazard potential through ionizing radiation requires special radiation protection measures or whether the usual measures of occupational safety are sufficient. (orig.)

  20. Radiation protection guidelines for radiation emergencies

    International Nuclear Information System (INIS)

    The system of dose limitation and present guidance for emergency workers and guidance for intervention on behalf of the public are discussed. There are three elements for the system of dose limitation: justification, optimization and dose limits. The first element is basically a political process in this country. Justification is based on a risk-benefit analysis, and justification of the use of radioactive materials or radiation is generally not within the authority of radiation protection managers. Radiation protection managers typically assess detriments or harm caused by radiation exposure and have very little expertise in assessing the benefits of a particular practice involving nuclear material

  1. Ethics in radiation protection

    International Nuclear Information System (INIS)

    Ethics is a branch of philosophy. Its object is the study of both moral and immoral behaviour in order to make well founded judgements and to arrive at adequate recommendations. The Collins English Dictionary provides the following definitions of the word ethic: Ethic: a moral principle or set of moral values held by an individual or group; Ethics(singular): the philosophical study of the moral value of human conduct and of the rules and principles that ought to govern it; Ethics(pleural): a social, religious or civil code of behaviour considered correct, especially that of a particular group, profession or individual; Ethics(pleural): the moral fitness of a decision, course of action, etc. Ethics has a two-fold objective: Firstly it evaluates human practices by calling upon moral standards; it may give prescriptive advice on how to act morally in a specific kind of situation. This implies analysis and evaluation. Sometimes this is known as Normative ethics. The second is to provide therapeutic advice, suggesting solutions and policies. It must be based on well-informed opinions and requires a clear understanding of the vital issues. In the medical world, we are governed by the Hippocratic Oath. Essentially this requires medical practitioners (doctors) to do good, not harm. There is great interest and even furore regarding ethics in radiation protection

  2. Obligatory Radiation Protection Course

    CERN Multimedia

    SC Unit

    2008-01-01

    Since February 2008, participation in the radiation protection course has been a prerequisite for obtaining a CERN personal dosimeter for all Staff Members and Users. All Staff and Users holding a personal dosimeter were informed by the Bulletin and by a personal e-mail sent in February 2008 that they were required to participate in the course before the annual exchange of their dosimeter. Many people had not done so by that time and the Dosimetry Service exceptionally classified them for 2 months as short-term visitors (VCT), a category of monitored personnel to whom the training requirement does not presently apply. As all personnel concerned have since had time to participate in an RP course, this "grace period" will no longer be granted as of 1 October 2008 and the RP course must be completed before the personal dosimeter is exchanged. For newcomers to CERN, and for those returning to CERN after an absence of more than 1 year, one registration as a VCT for two months ...

  3. Radiation technology and environmental protection

    International Nuclear Information System (INIS)

    The problems of increasing radiation technology introduction in industry taking into account the aggravation of such problems as environmental protection, person health and food provisions, are studied. Radiation purification of industrial waste gases and deactivation of toxic wastes are analyzed. The considered examples of radiation technology application for environmental protection are tested in practice, they have high degree of engineering availability for integration in industry, and they possess of some important advantages, as compared with traditional methods

  4. Radiation protection and radiation fear

    International Nuclear Information System (INIS)

    Some data are cited from Japanese statistics analyzing the genetic injuries stemming from the nuclear explosion in Hiroshima. It is shown that neither the number of the unsuccesful pregnancies nor the mortality of the born offsprings increased in those cases there the mother or the father had been exposed to 1-100 rad radiation. There was no significant difference in the chromosomal aberrations amoung the children of irradiated and control parents. (L.E.)

  5. Scientific aspects of radiation protection

    International Nuclear Information System (INIS)

    A brief review is given of the basic radiation physics background knowledge required to aid the understanding of the scientific aspects of radiation protection. The different types of electromagnetic and particulate radiation are described together with general information on ray energy, radioactivity units and radionuclide half-life. (U.K.)

  6. European Radiation Protection Course - Basics

    International Nuclear Information System (INIS)

    Radiation protection is a major challenge in the industrial applications of ionising radiation, both nuclear and non-nuclear, as well as in other areas such as the medical and research domains. The overall objective of this textbook is to participate to the development of European high-quality scheme and good practices for education and training in radiation protection (RP), coming from the new Council Directive 2013/59/Euratom laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation. These ERPTS (European Radiation Protection Training Scheme) reflects the needs of the Radiation Protection Expert (RPE) and the Radiation Protection Officer (RPO), specifically with respect to the Directive 2013/59/Euratom in all sectors where ionising radiation are applied. To reflect the RPE training scheme, six chapters have been developed in this textbook: Radioactivity and nuclear physics; Interaction of ionising radiation with matter; Dosimetry; Biological effects of ionising radiation; Detection and measurement of ionising radiation; Uses of sources of ionising radiation. The result is a homogeneous textbook, dealing with the ERPTS learning outcomes suggested by ENETRAPII project (European Network on Education and Training in Radiological Protection II) from the 7. Framework Programme. A cyber-book is also part of the whole training material to develop the concept of 'learning more' (http://www.rpe-training.eu). The production of this first module 'basics' training material, in the combined form of a textbook plus a cyber-book as learning tools, will contribute to facilitate mutual recognition and enhanced mobility of these professionals across the European Union. (authors)

  7. Status of radiation protection at different hospitals in Nepal

    OpenAIRE

    Adhikari, Kanchan P.; Jha, L.N.; Galan, Montenegro P.

    2012-01-01

    Nepal has a long history of medical radiology since1923 but unfortunately, we still do not have any Radiation Protection Infrastructure to control the use of ionizing radiations in the various fields. The objective of this study was an assessment of the radiation protection in medical uses of ionizing radiation. Twenty-eight hospitals with diagnostic radiology facility were chosen for this study according to patient loads, equipment and working staffs. Radiation surveys were also done at five...

  8. An introduction to radiation protection

    CERN Document Server

    Martin, Alan; Beach, Karen; Cole, Peter

    2012-01-01

    The sixth edition of this established text takes the reader through the general background to the subject, the technical principles underlying the control of radiation hazards, radiation detection and measurement and the biological effects of radiation. These are followed by a consideration of radiation protection issues in the nuclear industry, the non-nuclear sector and the medical field. Further specialised topics include risk assessment, waste management and decommissioning, radiological incidents and emergencies, relevant legislation and organizational issues.

  9. Radiation protection education in Europe

    International Nuclear Information System (INIS)

    Education in Radiation Protection varies considerably in the different European Countries. As there is free movement of staff and services in between these European Countries one of the main objectives of the European Union is to compare the different implementations and to identify similarities. Therefore, in this paper the German and Swiss Radiation Protection Systems are explained and the relevant topics of the Revision of the European Basic Safety Standard are presented. Additionally a bilateral pilot project is described which compares the lowest level radiation protection courses in Germany and The Netherlands and possible future developments are outlined. (orig.)

  10. 76 FR 20489 - Occupational Radiation Protection

    Science.gov (United States)

    2011-04-13

    ...1992-AA-45 Occupational Radiation Protection AGENCY: Office of Health...appendix C to its Occupational Radiation Protection requirements. The derived...part 835), Occupational Radiation Protection, are designed to...

  11. 78 FR 59982 - Revisions to Radiation Protection

    Science.gov (United States)

    2013-09-30

    ...NRC-2012-0268] Revisions to Radiation Protection AGENCY: Nuclear Regulatory...Section 12.3 -12.4, ``Radiation Protection Design Features,'' and Section 12.5, ``Operational Radiation Protection Program.'' DATES:...

  12. Optimization of radiation protection in diagnostic radiology

    International Nuclear Information System (INIS)

    Radiation protection in diagnostic radiology has high priority in most countries. Doses to patients are relatively high, although many possibilities for dose reduction have been suggested. Less effort is needed to reduce patient doses than reducing doses to persons involved in many other uses of radiation. As in many other fields, the rapid development of techniques continuously provides new problems for radiation protection in diagnostic radiology. But there are more basic reasons for the difficulties encountered: (a) Reduction of dose is usually considered beneficial unless the cost is too high. In diagnostic radiology, however, an easily obtained dose reduction might destroy diagnostic quality and cause more harm than the dose would do. (b) Assessments of collective patient dose have heavy uncertainties, owing to differences in age, anatomy, etc. It is difficult to verify trends by such measurements. (c) Too much emphasis on patient protection might cause exaggerated anxiety resulting in refusals to undergo necessary examinations. (d) Protection measures must be compatible with the intense workload and need for quick decisions during X ray examinations. These and other difficulties imply that normal tools of the radiation protection trade are more blunt than usual. For the optimization procedures recommended by the ICRP, new modes could be useful. In Sweden, a systematic use of the width of the distribution of doses from certain examinations has been tested with some success in so-called 'investigational surveys'. So far, only dental X ray units, full size chest units and mammography screening units have been surveyed, but further work is planned. Although the surveys often give information about national collective patient dose, this is not the primary purpose. Instead, the width of the interval observed for a certain parameter indicates its priority in radiation protection. Additionally, the position of an individual value in the interval is useful in the planning of local quality assurance activities. (author). 12 refs, 2 figs, 2 tabs

  13. Protective device against radioactive radiation

    International Nuclear Information System (INIS)

    The easily transported and erected radiation protection walls for maintenance and assembly work consist of water walls with a thickness of 30 cm (lead equivalent), which are assembled from square parts. The latter consist of glued air mattresses. (HP)

  14. Radiation protection in civil defence

    International Nuclear Information System (INIS)

    The brochure contains the information given to the participants of an advanced training course in civil defence, on the subject of radiation protection. The course was held by teachers of Bundesverband fuer den Selbstschutz (BVS). (orig.)

  15. Healing Arts Radiation Protection Act

    International Nuclear Information System (INIS)

    The Healing Arts Radiation Protection Act is concerned with regulating the registration, installation, operation, inspection and safety of X-ray machines. The Act provides for the establishment of the Healing Arts Radiation Protection Commission which is responsible for reporting on all the above matters to the Ontario Minister of Health. In addition the board is responsible for the continuing development of an X-ray safety code and for the submission of an annual report of their activities to the minister

  16. Radiation protection in medical applications

    International Nuclear Information System (INIS)

    Full text: The goal of this paper is to identify the areas in which radiation protection is actually needed and the relative importance of protection measures. A correlation between the different medical applications of the ionizing radiations and the associated risks, mainly due to ignorance, has been a constant throughout the history of mankind. At the beginning, the accidents were originated in research nuclear laboratories working on the atomic bomb, while the incidents occurred in medical areas because of virtual ignorance of the harmful effects on humans. The 60's were characterized by the oil fever, which produced innumerable accidents due to the practice of industrial radiography; in the 70's the use of radiations on medical applications was intensified, to such and extent that a new type of victim appeared: the patient. Unfortunately, during 80's and 90's the number of accidents in different medical practices has increased, projecting the occurred in Zaragoza (Spain) on 1990 with a linear accelerator for radiotherapy treatments. In some developed countries, foreseeing the probability of producing biological effects as a result of different radiology practices, more strict security rules are adopted to guarantee the application of the three principles of the radioprotection: justification, optimization and limitation of individual dose. In this way, in the U.S.A., the Joint Commission on Accreditation of Health Care Organization (JCAHO), favors a vigilance politics in the different departments of Radiodiagnostic and Nuclear Medicine to secure an effective management in security, communications and quality control, in which the medical physicists play an important role. One of the requirements for example is to attach the value of entrance exposition dose in the radiological diagnostic report. So, the doses in the different organs are compared with the tabulated doses. Basically, a quality control programme is designed to minimize the risks for patients, workers and the public in general, maximizing the quality of the diagnostic information. To achieve this goal, external advise on quality control, radioprotection training, personal monitoring, environmental survey and technical supports must be added to the physician staff. In diagnostic areas, using radiography and computed tomography, the doses of the operators are 2 mSv/yr on average; in mammography and odontology they do not exceed 0.5 mSv/yr; in fluoroscopy they vary between 2 and 4 mSv/yr; in the services of radiotherapy and brachytherapy they vary between 1 and 2 mSv/yr, in spite of the high dose rates present, and finally in nuclear medicine the average doses are 1 mSv/yr. Bearing in mind, that the annual permissible weighed dose is 20 mSv/yr, the value of the dose absorbed by the professional that work in the areas, is optimal. The weak point of radiation protection philosophy in medical applications is in the work of interventional physicians who take part in a lot of angiography procedures for about half and hour with each patient. This staff, have no full time dedication like the radiologist physicians and therefore haven't enough knowledge about the radiations and besides they are outside the personal dosimetry systems. Actually they are the highest risk group among physicians who use ionizing radiations in routine work and to whom the efforts in radio sanitary policies must be directed. (author)

  17. Radiation protection, 1975. Annual EPA review of radiation protection activities

    International Nuclear Information System (INIS)

    The EPA, under its Federal Guidance authorities, is responsible for advising the President on all matters pertaining to radiation and, through this mechanism, to provide guidance to other Federal agencies on radiation protection matters. Highlights are presented of significant radiation protection activities of all Federal agencies which were completed in 1975, or in which noteworthy progress was made during that period, and those events affecting members of the public. State or local activities are also presented where the effects of those events may be more far-reaching. At the Federal level significant strides have been made in reducing unnecessary radiation exposure through the efforts of the responsible agencies. These efforts have resulted in the promulgation of certain standards, criteria and guides. Improved control technologies in many areas make it feasible to reduce emissions at a reasonable cost to levels below current standards and guides. This report provides information on the significant activities leading to the establishment of the necessary controls for protection of public health and the environment. Radiation protection activities have been undertaken in other areas such as medical, occupational and consumer product radiation. In the context of radiation protection, ancillary activities are included in this report in order to present a comprehensive overview of the events that took place in 1975 that could have an effect on public health, either directly or indirectly. Reports of routine or continuing radiation protection operations may be found in publications of the sponsoring Federal agencies, as can more detailed information about activities reported in this document. A list of some of these reports is included

  18. Proceedings of Asia congress on radiation protection

    International Nuclear Information System (INIS)

    203 articles were collected in the proceedings. The contents of the proceedings included the principle and practices of radiation protection, biological effects of radiation, radiation monitoring, protection in medical and other fields, radiation dosimetry, nuclear energy and the environment, natural radiation, radioactive waste management, and other radiation protection issues

  19. Radiation protection in pediatric radiology

    International Nuclear Information System (INIS)

    The book covers all the basic concepts concerned with minimizing the radiation dose to patients, parents, and personnel, while producing radiographic studies of diagnostic quality. Practical information about tissues at risk, radiation risks specific to children, performance of radiographic and fluoroscopic examination, gonadal protection, pregnancy, immobilization of children, mobile radiography, and equipment considerations including those pertaining to computed tomography and dental radiography are given

  20. Introduction to radiation protection dosimetry

    CERN Document Server

    Sabol, Josef

    1995-01-01

    One essential characteristic of life is the exchange of matter and energy between organisms and their environment. Radiation is a form of energy that has always been around in nature and will forever be the companion of human beings throughout life. In order to assess the impact of radiation exposures properly, it is essential to introduce appropriate quantities and units which can then be used for quantification of exposures from various sources. In principle, radiation protection is mainly aimed at controlling radiation exposure, while radiation dosimetry deals primarily with the measurement

  1. Swedish Radiation Protection Goes East

    International Nuclear Information System (INIS)

    For the past 13 years the Swedish Radiation Protection Authority (SSI) has pursued bilateral assistance co-operation in the field of radiation protection to countries of Central- and Eastern Europe. Estonia, Latvia, Lithuania and Russia have been prioritized countries for SSI, with Russia to some less extent compared with the Baltic countries. Initially the co-operation was directed to assistance the Baltic countries to remedy different acute radiation problems, which the new independent states had to face when the access to resources and experts in the field of radiation protection controlled from Moscow was lost. During the years the Baltic countries have developed new legislations and well-established national radiation protection authorities. The implementation of the EU Aquis Communautaire in the field of radiation protection into national legislation and its practical applications has been important tasks in the activities. The radiological emergency planning from the Soviet era has been renewed in all three countries, with the aim to achieve a western standard. Comprehensive support has also been given during the years of co-operation to develop the radiation protection work at the Ignalina Nuclear Power Plant (INPP) in Lithuania. The Swedish experience on management, storage and disposal of radioactive waste have been provided as complementary bilateral support in connection with international projects in Baltic countries and in Russia. The ongoing Swedish programme for co-operation with Russia comprise the federal authorities, the nuclear power plant in Sosnivy Bor and Polyarnie Zori and the specialized organisation RADON regarding two of their Solid Radioactive Waste Storage Sites. The priorities for the Swedish support in the field of radiation protection and radiological emergency planning will successively be changed to Russia with an effort also to extend the bilateral co-operation to Belarus and Ukraine. (Author)

  2. Radiation protection in thorium industry

    International Nuclear Information System (INIS)

    The evaluation of radiation doses in a monazite processing plant (thorium production cycle) aiming to getting information on the exposure levels to beta and gamma radiation, is discussed. It is observed that, excluding places where monazite is stored,or during transportation, or in silos, or waste deposits, or in places where high activity materials are stored or treated, the externa exposure stay below the maximum pemissible limit. Some recommendations are made based on the results found and according to radiation protection standards

  3. Radiation protection and health effects

    International Nuclear Information System (INIS)

    The use of ionizing radiation in nuclear medicine carries with it a responsibility to both patient and personnel to maximize the diagnostic and therapeutic benefit while minimizing the potential for any adverse health effects. Shortly after the discovery of the x-ray in 1895 the potential for acute health hazards of ionizing radiation became apparent. However, the risks of ionizing radiation were poorly understood and many early users did not believe that anyone could be hurt by something that could not be detected by any of the human senses. Many experiments on the biologic effects of ionizing radiation began in the early 1900s, and the first radiation protection standards were proposed by the British Roentgen Society in 1915. We now realize that these pioneers had a very limited knowledge of the potential hazards and radiation protection principles. Today more scientific data are available on the health effects of, detection of, and protection from ionizing radiation than any other physical agent or chemical known. In addition, use of many forms of ionizing radiation is heavily regulated at both national and state levels. This paper discusses how maternal contamination with radionuclides may cause irradiation of the fetus even if the radionuclide is not transferred across the placenta. This is mostly true for radionuclides that decay yielding relatively penetrating radiations

  4. The workers radiation protection

    International Nuclear Information System (INIS)

    This report gives the situation of I.R.S.N. activities in 2004: agreements of dosimetry organisms and studies of working place relative to ionizing radiation and the situation in 2004 of occupational exposure to ionizing radiation. In an other part are studies the evolution of the analysis of the situation of working dosimetry and some thoughts about the possibilities of surveillance strategy. (N.C.)

  5. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Addresses all aspects of radiation protection in nuclear medicine. Covers current technologies and principles. An ideal textbook for students and a ready source of information for nuclear medicine specialists and medical physics experts. One of a series of three books on the fundamentals of modern nuclear medicine (physics, safety, and imaging). This book explains clearly and in detail all aspects of radiation protection in nuclear medicine. After an introductory chapter on the general role of radiation protection, measurement quantities and units are discussed, and detectors and dosimeters, described. Radiation biology and radiation dosimetry are then addressed, with the inclusion of a chapter specifically devoted to biology and dosimetry for the lens of the eye. Discussion of radiation doses to patients and to embryos, fetuses, and children forms a central part of the book. Phantom models, biokinetic models, calculations, and software solutions are all considered, and a further chapter focuses on quality assurance and reference levels. Occupational exposure also receives detailed attention. Exposure resulting from the production, labeling, and injection of radiopharmaceuticals and from contact with patients is discussed and shielding calculations are explained. The book closes by considering exposure of the public and summarizing the ''rules of thumb'' for radiation protection in nuclear medicine. This is an ideal textbook for students and a ready source of useful information for nuclear medicine specialists and medical physics experts.

  6. Radiation protection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Soeren [Lund Univ., Skane Univ. Hospital Malmoe (Sweden). Medical Radiation Physics; Hoeschen, Christoph (eds.) [Helmholtz Zentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt GmbH, Neuherberg (Germany)

    2013-07-01

    Addresses all aspects of radiation protection in nuclear medicine. Covers current technologies and principles. An ideal textbook for students and a ready source of information for nuclear medicine specialists and medical physics experts. One of a series of three books on the fundamentals of modern nuclear medicine (physics, safety, and imaging). This book explains clearly and in detail all aspects of radiation protection in nuclear medicine. After an introductory chapter on the general role of radiation protection, measurement quantities and units are discussed, and detectors and dosimeters, described. Radiation biology and radiation dosimetry are then addressed, with the inclusion of a chapter specifically devoted to biology and dosimetry for the lens of the eye. Discussion of radiation doses to patients and to embryos, fetuses, and children forms a central part of the book. Phantom models, biokinetic models, calculations, and software solutions are all considered, and a further chapter focuses on quality assurance and reference levels. Occupational exposure also receives detailed attention. Exposure resulting from the production, labeling, and injection of radiopharmaceuticals and from contact with patients is discussed and shielding calculations are explained. The book closes by considering exposure of the public and summarizing the ''rules of thumb'' for radiation protection in nuclear medicine. This is an ideal textbook for students and a ready source of useful information for nuclear medicine specialists and medical physics experts.

  7. Current radiation protection law

    International Nuclear Information System (INIS)

    The paper reviews the dynamic development of the law on radiological protection, showing that legislation in this field develops along a spiral line starting from non-governmental level to the level of governmental international agencies, going full circle to the level of national legislation. This process which generally takes several years is subject to political, psychological, economic, and ecologic impacts in addition to technical and scientific impacts which frequently require amendments of the law, so that the dynamic development may have a negative aspect in terms of reliability of the law. The paper discusses recent amendments of the law on radiological protection and legislative initiatives taken after the Chernobyl reactor accident. (RST)

  8. Radiation Protection Research: Radiobiology

    International Nuclear Information System (INIS)

    The main objectives of research in the field of radiobiology and epidemiology performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to study cancer mortality in nuclear workers in Belgium; to document the feasibility of retrospective cohort studies in Belgium; (2) to participate in the IARC study; (3) to elucidate the molecular basis of the effects of ionising radiation in the mammalian embryo during the early phases of its development; (4) to assess the genetic risk of maternal exposure to ionizing radiation; (5) to elucidate the cellular mechanisms leading to brain damage after prenatal irradiation; (6) to advise authorities and to provide the general population with adequate information concerning the health risk arising from radiation exposure. Progress and major achievements in these topical areas in 1999 are reported

  9. Radiation Protection Research: Radiobiology

    Energy Technology Data Exchange (ETDEWEB)

    Desaintes, C

    2000-07-01

    The main objectives of research in the field of radiobiology and epidemiology performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to study cancer mortality in nuclear workers in Belgium; to document the feasibility of retrospective cohort studies in Belgium; (2) to participate in the IARC study; (3) to elucidate the molecular basis of the effects of ionising radiation in the mammalian embryo during the early phases of its development; (4) to assess the genetic risk of maternal exposure to ionizing radiation; (5) to elucidate the cellular mechanisms leading to brain damage after prenatal irradiation; (6) to advise authorities and to provide the general population with adequate information concerning the health risk arising from radiation exposure. Progress and major achievements in these topical areas in 1999 are reported.

  10. Radiation Protection. Chapter 3

    International Nuclear Information System (INIS)

    Medical exposure is the largest human-made source of radiation exposure, accounting for more than 95% of radiation exposure. Furthermore, the use of radiation in medicine continues to increase worldwide — more machines are accessible to more people, the continual development of new technologies and new techniques adds to the range of procedures available in the practice of medicine, and the role of imaging is becoming increasingly important in day to day clinical practice. The introduction of hybrid imaging technologies, such as positron emission tomography/computed tomography (PET/CT) and single photon emission computed tomography (SPECT)/CT, means that the boundaries between traditional nuclear medicine procedures and X ray technologies are becoming blurred. Worldwide, the total number of nuclear medicine examinations is estimated to be about 35 million per year

  11. Radiation protection in interventional radiology

    International Nuclear Information System (INIS)

    The radiation risks to patients and medical personnel engaged in fluoroscopy-guided interventional procedures, mainly Interventional Radiology cause a growing concern in the radiation protection community and the competent medical authorities in many countries. Fluoroscopy-guided interventional procedures (diagnostic and therapeutic) in the context of radiation protection include a variety of disciplines such as Interventional Radiology. Other medical subspecialties routinely use image guided interventional techniques; i.e. Invasive Cardiology, Gastroenterology, Endo urology. Progress in radiological equipment has incorporated more powerful x-ray sources into the standard Fluoroscopy and CT systems. Expanding use of interventional procedures carries extensive use of fluoroscopy and CT that are both associated with excessive radiation exposure to the patient and personnel. During cases of Intravenous CT Angiography (IVCTA) and direct Intra Arterial CT Angiography (IACTA), one may substitute a substantial number of diagnostic angiographies. Interventional Radiologists are leading in utilization of image-guided interventions especially in any technique that comprises ionizing radiation

  12. Biological Research for Radiation Protection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kug Chan; Jung, Il Lae; Choi, Yong Ho; Kim, Jin Sik; Moon, Myung Sook; Byun, Hee Sun; Phyo, Ki Heon; Kim, Sung Keun

    2005-04-15

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about ornithine decarboxylase and its controlling proteins, thioredoxin, peroxiredoxin, S-adenosymethionine decarboxylase, and glutamate decarboxylase 67KD effect on the cell death triggered ionizing radiation and H{sub 2}O{sub 2}(toxic agents). In this study, to elucidate the role of these proteins in the ionizing radiation (or H{sub 2}O{sub 2})-induced apoptotic cell death, we utilized sensesed (or antisensed) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation and H{sub 2}O{sub 2}(or paraquat). We also investigated whether genisteine(or thiamine) may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation (may enhance the preventing effect radiation or paraquat-induced damage) because such compounds are able to potentiate the cell-killing or cell protecting effects. Based on the above result, we suggest that the express regulation of theses genes have potentially importance for sensitizing the efficiency of radiation therapy of cancer or for protecting the radiation-induced damage of normal cells.

  13. Biological Research for Radiation Protection

    International Nuclear Information System (INIS)

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about ornithine decarboxylase and its controlling proteins, thioredoxin, peroxiredoxin, S-adenosymethionine decarboxylase, and glutamate decarboxylase 67KD effect on the cell death triggered ionizing radiation and H2O2(toxic agents). In this study, to elucidate the role of these proteins in the ionizing radiation (or H2O2)-induced apoptotic cell death, we utilized sensesed (or antisensed) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation and H2O2(or paraquat). We also investigated whether genisteine(or thiamine) may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation (may enhance the preventing effect radiation or paraquat-induced damage) because such compounds are able to potentiate the cell-killing or cell protecting effects. Based on the above result, we suggest that the express regulation of theses genes have potentially importance for sensitizing the efficiency of radiation therapy of cancer or for protecting the radiation-induced damage of normal cells

  14. The new Federal Radiation Protection Authority

    International Nuclear Information System (INIS)

    On March 22, 1988, the German government decided to establish a Federal Radiation Protection Authority in order to centralize radiation protection tasks. The new Federal Radiation Protection Authority is to help the Federal Environmental Minister with his tasks in the fields of radiation protection, nuclear waste management, and nuclear safety. (orig./HP)

  15. Actual global problems of radiation protection

    International Nuclear Information System (INIS)

    Personal views on some actual problems in radiation protection are given in this paper. Among these problems are: evolution methodology used in radiation protection regulations; radiation protection, nuclear energy and safety, and new approaches to the process of the hazardous substances management. An interesting fact relating to the X-ray, radiation protection and Nikola Tesla are given also. (author)

  16. Encouraging the radiation protection practice

    International Nuclear Information System (INIS)

    The radiological protection of workers occupationally exposed to ionizing radiation (X-ray diagnoses, Nuclear Medicine, Radiotherapy and Dental) is essential to minimize the appearance of radiation effects. The ways to reduce the potential for exposure of workers are: Time, Distance , and Shielding. The most important purpose of radiation protection is to provide safe conditions for activities involving ionizing radiation, basic safety conditions that must be observed in professional practice. The professional must have full knowledge of the subject and deepen in the revision of norms and guidelines related to radiation protection establish by the Vigilancia Sanitaria - ANVISA, and Comissao Nacional de Energia Nuclear - CNEN, Brazil. The study was conducted in a technical school for the Technical Training Course in Radiology, where the students are invited to think deeply about the radiation protection of themselves, the patients and the environment. Developed since July 2012, with the participation of 30 students, with a leading class -three teachers assisting in the development of the project . With this project there was an awareness of both students, as instructors stage accompanying the daily lives of students and their own colleagues. Following the same objective in 2013 the project continues with more adept at radioprotection

  17. Radiation protection training and education in Europe; Strahlenschutzausbildung in Europa

    Energy Technology Data Exchange (ETDEWEB)

    Boersma, Hielke Freerk [Groningen Univ. (Netherlands). Office of the Univ. Health, Safety and Environment; Ham, Ulla [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany); Holl, Matthias [Strahlenschutzschulung, Andernach (Germany); Jahn, Swen-Gunnar [Eidgenoessisches Nuklearsicherheitsinspektorat (ENSI), Villigen (Switzerland); Neuwirth, Johannes [Seibersdorf Laboratories (Austria); Schmitt-Hannig, Annemarie [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany). Fachbereich Strahlenschutz und Gesundheit; Schoenhacker, Stefan [Bundesministerium fuer Inneres, Traiskirchen (Austria). Abt. 1/9 - Zivilschutzschule; Vahlbruch, Jan-Willem [Leibniz Univ. Hannover (Germany). Inst. fuer Radiooekologie und Strahlenschutz (IRS)

    2013-09-01

    First, a comprehensive survey is given on the development and the present situation of radiation protection education and training, followed by exemplary reports from the individual countries Germany, Switzerland, Austria and the Netherlands. (orig.)

  18. Philosophy of radiological protection and radiation hazard protection law

    International Nuclear Information System (INIS)

    The radiation protection and the human safety in radiation facilities are strictly controlled by law. There are rules on the radiation measurement, too. In the present review, philosophy of the radiological protection and the radiation hazard protection law is outlined with reference to ICRP recommendations. (J.P.N.)

  19. Indium 111. Radiation protection

    International Nuclear Information System (INIS)

    The radiopharmaceutucal 111In-oxine is used in labelling of different blood cells and proteins. Due to its liquid state, there is always a risk for contamination during handling procedures. The aim of the project was to evaluate the contamination risks, when using this radiopharmaceutical. The investigation includes calculations of the absorved dose to the skin after a contamination of 111In-oxine, including the radionuclide impurity 114Inm/114In. Investigations of 288 protection gloves shows that there is always a risk for contamination, when working with 111In-oxine. On the protection gloves, we found activities normally ranging from a 100 Bq up to a few kBq. Noticeable is the contamination on the vials, already before their use. Besides 111 In we found most of the radionuclides used in nuclear medicine, with activities up to tens of kBq. The radionuclide impurity was cleary detectable but below the recommended value. The penetration of 111In-oxine protection gloves of latex was negligible. Measurements of penetration in skin was evaluated with two independent methods; in vivo using a surface barrier detector, and by autoradiography. The measured penetration was less than a few micrometers. Calculation from the experimental contamination values show that the absorbed dose to the basal cell layer could be in order of several Gy. (authors)

  20. Radiation protection in pediatric radiology

    International Nuclear Information System (INIS)

    Because of the high growth rate of cell systems in phases of radiation exposure radiological investigations on children should not be considered unless there is a strong indication. The National Council on Radiation Protection and Measurements has worked out recommendations on radiation protection which have been published as an NCRP report. This report is most important even outside the USA. The present translation is aimed to contribute to better understanding of the bases and aims of radiation protection during radiological investigations on children. It addresses not only those physicians who carry out radiological investigations on children themselves but also all physicians requiring such investigations. For these physicians, but also for parents who are worried about the radiation risk to their children the report should be a useful source of information and decision aid ensuring, on the one hand, that necessary radiological investigations are not shunned for unjustified fear of radiation and that, on the other hand, all unnecessary exposure of children to radiation is avoided. Thus, it is to be hoped, the quality of pediatric radiological diagnostics will be improved. (orig./MG)

  1. ICRP-Radiation protection principles and practice

    International Nuclear Information System (INIS)

    A brief survey is given of the history of ICRP, its basic standards and recommendations and their rationale, from its foundation in 1928 to the latest major review of its recommendation in 1977. In this time the basic radiation standard for whole body irradiation of a radiation worker has dropped from the equivalent of 50 r per year (in 1934) through 15 rem per year (1954) to 5 rem per year in 1958. ICRP recommendations include maximum permissible doses for particular organs and a comprehensive list of derived limits governing the intake of radionuclides into the body, and dose limits for members of the public. Emphasis in current radiation protection practice is on avoiding all unnecessary exposures and keeping doses as far below dose limits as is reasonably achievable. The use of cost-benefit analysis to optimize protection and some of its inherent difficulties, is discussed

  2. 7. Radiation protection

    International Nuclear Information System (INIS)

    The methods are presented of calculations of the dose and dose equivalent and designs are described and calculations given of the shielding for point and non-point gamma radiation sources. Gusev's universal attenuation tables are given. Brief-ly discussed is the shielding of alpha, beta and heavy charged particles. The transport method and the Monte Carlo method for calculations of neutron shielding are explained. (M.D.)

  3. Problems of radiation protection

    International Nuclear Information System (INIS)

    A brief review is presented on the dose-dependent radiation injuries and possibilities of the classical chemical radioprotectors. Data are given on different substances of biological origin, including some natural for the body admixtures with a confirmed radioprotective action: biogenic amines (serotonin, mexamine), adenylic nucleotides, amino acids, polyamines, immunomodulators (bacterial endotoxines), prostaglandins, leucotrienes, antioxidants, vitamines (A, E, B2, B6, P, biotin, flavenoids), natural fats, plant oils and unsaturated fat acids, extracts from green seaweeds and adaptogens. 81 refs

  4. Activities of Radiation Protection Centre in 2000

    CERN Document Server

    Radiat. Prot. Cent. Vilnius

    2001-01-01

    Description of the activities of Radiation Protection Centre in 2000 is presented. Radiation Protection Centre is responsible for radiation protection issues. Currently there are six departments at Radiation Protection Centre: two in Vilnius - Department of Radiation Protection Supervision and Control and Department of Programs and Expertise, and four in the districts. Brief information on subject controlled by each departments is provided focusing on main achievements and events.

  5. Radiation protection in dental radiography

    International Nuclear Information System (INIS)

    The text passages of the Radiation Protection Ordinance and the relevant regulations that are of significance to dental radiography are presented in the book and are extensively discussed, so that many a practical advice can be found, and information on applicability in practice. The information given on the radiation exposure as a result of natural background radiation and in particular as a result of dental radiography is presented in a way suitable for passing on this information to patients who nowadays ask for better and more information prior to treatment. General protective measures and structural measures are discussed along with the means available for protecting the patient and the personnel. An annex lists the addresses of authorities having competence in this subject field and hence may be consulted. (orig./HP)

  6. European radiation protection in the Essen practice test

    International Nuclear Information System (INIS)

    The proceeding of the meeting European radiation protection in the Essen practice test includes contributions to the following issues: basic radiation protection standards; clearance values and permitted activities; optimization, guidance values for dose limits; radon and radiation protection standards; radiation protection - eye lens; RPE (radiation protection expert)/RPO (radiation protection officer); environmental radiation protection; radiation protection in medicine.

  7. 10 CFR 39.67 - Radiation surveys.

    Science.gov (United States)

    2010-01-01

    ...2010-01-01 false Radiation surveys. 39...67 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS...the logging tool detector or by using a survey...shall conduct a radiation survey,...

  8. Regulatory requirements for radiation protection

    International Nuclear Information System (INIS)

    Regulatory requirements for radiation protection have evolved and matured over several decades. Owing to the wide adoption of the recommendations of the International Commission on Radiation Protection (ICRP), there is international agreement on the principles to be followed for radiation protection. This foundation will be increasingly important owing to the growing need for international agreements and standards for radiation protection and radioactive materials management. During the infancy of the commercial nuclear industry, primary reliance was placed on protection of the individual, both in the work force and as a member of the public. With the growth of nuclear power in the 1960s and 1970s, environmental impact assessments and expert reviews of bio-effects data have focused attention on statistical risks to large population groups and the use of the collective dose commitment concept to estimate potential effects. The potential release of long-lived radionuclides from the nuclear fuel cycle requires further consideration of radionuclide accumulation in the biosphere and calls for controls conceived and implemented at the international level. The initial development efforts regarding these concerns already have been instituted by the ICRP and the IAEA. However, formal international agreements and a unified set of international standards may be required to implement the recommendations of these groups. Further international efforts in radiation protection are also called for in developing waste management practices, radioactive effluent control technology, and in-site selection for fuel-cycle plants and waste dispersal facilities. Since very low dose rates and doses will be involved, it will be useful to re-examine dose-effect relationships and to develop explicit societal goals for health protection. Improved criteria and methodologies for ''as low as readily achievable'' will also be required. (author)

  9. Radiation survey meters used for environmental monitoring

    International Nuclear Information System (INIS)

    The Nordic dosimetry group set up the GammaRate project to investigate how its expertise could be used to assure appropriate usage of survey meters in environmental monitoring. Considerable expertise in calibrating radiation instruments exists in the Nordic radiation protection authorities. The Swedish, Finnish, Danish and Norwegian authorities operate Secondary Standard Dosimetry Laboratories (SSDLs) that provide users with calibration traceable to internationally recognised primary standards. These authorities together with the Icelandic authorities have formally cooperated since 2002 in the field of radiation dosimetry. Dosimetry is the base for assesment of risk from ionising radiation and calibration of instruments is an imported part in dosimetry. The Nordic dosimetry group has been focused on cancer therapy. This work extends the cooperation to the dosimetry of radiation protection and environmental monitoring. This report contains the formal, theoretical and practical background for survey meter measurements. Nordic standards dosimetry laboratories have the capability to provide traceable calibration of instruments in various types of radiation. To verify and explore this further in radiation protection applications a set of survey instruments were sent between the five Nordic countries and each of the authority asked to provide a calibration coefficient for all instruments. The measurement results were within the stated uncertainties, except for some results from NRPA for the ionchamber based instrument. The comparison was shown to be a valuable tool to harmonize the calibration of radiation protection instruments in the Nordic countries. Dosimetry plays an important role in the emergency situations, and it is clear that better traceability and harmonised common guidelines will improve the emergency preparedness and health. (Author)

  10. Radiation survey meters used for environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bjerke, H. (ed.) (Norwegian Radiation Protection Authority, NRPA (Norway)); Sigurdsson, T. (Icelandic Radiation Safety Authority, Geislavarnir Rikisins, GR (IS)); Meier Pedersen, K. (National Board of Health, Statens Institut for Straalebeskyttelse (SIS) (Denmark)); Grindborg, J.-E.; Persson, L. (Swedish Radiation Safety Authority, Straalsaekerhetsmyndigheten (SSM) (Sweden)); Siiskonen, T.; Hakanen, A.; Kosunen, A. (Radiation and Nuclear Safety Authority, Saeteilyturvakeskus (STUK) (Finland))

    2012-01-15

    The Nordic dosimetry group set up the GammaRate project to investigate how its expertise could be used to assure appropriate usage of survey meters in environmental monitoring. Considerable expertise in calibrating radiation instruments exists in the Nordic radiation protection authorities. The Swedish, Finnish, Danish and Norwegian authorities operate Secondary Standard Dosimetry Laboratories (SSDLs) that provide users with calibration traceable to internationally recognised primary standards. These authorities together with the Icelandic authorities have formally cooperated since 2002 in the field of radiation dosimetry. Dosimetry is the base for assesment of risk from ionising radiation and calibration of instruments is an imported part in dosimetry. The Nordic dosimetry group has been focused on cancer therapy. This work extends the cooperation to the dosimetry of radiation protection and environmental monitoring. This report contains the formal, theoretical and practical background for survey meter measurements. Nordic standards dosimetry laboratories have the capability to provide traceable calibration of instruments in various types of radiation. To verify and explore this further in radiation protection applications a set of survey instruments were sent between the five Nordic countries and each of the authority asked to provide a calibration coefficient for all instruments. The measurement results were within the stated uncertainties, except for some results from NRPA for the ionchamber based instrument. The comparison was shown to be a valuable tool to harmonize the calibration of radiation protection instruments in the Nordic countries. Dosimetry plays an important role in the emergency situations, and it is clear that better traceability and harmonised common guidelines will improve the emergency preparedness and health. (Author)

  11. 1993 Radiation Protection Workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The 1993 DOE Radiation Protection Workshop was conducted from April 13 through 15, 1993 in Las Vegas, Nevada. Over 400 Department of Energy Headquarters and Field personnel and contractors from the DOE radiological protection community attended the Workshop. Forty-nine papers were presented in eleven separate sessions: Radiological Control Manual Implementation, New Approaches to Instrumentation and Calibration, Radiological Training Programs and Initiatives, External Dosimetry, Internal Dosimetry, Radiation Exposure Reporting and Recordkeeping, Air Sampling and Monitoring Issues, Decontamination and Decommissioning of Sites, Contamination Monitoring and Control, ALARA/Radiological Engineering, and Current and Future Health Physics Research. Individual papers are indexed separately on the database.

