WorldWideScience

Sample records for radiation detection methods

  1. Method of detecting gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hager, A.G.; Freeman, G.L.; Rush, J.; Branovich, L.E.; DuBuske, S.

    1983-03-07

    Gamma radiation is detected by placing iron doped glass or manganese doped glass in an environment subject to gamma radiation and then measuring any color change in the doped glass as a function of gamma radiation.

  2. Method of enhancing radiation response of radiation detection materials

    Science.gov (United States)

    Miller, Steven D. (Richland, WA)

    1997-01-01

    The present invention is a method of increasing radiation response of a radiation detection material for a given radiation signal by first pressurizing the radiation detection material. Pressurization may be accomplished by any means including mechanical and/or hydraulic. In this application, the term "pressure" includes fluid pressure and/or mechanical stress.

  3. Bayesian Methods for Radiation Detection and Dosimetry

    CERN Document Server

    Groe, Peter G

    2002-01-01

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed comp...

  4. Bayesian Methods for Radiation Detection and Dosimetry

    International Nuclear Information System (INIS)

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed compartmental activities. From the estimated probability densities of the model parameters we were able to derive the densities for compartmental activities for a two compartment catenary model at different times. We also calculated the average activities and their standard deviation for a simple two compartment model

  5. Apparatus and method for detecting gamma radiation

    Science.gov (United States)

    Sigg, R.A.

    1994-12-13

    A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.

  6. Method for radiation detection and measurement

    Science.gov (United States)

    Miller, S.D.

    1993-12-21

    Dose of radiation to which a body of crystalline material has been exposed is measured by exposing the body to optical radiation at a first wavelength, which is greater than about 540 nm, and measuring optical energy emitted from the body by luminescence at a second wavelength, which is longer than the first wavelength. 9 figures.

  7. Method and apparatus for the detection of ionizing radiation

    International Nuclear Information System (INIS)

    A method and an apparatus for the detection of ionizing radiation is disclosed, in which a diamond is used as the radiosensitive element of the detecting apparatus, which diamond has low (2X10/sub -/3 at .% or less) nitrogen concentration and low (10/sub -/4 or less) birefringence, and in which diamond the lifetime of the free carriers generated by the ionizing radiation is 10-6s or longer. The current-voltage characteristic of the diamond under irradiation is linear at low bias voltage and the dose rate can be determined from the resistivity of the diamond. A synthetic diamond crystal can be used to advantage as the radiosensitive element

  8. One method for ionizing radiation sources detecting on earth surface

    International Nuclear Information System (INIS)

    This report deals with geology-geophysical investigations of the Earth's surface by means of aerospace remote sensing, especially by methods using polarization parameters of light. It is shown that it is possible to detect sources of ionizing radiation, spreading on the Earth's surface and containing any kind of emitted particles (or their combinations), by means of a special technique. The physical argumentation of ionizing radiation influence on parameters of the upper soil layer and certain quantitative approximations are considered. The opportunities to detect the influence of radiation sources by means of remote optical polarization mapping of soils are demonstrated. This technique could be used in survey of the bare soil, i.e. the soil without vegetation

  9. Apparatuses for large area radiation detection and related method

    Science.gov (United States)

    Akers, Douglas W; Drigert, Mark W

    2015-04-28

    Apparatuses and a related method relating to radiation detection are disclosed. In one embodiment, an apparatus includes a first scintillator and a second scintillator adjacent to the first scintillator, with each of the first scintillator and second scintillator being structured to generate a light pulse responsive to interacting with incident radiation. The first scintillator is further structured to experience full energy deposition of a first low-energy radiation, and permit a second higher-energy radiation to pass therethrough and interact with the second scintillator. The apparatus further includes a plurality of light-to-electrical converters operably coupled to the second scintillator and configured to convert light pulses generated by the first scintillator and the second scintillator into electrical signals. The first scintillator and the second scintillator exhibit at least one mutually different characteristic for an electronic system to determine whether a given light pulse is generated by the first scintillator or the second scintillator.

  10. Ultra-high sensitivity radiation detection apparatus and method

    Science.gov (United States)

    Gross, Kenneth C. (Bolingbrook, IL); Valentine, John D. (Cincinnati, OH); Markum, Francis (Joliet, IL); Zawadzki, Mary (Rouses Point, NY); Dickerman, Charles (Downers Grove, IL)

    1999-01-01

    A method and apparatus are provided to concentrate and detect very low levels of radioactive noble gases from the atmosphere. More specifically the invention provides a method and apparatus to concentrate xenon, krypton and radon in an organic fluid and to detect these gases by the radioactive emissions.

  11. Method for detecting radiation dose utilizing thermoluminescent material

    International Nuclear Information System (INIS)

    The amount of ionizing radiation to which a thermoluminescent material has been exposed is determined by first cooling the thermoluminescent material and then optically stimulating the thermoluminescent material by exposure to light. Visible light emitted by the thermoluminescent material as it is allowed to warm up to room temperature is detected and counted. The thermoluminescent material may be annealed by exposure to ultraviolet light. 5 figs

  12. Method for detecting radiation dose utilizing thermoluminescent material

    Science.gov (United States)

    Miller, S.D.; McDonald, J.C.; Eichner, F.N.; Durham, J.S.

    1992-08-04

    The amount of ionizing radiation to which a thermoluminescent material has been exposed is determined by first cooling the thermoluminescent material and then optically stimulating the thermoluminescent material by exposure to light. Visible light emitted by the thermoluminescent material as it is allowed to warm up to room temperature is detected and counted. The thermoluminescent material may be annealed by exposure to ultraviolet light. 5 figs.

  13. Radiation sensitive devices and systems for detection of radioactive materials and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Kotter, Dale K

    2014-12-02

    Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

  14. Method for increased sensitivity of radiation detection and measurement

    Science.gov (United States)

    Miller, Steven D. (Richland, WA)

    1994-01-01

    Dose of radiation to which a body of crystalline material has been exposed is measured by exposing the body to optical radiation at a first wavelength, which is greater than about 540 nm, and measuring optical energy emitted from the body by luminescence at a second wavelength, which is longer than the first wavelength. Reduced background is accomplished by more thorough annealing and enhanced radiation induced luminescence is obtained by treating the crystalline material to coalesce primary damage centers into secondary damage centers.

  15. Main Achievements 2003-2004 - Interdisciplinary Research - Radiation detection methods for health, earth and environmental sciences

    International Nuclear Information System (INIS)

    The IFJ research programme in this area is aimed at developing quantitative methods to monitor various environmental hazards, such as natural (including extra-terrestrial) and anthropogenic nuclear radiation, greenhouse gases emission etc. Its second task is to design and manufacture dedicated detectors of ionising radiation for radiation protection and for medical applications, and to detect environmental radiation and pollution. One of the strongest areas of project development is directed towards Earth sciences

  16. Method of detecting radiations in instruments based on microchannel plates

    International Nuclear Information System (INIS)

    It is shown by the example of recording ultraviolet radiation of a pulsed laser that coordinate information can be directly obtained from both the plate and the memory matrix in radiation detectors based on microchannel plates. A video channel consisted of an electrooptical vidicon system, a transmitting video camera, and a video monitor was used to read out and represent the information

  17. Methods for Detecting Acceleration Radiation in a Bose-Einstein Condensate

    International Nuclear Information System (INIS)

    We propose and study methods for detecting Unruh-like acceleration radiation effects in a Bose-Einstein condensate in a (1+1)-dimensional setup. The Bogoliubov vacuum of a Bose-Einstein condensate is used to simulate a scalar field theory, and accelerated atom dots or optical lattices serve as detectors of phonon radiation due to acceleration effects. In particular, we study the dispersive effects of the Bogoliubov spectrum on the ideal case of exact thermalization. Our results suggest that acceleration radiation effects can be observed using currently accessible experimental methods

  18. Detection of HCMV infection of radiation workers with rapid-ELISA method

    International Nuclear Information System (INIS)

    Objective: To establish a rapid method to detect HCMV with ELISA, and to study the infection conditions of radiation workers. Methods: using routine ELISA except adding 3% PEG to dilution solution to accelerate the reaction of antibody to antigen, the HCMV-IgG and HCMV-IgM in the serum of radiation workers were detected. Results: The total positive rate in 514 radiation workers in Jinan is 96.69%, of which 94.16% is latent infection, 0.19% is primary infection, 2.34% is relapse infection, and active infection rate is 2.53%. Conclusion: Radiation workers have certain risk to suffer from infection of HCMV which should delt with seriously. (authors)

  19. Radiation detection method and system using the sequential probability ratio test

    Science.gov (United States)

    Nelson, Karl E. (Livermore, CA); Valentine, John D. (Redwood City, CA); Beauchamp, Brock R. (San Ramon, CA)

    2007-07-17

    A method and system using the Sequential Probability Ratio Test to enhance the detection of an elevated level of radiation, by determining whether a set of observations are consistent with a specified model within a given bounds of statistical significance. In particular, the SPRT is used in the present invention to maximize the range of detection, by providing processing mechanisms for estimating the dynamic background radiation, adjusting the models to reflect the amount of background knowledge at the current point in time, analyzing the current sample using the models to determine statistical significance, and determining when the sample has returned to the expected background conditions.