  12. 1993 Radiation Protection Workshop: Proceedings

    International Nuclear Information System (INIS)

    The 1993 DOE Radiation Protection Workshop was conducted from April 13 through 15, 1993 in Las Vegas, Nevada. Over 400 Department of Energy Headquarters and Field personnel and contractors from the DOE radiological protection community attended the Workshop. Forty-nine papers were presented in eleven separate sessions: Radiological Control Manual Implementation, New Approaches to Instrumentation and Calibration, Radiological Training Programs and Initiatives, External Dosimetry, Internal Dosimetry, Radiation Exposure Reporting and Recordkeeping, Air Sampling and Monitoring Issues, Decontamination and Decommissioning of Sites, Contamination Monitoring and Control, ALARA/Radiological Engineering, and Current and Future Health Physics Research. Individual papers are indexed separately on the database

  13. XXX. Days of Radiation Protection. Conference Proceedings of the 30-th Days of Radiation Protection

    International Nuclear Information System (INIS)

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 107 papers are published. The Conference consists of following sections: Effects of ionizing radiation; Regulation of radiation protection; Dosimetry and Metrology of ionizing radiation; Radiation protection in nuclear Power plants; Medical exposure and radiation protection in diagnostic radiology, nuclear medicine and radiation oncology; Natural radioactivity issues in radiation protection; Education, societal aspects and public involvement in radiation protection, trends and perspectives

  14. Radiation protection in mines

    International Nuclear Information System (INIS)

    The main objective of the research project was to investigate and develop methods at the Muellenbach test mine which allow optimal protection against radon and its daughter products considering both economic and mining aspects. Theoretical models as well as investigations in the laboratory and underground have shown that good ventilation offers an effective protection against radon and its daughters. Other methods such as wetting of broken rock and variation of the blasting pattern as well as the application of positive ventilating pressure were of minor influence on radon emanation. The sealing of rock surfaces showed satisfactory results in laboratory tests (radon emanation rate was reduced up to 98%), however underground its application appears to be limited and unsuitable for stoping operations. The airstream helmet (type AH 1) tested underground proved to be effective as a dust filter but because of its ergonomic and safety disadvantages its application in uranium mining is limited. Its efficiency as far as the reduction of radon daughters is concerned should be tested after the ergonomic disadvantages have been eliminated. The research work done has shown that cavitation models developed are of practical value for the determination of radon and its daughter concentrations as well as for mine ventilation planning. The report presented emphasizes that the nuclide measurements carried out underground and the knowledge gained about the behaviour of radio nuclides in the mine atmosphere are transferable to other mining branches for instance to coal and fluorspar mining. (orig./HP)

  15. Nordic society for radiation protection

    International Nuclear Information System (INIS)

    The key themes of teh 12th ordinary general meeting of the Nordic Society for Radiation Protection were: RADIATION - ENVIRONMENT - INFORMATION. A number of outstanding international experts accepted to contribute on the meetings first day with invited presentations, which focussed on these themes. In all 38 oral presentations and 28 posters are included in the present Proceedings, which furthermore contains a resume of discussions from the special session on 'Controllable Dose'. (EHS)

  16. Priority issues in radiation protection

    International Nuclear Information System (INIS)

    Current radiation protection is based on the recommendations presented in ICRP Publication 60 produced in 1991, which was a consolidation of several ideas that were discussed in the years prior to publication. Conceptually, ICRP Publication 60 is based on a stipulated linear, non-threshold relationship between the probability of severe harm and radiation dose at low doses, and on this basis ICRP Publication 60 develops a coherent system of protection based on controlled and accepted risk. The current system of protection presents new protection quantities, and in addition a quantity (effective dose) that can be readily converted into risk, representing the result of several tissue exposures to different types of radiation. ICRP Publication 60 has made clear that the present system of protection distinguishes between practices, which increase doses and risks, and interventions, which reduce doses and risks. In the first case the increases are subject to control, while in the second the decision to intervene is guided by the principle of doing more good than harm. The control of the introduction and the performance of a practice are subject to the principles of justification, optimization of protection and individual dose limits for single sources of radiation or for a stipulated combination of sources. While these principles are well known, there is still substantial confusion, which can be exemplified by statements such as 'this protection system forces us to spend enormous amounts of money to reduce trivial risks'. This is nonsense, owing to the optimization principle. Also, there is confusion in trying to set limits in intervention situations, where there is no dose increase to control

  17. Radiation Protection and Monitoring Services at the Bandung Reactor Centre

    International Nuclear Information System (INIS)

    A description Is given of the Radiation Protection Service at the Bandung Reactor Centre, Including such activities as monitoring the radiation from the TRIGA MARK II (250-kW) reactor which is measured in the reactor hall and on the reactor deck. Another area surveyed by the Protection Service is the Radioisotope Laboratory. Also discussed are problems concerning instrument failure and the availability of man power To meet the safety requirements, the Protection Service is attempting to manufacture its own Instruments. (author)

  18. Antioxidants and biological radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Lenten, K.J.; Greenstock, C.L. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    1998-07-01

    Antioxidants and antioxidant enzymes, by combatting oxygen radical-mediated radiation-induced oxidative stress, may prevent the accumulation of damage involved in tumor initiation, promotion and progression, and thus serve to protect us against ionizing radiation. We are testing the possible role of dietary antioxidants, and other biological response modifiers, in determining individual radiation response. These experiments use the fluorescent protein beta-phycoerythrin as a target and biomolecular marker for radiation-induced oxidative stress. Antioxidants are ranked according to their radioprotectiveness by their ability to compete with beta-phycoerythrin for radiolytic oxygen radicals. Samples of blood serum from cancer patients have been analyzed using this technique. There is a trend towards decreasing antioxidant levels with increasing donor age, and this is consistent with data showing an increasing radiosensitivity with age. We are presently monitoring antioxidant and antioxidant enzyme levels in atomic radiation workers and the general public, in order to assess whether they influence individual radiosensitivity. Knowledge of this source of biological response modification will be useful in applying radiation protection practices to those individuals or groups most at risk, and for estimating individual risks associated with radiation exposure. (author)

  19. Antioxidants and biological radiation protection

    International Nuclear Information System (INIS)

    Antioxidants and antioxidant enzymes, by combatting oxygen radical-mediated radiation-induced oxidative stress, may prevent the accumulation of damage involved in tumor initiation, promotion and progression, and thus serve to protect us against ionizing radiation. We are testing the possible role of dietary antioxidants, and other biological response modifiers, in determining individual radiation response. These experiments use the fluorescent protein beta-phycoerythrin as a target and biomolecular marker for radiation-induced oxidative stress. Antioxidants are ranked according to their radioprotectiveness by their ability to compete with beta-phycoerythrin for radiolytic oxygen radicals. Samples of blood serum from cancer patients have been analyzed using this technique. There is a trend towards decreasing antioxidant levels with increasing donor age, and this is consistent with data showing an increasing radiosensitivity with age. We are presently monitoring antioxidant and antioxidant enzyme levels in atomic radiation workers and the general public, in order to assess whether they influence individual radiosensitivity. Knowledge of this source of biological response modification will be useful in applying radiation protection practices to those individuals or groups most at risk, and for estimating individual risks associated with radiation exposure. (author)

  20. Radiation protection in veterinary radiology

    International Nuclear Information System (INIS)

    This Code of Practice is designed to give guidance to veterinary surgeons in ensuring that workers and members of the public are adequately protected from the hazards of ionising radiation arising from the use of x-ray equipment in veterinary practice. (author)

  1. Radiation Protection Services Division: progress report for 1992-1993

    International Nuclear Information System (INIS)

    This report describes the work of the Radiation Protection Services Division during 1993, for implementation of radiation safety in all institutions in India using radiation sources in medical, industrial and research applications. It gives information about personnel monitoring using photographic film and TLD badges, neutron monitoring badges, advisory and licensing services, regulation, transport of radioactive materials and periodic protection survey. About 33 publications by the staff of the Division are also listed. (author). 4 tabs

  2. Radiation protection of medical staff

    International Nuclear Information System (INIS)

    The continuing increase in the worldwide use of X-ray imaging has implications for radiation protection of medical staff. Much of the increased usage could be viewed as simply a workload issue with no particular new challenges. However, advances in technology and developments in techniques have seen an increase in the number of X-ray procedures in which medical personnel need to maintain close physical contact with the patient during radiation exposures. The complexity of many procedures means the potential for significant occupational exposure is high, and appropriate steps must be taken to ensure that actual occupational exposures are as low as reasonably achievable. Further attention to eye protection may be necessitated if a lowering of the dose limit for the lens of the eye is implemented in the near future. Education and training in radiation protection as it applies to specific situations, established working procedures, availability and use of appropriate protective tools, and an effective monitoring programme are all essential elements in ensuring that medical personnel in X-ray imaging are adequately and acceptably protected.

  3. Regulations for radiation protection in industrial radiography

    International Nuclear Information System (INIS)

    These Regulations specify that responsibility for applying radiation protection regulations in industrial radiography rests with the owner of the establishment who will designate a radiation protection officer to this effect. They provide for the organisation of radiation protection, including the measures to be observed, exposure limits, etc. The competent authority for these questions is the State Institute of Radiation Hygiene

  4. Radiation protection in developing countries

    International Nuclear Information System (INIS)

    Radiation protection in developing countries has to be seen as a small fraction of the larger socio-economic aspects of the North-South problem. There are excessive radiation protection efforts in a few countries, adequate efforts in about 10%, and almost 90% of all countries (with about three quarters of the world population) in which radiation protection is totally insufficient or non-existent, despite a large number of radiation sources and radiation workers, in particular in medicine. Despite all differences, these countries have some problems in common: Determination of priorities and organisational structures, lack of funds, qualified experts, and infratructure, brain drain, climatic factors, etc. Some possibilities are pointed out, how external help (bilateral or through IAEA) can be useful, provided certain minimal conditions can be met by a country. Examples would be assistance in establishing and implementing of meaningful regulations and control structures, adequate training and consulting, selection of simple and rugged instrumentation, exchange of experiences, and international quality assurance tests. (orig.)

  5. Radiation protection in nuclear facilities

    International Nuclear Information System (INIS)

    Close ties exist between nuclear safety and radiation protection. Nuclear safety is made up of all the arrangements taken to prevent accidents occurring in nuclear facilities, these accidents would certainly involved a radiological aspect. Radiation protection is made up of all the arrangements taken to evaluate and reduce the impact of radiation on workers or population in normal situations or in case of accident. In the fifties the management of radiological hazards was based on the quest for minimal or even zero risk. This formulation could lead to call some activities in question whereas the benefits for the whole society were evident. Now a new attitude more aware of the real risks and of no wasting resources prevails. This attitude is based on the ALARA principle whose purpose is to maintain the exposure to radiation as low as reasonably achievable taking into account social and economic concerns. This document regroups articles illustrating different aspects of the radiation protection in nuclear facilities such as a research center, a waste vitrification workshop and a nuclear power plant. The surveillance of radiological impacts of nuclear sites on environment is examined, a point is made about the pending epidemiologic studies concerning La Hague complex. (A.C.)

  6. Radiation protection in veterinary medicine

    International Nuclear Information System (INIS)

    Diagnostic radiology is an essential part of present-day veterinary practice. The need for radiation protection exists because occupational exposure to ionizing radiation can result in deleterious effects that may manifest themselves not only in exposed individuals but in their descendants as well. These are respectively called somatic and genetic effects. Somatic effects are characterized by observable changes occurring in the body organs of the exposed individual. These changes may appear from within a few hours to many years later, depending on the amount and duration of exposure of the individual. In veterinary medicine, the possibility that anyone may be exposed to enough radiation to create somatic effect is extremely remote. Genetic effects are more a cause for concern at the lower doses used in veterinary radiology. Although the radiation doses may be small and appear to cause no observable damage, the probability of chromosomal damage in the germ cells, with the consequence of mutations, does exist. These mutations may give rise to genetic defects and therefore make these doses significant when applied to a large number of individuals. There are two main aspects of the problem to be considered. First, personnel working with X-ray equipment must be protected from excessive exposure to radiation during their work. Secondly, personnel in the vicinity of veterinary X-ray facilities and the general public require adequate protection

  7. Protection against radiation (biological, pharmacological, chemical, physical)

    Science.gov (United States)

    Saksonov, P. P.

    1975-01-01

    Physical, chemical, and biological protection for astronauts from penetrating radiation on long-term space flights is discussed. The status of pharmacochemical protection, development of protective substances, medical use of protective substances, protection for spacecraft ecologic systems, adaptogens and physical conditioning, bone marrow transplants and local protection are discussed. Combined use of local protection and pharmacochemical substances is also briefly considered.

  8. Radioprotectors and Immunomodulators for Protection against Radiation

    International Science & Technology Center (ISTC)

    Development of New Generation of Radioprotectors, Immunomodulators, and Radiation Sensitizers for Human Protection Against Ionizing Radiation and Efficiency Improvement of Radiotherapy of Malignant Cells

  9. Applied radiation biology and protection

    International Nuclear Information System (INIS)

    Written by two eminent expects in the field with many years of teaching experience between them, this book presents a concise coverage of the physical and biological basics of radiation biology and protection. The book begins with a description of the methods of particle detection and dosimetric evaluation. The effects of ionizing radiation on man are treated from the initial physico-chemical phase of interaction to their conceivable pathological consequences. Regulations, limits and safeguards on nuclear power plants, radioisotope installations and medical centers which make use of ionizing radiation are given and the risks of exposure to natural, industrial and scientific radiation sources evaluated. The final chapter takes a look at some of the more important nuclear accidents, including Windscale, Three Mile Island, and Chernobyl, and describes basic procedures to be carried out in the eventuality of a nuclear emergency. Twelve chapters have been processed separately for inclusion in the appropriate data bases

  10. Epistemological basis of radiation protection

    International Nuclear Information System (INIS)

    Full text: Regarding natural phenomena understood or not, the absolute truth must be somewhere. In fact, there is no evidence that neither nature nor the phenomena that it includes were 'created' to be understood. Except for the fact that Man appeared through the same process, with his curiosity, capacity to perceive and manipulate, his greed for power and fears. In general, the attitude towards questions for which the absolute truth has not been reached varies from ignorance/indifference to the search of knowledge through scientific methodology, and may even be based on beliefs. The fact that the interaction between ionizing radiations and living beings results in biological effect is true. That the biological effect of high doses of radiation, absorbed outside the context of medicine, is hazardous for the irradiated individuals also seems to be true. That any dose is dangerous, or not, is debatable: the available information and knowledge are not consistent enough to end the question; and so, the absolute truth remains hidden. Radiological Protection is founded on the principle that any increase of dose results in an increase in the risk of cancer, and that this risk must be kept as low as possible. It is therefore based on this 'belief' that the international organisms of radiological protection emit recommendations aiming the protection of people and the environment. What is interesting about this question is that because of restrictions imposed by regulating agencies, populations, members of the public and the environment are properly protected against harmful effects of ionizing radiations, which makes the truth no longer interesting. Radiological Protection is a requirement associated to all activities involving nuclear energy. It satisfies several interests and opposes others. The greater the opposed interests and the perception that the absolute truth can represent dialectic advantage to one of the parts, the greater the perception of the importance of its revelation. In the present study, two initiatives of search for the truth were analyzed: the initiative of the Brazilian National Congress, through the creation of a working group in charge of evaluating the radiological protection in the country; and WONUC's initiative to create a publication focused exclusively on the effect of low doses of ionizing radiation. In relation to the understanding of the biological effects of the radiations, the document underlines the difficulty of all those involved in accepting the evidence that the truth related to this question was not reached. In respect to the initiative of the WONUC, the International Journal of Low Radiation is now in its 4th volume; publishing works that oppose the official belief that any dose is harmful. (author)

  11. Training courses on radiation protection

    International Nuclear Information System (INIS)

    Many Member States are developing or already have developed their own national training programmes. The IAEA is actively involved in promoting training in radiological protection, and this report has been prepared to provide the guidance that may be required in this development. The original version of the report on this subject was published in 1964 as Technical Reports Series No. 31 entitled ''Training in Radiological Protection: Curricula and Programming''. In 1975 a second version was published entitled ''Training in Radiological Protection for Nuclear Programmes'' as Technical Reports Series No. 166. This publication is intended mainly for use by persons who are responsible for organizing training programmes in radiation protection. It also reflects the policy of the Agency to have continuing standardized training in radiation protection. In addition to a small change in the title of the report, some concepts and ideas which are no longer applicable have been omitted and new information included. An important part of this report is the list of courses now offered in many Member States

  12. Report to the government of Zambia. Radiation protection

    International Nuclear Information System (INIS)

    At the request of the Government of the Republic of Zambia, the International Atomic Energy Agency set up a technical assistance project to supply an expert plus some equipment, commencing 1 October 1971 and of one year's duration. The project was to expand Zambia's radiation protection service through monitoring of radiation doses, radiation sources, and premises, and provide advise related to the safe handling of sources of ionizing radiation. Upon arrival the expert found that some of these activities had been initiated. The key measures therefore were to establish channels of communication and authority, survey the state of radiation safety and protective measures, and coordination of protective and control measures. On these lines the Ionising Radiation Act is stated to show how its establishment and organizational structure could assist in the implementation of radiation protection measures. maps

  13. Radiation protection and reactor safety

    International Nuclear Information System (INIS)

    The Chernobyl reactor accident caused bewilderment, fear and anxiety among the population. How safe are reactors? Which precautions to protect lives and health have been taken? These questions are posed particularly in the areas of radiation protection, reactor safety, supply and waste management of nuclear power plants and other nuclear installations. For all these areas the present report contains an analysis of facts; it informs about political measures during the 11th legislative period of the German Bundestag, and shows prospects of future developments. (orig.)

  14. Radiation Protection in Paediatric Radiology

    International Nuclear Information System (INIS)

    Over the past decade and a half, special issues have arisen regarding the protection of children undergoing radiological examinations. These issues have come to the consciousness of a gradually widening group of concerned professionals and the public, largely because of the natural instinct to protect children from unnecessary harm. Some tissues in children are more sensitive to radiation and children have a long life expectancy, during which significant pathology can emerge. The instinct to protect children has received further impetus from the level of professional and public concern articulated in the wake of media responses to certain publications in the professional literature. Many institutions have highlighted the need to pay particular attention to the special problems of protecting paediatric patients. The International Commission on Radiological Protection has noted it and the IAEA's General Safety Requirements publication, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards (BSS), requires it. This need has been endorsed implicitly in the advisory material on paediatric computed tomography scanning issued by bodies such as the US Food and Drug Administration and the National Cancer Institute in the United States of America, as well as by many initiatives taken by other national and regional radiological societies and professional bodies. A major part of patient exposure, in general, and paediatric exposure, in particular, now arises from practices that barely existed two decades ago. For practitioners and regulators, it is evident that this innovation has been driven both by the imaging industry and by an ever increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practice lag (inevitably) behind industrial and clinical innovations. This Safety Report is designed to consolidate and provide timely advice on dealing with the special problems involved. The approach adopted is developed within the IAEA framework of statutory responsibility to establish standards for the protection of people against exposure to ionizing radiation and to provide for the application of these standards. The BSS issued by the IAEA require the radiation protection of patients undergoing medical exposures through justification of the procedures involved and optimization of protection and safety. This challenge is taken up here by adding paediatric radiology to the areas dealt with in recent IAEA publications. These are specifically Safety Reports Series Nos 39 and 40 on diagnostic radiology and nuclear medicine, respectively, and Safety Reports Series Nos 58-61 and 63 on newer medical imaging techniques and other initiatives in justification of procedures and optimization of protection and safety. The advice of the IAEA is intended in particular for professionals, practitioners, and teachers and trainers in the area, as well as physicians referring children for examinations. Resource materials and training materials are available cost free on the IAEA's Radiation Protection of Patients web site (http://rpop.iaea.org).

  15. Biological protection against nuclear radiation

    International Nuclear Information System (INIS)

    This monograph is addressed to physicists, chemists, engineers, under-, graduated and enrolled towards PhD degree students, wishing to orient their activity towards research, design, education or production in nuclear power and nuclear technology field. Specifically, the work deals with the biological protection against nuclear radiations. The chapter 1 presents selectively the nuclear radiation types, the interaction of neutrons, gamma radiations and charged particles with matter. Particularly focused is the issue of biological effects of nuclear radiations and the implied permissible limits of irradiation. Chapter 2 describes one of the most intense sources of nuclear radiation, namely, the reactor core; reviewed are the reactor neutron spectra, as well as, the spectra of primary and secondary radiations. Chapter 3 deals with the activation process as a source of nuclear radiations; analyzed are the processes of activation of coolant, structural elements and soils, as well as the tritium production. Chapter 4 treats the nuclear fission process and formation of fission products, another major source of radiations. The principal features of fission products are mentioned such as: decay characteristics, fission yields, fission product activity, decay heat. Chapter 5 tackles the problem of influence of geometric form of the source upon radiation flux spatial distribution. In chapter 6 briefly are described the elements of neutron transport theory, diffusion equation, neutron slowing-down, age theory, i.e. all the knowledge implied in neutron attenuation calculation in shields. Chapter 7 deals with gamma radiation attenuation in shields, namely, spatial distribution of gamma-ray dose rates from point-like sources in an infinite medium, gamma radiation build-up factors, etc. In chapter 8 the phenomenon of heating of biological shields due to nuclear radiation is described. Calculation of heat rate generated by gamma and neutron radiation is sketched. Chapter 9 treats the non-homogeneities in biological shields at nuclear reactors and several methods for calculating non-homogeneous shields are presented. Chapter 10 describes the principal materials used as biological shielding against nuclear radiations, such as steel, lead, light water, concrete, etc. as well as, their behaviour in radiation fields. In the chapter 11 several examples of evaluating the dose rates and designing biological shieldings are given. Finally, chapter 12 gives definition of nuclear safety, events and nuclear accidents. Here also aspects of the Chernobyl accident are presented. Six appendices are added containing data of general use such as level and decay schemes, attenuation coefficients, data referring to U-235 fission products, etc. The work represents a compact and coherent synthesis of the main shielding calculation methods offering at the same time the necessary numerical data. An up-date comprehensive reference list completes this monograph

  16. Radiation Protection Legislation in the Nordic Countries

    International Nuclear Information System (INIS)

    Recent alterations in the radiation protection laws of the Nordic countries are presented. The report amends the previous SS-report 87-37 with the title Radiation Protection and Atomic Energy Legislation in the Nordic Countries. (au)

  17. International standards for radiation protection

    International Nuclear Information System (INIS)

    International standards for radiation protection are issued by many bodies. These bodies differ to a large extent in their organisation, in the way the members are designated and in the way the international standards are authorised by the issuing body. Large differences also exist in the relevance of the international standards. One extreme is that the international standards are mandatory in the sense that no conflicting national standard may exist, the other extreme is that national and international standards conflict and there is no need to resolve that conflict. Between these extremes there are some standards or documents of relevance, which are not binding by any formal law or contract but are de facto binding due to the scientific reputation of the issuing body. This paper gives, for radiation protection, an overview of the main standards issuing bodies, the international standards or documents of relevance issued by them and the relevance of these documents. (authors)

  18. Ethical aspects of radiation protection

    International Nuclear Information System (INIS)

    The conflicting interests of technology and mostly prevent technicians and scientists from orientating themselves by clearly formulated rules of ethical acting. The many attempts which have been made therefore at introducing a binding 'Hippocratic oath' failed without exception. Based on many years of experience the author tries to derive some simple ethical principles from the maxims of action which apply to radiation protection, thus contributing a new aspect to the ethics discussion. (orig.)

  19. Chemical radioprotectors in radiation protection

    International Nuclear Information System (INIS)

    The different demands for the ways of the administration of chemical radioprotectors as a cystamine or WR-2721 (amifostine, gammaphos, Ethyol) e.g. S-containing compounds, their distribution and further pharmacological properties of protective agents in mentioned indications are discussed in presented lecture. A special attention is concerned on the practical use of chemical radioprotectors in the emergency and clean-up workers after a radiation accident or nuclear catastrophes. (author)

  20. Workstations studies and radiation protection

    International Nuclear Information System (INIS)

    This day on the workstations studies for the workers follow-up, was organised by the research and health section. Devoted to the company doctors, for the competent persons in radiation protection, for the engineers of safety, it presented examples of methodologies and applications in the medical, industrial domain and the research, so contributing to a better understanding and an application of regulatory measures. The analysis of the workstation has to allow a reduction of the exposures and the risks and lead to the optimization of the medical follow-up. The agenda of this day included the different subjects as follow: evolution of the regulation in matter of demarcation of the regulated zones where the measures of workers protection are strengthened; presentation of the I.R.S.N. guide of help to the realization of a workstation study; implementation of a workstation study: case of radiology; the workstation studies in the research area; Is it necessary to impose the operational dosimetry in the services of radiodiagnostic? The experience feedback of a competent person in radiation protection (P.C.R.) in a hospital environment; radiation protection: elaboration of a good practices guide in medical field; the activities file in nuclear power plant: an evaluation tool of risks for the prevention. Methodological presentation and examples; insulated workstation study; the experience feedback of a provider; Contribution of the ergonomics to the determiners characterization in the ionizing radiation exposure situations;The workstations studies for the internal contamination in the fuel cycle facilities and the consideration of the results in the medical follow-up; R.E.L.I.R. necessity of workstation studies; the consideration of the human factor. (N.C.)

  1. Basic standards for radiation protection

    International Nuclear Information System (INIS)

    The basic standards for radiation protection have been based, for many years, on the recommendations of the International Commission of Radiological Protection. The three basic standards recommended by the Commission may be summarized as ''justification, optimization of protection and adherence to dose limitations. The applications of these basic principles to different aspects of protection are briefly summarized and the particular ways in which they have been applied to waste described in more detail. The application of dose limits, both in the control of occupational exposure and in regulating routine discharges of radioactive effluents is straight forward in principle although the measurement and calculational requirements may be substantial. Secondary standards such as derived limits may be extremely useful and the principles underlying their derivation will be described. Optimization of protection is inherently a more difficult concept to apply in protection and the various techniques used will be outlined by with particular emphasis on the use of cost benefit analysis are recommended by the ICRP. A review will be given of the problems involved in extending these basic concepts of the ICRP to probabilistic analyses such as those required for assessing the consequences of accidents or disruptive events in long term repositories. The particular difficulties posed by the very long timescales involved in the assessment of waste management practices will be discussed in some detail. (orig./RW)

  2. Excellence through radiation protection practices

    International Nuclear Information System (INIS)

    The nuclear generation program at Ontario Hydro was initiated in the early 1960s. Over the last two decades the program has expanded to a planned capacity of ? 14,000 MW(electric) by 1992. Each of the nuclear stations consists of four identical reactor units and they range in size from 520 to 880 MW(electric). The overall objectives of Ontario Hydro's radiation protection program are stated as follows: (1) to prevent detrimental nonstochastic health effects to employees and the public; (2) to limit detrimental stochastic health effects occurring in employees or the public to levels as low as reasonably achievable (ALARA), social and economic factors being taken into account; and (3) to provide a level of health and safety that is as good as, or better than, comparable safe industries. Although many elements of the radiation protection program are similar to those adopted by other electrical utilities around the world, there are some unique features that have played an important part in the improvements achieved. These include: management commitment, design responsibility, radiation protection training, operations control, and work planning. The issues that need to be addressed in striving for overall excellence in radiological safety over the next decade are summarized

  3. State Supervision and Control of Radiation Protection

    CERN Document Server

    2001-01-01

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 1999-2001 is presented.

  4. State Radiation Protection Supervision and Control

    CERN Document Server

    2002-01-01

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 2002 is presented.

  5. Development of radiation protection standards

    International Nuclear Information System (INIS)

    Radiation protection standards are based on the best available knowledge, caution, and perception. Dose limits for occupational exposure have decreased as knowledge was gained about radiation effects: from 0.6 Sv (60 rem)/year for 1900-1930 to 50 mSv (5 rem)/year in 1958 (the level still used as of 1990). Current dose limits for public exposure range from 1 mSv to 5 mSv, depending on frequency of exposure. For the embryo and fetus, dose limits are 0.5 mSv/mo and 5 mSv for the entire gestation. In the 1970s, the concept of acceptable risk and that of a non-threshold dose-response relationship became the basis for setting dose limits. Three principles of radiation protection are that (a) dose levels should not exceed acceptable levels, (b) optimal dose levels should be as low as reasonably achievable, and (c) radiation should not be used unless it produces a positive net benefit. Although no dose limits have been set for patients undergoing diagnostic and therapeutic radiologic procedures, such measures must provide a net benefit to patients at optimal dose levels

  6. New Radiation Protection training room

    CERN Multimedia

    HSE Unit

    2013-01-01

    From now on, the theory and practical components of the Radiation Protection training, developed by the RP Group and offered by the HSE Unit’s Safety Training team to people working in a Controlled Radiation Area, will take place in a dedicated teaching room, designed specifically for this kind of training.   The new room is in the Safety Training Centre on the Prévessin site and has been open since 16 October. It has an adjoining workshop that, like the room itself, can accommodate up to 12 people. It is also equipped with an interactive board as well as instruments and detectors to test for ionising radiation. This room is located near the recently inaugurated LHC tunnel mock-up where practical training exercises can be carried out in conditions almost identical to those in the real tunnel. To consult the safety training catalogue and/or sign up for Radiation Protection training, please go to: https://cta.cern.ch For further information, please contact the Safety Trainin...

  7. Radiation protection enrollments and degrees, 1979 and 1980

    International Nuclear Information System (INIS)

    Public concern over the effects of low-level radiation and other aspects of the use of nuclear energy has grown in recent years, and the demand for radiation protection has continued to increase. Radiation Protection Enrollments and Degrees presents the results of the latest survey of institutions offering degree programs in this field. Students obtaining such degrees are vital to the development of industry, medicine, research, power production, construction, and agriculture. These surveys assist state and federal governments in their search for such personnel

  8. Radiation protection for human spaceflight

    International Nuclear Information System (INIS)

    Cosmic radiation exposure is one of the most significant risks associated with human space exploration. Except for the principles of justification and optimization (ALARA), the concepts of terrestrial radiation protection are of limited applicability to human spaceflight, as until now only few experimentally verified data on the biological effectiveness of heavy ions and the dose distribution within the human body exist. Instead of applying the annual dose limits for workers on ground also to astronauts, whose careers are of comparatively short duration, the overall lifetime risk is used as a measure. For long-term missions outside Earth's magnetic field, the acceptable level of risk has not yet been defined, since there is not enough information available to estimate the risk of effects to the central nervous system and of potential non-cancer radiation health hazards. (orig.)

  9. Radiation protection enrollments and degrees, 1981

    International Nuclear Information System (INIS)

    This report presents data on the number of students enrolled and the degrees awarded in academic year 1980-81 from 61 U.S. universities offering degree programs in radiation protection or related areas that would enable students to work in the health physics field. The report includes historical survey data for the last decade and provides information such as trends by degree level, foreign national student participation, female and minority student participation, and placement of graduates. Also included is a listing of the universities by type of program and number of students

  10. Operational radiation protection: A guide to optimization

    International Nuclear Information System (INIS)

    The purpose of this publication is to provide practical guidance on the application of the dose limitation system contained in the Basic Safety Standards for Radiation Protection to operational situations both in large nuclear installations and in much smaller facilities. It is anticipated that this Guide will be useful to both the management and radiation protection staff of operations in which there is a potential for occupational radiation exposures and to the competent authorities with responsibilities for providing a programme of regulatory control. Contents: Dose limitation system; Optimization and its practical application to operational radiation protection; Major elements of an effective operational radiation protection programme; Review of selected parts of the basic safety standards with special reference to operational radiation protection; Optimization of radiation protection; Techniques for the systematic appraisal of operational radiation protection programmes. Refs and figs

  11. General rules for radiation protection within the CEA

    International Nuclear Information System (INIS)

    This report first describes the organisation, scope of application and principles of radiation protection within the CEA. The second part proposes an overview of rules applicable to workers exposed to ionizing radiation. These rules concern the personnel classification, exposure limits, individual control, and training of workers in radiation protection. The third part addresses the technical rules for premise laying-out: protection zoning, indicators aimed at controlling the compliance of premise classification, radiological survey and control of premise classification. The fourth part addresses the modalities of access, stay and operation in regulated zone. The next part indicates and comments arrangements specific to ionizing radiation sources and to ionizing radiation emitting equipment (authorization and possession modalities, training, certification, controls, operation zoning, etc.), specific orders (radiological control of wastes, hardware, tools and equipment management), rules related to abnormal occupational situations (alarms, contamination event, radiological events), and the different studies and analysis of radiation protection implemented during the different phases of an installation lifetime

  12. An introduction to radiation protection principles

    International Nuclear Information System (INIS)

    The purpose of the document is to outline the fundamentals of radiation protection, to describe methods that enable employees to work safely with radiation and to aquaint employees with CRNL's radiation and industrial safety organization

  13. Radiation protection in hospitals of Equatorial Guinea

    International Nuclear Information System (INIS)

    With a population of four hundred thousand (400.000) inhabitants and distributed in a territory of 28 thousand (28.000) km2, the use of ionizing radiations for medical practice in Equatorial Guinea is few and decreasing. It is used for diagnostic practices in the main hospitals of the country, where the work burden is not over 20 patients per day. The political, social and economical embryonic development of the country until recently had a negative influence on indicators and health organisations, so that even now the country does not have any radiological protection law, this shortness, in addition with the old architectural structure that x ray tools is lodging, as well as dosimetrical lack of employed staff, put this staff under risk of electromagnetic energy. This is to show the present survey of medical activities with ionizing radiation and to request technical support for implementing suitably the basic standards of radiation protection which will help us as basis for the elaboration outline law, on radiological protection in accordance with the new guidelines of the International Atomic Energy Agency. (author)

  14. Space radiation protection: Destination Mars.

    Science.gov (United States)

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure. PMID:26432587

  15. Radiation protection brochure for persons occupationally exposed to radiation

    International Nuclear Information System (INIS)

    This brochure is intended to convey basic knowledge on radiation protection according to the requirements of the ordinance on radiation protection. It is addressed to persons occupationally exposed to radiation under section 20a of the ordinance on radiation protection. These include e.g. persons employed in nuclear power plants (such as operating personnel, maintenance and repair personnel, test engineers etc.), furthermore persons handling radioactive materials (e.g. in radio-isotope laboratories) or using ionizing radiation (e.g. in the case of non-destructive material testings with gamma irradiation devices or accelerators). Persons receiving professional training in nuclear plants also belong to that group of persons. The booklet is meant to provide appropriate information. It is no substitute for the required instruction on radiation protection. It points out the legal, physical and biological bases of radiation protection, natural and civilizing radiation exposure, dose limits and radiation protection areas as well as general safety measures. (orig./HSCH)

  16. Assessment of radiation protection practices among radiographers in Lagos, Nigeria

    Science.gov (United States)

    Eze, Cletus Uche; Abonyi, Livinus Chibuzo; Njoku, Jerome; Irurhe, Nicholas Kayode; Olowu, Oluwabola

    2013-01-01

    Background: Use of ionising radiation in diagnostic radiography could lead to hazards such as somatic and genetic damages. Compliance to safe work and radiation protection practices could mitigate such risks. The aim of the study was to assess the knowledge and radiation protection practices among radiographers in Lagos, Nigeria. Materials and Methods: The study was a prospective cross sectional survey. Convenience sampling technique was used to select four x-ray diagnostic centres in four tertiary hospitals in Lagos metropolis. Data were analysed with Epi- info software, version 3.5.1. Results: Average score on assessment of knowledge was 73%. Most modern radiation protection instruments were lacking in all the centres studied. Application of shielding devices such as gonad shield for protection was neglected mostly in government hospitals. Most x-ray machines were quite old and evidence of quality assurance tests performed on such machines were lacking. Conclusion: Radiographers within Lagos metropolis showed an excellent knowledge of radiation protection within the study period. Adherence to radiation protection practices among radiographers in Lagos metropolis during the period studied was, however, poor. Radiographers in Lagos, Nigeria should embrace current trends in radiation protection and make more concerted efforts to apply their knowledge in protecting themselves and patients from harmful effects of ionising radiation. PMID:24665152

  17. Measures of radiation protection in the operation of nuclear power plants in the German Democratic Republic

    International Nuclear Information System (INIS)

    A survey is given on the provisions concerning (a) radiation protection at nuclear power plants in the GDR including the instructions applying within the plant, (b) the organization of radiation protection services, and (c) the measures of radiation protection surveillance inside and outside the plant during operation. (author)

  18. Distributed radiation protection console system

    International Nuclear Information System (INIS)

    Radiation exposure control is one of the most important aspects in any nuclear facility . It encompasses continuous monitoring of the various areas of the facility to detect any increase in the radiation level and/or the air activity level beyond preset limits and alarm the O and M personnel working in these areas. Detection and measurement of radiation level and the air activity level is carried out by a number of monitors installed in the areas. These monitors include Area Gamma Monitors, Continuous Air Monitors, Pu-In-Air Monitors, Criticality Monitors etc. Traditionally, these measurements are displayed and recorded on a Central Radiation Protection Console(CRPC), which is located in the central control room of the facility. This methodology suffers from the shortcoming that any worker required to enter a work area will have to inquire about the radiation status of the area either from the CRPC or will get to know the same directly from the installed only after entering the area. This shortcoming can lead to avoidable delays in attending to the work or to unwanted exposure. The authors have designed and developed a system called Distributed Radiation Protection Console (DRPC) to overcome this shortcoming. A DRPC is a console which is located outside the entrance of a given area and displays the radiation status of the area. It presents to health physicist and the plant operators a graphic over-view of the radiation and air activity levels in the particular area of the plant. It also provides audio visual annunciation of the alarm status. Each radioactive area in a nuclear facility will have its own DRPC, which will receive as its inputs the analog and digital signals from radiation monitoring instruments installed in the area and would not only show those readings on its video graphic screen but will also provide warning messages and instructions to the personnel entering the active areas. The various DRPCs can be integrated into a Local Area Network, where the host computer can receive and process the data from all the DRPCs to form an alternative or additional Central Radiation Protection Console. The DRPC is essentially a small Computerized Data Acquisition System(CDAS) built around a panel PC. The panel PC serves as the host while an I/O system comprising a processor and I/O modules serves as the slave data acquisition system. The panel is a LCD Video monitor, which serves as the Graphical User Interface. The application software is developed on a Visual Basic 6.0 and MS Windows platform. The DRPC also includes a relay based alarm annunciation system, which provides redundancy to ensure availability of alarm status in the event of non-availability of the CDAS. (author)

  19. Internal dosimetry for radiation protection

    International Nuclear Information System (INIS)

    The International Commission on Radiological Protection (ICRP) issued a major revision to its basic recommendation in 1977 (ICRP, 1977). These revisions resulted in a need to revise the documents dealing with radiation protection produced by other organizations [International Atomic Energy Agency, (IAEA)]. The revised recommendations, and updated metabolic models and dosimetric procedures also led to a review by ICRP of the concepts used in internal dosimetry and of its recommendation on internal dosimetry models and model parameters. This paper reviews the concepts, models, and model parameters used in that review, and describes how they can be used in internal contamination monitoring programs. Included in this paper is reference to ongoing work in improving the models and model parameters, particularly since 1979, and to ongoing work on extending these models to include age groups other than adults

  20. Radiation survey ship banned

    International Nuclear Information System (INIS)

    Nuclear Free local authorities in Scotland have set up an environmental pollution survey to determine the radioactivity levels in parts of coastal Britain. The monitoring was to be carried out by a Russian research ship, the 'Akademik Boris Petrov'. However, because the ship is Russian and memories of the cold war die hard, the ship was banned from entering British waters. The ship is capable of detecting the presence of military warheads and nuclear reactions and so could be considered as a spying threat. (UK)

  1. Strengthening radiation protection of the infrastructure

    International Nuclear Information System (INIS)

    The author expounds the necessity of strengthening the infrastructure of radiation protection in China. It points out the following should be done: setting the law of radiation protection and the safety of radiation sources, clarifying and defining the responsibilities of the regulatory authorities, changing the situation of multiple and repeated inspection, establishing a harmonious radiation protection organization combining relative subjects, improving licences procedure of safety and fully playing the advisory role of specialists

  2. Radiation Worker Protection by Exposure Scheduling

    OpenAIRE

    Blankenbecler, Richard

    2011-01-01

    The discovery of the protective adaptive response of cells to a low dose of radiation suggests applications to radiation worker/first responder protection. Its use in cancer radiotherapy has been discussed in a separate publication. This paper describes simple changes in scheduling that can make use of these beneficial adaptive effects for protection. No increase in total exposure is necessary, only a simple change in the timing of radiation exposure. A low dose of radiation at a sufficient d...

  3. 10 CFR 20.1101 - Radiation protection programs.

    Science.gov (United States)

    2010-01-01

    ...2010-01-01 2010-01-01 false Radiation protection programs. 20.1101 Section 20...FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee...

  4. SI units in radiation protection

    International Nuclear Information System (INIS)

    In the field of radiation protection all hitherto used units for activity, activity concentrations, exposure, absorbed dose, and dose rates have to be replaced by SI units during the next years. For this purpose graphs and conversion tables are given as well as recommendations on unit combinations preferentially to be used. As to the dose equivalent, it is suggested to introduce a new special unit being 100 times greater than the rem, instead of maintaining the rem or using the gray for both absorbed dose and dose equivalent. Measures and time schedule relating to the gradual transition to SI units in measuring techniques, training, and publishing et cetera are explained. (author)

  5. Radiation protection of non-human species

    International Nuclear Information System (INIS)

    The effects of radiation on non-human species, both animals and plants, have long been investigated. In the disposal of radioactive wastes, the protection of non-human species has been investigated. Yet no radiation protection standard for exposure of animals and plants per se has been agreed. The International Commission on Radiological Protection has long taken the view that, if human beings are properly protected from radiation, other species will thereby be protected to the extent necessary for their preservation. However, the International Atomic Energy Agency has found it necessary to investigate the protection of non-human species where radioactivity is released to an environment unpopulated by human beings. It is proposed that the basis of such protection, and the knowledge of radiation effects on non-human species on which it is based, suggest a practical radiation protection standard for non-human species. (1 tab.)

  6. XXVII. Days of Radiation Protection. Conference Proceedings

    International Nuclear Information System (INIS)

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 83 papers are published

  7. XXX. Days of Radiation Protection. Presentations of the 30-th Days of Radiation Protection

    International Nuclear Information System (INIS)

    The publication was presented only on the Internet as proceedings of presentations presented on the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 97 presentations are published. The Conference consists of the following sections: Effects of ionizing radiation; Regulation of radiation protection; Dosimetry and Metrology of ionizing radiation; Radiation protection in nuclear Power plants; Medical exposure and radiation protection in diagnostic radiology, nuclear medicine and radiation oncology; Natural radioactivity issues in radiation protection; Education, societal aspects and public involvement in radiation protection, trends and perspectives

  8. Radiation protection programme progress report 1988

    International Nuclear Information System (INIS)

    The progress report of the radiation protection programme outlines the research work carried out in 1988 under contracts between the Commission of the European Communities and research groups in the Member States. Results of more than 350 projects are reported. They are grouped into six sectors: Radiation dosimetry and its interpretation; Behaviour and control of radionuclides in the environment; Nonstochastic effects of ionizing radiation; Radiation carcinogenesis; Genetic effects of ionizing radiation; Evaluation of radiation risks and optimization of protection. Within the framework programme, the aim of this scientific research is to improve the conditions of life with respect to work and protection of man and his environment and to assure a safe production of energy, i.e.: (i) to improve methods necessary to protect workers and the population by updating the scientific basis for appropriate standards; (ii) to prevent and counteract harmful effects of radiation; (iii) to assess radiation risks and provide methods to cope with the consequences of radiation accidents

  9. Radiation protection education and training in several ionising radiation applications

    OpenAIRE

    Rafecas Jorba, Immaculada

    2012-01-01

    Ionising radiation (IR) applications are quiet common among several areas of knowledge, medicine or industry. Medical X-rays, Nuclear Medicine, Xrays used in non-destructive testing or applications in research are a few examples. These radiations originate from radioactive materials or radiation emitting devices. Radiation Protection education and training (E&T) is of paramount importance to work safely in areas that imply the use of IR. The Technical Unit for Radiation Protection at the U...

  10. Radiation protection issues for EPR reactor

    International Nuclear Information System (INIS)

    As part of the EPR (European Pressurized Reactor) project being deployed at Flamanville, EDF has pro actively made the decision to focus on radiation protection Radiation Protection aspects right from the start of the design phase, as it has done with nuclear safety. The approach adopted for managing Radiation Protection-significant activities has been to include all involved stakeholders - designers, licensee and contractor companies - in the three successive phases, starting with a survey among workers and designers, followed by a proposal review, and finally ending with the decision-making phase entrusted to an ALARA committee. The Radiation Protection target set by EDF for this new reactor is to engage in an effort of continuous improvement and optimisation, through benchmarking with the best performing plants of the fleet. The collective dose target is currently set at 0.35 Man Sv/year per unit. In addition to other aspects, efforts will focus on shortening the duration of the highest-dose jobs, with a new challenge being set for work performed in the reactor building during normal operations, the aim being to improve plant availability. The plan is for work to be performed 7 days prior to shutting down the reactor and 3 days afterwards, in order to make logistical arrangements for forthcoming jobs. Without this reduction, the estimated drop is currently 4.5% of annual dose. For this purpose, two areas have been set up in the E.P.R.'s reactor building: one no-go area for containing leaks from the primary circuit, and one accessible area for normal operations, separated from the no-go area by purpose-built ventilation equipment and facilities. To offer protection against radioactive flux (neutrons and high energy), Radiation Protection studies have resulted in the installation of a concrete floor and of nuclear shielding at the outlets of primary circuit pipes. Steam generator bunkers and pumps have also been reinforced. All these measures will ensure that the accessible area can be posted as a green area (dose rate < 25 ?Sv/h), with a neutron dose rate of less than 2.5 ?Sv/h. In order to optimise radiation exposure on the EPR, efforts have focused on two parameters factored into dose calculation: dose rate and work volume exposed to radiation. The main R.P. design upgrades are improvements upon the most recent N4 plant series. In order to ensure radiological cleanliness, contamination must be contained as close to the source as possible on working units. This type of zoning is essentially aimed at enabling the plant to generate conventional waste from the radiologically controlled area in order to reduce the quantity of nuclear waste produced, to reduce nuclear waste volumes during the dismantling phase and to reduce the number of areas with a contamination risk, thereby preventing the transfer of contamination to areas outside the plant. In total, this optimisation effort has resulted in a saving of 21% when comparing the reference dose with the optimised EPR dose. A strategic priority for the EDF Group, radiation protection is gradually becoming less and less confined to the happy few, and is becoming a cross-functional area where multi-disciplinary team work is of paramount importance from the very start of the design phase. (authors)

  11. Occupational radiation protection legislation in Israel

    International Nuclear Information System (INIS)

    Various governmental agencies, including the Ministry of Health, the Ministry of Labor and the Israel AEC are responsible for the control of the use of radioactive materials and medical X-ray machines in Israel. Present legislation deals mainly with the legal aspects of the purchase, transport and possession of radioactive materials and the purchase and operation of medical X-ray machines. No legislation refers explicitly to the protection of the worker from ionizing (and non-ionizing) radiation. A special group of experts appointed by the Minister of Labor recently worked out a comprehensive draft law concerning all legal aspects of occupational radiation protection in Israel. Among the main chapters of the draft are: general radiation protection principles, national radiation protection standards, medical supervision of radiation workers, personal monitoring requirements. The present situation with regard to radiation hazard control in Israel and details of the proposed radiation protection law is discussed. (Author)

  12. Basic concepts on environmental radiation protection

    International Nuclear Information System (INIS)

    This chapter makes an overview on basic concepts of environmental radiation protection, approaching the system of protection for practices, evaluation oc the environmental radiologic impact, environmental monitoring, models and exposures pathways

  13. Radiation protection and nuclear safety training

    International Nuclear Information System (INIS)

    The main aim of radiation protection and nuclear safety training is to understand the criteria, philosophy and technical means applied. The training program adopted by the the Argentine Radiological Protection and Nuclear Safety branch of the CNEA is presented

  14. Structure and Responsibilities of Radiation Protection Centre

    International Nuclear Information System (INIS)

    Constitution of Radiation Protection Centre (RPC) in Lithuania is presented. RPC was established in 1997, in 1999 the Government granted the status of the regulatory authority of Lithuania on radiation protection issues. Currently there are two departments at RPC: two in Vilnius - Department of Radiation Protection Supervision and Control and Department of Programs and Expertise, and four in the districts. Main tasks of RPC are listed

  15. Radiation protection in nuclear energy. V.1

    International Nuclear Information System (INIS)

    The conference was convened to provide a forum for the exchange of international views on the principles of radiation protection for regulators and practitioners, to highlight issues of current importance, to examine the problems encountered in applying the principles of radiation protection, and, where possible, to identify generic solutions. A special session entitled ''The dose-response relationship: implications for nuclear energy'', and a panel on ''Radiation protection education and training'' were included in the conference programme. Refs, figs and tabs

  16. 33. Days of Radiation Protection. Presentations

    International Nuclear Information System (INIS)

    The publication has been set up as presentations of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on the current problems in radiation protection and radioecology. On the web-page totally 103 presentations or posters are published. The Conference consists of the following sections: (I) Effects of ionizing radiation (radiology, health effects, risk factors); (II) General aspects of radiation protection (recommendations and legislative in radiation protection); (III): Dosimetry and metrology of ionizing radiation (metrology, instrumentation, use of computational methods); (IV) Radiation protection in nuclear power industry (working environment in the nuclear industry, the impact on the environment, nuclear power shutdown management); (V) Emergency management (emergencies, accidents, waste); (VI) Radiation load and protection in diagnostics, nuclear medicine and radiation oncology (burden on patients, staff, size of population exposure from medical sources of ionizing radiation, security, and quality control, optimization); (VII) Natural sources of radiation in workplaces and the environment (radon and other radionuclides, the risk estimation, optimization); (VIII) Education (new trends in education of radiation experts, medical physicists and stake-holders).

  17. Medical Ethics and Protection from Excessive Radiation

    International Nuclear Information System (INIS)

    Among artificial sources of ionic radiation people are most often exposed to those emanating from X-ray diagnostic equipment. However, responsible usage of X-ray diagnostic methods may considerably reduce the general exposure to radiation. A research on rational access to X-ray diagnostic methods conducted at the X-ray Cabinet of the Tresnjevka Health Center was followed by a control survey eight years later of the rational methods applied, which showed that the number of unnecessary diagnostic examining was reduced for 34 % and the diagnostic indications were 10-40 $ more precise. The results therefore proved that radiation problems were reduced accordingly. The measures applied consisted of additional training organized for health care workers and a better education of the population. The basic element was then the awareness of both health care workers and the patients that excessive radiation should be avoided. The condition for achieving this lies in the moral responsibility of protecting the patients' health. A radiologist, being the person that promotes and carries out this moral responsibility, should organize and hold continual additional training of medical doctors, as well as education for the patients, and apply modern equipment. The basis of such an approach should be established by implementing medical ethics at all medical schools and faculties, together with the promotion of a wider intellectual and moral integrity of each medical doctor. (author)

  18. New general radiation protection training course

    CERN Multimedia

    2008-01-01

    Some members of CERN personnel, users included, may have to work in supervised or controlled radiation areas, or may be concerned with activities involving the use of radioactive sources. According to CERN Safety rules all persons whose work may encounter ionising radiation risk must be adequately trained. This training must ensure that workers are informed about the potential health risks which could result from radiation exposure, about the basic principles of radiation protection and of the relevant radiation protection regulations as well as about safe working methods and techniques in radiation zones. Therefore the Organization organises mandatory general and work-specific radiation protection (RP) courses addressed to its personnel. These courses are also open to contractors’ personnel, in addition to the RP training they must receive from their employers. Based on the results of a pilot project, an improved general radiation protection course has been prepared. This...

  19. New general radiation protection training course

    CERN Multimedia

    2008-01-01

    Some members of CERN personnel, including users, may have to work in supervised or controlled radiation areas, or may be involved in activities involving the use of radioactive sources. According to CERN Safety Rules all persons whose work may be associated with ionising radiation risk must be adequately trained. This training must ensure that workers are informed about the potential health risks which could result from radiation exposure, the basic principles of radiation protection and the relevant radiation protection regulations as well as safe working methods and techniques in radiation zones. Therefore the Organization organises mandatory general and work-specific radiation protection (RP) courses for its personnel. These courses are also open to contractors’ personnel, in addition to the RP training they must receive from their employers. Based on the results of a pilot project, an improved general radiation protection course has been prepared. This new ½ day cours...

  20. Radiation protection in dental surgery: regulation approach

    International Nuclear Information System (INIS)

    This work deals with the regulatory aspects and measures of radiation protection in dental surgery in order to reduce the exposure of patients and surgeons to ionizing radiations during the use of radiographic apparatuses. (J.S.)

  1. The Radiation Protection Service in Asuncion

    International Nuclear Information System (INIS)

    This report details the activities of radiation protection services concerning radioisotopes, personal monitoring and film dosimetry service. Historical, organizational and regulatory aspects are also covered. (author)

  2. Radiation protection activities and status in Asia

    International Nuclear Information System (INIS)

    The status of radiation protection practices in Asian countries is monitored by different means, e.g. the IAEA technical cooperation activities, by an overall assessment of conditions in a country by RAPAT missions, and on the basis of data collected through various regional activities. The radiation protection situation in Asia is very heterogeneous. There is a group of countries with very well developed radiation protection practices and advanced in the application of the Basic Safety Standards, but the majority of Asian member states still need improvement, several lacking the necessary fundamental infrastructure for radiation protection

  3. Nevada Test Site Radiation Protection Program

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  4. Radiation protection in the Brazilian universities

    International Nuclear Information System (INIS)

    A research covering 91 institutions was undertaken in order to elucidate how radiation protection were indeed fulfilled. A questionary including technical administrative and legal subjects was sent by mail and 36% of which were answered propitiating substantial data for analysis. Only in few cases universities have knowledge of basic procedures in radiation protection, claiming for the elaboration of a plan that could guide supervisors and workers in radiation protection in these institution. Based on the tree analysis technique proposed by IAEA, a Reference Radiation protection Program has been elaborated and proposed for Brazilian universities. (author). 14 refs, 1 figs

  5. Computer applications in radiation protection

    International Nuclear Information System (INIS)

    Computer applications in general and diagnostic radiology in particular are becoming more widespread. Their application to the field of radiation protection in medical imaging, including quality control initiatives, is similarly becoming more widespread. Advances in computer technology have enabled departments of diagnostic radiology to have access to powerful yet affordable personal computers. The application of databases, expert systems and computer-based learning is under way. The executive information systems for the management of dose and QA data that are under way at IRS are discussed. An important consideration in developing these pragmatic software tools has been the range of computer literacy within the end user group. Using interfaces have been specifically designed to reflect the requirements of many end users who will have little or no computer knowledge. (Author)

  6. Manual on radiation protection in hospitals and general practice. Basic protection requirements

    International Nuclear Information System (INIS)

    The manual as a whole deals with the radiation protection of patients, occupationally exposed persons, and the public. Volume 1, on basic protection requirements, is a general review common to all medical applications of ionizing radiation and radionuclides. Radiation protection is required for patients and staff, and with regard to medical research and chemical trials of new methods; radiation equipment and operating procedures are discussed in connection with diagnostic x-ray installations, x-ray beam therapy, gamma-ray installations for teletherapy, brachytherapy, unsealed sources for therapeutic use, and the diagnostic use of unsealed sources in nuclear medicine. In planning of radiation facilities, attention is paid to levels at which medical care is given, the centralization and decentralization of radiation facilities, diagnostic x-ray facilities and therapy facilities, and nuclear medicine and therapy with unsealed sources. Shielding design is discussed applicable to diagnostic radiology, radiotherapy, nuclear medicine and the therapeutic use of radionuclides. Assignment of responsibilities, legal responsibilities, safety checks, refresher courses and symposia are discussed in the context of organizing radiation protection. Radiation surveys are necessary, and such surveys are described for x-ray and gamma-ray beams, sealed radioactive sources and nuclear medicine. A whole section is devoted to personnel monitoring and health surveillance. An annex gives a list of commonly used radionuclides, another deals with the design of protective shielding

  7. 100 years of ionizing radiation protection

    International Nuclear Information System (INIS)

    The development of radiation protection from the end of 19. century and evolution of opinion about injurious effect of ionizing radiation were presented. Observations of undesirable effects of ionizing radiation exposition, progress of radiobiology and dosimetry directed efforts toward radiation protection. These activities covered, at the beginning, limited number of persons and were subsequently extended to whole population. The current means, goals and regulations of radiological control have been discussed

  8. Basic principles of radiation protection in Canada

    International Nuclear Information System (INIS)

    The major goal of radiation protection in Canada is to ensure that individuals are adequately protected against the harm that might arise from unwarranted exposure to ionizing radiation. This report deals with the basic principles and organizations involved in protection against ionizing radiation. Three basic principles of radiation protection are: 1) that no practice shall be adopted unless its introduction produces a positive net benefit for society, 2) that all exposures shall be kept as low as reasonably achievable, relevant economic and social factors being taken into account, and 3) that doses to individuals should not exceed specified annual limits. The limit for radiation workers is currently 50 mSv per year, and exposures of the general public should not exceed a small fraction of that of radiation workers. Other specific areas in radiation protection which have received considerable attention in Canada include limitations on collective dose (the sum of the individual doses for all exposed individuals), exemption rules for extremely small radiation doses or amounts of radioactive materials, occupational hazards in uranium mining, and special rules for protection of the foetus in pregnant female radiation workers. Implementation of radiation protection principles in Canada devolves upon the Atomic Energy Control Board, the Department of National Health and Welfare, provincial authorities, licensees and radiation workers. A brief description is given of the roles of each of these groups

  9. Radiation Protection Group annual report (1997)

    International Nuclear Information System (INIS)

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1997. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  10. Principles of radiation protection in medical thinking

    International Nuclear Information System (INIS)

    The authors consider the issue of principles of radiation protection in medicine as being of great interest for the following reasons: health care practitioners exposed to ionizing radiation represent 75% of all world-wide radiation exposed workers; they are also the ones who, by their radiological practice lead to medical exposure of the population (which represents the largest part among artificial exposure to ionizing radiation of the public - about 11%); the superior medical staff are the advisors and prescribers for radiological investigations and treatments. The authors' experience shows that training in radiation protection system is weak, leading sometimes to abusive use of ionizing radiation in both diagnostic and treatment. Medical staff's perception on the importance and role of radiation protection principles is sometimes distorted by unskilled backgrounds in the field. There are recommendations and regulations on radiation protection principles in the relevant legislation, but there are situations in which they are formally considered, or they are regarded as an obligation and not as a form of personal and patient protection. At a national level, the expansion of informing the public about the principles of radiation protection and its role is required by introducing a corresponding training since elementary school. A beneficial aspect that has developed recently is the introduction of radiation protection courses within university and postgraduate training. They are important for a correct and updated training on the principles of radiation protection, a field in which there are permanent updates and changes, and new concepts are set, such as the 'culture of radiation protection'. Medical thinking and medical research have had a contribution on developing and upgrading the radiation protection principles. (authors)

  11. Status of radiation protection at different hospitals in Nepal

    International Nuclear Information System (INIS)

    Nepal has a long history of medical radiology since 1923 but unfortunately, we still do not have any radiation protection infrastructure to control the use of ionizing radiations in the various fields. The objective of this study was an assessment of the radiation protection in medical uses of ionizing radiation. Twenty-eight hospitals with diagnostic radiology facility were chosen for this study according to patient loads, equipment and working staffs. Radiation surveys were also done at five different radiotherapy centers. Questionnaire for radiation workers were used; radiation dose levels were measured and an inventory of availability of radiation equipment made. A corollary objective of the study was to create awareness in among workers on possible radiation health hazard and risk. It was also deemed important to know the level of understanding of the radiation workers in order to initiate steps towards the establishment of Nepalese laws, regulation and code of radiological practice in this field. Altogether, 203 radiation workers entertained the questionnaire, out of which 41 are from the Radiotherapy and 162 are from diagnostic radiology. The radiation workers who have participated in the questionnaire represent more than 50% of the radiation workers working in this field in Nepal. Almost all X-ray, CT and Mammogram installations were built according to protection criteria and hence found safe. Radiation dose level at the reference points for all the five radiotherapy centers are within safe limit. Around 65% of the radiation workers have never been monitored for radiation. There is no quality control program in any of the surveyed hospitals except radiotherapy facilities. (author)

  12. Biological research for radiation protection

    International Nuclear Information System (INIS)

    The work scope of Biological research for the radiation protection had contained the search of biological microanalytic methods for assessing the health effect by ?-radiation and toxic agents, the standardization of human T-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in the hypoxanthine (guanine) phosphoribosyl transferase (HPRT) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods using reverse transcriptase has been developed to analyze the mutant gene induced by ?-radiation and chemical (pentachlorophenol) agent exposure, and to investigate the point mutations in the HPRT gene locus of T-lymphocytes. The HPRT T-cell clonal assay revealed that it could not differentiate ?-irradiation from pentachlorophenol, because the frequency of somatic mutations induced by both damaging agents increased in a dose-dependent manner. The analysis of DNA sequence alterations of HPRT mutant clones clearly showed that both damaging agents induced different mutational spectra in the HPRT locus of T-cells. The large deletions, which account for 75 percent of the analyzed mutants, are characteristic mutations induced by ?-irradiation. By contrast, point mutations such as base substitutions and insertion, come up to 97 percent in the case of pentachlorophenol-treated cells. The point mutation frequencies at 190 base pair and 444 base pair positions are 3-6 folds as high as in those at other mutation positions. It may be that these mutation sites are hot spots induced by pentachlorophenol. These results suggest that the HPRT mutation spectrum can be used as a potential bio marker for assessing a specific environmental risk. (author)

  13. Biological research for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kug Chan; Shim, Hae Won; Oh, Tae Jeong; Park, Seon Young; Lee, Kang Suk

    2000-04-01

    The work scope of Biological research for the radiation protection had contained the search of biological microanalytic methods for assessing the health effect by {gamma}-radiation and toxic agents, the standardization of human T-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in the hypoxanthine (guanine) phosphoribosyl transferase (HPRT) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods using reverse transcriptase has been developed to analyze the mutant gene induced by {gamma}-radiation and chemical (pentachlorophenol) agent exposure, and to investigate the point mutations in the HPRT gene locus of T-lymphocytes. The HPRT T-cell clonal assay revealed that it could not differentiate {gamma}-irradiation from pentachlorophenol, because the frequency of somatic mutations induced by both damaging agents increased in a dose-dependent manner. The analysis of DNA sequence alterations of HPRT mutant clones clearly showed that both damaging agents induced different mutational spectra in the HPRT locus of T-cells. The large deletions, which account for 75 percent of the analyzed mutants, are characteristic mutations induced by {gamma}-irradiation. By contrast, point mutations such as base substitutions and insertion, come up to 97 percent in the case of pentachlorophenol-treated cells. The point mutation frequencies at 190 base pair and 444 base pair positions are 3-6 folds as high as in those at other mutation positions. It may be that these mutation sites are hot spots induced by pentachlorophenol. These results suggest that the HPRT mutation spectrum can be used as a potential bio marker for assessing a specific environmental risk. (author)

  14. Sense and purpose of radiation protection training

    International Nuclear Information System (INIS)

    Training in radiation protection is of great significance in connection with the activities of the executive, the federal army and emergency organizations in emergency operations for the protection of the population in the case of large-scale radioactive contamination due to diverse causes. The presently valid legal situation of radiation protection training is presented in connection with the expected modification in the amendment to the SSVO. The special situation of radiation protection training for the executive, the federal army and emergency organizations is described and discussed in connection with the new aspects outlined in the draft of the new radiation protection regulation. In conclusion, problems arising in the conveyance of basic knowledge in radiation protection are illustrated by means of a concrete example. (author)

  15. Radiation protection and safety infrastructures in Albania

    International Nuclear Information System (INIS)

    The paper intends to present the evolution and actual situation of radiation protection and safety infrastructure in Albania, focusing in its establishing and functioning in accordance with BBS and other important documents of specialized international organizations. There are described the legal framework of radiation safety, the regulatory authority, the services as well the practice of their functioning. The issue of the establishing and functioning of the radiation safety infrastructure in Albania was considered as a prerequisite for a good practices development in the peaceful uses of radiation sources . The existence of the adequate legislation and the regulatory authority, functioning based in the Basic Safety Standards (BSS), are the necessary condition providing the fulfilment of the most important issues in the mentioned field. The first document on radiation protection in Albania stated that 'for the safe use of radiation sources it is mandatory that the legal person should have a valid permission issued by Radiation Protection Commission'. A special organ was established in the Ministry of Health to supervise providing of the radiation protection measures. This organization of radiation protection showed many lacks as result of the low efficiency . The personnel monitoring, import, transport, waste management and training of workers were in charge of Institute of Nuclear Physics (INP). In 1992 an IAEA RAPAT mission visited Albania and proposed some recommendations for radiation protection improvements. The mission concluded that 'the legislation of the radiation protection should be developed'. In 1995 Albania was involved in the IAEA Model Project 'Upgrading of Radiation Protection Infrastructure'. This project, which is still in course, intended to establish the modern radiation safety infrastructures in the countries with low efficiency ones and to update and upgrade all aspects related with radiation safety: legislation and regulations, regulatory authority, radiation sources control, occupational, medical and public exposures, emergency response and preparedness, etc. (author)

  16. A Model for Protective Behavior against the Harmful Effects of Radiation based on Medical Institution Classifications

    International Nuclear Information System (INIS)

    This study surveyed a total of 1,322 radiation technologist in health care institutions throughout Korea. This is a comparative study conducted on the levels of protective behavior against the harmful effects of radiation in heath care institutions which indicated that university hospitals and general hospitals showed higher level of protective behavior than for medical practitioners. This study found university hospitals have the following 7 characteristics to manage protective behavior against the harmful effects of radiation, protective environment, self-efficacy by distinction of task , self-efficacy, expectation of the protective behavior, the number of patients, level of the education related to the protection of the harmful effects of radiation and protective attitude. While general hospitals have the following 3 characteristics protective environment, expectation of the protective behavior and protective attitude. Hospitals have the following 4 characteristics protective environment, expectation of the protective behavior, protective attitude and self-efficacy and medical clinics have characteristics protective environment

  17. Project Radiation protection, Annual report 1994

    International Nuclear Information System (INIS)

    According to the action plan for the period 1991-1995, the main objective of this project during 1994 was to provide operational basis, methods and procedures for solving the radiation protection problems that might appear under routine working conditions and handling of radiation sources. The aim was also to provide special methods for action in case of accidents that could affect the employed staff and the population. Overall activity was directed to maintaining and providing personnel, instrumentation, and methods for the following special radiation protection measures: operational control of the radiation field and contamination; calibration of the radiation and dosimetry instruments-secondary dosimetry metrology laboratory; instrumentation and measuring systems for radiation protection; control of environmental transfer of radioactive material; medical radiation protection

  18. Radiation protection is international. The role of IRPA as world-wide radiation protection organization

    International Nuclear Information System (INIS)

    Compared with other international organisations equally dealing with various aspects of radiation protection, IRPA is distinguished by its basic democratic structure of individual members, and by its exclusive concentration on the scientific and practical implications of radiation protection. IRPA recognizes as main tasks presently the promotion of communication, education and setting of professional standards in radiation protection worldwide. (orig.)

  19. Summary of radiation protection in exploitation

    International Nuclear Information System (INIS)

    This document proposes a large and detailed overview of notions and practices regarding radiation protection in relationship with an NPP exploitation framework. It presents the main notions: matter structure, radioactivity, interactions between matter and radiations, types of ionizing radiation, magnitudes and measurement units, exposure modes, main principles of radiation protection, means of protection against internal and external exposures. The second part proposes an overview of the origin of radiological risks in a nuclear power plant. This origin can be found in fission products, activation products, actinides, designed protections, or circuit contaminations. These radiological risks are more precisely identified and described in terms of detection and prevention (internal exposure risk, contamination risk, iodine-related risk, alpha radiation-related risk, access to the reactor building). The next part addresses the medical and radiological follow-up of exposed workers by a special medical control, by an individual exposure control, by a specific control of female personnel, and by attention to exceptional exposures. Measurement means are presented (detection principles, installation continuous control, workspaces control, personnel contamination control, follow-up of individual dose) as well as collective and individual protection means. The management of radiation protection is addressed through a presentation of decision and management structures for radiation protection, and of EDF objectives and ambitions in this domain. The organization of radiation protection during exploitation is described: responsibilities for radiation protection in a nuclear power station, requirements for workers, preparation of interventions in controlled zone, work execution in controlled zone, zone controls and radiological cleanness of installations. The two last chapters address issues and practices of radiation protection in the case of deconstruction or dismantling, and in the case of transportation of radioactive materials and objects. Appendices contain information of biological effects of ionizing radiations, main regulatory texts, and involved international and French bodies

  20. Radiation protection calculations for diagnostic medical equipment

    International Nuclear Information System (INIS)

    The standards DIN 6812 and DIN 6844 define the radiation protection requirements to be met by biomedical radiography equipment or systems for nuclear medicine. The paper explains the use of a specific computer program for radiation protection calculations. The program offers menu-controlled calculation, with free choice of the relevant nuclides. (DG)

  1. An introduction to radiation protection principles

    International Nuclear Information System (INIS)

    The fundamentals of radiation hazards and their control are outlined. This report is for use by all radiation workers at CRNL and copies are available for all who want one. The purposes of the document are to outline the fundamentals of radiation protection, to describe methods that enable employees to work safely with radiation and to acquaint employees with the CRNL radiation and industrial safety organization

  2. Radiation protection for nurses. Regulations and guidelines

    International Nuclear Information System (INIS)

    Rules and regulations of federal agencies and state radiation protection programs provide the bases for hospital policy regarding radiation safety for nurses. Nursing administrators should work with the radiation safety officer at their institutions to ensure that radiation exposures to staff nurses will be as low as reasonably achievable and that special consideration will be given to pregnant nurses. Nurses' fears about their exposure to radiation can be greatly reduced through education

  3. SI units in radiation protection

    International Nuclear Information System (INIS)

    International System of Units abbreviated as SI Units has been adopted by most of the countries of the world. Following this development, the implementation of SI units has become mandatory with a transition period of about ten years. Some of the journals have already adopted the SI units and any material sent for publication to them must use only these. International Commission on Radiation Units and Measurement (ICRU) published letters in several journals including 'Physics in Medicine and Biology', 'Health Physics', 'British Journal of Radiology', etc. outlining the latest recommendations on SI units to elicit the reactions of scientists in the general field of radiological sciences. Reactions to the letters were numerous as can be seen in the correspondence columns of these journals for the last few years and ranged from great misgivings and apprehension to support and appreciation. SI units have also been the subject of editorial comments in several journals. On the basis of a survey of this literature, it may be said that there was general agreement on the long term advantage of SI units inspite of some practical difficulties in their use particular in the initial stages. This report presents a review of SI units in radiological sciences with a view to familiarize the users with the new units in terms of the old. A timetable for the gradual changeover to the SI units is also outlined. (author)

  4. SI units in radiation protection

    International Nuclear Information System (INIS)

    International System of Units abbreviated as SI units has been adopted by most of the countries of the world. Following this development, the implementation of SI units has become mandatory with a transition period of about ten years. Some of the journals have already adopted the SI units and any material sent for publication to them must use only these. International Commission on Radiation Units and Measurement (ICRU) published letters in several journals including Physics in Medicine and Biology, Health Physics, British Journal of Radiology, etc. outlining the latest recommendations on SI units to elicit the reactions of scientists in the general field of radiological sciences. Reactions to the letters were numerous as can be seen in the correspondence columns of these journals for the last few years and ranged from great misgivings and apprehension to support and appreciation. SI units have also been the subject of editorial comments in several journals. On the basis of a survey of this literature, it may be said that there was general agreement on the long term advantage of SI units inspite of some practical difficulties in their use particularly in the initial stages. This report presents a review of SI units in radiological sciences with a view to familiarize the users with the new units in terms of the old. A time table for the gradual changeover to the SI units is also outlined. (auth.)

  5. Justification and optimization in radiation protection

    International Nuclear Information System (INIS)

    Two requirements of the system recommended by the ICRP for radiation protection are discussed: 1) justification of practices involving radiation exposures and 2) optimization of the level of protection for such practices. The ICRP recommended the use of cost-benefit analysis in justification and optimization. The application of cost-benefit analysis and the quantification of the radiation detriment are also discussed. (H.K.)

  6. Preparing the radiation protection worker to meet multiple needs

    International Nuclear Information System (INIS)

    At the Oak Ridge National Laboratory (ORNL) the radiation protection worker aids in protecting personnel and their surrounding environment from the hazards of radiation. These individuals use their technical knowledge, skills, and abilities to survey and monitor various project-related activities. They must also provide guidance in project design, development, and implementation. These combined efforts assure that protective measures are taken in accordance with applicable standards. The ORNL performance-based training program enhances the skills of the worker. The program incorporates job specific information on the diverse facilities and activities monitored with basic fundamentals of radiation protection. Successful completion of this program includes passing both a qualification exam and an on-the-job skills review. This paper details the structure of such a program and explains the strategies taken to reach the program's goals. 4 refs., 2 tabs

  7. Educational system in the radiation protection

    International Nuclear Information System (INIS)

    A general characteristic of the existing university plans and programs is a partial approach to radiation protection without a unique frame on the basis of which, certain colleges could adjust their distinctive characteristics and could analyze this multidisciplinary field which is present in our contemporary lives. We must seriously take into account the consequences of our 'ignorance' towards this field. The present 'disorganized state' in the educational system concerning radiation protection, when many professions are 'fighting' for leading roles and 'exclusive rights' in applying measures for radiation protection: physicians, chemists, doctors and others, must be regulated on international and national scales by applying powerful authority of international organizations. The key to solving this problem is found in defining minimal common bases of educational plans and programs from the field of radiation protection that would be unique for all colleges that are directly or indirectly connected to this domain. The following step could be made towards organizing specialist and graduate studies at university levels for all schools that have incorporated basis for radiation protection into their plans and programs. Lastly, as special form of continuous education in the field of radiation protection , multidisciplinary basic and specialized courses should be organized internationally intended to solve specific problems of utilization of ionising radiation sources and integral radiation protection. (author)

  8. The surveying of radiation environments

    International Nuclear Information System (INIS)

    A number of conceptual frameworks have been suggested for relating the results of an environmental survey to personal dose. Environmental parameters such as exposure, MADE and dose index have been defined by international committees, others such as maximum permissible fluence and dose ceiling have been suggested in the open literature. These approaches can be shown to fall into two groups. In one group the survey parameters are additive, accurately measurable, but not directly related to peak dose equivalent in the body, whereas in the other they are neither measurable nor additive but are directly related to peak dose equivalent. The advantages and disadvantages of the two approaches are discussed and contrasted. In application to a specific radiation environment it can be shown that one type of approach can (and frequently does in practice) lead to significant over-estimation of personal dose

  9. Radiobiology and radiation protection: relationship and problems

    International Nuclear Information System (INIS)

    The mutual relationships between radiobiology and radiation protection are discussed. Viewed from this standpoint are questions connected with the possibility for extrapolating of animal radiobiological data to man. Consideration is given to the possibility for substantiating the radiation protection standards in normal and accidental situations. Also dealt with is the issue of applicability of 'dose-response' and 'response-time' relationships in substantiating the limiting levels for radiation exposure to workers and the general public. The problem of determining limiting levels for decision making in the event of radiation accident based on radiobiological and epidemiological data is also examined. A major question concerns utilization, based on radiobiological experimental evidence, of various types of radioprotectors in view of meeting the needs of radiation protection. Based on radiobiological and epidemiological data, an assessment is also made of the radiation risk entailing human exposure to low-level and high-level radiation. (author)

  10. Using of ionizing radiation in environment protection

    International Nuclear Information System (INIS)

    In this paper, there is given the review of application of the radiation chemistry techniques in the environment protection . Using of sources of ionization radiation in underground water, drinking water and waste waters as well as in exhaust gases radiation processing and treatment are reviewed

  11. Radiation protection around high energy proton accelerators

    International Nuclear Information System (INIS)

    Proton accelerators are intense radiation sources because of the particle beam itself, secondary radiation and structure activation. So radiation protection is required around these equipment during running time but even during downtime. This article presents some estimated values about structure and air activation and applies the Moyer model to get dose rate behind shielding. (A.C.)