  20. Comparison of the amplitude analysis method and the filter method for X-radiation detection

    International Nuclear Information System (INIS)

    The suggested method of comparison of information on energy spectrum of X-ay radiation obtained using different techniques -amplitude analysis and filter method - is described. Both methods are shown to allow to obtain similar information on energy spectrum of X-ray radiation. It is pointed out, that the obtained information on the studied spectrum should be correlated with energy resolution of the detector to obtain estimation of energy spectrum independent of the technique of processing of experimental data and choice of a priori model. Approach to estimation of continuous spectrum of X-ray radiation at application of filter method when there is no a priori information about the type of the investigated spectrum is suggested

  1. Systems and methods for detecting nuclear radiation in the presence of backgrounds

    Science.gov (United States)

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2005-06-21

    Systems and methods for the simultaneous detection and identification of radiation species, including neutrons, gammas/x-rays and minimum ionizing particles (MIPs). A plurality of rectangular and/or triangularly shaped radiation sensitive scintillators can be configured from a plurality of nano-sized particles, dopants and an extruded plastic material. A wavelength-shifting fiber can then be located within a central hole of each extruded scintillator, wherein the wavelength-shifting fiber absorbs scintillation light and re-emits the light at a longer wavelength, thereby piping the light to a photodetector whose response to the light indicates the presence of radiation The resulting method and system can simultaneously detect neutrons, gamma rays, x-rays and cosmic rays (MIPs) and identify each.

  2. Apparatus and method for the simultaneous detection of neutrons and ionizing electromagnetic radiation

    Science.gov (United States)

    Bell, Zane W. (Oak Ridge, TN)

    2000-01-01

    A sensor for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising: a sensor for the detection of gamma radiation, the sensor defining a sensing head; the sensor further defining an output end in communication with the sensing head; and an exterior neutron-sensitive material configured to form around the sensing head; wherein the neutron-sensitive material, subsequent to the capture of the neutron, fissions into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the first excited state decaying via the emission of a single gamma ray at 478 keV which can in turn be detected by the sensing head; and wherein the sensing head can also detect the ionizing electromagnetic radiation from an incident radiation field without significant interference from the neutron-sensitive material. A method for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising the steps of: providing a gamma ray sensitive detector comprising a sensing head and an output end; conforming an exterior neutron-sensitive material configured to form around the sensing head of the detector; capturing neutrons by the sensing head causing the neutron-sensitive material to fission into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the state decaying via the emission of a single gamma ray at 478 keV; sensing gamma rays entering the detector through the neutron-sensitive material; and producing an output through a readout device coupled to the output end; wherein the detector provides an output which is proportional to the energy of the absorbed ionizing electromagnetic radiation.

  3. A simple and efficient object detection method based on saliency measure for infrared radiation image

    Science.gov (United States)

    Sun, Zhaolei; Hui, Bin

    2014-11-01

    Detection of visually salient objects plays an important role in applications such as object segmentation, adaptive compression, object recognition, etc. A simple and computationally efficient method is presented in this paper for detecting visually salient objects in Infrared Radiation images. The proposed method can be divided into three steps. Firstly, the infrared image is pre-processed to increase the contrast between objects and background. Secondly, the spectral residual of the pre-processed image is extracted in the log spectrum, then via corresponding inverse transform and threshold segmentation we can get the rough regions of the salient objects. Finally, we apply a sliding window to acquire the explicit position of the salient objects using the probabilistic interpretation of the semi-local feature contrast which is estimated by comparing the gray level distribution of the object and the surrounding area in the original image. And as we change the size of the sliding window, different size of objects can be found out. In our proposed method, the first two steps combined together to play a role in narrowing the searching region and thus accelerating computation. The third procedure is applied to extract the salient objects. We test our method on abundant amount of Infrared Radiation images, and the results show that our saliency detection based object detection method is effective and robust.

  4. Apparatus and method for detecting electromagnetic radiation using electron photoemission in a micromechanical sensor

    Science.gov (United States)

    Datskos, Panagiotis G. (Knoxville, TN); Rajic, Slobodan (Knoxville, TN); Datskou, Irene C. (Knoxville, TN); Egert, Charles M. (Oak Ridge, TN)

    2002-01-01

    A micromechanical sensor and method for detecting electromagnetic radiation involve producing photoelectrons from a metal surface in contact with a semiconductor. The photoelectrons are extracted into the semiconductor, which causes photo-induced bending. The resulting bending is measured, and a signal corresponding to the measured bending is generated and processed. A plurality of individual micromechanical sensors can be arranged in a two-dimensional matrix for imaging applications.

  5. FISH as A method for detection of radiation Induced genetic damage

    International Nuclear Information System (INIS)

    Fluorescence in situ hybridization (FISH) has been considered as a suitable method for rapid and easy detection of chromosome aberrations. In contrast to the standard conventional staining procedure, this technique enables the detection and specification of stable chromosomal re-arrangements, which are compatible with cellular division and thus, they could be transmitted from common ancestral to next cell generations. FISH chromosome - specific painting probes have been effectively applied for the detection of chromosomal damage after exposure to radiation. During last years, several specific fluorescent labeled probes were performed that allowed precise detection of centromeres, sub-telomeres or other regions (sequences) in genome. Our paper deals with describing of different types of FISH probes and their possibilities for application in radiobiology. (authors)

  6. Methods for radiation detection and characterization using a multiple detector probe

    Science.gov (United States)

    Akers, Douglas William; Roybal, Lyle Gene

    2014-11-04

    Apparatuses, methods, and systems relating to radiological characterization of environments are disclosed. Multi-detector probes with a plurality of detectors in a common housing may be used to substantially concurrently detect a plurality of different radiation activities and types. Multiple multi-detector probes may be used in a down-hole environment to substantially concurrently detect radioactive activity and contents of a buried waste container. Software may process, analyze, and integrate the data from the different multi-detector probes and the different detector types therein to provide source location and integrated analysis as to the source types and activity in the measured environment. Further, the integrated data may be used to compensate for differential density effects and the effects of radiation shielding materials within the volume being measured.

  7. Detection by EPR method of radiation treatment in dried fruits containing crystalline sugar

    International Nuclear Information System (INIS)

    The results of EPR (electron paramagnetic resonance) measurements are presented on the detection ability and stability of radiation induced sugar-born radicals in the samples of dried (dehydrated) fruits available in the market and related to doses of 0.5, 1 and 3 kGy, respectively. The experiments have been conducted during 12 months of storage. Measurements were done with an EPR - 10 MINI spectrometer in X band (frequency of microwaves 9.5 GHz), St. Petersburg Instruments Ltd. The aim of the work was to prove the reliability of acceptability of the method in routine control of irradiated food. (author)

  8. Detecting gravitational radiation from neutron stars using a six-parameter adaptive MCMC method

    CERN Document Server

    Umstätter, R; Dupuis, R J; Veitch, J; Woan, G; Christensen, N; Umst\\"atter, Richard; Meyer, Renate; Veitch, John; Woan, Graham; Christensen, Nelson

    2004-01-01

    We present a Markov chain Monte Carlo technique for detecting gravitational radiation from a neutron star in laser interferometer data. The algorithm can estimate up to six unknown parameters of the target, including the rotation frequency and frequency derivative, using reparametrization, delayed rejection and simulated annealing. We highlight how a simple extension of the method, distributed over multiple computer processors, will allow for a search over a narrow frequency band. The ultimate goal of this research is to search for sources at a known locations, but uncertain spin parameters, such as may be found in SN1987A.

  9. Radiation detection and measurement

    International Nuclear Information System (INIS)

    One of two purposes of this book is to serve as a textbook for a course in nuclear instrumentation or radiation measurements at the advanced undergraduate or beginning graduate level. More material is included than could possibly be covered in a one-year course, and this was done so that the book could serve its second purpose - as a general review or reference for experienced professionals who are actively involved in radiation measurements. The first 150 pages are devoted to radiation sources, radiation interactions, general properties of radiation detectors, counting statistics, and error prediction. Units of measurement are included, and numerical values and examples are given that provide the reader with a working knowledge as well as a theoretical one. The central portion of the book details specific properties of the basic radiation detection devices, and covers gas-filled detectors, scintillation counters, semiconductor detectors, and neutron detectors. Sections on gamma-ray spectroscopy and neutron spectroscopy are included. The traditional detection devices, such as the semiconductor diodes and lithium drifted detectors, are discussed. Newer devices are also described, i.e., the cadmium telluride detector and bismuth germanate. The last section of the book covers detector electronics and pulse processing, including linear and logic pulse function and multi-channel pulse analysis. There is an additional chapter on background radiation and detector shielding and a short appendix on the biologic effects of radiation and exposure limits. This book does not include any discussion of imaging devices, but it does contain all the necessary information on the basics of instruments and methods for the detection and measurement of ionizing radiation

  10. Effects of Ionizing Radiation on Biological Molecules—Mechanisms of Damage and Emerging Methods of Detection

    Science.gov (United States)

    Reisz, Julie A.; Bansal, Nidhi; Qian, Jiang; Zhao, Weiling

    2014-01-01

    Abstract Significance: The detrimental effects of ionizing radiation (IR) involve a highly orchestrated series of events that are amplified by endogenous signaling and culminating in oxidative damage to DNA, lipids, proteins, and many metabolites. Despite the global impact of IR, the molecular mechanisms underlying tissue damage reveal that many biomolecules are chemoselectively modified by IR. Recent Advances: The development of high-throughput “omics” technologies for mapping DNA and protein modifications have revolutionized the study of IR effects on biological systems. Studies in cells, tissues, and biological fluids are used to identify molecular features or biomarkers of IR exposure and response and the molecular mechanisms that regulate their expression or synthesis. Critical Issues: In this review, chemical mechanisms are described for IR-induced modifications of biomolecules along with methods for their detection. Included with the detection methods are crucial experimental considerations and caveats for their use. Additional factors critical to the cellular response to radiation, including alterations in protein expression, metabolomics, and epigenetic factors, are also discussed. Future Directions: Throughout the review, the synergy of combined “omics” technologies such as genomics and epigenomics, proteomics, and metabolomics is highlighted. These are anticipated to lead to new hypotheses to understand IR effects on biological systems and improve IR-based therapies. Antioxid. Redox Signal. 21: 260–292. PMID:24382094

  11. Biological detection of low radiation doses by combining results of two microarray analysis methods

    Science.gov (United States)

    Mercier, G.; Berthault, N.; Mary, J.; Peyre, J.; Antoniadis, A.; Comet, J.-P.; Cornuejols, A.; Froidevaux, C.; Dutreix, M.

    2004-01-01

    The accurate determination of the biological effects of low doses of pollutants is a major public health challenge. DNA microarrays are a powerful tool for investigating small intracellular changes. However, the inherent low reliability of this technique, the small number of replicates and the lack of suitable statistical methods for the analysis of such a large number of attributes (genes) impair accurate data interpretation. To overcome this problem, we combined results of two independent analysis methods (ANOVA and RELIEF). We applied this analysis protocol to compare gene expression patterns in Saccharomyces cerevisiae growing in the absence and continuous presence of varying low doses of radiation. Global distribution analysis highlights the importance of mitochondrial membrane functions in the response. We demonstrate that microarrays detect cellular changes induced by irradiation at doses that are 1000-fold lower than the minimal dose associated with mutagenic effects. PMID:14722227

  12. Diagnostics of the laser perforation of biological tissues by the method of autodyne detection of backscattered radiation

    International Nuclear Information System (INIS)

    The method of autodyne detection of backscattered radiation is used to study the passage of CO2 laser radiation through interfaces of model media and biological tissues in vitro during their laser perforation. It is shown that a stepwise change in the weighted mean frequency of the autodyne-signal power spectrum is a criterion for this passage in real time.

  13. Heterodyne detection of synchrotron radiation

    International Nuclear Information System (INIS)

    A time integral method for the study of resonant nuclear scattering of synchrotron radiation in the forward direction is presented. The method relies on the interference of radiation scattered by nuclei in two samples, one moving with respect to the other. The method, termed heterodyne detection of synchrotron radiation, gives the same information on hyperfine parameters as the well known differential method. The general formalism is developed for the case where the reference is a single line sample and the investigated sample has magnetic or quadrupole splitting. The first experiments are discussed. A comparison of time differential synchrotron radiation spectroscopy, heterodyne detection and Moessbauer spectroscopy is given

  14. Semiconductor radiation detection systems

    CERN Document Server

    2010-01-01

    Covers research in semiconductor detector and integrated circuit design in the context of medical imaging using ionizing radiation. This book explores other applications of semiconductor radiation detection systems in security applications such as luggage scanning, dirty bomb detection and border control.

  15. Detection of reciprocal chromosome translocations as an indicator of organism exposure to ionizing radiation by FISH-WCP method

    International Nuclear Information System (INIS)

    Chromosome translocations are considered to be the gold standard for assessing ionizing radiation exposure. Because translocations are inherently more stable through cell division than dicentrics, translocations have become the aberration of choice for evaluating many types of exposure. Fluorescence in situ hybridization with whole chromosome painting probes (FISH-WCP) has been shown to be a rapid method of detecting chromosomal rearrangements, and appears to be especially useful for analysis of induced translocations. The present paper shortly describes FISH-WCP method for detection of reciprocal translocations as indicators of exposure to ionizing radiation. (authors)

  16. Apparatus and method for examining a blood vessel of interest using radiation detected outside the body

    International Nuclear Information System (INIS)

    A gamma camera is described in detail for use in examining the blood circulation in vessels adjacent to the heart. The radiation source (e.g. 68Ga) emits positrons whose annihilation is localised and produces two 0.115 MeV gamma rays in exactly opposite directions. By detecting both gamma rays in coincidence in position sensitive multi-wire proportional chambers, lines may be drawn between detected pairs and the intersection of of all such pairs will define the position of the positron emitting source. The radiation source may be tracked in three dimensions by suitably arranging the detectors around the patient's chest. The position of the radiation source can be recorded as a function of time and hence provide information about the velocity of blood flow through each coronary artery. This information may help determine the extent, severity and location of stenotic lesions of the coronary arteries. (U.K.)

  17. Development of detection · analytical techniques applied with new DNA analytical methods for radiation mutation. Improvement of detection efficiency, development of effective probe and primer and detection techniques

    International Nuclear Information System (INIS)

    Evaluation of the degree of gene defects in a special region was made using culture cell lines and long PCR method was found usable. A genome size in a length around 30 kb or more was detectable and an insertion of about 5 kb was also detectable. Based on these results, several model genes; (1) long repeated sequences dispersed in a genome, (2) gene group consisting a large cluster and (3) single gene were chosen to detect by PCR amplification. In this fiscal year, the sequence which constructs chromosome end was isolated as a marker sequence and the effects of radiation on the sequence were investigated. Its amplification hardly occurred at 0.5 Gy and started at a range, 1-10 Gy. The peak effects were observed at ?4 Gy. These results suggest that these sequences have high-ordered conformations till radiation exposure produces a cleavage in the sequence, so that its amplification by PCR method would not occur without any structural change. (M.N.)

  18. Scintillator assembly for alpha radiation detection and an associated method of making

    Science.gov (United States)

    Lauf, Robert J. (Oak Ridge, TN); McElhaney, Stephanie A. (Oak Ridge, TN); Bates, John B. (Oak Ridge, TN)

    1994-01-01

    A scintillator assembly for use in conjunction with a photomultiplier or the like in the detection of alpha radiation utilizes a substrate or transparent yttrium aluminum garnet and a relatively thin film of cerium-doped yttrium aluminum garnet coated upon the substrate. The film material is applied to the substrate in a sputtering process, and the applied film and substrate are annealed to effect crystallization of the film upon the substrate. The resultant assembly provides relatively high energy resolution during use in a detection instrument and is sufficiently rugged for use in field environments.

  19. Scintillator assembly for alpha radiation detection and an associated method of making

    Science.gov (United States)

    Lauf, R.J.; McElhaney, S.A.; Bates, J.B.

    1994-07-26

    A scintillator assembly for use in conjunction with a photomultiplier or the like in the detection of alpha radiation utilizes a substrate or transparent yttrium aluminum garnet and a relatively thin film of cerium-doped yttrium aluminum garnet coated upon the substrate. The film material is applied to the substrate in a sputtering process, and the applied film and substrate are annealed to effect crystallization of the film upon the substrate. The resultant assembly provides relatively high energy resolution during use in a detection instrument and is sufficiently rugged for use in field environments. 4 figs.

  20. Study on the stabilizing factor of the discrete-integral method for radiation detection in scintillation radioisotope instrument

    International Nuclear Information System (INIS)

    An experimental investigation of the stabilizing factor of the discrete method for recording a radiation flux is described. The investigation makes use of comparative measurements of a radiation flux by the discrete and analog methods under comparable conditions and with the same variations due to changes in the conversion coefficient of the measuring channel, and first of all, of the radiation detector. Beta particles of 90Sr+90Yt isotope from the standard BIS-10 source were detected in the experiment. A scintillation counter (photomultiplier-13 and a crystal of stilbene) was used as radiation detector. The experimental results comparable with theoretical data show that the stabilization factor of the discrete-integral method for recording an ionizing radiation flux at Esub(n)/Esub(m) much less than 0.3 ensures very accurate measuring apparatus with a stabilization factor up to 100 without applying high requirements for the radiation detector parameter stabilization (Esub(n) is the threshold energy of the particle (quantum). Esub(m) is the maximum energy of the recorded radiation spectrum)

  1. Development of techniques using DNA analysis method for detection/analysis of radiation-induced mutation. Development of an useful probe/primer and improvement of detection efficacy

    International Nuclear Information System (INIS)

    Previously, it was demonstrated that detection of centromere became easy and reliable through fluorescent staining by FISH method using a probe of the sequence preserved in ?-satelite DNA. Since it was, however, found inappropriate to detect dicentrics based on the relative amount of DNA probe on each chromosome. A prove which allows homogeneous detection of ?-satelite DNA for each chromosome was constructed. A presumed sequence specific to kinetochore, CENP-B box was amplified by PCR method and the product DNA was used as a probe. However, the variation in amounts of probe DNA among chromosomes was decreased by only about 20%. Then, a program for image processing of the results obtained from FISH using ?-satelite DNA was constructed to use as a marker for centromere. When compared with detection of abnormal chromosomes stained by the conventional method, calculation efficacy for only detection of centromere was improved by the use of this program. Calculation to discriminate the normal or not was still complicated and the detection efficacy was little improved. Chromosomal abnormalities in lymphocytes were used to detect the effects of radiation. In this method, it is needed to shift the phase of cells into metaphase. The mutation induced by radiation might be often repaired during shifting. To exclude this possibility, DNA extraction was conducted at a low temperature and immediately after exposure to 137Cs, and a rapid genome detection method was established using the genome DNA. As the model genomes, the following three were used: 1) long chain repeated sequences widely dispersed over chromosome, 2) cluster genes, 3) single copy genes. The effects of radiation were detectable at 1-2 Gy for the long repeated sequences and at 7 Gy for the cluster genes, respectively, whereas no significant effects were observed at any Gy tested for the single copy genes. Amplification was marked in the cells exposed at 1-10 Gy (peak at 4 Gy), suggesting that these regions had very highly ordered structures. (M.N.)

  2. Including shielding effects in application of the TPCA method for detection of embedded radiation sources.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, William C.; Shokair, Isaac R.