  12. Rules and regulations of radiation protection

    International Nuclear Information System (INIS)

    The finality of this legislative text is to guarantee the radiation protection of the exposed personnel, of the people in general and the environment against the ionizing radiations risks. Its scope includes all the natural and juridical persons that work with ionizing radiation sources into the peruvian territory

  13. Comments to the German society's for radiation protection (Gesellschaft fur Strahlenschutz) proposed principles for radiation protection

    International Nuclear Information System (INIS)

    The German Society for Radiation Protection (in German Gesellschaft fur Strahlenschutz) is a separate society for radiation protection in Germany in addition to the leading society named Association of German and Swiss Radiation Protection Specialists (in German Fachverband fur Strahlenschutz). The Society is an international professional society. There are several hundreds members of the German Society for Radiation Protection. The German Society for Radiation Protection is not a member of IRPA (the International Radiation Protection Society). The IRPA member is the Association of German and Swiss Radiation Protection Specialists. According to information given on the web site of the Society for Radiation Protection (www.gfstrahlenschutz.de) the Society was founded in 1990 because in the opinion of the founding members the older professional societies and associations have not adequately considered and implemented the present knowledge of radiation risks and radiation protection. In accordance with its statutes the society pursues besides other aims the best possible protection of humans and the environment from the detrimental action of ionising and non-ionising radiation. The dealing with ionising and non-ionising radiation can according to the Society only be justified on the basis of biological and medical state of the art knowledge

  14. An outlook to radiation protection development

    International Nuclear Information System (INIS)

    Radiation protection and safety have developed over many decades as the effects of ionizing radiation have been better and better understood. Some events in the last decade had essential impact on radiation protection policy/philosophy and related safety standards. Among them are available data of some long term radio-epidemiological studies of populations exposed to radiation. Investigations of the survivors of the atomic bombing of Hiroshima and Nagasaki illustrated that exposure to radiation has also a potential for the delayed induction of malignancies. They also showed that irradiation of pregnant women may result with certain mental damage in foetus. Several big radiation accidents which appeared in the last decade also had an impact on developments in radiation protection philosophy and practices. A well known Chernobyl accident showed that limited knowledge was available at the time of the accident on transfer of radionuclides in a specific environment, radioecological effects and pathways of highly radioactive atmospheric precipitation generated during the accident on various components of the environment. New scientific data indicated also that in some parts of human environment there are measurable effects of chronic exposure resulting from natural radiation. UNSCEAR is periodically publishing the most valuable set of data as compilation, and disseminates information on the health effects of radiation and on levels of radiation exposure due to different sources. These data are also the best guidelines for the necessary improvements and updating of radiation protection practices and philosophies. The latest ICRP-60 publication and recently issued International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources are reflecting many of the above mentioned findings. On the other hand the use of radiation sources is increasing day by day, and many new facilities applying radiation in radiotherapy, radiodiagnostic, nuclear medicine, industry, agriculture and hydrology were established. This increases the number of people involved in radiation practices and requires additional attention to regulators

  15. Implementation of the Radiation Protection Ordinance

    International Nuclear Information System (INIS)

    Implementation of the radiation protection ordinance. Here: Radiation protection guidelines for the use of radioactive substances and the operation of apparatus for the generation of ionizing radiation and of irradiation devices with radioactive sources in medical therapy (Radiation Protection guideline in nuclear medicine). Meeting of Laender committee on nuclear energy-Radiation protection - October 6/7, 1992. The guidelines refer to the following subjects: 1) Application of unsealed radioactive substances for examination and treatment of man, 2) Application of sealed radioactive substances for medical examinations (bone density scanning e.g.). 3) Application of sealed radioactive substances for interstitial and intracavitary treatment or contact therapy, and for implantations. 4) Application of sealed radioactive substances in irradiation equipment for brachytherapy (medical, remote-controlled after loading sytems). 5) Application of sealed radioactive substances in gamma radiation equipment for radiation therapy (teletherapy). 6) Operation of systems for the generation of ionizing radiation for radiation therapy (teletherapy) (as e.g. electron accelerators, neutron generators, cyclotrons). The guidelines also are applicable to quality assurance in the application of radioactive substances, in the operation of systems and equipment for the generation of ionizing radiation, in nuclear medicine and in radiation therapy. (orig./HP)

  16. Environmental radiation protection. The new ICRP concept

    International Nuclear Information System (INIS)

    Protection of the environment regarding radiation protection was so far reduced to the concept: if man is protected the environment is protected well enough. This was derived from the radiosensitivity curve, according to which highly developed organisms are more sensible to radiation than less highly developed. ICRP publication 103 put this simple concept in question. Even before, ICRP set up a committee to discuss this theme. End of 2012 ICRP released a new concept of environmental protection regarding different exposure situations and brought it up for discussion in the internet. This concept is based on Reference Animals and Plants (RAPs) and analogous to the concept of the protection for man. The exposure for representative organisms regarding ionizing radiation shall be estimated and compared with Derived Consideration Reference Levels (DCRLs). If the DCRLs are reached or exceeded there is a need to react. This concept raises several questions. (orig.)

  17. Improving patient radiation protection in medical practices

    International Nuclear Information System (INIS)

    A number of severe radiation protection accidents have occurred in France in recent months in radiotherapy departments, resulting in serious pathologies among the exposed patients and the death of one person. These accidents, allied to the fact that use of ionizing radiation for medical purposes is the leading source of human exposure, justify the priority the A.S.N. gives to radiation protection of patients and its supervision. This file gathers four parts in relation with radiation protection in the medical field. he first one concerns the radiation accidents and the lessons learned from them. The second part is devoted to the point of view of medical actors. The third part is in relation with the challenges of new techniques. The last part concerns the exposures and the radiation doses. (N.C.)

  18. Radiation Protection at Light Water Reactors

    CERN Document Server

    Prince, Robert

    2012-01-01

    This book is aimed at Health Physicists wishing to gain a better understanding of the principles and practices associated with a light water reactor (LWR) radiation protection program. The role of key program elements is presented in sufficient detail to assist practicing radiation protection professionals in improving and strengthening their current program. Details related to daily operation and discipline areas vital to maintaining an effective LWR radiation protection program are presented. Programmatic areas and functions important in preventing, responding to, and minimizing radiological incidents and the importance of performing effective incident evaluations and investigations are described. Elements that are integral in ensuring continuous program improvements are emphasized throughout the text.

  19. Blended learning specialists in radiation protection

    International Nuclear Information System (INIS)

    In this paper, we present a blended learning Radiation Protection Technician through an approved degree from the Polytechnic University of Valencia, which covers the knowledge and skills of functions relating to operators and supervisors in various areas and skilled workers to be to perform their work in technical units or Radiation Protection Radiation Protection Services. The benefits of this work are those related to achieving quality training flexible and adapted to follow the check off the person conducting the course, adapted to internal and external training of the applicant companies.

  20. Radiation protection in occupational health

    International Nuclear Information System (INIS)

    The document is a training manual for physicians entering the field of occupational medicine for radiation workers. Part 1 contains the general principles for the practice of occupational health, namely health surveillance and the role of the occupational physician in the workplace, and Part 2 provides the essential facts necessary to understand the basic principles of radiation physics, radiobiology, dosimetry and radiation effects which form the basis for occupational radiation health

  1. 10 CFR 835.101 - Radiation protection programs.

    Science.gov (United States)

    2010-01-01

    ... 2010-01-01 false Radiation protection programs. 835.101 ...OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative...Requirements § 835.101 Radiation protection programs. (a) A...

  2. 10 CFR 20.2102 - Records of radiation protection programs.

    Science.gov (United States)

    2010-01-01

    ...2010-01-01 false Records of radiation protection programs. 20.2102 ...§ 20.2102 Records of radiation protection programs. (a) Each...shall maintain records of the radiation protection program, including:...

  3. Radiation protection training of radiation safety officers in Finland in 2008

    International Nuclear Information System (INIS)

    The Radiation and Nuclear Safety Authority (STUK) carried out a survey on the radiation protection training of radiation safety officers (RSO) in Finland in 2008. The aim of the survey was to obtain information on the conformity and uniformity of the training provided in different training organisations. A previous survey concerning radiation protection training was carried out in 2003. That survey determined the training needs of radiation users and radiation safety officers as well the radiation protection training included in vocational training and supplementary training. This report presents the execution and results of the survey in 2008. According to the responses, the total amount of RSO training fulfilled the requirements presented in Guide ST 1.8 in the most fields of competence. The emphasis of the RSO training differed between organisations, even for training in the same field of competence. Certain issues in Guide ST 1.8 were dealt quite superficially or even not at all in some training programmes. In some fields of competence, certain matters were entirely left to individual study. No practical training with radiation equipment or sources was included in the RSO training programme of some organisations. Practical training also varied considerably between organisations, even within the same field of competence. The duties in the use of radiation were often considered as practical training with radiation equipment and sources. Practical training from the point of view of a radiation safety officer was brought up in the responses of only one organisation. The number of questions and criteria for passing RSO exams also varied between organisations. Trainers who provided RSO training for the use of radiation in health care sectors had reached a higher vocational training level and received more supplementary training in radiation protection in the previous 5 years than trainers who provided RSO training for the use of radiation in industry, research, and education and training. Those trainers who had received no supplementary training or whose supplementary training was not known were more involved in training for the industrial, research, and education and training sectors than for the health care sectors. Experiences with and feedback on Guide ST 1.8 and its applicability were also collected in this survey. The results of the survey and feedback will be used when Guide ST 1.8 is revised. (orig.)

  4. Radiation protection in the hospital environment

    International Nuclear Information System (INIS)

    The hospital environment contains numerous sources of ionizing radiation that may contribute to public and occupational radiation exposure. Radiation exposure from x rays is minimized through engineering design, administrative controls, and quality control. Exposure from patients that contain therapeutic quantities is minimized by isolation in appropriately controlled private rooms. Administrative controls are relied on for controlling radiation exposure from diagnostic nuclear medicine patients. Hospital radiation installations must be planned and periodically reviewed to take advantage of the latest developments in radiation protection and to keep public and occupational exposure as low as reasonably achievable

  5. Radiation protection at reactors RA and RB

    International Nuclear Information System (INIS)

    Radiation protection activities at the RA and RB reactors are imposed by the existing legal regulations and international recommendations in this field. This annual report contains five parts which cover the following topics: Radiation safety, dosimetry control and technical radiation protection at reactors RA and RB; Handling of radioactive waste, actions and decontamination; Control of the environment (surroundings of RA and RB reactors) and meteorological measurements; Control of internal contamination and internal exposure; Health control od personnel exposed to radiation. Personnel as well as financial data are part of this report

  6. Radiation exposure and protection during angiography

    International Nuclear Information System (INIS)

    The authors describe the radiological techniques during angiography examinations in their hospital. For every technique they measured the radiation exposure and dose to the staff of doctors, assistants and nurses in their standard positions in the room and the radiation dose at various points on their bodies. The results are critically discussed and alternative protection devices are analysed, since there are many difficulties concerning the employ of usual radiation protection systems. Cardiologists, above all, are given some recomandations to reduce radiation exposure without prejudicing the exam results

  7. Radiation protection day - Book of abstracts

    International Nuclear Information System (INIS)

    This document brings together the abstracts of all presentations given at the Radiation protection day organised in May 2000 by the French association for radiation protection techniques and sciences (ATSR) on the topic of the new European and French radiation protection regulations and their conditions of application in hospitals. Content: 1 - Presentation of the Office of Protection against Ionizing Radiations (O.P.R.I.), status of texts and evolution, practical implementation of operational dosimetry (Alain Valero, O.P.R.I.); 2 - Presentation of the Radiation Protection Service of the Army (S.P.R.A.) and its role in French army's hospitals (Jean-Baptiste Fleutot, S.P.R.A.); 3 - 96/29 European directive and water quality - transposition in French law (Daniel Robeau, I.P.S.N. Fontenay-Aux-Roses); 4 - Presentation of an automatized active dosimetry system (Michel Deron, G.E.M. System); 5 - Euratom 97/43 Directive from June 30, 1997 - assessment of the existing framework for patients protection in medical environment (Pierre Muglioni, APAVE Nord Ouest); 6 - Specificities of the ionising radiations risk in medical environment - presentation of a ionising radiations risk assessment grid (Marie-Christine Soula, Labour regional direction Ile de France); 7 - Low dose effects (B. Le Guen, E.D.F. G.D.F.); 8 - Operational dosimetry in the medical domain - the Saphydose dosemeter (Frederico Felix - Saphymo); 9 - Positrons and radiation protection (Luc Cinotti - C.E.R.M.E.P.); 10 - Workplace studies in medical environment - areas and personnel classification (Jean-Claude Houy, Sandrine Laugle, Eugene Marquis Cancer Centre Rennes); 11 - Experience feedback after 4 years of active dosimetry in a nuclear medicine service (Albert Lisbona, Centre Rene Gauducheau Nantes/Saint-Herblain); 12 - Operational dosimetry as it is performed today in CNRS laboratories (Helene Dossier - C.N.R.S. Orsay); 13 - Radiation protection in submarine naval forces (Pierre Laroche, Army's health service - S.S.A)

  8. Radiation protection. 2. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    The Ordinance for the use of X-rays in man was amended with the aim to keep the risk from radiation exposure to an absolute minimum without hereby maring the diagnostic usefulness of the pictures produced. This textbook was written for assistant medical personnel to provide a good working knowledge on subjects like radiation physics, radiation biology, operation of X-ray equipments, medical imaging systems, quality assurance, operation of instruments, radiation protection and radiation anatomy. The appendix further includes tables of exposure values, nomograms for better assessment of the magnitude of radiation exposure and the guidelines of the Federal Medical Association on quality assurance in X-ray diagnostics. This is another amended edition within one year which takes into account experiences made in courses, schools and radiation protective seminars. Also included are the recent adopted recommendations of the ICRP-Publication 60. In the annex the X-ray Ordinance provisions applicable for diagnostic radiology are presented. (orig./HP)

  9. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  10. Radiation Protection and Safety infrastructure in Albania

    International Nuclear Information System (INIS)

    On 1995 Albania Parliament approved the Radiation Protection Act, which established the Radiation Protection Commission as Regulatory Body and Radiation Protection Office as an executive office. The licensing of private and public companies is a duty of RPC and the inspections, enforcement, import - export control, safety and security of radioactive materials, are tasks of RPO. Regulations on licence and inspection, safe handling of radioactive sources, radioactive waste management and transport of radioactive materials have been approved. The Codes of practice in diagnostic radiology, radiotherapy and nuclear medicine have been prepared. Institute of Nuclear Physics carry out monitoring of personal dosimetry, response to the radiological emergencies, calibration of dosimetric equipment's, management of radioactive waste, etc. Based in the IAEA documents, a new Radiation Protection Act is under preparation

  11. Radiation Protection of Children of Belarus

    International Science & Technology Center (ISTC)

    Radiation Protection of Children of Belarus. Development of Recommendations on the Basis of the Research of the Effectiveness of Effects of Radioprotectors on Children from Radiocontaminated Regions of Belarus

  12. National radiation protection programme for occupational exposure

    International Nuclear Information System (INIS)

    Radiation Protection in Ecuador, as an important part of the whole context of protection against occupational health damage, since 1979 has become a relevant aspect in our government's concerns and policy. Programs have been developed in order to register machines, sources, activities and ionizing radiation users in all fields throughout the country. Plans have been implemented to improve workers safety from occupational exposure: personal thermoluminescense dosimetry, training courses, technical studies to get the best protection in working places, coordination with health institutions to make tests and evaluations to control occupational health, personal and institutional licensing and others. We also have supplied advice on Radiation Protection in the use of radiodiagnosis and radiotherapy, nuclear medicine, radionmunoassay and in industrial, educational and research applications, mainly in matters of shielding, technical meetings, and design of personal protections and safety procedures. (author)

  13. Radiation protection program for assistance of victims of radiation accidents

    International Nuclear Information System (INIS)

    The principles aspects of a radiological protection program for hospitals in case of medical assistance to external and internal contaminated persons are showed. It is based on the experience obtained at Centro Medico Naval Marcilio Dias during the assistance to the victims of Goiania accident in 1987. This paper describes the basic infrastructure of a nursery and the radiation protection procedures for the access control of people and materials, area and personal monitoring, decontamination and the support activities such as calibration of radiation monitors and waste management. Is is also estimated the necessary radiation protection materials and the daily quantity of waste generated. (author)

  14. The reform of radiation protection in Morocco

    International Nuclear Information System (INIS)

    Occupational, public and environmental radiation protection is a major challenge in diverse applications of ionising radiation (industrial, medical, research). There is a considerable international pressure for states to strengthen their regulatory control of radiation safety in order to avoid major radiation accidents, or radiation sources becoming lost or getting in the wrong hands. Covering the safety of radiation in industry, medicine and research, the Moroccan government has made a great effort to strengthen the radiation protection infrastructure and human competency. The IAEA code of conduct and basic safety standards requires that national legislation creates a regulatory authority whose regulatory functions are effectively independent of any government department or other agency that promotes any of the practices regulated. Currently all of the regulatory powers lie with the ministry of health. In order to meet the internationally agreed standards of radiation safety, a new independent Moroccan nuclear safety authority will be established with high level of competencies in radiation protection and its role to ensure the protection of workers, the public and the environment. This paper aims to map out a possible regulatory change and review of the function and structure of the regulatory authority. (authors)

  15. Radiation protection optimization - appropriate legal provisions

    International Nuclear Information System (INIS)

    The ICRP publications are the basic source of reference for the international and national legislation in the field of radiation protection. This also applies to the transformation of the ICRP radiation protection principles into international and national law, as is shown in this paper by the example of the optimization principle. The adoption of the ALARA principle as the ICRP-recommended optimization principle by the national or international legislative bodies is briefly reviewed. (DG)

  16. Protection against Ionizing Radiation, No. 1420

    International Nuclear Information System (INIS)

    This publication is a compilation of national legislative and regulatory provisions on radiation protection in force on 15 November 1978. In addition to the in extenso texts on the subject, only the relevant provisions in laws and regulations with a more general scope have been reproduced. This comprehensive compilation expands and updates a previous collection by the Official Gazette of the French Republic which covered only decrees and orders on the protection of workers against the hazards of ionizing radiation. (NEA)

  17. Views of the radiation protection professionals

    International Nuclear Information System (INIS)

    In general, the radiation protection professional is an adequately trained person who uses his/her technical or scientific experience and skills to protect human beings (and increasingly, the environment) against the harmful effects of ionizing radiation. These persons may be users of radiation in industry, medicine or science; they may be employed as radiation protection officers or consultants, or they may work within the regulatory or authority infrastructures. They may also be independent experts. In spite of the general goals they have in common, their priorities and their views may vary considerably. Confidence is an indispensable prerequisite for successful communication concerning the development of future recommendations in radiation protection. The process of confidence building is difficult. It requires a clarification of the different roles and interests of all parties involved, i.e. policy, economy, public and safety. The willingness to accept a new concept will be increased perceptibly if relevant persons or groups of persons (stakeholders) are already involved in the selection of alternatives. Radiation protection professionals are important partners in the process initiated by the International Committee on Radiological Protection (ICRP), discussing recommendations to come

  18. RADIATION BIOLOGY: CONCEPTS FOR RADIATION PROTECTION

    Science.gov (United States)

    ABSTRACTThe opportunity to write a historical review of the field of radiation biology allows for the viewing of the development and maturity of a field of study, thereby being able to provide the appropriate context for the earlier years of research and its findings. The...

  19. Radiation protection for industrial radiography in the aerospace industry

    International Nuclear Information System (INIS)

    The Boeing Company employs 80 industrial radiographers, operates 90 radiation sources, and takes 10,000 exposures per month. This paper describes the major components of Boeing's radiation protection program: hazard analysis, facilities and equipment design, program administration, and evaluation. In the hazard analysis, each source of radiation is analyzed to determine its hazard and relationship to both man and the environment around it. Once the degree of the hazard is known, facilities and equipment are designed to contain the hazard. This can be anything from a four foot concrete shielded room for an industrial radiographic accelerator, to a piece of rope that isolates an Iridium-192 source during a field radiographic inspection on an aircraft. The administrative functions provide the necessary records, command media, and a radiation source certification program. This certification authorizes the source of radiation to be used under specific conditions agreed upon by both the Radiation Protection Organization and Industrial Radiography Management. The radiation protection program is evaluated through medical exams, personnel monitoring, and area radiation surveys. (H.K.)

  20. Medical aspects of radiation protection law contribution to Austrian radiation protection law

    International Nuclear Information System (INIS)

    Some medical aspects of the radiation protection law, esp. in conjunction with medical surveillance of persons exposed to radiation, are dealt with. The discussion refers to the countries of the European Community and Austria and Switzerland. (VJ)

  1. Radiation protection and safety infrastructures in Albania

    International Nuclear Information System (INIS)

    The paper intends to present the evolution and actual situation of radiation protection and safety infrastructure in Albania, focusing in its establishing and functioning in accordance with BBS and other important documents of specialized international organizations. There are described the legal framework of radiation safety, the regulatory authority, the services as well the practice of their functioning. (author)

  2. Long term research in radiation protection

    International Nuclear Information System (INIS)

    Research on radiation protection in Sweden has problems with coordination and financing. The research is carried out in small groups and fragmented under several disciplines. The present enquiry was ordered to describe the present organization and activities and to suggest measures to strengthen coordination and financing of the research. It is suggested that the swedish program should concentrate on the following subjects: Mechanisms for the biological effects of ionizing and non-ionizing radiations; Improvement of measuring methods and estimates of the radiation levels and health hazards that can follow exposure to radiations; Development of routines and methods to reduce man's exposure to radiations, and to prevent radioactive substances in the environment to reach man; and Risk assessment of importance to radiation protection

  3. Radiation protection: the french regulation

    International Nuclear Information System (INIS)

    The French legislation concerning workmen, population and environment protection against the harm ful consequences of irradiation originated from nuclear power plant activities is presented. (A.L.S.L.)

  4. Radiation protection in Baden-Wuerttemberg

    International Nuclear Information System (INIS)

    The tasks of radiation protection and nuclear safety to be looked after by the land Baden-Wuerttemberg consist essentially in licensing and control activities carried out by the Federal Government. With regard to radiation protection the focal points of the second medium-term programme of the Laender Government Baden-Wuerttemberg are: 1. the technical development plan 'power plant sites', 2. construction of nuclear power plants in the borderline areas of neighbouring foreign countries, 3. disposal of radioactive waste, 4. pollution protection measures against nuclear power plants, 5. safety measures when dealing with radioactive materials outside nuclear power plants. (GL)

  5. Status of technical radiation protection units

    International Nuclear Information System (INIS)

    The aim of this report is to analyse the current situation of Radiological Protection technical Units until December 2008 and to carry out an evaluation on the quality the services provided to clients in terms of nuclear safety and radiation protection at nuclear facilities and radioactive and medical radiodiagnostics facilities in accordance with the function assigned to them by the CSN. these are set forth in the Rules of Health Protection against ionising radiation and the RD 1976/1999 on quality criteria applied to radiodiagnostics. (Author)

  6. Radiography room design and radiation protection

    International Nuclear Information System (INIS)

    Shielding solutions of radiography room should be able to meet the relevant requirements of protection, and not too conservative to waste resources. According to the actual of radiography room, introducing the overall design and shielding solutions of 60Co radiography room, 192lr radiography room, and X-ray radiography room; calculating on the thickness of lead door, the walls, and roofs. Introducing radiography room used for radiation protection measures: Introducing radiation protection measures used in radiography room. The results show that the design and shielding solutions, dose limits and safety measures for radiography room content the relevant requirements. (authors)

  7. Proceedings of the Tenth Radiation Physics and Protection Conference

    International Nuclear Information System (INIS)

    The publication has been set up as proceedings of the Radiation Physics and Protection Conference.. The conference consists Natural Radiation Sources; Radiation Detection and Measurements; Applied Radiation Physics; Radiation Medical Physics and Biophysics; Radiation Dosimetry; Operational Radiation Protection; Radiation Shielding; Transport of Radioactive Materials; Nuclear and Radiation Physics; Medical Physics and Public Protection Against Radiological Attack. This conference consists of 402 p., figs., tabs., refs.

  8. Radiation protection in dental practice

    International Nuclear Information System (INIS)

    This guide provides the dentist and dental support personnel with basic information on the safe use of x-rays in dental radiography. Included in this CODE are specific recommendations for eliminating unnecessary radiation exposure of both patients and staff

  9. Genetic topics in radiation protection

    International Nuclear Information System (INIS)

    The effects of mutations induced by ionizing radiation on human health can be subdivided into decrease of general viability, malformations and embryonic death. Reasons are given for the recommendation why a man whose gonads had been exposed to radiation should refrain from procreation for a couple of months. An analysis of the frequency of chromosome aberrations induced in lymphocytes can provide an estimate of the dose received during an accidental exposure. Radiation induced chronicmyeloid leukaemia is probably based on the induction of an aberration involving chromosome 22 in a bone marrow cell (deletion, translocation). The relationship between the frequency of radiation induced point mutations and the DNA content of the genome of the species studied so far is discussed. (orig.)

  10. Report on radiation protection in Croatia

    International Nuclear Information System (INIS)

    The Ministry of Health in the Republic of Croatia is in charge of radiation protection, and the new Ionizing Radiation Protection Act defines the responsibilities of the different organizations and institutions. The report explains the existing national system of notification and registration in Croatia and some of the main provisions of the above referred Act. Reference is made to the national provisions for the management of disused sources, recovery or control of orphan sources, and to the national inventory of radiation sources in the country with the data collected during 1998 and 1999. (author)

  11. Policies for radiation protection at nuclear facilities

    International Nuclear Information System (INIS)

    The purpose of the paper is to discuss the interface between three terms: radiological protection, nuclear safety, and radiation safety. Radiological protection is concerned with the estimation and control of radiation doses. The term only applies to the 'normal operation' and anticipated operational occurrences (certain exposures) at nuclear facilities. Nuclear safety is primarily concerned with the assessment and avoidance of accidents at nuclear power plants and other facilities. Radiation safety and compasses not only anticipated situations involving certain exposures, but also unanticipated 'de facto' situations. The three terms are interdependent. (Author)

  12. Radiation protection program of Petrobras

    International Nuclear Information System (INIS)

    Risks present in oil industry require specific control programs, specialy when using radioactive sources. Main uses of ionizing radiation in oil industry are in process control systems, industrial radiography and oilwell logging. A comprehensive and sistemic program is presented in order to assure the safe use of ionizing radiation in these activities. Principal subjects of this program are the control of radioactive sources, personel training in order to difuse knowledge at operations level and procedures standardization. (author)

  13. General approach to radiation protection

    International Nuclear Information System (INIS)

    Since early studies on x-rays and radioactive minerals, that exposure to high levels of radiation can cause clinical damage to the tissues of the human body and it is also presumed that exposure even at low dose levels may cause non-threshold health effects in the exposed group. It is hence essential that the activities involving exposure to radiation be subject to certain standards of safety

  14. Radiation protection training in Ontario Hydro

    International Nuclear Information System (INIS)

    Ontario Hydro provides extensive training for its rapidly growing nuclear staff at a nuclear training center and at nuclear stations and radiation protection training, the responsibility of the health physics department, forms an important part of the training. Radiological safety responsibility is shared by all staff and several levels of radiation protection training are offered. RPT number3 is a basic course to prepare the individual to look after his own radiological safety on the job. RPT number2 provides a more detailed understanding and prepares experienced personnel to be responsible for the radiological safety of others. RPT number1 is an advanced course for persons with significant responsibility for radiological safety. Training in station radiation protection procedures is also offered at each station by a radiation control supervisor. Radiation protection qualifications are awarded on the basis of training and experience. All training emphasizes the capabilities to anticipate, assess and protect in radioactive work areas. A practical training facility has been constructed and completely fitted with instruments and protective equipment and provides a radioactive environment where trainees demonstrate exposure and contamination control

  15. Management information system on radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Grossi, Pablo Andrade; Souza, Leonardo Soares de; Figueiredo, Geraldo Magela, E-mail: pabloag@cdtn.b, E-mail: lss@cdtn.b, E-mail: gmf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Considering the flux complexity and the multi source information of all radiation protection activities on nuclear organizations, an effective management information system based on technology, information and people is necessary to improve the safety on all processes and operations subjected to radiation risks. An effective management information system is an essential tool to highlight the strengths and weaknesses and identify behaviors and trends on the activities requiring radiation protection programs. Such kind of distinct knowledge is useful to reach an effective management and support the human decision-making on nuclear organization. This paper presents a management information system based on Brazilian directives and regulations on radiation protection. Due to its generic characteristics, this radiation protection control system can be implemented on any nuclear organization by reediting the non restricted parameters which could differ considering all facilities and laboratories expected on-site with diverse technologies applications. This system can be considered as a powerful tool applied on the continuous management of radiation protection activities on nuclear organizations and research institutes as well as for long term planning, not only indicating how the safety activities are going, but why they are not going as well as planned where that is the case. (author)

  16. Management information system on radiation protection

    International Nuclear Information System (INIS)

    Considering the flux complexity and the multi source information of all radiation protection activities on nuclear organizations, an effective management information system based on technology, information and people is necessary to improve the safety on all processes and operations subjected to radiation risks. An effective management information system is an essential tool to highlight the strengths and weaknesses and identify behaviors and trends on the activities requiring radiation protection programs. Such kind of distinct knowledge is useful to reach an effective management and support the human decision-making on nuclear organization. This paper presents a management information system based on Brazilian directives and regulations on radiation protection. Due to its generic characteristics, this radiation protection control system can be implemented on any nuclear organization by reediting the non restricted parameters which could differ considering all facilities and laboratories expected on-site with diverse technologies applications. This system can be considered as a powerful tool applied on the continuous management of radiation protection activities on nuclear organizations and research institutes as well as for long term planning, not only indicating how the safety activities are going, but why they are not going as well as planned where that is the case. (author)

  17. Bases and trends in radiation protection policy

    International Nuclear Information System (INIS)

    The objective of radiation protection is to prevent detrimental non-stochastic effects and to limit the probability of stochastic effects to levels deemed to be acceptable. For this purpose, the International Commission on Radiological Protection (ICRP) has suggested the three principles of justification of practice, optimization of protection, and individual dose limitation. The ICRP dose limits are individual-related, but the practical limitation of dose contributions from specified sources is source-related, as is that of collective dose. This may be needed in optimization analyses if proportionality between radiation health detriment and collective dose can be assumed. Limitation of the collective dose commitment per unit of practice may be an useful method for control of the highest future per caput dose. These bases of current radiation protection policy are reviewed, together with some indications of trends, including probabilistic approaches

  18. Is radiation protection for the unborn child guaranteed by radiation protection for female workers?

    International Nuclear Information System (INIS)

    ICRP Publication 88 recommends doses to embryo and fetus from intakes of radionuclides by the mother for various intake scenarios. Mainly by answering the question 'Is radiation protection for the unborn child guaranteed by radiation protection for female workers?' it has been assessed if the intake scenarios given in ICRP Publication 88 are adequate for radiation protection purposes. This is generally the case, but the consideration of an additional chronic intake scenario for early pregnancy would be helpful. It is demonstrated that following chronic intake by inhalation, for most radionuclides radiation protection for (female) workers is also adequate for protection of the unborn child, considered as a member of the public. However, there are a number of radionuclides for which possible intakes in routine operations should be more restricted (up to 1% of the annual limits on intake for workers in the case of nickel isotopes) to ensure radiation protection for the unborn child. (author)

  19. Radiation Protection Quantities for Near Earth Environments

    Science.gov (United States)

    Clowdsley, Martha S.; Wilson, John W.; Kim, Myung-Hee; Anderson, Brooke M.; Nealy, John E.

    2004-01-01

    As humans travel beyond the protection of the Earth's magnetic field and mission durations grow, risk due to radiation exposure will increase and may become the limiting factor for such missions. Here, the dosimetric quantities recommended by the National Council on Radiation Protection and Measurements (NCRP) for the evaluation of health risk due to radiation exposure, effective dose and gray-equivalent to eyes, skin, and blood forming organs (BFO), are calculated for several near Earth environments. These radiation protection quantities are evaluated behind two different shielding materials, aluminum and polyethylene. Since exposure limits for missions beyond low Earth orbit (LEO) have not yet been defined, results are compared to limits recommended by the NCRP for LEO operations.

  20. Radiation protection in medical and biomedical research

    International Nuclear Information System (INIS)

    The human exposure to ionizing radiation in the context of medical and biomedical research raises specific ethical challenges whose resolution approaches should be based on scientific, legal and procedural matters. Joint Resolution MINSAP CITMA-Regulation 'Basic Standards of Radiation Safety' of 30 November 2001 (hereafter NBS) provides for the first time in Cuba legislation specifically designed to protect patients and healthy people who participate in research programs medical and biomedical and exposed to radiation. The objective of this paper is to demonstrate the need to develop specific requirements for radiation protection in medical and biomedical research, as well as to identify all the institutions involved in this in order to establish the necessary cooperation to ensure the protection of persons participating in the investigation

  1. Development of radiation protection and measurement technology

    International Nuclear Information System (INIS)

    Reference X-, gamma, beta and neutron radiation fields complying with the ISO and ANSI standards have been established and evaluated to provide a basic technical support in national radiation protection dosimetry program and to provide calibration measurement devices. Personal dose evaluation algorithm has been developed with these reference radiation fields, which comply well with both domestic and the new ANSI N13.11, to evaluate accurate personal dose equivalents. A personal internal dosimetry algorithm which can estimate the intakes of radionuclides from the results of in vivo bioassay and the resulting internal doses has been developed and verified its performance. It was also evaluated to be equality excellent compared with those being used in foreign countries and used to make a computer code for internal dose evaluation which can be run with PC under the Windows environment. A BOMAB phantom for precise calibration of in vivo system has been also designed, fabricated and test-evaluated. Based on the ALARA concept of the optimization principle of radiation protection, a method for estimating the cost for radiation protection has been studied and an objective monetary cost of detriment due to radiation exposure, called ? value ($/man-Sv) has been derived and proposed based on the Korean socio-economic situation and human risk factors to provide basic data for the radiation protection optimization study in Korea. (author). 100 refs., 104 tabs., 69 figs

  2. Development of radiation protection and measurement technology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Si Young; Lee, T. Y.; Kim, J. L.; Kim, B. H.; Lee, B. J.; Chung, K. K.; Lee, K. C.; Chung, R. I.; Han, Y. D.; Kim, J. S.; Lee, H. S.; Kim, C. K.; Yoon, K. S.; Jeong, D. Y.; Yoon, S. C.; Yoon, Y. C.; Lee, S. Y.; Kim, J. S.; Seo, K. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, J. K.; Lee, J. K. [Hanyang Univ., Seoul (Korea, Republic of)

    1997-07-01

    Reference X-, gamma, beta and neutron radiation fields complying with the ISO and ANSI standards have been established and evaluated to provide a basic technical support in national radiation protection dosimetry program and to provide calibration measurement devices. Personal dose evaluation algorithm has been developed with these reference radiation fields, which comply well with both domestic and the new ANSI N13.11, to evaluate accurate personal dose equivalents. A personal internal dosimetry algorithm which can estimate the intakes of radionuclides from the results of in vivo bioassay and the resulting internal doses has been developed and verified its performance. It was also evaluated to be equality excellent compared with those being used in foreign countries and used to make a computer code for internal dose evaluation which can be run with PC under the Windows environment. A BOMAB phantom for precise calibration of in vivo system has been also designed, fabricated and test-evaluated. Based on the ALARA concept of the optimization principle of radiation protection, a method for estimating the cost for radiation protection has been studied and an objective monetary cost of detriment due to radiation exposure, called {alpha} value ($/man-Sv) has been derived and proposed based on the Korean socio-economic situation and human risk factors to provide basic data for the radiation protection optimization study in Korea. (author). 100 refs., 104 tabs., 69 figs.

  3. Implementation experience of the radiation protection infrastructure In Lithuania

    International Nuclear Information System (INIS)

    A national radiation protection infrastructure has been created in Lithuania in order to ensure radiation protection and to comply with the IAEA and European Union requirements and recommendations regarding radiation protection. The new laws, namely: the Law on Radiation Protection, the Law on Nuclear Energy, the Law on Radioactive Waste Management and different regulations were approved. The Radiation Protection Centre of the Ministry of Health is the Regulatory Authority responsible for radiation protection both of public and personnel in Lithuania. According to the Law on Radiation Protection, the Radiation Protection Centre is a body co-ordinating the activities of executive and other bodies of public administration and local government in the field of radiation protection, exercising state supervision and control of radiation protection, monitoring and expert examination of public exposure. Problems connected with the establishing national radiation infrastructure in Lithuania are presented and their solution is discussed. (author)

  4. Radiation protection and the safety of radiation sources

    International Nuclear Information System (INIS)

    These Safety Fundamentals cover the protection of human beings against ionizing radiation (gamma and X rays and alpha, beta and other particles that can induce ionization as they interact with biological materials), referred to herein subsequently as radiation, and the safety of sources that produce ionizing radiation. The Fundamentals do not apply to non-ionizing radiation such as microwave, ultraviolet, visible and infrared radiation. They do not apply either to the control of non-radiological aspects of health and safety. They are, however, part of the overall framework of health and safety

  5. Radiation protection in equine radiography

    International Nuclear Information System (INIS)

    During radiography of the carpus of horses calcium fluoride thermoluminescent dosemeters were used to measure the radiation exposure to the hand of an assistant positioning the x-ray film. Three portable x-ray machines and a mobile machine were used during the recordings. The effects of x-ray machine, radiographic technique, and lead rubber gloves upon radiation exposure to the hand were investigated. The size of the primary beam of the x-ray machine was found to be the major factor in determining the dose of radiation received by the hand. The highest radiation exposures were recorded when using two portable machines which were fitted with beam limiting devices that permitted only one primary beam size. The lowest exposures were measured when radiographs were taken with the mobile machine that was fitted with a light beam diaphragm. The control of primary beam size with a light beam diaphragm was found to be the most effective method of reducing radiation dosage to the hand. It is strongly recommended that for equine radiography a light beam diaphragm be fitted to and used on all x-ray machines, and a cassette holder be used to keep the hands out of the primary beam. (author)

  6. Radiation Protection Elephants in the Room

    International Nuclear Information System (INIS)

    As our system of radiological protection evolves, several significant issues loom within radiation protection discussions and publications. These issues influence the nature of epidemiological and radiobiological research and the establishment of radiation protection recommendations, standards, and regulations. These issues are like the proverbial elephants in the room. They are large, and it is unwise to ignore them. This paper discusses the impact of three young elephants as they make their presence increasingly obvious: increased cancer susceptibility from early-life exposure to radiation, terrorism and fear of radiation, and patient safety. Increased cancer susceptibility from early-life exposure to radiation is emerging as a discussion topic related to the safety of computed tomography (CT) and other medical modalities. Shortly after publication of CT dose data, manufacturers were helping to reduce doses to children by increasing flexibility for adjustment of technique factors. Also, radiation epidemiological data are being used in the development of guidance on exposure to chemical carcinogens during early life. Re-emergence of public fear of radiation has been fueled by threats of radiological dispersion devises and confusing messages about personal decontamination, emergency room acceptance or rejection of contaminated victims, and environmental clean-up. Finally, several professional publications have characterized risk of medical radiation exposure in terms of patient deaths even though epidemiological data do not support such conclusions. All three of these elephants require excellent science and sophisticated data analysis to coax them from the room. Anecdotal communications that confuse the public should be avoided. These are not the only elephants in the room, but these three are making their presence increasingly obvious. This paper discusses the need for radiation protection professionals to rely on good science in the evolution of the system of radiological protection. (Author) 32 refs

  7. Radiation chemistry and environmental protection

    International Nuclear Information System (INIS)

    A combination of different technological methods in one plant is usually economically advantageous in industry. Such a general approach is also useful in solving ecological problems by methods of radiation technology. This method of cleaning 'harsh' sufactants and 'mold' products and a stage of subsequent biological purification of these products from the water. Combining radiation and adsorption techniques is also promising. A relatively large number of examples can now be cited. At the same time, purely radiational technologies are also possible. The authors discuss one of these technologies in more detail. This concerns electron-beam scrubbing of sulfur dioxide and nitrogen oxides from the gases from electric power plants. This method can also be used for scrubbing sulfur dioxide from waste gases from sulfuric acid and metallurgical plants

  8. Ionizing radiation, genetic risks and radiation protection

    International Nuclear Information System (INIS)

    With one method of risk estimation, designed as the doubling dose method, the estimates of total genetic risk (i.e., over all generation) for a population continuously exposed at a rate of 0.01 Gy/generation of low LET irradiation are about 120 cases of Mendelian and chromosomal diseases/106 live births and about the same number of cases for multifactorial diseases (i.e., a total of 240 cases/106). These estimates provide the basis for risk coefficients for genetic effects estimated by ICRP (1991) in its Publication 60. These are: 1.0%/Sv for the general population (which is 40% of 240/106/0.01 Gy), and 0.6%/Sv for radiation workers (which is 60% of that for the general population). The results of genetic studies carried out on the Japanese survivors of A-bombs have shown no significant adverse effects attributable to parental radiation exposures. The studies of Gardner and colleagues suggest that the risk of leukaemia in children born to male workers in the nuclear reprocessing facility in Sellafield, U.K., may be increased. However, this finding is at variance with the results from the Japanese studies and at present, does not lend itself to a simple interpretation based on radiobiological principles. In the light of recent advances in the molecular biology of naturally-occurring human Mendelian diseases and what we presently know about multifactorial diseases, arguments are advanced to support the thesis that (i) current risk estimates for Mendelian diseases may be conservative and (ii) an overall doubling dose for all adverse genetic effects may be higher than the 1 Gy currently used (i.e., the relative risks are probably lower). (author)

  9. Abstracts of 20. International Symposium Radiation Protection Physics

    International Nuclear Information System (INIS)

    51 papers are presented as titles with abstracts which are processed individually for the INIS data base. They deal with general aspects of radiation protection physics, international activities in radiation protection, solid state dosimetry, models and calculation methods in radiation protection, and measuring techniques in radiation protection

  10. Public understanding of radiation protection concepts

    International Nuclear Information System (INIS)

    The Chernobyl accident in April 1986 clearly showed that communication with the public was one of the areas where there was a strong need for improvement, particularly concerning the nature and extent of the information provided by national authorities. The countermeasures adopted by public health authorities also raised difficulties in terms of public understanding and acceptance due, in part, to the perception of discrepancies in national, regional or local response to the accident, but also to a more basic lack of comprehension of the complex radiation protection considerations involved. In an attempt to help improve the situation, the NEA Committee on Radiation Protection and Public Health decided to organise a Workshop on public communication in the event of a nuclear accident, centered on radiation protection issues. The purpose of this Workshop was to analyse appropriate methods and language to be used when explaining to the public the scientific concepts underlying radiation risks and radiation protection, and the technical rationale for the choice of protective actions in an emergency. Separate abstracts were prepared for individual papers presented at the meeting

  11. Radiation protection in nuclear energy. V.2

    International Nuclear Information System (INIS)

    The conference was convened to provide a forum for the exchange of international views on the principles of radiation protection for regulators and practitioners, to highlight issues of current importance, to examine the problems encountered in applying the principles of radiation protection, and, where possible, to identify generic solutions. The highlights of the conference were the sessions on the interface between nuclear safety and radiation protection, the evolution of radiation protection principles, exemption rules and accident experiences. The special session on the practical implications of the linear dose-response relationships also provoked particular interest. Although the session on optimization and decision aiding did not reveal any new developments, it did indicate an increasing emphasis on the optimization of radiation protection. A clear trend towards attaining lower collective doses per unit practice over a given time period, despite the increase in nuclear power plant capacity, is also apparent, although very few data on job-related worker doses have been published to date in the open literature. From the regulators' viewpoint, a very strong desire was expressed for a move towards regulatory strategies that exempt practices and sources causing insignificant individual and collective doses. Refs, figs and tabs

  12. Radiation protection course for physicians. Pt. 2

    International Nuclear Information System (INIS)

    The material presented is intended as a teaching aid for courses of advanced professional training in radiotherapy, specifically for the subject of radiation protection. It will further be of help as a manual for physicians specializing in radiotherapy, and also for radiological personnel, who will be glad to have at hand a systematic and comprehensive guide to radiation protection measures in radiotherapy. The material has been revised so as to offer the current state of the art, and has been improved by adding illustrations of practical value and a subject index. The material has been restricted to explaining the legal basis of radiation protection in medical therapy as far as covered by the subjects of the training course. This offered the possibility of presenting a comprehensive view of the legal provisions governing radiation protection, which originally are given in two different statutory orders, the X-ray Ordinance and the Radiation Protection Ordinance. The latest recommendations of the ICRP and related comments, rules and standards have been taken into account. (orig.)