    2011-12-01

    Conventional full spectrum gamma spectroscopic analysis has the objective of quantitative identification of all the radionuclides present in a measurement. For low-energy resolution detectors such as NaI, when photopeaks alone are not sufficient for complete isotopic identification, such analysis requires template spectra for all the radionuclides present in the measurement. When many radionuclides are present it is difficult to make the correct identification and this process often requires many attempts to obtain a statistically valid solution by highly skilled spectroscopists. A previous report investigated using the targeted principal component analysis method (TPCA) for detection of embedded sources for RPM applications. This method uses spatial/temporal information from multiple spectral measurements to test the hypothesis of the presence of a target spectrum of interest in these measurements without the need to identify all the other radionuclides present. The previous analysis showed that the TPCA method has significant potential for automated detection of target radionuclides of interest, but did not include the effects of shielding. This report complements the previous analysis by including the effects of spectral distortion due to shielding effects for the same problem of detection of embedded sources. Two examples, one with one target radionuclide and the other with two, show that the TPCA method can successfully detect shielded targets in the presence of many other radionuclides. The shielding parameters are determined as part of the optimization process using interpolation of library spectra that are defined on a 2D grid of atomic numbers and areal densities.

  3. Scintillator assembly for alpha radiation detection and method of making the assembly

    International Nuclear Information System (INIS)

    A scintillator assembly for use in the detection of alpha radiation includes a body of optically-transparent epoxy and an amount of phosphor particles embedded within the body adjacent one surface thereof. When making the body, the phosphor particles are mixed with the epoxy when in an uncured condition and permitted to settle to the bottom surface of a mold within which the epoxy/phosphor mixture is contained. When the mixture subsequently cures to form a hardened body, the one surface of the body which cured against the bottom surface of the mold is coated with a thin layer of opaque material for preventing ambient light form entering the body through the one surface. The layer of opaque material is thereafter coated with a layer of protective material to provide the assembly with a damage-resistant entrance window. 6 figs

  4. Scintillator assembly for alpha radiation detection and method of making the assembly

    Science.gov (United States)

    McElhaney, Stephanie A. (Oak Ridge, TN); Bauer, Martin L. (Oak Ridge, TN); Chiles, Marion M. (Koxville, TN)

    1992-01-01

    A scintillator assembly for use in the detection of alpha radiation includes a body of optically-transparent epoxy and an amount of phosphor particles embedded within the body adjacent one surface thereof. When making the body, the phosphor particles are mixed with the epoxy when in an uncured condition and permitted to settle to the bottom surface of a mold within which the epoxy/phosphor mixture is contained. When the mixture subsequently cures to form a hardened body, the one surface of the body which cured against the bottom surface of the mold is coated with a thin layer of opaque material for preventing ambient light form entering the body through the one surface. The layer of opaque material is thereafter coated with a layer of protective material to provide the assembly with a damage-resistant entrance window.

  5. Scintillator assembly for alpha radiation detection and method of making the assembly

    Science.gov (United States)

    McElhaney, S.A.; Bauer, M.L.; Chiles, M.M.

    1992-09-22

    A scintillator assembly for use in the detection of alpha radiation includes a body of optically-transparent epoxy and an amount of phosphor particles embedded within the body adjacent one surface thereof. When making the body, the phosphor particles are mixed with the epoxy when in an uncured condition and permitted to settle to the bottom surface of a mold within which the epoxy/phosphor mixture is contained. When the mixture subsequently cures to form a hardened body, the one surface of the body which cured against the bottom surface of the mold is coated with a thin layer of opaque material for preventing ambient light form entering the body through the one surface. The layer of opaque material is thereafter coated with a layer of protective material to provide the assembly with a damage-resistant entrance window. 6 figs.

  6. Ionizing radiation as optimization method for aluminum detection from drinking water samples

    International Nuclear Information System (INIS)

    The presence of organic compounds in water samples is often responsible for metal complexation; depending on the analytic method, the organic fraction may dissemble the evaluation of the real values of metal concentration. Pre-treatment of the samples is advised when organic compounds are interfering agents, and thus sample mineralization may be accomplished by several chemical and/or physical methods. Here, the ionizing radiation was used as an advanced oxidation process (AOP), for sample pre-treatment before the analytic determination of total and dissolved aluminum by ICP-OES in drinking water samples from wells and spring source located at Billings dam region. Before irradiation, the spring source and wells' samples showed aluminum levels of 0.020 mg/l and 0.2 mg/l respectively; after irradiation, both samples showed a 8-fold increase of aluminum concentration. These results are discussed considering other physical and chemical parameters and peculiarities of sample sources. (author)

  7. An improved method to detect small amounts of radiation damage in DNA of eukaryotic cells

    International Nuclear Information System (INIS)

    Centrifugation in neutral sucrose gradients has a high sensitivity in the detection of SSBs, but the technique is prone to errors introduced by the absorption of DNA aggregates onto the wall of the centrifuge tube. Ethidium bromide (EtBr) was added to the sucrose gradient at a concentration (30 ?g/ml) chosen so that the removal of negative superhelical DNA turns was compensated for by the establishment of positive ones. The position of the EtBr-DNA complex in the gradient was located as a red band under 350 nm illumination. Details are given of the application of the method in the detection of the formation and repair of SSBs in irradiated mouse thymus cells. (UK)

  8. Data derandomizer and method of operation for radiation imaging detection systems

    International Nuclear Information System (INIS)

    A nuclear imaging system includes an analog signal processor which features analog data derandomization for minimizing data loss due to pulse pile-up. A scintillation detector provides a sequence of analog data pulses to the signal processor, the data pulses characterizing the energy level and situs of respective radiation events striking the detector. The signal processor includes sets of novel peak detectors and of sample and hold circuits which are serially connected and are operated to derandomize or space the sequence of analog data pulses so that the system can process pulses corresponding to photopeak events occurring only 1.5 microseconds apart. The analog data pulses are stored in analog pulse form in the peak detectors and are selectively transferred into the sample and hold circuitry from which they are transferred to the display mechanism. The signal processor is multiplexed with several data input channels for accommodating dual isotope operation. A control unit is provided which controls the data processing cycle according to a predetermined processing time, or according to signals from external system apparatus. The control unit provides automatic resetting for assurance that the signal processor does not become locked into an inoperative, nondata processing state. The novel peak detectors are controlled by the control unit and feature input biasing for increased detection sensitivity, proportional dumping for discharging the stored peak value at a rate proportional to the value of the stored peak, and selective input data gating so that only the peak containing portion of the input signal is input into the detector. 28 claims, 10 figures

  9. Remote detection device and detection method therefor

    International Nuclear Information System (INIS)

    The present invention provides a non-destructive detection device for collectively, efficiently and effectively conducting maintenance and detection for confirming the integrity of a nuclear reactor by way of a shielding member for shielding radiation rays generated from an objective portion to be detected. Namely, devices for direct visual detection using an under water TV camera as a sensor, an eddy current detection using a coil as a sensor and each magnetic powder flow detection are integrated and applied collectively. Specifically, the visual detection by using the TV camera and the eddy current flaw detection are adopted together. The flaw detection with magnetic powder is applied as a means for confirming the results of the two kinds of detections by other method. With such procedures, detection techniques using respective specific theories are combined thereby enabling to enhance the accuracy for the evaluation of the detection. (I.S.)

  10. Radiation detection system

    International Nuclear Information System (INIS)

    A circuit is disclosed that detects radiation transients and provides a clamping signal in response to each transient. The clamping signal is present from the time the transient rises above a given threshold level and for a known duration thereafter. The system includes radiation sensors, a blocking oscillator that generates a pulse in response to each sensor signal, and an output pulse duration control circuit. The oscillator pulses are fed simultaneously to the output pulse duration control circuit and to an OR gate, the output of which comprises the system output. The output pulse duration is controlled by the time required to magnetize a magnetic core to saturation in first one direction and then the other

  11. Radiation protection, measurements and methods

    International Nuclear Information System (INIS)

    The introductory lectures discuss subjects such as radiation protection principles and appropriate measuring techniques; methods, quantities and units in radiation protection measurement; technical equipment; national and international radiation protection standards. The papers presented at the various sessions deal with: Dosimetry of external radiation (27 papers); Working environment monitoring and emission monitoring (21 contributions); Environmental monitoring (19 papers); Incorporation monitoring (9 papers); Detection limits (4 papers); Non-ionizing radiation, measurement of body dose and biological dosimetry (10 papers). All 94 contributions (lectures, compacts and posters) are retrievable as separate records. (HP)

  12. Method for detecting water equivalent of snow using secondary cosmic gamma radiation

    International Nuclear Information System (INIS)

    Water equivalent of accumulated snow determination by measurement of secondary background cosmic radiation attenuation by the snowpack. By measuring the attenuation of 3-10 MeV secondary gamma radiation it is possible to determine the water equivalent of snowpack. The apparatus is designed to operate remotely to determine the water equivalent of snow in areas which are difficult or hazardous to access during winter, accumulate the data as a function of time and transmit, by means of an associated telemetry system, the accumulated data back to a central data collection point for analysis. The electronic circuitry is designed so that a battery pack can be used to supply power. 4 figs

  13. A method and apparatus for converting a liquid scintillation counter for beta detection into a gamma radiation counter

    International Nuclear Information System (INIS)

    Description is given of a flask for measuring the gamma radiation of samples in a scintillation counter intended for beta radiation detection. That flask is provided with a scintillator made of a mineral crystal of generally cylindrical shape, comprising a sample-receiving central chamber, the volume of which is from about 4 to 15 cubic centimeters. Sais scintillator is sealingly enclosed in a protective container with a light transparent cylindrical outer face. The flask height is less than 7cm and its diameter less than 3cm. This can be applied to converting liquid scintillation counters for beta radiation into gamma radiation counters

  14. Evaluation methods for detecting changes in beam output and energy in radiation beams from high-energy linear accelerators

    Directory of Open Access Journals (Sweden)

    Ravichandran R

    2007-01-01

    Full Text Available There is need for simple methods for checking consistency of beam outputs and energy in linear accelerators used for radiotherapy. A method was designed by the department using perspex phantom with which the dosimetric data of two medical linear accelerators (Clinac 600 CD, Clinac 2300 CD were evaluated over a period of 30 months. The efficacy of methods followed was checked. Routine beam consistency checks were designed for photon beams with 15 cm/ 5 cm depth ionizations in perspex phantom and variable depth combinations for electron beams. Calculated ionization ratios were compared with measured values to show their significance. The dose/MU for all radiation beams was maintained within 2% accuracy over the period of 30 months. Clinac 600 CD machine showed decreasing trend of cGy/MU, while Clinac 2300 CD showed increasing trend of cGy/MU over a period, which needed tuning of monitor chamber two times each. Tuning of output to achieve standard value was carried out once, for all electron energies when the output dose/MU exceeded 3%. During one week (June 2005, there were slight changes in electron energy detected using the ratio method, which did not recur anytime afterwards. The methods designed are adequate to find the consistency in the beam output and energies in the radiotherapy linacs.