  13. Radiation protection 1/87

    International Nuclear Information System (INIS)

    There is a paper on medical first aid after radiation accidents and another on positive effects of low-dose irradiation which are treated separately. In addition there are four contributions on question of conventional X-ray diagnosis. (G.Q.)

  14. Radiation protection training for users of ionizing radiation in Hungary

    International Nuclear Information System (INIS)

    According to the current and previous regulation related to the safety use of ionizing radiation, the personnel involved must obtain special qualification in radiation protection. In Hungary the radiation protection training are performed by appropriately certified training centers on basic, advanced and comprehensive levels. Certification of the training centers is given by the competent radiological health/radiation protection authority. The office of the Chief Medical Officer is the certifying authority for advanced and comprehensive levels training, as well as competent Regional Radiological Health Authority is responsible for basic level courses. The content and length of courses are specified in the regulation for all three levels of industrial, laboratory and medical users, in general. Some of the universities, technical and medical oriented are certified for advanced training for students as gradual course. Recently in Hungary there are 47 certified training centers for advanced and comprehensive courses, where the trainers should have a five years job experience in radiation protection and successful completion of comprehensive level course in radiation protection. (authors)

  15. Consequences of the new Slovenian legislation on radiation protection and nuclear safety for radiation protection training

    International Nuclear Information System (INIS)

    The paper presents brief description of the old Slovenian regulations and an overview of the new, harmonised regulations in the field of radiation protection training. The most important novelties were pointed out with possible consequences for the implementation of radiation protection training. Some suggestions on how to overcome transitional problems and how to improve training were also given. (author)

  16. Some educational aspects of radiation protection

    International Nuclear Information System (INIS)

    The paper examines the training in radiation protection received by the various occupationally exposed groups in New South Wales. Consideration is given to the content and relevance of the various training programmes available. It is considered that the increasing usage of radiation requires that particular emphasis be made as to the risks from low doses of radiation. It is concluded that an overall policy on the training of persons working with radiation is required, and a number of necessary features of such training are proposed

  17. Regulatory System of Radiation Protection in Taiwan

    International Nuclear Information System (INIS)

    After the radioactive contaminated buildings incident occurred in Taiwan in 1993, the competent authority for radiation protection the Atomic Energy Council (AEC) started to review the structured problem of radiation protection regulatory system. Through several years' investigation and study, the AEC has improved two important tools in radiation protection regulatory system, i.e., control regulations and actual practice, and made them more rigorous and efficient. This paper will make a brief introduction of the efforts that Taiwan has made in this respect. Taiwan's radiation protection control was based on the Atomic Energy Law promulgated in 1968, but the control idea and authorization scope were not sufficient to appropriately respond to the highly developed economy and democracy in Taiwan. After several years' legislative process, the Ionizing Radiation Protection Law (IRP Law) was promulgated and entered into force on February 1, 2003. This IRP Law specifically emphasizes categorized risk management of radiation sources, establishment of personnel licenses and training system, enhancement of public safety control, and implementation of quality assurance program for medical exposure. The Legislative Yuan (Congress) fully authorized the competent authority to establish various technological control regulations according to control necessity without prior review by the Legislative Yuan in advance. As to the penalties of the violations of the IRP Law, the AEC adopts high-rated administrative fines and applies the Criminal Law to those who seriously contaminate the environment. In actual practice, the AEC has constructed a Radiation Protection Control Information System compatible with the IRP Law that fully combines the functions of computers and Internet. The information of facility operators who own radiation sources, radiation protection specialists, and operating personnel are entered into this system, starting from the submission of application of the radiation sources until the discard of the radiation sources such that the competent authority can efficiently control. In order to control the moving status of high-activity sources, the AEC requires the owners of high-activity sources shall report the conditions of variation to the competent authority through Internet every month. According to the IRP Law the records of penalties shall also enter this system for statistical analysis so as to be used for regulatory reference. (Author)

  18. Viewing radiation protection in the framework of general environmental protection

    International Nuclear Information System (INIS)

    The author of the introductory contribution places the tasks of radiation protection within the framework of general environmental protection. He presents joint concepts - for instance, large-area measuring plans for radon in living-space and formaldehyde in building materials, and, for instance, protection of waters with corresponding recommendations for the chemicals industry - and sets out the political principles of the Federal German Government for the improvement of the environmental situation and, especially, for the protection of human health. He points out each citizen's own responsibility for his health, and the consumer's responsibility as regards his own consumer behaviour. As regards the protection of the population and the environment against ionizing radiation hazards, especially with regard to German nuclear power plants, the valid principle is 'safety first', and this includes the tasks with which radiologists are confronted in the event of nuclear accidents to assure transfrontier, preventive medical care. The Association of German Radiologists is requested to make special efforts to assess the radiation exposure of man. (TRV)

  19. Proposal of a survey of radiation protection procedures during breast feeding;Proposta de um levantamento do estado da arte da radioprotecao para lactantes submetidas a procedimento com radiofarmacos e respectivos bebes

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Liliane dos; Oliveira, Silvia M. Velasques de [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Servico de Monitoracao Individual Interna

    2009-07-01

    Contamination can occur by breast milk ingestion involving mothers subjected to diagnostic procedures or treatment with radiopharmaceuticals, which can reach high concentrations in milk causing significant absorbed doses to the children organs. Besides internal dose, close contact between the baby and his mother give rise to external exposures. In Brazil, 7% of diagnostic procedures use {sup 131}I or {sup 123}I for thyroid imaging and 84% of these were hold by women. For {sup 131}I, {sup 67}Ga and {sup 201}Tl, is recommended breast feeding cessation. The present work proposes a survey of the state of the art of radiation protection to breast feeding infants. It was planned interviews with nuclear medicine staff applying a questionnaire in order to assess specific procedures to women in reproductive age. This is 'on progress work'. (author)

  20. IAEA occupational radiation protection programme: current status

    International Nuclear Information System (INIS)

    As stated in Art.III.A.6 of its Statute, the International Atomic Energy Agency (commonly referred to as the Agency) is authorized to establish or adopt, in consultation and, where appropriate, in collaboration with the competent organs of the United Nations and with the specialized agencies concerned, standards of safety for protection of health and minimization of danger to life and property (including such standards for labour conditions), and to provide for the application of these standards to its own operation as well as to the operations making use of materials, services, equipment, facilities, and information made available by the Agency or at its request or under its control or supervision. The Agency s Occupational Radiation Protection Programme aims at harmonizing infrastructures for the control of radiation exposure of workers and for optimizing radiation protection in situation s of exposures due to external radiation and intakes of radionuclides from both artificial and natural sources of radiation. Under its regular and technical cooperation programmes, the Agency has been assigning high priority to both the establishment of safety standards for labour conditions and for the application of these standards through, Interalia, direct assistance under its technical cooperation (TC) programme, the rendering of services, the promotion of education and training, the fostering of information exchange and the coordination of research and development. The purpose of this paper is to present the current status and future IAEA activities in support of occupational radiation protection. (authors)

  1. Research priorities for occupational radiation protection

    International Nuclear Information System (INIS)

    The Subpanel on Occupational Radiation Protection Research concludes that the most urgently needed research is that leading to the resolution of the potential effects of low-level ionizing radiation. This is the primary driving force in setting appropriate radiation protection standards and in directing the emphasis of radiation protection efforts. Much has already been done in collecting data that represents a compendium of knowledge that should be fully reviewed and understood. It is imperative that health physics researchers more effectively use that data and apply the findings to enhance understanding of the potential health effects of low-level ionizing radiation and improve the risk estimates upon which current occupational radiation protection procedures and requirements depend. Research must be focused to best serve needs in the immediate years ahead. Only then will we get the most out of what is accomplished. Beyond the above fundamental need, a number of applied research areas also have been identified as national priority issues. If effective governmental focus is achieved on several of the most important national priority issues, important occupational radiation protection research will be enhanced, more effectively coordinated, and more quickly applied to the work environment. Response in the near term will be enhanced and costs will be reduced by: developing microprocessor-aided open-quotes smartclose quotes instruments to simplify the use and processing of radiation data; developing more sensitive, energy-independent, and tissue-equivalent dosimeters to more accurately quantify personnel dose; and developing an improved risk assessment technology base. This can lead to savings of millions of dollars in current efforts needed to ensure personnel safety and to meet new, more stringent occupational guidelines

  2. National congress of radiation protection; Congres national de radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The congress of radiation protection tackled different areas of radiation protection. The impact of ionizing radiations on environment coming from radioactive activities. The biological radiation effects, the dosimetry, the different ways of doing relative to radiation protection,the risks analysis and the communications with populations, information about accidents and the lessons learned from them are included in this congress. (N.C.)

  3. Radiation protection of the environment - new trends

    International Nuclear Information System (INIS)

    Recent trends in the radiation protection of the environment focusing on basic changes of the protection philosophy from the egocentric to ecocentric approach are presented and discussed. The globalization of the economy is accompanied by global contamination of the environment that requires changes in the attitude of the protection of the total environment, i.e. protection of humans, fauna and flora, all ecosystems and the Earth in general, as well as the cosmic space. This complex approach is illustrated on the radiation protection of the environment that has always been in the forefront in developing protection philosophy, methodology and standards, which later has also been applied to the protection of the environment caused by non-radioactive contaminants, such as heavy metals and organic compounds. High radiation doses delivered to biota are illustrated on shellfish and fish collected in the Mururoa and Fangataufa lagoons (affected by series of nuclear weapons tests), and on fish in Novaya Zemlya bays (affected by dumping of nuclear reactors and radioactive wastes). On the methodological site an example is discussed focusing on the in situ sea-bed radionuclide mapping and seawater monitoring using submersible gamma-ray spectrometers operating with NaI(Tl) and HPGe detectors which has proved to be important pre-requisite for estimation of the spatial distribution of radionuclides in the water column and on the sea floor, as well as for optimisation of sediment sampling for studying the radionuclide distribution with depth

  4. Abstracts of 21. International Symposium Radiation Protection Physics

    International Nuclear Information System (INIS)

    45 papers are presented as titles with abstracts which are processed individually for the INIS data base. They deal with general aspects of radiation protection physics, chiefly problems of radiation detection and measuring techniques in radiation protection

  5. 49 CFR 193.2057 - Thermal radiation protection.

    Science.gov (United States)

    2010-10-01

    ...2010-10-01 false Thermal radiation protection. 193.2057 Section 193...Requirements § 193.2057 Thermal radiation protection. Each LNG container...exceptions: (a) The thermal radiation distances must be...

  6. Radiation protection organization recommended by the working group regulations

    International Nuclear Information System (INIS)

    The draft recommendation for the radiation protection organization in private industry and public institutions drawn up by the working group 'Regulations' of the Fachverband fuer Strahlenschutz is presented. The requirements of the radiation protection regulations dealing with the person responsible for radiation protection and with the radiation protection officer are explained. Different possibilities for the delegation of tasks of the person responsible to authorize representatives for radiation protection are discussed. (orig.)

  7. Radiation protection in neighbouring countries in Central Europe. Proceedings

    International Nuclear Information System (INIS)

    This proceeding is published in 3 volumes. Volume 1 covers the topics: (1) Environmental protection, and (2) Radiation Dosimetry. Volume 2 covers the topics: (3) Radiation Protection in Medical Exposures, (4) Radiation Protection in Applications of Radioisotopes and Nuclear Technology, (5) Radioactive Waste Management and Decommissioning, (6) Radiation Monitoring, and (7) Emergency Planning and Preparedness. Volume 3 covers the topics: (8) Operational Radiation Protection, (9) Non Ionising Radiation, (10) Radiation Protection Principles and Policies, (11) Natural Radiation, (12) Radiation Exposure Control: Methods and Means, and (13) Public Education and Information. (blahsl)

  8. Current radiation protection standards and concerns

    International Nuclear Information System (INIS)

    A ''standard'' is that entity established by authority, custom, or general consent as a model or criterion. In the case of radiation protection, one can further discern two broad categories of standards: (1) advisory standards, often put forth as recommendations, which are usually formulated by various commissions, groups, and societies professionally or scientifically concerned with radiation protection; and (2) legal standards, put forth in statutes and regulations, which are formulated by legislative and administrative bodies as well as interpreted and modified by court decisions. The formulation of radiation protection standards involves both scientific and political processes, each having its own problems and paradigms. This chapter briefly reviews both the advisory and legal standards, attempts to highlight the origin and content of some of the more important concerns, and finally outlines recent attempts at solutions

  9. Radiation protection in diagnostic nuclear medicine

    International Nuclear Information System (INIS)

    In the field of diagnostic nuclear medicine the questions realted to radiation protection take on a complexion quite different from the one they have in all the other areas of radiological diagnosis. The reflections on the different ways of achieving effective protection from radiation will only lead to satisfactory results, if they are based on extensive, factual knowledge of the biokinetic behaviour of radionuclides or radioactive substances in the organism. Authoritative reports emphasize the importance of radiation protection measures not solely for photon emitters but also for positron emitters and give due consideration to the different problems posed by SPECT and PET. Quite apart from the quality standards mandated for the radiopharmaceuticals themselves adequate quality assurance measures must as well be taken at the clinical level for all in vivo examinations using such substances. (orig.) With 40 figs., 27 tabs

  10. European radiation protection in the Essen practice test; Europaeischer Strahlenschutz im Essener Praxistest

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Bernd; Ludwig, Sabine; Peinsipp, Norbert (eds.)

    2013-07-01

    The proceeding of the meeting European radiation protection in the Essen practice test includes contributions to the following issues: basic radiation protection standards; clearance values and permitted activities; optimization, guidance values for dose limits; radon and radiation protection standards; radiation protection - eye lens; RPE (radiation protection expert)/RPO (radiation protection officer); environmental radiation protection; radiation protection in medicine.

  11. Theoretical and practical basic training for radiation protection specialists

    International Nuclear Information System (INIS)

    The basic training in radiation protection being offered by the SAAS to radiation protection specialists (radiation protection officers and medical supervisors of radiation workers) is described. As for the radiation protection officers, it consists of three different groups of lectures, seminars and laboratory work according to the fields X-ray machines, radionuclides (general), and sealed radiation sources in process instrumentation and control engineering, respectively. The corresponding curricula are presented. (author)

  12. Radiation protection at workplaces with increased natural radiation exposure in Greece: recording, monitoring and protection measures

    International Nuclear Information System (INIS)

    Greek Atomic Energy Commission (GAEC) is the regulatory, advisory and competent authority on radiation protection matters. It is the authority responsible for the introduction of Radiation Protection regulations and monitoring of their implementation. In 1997, within the frame of its responsibilities the Board of the GAEC appointed a task group of experts to revise and bring the present Radiation Protection Regulations into line with the Basic Safety Standards (BSS) 96/29/Euratom Directive and the 97/43/Euratom Directive (on health protection of individuals against the dangers of ionising radiation in relation to medical exposure). Concerning the Title 7. of the new European BSS Directive, which refers to the Radiation Protection at work places with increased levels of natural radiation exposure, the Radiation Protection Regulations provides that the authority responsible for recording, monitoring and introducing protection measures at these places is the GAEC. Practices where effective doses to the workers due to increased natural radiation levels, may exceed 1mSv/y, have to be specified and authorised by the GAEC. The identification procedure is ongoing

  13. Current Challenges in Radiation Protection in Medicine

    International Nuclear Information System (INIS)

    Radiation protection professionals in medical facilities and practices are being challenged by new imaging technologies that use x-rays or radioactive materials. These include faster computerized tomography (CT) scanners, new interventional techniques that use extended fluoroscopy time, increased use of positron emission tomography (PET), and digital imaging techniques. More frequently these technologies are being fused into a single procedure, such as combined CT and PET scanning. Radiation Protection professionals are challenged to (1) be aware of developing technologies and clinical techniques, (2) analyze the potential radiation risks to patients and staff, (3) initiate necessary radiation safety training for medical staff, and (4) be involved in planning, dose measurement and optimization of the procedure to achieve appropriate dose control and ALARA

  14. Crop protection research with radioisotopes and radiations

    International Nuclear Information System (INIS)

    Research work carried at the Indian Agricultural Research Institute, Delhi, over the last few years in crop protection using radioisotopes and radiations is summarised. Radiations and radioisotopes have been used in investigating various entomological and plant pathological problems with the ultimate aim of ensuring crop protection for increasing productivity. Tracer techniques have been utilised to get useful information on: (1) plant pathogen movement, spread, multiplication and infection processes in the hosts in order to devise effective control measures and (2) fate of pesticides. Nuclear radiations have been used for radiation disinfestation of grains and fruits, genetic improvement of useful insects like lac insects, silk worm, etc. and also for indirect control of insects by inducing sterility. (A.K.)

  15. Radiation protection and fuzzy set theory

    International Nuclear Information System (INIS)

    In radiation protection we encounter a variety of sources of uncertainties which are due to fuzziness in our cognition or perception of objects. For systematic treatment of this type of uncertainty, the concepts of fuzzy sets or fuzzy measures could be applied to construct system models, which may take into consideration both subjective or intrinsic fuzziness and objective or extrinsic fuzziness. The theory of fuzzy sets and fuzzy measures is still in a developing stage, but its concept may be applied to various problems of subjective perception of risk, nuclear safety, radiation protection and also to the problems of man-machine interface and human factor engineering or ergonomic

  16. Third conference on radiation protection and dosimetry

    International Nuclear Information System (INIS)

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations

  17. Third conference on radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  18. Radiation protection supervisors certification in Brazil

    International Nuclear Information System (INIS)

    In order to accomplish its legal assignments CNEN certifies the qualification of radiation protection supervisors. The current certification process is presented and discussed in this paper. This paper discusses the main points of the certification process including: knowledge tests, stake holder's communication, standards, supervisor responsibilities and profiles. The importance of safety certification of nuclear facilities and radiation protection of public individuals and workers are also discussed. Taking into account the characteristics of the Brazilian Nuclear program, the future improvements and goals in the certification process is also presented. (author)

  19. Radiation protection measurement. Philosophy and implementation

    International Nuclear Information System (INIS)

    A selection from the proceedings of the International Symposium held by the U.K. Society for radiological protection in June 1974 was presented. The central theme was the philosophy of radiation protection measurement and its interpretation although some specific areas of good health physics practice were included. The 28 papers selected were chosen to be either representative of the central theme or of wider interest. The papers have been grouped in 6 main sections: philosophy of measurements; interpretation of measurements; implementation by legislation and monitoring; radiation exposure and control; reactor safety and siting; accidents

  20. Radiation protection training programmes Spanish approach

    International Nuclear Information System (INIS)

    Radiation Protection Programmes are being considered the best way to promote safety culture and to spread and propagate European basic safety standards. It is widely accepted that training is an important tool to upgrade competence for radiation exposed workers. The Spanish Radiation Protection Education and Training Programmes provide a solid and integrated educational model, which takes into account the variety of applied fields, the different levels of responsibilities, the technological and methodological advances, as well as the international tendencies. The needs for a specialised training on Radiation Protection (RP) for exposed workers appears into the Spanish regulation in 1964. National initial training programmes are well established since 1972. Individual certifications, based on personal licences are required for exposed workers. The Spanish regulation also includes continuous and on the job RP training. The educational programmes are being continuously updating and improving. CIEMAT plays an important role in RP Spanish training, improving and modifying the previous RP courses and developing new programmes in order to complete the RP training levels. To achieve Radiation Protection objectives, new technological media for educational methods and material are taking into account. Nevertheless, Spanish RP education and training model has to be improved in some aspects. The purpose of this paper is to analyse the situation and the future needs to be considered in order to complete the RP training processes

  1. Radiation protection, public policies and education

    International Nuclear Information System (INIS)

    The objective of this paper is to inform about the aspects of radiation protection public policies concerning the public spheres and the ordinary population. It is known that information has been considered a very important good in several knowledge areas. However, the efficiency of their transmission mechanisms should be periodically evaluated, checking existing critical and stagnation points. Nuclear area can be mentioned as a historically typical case, where the public policies assume relevant importance as tool for promotion, control and education of the population in general. Considering the polemic nature of such subject, it is clear that there is a need for conducting the construction of educational contents taking in account the educator training necessities. The addressing of radiation protection aspects applied to nuclear techniques conducts, for example, to the awareness on the benefits of radiation and its industrial and medical applications, which are established considering the worldwide adopted basic principles of radiation protection. Such questions, concerned with (or related to) public policies, establish a link between radiation protection and education, themes explored in this article to provide a better view of the current Brazilian scenario. (author)

  2. Evolution of Radiation Protection System in Kenya

    International Nuclear Information System (INIS)

    Promulgation of radiation protection legislation in Kenya dates back to 1982, was revised in 1985 and became operational in 1986. This law, the Radiation Protection Act, establishes the Radiation Protection Board as the National Regulatory Authority, with an executive Inspectorate headed by the Secretary to the Board. Subsidiary legislation on radiological practices and standards were subsequently published. The Inspectorate carries out the National programme for notification, authorization, inspection and enforcement. Nuclear applications for peaceful purposes in Kenya are on the increase in all major fields of socio-economic development. Provision of regulatory services, guidance and enforcement procedures, has had a net growth over the last fifteen years. However, staff retention has been declining over the years in a market where job opportunities, with relatively high incentives, are high either inside or outside the country. Human and equipment resource development has therefore not kept pace and this has hampered effective and efficient provision of services. The poor status of the economy has had its impact on delivery of quality, effective and efficient radiation protection services. Provision of radiation services and acquisition of radiation detection and measurement equipment in the country has been generally lacking dating as far back as 1995. During the period 1989 to present, Kenya's Regulatory Authority, the Radiation Protection Board, undertook to provide personal monitoring, quality assurance, radioanalysis, and equipment calibration. Over the years these services have stalled due to outdated equipment most of which have broken down. A maintenance and calibration service for nuclear equipment is an expensive cross-boarder issue. Budgetary constraints, insufficient human and equipment resources, and a perennial 'brain drain' has placed limitations to the effectiveness and efficiency of implementation of the National programmes and slowed the attainment of the objectives of the National policy on radiation protection and waste safety. The current Radiation Protection Act is limited in scope, regulatory independence and empowerment. A new draft of the revised Act was submitted to the IAEA for review and comments. The revised version is aimed, inter alia, at meeting the principal requirements of the International Basic Safety Standards and incorporating aspects of non-ionizing radiation. The revised draft is now under discussion with stakeholders for their input before enactment. Development of a sustainable national infrastructure requires years of national effort and government commitment. Over the last two years, there has been sufficient government commitment and there have been solid achievements. Kenya has placed the issue of human resource development high on her development agenda and has provided support for expanding technical staffing of the Regulatory Authority with an initial recruitment of ten (10) Radiation Protection Officers. Other factors impacting on quality, effectiveness and efficiency of radiation protection programmes, are being appropriately addressed in order to realize a fully sustainable radiation protection infrastructure. (Author)

  3. National congress of radiation protection - SFRP 2005

    International Nuclear Information System (INIS)

    The nine tutorial sessions are: first one, the new recommendations of the ICRP; second one, effects on health of ionizing radiations with the following subjects ( the dose-response relationship and the estimation of carcinogen effects of ionizing radiation low doses; effect of dose rate on the induction and repair of radioinduced DNA double strand break; interest of global approach in radiation protection; molecular signature of the radioinduction in the thyroid tumors: example of radioinduced thyroid tumors after radiotherapy; incidence of child leukemia near the nuclear facilities: results of a multi sites study in France; genome instability and mutations induction after ionizing irradiation: consequences for the progeny; D.T.P.A encapsulation, an efficient strategy for the plutonium decorporation among the rat); the third one, non-ionizing radiation with the following subjects (can the exposure to a magnetic field of 100 ? T at 50 Hz be detected in the human physiological shiver; evaluation of the population exposure to the magnetic fields of 50 Hz: what indicators to choose; experimental study of the immunity of implantable defibrillators to the low frequencies electro-magnetic perturbations; DNA damages induced by the Ar F laser; dosimetry with a phantom in gel of human head); fourth session concerns the regulatory aspects; the fifth one presents the radiation protection and the radioactive waste management; the sixth session concerns the public and patients radiation protection; the seventh one treats the radiation protection in professional area with the following subjects ( optimization of radiation protection in the underground uranium mine of Cominak in Niger; revealing by multi parameters capillaroscopy, of micro vascular alterations of fingers among interventional radiologists; use of radioactive and chemical probes in biological research; uncertainties on doses and D.P.U.I.; monitoring of work areas. Evaluation of workers exposure towards a particular contamination; C.H.A.V.I.R., an interactive simulator for radiation protection; an ALARA engineering commune to the operating reactors; evolution of the radiological zoning and monitoring rules associated on the Cogema la Hague facility; an ambitious project for the nuclear park of EDF power plants : the purification project and its implementation for the Chinon B2 reactor - 2004); the eighth session concerns the environmental exposures and their consequences with the following presentations ( the concept of radioecological sensitivity and its interest in the risk management; phenomenal and analytical interpretation of the rain-deposit relationship used for the building of cesium 137 deposits in France consecutively to the Chernobyl accident; study of radioactivity source terms and transfer from medical origin in the purification network of the town of Toulouse; natural and artificial radioactivity in some marine species in manche. Case of polonium and plutonium alpha emitters. Synthesis of data acquired in the north Cotentin since 1990. elements of comparison; the role of local commissions of information (C.L.I.) in the follow up of release and monitoring of nuclear facilities); the ninth session concerns the dosimetry; the tenth session is divided in two parts radiation protection in accidental situations and radiation protection in post accidental situations with their respective presentations as follow ( evaluation of the dispersion of an aero contaminant in a ventilated area in field near an accidental source of emissions; study of the containment efficiency by gloveboxes in functioning accidental situations; the radiation protection and health; study by R.P.E. of the response of different materials in mixed field ( gamma, neutrons), application to the dosimetry reconstruction of an accident; nuclear or radiological events: organisation of medical intervention; and rehabilitation of life conditions in the contaminated territories: the contribution of radiation protection; management of post accidental situations: lessons from crisis exercises of Pierrelat

  4. Radiation Protection Service in Ceylon

    International Nuclear Information System (INIS)

    The main application of radiation in Ceylon is in medicine, both diagnostic and therapeutic. About 40 government hospitals have a total of 120 diagnostic X-ray installations. The Cancer Hospital at Maharagama represents the only therapy installation on the island, and possesses three deep X-ray therapy units, one superficial X-ray unit and two cobalt-60 units. It also has facilities for the use of radium and iodine-131 in therapy. In addition, radioisotopes are used for diagnosis at this institute. (author)

  5. Radiation protection optimization and work management

    International Nuclear Information System (INIS)

    The influence quantification of bound factors to work management, and the obtained results when you apply the dosimetric economical evaluation model of the radiation protection experiments, prove that ALARA principle application musn't bound to actions on the radiation sources, but that you can find a wide act field in the irradiation work volume management topics. 53 refs., 5 tabs., 10 figs., 4 appendixes

  6. Radiation Protection and Civil defence Department

    International Nuclear Information System (INIS)

    This conference involves subjects of radiation protection, programming of civil defence, on the implementation of 1990 ICRP recommendation, thermoluminescence properties of bone equivalent calcium phosphate ceramics, potassium body burdens in occupational users of egyptian nuclear research centre, transport of radionuclides in fresh water stream, water treatment process for nuclear reactor, research activities related to internal contamination and bioassay and experience and environmental radiation monitoring in inshass. it contains of figures and tables

  7. Problems of radiation protection in radiodiagnosis

    International Nuclear Information System (INIS)

    Basic trends in modern development of radiation protection in medical roentgenology are discussed. The necessity of developing such an order, which would make it possible by information acquisition to decrease essentially the dose load on patients, is noted. To established the dose limit value or control level it is necessary to have the reference initial values. The radiation dose limits of the control levels are presented and the possibility for establishing the procedure orders is considered. 14 refs., 2 tabs

  8. Thermoluminescence Dosimetry Applied to Radiation Protection

    DEFF Research Database (Denmark)

    Christensen, Poul; Bøtter-Jensen, Lars; Majborn, Benny

    1982-01-01

    This is a general review of the present state of the development and application of thermoluminescence dosimetry (TLD) for radiation protection purposes. A description is given of commonly used thermoluminescent dosimeters and their main dosimetric properties, e.g. energy response, dose range, fading, and LET dependence. The applications of thermoluminescence dosimetry in routine personnel monitoring, accident dosimetry, u.v. radiation dosimetry, and environmental monitoring are discussed with p...

  9. Beta emitters and radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Joedal, Lars (Dept. of Nuclear Medicine, Aalborg Hospital, Aarhus Univ. Hospital (Denmark))

    2009-02-15

    Beta emitters, such as 90Y, are increasingly being used for cancer treatment. However, beta emitters demand other precautions than gamma emitters during preparation and administration, especially concerning shielding. Aim. To discuss practical precautions for handling beta emitters in general, and specifically determine proper shielding for 90Y, while comparing to 177Lu and 131I. The aim is achieved through the application of physical principles combined with results from practical experience. Material and methods. Typical and maximal electron ranges were calculated for 131I, 177Lu, and 90Y, using data from a freely available database. Bremsstrahlung yields were calculated for 90Y shielded by lead, aluminium, or perspex. Bremsstrahlung spectrum from 90Y shielded by perspex was measured, and attenuation of spectrum by lead was calculated. Whole-body and finger doses to persons preparing 90Y-Zevalin were measured. Conclusions. Good laboratory practice is important to keep radiation doses low. To reduce Bremsstrahlung, 90Y should not be shielded by lead but instead perspex (10 mm) or aluminium (5 mm). Bremsstrahlung radiation can be further reduced by adding a millimetre of lead on the outside of the primary shielding material. If suitable shielding is used and larger numbers of handlings are divided among several persons, then handling of beta emitters can be a safe procedure

  10. Beta emitters and radiation protection

    International Nuclear Information System (INIS)

    Beta emitters, such as 90Y, are increasingly being used for cancer treatment. However, beta emitters demand other precautions than gamma emitters during preparation and administration, especially concerning shielding. Aim. To discuss practical precautions for handling beta emitters in general, and specifically determine proper shielding for 90Y, while comparing to 177Lu and 131I. The aim is achieved through the application of physical principles combined with results from practical experience. Material and methods. Typical and maximal electron ranges were calculated for 131I, 177Lu, and 90Y, using data from a freely available database. Bremsstrahlung yields were calculated for 90Y shielded by lead, aluminium, or perspex. Bremsstrahlung spectrum from 90Y shielded by perspex was measured, and attenuation of spectrum by lead was calculated. Whole-body and finger doses to persons preparing 90Y-Zevalin were measured. Conclusions. Good laboratory practice is important to keep radiation doses low. To reduce Bremsstrahlung, 90Y should not be shielded by lead but instead perspex (10 mm) or aluminium (5 mm). Bremsstrahlung radiation can be further reduced by adding a millimetre of lead on the outside of the primary shielding material. If suitable shielding is used and larger numbers of handlings are divided among several persons, then handling of beta emitters can be a safe procedure

  11. Workplace analysis and radiation protection

    International Nuclear Information System (INIS)

    This document gathers the slides of the available presentations given during this conference day. Fifteen presentations out of 16 are assembled in the document and deal with: 1 - the evolution of doses received by workers (J. Feuardent); 2 - evaluation of extremities dosimetry among interventional radiology practitioners (L. Donadille); 3 - practical guide for the realisation of workplace dosimetry studies presenting a ionizing radiation exposure risk: and example in nuclear medicine (J.L. Rehel); 4 - workplace studies in radiotherapy-curietherapy (D. Donnarieix); 5 - from dosimetry to physical intensity: the case of heat insulation activities (A. Garrigou and C. Piccadaci); 6 - the consideration of human factor during facility modifications (V. Gauthereau); 7 - how to carry out a workplace analysis in gamma-graphy? (F. Truchi); 8 - workplace studies in the framework of dismantling activities (J. Chardin); 9 - team synergy (F. Debouck); 10 - adaptation of individual dosimetry to the workplace: the case of external exposure (I. Clairand); 11 - technical aspects of the evaluation of ionizing radiations exposure induced by a new interventional radiology procedure (J.C. Amabile); 12 - the point of view of a radioprotection skilled person in a nuclear medicine service (J.M. Vrigneaud); 13 - workplace studies for the unique document (F. Roussille); 14 - occupational exposure to manufactured nano-particles: issues and knowledge status (O. Witschger); 15 - toxicological risk of nano-particles: 'health impact'? (S. Chevillard). (J.S.)

  12. Proceedings of the workshop on 'radiation protection in LINACs'

    International Nuclear Information System (INIS)

    The proceedings contain seven reports on electron and proton accelerators currently used in Japan. The first report describes the 'Present Condition of Linac Facilities in Japan -- Questionnaire Survey'. It summarizes results of a questionnaire survey on 400 facilities where accelerators are used for research, industrial or medical applications. The second one deals with 'Radiation Protection at Nuclear Physics Research Institute of Tohoku University'. Safety measures taken in the institute are described. The third report outlines 'Radiation Protection at Linac Facility in Tokai Laboratory of Japan Atomic Energy Research Institute, focusing on equipment, radiation management, and safety measures. The fourth report, titled 'Proton Linac at High Energy Physics Research Institute', outlines major features of the facilities in the institute, radiation safety measures, etc. The fifth one describes the 'Safety Management at Electrotechnical Laboratory', centering on the equipment used, radiation management, and safety measures. The sixth one outlines major features of 'Electron Linac at Industrial Science Research Institute of Osaka University'. The seventh report describes the 'Present Condition of Neutron Generator (KURRI-LINAC)'. (N.K.)

  13. Radiation protection guidelines for space missions

    Science.gov (United States)

    Fry, R. J.; Nachtwey, D. S.

    1988-01-01

    The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem).