  15. Evaluation methods for detecting changes in beam output and energy in radiation beams from high-energy linear accelerators

    International Nuclear Information System (INIS)

    There is need for simple methods for checking consistency of beam outputs and energy in linear accelerators used for radiotherapy. A method was designed by the department using perspex phantom with which the dosimetric data of two medical linear accelerators (Clinac 600 CD, Clinac 2300 CD) were evaluated over a period of 30 months. The efficacy of methods followed was checked. Routine beam consistency checks were designed for photon beams with 15 cm/5 cm depth ionizations in perspex phantom and variable depth combinations for electron beams. Calculated ionization ratios were compared with measured values to show their significance. The dose/MU for all radiation beams was maintained within 2% accuracy over the period of 30 months. Clinac 600 CD machine showed decreasing trend of cGy/MU, while Clinac 2300 CD showed increasing trend of cGy/MU over a period, which needed tuning of monitor chamber two times each. Tuning of output to achieve standard value was carried out once, for all electron energies when the output dose/MU exceeded 3%. During one week (June 2005), there were slight changes in electron energy detected using the ratio method, which did not recur anytime afterwards. The methods designed are adequate to find the consistency in the beam output and energies in the radiotherapy linacs. (author)

  16. Evaluation methods for detecting changes in beam output and energy in radiation beams from high-energy linear accelerators

    Science.gov (United States)

    Ravichandran, R.; Binukumar, J. P.; Davis, C. A.; Krishnamurthy, K.; Sivakumar, S. S.

    2007-01-01

    There is need for simple methods for checking consistency of beam outputs and energy in linear accelerators used for radiotherapy. A method was designed by the department using perspex phantom with which the dosimetric data of two medical linear accelerators (Clinac 600 CD, Clinac 2300 CD) were evaluated over a period of 30 months. The efficacy of methods followed was checked. Routine beam consistency checks were designed for photon beams with 15 cm/ 5 cm depth ionizations in perspex phantom and variable depth combinations for electron beams. Calculated ionization ratios were compared with measured values to show their significance. The dose/MU for all radiation beams was maintained within 2% accuracy over the period of 30 months. Clinac 600 CD machine showed decreasing trend of cGy/MU, while Clinac 2300 CD showed increasing trend of cGy/MU over a period, which needed tuning of monitor chamber two times each. Tuning of output to achieve standard value was carried out once, for all electron energies when the output dose/MU exceeded 3%. During one week (June 2005), there were slight changes in electron energy detected using the ratio method, which did not recur anytime afterwards. The methods designed are adequate to find the consistency in the beam output and energies in the radiotherapy linacs. PMID:21157527

  17. Radiation Detection Computational Benchmark Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.; McDonald, Ben S.

    2013-09-24

    Modeling forms an important component of radiation detection development, allowing for testing of new detector designs, evaluation of existing equipment against a wide variety of potential threat sources, and assessing operation performance of radiation detection systems. This can, however, result in large and complex scenarios which are time consuming to model. A variety of approaches to radiation transport modeling exist with complementary strengths and weaknesses for different problems. This variety of approaches, and the development of promising new tools (such as ORNL’s ADVANTG) which combine benefits of multiple approaches, illustrates the need for a means of evaluating or comparing different techniques for radiation detection problems. This report presents a set of 9 benchmark problems for comparing different types of radiation transport calculations, identifying appropriate tools for classes of problems, and testing and guiding the development of new methods. The benchmarks were drawn primarily from existing or previous calculations with a preference for scenarios which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22. From a technical perspective, the benchmarks were chosen to span a range of difficulty and to include gamma transport, neutron transport, or both and represent different important physical processes and a range of sensitivity to angular or energy fidelity. Following benchmark identification, existing information about geometry, measurements, and previous calculations were assembled. Monte Carlo results (MCNP decks) were reviewed or created and re-run in order to attain accurate computational times and to verify agreement with experimental data, when present. Benchmark information was then conveyed to ORNL in order to guide testing and development of hybrid calculations. The results of those ADVANTG calculations were then sent to PNNL for compilation. This is a report describing the details of the selected Benchmarks and results from various transport codes.

  18. Detection methods for irradiated food

    International Nuclear Information System (INIS)

    The plenary lecture gives a brief historical review of the development of methods for the detection of food irradiation and defines the demands on such methods. The methods described in detail are as follows: 1) Physical methods: As examples of luminescence methods, thermoluminescence and chermoluminescence are mentioned; ESR spectroscopy is discussed in detail by means of individual examples (crustaceans, frutis and vegetables, spieces and herbs, nuts). 2) Chemical methods: Examples given for these are methods that make use of alterations in lipids through radiation (formation of long-chain hydrocarbons, formation of 2-alkyl butanones), respectively radiation-induced alterations in the DNA. 3) Microbiological methods. An extensive bibliography is appended. (VHE)

  19. Principles of radiation detection

    International Nuclear Information System (INIS)

    After a short description of the ionizing radiations and their interactions with matter, the properties and functions of radiation detector systems in general and of the scintillation and semiconductor detectors in particular are presented. Figs and tabs

  20. Positronium annihilation detection using Cherenkov radiation

    CERN Document Server

    Belosevic, Ivana

    2013-01-01

    In this project different methods for the detection of the positronium annihilation were tested. Testing was done only with cosmic rays because there was no positron source available at the time. Cosmic rays were detected using Cherenkov radiation in quartz crystal to which photomultiplier tubes were attached. The results showed that it should be possible to use Cherenkov radiation for positronium annihilation detection but there are still some improvements that should be made.

  1. Possibilities of detecting radiation-treated foodstuffs

    International Nuclear Information System (INIS)

    The indicator, range of applied doses and method of detection of radiation treatment of foods are given for meat, fats, fish, other sea products, fruits, mushrooms, sugars, starches, cereals and potatoes. (J.P.)

  2. The role of methods of radiation diagnosis in detecting vascular dementia

    International Nuclear Information System (INIS)

    The objective of our research was to identify characteristic morphological changes in the structure of the brain, their location, the size, the study of association cortex, sub cortex, the establishment of differential diagnostic features for vascular discirculatory encephalopathy various etiologies (aneurysms, AVMs, tumor lesions of the brain, various vasculopathy ). We used a CT scanner ASTENYON-SUPER 4 (firm Toshiba), staffed workstation 'VITREA-2' and 'VITREA-3' firm 'VITAL IMAGES Inc.' (U.S. and Avanto MRI T1, 5 (Siemens). Multislice CT angiography is a fairly modern method in clinical practice and in the foreign medicine (authors)

  3. Measurement and detection of radiation

    CERN Document Server

    Tsoulfanidis, Nicholas

    2015-01-01

    This fourth edition reflects recent major developments that have occurred in radiation detector materials, systems, and applications. It continues to provide the most practical and up-to-date introduction to radiation detector technology, proper measurement techniques, and analysis of results for engineers and scientists using radiation sources. New chapters emphasize the expanded use of radiation detection systems in nuclear non-proliferation, homeland security, and nuclear medicine. The book also discusses the correct ways to perform measurements following current health physics procedures.

  4. Electronics for radiation detection

    CERN Document Server

    2011-01-01

    Addresses the developments in the design of semiconductor detectors and integrated circuits, in the context of medical imaging using ionizing radiation. This book explains how circuits for radiation are built, focusing on practical information about how they are being used, rather than mathematical details.

  5. Measurement and detection of radiation

    CERN Document Server

    Tsoulfanidis, Nicholas

    2011-01-01

    This is an update of the standard textbook for the field of radiation measurement. It includes illustrative examples and new problems. The research and applications of nuclear instrumentation have grown substantially since publication of the previous editions. With the miniaturization of equipment, increased speed of electronic components, and more sophisticated software, radiation detection systems are now more productively used in many disciplines, including nuclear nonproliferation, homeland security, and nuclear medicine. Continuing in the tradition of its bestselling predecessors, "Measurement and Detection of Radiation, Third Edition" illustrates the fundamentals of nuclear interactions and radiation detection with a multitude of examples and problems. It offers a clearly written, accessible introduction to nuclear instrumentation concepts. The following are new to the third edition: a new chapter on the latest applications of radiation detection, covering nuclear medicine, dosimetry, health physics, no...

  6. Methods for routine control of irradiated food: Optimization of a method for detection of radiation-induced hydrocarbons and its application to various foods

    Science.gov (United States)

    Spiegelberg, A.; Schulzki, G.; Helle, N.; Bögl, K. W.; Schreiber, G. A.

    1994-05-01

    By comparison of two methods for the isolation of radiation-induced hydrocarbons, high vacuum "cold finger" distillation and Florisil column chromatography, it could be shown that the sensitivity of both was similar whereas the latter seemed to be more practical for routine application. In optimizing studies, the influence of the degree of Florisil activation and the influence of the irradiation temperature on hydrocarbon yields as well as the resolution of hydrocarbons on polar and non-polar gas chromatographic capillary columns have been examined. From the successful application of the method to different fat containing foodstuffs, it is concluded that the Florisils column chromatography is well suited as clean-up procedure for the gas chromatographic/mass spectrometric (GC/MS) detection of irradiated products by routine food control analyses.

  7. Methods for routine control of irradiated food: optimization of a method for detection of radiation-induced hydrocarbons and its application to various foods

    International Nuclear Information System (INIS)

    By comparison of two methods for the isolation of radiation-induced hydrocarbons, high vacuum ''cold finger'' distillation and Florisil column chromatography, it could be shown that the sensitivity of both was similar whereas the latter seemed to be more practical for routine application. In optimizing studies, the influence of the degree of Florisil activation and the influence of the irradiation temperature on hydrocarbon yields as the resolution of hydrocarbons on polar and non-polar gas chromatographic capillary columns have been examined. From the successful application of the method to different fat containing foodstuffs, it is concluded that the Florisil column chromatography is well suited as clean-up procedure for the gas chromatographic/mass spectrometric (GC/MS) detection of irradiated products by routine food control analyses. (author)

  8. Detecting radiation reaction at moderate laser intensities

    Science.gov (United States)

    Heinzl, Thomas; Harvey, Chris; Ilderton, Anton; Marklund, Mattias; Bulanov, Stepan S.; Rykovanov, Sergey; Schroeder, Carl B.; Esarey, Eric; Leemans, Wim P.

    2015-02-01

    We propose a new method of detecting radiation reaction effects in the motion of particles subjected to laser pulses of moderate intensity and long duration. The effect becomes sizable for particles that gain almost no energy through the interaction with the laser pulse. Hence, there are regions of parameter space in which radiation reaction is actually the dominant influence on charged particle motion.

  9. Environmental radiation and detection

    International Nuclear Information System (INIS)

    Environmental radiation permeates space, air, soil and water around us. It has been naturally present since the birth of earth about 4.65 billion years ago in a massive supernova explosion creating the heavy elements on earth and the other rocky planets Mars, Venus and Mercury. Consequently, life has evolved in the ashes and remnants of this explosion which are gravitationally grabbed in space by the sun into our solar system in an environment which has significant levels of ionizing radiation. Any untoward happening in the peaceful application of radioisotopes in industry, nuclear power production, medical field, agriculture use satellite crash or in transportation of radioactive materials in India may affect concerned occupational workers and limited population. We are constantly exposed to small amounts of radiation from the environment as we carry out our normal daily activities. Environmental radiation comes from the sky, the earth, and the air we breathe and can be categorized as natural or artificial. (author)

  10. Aerial Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    W. M. Quam

    1999-09-30

    An airborne system designed for the detection of radioactive sources on the soil surface from an aircraft normally senses gamma rays emitted by the source. Gamma rays have the longest path length (least attenuation) through the air of any of the common radioactive emissions and will thus permit source detection at large distances. A secondary benefit from gamma rays detection if that nearly all radioactive isotopes can be identified by the spectrum of gammas emitted. Major gaseous emissions from fuel processing plants emit gammas that may be detected and identified. Some types of special nuclear material also emit neutrons which are also useful for detection at a distance.

  11. Aerial Radiation Detection

    International Nuclear Information System (INIS)

    An airborne system designed for the detection of radioactive sources on the soil surface from an aircraft normally senses gamma rays emitted by the source. Gamma rays have the longest path length (least attenuation) through the air of any of the common radioactive emissions and will thus permit source detection at large distances. A secondary benefit from gamma rays detection if that nearly all radioactive isotopes can be identified by the spectrum of gammas emitted. Major gaseous emissions from fuel processing plants emit gammas that may be detected and identified. Some types of special nuclear material also emit neutrons which are also useful for detection at a distance

  12. Determination of radiation-induced hydrocarbons in processed food and complex lipid matrices. A new solid phase extraction (SPE) method for detection of irradiated components in food

    International Nuclear Information System (INIS)

    Detection of irradiated components in processed food with complex lipid matrices can be affected by two problems. First, the processed food may contain only a small amount of the irradiated component, and the radiation-induced hydrocarbons may be diluted throughout the lipid matrix of the whole food. Second, in complex lipid matrices, the detection of prior irradiation is often disturbed by fat-associated compounds. In these cases, common solid phase extraction (SPE) Florisil clean-up alone is inadequate in the detection of prior irradiation. Subsequent SPE argentation chromatography of the Florisil eluate allows the measurement of small amounts of irradiated lipid-containing ingredients in processed food as well as the detection of prior irradiation in complex lipid matrices such as paprika and chilli. SPE argetation chromatography is the first method available for the selective enrichment of radiation-specific hydrocarbons from even complex lipid matrices, thus enabling the detection of irradiation does as low as 0.025 kGy. Furthermore, by using radiation-induced hydrocarbons in the detection of prior irradiation of paprika and chilli powder, a second independent method, the first being measurement of thermoluminescence, is available for the analysis of these matrices. Such analysis could be achieved by using this highly sensitive, cheap and easy to perform combined SPE Florisil/argentation chromatography method, without the need for sophisticated techniques like SFE-GC/MS or LC-GC/MS, so that highly sensitive detection of prior irradiation colud be performed in almost every laboratory

  13. Detection of contraband using microwave radiation

    Science.gov (United States)

    Toth, Richard P. (Albuquerque, NM); Loubriel, Guillermo M. (Albuquerque, NM); Bacon, Larry D. (Albuquerque, NM); Watson, Robert D. (Tijeras, NM)

    2002-01-01

    The present invention relates to a method and system for using microwave radiation to detect contraband hidden inside of a non-metallic container, such as a pneumatic vehicle tire. The method relies on the attenuation, retardation, time delay, or phase shift of microwave radiation as it passes through the container plus the contraband. The method is non-invasive, non-destructive, low power, and does not require physical contact with the container.

  14. A radiation remote detection device

    International Nuclear Information System (INIS)

    The radiation detection device is composed of an optical fiber, a sensing crystal, which, when interacting with a radiation, emits light that propagates through the fiber optic, and an optic sheath surrounding the crystal. The sheath refractive index is inferior to the crystal index, thus ensuring that the light is totally confined. Application to dosimetry and microdosimetry. 3 refs., 2 figs

  15. Detection of nuclear radiations

    International Nuclear Information System (INIS)

    A summary of the lectures about the ordinary detectors of nuclear radiations given by the author in the Courses of Introduction to Nuclear Engineering held at the JEN up to the date of publication is given. Those lectures are considered to be a necessary introduction to Nuclear Instrumentation and Applied electronics to Nuclear Engineering so it has been intent to underline those characteristics of radiation detectors that must be taken in consideration in choosing or designing the electronic equipment associated to them in order to take advantage of each detector possibilities. (Author) 8 refs

  16. Detection of nuclear radiations

    International Nuclear Information System (INIS)

    A summary of the lectures about the ordinary detectors of nuclear radiations explained by the author in the courses of Nuclear Engineering held at the J.E.N. up to the date of publication is given. Those lectures are considered to be a necessary introduction to Nuclear Instrumentation and Applied Electronics to Nuclear Engineering so it has been intended to underline those characteristics of radiation detectors that must be taken in consideration in choosing or designing the electronic equipment associated to them in order to take advantage of each detector possibilities. (Author)

  17. Detection of gravitational radiation

    Energy Technology Data Exchange (ETDEWEB)

    Holten, J.W. van [ed.

    1994-12-31

    In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI).

  18. Detection of gravitational radiation

    International Nuclear Information System (INIS)

    In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI)

  19. Detecting low level radiation source

    International Nuclear Information System (INIS)

    A system for detecting a low level radiation source, for use with or as a security system, has a free standing self-sufficient component disposed at or near a high risk area to be protected, and a remote monitoring unit. A detector assembly is provided which measures dynamically the ambient or background average radiation level. If a radiation level is sensed which is higher than said ambient level by a certain threshold level which is related to the standard deviation of said ambient radiation an alarm signal is generated which activates audible or visual annunciators. A self-testing facility is also provided. (author)

  20. Detecting low level radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Daubek, G.J.; Middleton, K.T.; Miller, R.I.; Moler, R.B.

    1985-11-13

    A system for detecting a low level radiation source, for use with or as a security system, has a free standing self-sufficient component disposed at or near a high risk area to be protected, and a remote monitoring unit. A detector assembly is provided which measures dynamically the ambient or background average radiation level. If a radiation level is sensed which is higher than said ambient level by a certain threshold level which is related to the standard deviation of said ambient radiation an alarm signal is generated which activates audible or visual annunciators. A self-testing facility is also provided.

  1. Radiation detection device

    International Nuclear Information System (INIS)

    A radiation detector suitable for use in computer tomography device has an ionization chamber which comprises a high voltage electrode, a collector electrode, a high voltage source having two terminals, one connected to the high voltage electrode, current measuring means having two terminals, one connected to the high voltage source and the other to the collector electrode, and an auxilliary electrode near and parallel to the entrance window of the device, having one adjacent to the high voltage electrode and the other adjacent but not connected to the collector electrode. The auxilliary electrode is connected to the high voltage source. In this way the electric field between the high voltage and collector electrodes is made homogeneous in the vicinity of the auxilliary electrode, improving the measuring speed of the detector

  2. Radiation detection system

    Science.gov (United States)

    Riedel, Richard A. (Knoxville, TN); Wintenberg, Alan L. (Knoxville, TN); Clonts, Lloyd G. (Knoxville, TN); Cooper, Ronald G. (Oak Ridge, TN)

    2012-02-14

    A preamplifier circuit for processing a signal provided by a radiation detector includes a transimpedance amplifier coupled to receive a current signal from a detector and generate a voltage signal at its output. A second amplification stage has an input coupled to an output of the transimpedance amplifier for providing an amplified voltage signal. Detector electronics include a preamplifier circuit having a first and second transimpedance amplifier coupled to receive a current signal from a first and second location on a detector, respectively, and generate a first and second voltage signal at respective outputs. A second amplification stage has an input coupled to an output of the transimpedance amplifiers for amplifying the first and said second voltage signals to provide first and second amplified voltage signals. A differential output stage is coupled to the second amplification stage for receiving the first and second amplified voltage signals and providing a pair of outputs from each of the first and second amplified voltage signals. Read out circuitry has an input coupled to receive both of the pair of outputs, the read out circuitry having structure for processing each of the pair of outputs, and providing a single digital output having a time-stamp therefrom.