  14. Management in the protection from ionizing radiation

    International Nuclear Information System (INIS)

    There are numerous types and forms of endangering working and living environment, ranging from natural disasters to nuclear accidents. Challenges of the New Age determined that most of the countries reviewed its strategic decisions in the system of protection from ionizing radiation and nuclear safety and defined in a new way the threats, which could considerably imperil health of the population and national interests as well. Excessive radiation of the population became a serious and actual problem in the era of increasingly mass application of ionizing radiation, especially in medicine. The goal of this work is to reduce the risk through using knowledge and existing experiences, in particular when it comes to ionizing radiation in medicine. Optimization of the protection in radiology actually means an effort to find the compromise between quality information provided by diagnostics procedure and quality effects of therapy procedure on one side and dose of radiation received by patients on the other. Criteria for the quality management in the protection from ionizing radiation used in diagnostic radiology was given by the European Commission: European Guidelines on Quality Criteria for Diagnostic Radiographic Images, EUR, 16260. (author)

  15. Policies for radiation protection at nuclear facilities

    International Nuclear Information System (INIS)

    The purpose of this paper is to discuss the interface between three terms: radiological protection, nuclear safety, and radiation safety. The radiological protection is concerned with the estimation and the control of radiation doses. The term applies only to normal operation and anticipated operational occurrences (certain exposures) at nuclear facilities. Nuclear safety is primarily concerned with assessment and avoidance of accidents at Nuclear Power Plants and other facilities. Briefly, the basic tenets of nuclear safety are: - if it can happen, than that it must not matter; - if it matter, than it must not happen. The aim which radiation protection and nuclear safety regard is a net benefit obtained from safely operating of the nuclear facility and the risk to populating (and to personnel, too) must not exceed the levels considered as dangerous. The evolution of these disciplines has been able to formulate, for the last years, new and generalizing notions, which defined a new item i.e. radiation safety. Radiation safety encompasses not only anticipated situations involving certain exposures, but also unanticipated 'de factor' situations. Radiation safety is at present an essential objective and must represent a concern for Romanian experts. (Author) 3 Figs., 4 Refs

  16. Radiation protection training and information for workers

    International Nuclear Information System (INIS)

    The meeting reported in these proceedings was organized to discuss the specific problems of providing information and training on radiation protection to workers exposed to radiation, intervention staff and workers likely to be affected by an activity involving ionizing radiation. Particular emphasis was placed on the need to harmonize basic training on radiation protection in the context of 1992. It seemed advisable for technical training on radiation protection to be introduced into secondary education. To this end, the Commission was asked to draw up a guide for apprentices and students. In view of the growing diversification of activities involving the use of radioactive substances, the Commission was called upon to intensify its efforts in order to ensure that relevant information and training was provided in all firms to workers exposed to ionizing radiation, and to produce guides for specific categories of workers, such as those responsible for the transport of radioactive materials or those likely to be involved in organizing measures in the event of a radiological emergency

  17. International regulations for radiation protection

    International Nuclear Information System (INIS)

    A review of the development of the IAEA Radiological Protection standards is given. The basic features of the latest revision recently adopted by the governing bodies of the sponsoring organizations, i.e. IAEA, WHO, ILO, NEA/OECD are discussed and some of the features of the future Agency programme for its implementation will be outlined. In particular, attention will be given to development of the basic principles for setting release limits of radioactive materials into the environment. An important aspect of this is when the release of radioactive materials into the environment crosses international boundaries. The Agency is best suited to try to reach a consensus on the minimum monetary value for the unit collective dose. (orig./RW)

  18. Seventh meeting of radiation protection skilled persons

    International Nuclear Information System (INIS)

    This document gathers the slides of the available presentations given during these conference days. Twenty-three presentations out of 25 are assembled in the document and deal with: 1 - the evolution of workers' international protection rules against ionizing radiation risks (C. Bardelay); 2 - presentation of the report of the working group on radiation protection (P. Barbey); 3 - position of the French nuclear safety authority and of the labor general direction about the position of permanent expert groups in radiation protection concerning the expected evolutions in the occupation and training of radioprotection skilled persons (RSP), (T. Lahaye); 4 - experience feedback: RSP in surgery operating theater - a sometimes delicate intervention (S. Balduyck); 5 - workplace analysis in dental surgery: constraints and specificities (D. Le Denmat); 6 - workplace analysis: tritium atmospheric contamination (S. Rigaud); 7 - revision of the NFC 15-160 standard relative to radiology facilities (J.L. Rehel); 8 - example of area tele-dosimetry usage - the Pitie Salpetriere hospital experiment (C. Chatellier and C. Barret); 9 - contribution of radio-attenuation lead gloves in interventional radiology (J. Guersen); 10 - zoning in the medical domain: encountered problems typology and evaluation of possible solutions (Degrange, J.P.); 11 - management of used sealed sources distributed by the CEA and CISBIO (B. Sevestre); 12 - how to perform a measurement in radiation protection - how about measurement uncertainty (M. Ammerich); 13 - national campaign of control about the application of workers radiation protection rules (T. Lahaye); 14 - transparency and inspection approach in local nuclear applications: gamma-graphy, research, nuclear medicine, interventional radiography and radiotherapy (S. Rodde and C. Marchal); 15 - local/regional networks of RSPs and radiation protection actors: 2008 audit results and recent evolutions (C. Lefaure); 16 - role and missions of the external RSP in dental surgery (H. Bouk'Il); 17 - status of radiation protection inspections at Paris social services and state-owned hospitals authority (D.J. Gambini); 18 - registered organisation and RSP: relations and exchanges (B. Auboiroux and P. Martel); 19 - interactions between EdF's RSP and contractor's RSP (A. Riedel); 20 - 2009 national status of workers' exposure (J. Feuardent); 21 - IRSN's Siseri system: relations with users (P. Scanff); 22 - communication as an integral part of RSP's role (M. Bof); 23 - the expected consequences of the publication no. 103 of the international commission of radiological protection (CIPR), (J. Lochard). (J.S.)

  19. A new career path in radiation protection training. Certified power plant shift supervisor. Radiation protection

    International Nuclear Information System (INIS)

    Apart from theoretical knowledge, effective day-to-day radiation protection operations also require a certain measure of practical experience. Therefore, the professional degree of 'Certified Radiation Worker', issued by the Chamber of Industry and Commerce (CIC) Aachen, Germany, established at an early stage. In order to provide experienced radiation protection specialists with an attractive career path, POWERTECH TRAINING CENTER e.V., in co-operation with VGB PowerTech. e.V., the Paul Scherrer Institute (Switzerland) and the Swiss Atomic Energy Agency (ENSI), has devised a new power plant shift supervisor training course specialising in radiation protection. The vocational training degree called 'Certified Power Plant Shift Supervisor - Radiation Protection' is awarded after successful completion of the advanced training examination conducted by the CIC in Essen, Germany. (orig.)

  20. Patients radiation protection in medical imaging. Conference proceedings

    International Nuclear Information System (INIS)

    This document brings together the available presentations given at the conference organised by the French society of radiation protection about patients radiation protection in medical imaging. Twelve presentations (slides) are compiled in this document and deal with: 1 - Medical exposure of the French population: methodology and results (Bernard Aubert, IRSN); 2 - What indicators for the medical exposure? (Cecile Etard, IRSN); 3 - Guidebook of correct usage of medical imaging examination (Philippe Grenier, Pitie-Salpetriere hospital); 4 - Radiation protection optimization in pediatric imaging (Hubert Ducou-Le-Pointe, Aurelien Bouette (Armand-Trousseau children hospital); 5 - Children's exposure to image scanners: epidemiological survey (Marie-Odile Bernier, IRSN); 6 - Management of patient's irradiation: from image quality to good practice (Thierry Solaire, General Electric); 7 - Dose optimization in radiology (Cecile Salvat (Lariboisiere hospital); 8 - Cancer detection in the breast cancer planned screening program - 2004-2009 era (Agnes Rogel, InVS); 9 - Mammographic exposures - radiobiological effects - radio-induced DNA damages (Catherine Colin, Lyon Sud hospital); 10 - Breast cancer screening program - importance of non-irradiating techniques (Anne Tardivon, Institut Curie); 11 - Radiation protection justification for the medical imaging of patients over the age of 50 (Michel Bourguignon, ASN); 12 - Search for a molecular imprint for the discrimination between radio-induced and sporadic tumors (Sylvie Chevillard, CEA)

  1. University based radiation protection: a combination of theory and practice

    International Nuclear Information System (INIS)

    In modern times, Universities are expected to act as regional and national centres for providing information on radiation protection and University based Radiological Protection Services are therefore a natural development. The typical workload of a University service on campus is concerned two-thirds with unsealed sources, of which soft ?'s and iodine-125 predominate, and one-third with sealed radioisotope and neutron sources and X-ray emitters. Non-ionising radiation protection is frequently included in the Service's terms of reference. A wide variety of instrumentation to satisfy the campus' needs is thus available at short notice for use in industrial and public authority radiation surveys. In addition, laboratory facilities for radio-chemistry, spectrometry, and radioactive counting are already manned by experienced technical staff. Industry thus finds in the Universities a ready willingness and competence to assist in occupational radiation protection, and public authorities can turn to the Universities in relation to their problems of radioactivity in public health. (author)

  2. Regulation on protection against ionizing radiations

    International Nuclear Information System (INIS)

    This regulation has as the objective to establish the criteria tending toward protecting the health of the population of the radiologic risks that can be derive from the employment of the ionizing radiations and similar activities. It establishes the requirements to comply with the radiactive installations, equipment transmitters of ionizing radiations, personal that works in them, operate the equipment and carry out any another similar activity such as: production, importation, exportation, transportation, transference of radioactive material or equipment generators of radiations ionizing. (S. Grainger)

  3. Proceedings of the Ninth Radiation Physics and Protection Conference

    International Nuclear Information System (INIS)

    The publication has been set up as proceedings of the Radiation Physics and Protection conference, the conference contains of the following subjects: Radiation Sources and Radioactive Waste; Theoretical Radiation Physics; Experimental Radiation Physics; Radiation and Nuclear Emergency; Non Ionizing Radiation; Medical Physics; Environment; Natural Radioactivity; Radiation Effect; Dosimetry; Elemental Analysis; Radiation Instruments. This conference consists of one volume and 459 pages., figs., tabs., refs

  4. The Law on Precautionary Radiation Protection prevents public health protection

    International Nuclear Information System (INIS)

    On the occasion of the discussion by the German Bundesrat of the bill on Precautionary Radiation Protection, the Hessian Minister of Social Affairs denied his approval of the bill on the grounds that there are serious and numerous flaws. He considered the bill to be a more dummy put up for election propaganda, as he could not find any substantive provisions in it. The Minister in his speech explained this opinion, saying that the bill does not provide for the protection of public health, nor create the necessary conditions for an effective and coordinated emergency control in case of a radiation accident. He declared the bill to be just an instrument of warding off danger that in essence curtails important rights of participation of the Laender. (HSCH)

  5. Conditions for radiation protection in industrial radiography

    CERN Document Server

    1999-01-01

    The leaflet specifies radiation protection requirements for industrial radiography in Norway. The regulations are directed towards companies using or distributing sealed radioactive sources, x-ray equipment or accelerators in non-destructive material testing (NDT). Technical requirements to the equipment, as well as administrative requirements for use, licensing, qualifications, handling of accidents etc. are given. (Author)

  6. The responsibility of the radiation protection expert

    International Nuclear Information System (INIS)

    After having recalled the two main different types of responsibility in the French law system (civil liability and criminal responsibility), and how criminal law has been gradually introduced in companies, the author analyzes and describes how the radiation protection expert's responsibility is tightly related to that of his employer, and how both can be committed on a disciplinary and criminal level

  7. Radiation protection: Philosophy, recommendations and practice

    International Nuclear Information System (INIS)

    The philosophy developed by the International Commission on Radiological Protection for the control of human radiation exposure will be described. The application of the ICRP recommendations to the authorization and control of the disposal of radioactive wastes to the sea will be discussed in the context of the practice in the United Kingdom. (author)

  8. Radiation Protection Section (SC/SL/RP)

    CERN Multimedia

    2006-01-01

    We should like to inform you that the Radiation Protection Section (SC/SL/RP) located on the Prévessin site has moved from Building 865 (ground floor) to new premises in Wing A of Building 892 (second floor). Telephone numbers remain the same. SC/SL/RP section

  9. Radiation protection low in the draft of a code on the protection of the environment

    International Nuclear Information System (INIS)

    In September 1997 the Independent Expert Commission mandated by the German Federal Ministry of Environment, Nature and Reactor Safety has presented its Draft of a Code on the Protection of the Environment (General and Special Part). The Code contains as part of the Environmental Law provisions on nuclear energy and radiation protection. This draft is very large (it contains 775 single sections), and is therefore until now virtually unknown. It seems by this reason suitable and necessary to give a survey on the proposals offered by the Commission in this Draft concerning these fields. (orig.)

  10. Radiation protection problems by nonionizing electromagnetic radiation in Austria

    International Nuclear Information System (INIS)

    Since about one year an interdisciplinary study group has been established to investigate possible radiation protection problems caused by nonionizing electromagnetic radiation in this country. The aim of this project is to identify major fields of concern, to establish appropriate techniques of measurement and control and eventually develop a sound basis for future legislation. The paper gives a summary on the present results of this study. (Author)

  11. Dietary protection during radiation therapy

    International Nuclear Information System (INIS)

    Eighteen patients receiving Cobalt 60 irradiation for abdominal or pelvic malignancies were assigned at random to eat either a semi-hydrolyzed diet (Flexical: 10 g% casein hydrolsate; 14 g% triglycerides, 20% of which medium chain; 66% disaccharides) or a normal diet. There are no significant differences between these two groups with respect to age and the ratio of ideal to actual caloric intake. The patients in the control group received on the average a total of 3,900 rd and those in the Flexical group 4,040 rd. Generally, Flexical appeared to have a significant positive effect on body weight. In addition, radiation-induced diarrhea was not a problem in the Flexical group. In the latter-group, serum proteins including immunoglobulins remained essentially unchanged during therapy while a moderate but significant fall was observed in all control patients. No significant difference between the two groups was observed with respect to peripheral blood hematocrit, red and white cell counts. However, the drop in blood lymphocytes following irradiation was significantly less in the Flexical group. The mechanisms of radioprotection are discussed. These preliminary data indicate that the nutritional and perhaps the immunological status of cancer patients receiving intensive irradiation can be maintained by dietary measures. (orig.)

  12. Protective role of plants against harmful radiation

    International Nuclear Information System (INIS)

    The rapid technological advancement has increased human exposure to ionizing radiations enormously. Ionizing radiations produces deleterious effects in the living organisms. Widespread use of radiation in diagnosis therapy, industry, energy sector and inadvertent exposure during air and space travel, nuclear accidents and nuclear terror attacks requires safeguard against human exposures. Lead shielding and other physical measures can be used in such situations but with difficulty to manage; thus pharmacological intervention could be the most prudent strategy to protect humans against the harmful effect of ionizing radiations. These pharmacological agents are radioprotectives; The development of radioprotective agents has been the subject of intense research in view of their potential for use within a radiation environment. However, no ideal, safe synthetic radio protectors are available to date, so the search for alternative sources including plants has been ongoing. In Ayurveda, the traditional Indian system of medicine, several plants have been used to treat free radical-mediated ailments and, therefore, it is logical to expect that such plants may also render some protection against radiation damage. This all is due to antioxidant enzymes, nitroxides, and melatonin, antiemetic, anti-inflammatory. haemopoitic and immunostimulant compounds. Some of the plants which are found to be radioprotective are Centella asiatica, Ginkgo biloba, Hippophae rhamnoides, Ocimum sanctum, Podophyllurn hexandrum, Tinospora cordifolia, Emblica officinalis, Phyllanthus amarus, etc. So there is an urgent need to identify and characterize the many of the plants in relation to the radioprotection. Besides these medicinal plants there are also some fruits and vegetables which are having good response against harmful radiations such as Kiwifruit Actinidia deliciosa (Actinidaceae), Cape Gooseberry Physalis peruviana (Solanaceae). They protect against the radiation-induced damage by scavenging of free radicals and increasing antioxidant status. Fractionation guided evaluation may result in the development of ideal radio protectors in the near future. (author)

  13. Research report on radiation protection 1981

    International Nuclear Information System (INIS)

    In this research report on radiation protection the results achieved in 1981 of the research and development projects assisted by the Federal Minister of the Interior are made accessible above all to the scientists and engineers participating in this research program as well as to the research institutions on the field of radiation protection, to the members of the commission on radiological protection and of the commission for reactor safety and to the supervising and licensing authorities. The report is a compilation of individual reports, which are composed by the consignees respectively the recipients of the allowances themselves as a documentation of the progress of their works. Each individual report contains informations concerning the objectives of the project, works carried out, results achieved and further work planned. (orig.)

  14. Radiation Protection of Patients program (Argentina)

    International Nuclear Information System (INIS)

    After an initial period of conviction for installing an active discussion on Radiation Protection of Patients inside the medical community, there were organized working groups in Radiodiagnosis, Radiotherapy, Nuclear Medicine and on radiation protection of pregnant women. These groups began systematical activities, which received a strong institutional support of the Argentine Society of Radiology, toward the implementation of a Program of RPP that is being put nowadays into practice. This program has three aims and a series of targets to be fulfilled in successive stages: Basic aims and short term targets: 1) To guarantee the Justification. First goal: Development of the Prescription Guide (achieve) 2) To optimize the radioprotection: First goal: Development of a Manual of Procedures (achieved) 3) To prevent potential exposures. First goal: Design of a Basic Quality System in Health (achieved) The effective participation of the professional's and technician's associations in the development of the program of radiological protection of the patient is a key aspect for the success. (Author)

  15. Radiation protection and dosimetry: basis. 9. ed.

    International Nuclear Information System (INIS)

    A revised book 'Radiation Protection and Dosimetry: Fundamentals, prepared to meet the training courses offered by the Instituto de Radioprotecao e Dosimetria - IRD, Rio de Janeiro, RJ, Brazil and people interested in the subject, is presented. Concepts have been updated, especially the chapter on Radiological Magnitudes, due to upgrade of Standard CNEN-NN-3.01-Basic Guidelines on Radiological Protection, published in the Diario Oficial da Uniao on September 1, 2011. A chapter related to Waste Management, another on the Transport of Radioactive Materials and three annexes on: Standards of CNEN, Ionizing Radiation and Personnel Legislation and Determination of shields in Radiotherapy were included. Were also added several tables for use in radiological protection, to facilitate consultation

  16. XXXVI. Days of Radiation Protection. Book of Presentations and Posters

    International Nuclear Information System (INIS)

    The publication has been set up as a book of presentations and posters of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this book totally 94 abstracts are published. The Conference consists of following sections: (I) General aspects and new trends of radiation protection); (II) Radiation protection in medicine; (III): Dosimetry and metrology of external and internal radiation exposure; (IV) Regulation of radiation exposure to natural sources and control of radon exposure; (V) Radiation protection in nuclear power plants, their decommissioning and waste management; (VI) Application of radiation protection standards in the emergency management; (VII) Biological effects of ionizing radiation and risk estimation; (VIII) Education and training in radiation protection in the light of new recommendations of EU, ICRP and IAEA.

  17. XXXVI. Days of Radiation Protection. Book of Abstracts

    International Nuclear Information System (INIS)

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 93 abstracts are published. The Conference consists of following sections: (I) General aspects and new trends of radiation protection); (II) Radiation protection in medicine; (III): Dosimetry and metrology of external and internal radiation exposure; (IV) Regulation of radiation exposure to natural sources and control of radon exposure; (V) Radiation protection in nuclear power plants, their decommissioning and waste management; (VI) Application of radiation protection standards in the emergency management; (VII) Biological effects of ionizing radiation and risk estimation; (VIII) Education and training in radiation protection in the light of new recommendations of EU, ICRP and IAEA.

  18. Special radiation protection aspects of medical accelerators

    CERN Document Server

    Silari, Marco

    2001-01-01

    Radiation protection aspects relevant to medical accelerators are discussed. An overview is first given of general safety requirements. Next. shielding and labyrinth design are discussed in some detail for the various types of accelerators, devoting more attention to hadron machines as they are far less conventional than electron linear accelerators. Some specific aspects related to patient protection are also addressed. Finally, induced radioactivity in accelerator components and shielding walls is briefly discussed. Three classes of machines are considered: (1) medical electron linacs for 'conventional' radiation therapy. (2) low energy cyclotrons for production of radionuclides mainly for medical diagnostics and (3) medium energy cyclotrons and synchrotrons for advanced radiation therapy with protons or light ion beams (hadron therapy). (51 refs).

  19. Radiation protection and safety in radiotherapy

    International Nuclear Information System (INIS)

    Soon after the discovery of X rays by Roentgen in 1895 and of natural radioactivity by Becquerel in 1896 it became apparent that ionizing radiation was not only useful for the diagnosis and treatment of disease but also harmful to human tissues. It has been recognized since early studies on X rays and radioactive minerals that exposure to high levels of radiation can cause clinical damage to tissues of the human body. In addition, long term epidemiological studies of populations exposed to radiation, especially the survivors of the atomic bombings of Hiroshima and Nagasaki in Japan in 1945, have demonstrated that exposure to radiation also has a potential for delayed effects such as induction of malignancies or damage to genetic material. Ionizing radiation and radioactive substances are natural and permanent features of the environment, and thus the risks associated with radiation exposure can only be restricted, not eliminated entirely. Additionally, the use of human-made radiation is now widespread. Sources of ionizing radiation are essential to modern health care: disposable medical supplies sterilized by intense radiation have been central to combating disease; radiology and nuclear medicine are a vital diagnostic tool; and radiotherapy is commonly part of the treatment of malignancies. Applications of ionizing radiation are growing in industry, agriculture, medicine and many other fields of industry and research, benefiting humanity. Irradiation is used around the world to preserve foodstuffs and reduce wastage, and sterilization techniques have been used to eradicate disease carrying insects and pests. Industrial radiography is in routine use, for example to examine welds, detect cracks and help prevent failure of engineered structures. The acceptance by society of the risks associated with radiation is conditional on the benefits to be gained from the use of radiation. Nonetheless, the risks must be restricted and protected against by the application of radiation safety standards. It is therefore essential that activities involving radiation exposure be subject to certain standards of safety in order to protect the individuals who are exposed to radiation, be it occupationally, for medical diagnostic or therapeutic purposes, or as members of the public

  20. Radiation Protection in NORM Industries

    International Nuclear Information System (INIS)

    Full text: NORM is an acronym for naturally occurring radioactive materials, which include radioactive elements found in the environment. Long-lived radioactive elements of interest include uranium, thorium and potassium, and any of their radioactive decay products, such as radium and radon. These elements have always been present in the earth's crust, and nearly all materials contain trace amounts of them. However, when these materials are processed as the result of human activities, concentration or enhancement of the levels of these radionuclides may occur. The processing of raw materials by many resource-based industries may increase the concentration of radioactive substances in those materials, and enhance the potential exposure to naturally occurring radioactive materials in products, by-products, residues and wastes. The most significant industries within the EU, based on the radiological risk and economic significance are: the phosphate industry, the processing of metal ores, zircon sands and refractory materials, manufacture of rare earths, manufacture and use of thorium compounds, the titanium dioxide pigment industry and the oil and gas extraction. If the residues containing naturally occurring radionuclides are not managed properly and safely, contamination over large areas is possible given the large quantities of such residues. There are two effects of human exploitation that are relevant in the case of potential effects of NORM on human health and the environment: (1) The concentrations of NORM can be enhanced above its natural levels in a product, byproduct or residue. (2) The availability for release into the biosphere of the NORM in products, by-products or residues can be enhanced through physicochemical changes or simply due to the method by which the residues are managed. The pathways by which workers could receive a significant radiation dose are: external irradiation, inhalation of dust, inhalation of radon, ingestion of dirt and dust and skin contamination. Occupational exposure to NORM falls within the scope of the requirements for practices if the radionuclide activity concentration in the material exceeds 1 Bq/g for uranium and thorium series radionuclides (other than radon and its short-lived progeny) or 10 Bq/g for potassium-40. If the relevant activity concentration level for radon or NORM is exceeded, a 'graded approach' to regulation should be applied, being the regulation in accordance with the characteristics of the operation and the exposures involved. (authors)

  1. Occupational radiation protection: Protecting workers against exposure to ionizing radiation. Contributed papers

    International Nuclear Information System (INIS)

    Occupational exposure to ionizing radiation can occur in a range of industries, mining and milling; medical institutions, educational and research establishments and nuclear fuel cycle facilities. The term 'occupational exposure' refers to the radiation exposure incurred by a worker, which is attributable to the worker's occupation and committed during a period of work. According to the latest (2000) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), an estimated 11 million workers are monitored for exposure to ionizing radiation. They incur radiation doses attributable to their occupation, which range from a small fraction of the global average background exposure to natural radiation up to several times that value. It should be noted that the UNSCEAR 2000 Report describes a downward trend in the exposure of several groups of workers, but it also indicates that occupational exposure is affecting an increasingly large group of people worldwide. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), which are co-sponsored by, inter alia, the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (NEA) and the World Health Organization (WHO), establish a system of radiation protection which includes radiation dose limits for occupational exposure. Guidance supporting the requirements of the BSS for occupational protection is provided in three interrelated Safety Guides, jointly sponsored by the IAEA and the ILO. These Guides describe, for example, the implications for employers in discharging their main responsibilities (such as setting up appropriate radiation protection programmes) and similarly for workers (such as properly using the radiation monitoring devices provided to them). The IAEA i organized its first International Conference on Occupational Radiation Protection. The objective of the Conference was to foster the exchange of information on current issues related to the exposure of workers to ionizing radiation in the course of their work and to formulate recommendations, as appropriate, regarding measures to strengthen international co-operation in occupational radiation protection. The Conference addressed the issue of establishing occupational radiation protection standards and providing for their application. It will focus on a number of specific problems, inter alia, the complex issue of controlling occupational exposure to natural sources of radiation. This document contain contributed papers to the Conference

  2. Effects of new ICRP recommendations on current radiation protection practice

    International Nuclear Information System (INIS)

    A review is given of some of the basic concepts and proposals contained in recommendations made by the International Commission on Radiological Protection in ICRP Publication 26. Special attention has been paid to the statement that dose limits are not intended to be design or planning objectives but the lower boundary of a forbidden range of values. Dose values above these limits have to be avoided, however, values below these limits are not automatically permitted. Accordingly, the limits are the constraint for optimization procedures under the ALARA principle. In order to implement the results of such optimization procedures it is necessary to further develop and improve existing radiation protection methods and techniques. Problems related to individual exposure control, operational instrumentation for radiation field intensity survey, transport of radioactive materials, etc. are used as examples. (author)

  3. Manual on radiation protection in hospitals and general practice. Radiation protection in dentistry

    International Nuclear Information System (INIS)

    The booklet deals with all aspects of the use of X rays in dentistry. The recommendations made are designed to reduce unnecessary exposure of the patient, will result in the production of superior radiographs and assist in eliminating unnecessary exposure of the operator himself. Separate chapters deal with the following topics: the need for radiation protection, delegation of responsibility, radiographic equipment, radiographic film, radiographic techniques, film processing and handling, patient doses (adults and children), general radiation protection and monitoring, educational standards

  4. Intervention and sustainability in radiation protection

    International Nuclear Information System (INIS)

    The book includes two parts: (A): Intervention and sustainability in radiation protection; summary and assessment of the conference of the German radiation protection commission (Strahlenschutzkommission) in November 2008. (B): lectures: The question of sustainability in connection with long-living radionuclides. Principles for protecting individuals in a context of rehabilitation of living conditions in contaminated territories. The application of the basic principles of radiation protection in case of Wismut recultivation. Situation concerning radon and reduction of radon-induced exposure in Schlema and Schneeberg. International experiences in recultivation projects: Lermontov (Russia), Mailuu (Kirgistan), Kitwe (Zambia). Radiological burden of the past in Germany. Radiological industrial wastes: situation, intervention, sustainability. Radiological burden of the past in Switzerland. Recultivation and clearing procedure in the former fuel production plant NUKEM-A. Justification of the strong sustainability concept. Recultivation strategies for the areas contaminated through the Chernobyl accident. Traces of plutonium production in the Jenissei river. Results and assessment of the active storage for residues (ALfR) in Rheinsberg. Large-scale changes of environmental radioactivity: atmospheric radioactivity. Long-living radionuclides in the hydrosphere: the case of iodine-129. Long-term retention and behavior of radioactivity in the soils. Assessment of long-term behavior of recultivation areas and old environmental contamination. Long-term safety and sustainability for the final repository of radioactive waste. Assessment of the long-term behavior of radiological contaminated uranium mining sites in France - The GEP (Groupe d'expertise pluraliste) approach.

  5. Fact-finding Survey in Response to the Manipulation of Personal Alarm Dosimeter Collection Efficiency: Lessons Learned About Post-Emergency Radiation Protection from the TEPCO Fukushima Daiichi APP Accident.

    Science.gov (United States)

    Yasui, Shojiro

    2015-01-01

    During emergency work at TEPCO Fukushima Daiichi Atomic Power Plant on December 1, 2011 a subcontractor demanded that its contracted workers cover their personal alarm dosimeters (PAD) with 3-cm-thick lead plates to lower dosimeter readings. As a response, the Ministry of Health, Labour and Welfare (MHLW) conducted a fact-finding survey to identify similar cases and devise measures to prevent a recurrence of this incident. To screen the suspected cases, the MHLW extracted: a) cases in which a PAD reading was at least 15% higher than the reading obtained from a radio-photolumine-scence dosimeter (RPD), where the dose was greater than 5 mSv in a month (1813 data points), and b) dose data in which PAD readings were less than 50% of the expected dose, where exposure dose may exceed 1 mSv in a day (56 workers, 17,148 data points). From these screenings, the MHLW identified 50 instances from TEPCO and nine primary contractors, including four general contractors, two plant manufacturers, and three plant maintenance companies as the subjects of the due diligence study of exposure data, including interviews. The results of the survey provide lessons that can also be applied to transition from emergency radiation protection to normal operation, as the application of emergency dose limits had ceased on December 16, 2011, in the affected plant. Based on the results of the survey, the MHLW provided administrative guidance documents to TEPCO and 37 primary contractors. The major points of these documents include: a) identification of recorded dose values by comparison of PAD readings to RPD readings, b) storage and management of RPDs and control badges, c) circulation management of PADs and access control to the affected plant, d) estimation of planned doses and setting of alarm values of PADs, e) actions to be taken by contractors if worker dose limits are reached, and f) physical measures to prevent recurrence of the incident. PMID:25617063

  6. The healing arts radiation protection guidelines

    International Nuclear Information System (INIS)

    The objective of these guidelines is to help the health professional render the risks associated with diagnostic radiation as low as reasonably achievable. The guidelines contain advice and recommendations, but no mandatory requirements. They assist radiation protection officers in establishing and maintaining a Quality Assurance Program and in carrying out other duties required by the Healing Arts Radiation Protection Act; assist staff to comply with the X-ray Safety Code in a way that will raise the standards of x-ray diagnosis and patient safety; address the relationship between the radiation exposure of the patient and the quality of the image; address the problem of protecting the patient in x-ray examinations; summarize x-ray safety problems from the point of view of the operator and other staff; indicate what remedial measures can be taken; define the quality assurance needs of x-ray users; and encourage the users of x-rays for diagnostic purposes to go beyond the scope of the Act and comply with the ALARA principle

  7. Radiation protection optimization. Advances in practical implementation

    International Nuclear Information System (INIS)

    Within the Community, protection against the dangers of ionizing radiation is regulated in conformity with the provisions of two Council Directives. One is of general application for all activities involving a hazard arising from ionizing radiation and lays down the basic safety standards for the health protection of the general public and workers against the dangers of ionizing radiation. The other is derived from the abovementioned one and lays down the basic measures for the radiation protection of persons undergoing medical examination or treatment. The Commission, in collaboration with the Spanish Ministerio de Sanidad y Consumo, the Consejo de Seguridad Nuclear and the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, organized on 12, 13 and 14 September 1988 in Madrid, the third scientific seminar on the optimization principle (Alara) which is a key element of the two abovementioned Council Directives. The seminar allowed an analysis of the progress made since the previous seminars of 1979 and 1983, in the practical implementation of the optimization principle, in relation to the design and operation of nuclear and industrial installations, natural radioactivity, medical practices and countermeasures. The report contains the 20 original contributions presented and some general considerations on the results of the seminar

  8. Occupational radiation protection: Protecting workers against exposure to ionizing radiation. Proceedings of an international conference

    International Nuclear Information System (INIS)

    Occupational exposure to ionizing radiation can occur in a range of industries, in mining and milling, in medical institutions, in educational and research establishments and in nuclear fuel cycle facilities. The term 'occupational exposure' refers to the radiation exposure incurred by a worker which is attributable to the worker's occupation and received or committed during a period of work. According to the latest (2000) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), an estimated 11 million workers worldwide are monitored for exposure to ionizing radiation. They incur radiation doses which range from a small fraction of the global average background exposure to natural radiation up to several times that value. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), which are co-sponsored by, amongst others, the IAEA, the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/NEA) and the World Health Organization (WHO), establish a system of radiation protection of which the provisions for occupational exposure are a substantial component. Guidance supporting the requirements of the BSS for occupational protection is provided in three Safety Guides, jointly sponsored by the IAEA and the ILO, and describing, for example, the implications for employers in discharging their main responsibilities (such as setting up appropriate radiation protection programmes) and similarly for workers (such as properly using the radiation monitoring devices provided to them). It should be noted, however, that radiation protection is only one factor that must be addressed in order to protect the worker's overall health and safety. The occupational radiation protection programme should be established and managed in co-ordination with other health and safety disciplines. Less than half of the occupationally exposed workers are exposed to artificial radiation sources. The majority of occupationally exposed workers are exposed to elevated levels of natural radionuclides. Notably, those workers comprising this latter group receive a higher average annual dose than do those workers exposed to artificial sources. The principal natural sources of radiation exposure, other than the mining and processing of uranium ores, are radon in buildings, non-uranium or thorium ores that contain significant traces of natural radionuclides, other underground workplaces and cosmic rays at aircraft altitudes. The BSS provide for the exclusion of exposures, the magnitude or likelihood of which is essentially unamenable to control. In order to address these issues the first International Conference on Occupational Radiation Protection, hosted by the Government of Switzerland, was organized by the IAEA and convened jointly with the ILO. It was co-sponsored by the European Commission (EC) and held in co-operation with the WHO and the OECD/NEA and also with UNSCEAR, the International Commission on Radiological Protection, the International Commission on Radiation Units and Measurements, the International Electrotechnical Commission, the International Radiation Protection Association and the International Society of Radiology. It was held at the Headquarters of the ILO, Geneva, from 26 to 30 August 2002, and attended by 328 participants from 72 countries and 12 organizations. Through the strong support of the IAEA's Technical Co-operation Department, and also from the EC, almost half of the participants were representing developing countries. The Conference is the first international conference to cover the whole area of occupational radiation protection, including infrastructure development, radiation monitoring, stakeholder involvement, and the probability of causation of occupational harm attributable to radiation exposure. The Proceedings contain all the presentations and discussions as well as summaries of each session and the findings and recommendations of the Conference

  9. Sustainable development and justification in radiation protection

    International Nuclear Information System (INIS)

    The advantages and disadvantages of ionizing radiation must be listed in order to be able to justify the application of this technique, based on criteria by which ionizing radiation can be assessed. In this note the development of so-called sustainability criteria, by which environmental protection aspects can be assessed, is initiated. The sustainability criteria must include the subjects integrated chain management, energy extending, quality improvement and the perception of risks, as indicated in the memo Handling of Radiation Risks. The sustainability criteria can be applied absolute (testing of the marginal values), as well as relative (choice for the least hazardous effect). An overall outline is given of the impact of applying these criteria. The most discriminative criterion appears to be the waste criterion. Generally spoken, only ionizing radiation of instruments and applications of some short-living isotopes, produced by means of accelerators, can meet this criterion. 4 figs., 2 tabs., 1 appendix, 17 refs

  10. International Society of Radiology and Radiation Protection

    International Nuclear Information System (INIS)

    The purpose of the International Society of Radiology (ISR), as being the global organization of radiologists, is to promote and help co-ordinate the progress of radiology throughout the world. In this capacity and as a co-operating organization of the IAEA, the ISR has a specific responsibility in the global radiological protection of patients. Globally, there are many users of medical radiation, and radiology may be practised in the most awkward circumstances. The individuals performing X ray studies as well as those interpreting them may be well trained, as in industrialized parts of the world, but also less knowledgeable, as in developing areas. The problems of radiological protection, both of patients and of radiation workers, still exist, and radiation equipment is largely diffused throughout the world. That is why a conference like this is today as important as ever. Radiation protection is achieved through education, on the one hand, and legislation, on the other. Legislation and regulation are the instruments of national authorities. The means of the ISR are education and information. Good radiological practice is something that can be taught. The ISR is doing this mainly through the biannual International Congress of Radiology (ICR), now arranged in an area of radiological need; the three previous ICRs were in China, in India and in South America; the next one is going to be in Mexico in 2002. The goal of the ICR is mainly to be an instructive and educational event, especially designed for the needs of its surrounding region. The ISR is aiming at producing educational material. The International Commission on Radiological Education (ICRE), as part of the ISR, is launching the production of a series of educational booklets, which also include radiation protection. The ICRE is actively involved in shaping and organizing the educational and scientific programme of the ICRs

  11. Days of Radiation Protection 2001. Conference Proceedings of the 24th Days of Radiation Protection

    International Nuclear Information System (INIS)

    Already the 24th annual international conference 'Days of Protection from Radiation' was taking place in Jan Sverma Hotel in Demaenova dolina on 26-29 November 2001. More than 180 participants from the Slovak Republic and the Czech Republic participated in the meetings of experts on protection from radiation. Representative of IAEA Division for Protection from Radiation and the representatives of several European companies securing the project, advisory and supplier's activities in dosimetry of ionising radiation also participated in the conference. The participants discussed in 7 expert panels the issue of protection from radiation in the legislative field, in the nuclear facilities operation and in medicine. The expert part of the other panels concerned the issues of ionising radiation impact on the environment and working environment, natural radio-nuclides, including radon and biologic impacts of radiation. One separate panel was dedicated to device techniques and methods of dosimetry of ionising radiation. More than 45 expert lectures and more than 40 poster presentations were presented at the conference during 3 days. The exhibition and presentation of measuring technique products and devices and of materials used in the area of radiation protection and nuclear medicine was prepared during the course of the conference. Participation in the conference showed that a great interest in problems of protection from radiation persists. This was proved by rich lecturing activity and wide discussions on the floor and during the poster presentations. Participants were satisfied since the organisers of the event prepared a worthy event with the rich expert themes at a good organisational and social level in a beautiful environment of Low Tatras

  12. Automatic measuring system to survey the surface radiation contamination

    International Nuclear Information System (INIS)

    At nuclear power plants and other facilities where radioactive substances are handled, radiation protection and safety is controlled under a very strict low and regulations to reduce exposure dose to workers and to prevent environmental pollution. Control of surface contamination is one of them, and it has been obliged to measure surface radiation contaminations of items with which workers contact within a radiation control area and items carried out of the control area. The automatic measuring system to survey the surface radiation contamination measures and inspects surface radiation contaminations of the objective items, and it can be classified into various types depending upon an objective to be measured. This report introduces an all surface monitor used for workers coming out from controlled area, an equipment surface monitor used for equipment carried out from the controlled area, and laundry surface monitor which checks clothes used in the controlled area. (author)

  13. Radiation protection programme for uranium mining

    International Nuclear Information System (INIS)

    The Radiation Protection Programme (RPP) was developed to ensure that measures are in place for the occupational protection and safety in uranium mining facility. This work has established a number of protective measures that should be taken by the individual miners, licensee and all staff. It is not known whether Kayerekera Uranium mine has the technical and administrative capability for an effective radiation protection programme. The key in the mining facility is the control of dust through various means to prevent the escape of radon gas. Personal hygiene and local operating rules have been discovered to be very important for the protection and safety of the workers. The following components have also been discovered to be vital in ensuring safety culture in the mining facility: classification of working areas, monitoring of individuals and workplace, assignment of responsibilities, emergency preparedness, education and training and health surveillance. The regulatory body (Environmental Affairs Department of Malawi) should examine the major areas outlined in the RPP for Kayerekera uranium mine to find out the effectiveness of the RPP that is in place. (au)

  14. radiation protection services and Norm procedures at Guoco-Rsh

    International Nuclear Information System (INIS)

    coordinated service programs of radiation protection and NORM handling procedures are implemented at Gupco-Rsh according to a bilateral agreement between the gulf of suez petroleum company (Gupco) and the atomic energy authority (AEA) since august 1995. the services included under the domain of the agreement are carried out by an expert group during periodic visits to Gupco-Rsh site. the activities performed serving the purpose of the programs implemented are extensive. essentially aiming at instituting an integrated radiation protection services in petroleum industry, and procedures for safe handling of NORM and NORM- contaminated items; the safety of industrial sealed sources is also seriously addressed.the AEA expert group adopt the international recommendations for protection of workers and environmental preservation for all procedures implemented . however. modifications are made to harmonize the implementation to accord with current egyptian regulations.The main features of the programmes instituted include targeted training addressed to selected groups; radiological mapping surveys of Rsh area with periodic monitoring of selected onshore and offshore sites.Measurements of personnel radiation exposure, and medical surveillance of radiation workers is periodically carried out

  15. Radiation Protection Using Carbon Nanotube Derivatives

    Science.gov (United States)

    Conyers, Jodie L., Jr.; Moore, Valerie C.; Casscells, S. Ward

    2010-01-01

    BHA and BHT are well-known food preservatives that are excellent radical scavengers. These compounds, attached to single-walled carbon nanotubes (SWNTs), could serve as excellent radical traps. The amino-BHT groups can be associated with SWNTs that have carbolyxic acid groups via acid-base association or via covalent association. The material can be used as a means of radiation protection or cellular stress mitigation via a sequence of quenching radical species using nano-engineered scaffolds of SWNTs and their derivatives. It works by reducing the number of free radicals within or nearby a cell, tissue, organ, or living organism. This reduces the risk of damage to DNA and other cellular components that can lead to chronic and/or acute pathologies, including (but not limited to) cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. These derivatives can show an unusually high scavenging ability, which could prove efficacious in protecting living systems from radical-induced decay. This technique could be used to protect healthy cells in a living biological system from the effects of radiation therapy. It could also be used as a prophylactic or antidote for radiation exposure due to accidental, terrorist, or wartime use of radiation- containing weapons; high-altitude or space travel (where radiation exposure is generally higher than desired); or in any scenario where exposure to radiation is expected or anticipated. This invention s ultimate use will be dependent on the utility in an overall biological system where many levels of toxicity have to be evaluated. This can only be assessed at a later stage. In vitro toxicity will first be assessed, followed by in vivo non-mammalian screening in zebra fish for toxicity and therapeutic efficacy.