  3. A method for the quantitative determination of synchrotron radiation X-ray spectra for absolute XRF-trace element detection

    International Nuclear Information System (INIS)

    In the X-ray energy range the principal calculability of the synchrotron radiation flux-density and polarisation spectra is limited in practice by the fact that the essential parameters of vertical electron beam cross-section and -divergence are not well known due to instabilities that can occur at higher stored currents. This difficulty in calculating absolute X-ray spectra from first principles can be overcome by a semi-empirical method: By a polarisation measurement over a large energy range, effective electron beam parameters can be defined that lead to reliable calculated X-ray flux-density and polarisation spectra. With these data experimental scattering spectra could be verified extremely well on an absolute scale over an energy range of 2 keV to 35 keV. This is a necessary premise for the development of a method of absolute mass determination from XRF-spectra with synchrotron radiation excitation. (orig.)

  4. Radiation Detection for Homeland Security Applications

    Science.gov (United States)

    Ely, James

    2008-05-01

    In the past twenty years or so, there have been significant changes in the strategy and applications for homeland security. Recently there have been significant at deterring and interdicting terrorists and associated organizations. This is a shift in the normal paradigm of deterrence and surveillance of a nation and the `conventional' methods of warfare to the `unconventional' means that terrorist organizations resort to. With that shift comes the responsibility to monitor international borders for weapons of mass destruction, including radiological weapons. As a result, countries around the world are deploying radiation detection instrumentation to interdict the illegal shipment of radioactive material crossing international borders. These efforts include deployments at land, rail, air, and sea ports of entry in the US and in European and Asian countries. Radioactive signatures of concern include radiation dispersal devices (RDD), nuclear warheads, and special nuclear material (SNM). Radiation portal monitors (RPMs) are used as the main screening tool for vehicles and cargo at borders, supplemented by handheld detectors, personal radiation detectors, and x-ray imaging systems. This talk will present an overview of radiation detection equipment with emphasis on radiation portal monitors. In the US, the deployment of radiation detection equipment is being coordinated by the Domestic Nuclear Detection Office within the Department of Homeland Security, and a brief summary of the program will be covered. Challenges with current generation systems will be discussed as well as areas of investigation and opportunities for improvements. The next generation of radiation portal monitors is being produced under the Advanced Spectroscopic Portal program and will be available for deployment in the near future. Additional technologies, from commercially available to experimental, that provide additional information for radiation screening, such as density imaging equipment, will be reviewed. Opportunities for further research and development to improve the current equipment and methodologies for radiation detection for the important task of homeland security will be the final topic to be discussed.

  5. Cryogenically cooled radiation detection apparatus

    International Nuclear Information System (INIS)

    This patent describes a radiation detection apparatus coolable to cryogenic temperatures comprising: (a) an outer vessel having walls defining an interior cavity therein; (b) an inner vessel disposed within the interior cavity of the outer vessel and itself having walls defining an interior cavity for holding cryogenic coolant; (c) means for supporting the inner vessel within the interior cavity of the outer vessel with the walls of the inner vessel spaced away from the surfaces of the outer vessel and for providing communication between the ambient atmosphere and the interior cavity of the inner vessel; (d) window means for providing transmission of radiation to be detected through a window to an opening in the outer wall of the outer vessel while sealing off the vacuum chamber defined between the inner and outer vessels from the ambient atmosphere; (e) a mounting member formed of a highly heat conductive metal mounted to the bottom surface of the inner cavity in heat transfer contact and extending outwardly and thence upwardly from the point of mounting in the vacuum chamber in spaced relation to the walls of the inner and outer vessels to a position at the opening in the outer vessel at which the window structure means is mounted; (f) radiation detector means for detecting incident radiation and providing an output signal indicative thereof

  6. Detection of food treated with ionizing radiation

    International Nuclear Information System (INIS)

    Treatment of food with ionizing energy-'food irradiation'- is finally becoming reality in many countries. The benefits include an improvement in food hygiene, spoilage reduction and extension of shelf-life. Although properly irradiated food is safe and wholesome, consumers should be able to make their own free choice between irradiated and non-irradiated food. For this purpose labelling is indispensable. In order to check compliance with existing regulations, detection of radiation treatment by analysing the food itself is highly desirable. Significant progress has been made in recent years in developing analytical detection methods utilizing changes in food originating from the radiation treatment

  7. Detection of DNA-protein crosslinks (DPCs) by novel direct fluorescence labeling methods: distinct stabilities of aldehyde and radiation-induced DPCs.

    Science.gov (United States)

    Shoulkamy, Mahmoud I; Nakano, Toshiaki; Ohshima, Makiko; Hirayama, Ryoichi; Uzawa, Akiko; Furusawa, Yoshiya; Ide, Hiroshi

    2012-10-01

    Proteins are covalently trapped on DNA to form DNA-protein crosslinks (DPCs) when cells are exposed to DNA-damaging agents. DPCs interfere with many aspects of DNA transactions. The current DPC detection methods indirectly measure crosslinked proteins (CLPs) through DNA tethered to proteins. However, a major drawback of such methods is the non-linear relationship between the amounts of DNA and CLPs, which makes quantitative data interpretation difficult. Here we developed novel methods of DPC detection based on direct CLP measurement, whereby CLPs in DNA isolated from cells are labeled with fluorescein isothiocyanate (FITC) and quantified by fluorometry or western blotting using anti-FITC antibodies. Both formats successfully monitored the induction and elimination of DPCs in cultured cells exposed to aldehydes and mouse tumors exposed to ionizing radiation (carbon-ion beams). The fluorometric and western blotting formats require 30 and 0.3 ?g of DNA, respectively. Analyses of the isolated genomic DPCs revealed that both aldehydes and ionizing radiation produce two types of DPC with distinct stabilities. The stable components of aldehyde-induced DPCs have half-lives of up to days. Interestingly, that of radiation-induced DPCs has an infinite half-life, suggesting that the stable DPC component exerts a profound effect on DNA transactions over many cell cycles. PMID:22730301

  8. Detection of DNA–protein crosslinks (DPCs) by novel direct fluorescence labeling methods: distinct stabilities of aldehyde and radiation-induced DPCs

    Science.gov (United States)

    Shoulkamy, Mahmoud I.; Nakano, Toshiaki; Ohshima, Makiko; Hirayama, Ryoichi; Uzawa, Akiko; Furusawa, Yoshiya; Ide, Hiroshi

    2012-01-01

    Proteins are covalently trapped on DNA to form DNA–protein crosslinks (DPCs) when cells are exposed to DNA-damaging agents. DPCs interfere with many aspects of DNA transactions. The current DPC detection methods indirectly measure crosslinked proteins (CLPs) through DNA tethered to proteins. However, a major drawback of such methods is the non-linear relationship between the amounts of DNA and CLPs, which makes quantitative data interpretation difficult. Here we developed novel methods of DPC detection based on direct CLP measurement, whereby CLPs in DNA isolated from cells are labeled with fluorescein isothiocyanate (FITC) and quantified by fluorometry or western blotting using anti-FITC antibodies. Both formats successfully monitored the induction and elimination of DPCs in cultured cells exposed to aldehydes and mouse tumors exposed to ionizing radiation (carbon-ion beams). The fluorometric and western blotting formats require 30 and 0.3??g of DNA, respectively. Analyses of the isolated genomic DPCs revealed that both aldehydes and ionizing radiation produce two types of DPC with distinct stabilities. The stable components of aldehyde-induced DPCs have half-lives of up to days. Interestingly, that of radiation-induced DPCs has an infinite half-life, suggesting that the stable DPC component exerts a profound effect on DNA transactions over many cell cycles. PMID:22730301

  9. Devices for ionizing radiation detection

    International Nuclear Information System (INIS)

    The patented method of manufacturing detection units consisting of a scintillator, a photomultiplier and some other parts, such as a light pipe, is characterized by the use of anaerobic polyacrylate or cyanoacrylate cement for filling the contact gaps forming an optical contact or a leak-proof seal between the parts of the detection units. (Ha)

  10. Optical fiber-applied radiation detection system

    International Nuclear Information System (INIS)

    A technique to measure radiation by using plastic scintillation fibers doped radiation fluorescent (scintillator) to plastic optical fiber for a radiation sensor, was developed. The technique contains some superiority such as high flexibility due to using fibers, relatively easy large area due to detecting portion of whole of fibers, and no electromagnetic noise effect due to optical radiation detection and signal transmission. Measurable to wide range of and continuous radiation distribution along optical fiber cable at a testing portion using scintillation fiber and flight time method, the optical fiber-applied radiation sensing system can effectively monitor space radiation dose or apparatus operation condition monitoring. And, a portable type scintillation optical fiber body surface pollution monitor can measure pollution concentration of radioactive materials attached onto body surface by arranging scintillation fiber processed to a plate with small size and flexibility around a man to be tested. Here were described on outline and fundamental properties of various application products using these plastic scintillation fiber. (G.K.)