  16. The purpose of radiation protection monitoring

    International Nuclear Information System (INIS)

    In the early period (1942-1960) of nuclear energy programmes with which I was associated, most radiation protection standards seem to have been formulated on the assumption that there is a threshold dose of ionizing radiation below which no radiation damage is expected to result in the lifetime of the exposed individual. It was in this climate of opinion that health physics began as a profession, and levels of maximum permissible exposure (MPE) to external sources of radiation, maximum permissible concentrations in air, water and food, and maximum permissible body burdens of radionuclides inside the human body were set and enforced. Some of the levels of MPE were quite high in comparison with present standards but, fortunately, the health physicists at the national laboratories in which most radiation workers were employed were very conservative; in most cases the average annual exposures were less than 10% of the MPE levels. However, there was not much concern with the man-rem concept, as exemplified by rather high levels of radioactive waste discharged from the plants or placed in temporary holding facilities - where there was a likely possibility of seepage into the environment. This situation was understandable and justifiable at a time when the purpose of radiation protection monitoring was simply to prevent individuals from exceeding a threshold dose. The period of the recent past up to the present time (1978) has been one in which there has been a gradual change from the concept of a threshold dose hypothesis to the linear hypothesis. In this period the International Commission on Radiological Protection (ICRP) and the national standards setting bodies have pointed out that the levels they have selected are based on the linear hypothesis, but in most respects they leave us with the impression that this is most probably a conservative assumption, subject to revision when better data become available. Also, during this period, the concept of exposure As Low As Reasonably Achievable (ALARA) was developed

  17. Issues in deep space radiation protection

    Science.gov (United States)

    Wilson, J. W.; Shinn, J. L.; Tripathi, R. K.; Singleterry, R. C.; Clowdsley, M. S.; Thibeault, S. A.; Cheatwood, F. M.; Schimmerling, W.; Cucinotta, F. A.; Badhwar, G. D.; Noor, A. K.; Kim, M. Y.; Badavi, F. F.; Heinbockel, J. H.; Miller, J.; Zeitlin, C.; Heilbronn, L.

    2001-01-01

    The exposures in deep space are largely from the Galactic Cosmic Rays (GCR) for which there is as yet little biological experience. Mounting evidence indicates that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate for GCR ions. The available biological data indicates that aluminum alloy structures may generate inherently unhealthy internal spacecraft environments in the thickness range for space applications. Methods for optimization of spacecraft shielding and the associated role of materials selection are discussed. One material which may prove to be an important radiation protection material is hydrogenated carbon nanofibers. c 2001. Elsevier Science Ltd. All rights reserved.

  18. Selecting radiation detectors for fire protection

    International Nuclear Information System (INIS)

    In the design of automatic fire protection systems, it must be noted that there is no such thing as a true and infallible fire detector. Equipment for use in fire detection employs one or more types of sensors that respond to the various characteristics of fire. Except for those characteristics of fire which can be sensed by the human body, fires emit also ultraviolet and infrared radiation which are both invisible to the human eye. Although they also have their limitations, ultraviolet and infrared detectors can be used for fire protection

  19. Decommissioning an uranium and thorium facility: a radiation protection approach

    International Nuclear Information System (INIS)

    Decommissioning means actions taken at the end of the useful life of a facility in retiring it from service with adequate regard for the health and safety of workers and members of the public. In the present work, we introduce a radiation protection approach for the removal of radioactive material to the extent that the facility or site becomes available for use without restriction. The facility to be decommissioned is a fuel cycle pilot plant that operated with natural uranium and thorium for almost two decades and then, kept inactive for about 10 years at the Nuclear and Energy Research Institute - IPEN. Even after this long period of inactivity, it has presented significant levels of radiation and contamination spread over the floor, walls, windows, doors and ceiling. The fuel cycle pilot plant was completely dismantled, remaining only the walls and the concrete structures. In this work we present the job done to restore the area. According to each step of dismantling a continuous monitoring of the contaminated surfaces was carried out including the survey of the deep material from the floor and walls. The material identified as radioactive waste was stored into appropriated metal drums. A radiation protection team guided this stage of the work, prescribing the tasks, and the amount of material that should be removed from floors, windows and ceiling. For this, repetitive surveys had to be done. The results of monitoring and contamination levels were analysed, thus guiding the next steps of the job. In this way radiation protection team took over the tasks, running the work with the purpose of achieving acceptable levels of radiation, restoring the area for unrestricted use. (author)

  20. Biological research for the radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Chan Kug; Shim, Hae Won; Jung, Il Lae; Byun, Hee Sun; Moon, Myung Sook; Cho, Hye Jeong; Kim, Jin Sik

    2003-04-01

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about polyamine effect on cell death triggered ionizing radiation, H{sub 2}O{sub 2} and toxic agents. In this paper, to elucidate the role of polyamines as mediator in lysosomal damage and stress(H{sub 2}O{sub 2})- induced apoptosis, we utilized {alpha}-DiFluoroMethylOrnithine (DFMO), which inhibited ornithine decarboxylase and depleted intracellular putrescine, and investigated the effects of polyamine on the apoptosis caused by H{sub 2}O{sub 2}, ionizing radiation and paraquat. We also showed that MGBG, inhibitor of polyamine biosynthesis, treatment affected intracellular redox steady states, intracellular ROS levels and protein oxidation. Thereafter we also investigated whether MGBG may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation or H{sub 2}O{sub 2} because such compounds are able to potentiate the cell-killing effects. In addition, ceruloplasmin and thioredoxin, possible antioxidant proteins, were shown to have protective effect on radiation- or H{sub 2}O{sub 2}(or chemicals)-induced macromolecular damage or cell death.

  1. Global view on radiation protection in medicine

    International Nuclear Information System (INIS)

    When planning good management of ionising radiation in medicine, key factors such as ensuring that health professionals work together and convincing them that radiation protection (RP) represents a substantial part of the quality management system in their clinical practice are of utmost importance. The United Nations Scientific Committee on the Effects of Atomic Radiation has decided that one of the thematic priorities will be medical radiation exposure of patients. The International Commission on Radiological Protection has recently updated the report on RP in medicine and continues to work on focused documents centred on specific areas where advice is needed. The roles of the International Atomic Energy Agency, World Health Organization and the European Commission, in the area of RP in medicine, are described in the present document. The industry, the standardisation organisations as well as many scientific and professional societies are also dedicating significant effort to radiation safety aspects in medicine. Some of the efforts and priorities contemplated in RP in medicine over the coming years are suggested. The best outcome will be accomplished when all the actors, i.e. medical doctors, other health professionals, regulators, health authorities and the industry manage to work together. (authors)

  2. History of radiation protection agencies and standards

    International Nuclear Information System (INIS)

    The history of radiation protection and standards has shown a decrease of recommended exposure limits over the years. There are two reasons for this decrease. First there has been an increased awareness of the biological effects of radiation. Second, advances in technology have made it possible to use radiation more efficiently while decreasing unnecessary dose to workers and the public. Thus it is now possible to maintain much smaller dose limits than in the early years. Current radiation protection philosophy is based on the assumption that there is no completely ''safe'' amount of radiation. In practical terms, however, there is certainly a level below which the measurement of biologic effects becomes meaningless. The important operational concept as put forth by the ICRP in 1977 is that exposure of an individual should be kept As Low as Reasonably Achievable (the ALARA principle) below recommended limits. In other words, recognizing that there are many situations in which it is impossible to reduce exposure to zero, one must weigh the cost of designing equipment and structures that reduce exposure below the recommended limits against the perceived benefits of doing so

  3. Biological research for the radiation protection

    International Nuclear Information System (INIS)

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about polyamine effect on cell death triggered ionizing radiation, H2O2 and toxic agents. In this paper, to elucidate the role of polyamines as mediator in lysosomal damage and stress(H2O2)- induced apoptosis, we utilized ?-DiFluoroMethylOrnithine (DFMO), which inhibited ornithine decarboxylase and depleted intracellular putrescine, and investigated the effects of polyamine on the apoptosis caused by H2O2, ionizing radiation and paraquat. We also showed that MGBG, inhibitor of polyamine biosynthesis, treatment affected intracellular redox steady states, intracellular ROS levels and protein oxidation. Thereafter we also investigated whether MGBG may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation or H2O2 because such compounds are able to potentiate the cell-killing effects. In addition, ceruloplasmin and thioredoxin, possible antioxidant proteins, were shown to have protective effect on radiation- or H2O2(or chemicals)-induced macromolecular damage or cell death

  4. Performance of radiation survey meters in X- and gamma-radiation fields

    International Nuclear Information System (INIS)

    The aim of this work was to investigate the different types of radiation detectors commonly used for radiation protection purposes as survey meters. The study was performed on survey meters that use different detectors as ionisation chamber, Geiger Mueller (GM) counter and scintillation detector. For each survey meter, energy dependence and angular response in X- and gamma-radiation fields was tested. The following commercially available survey meters were investigated: ionisation chambers Victoreen 451P, Babyline 31 and VA-J-15A, Geiger counter MRK-M87, 6150 AD6 and FAG FH 40F2 and scintillation counter 6150 ADB. As a source of gamma radiation, 137Cs and 60Co were used whereas X-ray radiation fields were generated using an X-ray unit. The radiation characteristics of the survey meters were mostly in compliance with references estimated by standard IEC 1017-2. However, some of them showed larger deviation at lower energies. GM counters exhibit strong energy dependence for low-energy photons. (authors)

  5. White book of radiation protection. Radiation protection at EDF: trends and objectives

    International Nuclear Information System (INIS)

    After a presentation of organization of radioprotection at EDF (Electricity of France), different parts of this radioprotection will be evoked: first, the question of radiobiology related to radiation effects, and associated medical questions. Then, different aspects of radioprotection all life long of nuclear power plants to ensure workers protection, public protection and environment protection. Finally the information and training themes, to end by emergency cases

  6. Radiation protection of vitamins in aqueous systems

    International Nuclear Information System (INIS)

    A study of the radiation induced decomposition of the B-group vitamins has been carried out in aqueous media at room temperature as well as in rigid matrices at low temperature. The detailed results on the effect of glucose and oxygen as protective additives at the different temperatures are presented in the case of Thiamine (Vitamin B1). Comparative data are given on the extent of decomposition of this and other vitamins of the B-group at room temperature and at 193 K. The importance of these results in connection with the radiation sterilization of pharmaceutical preparations is indicated. (author)

  7. Thermoluminescence Dosimetry Applied to Radiation Protection

    DEFF Research Database (Denmark)

    Christensen, Poul; BØtter-Jensen, Lars

    1982-01-01

    This is a general review of the present state of the development and application of thermoluminescence dosimetry (TLD) for radiation protection purposes. A description is given of commonly used thermoluminescent dosimeters and their main dosimetric properties, e.g. energy response, dose range, fading, and LET dependence. The applications of thermoluminescence dosimetry in routine personnel monitoring, accident dosimetry, u.v. radiation dosimetry, and environmental monitoring are discussed with particular emphasis on current problems in routine personnel monitoring. Finally, the present state of the development of TL readout instrumentation is discussed and some future trends are indicated.

  8. Porous material for protection from electromagnetic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kazmina, Olga, E-mail: kazmina@tpu.ru, E-mail: bdushkina89@mail.ru; Dushkina, Maria, E-mail: kazmina@tpu.ru, E-mail: bdushkina89@mail.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Suslyaev, Valentin, E-mail: susl@mail.tsu.ru [National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Semukhin, Boris, E-mail: bss@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2014-11-14

    It is shown that the porous glass crystalline material obtained by a low temperature technology can be used not only for thermal insulation, but also for lining of rooms as protective screens decreasing harmful effect of electromagnetic radiation as well as to establish acoustic chambers and rooms with a low level of electromagnetic background. The material interacts with electromagnetic radiation by the most effective way in a high frequency field (above 100 GHz). At the frequency of 260 GHz the value of the transmission coefficient decreases approximately in a factor times in comparison with foam glass.

  9. The gender problem in radiation protection

    International Nuclear Information System (INIS)

    Gender is a range of characteristics used to distinguish between males and females, particularly in the cases of men and women and the masculine and feminine attributes assigned to them. While the social sciences sometimes approach gender as a social construct, and some gender studies particularly do, research in the natural and medical sciences investigates whether biological differences in males and females influence the development of gender in humans. Radiation protection regulations also take into account the possibly different radiation risks of males and females. The following contribution investigates how far this is justified, and what are the consequences. (orig.)

  10. The radiation protection is on the agenda

    International Nuclear Information System (INIS)

    The radiation protection in the radiological practice has to meet to three points. The first one concerns the decision to do or not to do the examination, it is the first principle relative to the act justification. The second point is linked to the examination realisation, it is the second principle of optimization. The third one concerns the delivered radiation dose. The third point is particularly important when it concerns children because we do not have the reference levels for the computerized tomography for children. It would be desirable that the way of express this value has a very practical nature. (N.C.)

  11. Chemical protection against ionizing radiation. Final report

    International Nuclear Information System (INIS)

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references

  12. Chemical protection against ionizing radiation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references.

  13. 75 FR 31458 - Infrastructure Protection Data Call Survey

    Science.gov (United States)

    2010-06-03

    ... Register on December 22, 2009, at 74 FR 68070-68071, for a 60-day public comment period. DHS received no... SECURITY National Protection and Programs Directorate Infrastructure Protection Data Call Survey AGENCY... Protection and Programs Directorate (NPPD), Office of Infrastructure Protection (IP),...

  14. Technical evaluation of the capability of present instrumentation to meet the draft ANSI standard on performance specifications for radiation protection survey instrumentation

    International Nuclear Information System (INIS)

    Existing standards and guides were reviewed. A survey of commercially available instruments determined information on types of instruments available and the manufacturers specifications. Users provided information regarding instrument preference and desired capability. Based on the above information and statistical criteria, procurement of 56 representative instrumentation was initiated. Instrument test and evaluation procedures are being developed that follow the existing, proposed, or draft standards and guides

  15. Radiation protection glossary. English-Estonian and Estonian-English

    International Nuclear Information System (INIS)

    The dictionary contains more than 300 entries in the field of radiation protection and also useful information about special measurement units for quantities of interest in radiation protection (SI units and the previously used units) with their conversion factors

  16. 2009 Canadian Radiation Oncology Resident Survey

    International Nuclear Information System (INIS)

    Purpose: Statistics from the Canadian post-MD education registry show that numbers of Canadian radiation oncology (RO) trainees have risen from 62 in 1999 to approximately 150 per year between 2003 and 2009, contributing to the current perceived downturn in employment opportunities for radiation oncologists in Canada. When last surveyed in 2003, Canadian RO residents identified job availability as their main concern. Our objective was to survey current Canadian RO residents on their training and career plans. Methods and Materials: Trainees from the 13 Canadian residency programs using the national matching service were sought. Potential respondents were identified through individual program directors or chief resident and were e-mailed a secure link to an online survey. Descriptive statistics were used to report responses. Results: The eligible response rate was 53% (83/156). Similar to the 2003 survey, respondents generally expressed high satisfaction with their programs and specialty. The most frequently expressed perceived weakness in their training differed from 2003, with 46.5% of current respondents feeling unprepared to enter the job market. 72% plan on pursuing a postresidency fellowship. Most respondents intend to practice in Canada. Fewer than 20% of respondents believe that there is a strong demand for radiation oncologists in Canada. Conclusions: Respondents to the current survey expressed significant satisfaction with their career choice and training program. However, differences exist compared with the 2003 survey, including the current perceived lack of demand for radiation oncologists in Canada.

  17. Radiation survey of aircraft and heavy machinery scrap

    International Nuclear Information System (INIS)

    This study was conducted primarily to survey aircraft and heavy machinery at 30 locations within Khartoum State using handheld radiation survey meters to detect and identify any radiation sources that might be present and to estimate radiation dose levels. The survey has resulted in detection of 16 sealed sources of 90Sr and one of 226Ra in aircraft scrap. Of course, 90Sr sources are used in military aircraft as temperature sensors while 226Ra is used for indicating fuel levels. These sources were found intact without spreading radioactivity contamination; however, none was detected in heavy machine scrap. The levels of radiation dose measured at 0.1 m from the source fall within the range of 25.1–40.2 ?Sv/h with an average value of 33.52±4.06 ?Sv/h. These orphan sources have been separated from the scrap, tested for possible leakage, conditioned and stored in waste management facility. The result of this study has revealed without doubt that the scrap constitute a serious source of public exposure and highlights the importance of legislation making radiation monitoring of scrap in the country mandatory before it is sold to metal industry for reprocessing. - Highlights: ? Sealed radioactive sources (90Sr and 226Ra) were detected in aircraft scrap. ? No source was detected in heavy machine scrap. ? Radiation dose measured at 0.1 m from the source can be used to estimate exposure to public. Monitoring of scrap was found to be useful for protection (from orphan sources).

  18. Discussion on some problems in evolution of radiation protection system

    International Nuclear Information System (INIS)

    In radiation protection practice in China, the appropriate simplification and better coordination for the existing radiation protection system are necessary. The human-based protective measures alone could not meet the requirements of the environmental protection in many circumstances. Protecting the environment from ionizing radiation would be implicated in radiation protection. Collective dose is an useful index, its applicable scope should be well defined. Using such an quantity can help increase radiation protection level, but applicable conditions should be defined, such as time and space. Natural radiation is the largest contributor of the radiation exposure to human. Occupational exposure from natural radiation should be controlled, such as to underground miners and air crew. Controlling both man-made and natural radiation exposure to pregnant women and children needs to be enhanced, especially radiological diagnosis and therapy

  19. Radiation protection in radioactive waste management

    International Nuclear Information System (INIS)

    Details of the protection against ionizing radiation in radioactive waste management are specified in the Radiation Protection Ordinance. The problems connected with radioactive waste management are due to the non-existence of a defined differentiation between radioactive wastes and ordinary wastes. In view of the situation described with regard to radioactive waste management practice should be reconsidered and improved. Uniform regulations valid for a longer period of time would be desirable since they enable the waste producers to make long-term plans. In principle, this is a central and important issue the solution of which cannot be left to the different opinions of a total of 16 Federal States. (orig./HSCH)

  20. Strengthening of radiation protection infrastructures: The IAEA's response

    International Nuclear Information System (INIS)

    The role of the International Atomic Energy Agency (IAEA) in formulating radiation protection standards and its efforts to further their practical application are outlined. The technical co-operation activities being carried out in the field of radiation protection are described, in particular the IAEA's scheme of Radiation Protection Advisory Team (RAPAT) missions to strengthen the radiation protection infrastructures in developing Member States. (author). 10 refs, 2 figs, 1 tab

  1. The historical development of radiation protection limits

    International Nuclear Information System (INIS)

    The present internationally largely corresponding radiation protection limits are based on recommendations given by the ICRP in 1965. In order to better understand the underlying concepts, a historical sketch of the development is presented including actual discussions of trends to be excepted. Although exposure of healthy individuals by man-made sources up to these maximum levels is legally permissible, it should be emphasized again and again that any unavoidable exposure must be justified by the need for its associated cause. (author)

  2. Radiation Protection Institute Annual Report for 2013

    International Nuclear Information System (INIS)

    The report covers the activities of the Radiation Protection Institute (RPI) of the Ghana Atomic Energy Commission for the year 2013. The report is grouped under the following headings: establishment, vision and mission; personnel and organization; major activities and research projects; IAEA, Technical Cooperation and AFRA projects; ongoing research projects and programs; income and expenditure statements, physical development and human resource development, training courses, meetings and conferences. (A. B.)

  3. Nevada National Security Site Radiation Protection Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-04-30

    Title 10 Code of Federal Regulations (CFR) Part 835, “Occupational Radiation Protection,” establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada National Security Site (NNSS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operations, and environmental restoration off-site projects. This RPP section consists of general statements that are applicable to the NNSS as a whole. The RPP also includes a series of appendices which provide supporting detail for the associated NNSS Tennant Organizations (TOs). Appendix H, “Compliance Demonstration Table,” contains a cross-walk for the implementation of 10 CFR 835 requirements. This RPP does not contain any exemptions from the established 10 CFR 835 requirements. The RSPC and TOs are fully compliant with 10 CFR 835 and no additional funding is required in order to meet RPP commitments. No new programs or activities are needed to meet 10 CFR 835 requirements and there are no anticipated impacts to programs or activities that are not included in the RPP. There are no known constraints to implementing the RPP. No guides or technical standards are adopted in this RPP as a means to meet the requirements of 10 CFR 835.

  4. Radiation protection aspects in importing metallic scraps

    International Nuclear Information System (INIS)

    The meeting deals with radiation protection problems caused by the possibility that radioactive metal scraps or radioactive sources hidden in the scraps, may arrive in a foundry. The importance of this issue and of rational and systematic solutions is showed by several accidents, happened in the past in numerous countries, by many signals in Italy and by some papers published in international scientific journals or reports issued by authorities and institutions in different countries

  5. Calculation of radiation protection for graphite piles

    International Nuclear Information System (INIS)

    After having recalled the protection problems related to CO2 cooled graphite reactors (damages created by fast neutrons, coolant activation by neutrons, material heating due to gamma radiation, steel structure activation), the authors present the principle of the calculation method (it is mainly based on a scattering-based propagation of fast neutrons and the quick establishment of an asymptotic spectrum), and discuss its practical application. They describe the determination of constants: calculation of equivalent fission flows, calculation of the equivalent thermal flow

  6. Radiation Protection Institute Annual Report for 2012

    International Nuclear Information System (INIS)

    The report covers the activities of the Radiation Protection Institute (RPI) of the Ghana Atomic Energy Commission for the year 2012. It is grouped under the following topics: vision and mission; personnel, major activities, research projects, IAEA Technical Cooperation and AFRA projects; ongoing research projects and programs. Also included are income and expenditure statements, physical and human resource development; IAEA training courses, national and IAEA training courses and meetings hosted; and publications. (A. B.)

  7. Evaluation of surgical gloves for radiation protection

    International Nuclear Information System (INIS)

    Full text of publication follows: Accumulated doses in hands during interventionist cardiology and radiological procedures can reach high values, and even go beyond legal limits for exposed professionals after years of work, unless they use specific radiation protection methods. An important protection mean for hands is the use of surgical gloves that attenuate the radiation while maintaining the tactile sensitivity demanded by physicians.There is a wide variety of commercialized gloves for radiation protection, with different advantages and disadvantages for various uses. In this paper nine different models of gloves have been evaluated for testing its attenuation capacity for several voltages, the maintenance of tactile sensitivity, its resistance to elongation, and the apparition of pores after successive sterilizing processes. It is very important that they do not lose its initial characteristics after processes of sterilization in order to optimize the product effective cost. The attenuation values have been measured under the voltages of 60, 70, 80 and 90 KVp obtaining very different values at each voltage with different gloves. The values measured range between 34 % before any supplementary sterilization with one model of glove (for 90 KVp), and 57 % after four sterilization processes with another glove (for 60 KVp). Some gloves lose its attenuation capacity after successive sterilizations, having not been found an y significant relation with their composition. The tactile sensitivity, a decisive factor for its users, decreases as its attenuation capacity increases, and remains mostly constant after being sterilized. The tests performed allow to conclude a set of fi nal results that can facilitate the choice of the most suitable gloves according to the practical applications (the priorities being the radiation protection and the tactile sensitivity)

  8. University courses on radiation protection in Estonia

    International Nuclear Information System (INIS)

    A brief overview is given on the educational courses containing topics in the field of radiation protection in the Tallinn Technical University and in the University of Tartu, Estonia. It follows from the analysis that at present there is no complete system for education or training of experts in the field. At the same time a significant deficit in specialists and experts is one of the major barriers in the development of an efficient radiation protection infrastructure in this country. A comparison of the course topics to the syllabus for the training of qualified experts recommended by EC and by IAEA demonstrates the items, which need a further development and an expanded coverage in the existing or in future courses. These items involve, e.g., operational radiation protection and its organisation, waste management, transport, quality assurance, etc. Upgrading of courses for the missing theoretical items is not difficult, but it is not sufficient. The largest void lies in the weakness / absence of an adequate basis for practical work or exercises for students. The examples of co-operation and help provided for the existing courses, especially by the Nordic countries, are encouraging. (au)

  9. Training in Radiation Protection for Interventional Radiology

    International Nuclear Information System (INIS)

    Several potential problems have been detected in the safety aspects for the practice of interventional radiology procedures: a) An important increase in the number cases and their complexity and the corresponding increase of installations and specialists involved; b) New X ray systems more sophisticated, with advanced operational possibilities, requiring special skills in the operators to obtain the expected benefits;c) New medical specialists arriving to the interventional arena to profit the benefits of the interventional techniques without previous experience in radiation protection. For that reason, education and training is one of the basic areas in any optimisation programme in radiation protection (RP). the medical field and especially interventional radiology requires actions to promote and to profit the benefit of the new emerging technologies for training (Internet, electronic books, etc). The EC has recently sponsored the MARTIR programme (Multimedia and Audio-visual Radiation Protection Training in Interventional Radiology) with the production of two videos on basic aspects of RP and quality control and one interactive CD-ROM to allow tailored individual training programmes. those educational tools are being distributed cost free in the main European languages. To go ahead with these actions, the EC has decided to promote during 2002, a forum with the main Medical European Societies involved in these interventional procedures. (Author)

  10. Training in Radiation Protection for Interventional Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Vano, E.; Guibelalde, E.

    2002-07-01

    Several potential problems have been detected in the safety aspects for the practice of interventional radiology procedures: a) An important increase in the number cases and their complexity and the corresponding increase of installations and specialists involved; b) New X ray systems more sophisticated, with advanced operational possibilities, requiring special skills in the operators to obtain the expected benefits;c) New medical specialists arriving to the interventional arena to profit the benefits of the interventional techniques without previous experience in radiation protection. For that reason, education and training is one of the basic areas in any optimisation programme in radiation protection (RP). the medical field and especially interventional radiology requires actions to promote and to profit the benefit of the new emerging technologies for training (Internet, electronic books, etc). The EC has recently sponsored the MARTIR programme (Multimedia and Audio-visual Radiation Protection Training in Interventional Radiology) with the production of two videos on basic aspects of RP and quality control and one interactive CD-ROM to allow tailored individual training programmes. those educational tools are being distributed cost free in the main European languages. To go ahead with these actions, the EC has decided to promote during 2002, a forum with the main Medical European Societies involved in these interventional procedures. (Author)

  11. Radiation protection aspects of waste disposal

    International Nuclear Information System (INIS)

    Waste disposal, particularly of high level waste and some alpha-waste, involves very long times of isolation from the biosphere. The basic radiation protection requirements of 'optimisation of protection' and 'limitation of individual risk' must be complemented with policy decisions regarding the level of ambition of protection for future individuals and populations. Decisions are also necessary for the risk assessments applicable to different time periods. These assessments include considerable uncertainty and determinations of compliance with regulatory requirements must contemplate a policy for taking account of such uncertainties. The paper deals with 'normal' scenarios and with disruptive events as mechanisms for the return of nuclides to the biosphere, in the framework of the Recommendations of the ICRP. (author)

  12. Discussion on several problems in evolution of radiation protection system

    International Nuclear Information System (INIS)

    As viewed from the standpoint of radiation protection practice, it is necessary that the current system of radiological protection should be made more simple and coherent. The human-based protective measures alone are far from having met the requirements of environmental protection in many circumstances. Protecting the environment from ionising radiation would be implicated in radiation protection. Collective dose is an useful indicator, of which applicable extent should be defined. Using such an quantity could help improve radiation protection level, but applicable conditions should be indicated, temporal or spatial. Natural radiation is the largest contributor to the radiation exposure of human. Occupational exposure from natural radiation should be controlled, for occupations such as underground miners and air crew. Controlling both man-made and natural radiation exposure of pregnant women and children needs to be enhanced, especially radiological diagnosis and treatment. China radiation protection community, as a whole, is paying considerable attention to the ICRP's new Recommendations. Prof. Clarke's article 'A Report on Progress towards New Recommendations', a communication from the International Commission on Radiological Protection, has been translated into Chinese and published on Radiation Protection, the Official Journal of China Radiation Protection Society with a view of intensifying awareness of the new Recommendations within more radiation protection workers and people concerned. In addition, a special meeting was convened in early 2002 to address the comments on the new Recommendations. (author)

  13. Ionizing radiation protection regulation in Canada: the role of the Federal Provincial Territorial Radiation Protection Committee

    International Nuclear Information System (INIS)

    Canada has one of the broadest and most mature nuclear industries in the world, and is a world leader in uranium mining, and in the production of medical radioisotopes. The Canadian nuclear industry also includes: uranium milling, refining, and fuel fabrication facilities; nuclear generating stations; research reactors and related facilities; waste management facilities; and the use of radioactive materials in medicine and industry. Regulation of this broad and dynamic industry is a complex and challenging task. Canada has a cooperative system for the regulation of ionizing radiation protection covering federal, provincial, territorial, and military jurisdictions. A Federal/Provincial/Territorial Radiation Protection Committee (FPTRPC) exists to aid in cooperation between the various agencies. Their mandate encompasses regulation and guidance on all aspects of radiation protection: federal and provincial; NORM and anthropogenic; ionizing and non-ionizing. The Canadian Nuclear Safety Commission (CNSC) is the federal nuclear regulator whose mandate includes radiation protection regulation of most occupational and public exposures. The CNSC does not regulate medical (patient) exposures, some aspects of NORM, or military applications. Provincial authorities are the primary regulators with respect to doses to patients and occupational doses arising from X-rays. Health Canada plays a role in X-ray device certification, development of national guidance (e.g. on radon) and direct regulation of certain federal facilities. NORM is regulated provincially, with varying regulatory mechanisms across the provinces and territories. Radiation protection regulation for National Defence and the Canadian Armed Forces is performed by the Director General Nuclear Safety. This paper gives an overview of the structure of the regulation of ionizing radiation protection in Canada, and shares lessons learned, particularly with respect to the usefulness of the FPTRPC in helping coordinate and harmonize radiation protection regulation nationally. (author)

  14. IRPA Regional Congress on Radiation Protection in Central Europe

    International Nuclear Information System (INIS)

    The Congress proceedings included 93 papers. The IRPA Congress materials deals with progress the various IRPA initiatives to implement new radiation protection concepts. In accordance to this actual trends the main topics of the congress are 'Clearance levels and material release' and 'Environmental impact assessment of workplaces resp. facilities with radiation sources'. Papers and posters in all traditional radiation protection subjects (general aspects, biological effects of radiation, radiation protection in medicine, dosimetry, instrumentation, quality assurance)

  15. Latin American and Caribbean Federation of Radiation Protection Societies (FRALC)

    International Nuclear Information System (INIS)

    The idea of a Federation of Radiation Protection Societies in Latin America came up at the First Regional Congress on Radiation Protection and Nuclear Safety that was held in Buenos Aires (Argentina), in October 1991. At the Second Regional Congress, in Zacatecas (Mexico), in 1993, the Latin American and Caribbean Federation of Radiation Protection Societies (FRALC) was officially launched. The founder members were the Argentine Radiation Protection Society (SAR), the Brazilian Radiation Protection Society (SBPR), the Mexican Radiation Safety Society (SMSR) and the Peruvian Radiation Protection Society (SPR). Now, the FRALC has accepted as members the Radiation Protection Section of the Cuban Physics Society (SPRC) and the Uruguayan Radiation Protection Association (AUR). The basic objectives of the FRALC are: to promote the safe use of radiation and radioactive sources in Latin America and the Caribbean; to promote the foundation of new Radiation Protection Societies within the region, as mean of associating radiation protection professionals, and then, to promote of affiliation of this new societies to IRPA; to encourage the cooperation and mutual aid in the study, research and use of resources, in order to promote the radiation protection development in Latin America and the Caribbean

  16. 10 CFR 35.24 - Authority and responsibilities for the radiation protection program.

    Science.gov (United States)

    2010-01-01

    ...and responsibilities for the radiation protection program. 35.24 Section...and responsibilities for the radiation protection program. (a) In addition to the radiation protection program requirements...

  17. The biological bases of radiation protection

    International Nuclear Information System (INIS)

    Radiation protection is based on a large number of human data collected during the past 80 years. For dose levels of a few hundred rads, risks can be evaluated very accurately. Yet it is difficult to derive from them the risks due to low doses because of the uncertainty on the dose-effect relationship. In the practice, pessimistic assumptions are used, which involves an over-estimation of risks. However, even in these unfavorable conditions, risks associated to occupational activities implying radiation exposure seem to be less important than in most industries. Radiation protection has played a historical and essential part in the quantitative assessment of risks and opened a new era of occupational medicine and environmental health investigations. Many substances, such as radiations, are mutagenic and/or carcinogenic at very low doses, and in many cases human exposure cannot be avoided. Therefore, a policy advocating refusal of any risk whatsoever and absolute safety will lure with unattainable and misleading prospects. The only method is to assess the quantitative importance of the various risks in order to decide how far a damage may be tolerable in the various cases when exposure cannot be avoided

  18. From scientific evidence to radiation protection

    International Nuclear Information System (INIS)

    The long-term effects on health from radiation at low dose rates depend on so many biological variables that simple generalizations are unlikely to be valid for any specific individual at any specific time. Increased incidence of cancers can be observed from moderate doses at high dose rates. At lower doses and lower dose rates evidence is less clear. Advances in molecular biology in the last decade are enabling striking progress to be made in understanding the cellular mechanisms that determine the responses to radiation and their underlying genetic control. Enough is known now to conclude that any response will depend on an individual's genetic makeup and may be varied in time for a given individual, depending, inter alia on the pattern of dose in time. Faced with this uncertainty, the pragmatic approach for protection remains that of basing the level of protection simply on the magnitude of the radiation dose, albeit not with the underlying idea that with every radiation event there is a fixed probability of causing cancer. (author)

  19. Science Goals in Radiation Protection for Exploration

    Science.gov (United States)

    Cucinotta, Francs A.

    2008-01-01

    Space radiation presents major challenges to future missions to the Earth s moon or Mars. Health risks of concern include cancer, degenerative and performance risks to the central nervous system, heart and lens, and the acute radiation syndromes. The galactic cosmic rays (GCR) contain high energy and charge (HZE) nuclei, which have been shown to cause qualitatively distinct biological damage compared to terresterial radiation, such as X-rays or gamma-rays, causing risk estimates to be highly uncertain. The biological effects of solar particle events (SPE) are similar to terresterial radiation except for their biological dose-rate modifiers; however the onset and size of SPEs are difficult to predict. The high energies of GCR reduce the effectiveness of shielding, while SPE s can be shielded however the current gap in radiobiological knowledge hinders optimization. Methods used to project risks on Earth must be modified because of the large uncertainties in projecting health risks from space radiation, and thus impact mission requirements and costs. We describe NASA s unique approach to radiation safety that applies probabilistic risk assessments and uncertainty based criteria within the occupational health program for astronauts and to mission design. The two terrestrial criteria of a point estimate of maximum acceptable level of risk and application of the principle of As Low As Reasonably Achievable (ALARA) are supplemented by a third requirement that protects against risk projection uncertainties using the upper 95% confidence level (CL) in radiation risk projection models. Exploration science goals in radiation protection are centered on ground-based research to achieve the necessary biological knowledge, and in the development of new technologies to improve SPE monitoring and optimize shielding. Radiobiology research is centered on a ground based program investigating the radiobiology of high-energy protons and HZE nuclei at the NASA Space Radiation Laboratory (NSRL) located at DoE s Brookhaven National Laboratory in Upton, NY. We describe recent NSRL results that are closing the knowledge gap in HZE radiobiology and improving exploration risk estimates. Linking probabilistic risk assessment to research goals makes it possible to express risk management objectives in terms of quantitative metrics, which include the number of days in space without exceeding a given risk level within well defined confidence limits, and probabilistic assessments of the effectiveness of design trade spaces such as material type, mass, solar cycle, crew selection criteria, and biological countermeasures. New research in SPE alert and risk assessment, individual radiation sensitivity, and biological countermeasure development are described.

  20. New dose units in radiation protection

    International Nuclear Information System (INIS)

    The 'Normenausschuss Radiologie' (German Standards Committee on Radiology, NAR) and the Physikalisch-Technische Bundesanstalt (PTB) have recommended the introduction of new quantities in the field of radiation protection measurements for external exposure in Germany as of January 1995. The present report serves as a support for this recommendation. It describes the present, radiation type related system of quantities and the new quantities as proposed by the ICRU which are the same for all types of radiation. The implications of the introduction of the new quantities in individual and area monitoring are described. In particular, changes of calibration procedures are considered, and numerical values needed for these procedures are given. Two chapters deal with special problems connected with instrument testing and verification and with provisional arrangements. (orig./HP)

  1. Neutron measuring instruments for radiation protection

    International Nuclear Information System (INIS)

    The present report deals with selected topics from the field of neutron dosimetry for radiation protection connected with the work of the subcommittee 6802 in the Standards Committee on Radiology (NAR) of the German Standards Institute (DIN). It is a sort of material collection. The topics are: 1. Measurement of the absorbed-energy dose by a) ionization chambers in fields of mixed radiation and b) recoil-proton proportional counting tubes. 2. Measurement of the equivalent dose, neutron monitors, combination methods by a) rem-meters, b) recoil-proton counting tubes, c) recombination method, tissue-equivalent proportional counters, activation methods for high energies in fields of mixed radiation, d) personnel dosimetry by means of ionization chambers and counting tubes, e) dosimetry by means of activation methods, nuclear track films, nonphotographic nuclear track detectors and solid-state dosimeters. (orig./HP)

  2. Quantitative risk in radiation protection standards

    International Nuclear Information System (INIS)

    Although the overall aim of radiobiology is to understand the biological effects of radiation, it also has the implied practical purpose of developing rational measures for the control of radiation exposure in man. The emphasis in this presentation is to show that the enormous effort expended over the years to develop quantitative dose-effect relationships in biochemical and cellular systems, animals, and human beings now seems to be paying off. The pieces appear to be falling into place, and a framework is evolving to utilize these data. Specifically, quantitative risk assessments will be discussed in terms of the cellular, animal, and human data on which they are based; their use in the development of radiation protection standards; and their present and potential impact and meaning in relation to the quantity dose equivalent and its special unit, the rem

  3. Monthly radiation protection training of workers: An evaluation of two years operational practice

    International Nuclear Information System (INIS)

    Radiation protection training and education is important in stimulating safety culture of occupationally exposed workers. Taking into account the mandatory requirements in relation to education and training a digital training tool was introduced for communication of personal dose results and regular information on radiation protection. This tool enables that personal dose reports are monthly sent to the individual mailbox of workers together with short comprehensive slideshows on radiation protection topics. After two years of operational practice a survey was organised to evaluate the training tool. The results show that the majority (92%) of the occupationally exposed workers are aware of the communication of personal dose results through e-mail. Furthermore, 81% of these workers are also aware of their monthly and cumulated dose level. The monthly information on radiation protection topics is however less consulted. Around 40% of the workers that noticed the link are indifferent to the monthly information. The interest in radiation protection issues increases however with the education level.

  4. Health physics/radiation protection enrollments and degrees, 1982

    International Nuclear Information System (INIS)

    This report presents data on the number of students enrolled and the degrees awarded in academic year 1981 to 1982 from 61 US universities offering degree programs in radiation protection or related areas that would enable graduates to work as health physicists. The report includes historical survey data for the last decade and provides information about enrollment and degree trends, foreign national student participation, female and minority student participation, and placement of graduates. Also included is a listing of the universities by type of program and number of students

  5. Symposium on radiation protection in the Federal Armed Forces. Contributions

    International Nuclear Information System (INIS)

    The symposium discussed current problems, e.g. ammunition containing depleted uranium, dosimetry of ionizing and X-ray radiation in radar equipment, radiation protection law, effects of the new Radiation Protection Ordinance, medical treatment in case of radiation accidents, monitoring and supervision, etc

  6. Proceedings of the symposium on molecular biology and radiation protection

    International Nuclear Information System (INIS)

    The symposium on molecular biology and radiation protection was organized in sessions with the following titles: Radiation protection and the human genome; Molecular changes in DNA induced by radiation; Incidence of genetic changes - pre-existing, spontaneous and radiation-induced; Research directions and ethical implications. The ten papers in the symposium have been abstracted individually

  7. Stakeholders and Radiation Protection in Today's World

    International Nuclear Information System (INIS)

    In looking forward the C.R.P.P.H.(Nea 's Committee on radiation protection and public health) identified three influences that will condition the way we address emerging issues, and will alter how we address ongoing issues. These are the involvement of stakeholders in decision making processes, the evolution of radiological protection science and its changing place in risk assessment and management, and the experience gained in implementing the current system of radiological protection. First among there is the growing importance of stakeholder involvement in radiation protection decision making. This has affected the way that the principles of justification, optimization and limitation are viewed, the way the role of the radiation protection professional in risk assessment and management is viewed, and the relative importance of case specific circumstances in relation to harmonized, internationally accepted criteria. In the wake of this change, the international system of radiological protection is being updated by the ICRP, and discussions of the most appropriate direction to take are nearing their end. Second, radiological protection science continues to identify specific aspects that do not fit the conventional linear non threshold model, and which us to consider that, at the very least, the risks from different exposures and exposure situations may not be as simply and universally comparable assumed. This will affect the way that risks are managed, and all relevant stakeholder involvement processes. In addition, decisions relating to public, worker and environmental health and safety are increasingly seen as judgement social choices. Although such choices must be guided by an understanding of state-of-the-art scientific and its uncertainties, the final, choice will generally be made by society, not scientists. Third, since the issuance of ICRP Publication 60 in 1990, and the International Basic Safety Standards in 1996, extensive experience has been amassed in implementing the principles and approaches described in these documents, and several areas have been shown to present significant implemental issues, broadly resulting from the involvement of stakeholders in decision-making processes. Two particular problem areas stick out, these being the segregation of situations into Practices and Interventions, and the application of the concepts of Exclusion and Exemption. Taking these three aspects together, it is clear that stakeholder involvement has had, and will continue to have a profound impact on the identification and management of radiological risks

  8. Radiation protection safety in Uganda -- Experience and prospects of the National Radiation Protection Service

    International Nuclear Information System (INIS)

    The Uganda National Radiation Protection Service (NRPS) is a technical body under the Atomic Energy Control Board, established by Law - the Atomic Energy Decree of 1972, Decree No. 12, to oversee and enforce safety of radiation sources, practices and workers; and to protect the patients, members of the public and the environment from the dangers of ionizing radiation and radioactive wastes. The Ionizing Radiation Regulations (Standards) - Statutory Instruments Supplement No. 21 of 1996 -- back up the Law. The Law requires all users, importers and operators of radiation sources and radioactive materials to notify the NRPS for registration and licensing. The NRPS is responsible for licensing and for the regulatory enforcement of compliance to the requirements for the safety of radiation sources and practices. There are about 200 diagnostic X-ray units, two radiotherapy centres, one nuclear medicine unit, several neutron probes, about three level gauges and two non-destructive testing sources and a number of small sealed sources in teaching and research institutions. About 50% of these sources have been entered in our inventory using the RAIS software provided by the IAEA. There are about 500 radiation workers and 250 underground miners. The NRPS covers about 50% of the radiation workers. It is planned that by June 2001, all occupational workers will be monitored, bringing coverage to 100%. The Government of Uganda is making the necessary legal, administrative and technical arrangements aimed at establishing the National Radiation Protection Commission as an autonomous regulatory authority. The Atomic Energy Decree of 1972 and Regulations of 1996 are being revised to provide for the National Radiation Protection Commission and to make it comply with the requirements of the International Basic Safety Standards Safety Series No. 115. (author)

  9. Radiation protection and practical aspect of radionuclide handling

    International Nuclear Information System (INIS)

    Radionuclides are now widely used in industry but outside nuclear centers radiation protection is sometimes difficult to handle. Radiation risks are appreciated and summed up in tables for installation classification, radiation monitoring, shielding, ventilation, storage and waste disposal

  10. Program of radiation protection of patients (Argentina)

    International Nuclear Information System (INIS)

    After an initial period of conviction for installing an active discussion on Radiation Protection of Patients inside the medical community, there were organized 'working groups' in Radiodiagnosis, Radiotherapy, Nuclear Medicine and on radiation protection of pregnant women. These groups began systematical activities, which received a strong institutional support of the Argentine Society of Radiology, toward the implementation of a 'Program of RPP' that is being put nowadays into practice. The rapid advances which are present in medicine today, both in equipment and work protocol, determine that 'norms and regulations never arrive on time' which is why it is paramount that health services have 'systems of dynamic quality' and 'continual improvement' that can be adapted quickly to changes. This program has 6 principal aims and a series of targets to be fulfilled in successive stages: Basic aims and short term targets: 1) To guarantee the Justification. First goal: Development of the 'Prescription Guide' (achieved); 2) To optimize the radioprotection: First goal: Development of a 'Manual of Procedures' (In process); 3) To prevent potential exposures. First goal: Design of a 'Basic Quality System' in Health (achieved); 4) To achieve a qualification of the professionals by means of a process of certification and re-certification (In process); 5) To spread PRP's criteria by means of chats, meetings and the use of the media and graphical means. (Partially fulfilled); 6) To establish criteria for the protection of patient and operators in Interventional Radiology by creating a referral service. Strategies to cope with different interests within society are described. Main problems, failures and difficulties are also described. The effective participation of the professional and technicians' associations in the development of the program for radiation protection of the patient is a key aspect for the success of the whole national programme. (author)

  11. Optimization of radiation protection in uranium mines

    International Nuclear Information System (INIS)

    The problem is considered in the light of ICRP publication 22 viz to keep risk level 'as low as is readily achievable, economic and social considerations being taken into account'. Two aims were assigned. The former is more specific of a short term study on a particular mine. It is intended to verify how far protection procedures are relevant, considering either risk indicators - alpha energy or radon concentration. The latter aim is more general and is a consideration on the effects of aggregation procedures of miners' individual doses and of the choice of the dose-effect relationship upon the comparison of various protection programs. The doses delivered in various ventilation conditions were evaluated by means of a simulation model of air circulation in the mine; several radiation protection decisions could thus be compared at the level of their effects. The significance of the choice of the dose-effect relationship is discussed, with special emphasis on 'protection cost vs health effectiveness curves'. The cautious nature of provisions now in force is emphasized as well as the particular interest of job planning in mines as an alternative to 'technical protection' procedures

  12. Radiation protection during operation of nuclear power plants

    International Nuclear Information System (INIS)

    This Guide describes a Radiation Protection Programme for nuclear power plants. It includes: (1) An outline of the basic principles as well as practical aspects of the programme; (2) A description of the responsibilities of the operating organization to establish an effective programme based upon these principles; (3) A description of the administrative and technical measures to establish and implement the programme. This Guide also deals with the operational aspects to be considered by the operating organization in reviewing design in order to facilitate implementation of the Radiation Protection Programme. This Guide covers the requirements for a Radiation Protection Programme for all operational states of the nuclear power plant. It also includes guidelines for handling planned special exposures and for coping with unplanned exposures and contamination of personnel, areas, and equipment. Additional information concerning emergency situations involving releases of radioactive materials is given in Safety Guides 50-SG-O6, ''Preparedness of the Operating Organization (Licensee) for Emergencies at Nuclear Power Plants'', and 50-SG-G6, ''Preparedness of Public Authorities for Emergencies at Nuclear Power Plants''. This Guide covers the principles of dose limitation to site personnel and to the public, but it does not include detailed instructions on the techniques used for the actual measurement and evaluation of the exposures. This Guide does not include detailed instructions on environmental surveys, but it does mention principal steps in environmental monitoring which may be required for confirmation of the acceptability of radioactive discharges

  13. Radiation protection study of radiology medical workers in radiodiagnosis area

    International Nuclear Information System (INIS)

    Aspects related to radiological safety and its organization in radiodiagnosis were evaluated by means of scanning carried out in 18 hospitals of Mexico City, divided in 11 public institutions and 7 private ones. The population being studied was: hospital personnel that works in radiodiagnosis. The survey was made with 31 dichotomic variables, being obtained 132 surveys. The personnel characteristics are 83% works in public institutions, 49% works in radiodiagnosis, 3% has an academic degree, 13% is member of a hospital professional association, 13% has updated information on radiological protection, 36% was trained, 45% works for more than 2 years, 52% uses personal dosemeter, less than the 20% knows about the fundamentals of the radiological protection and 24% states to suffer from biological radiation effects, due to the exposure to x-rays. As result of the study, it was found that the main problems that the radiological protection has, are: lack of training programs in radiological protection and supervision, medical surveillance and the few number of persons that takes part in clinical meetings and professional associations. (authors). 7 refs., 3 tabs

  14. Production of multimedia textbook: ionizing radiation and radiation protection

    International Nuclear Information System (INIS)

    In our contribution we want to outline our plan of actions to be carried out for the creation of the first multimedia internet textbook in Slovakia in the field of ionizing radiation and radiation protection. In particular we want to describe first steps that have been performed at its realisation. This textbook would be applicable to the full-time study as well as to distance learning at traditional universities and technical universities. It will also be usable for various forms of in-service training by e-learning. Our objective is to create a modem internet textbook in radiation protection, of which production will be co- ordinated with other European Union countries. The output of our project -the multimedia textbook -will be available to all students at our university's servers and other users will have CDs at their disposal. We propose the use of this multimedia didactic means also in various forms of the distance e-learning. The main motivation for the implementation of distance courses is the necessity to update knowledge, skills and qualification in our contemporary rapidly developing world. The distance e-learning form of education can solve also the problem with the acquisition of the professional qualifications for the work with ionizing radiation. This is the reason for usage of the mentioned textbook not only as the fundamental and unified textbook for the students of universities, but also as the study material for the civil servants responsible for radiation protection, for in-service workers and providers of the professional training. (authors)

  15. The philosophy, past and present of radiation protection in radiotherapy

    International Nuclear Information System (INIS)

    Radiation protection in radiotherapy can be effected not only by legal provisions, regulations and a sophisticated supervisory apparatus but also by a high level of radiation protection awareness among medical doctors and staff who are responsible for patient radiation protection, too. This awareness will have to be promoted by imparting knowledge and experience to and by those involved with therapeutical measures. However, any exaggeration when doing so will result in causing doctors to become irritated with legal supervision and will cause radiation protection practice to deteriorate. Positive implementation of radiation protection does not only involve the handling of lead and baryte but also the joy in doing something meaningful. (orig./HSCH)

  16. An introduction to radiation protection. Fourth edition

    International Nuclear Information System (INIS)

    This book is a comprehensive account of radiation hazards and their control. The presentation, which assumes no previous knowledge of the subject, is based on methods which the authors have found, over a number of years of teaching radiation protection at all levels, to be most easily understood by students. The book is intended to meet the requirements of a wide range of readers who are involved, either directly or indirectly, with ionizing radiation, including doctors, dentists, research workers, nuclear plant designers and operators. In particular the authors believe that the work is suitable for the health physics monitors and technicians who are concerned with the day-to-day control of radiation hazards in nuclear power stations, research establishments, hospitals and in industry. In the UK, the generally accepted standard of training in this type of work is that set by the City and Guilds of London Institute courses in Radiation Safety Practice which are held in various centers. The chapters of the book dealing with the general aspects of health physics are aimed a this standard. Later chapters dealing with particular aspects of the subject are more detailed. In the second half of the book there are individual chapters on the more specialized topics of nuclear reactor health physics, problems associated with X-rays and radiography, health physics in medicine, the disposal of radioactive waste and radiological emergencies. Chapters are also presented on legislation and on the organization of health physics

  17. Radiation protection measures inside angiography room

    International Nuclear Information System (INIS)

    A radiation safety study was conducted in the Angiography Unit of Health Insurance Hospital, Nasr City, Cairo - Egypt. Scatter of ionizing radiation around the bed area during cardiac catheterization procedures using X-rays was measured. Sensitive Kodak monitoring films were used to determine periodically individual effective doses, the safe distance for the staff to minimize radiation exposure and the effectiveness of shields and used leaded aprons. The results showed that the minimum annual collective effective dose was 11.5 person-mSv averaged over all monitored nurses inside the room area and 30.7 person-mSv considering only cardiology staff. The scattered radiations are detectable up to two meters from the bed at different directions. Hence, within these areas cumulative exposures over one year is possible to exceed the annual effective dose limits. The effectiveness of used 0.5 lead equivalent type aprons for X-rays indicated that there is a need for increasing the lead equivalent of the apron used. Measurements for the effectiveness of the shielding used were performed during a period of one and half months of patient examinations. It is concluded that it is necessary to carry out monthly dosimetry measures, to conduct training courses to increase staff, technicians and nurses' awareness of radiation protection precautions during angiographic X-ray and cardiac catheterization procedures. (author)

  18. Radiation Protection for Lunar Mission Scenarios

    Science.gov (United States)

    Clowdsley, Martha S.; Nealy, John E.; Wilson, John W.; Anderson, Brooke M.; Anderson, Mark S.; Krizan, Shawn A.

    2005-01-01

    Preliminary analyses of shielding requirements to protect astronauts from the harmful effects of radiation on both short-term and long-term lunar missions have been performed. Shielding needs for both solar particle events (SPEs) and galactic cosmic ray (GCR) exposure are discussed for transit vehicles and surface habitats. This work was performed under the aegis of two NASA initiatives. The first study was an architecture trade study led by Langley Research Center (LaRC) in which a broad range of vehicle types and mission scenarios were compared. The radiation analysis for this study primarily focused on the additional shielding mass required to protect astronauts from the rare occurrence of a large SPE. The second study, led by Johnson Space Center (JSC), involved the design of lunar habitats. Researchers at LaRC were asked to evaluate the changes to mission architecture that would be needed if the surface stay were lengthened from a shorter mission duration of 30 to 90 days to a longer stay of 500 days. Here, the primary radiation concern was GCR exposure. The methods used for these studies as well as the resulting shielding recommendations are discussed. Recommendations are also made for more detailed analyses to minimize shielding mass, once preliminary vehicle and habitat designs have been completed. Here, methodologies are mapped out and available radiation analysis tools are described. Since, as yet, no dosimetric limits have been adopted for missions beyond low earth orbit (LEO), radiation exposures are compared to LEO limits. Uncertainties associated with the LEO career effective dose limits and the effects of lowering these limits on shielding mass are also discussed.

  19. Uncertainty Analysis in Space Radiation Protection

    Science.gov (United States)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high energy and charge (HZE) nuclei, protons, and secondary radiation including neutrons. The uncertainties in estimating the health risks from galactic cosmic rays (GCR) are a major limitation to the length of space missions, the evaluation of potential risk mitigation approaches, and application of the As Low As Reasonably Achievable (ALARA) principle. For long duration space missio ns, risks may approach radiation exposure limits, therefore the uncertainties in risk projections become a major safety concern and methodologies used for ground-based works are not deemed to be sufficient. NASA limits astronaut exposures to a 3% risk of exposure induced death (REID) and protects against uncertainties in risks projections using an assessment of 95% confidence intervals in the projection model. We discuss NASA s approach to space radiation uncertainty assessments and applications for the International Space Station (ISS) program and design studies of future missions to Mars and other destinations. Several features of NASA s approach will be discussed. Radiation quality descriptions are based on the properties of radiation tracks rather than LET with probability distribution functions (PDF) for uncertainties derived from radiobiology experiments at particle accelerators. The application of age and gender specific models for individual astronauts is described. Because more than 90% of astronauts are never-smokers, an alternative risk calculation for never-smokers is used and will be compared to estimates for an average U.S. population. Because of the high energies of the GCR limits the benefits of shielding and the limited role expected for pharmaceutical countermeasures, uncertainty reduction continues to be the optimal approach to improve radiation safety for space missions.

  20. Radiation Protection Training in Intracoronary Brachytherapy

    International Nuclear Information System (INIS)

    To report the educational objectives and contents on Radiation Protection (RP) for the practice of Intracoronary Brachytherapy (ICB) procedures. The wide international experience on training programs for ICB as well as our own experience organizing several courses aimed at Cardiologists, Radio therapists and Medical Physicists has been used to elaborate specific RP objectives and contents. The objectives, differentiated for Cardiologists, Radio therapists, Medical Physicists, Nurses and Technicians, pretend to guarantee the safety and RP of both patient and staff in the procedures of ICB. The objectives are necessarily different because their RP formation and their role in the procedure are different. The general topics included in RP training programmes for ICB could be: general topics on RP (Interaction of radiation and matter, RP principles, radiobiology, etc), principles of operation of ICB and interventional X-ray equipment, quantification of radiation dose and risks, optimisation of protection of staff and patients, accidents and emergencies, regulations, responsibilities, quality assurance program, handling of ICB sources, installation and commissioning. Training programs based on the objectives presented in this paper would encourage positive safety culture in ICB and can also be used as a starting point by the Regulatory Authority for the authorization of new Installations and credentialing of professionals involved in this technique as well as for the continuous education of the staff involved. (Author) 10 refs

  1. Code of practice of radiation protection in fixed nuclear gauges

    International Nuclear Information System (INIS)

    The present work aims at developing and updating a code of practice of radiation protection in fixed nuclear gauges that comply with current international recommendations. The work also intended to evaluate the current radiation protection situation in two selected companies using nuclear gauges in Sudan. A draft of the code is proposed which includes the basic principle of protection such as source construction and gauges radiation monitoring, storage maintenance and leak testing as well as specific issues related to nuclear gauges. The practical part of this study included investigation of radiation protection in the comparisons using nuclear gauges for level detection, to evaluate the level of radiation protection and the compliance to the regulatory authority regulations. The result revealed that the two companies do not have an effective radiation protection program and that can lead to exposure of workers to unnecessary doses. Some recommendations were stated, if implemented they could improve the status of radiation protection in those companies. (Author)

  2. Chernobyl accident: lessons learned for radiation protection

    International Nuclear Information System (INIS)

    Full text: The long-term nature of the consequences of the accident at the Chernobyl nuclear power plant, which was a major technological catastrophe in terms of its scope and complexity and created humanitarian, environmental, social, economic and health consequences. After more than twenty years we can conclude that Chernobyl accident was requested the big efforts of the national governments and international organisations for improvement new approaches to radiation safety, radiation protection, health care, emergency preparedness and response. During first years after accident some response actions did more harm than good because not based on international radiation protection principles, based on criteria developed during emergency and associated with mistrust, emotions, political pressure. As a result was inappropriate government reaction: unjustified relocation and decontamination - loss jobs, homes, billions of $ cost; unjustified compensation (high portion of annual national budgets). Non-radiological (e.g. detrimental economic, social and psychological) consequences was worse than direct radiological consequences. Psychological effects do not correlate with real exposure but with perception of risk. The affected people believe in threat to their health, doubt what has been reported about accident and resulted doses, got modification in life style, have somatic complains, got substance abuse (alcohol, tranquilizers, sleeping pills). The lack of accurate information and misperception of real radiation risk is believed also to have lead to change in behavior of some affected people. Possible long-term health effect due to the accidental exposure remains an issue. There is no doubt that excess thyroid cancer incidence results from exposure to radioactive iodines, mainly by iodine-131. Radiation induced thyroid cancer could easily be prevented by timely warning, effective thyroid blocking, timely restriction of consumption for contaminated food. The implementation of good known effective countermeasures at early stage could have substantially reduced the number of thyroid cancer cases after accident. U N Chernobyl Forum recommended long-term activity for mitigation Chernobyl's consequences - A Strategy for Recovery. For improvement this strategy must be create the modern system of the radiation protection based on the new international and national recommendations. The key issues of the Belarusian experience is discussed. (author)

  3. 76 FR 17933 - Infrastructure Protection Data Call Survey

    Science.gov (United States)

    2011-03-31

    ... SECURITY Infrastructure Protection Data Call Survey AGENCY: National Protection and Programs Directorate...), Office of Infrastructure Protection (IP), will submit the following Information Collection Request (ICR... infrastructure and key resources (CIKR). At DHS, this responsibility is managed by IP within NPPD. In Fiscal...

  4. Logic and ethics in radiation protection

    International Nuclear Information System (INIS)

    The International Commission on Radiological Protection (ICRP) continues to accept the assumption of a linear non-threshold dose-response relationship (LNT) as the most likely one. In that case, basic logic as well as widely accepted ethics require that the full collective dose be used for detriment assessments and in procedures for optimisation of radiation protection. This means that even the smallest doses must be taken into account in the assessment of the global collective dose if they contribute significantly together. However, in calculating collective doses over time, some reasonable restriction of the integration period has to be employed, mainly because of the uncertainties involved in the assessment of future detriment. There are also uncertainties in the LNT assumption, but the precautionary principle would not permit that this is taken as an excuse for neglecting small doses. (author)

  5. The competent person in radiation protection: practical radiation protection for industry and research - unsealed sources

    International Nuclear Information System (INIS)

    The mission of the competent person in radiation protection has been broadly developed these last years to take an essential function in firm:study of working place, delimitation of regulated areas, monitoring of exposure, relations with authorities. The competent person in radiation protection must follow a training, defined by decree and shared in two parts: a theoretical part used as compulsory subjects and a practical part specific to the different sectors of activity (research, industry, medical centers, nuclear facilities) as well as the radiation use type. This volume corresponds to the practical module devoted to the industrial and research facilities concerned by the possession of management of sealed or unsealed sources. In accordance with the regulations stipulating that this module must allow to apply the theoretical knowledge to concrete situations in work. It includes eight chapters as following: radiation protection in industrial and research facilities, use of sources and associated risks, fitting out professional premises, evaluation of exposure, control of radiation protection; use of detection equipment and radioactive contamination and exposure measurement equipment, associated to methods and calculation tools; radioactive waste management; accidental or damaged situations management; methodology of working place analysis completed by the application to practical cases found in laboratories. (N.C.)

  6. Survey of Canadian hospitals radiation emergency plans

    International Nuclear Information System (INIS)

    This report documents the findings of a survey of Canadian hospitals conducted by Social Data Research Ltd. during the Spring and Summer, 1995. The main objective of the survey was to determine the state of readiness of Canadian hospitals in respect of radiation emergency planning. In addition, the AECB was interested in knowing the extent to which a report by the Group of Medical Advisors, 'GMA-3: Guidelines on Hospital Emergency Plans for the Management of Minor Radiation Accidents', which was sponsored and distributed in 1993, was received and was useful to hospital administrators and emergency personnel. A self-administered questionnaire was distributed to 598 acute care hospitals, and 274 responses were received. The main conclusion of this study is that, with the exception of a few large institutions, hospitals generally do not have specific action plans to handle minor radiation accidents. (author)

  7. The IHS diagnostic X-ray equipment radiation protection program

    International Nuclear Information System (INIS)

    The Indian Health Service (IHS) operates or contracts with Tribal groups to operate 50 hospitals and approximately 165 primary ambulatory care centers. These facilities contain approximately 275 medical and 800 dental diagnostic x-ray machines. IHS environmental health personnel in collaboration with the Food and Drug Administration's (FDA) Center for Devices and Radiological Health (CDRH) developed a diagnostic x-ray protection program including standard survey procedures and menu-driven calculations software. Important features of the program include the evaluation of equipment performance collection of average patient entrance skin exposure (ESE) measurements for selected procedures, and quality assurance. The ESE data, collected using the National Evaluation of X-ray Trends (NEXT) protocol, will be presented. The IHS Diagnostic X-ray Radiation Protection Program is dynamic and is adapting to changes in technology and workload

  8. Value of some estimations in radiation protection

    International Nuclear Information System (INIS)

    Many problems in radiation protection require the use of sophisticated techniques for their solution. However, a large class of problems, particularly in the area of operations, can be addressed with suitable accuracy using approximate techniques. Approximate methods and extrapolation of empirical data can serve to scope the magnitude of a variety of problems. In fact, the authors believe that these approaches should be a necessary first step in determining what additional, more sophisticated analyses are required. Elimination of detail allows one the time to make a number of similar calculations varying the parameters to form an envelope of possible solutions. The advent of microcomputers has helped make engineering approximations even more valuable in both radiation shielding and dose projection calculations. Some examples of approximations and a list of useful references are provided in this paper

  9. Implicit equity considerations in radiation protection standards

    International Nuclear Information System (INIS)

    The maturity of the practice of protecting against radiation provides a vehicle for testing both the definition of implied preference and the usefulness of any quantitative results. The author reviews the 50-year background and the rationale for imposing radiation standards. He analyzes the procedure for making quantitative risk estimates and their use to determine implied risk preference for occupational, individual, and population exposure. Equity did not emerge as a consideration in the early days when the threshold concept dominated, but did become an issue when different standards were set for workers and members of the general public; i.e., for voluntary/involuntary exposure. Intergeneration inequities have only recently become a critical issue. They arise because radioactive wastes have no productive value, but the strategic weapons program has assured some degree of social continuity. 19 references, 7 tables

  10. Radiation protection of vitamins in aqueous systems

    International Nuclear Information System (INIS)

    Thiamine and other vitamins of the B complex group are highly sensitive to ? radiation in aqueous solution owing to their high reactivity with the primary species formed by radiolysis of water, viz. hydrated electrons and hydroxyl radicals. In order to protect these compounds from radiolytic degradation, nitrous oxide and oxygen have been used as scavengers for the hydrated electrons and glucose for the hydroxyl radicals. By comparison of uv spectra it is shown that the above vitamins do not undergo radiolytic degradation in presence of nitrous oxide and glucose or oxygen and glucose. The importance of these results in connection with the sterilization of vitamin preparations is discussed. (author)

  11. Radiation protection activities around the CERN accelerators

    International Nuclear Information System (INIS)

    In 1995 several operational circumstances required careful watching by the Radiation Protection Group. Most of these were linked with new or recently started CERN activities: for instance the increasing importance assumed by ISOLDE operation and the breakdowns encountered which have given rise to contamination of the target region and to activity releases. In the SPS ring, several difficulties were brought about by a toilsome installation of a new interlock system, while lead ion operation marked the end of the year, as usual, with higher radiation levels in the SPS experimental areas, despite the fact that existing shielding had been improved. Also at the end of the year, the increase of LEP beam energy to 68 GeV caused a rise of dose rate levels from synchrotron radiation. This was expected, but studies are still needed to assess the full implications for different aspects of radiation protection. On the other hand, the ageing of magnet coils and other equipment (insulators, cables, flexible pipes), aggravated by the high proton beam intensities, has resulted in an increasing frequency of failures (mainly water leaks) both at the PS and at the SPS. If the apparent trend is confirmed, difficulties could be expected in the future for two reasons: the shortage of specialized staff, some of them approaching the CERN dose limit of 15 mSv annually, who can be assigned to repair work; and the lack of spare parts to replace the damaged items. Luckily, the long cooling times following high intensity proton runs provided by the operation with heavy-ions and by the winter shutdown mitigate this situation

  12. Information as a part of radiation protection

    International Nuclear Information System (INIS)

    The increasing range of application of ionizing radiation in many different areas requires the needs for further education and training. Unfortunately, some aspects of application of ionizing radiation are not planed and announced for all involved personnel-like in military conflicts, when radiation and radioactivity are used as a new kind of ammunition. In that situation there is no time for formal and planned education. During the NATO strikes on Serbia and Montenegro in 1999. depleted uranium (D.U.) ammunition was used. Before that, it was used in Gulf War in 1991. for the first time. Faced with the health consequences of Gulf War for the soldiers of both sides, which were mainly attributed to D.U., Military Medical Service in the Army of Serbia and Montenegro, prepared educational material for the soldiers who could be employed in the area of the D.U. contamination. Considering the information/knowledge as very important part of radiation protection, booklet was prepared and distributed before the NATO strikes on Serbia and Montenegro. In this paper we present the booklet prepared for the military personnel. In the simplified way the nature of D.U. is explained. Some practical aspects of protection and prevention in D.U. contaminated area-how to avoid and minimize radiological hazard of D.U. in the battlefield, as well as how to avoid long-term hazards of D.U., are presented. It is also explained when to ask for medical care and what kind of examination would be necessary in the case of D.U. contamination. 5AUTHORS

  13. Information as a part of radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Djurovic, B.; Misovic, M. [Military Medical Academy, Radiation Protection Dept., Belgrade Serbia and Montenegro (Serbia); Spasic-Jokic, V. [VINCA Institute of Nuclear Sciences, Lab. of Physics, Belgrade, Serbia and Montenegro (Serbia)

    2006-07-01

    The increasing range of application of ionizing radiation in many different areas requires the needs for further education and training. Unfortunately, some aspects of application of ionizing radiation are not planed and announced for all involved personnel-like in military conflicts, when radiation and radioactivity are used as a new kind of ammunition. In that situation there is no time for formal and planned education. During the NATO strikes on Serbia and Montenegro in 1999. depleted uranium (D.U.) ammunition was used. Before that, it was used in Gulf War in 1991. for the first time. Faced with the health consequences of Gulf War for the soldiers of both sides, which were mainly attributed to D.U., Military Medical Service in the Army of Serbia and Montenegro, prepared educational material for the soldiers who could be employed in the area of the D.U. contamination. Considering the information/knowledge as very important part of radiation protection, booklet was prepared and distributed before the NATO strikes on Serbia and Montenegro. In this paper we present the booklet prepared for the military personnel. In the simplified way the nature of D.U. is explained. Some practical aspects of protection and prevention in D.U. contaminated area-how to avoid and minimize radiological hazard of D.U. in the battlefield, as well as how to avoid long-term hazards of D.U., are presented. It is also explained when to ask for medical care and what kind of examination would be necessary in the case of D.U. contamination. 5AUTHORS.

  14. Swedish Radiation Protection Institute: information activities

    International Nuclear Information System (INIS)

    The purpose of SSI's Information and PR Service is to broaden public awareness of radiation and radiation risks as well as to fulfill other performance goals. SSI achieves this through its advisory, educational and informative activities. SSI publishes two external magazines, Stralskyddsnytt and SSI News. Stralskyddsnytt - which is available in Swedish only - has a circulation of 2,000 and is published four times a year. SSI News - which is in English - is published twice a year and has a circulation of about 1,800. Another important channel of communication is the web site (www.ssi.se). Taking advantage of PUSH technology, SSI also distributes, by e-mail, press releases and other important information on radiation to radiation protection professionals in Sweden. SSI continuously monitors news by subscribing to a press clipping service. SSI Training is a commercial unit within the Information and PR Service. A policy for mass media contacts exists as well as a policy for internal communication. SSI has a graphic profile. SSI has a specialized research library. (author)

  15. Swedish radiation protection institute. Information activities

    International Nuclear Information System (INIS)

    The purpose of SSI's information and PR Service is to broaden public awareness of radiation and radiation risks as well as to fulfil other performance goals. SSI achieves this through its advisory, educational and informative activities. SSI publishes two external magazines, Straalskyddsnytt and SSI News. Straalskyddsnytt - which is available in Swedish only - has a circulation of 2,400 and is published four times a year. SSI News - which is in English - is published twice a year and has a circulation of about 1,500. Another important channel of communication is the web site (www.ssi.se). Taking advantage of PUSH technology, SSi also distributes, by e-mail, press releases and other important information of radiation to radiation protection professionals in Sweden. SSI continuously monitors news by subscribing to a press clipping service. SSI Training is a commercial unit within the Information and PR Service. A policy for mass media contacts exists as well as a policy for internal communication. SSI has a graphic profile. SSI has a specialised research library. (au)

  16. Radiation protection by disulfiram. Protection of membrane and DNA in vitro and in vivo against ?-radiation

    International Nuclear Information System (INIS)

    Disulfiram (DSF; a drug used for the treatment of alcoholism) protected microsomal membranes and plasmid DNA against damages induced by gamma-radiation. The peroxidation of membrane lipids increased linearly with the radiation dose up to 600 Gy, and the presence of disulfiram inhibited membrane lipid peroxidation as assayed by the presence of thiobarbituric acid reacting substances. The reduction of the quantity of the supercoiled (ccc) form of plasmid pBR322 DNA is directly related to the radiation-induced damage, particularly to DNA strand breaks. There was a complete protection of plasmid DNA when exposed to gamma-radiation in the presence of DSF (0.1 mM) at 300 Gy. This drug also protected deoxyribose against damages caused by hydroxyl radicals produced by the Fenton reaction. The administration of DSF to mice prior to whole-body radiation exposure (4 Gy) resulted in a reduction of peroxidation of membrane lipids in mice liver as well as a decrease in radiation-induced damage to cellular DNA, as assayed by single-cell gel electrophoresis (comet assay). The results thus suggest the possible use of DSF as a radioprotector. (author)

  17. 2003 survey of Canadian radiation oncology residents

    International Nuclear Information System (INIS)

    Purpose: Radiation oncology's popularity as a career in Canada has surged in the past 5 years. Consequently, resident numbers in Canadian radiation oncology residencies are at all-time highs. This study aimed to survey Canadian radiation oncology residents about their opinions of their specialty and training experiences. Methods and Materials: Residents of Canadian radiation oncology residencies that enroll trainees through the Canadian Resident Matching Service were identified from a national database. Residents were mailed an anonymous survey. Results: Eight of 101 (7.9%) potential respondents were foreign funded. Fifty-two of 101 (51.5%) residents responded. A strong record of graduating its residents was the most important factor residents considered when choosing programs. Satisfaction with their program was expressed by 92.3% of respondents, and 94.3% expressed satisfaction with their specialty. Respondents planning to practice in Canada totaled 80.8%, and 76.9% plan to have academic careers. Respondents identified job availability and receiving adequate teaching from preceptors during residency as their most important concerns. Conclusions: Though most respondents are satisfied with their programs and specialty, job availability and adequate teaching are concerns. In the future, limited time and resources and the continued popularity of radiation oncology as a career will magnify the challenge of training competent radiation oncologists in Canada

  18. Survey of case reports of radiation-induced cancer

    International Nuclear Information System (INIS)

    A survey of the cases reported as radiation-induced cancer in chief organs (the breast, the uterus, the pharynx and larynx, the colon, and the bone) was carried out. The number of the cases which were found by this survey were 10 in the breast, 548 in the uterus, 130 in the pharyns and larynx, 80 in the colon, and 256 in the bone. The most of these cases had received radiation for the purpose of treatment of non-malignant disease. The average latent period were 15.0 years in the cases of breast cancer, 10.1 years in uterus cancer, 27.3 years in pahrynx and larynx cancer, 13.6 years in colon cancer, and 15.5 years in bone cancer. The lowest radiation dose were 1470 rads in the cases of breast cancer, 900 rads in uterus in colon cancer, 4000 rads in pahrynx and larynx cancer, 460 rads in colon cancer, and 2700 rads in bone cancer. Histopathological findings, sex difference, onset age, and others were investigated in each organ. This survey gave many valuable informations for radiation protection and safety

  19. Protection from solar ultraviolet radiation by clothing

    International Nuclear Information System (INIS)

    The recently published Australia/New Zealand Standard AS/NZS 4399: l996 'Sun Protective Clothing - Evaluation and Classification' specifies an in vitro spectrophotometric method for the measurement of the ultraviolet (WR) transmission of textiles. Ultraviolet Protection Factors (UPF) are then calculated by convolving the UVR transmission data with standard CIE erythemal response data and ARL solar irradiance data. At the present time the scope of the standard is limited to loose fitting dry clothing. Virtually every textile parameter has an influence on the UPF of the finished garment and hence on the protection afforded to skin from the harmful effects of solar UVR radiation. Textile parameters such as fibre type, the method of spinning the yarn, fabric structure, cover factor, colorant, UVR absorbers and finishing methods determine the UPF of the fabric and hence must be controlled from batch to batch. Since garments generally shrink when washed, multiple wearing and washing cycles usually cause an increase in fabric UPF. Adventitious soiling of fabrics and the absorption of certain components of domestic laundry formulations, e g fluorescent whitening agents, increase fabric UPF ratings. Garments with a high degree of elasticity, e g nylon/lycra sportswear, that are stretched on to fit, will obviously have lower UPFs when stretched than when relaxed. In general fabrics worn in a wet state provide lower protection than when worn dry. On Australia's most extreme summer day it has been estimated that there are 30 MEDs (minimal erythemal doses) in a dawn to dusk exposure. Thus outdoor workers should be provided with UPF 30 clothing, or better. Results from recent experiments using SK-II hairless mice dressed in UPF 50 'sunsuits' have shown that the mice developed no sun induced skin cancers on the skin areas protected by the UPF 50 fabric whereas multiple tumours developed on the unprotected skin

  20. Protection from solar ultraviolet radiation by clothing

    Energy Technology Data Exchange (ETDEWEB)

    Pailthorpe, M. [New South Wales Univ., Kensington, NSW (Australia)

    1996-12-31

    The recently published Australia/New Zealand Standard AS/NZS 4399: l996 `Sun Protective Clothing - Evaluation and Classification` specifies an in vitro spectrophotometric method for the measurement of the ultraviolet (WR) transmission of textiles. Ultraviolet Protection Factors (UPF) are then calculated by convolving the UVR transmission data with standard CIE erythemal response data and ARL solar irradiance data. At the present time the scope of the standard is limited to loose fitting dry clothing. Virtually every textile parameter has an influence on the UPF of the finished garment and hence on the protection afforded to skin from the harmful effects of solar UVR radiation. Textile parameters such as fibre type, the method of spinning the yarn, fabric structure, cover factor, colorant, UVR absorbers and finishing methods determine the UPF of the fabric and hence must be controlled from batch to batch. Since garments generally shrink when washed, multiple wearing and washing cycles usually cause an increase in fabric UPF. Adventitious soiling of fabrics and the absorption of certain components of domestic laundry formulations, e g fluorescent whitening agents, increase fabric UPF ratings. Garments with a high degree of elasticity, e g nylon/lycra sportswear, that are stretched on to fit, will obviously have lower UPFs when stretched than when relaxed. In general fabrics worn in a wet state provide lower protection than when worn dry. On Australia`s most extreme summer day it has been estimated that there are 30 MEDs (minimal erythemal doses) in a dawn to dusk exposure. Thus outdoor workers should be provided with UPF 30 clothing, or better. Results from recent experiments using SK-II hairless mice dressed in UPF 50 `sunsuits` have shown that the mice developed no sun induced skin cancers on the skin areas protected by the UPF 50 fabric whereas multiple tumours developed on the unprotected skin.