  11. Application of the microbiological method DEFT/APC to detect minimally processed vegetables treated with gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, M.M.; Duarte, R.C.; Silva, P.V. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Centro de Tecnologia das Radiacoes, Laboratorio de Deteccao de Alimentos Irradiados, Cidade Universitaria, Av. Prof. Lineu Prestes 2242, Butanta Zip Code 05508-000 Sao Paulo (Brazil); Marchioni, E. [Laboratoire de Chimie Analytique et Sciences de l' Aliment (UMR 7512), Faculte de Pharmacie, Universite Louis Pasteur, 74, route du Rhin, F-67400 Illkirch (France); Villavicencio, A.L.C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Centro de Tecnologia das Radiacoes, Laboratorio de Deteccao de Alimentos Irradiados, Cidade Universitaria, Av. Prof. Lineu Prestes 2242, Butanta Zip Code 05508-000 Sao Paulo (Brazil)], E-mail: villavic@ipen.br

    2009-07-15

    Marketing of minimally processed vegetables (MPV) are gaining impetus due to its convenience, freshness and apparent health effect. However, minimal processing does not reduce pathogenic microorganisms to safe levels. Food irradiation is used to extend the shelf life and to inactivate food-borne pathogens. In combination with minimal processing it could improve safety and quality of MPV. A microbiological screening method based on the use of direct epifluorescent filter technique (DEFT) and aerobic plate count (APC) has been established for the detection of irradiated foodstuffs. The aim of this study was to evaluate the applicability of this technique in detecting MPV irradiation. Samples from retail markets were irradiated with 0.5 and 1.0 kGy using a {sup 60}Co facility. In general, with a dose increment, DEFT counts remained similar independent of the irradiation while APC counts decreased gradually. The difference of the two counts gradually increased with dose increment in all samples. It could be suggested that a DEFT/APC difference over 2.0 log would be a criteria to judge if a MPV was treated by irradiation. The DEFT/APC method could be used satisfactorily as a screening method for indicating irradiation processing.

  12. Application of the microbiological method DEFT/APC to detect minimally processed vegetables treated with gamma radiation

    International Nuclear Information System (INIS)

    Marketing of minimally processed vegetables (MPV) are gaining impetus due to its convenience, freshness and apparent health effect. However, minimal processing does not reduce pathogenic microorganisms to safe levels. Food irradiation is used to extend the shelf life and to inactivate food-borne pathogens. In combination with minimal processing it could improve safety and quality of MPV. A microbiological screening method based on the use of direct epifluorescent filter technique (DEFT) and aerobic plate count (APC) has been established for the detection of irradiated foodstuffs. The aim of this study was to evaluate the applicability of this technique in detecting MPV irradiation. Samples from retail markets were irradiated with 0.5 and 1.0 kGy using a 60Co facility. In general, with a dose increment, DEFT counts remained similar independent of the irradiation while APC counts decreased gradually. The difference of the two counts gradually increased with dose increment in all samples. It could be suggested that a DEFT/APC difference over 2.0 log would be a criteria to judge if a MPV was treated by irradiation. The DEFT/APC method could be used satisfactorily as a screening method for indicating irradiation processing.

  13. Detection of radiation treatment of food

    International Nuclear Information System (INIS)

    A list of foodstuffs is given whose irradiation is permitted in at least one country, as are the purpose of irradiation and permitted doses. A survey is given of the methods used for the detection of radiation treatment and the determination of the applied dose. The principles of chemical methods applied for the testing of irradiated meat, fats, fish and marine products, fruit, mushrooms, sugars, cereals and potatoes are tabulated. (M.D.)

  14. Optimizing a method for detection of hepatitis A virus in shellfish and study the effect of gamma radiation on the viral genome

    International Nuclear Information System (INIS)

    Our work was aimed at detecting the hepatitis A virus (HAV) in bivalve mollusc collected from five shellfish harvesting areas and from a coastal region in Tunisia using RT-Nested-PCR and studying the effect of gamma radiation on HAV genome. Two methods used to recover HAV from mollusc flesh and two methods of extraction of virus RNA were compared in order to determine the most sensitive method. Glycine extraction and extraction of virus RNA using proteinase K were more convenient and then used in this study for detection of HAV in shellfish. The results of molecular analyses: RT-Nested-PCR using primers targeted at the P1 region revealed that 28 % of the samples were positive for HAV. Doses of gamma irradiation ranging between 5 to 30 kGy were used to study the effect of this radiation on HAV genome after the contamination of mollusc flesh with suspension of HAV (derived from stool specimens). HAV specific genomic band was observed for doses between 5 to 20 kGy. We didn't detect HAV genome with doses 25 and 30 kGy. (Author)

  15. Fluorometric method for rapid detection of DNA strand breaks in human white blood cells produced by low doses of radiation

    International Nuclear Information System (INIS)

    DNA strand breaks can be detected with great sensitivity by exposing crude cell lysates to alkaline solutions and monitoring the rate of strand unwinding. As little as one strand break per chromosome can be detected. Previous methods for measuring strand unwinding have required physical separation of single- from double-stranded molecules. We now describe conditions under which unwinding can be monitored directly using a fluorescent dye, thus greatly simplifying the analysis. Breaks due to irradiation of blood samples by 60Co gamma-rays at doses as low as 0.05 to 0.1 gray (5 to 10 rads) were detectable. Rapid rejoining of strand breaks during in vitro incubation at 37 degrees could readily be observed following a dose of one gray. Since the procedure is very rapid and cells can be analyzed directly without the requirement for culturing or radiolabeling, the procedure could be useful in cancer chemotherapy if in vivo damage is to be monitored or for testing the in vitro sensitivity of cells to drugs

  16. Fluorometric method for rapid detection of DNA strand breaks in human white blood cells produced by low doses of radiation

    International Nuclear Information System (INIS)

    DNA strand breaks can be detected with great sensitivity by exposing crude cell lysates to alkaline solutions and monitoring the rate of strand unwinding. As little as one strand break per chromosome can be detected. Previous methods for measuring strand unwinding have required physical separation of single- from double-stranded molecules. Researchers now describe conditions under which unwinding can be monitored directly using a fluorescent dye, thus greatly simplifying the analysis. Breaks due to irradiation of blood samples by 60Co gamma-rays at doses as low as 0.05 to 0.1 gray were detectable. Rapid rejoining of strand breaks during in vitro incubation at 37 degrees could readily be observed following a dose of one gray. Since the procedure is very rapid and cells can be analyzed directly without the requirement for culturing or radiolabeling, the procedure could be useful in cancer chemotherapy if in vivo damage is to be monitored or for testing the in vitro sensitivity of cells to drugs

  17. Methods of Melanoma Detection.

    Science.gov (United States)

    Leachman, Sancy A; Cassidy, Pamela B; Chen, Suephy C; Curiel, Clara; Geller, Alan; Gareau, Daniel; Pellacani, Giovanni; Grichnik, James M; Malvehy, Josep; North, Jeffrey; Jacques, Steven L; Petrie, Tracy; Puig, Susana; Swetter, Susan M; Tofte, Susan; Weinstock, Martin A

    2016-01-01

    Detection and removal of melanoma, before it has metastasized, dramatically improves prognosis and survival. The purpose of this chapter is to (1) summarize current methods of melanoma detection and (2) review state-of-the-art detection methods and technologies that have the potential to reduce melanoma mortality. Current strategies for the detection of melanoma range from population-based educational campaigns and screening to the use of algorithm-driven imaging technologies and performance of assays that identify markers of transformation. This chapter will begin by describing state-of-the-art methods for educating and increasing awareness of at-risk individuals and for performing comprehensive screening examinations. Standard and advanced photographic methods designed to improve reliability and reproducibility of the clinical examination will also be reviewed. Devices that magnify and/or enhance malignant features of individual melanocytic lesions (and algorithms that are available to interpret the results obtained from these devices) will be compared and contrasted. In vivo confocal microscopy and other cellular-level in vivo technologies will be compared to traditional tissue biopsy, and the role of a noninvasive "optical biopsy" in the clinical setting will be discussed. Finally, cellular and molecular methods that have been applied to the diagnosis of melanoma, such as comparative genomic hybridization (CGH), fluorescent in situ hybridization (FISH), and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), will be discussed. PMID:26601859

  18. Remote Optical Detection of Alpha Radiation

    International Nuclear Information System (INIS)

    Alpha emitting radiation sources are typically hard to detect with conventional detectors due to the short range of alpha particles in the air. However, previous studies have shown that remote detection of alpha radiation is possible by measuring the ionization-induced fluorescence of air molecules. The alpha-induced ultraviolet (UV) light is mainly emitted by molecular nitrogen and its fluorescence properties are well known. The benefit of this method is the long range of UV photons in the air. Secondly, the detection is possible also under a strong beta and gamma radiation backgrounds as they do not cause localized molecular excitation. In this work, the optical detection was studied using two different detection schemes; spectral separation of fluorescence from the background lighting and coincidence detection of UV photons originating from a single radiative decay event. Our spectrally integrated measurements have shown that one alpha decay event yields up to 400 fluorescence photons in the air and all these UV photons are induced in a 5 ns time-window. On the other hand, the probability of a background coincidence event in 5 ns scale is very rare compared to the number of background photons. This information can be applied in fluorescence coincidence filtering to discriminate the alpha radiation initiated fluorescence signal from much more intense background lighting. A device called HAUVA (Handheld Alpha UV Application) was built during this work for demonstration purposes. HAUVA utilizes spectral filtering and it is designed to detect alpha emitters from a distance of about 40 cm. Using specially selected room lighting, the device is able to separate 1 kBq alpha emitter from the background lighting with 1 second integration time. (author)

  19. Soybean allergen detection methods

    DEFF Research Database (Denmark)

    Pedersen, Mona H; Holzhauser, Thomas; Bisson, Caroline; Conti, Amedeo; Jensen, Louise B; Skov, Per S; Bindslev-Jensen, Carsten; Brinch, Ditte S; Poulsen, Lars K

    2008-01-01

    Soybean containing products are widely consumed, thus reliable methods for detection of soy in foods are needed in order to make appropriate risk assessment studies to adequately protect soy allergic patients. Six methods were compared using eight food products with a declared content of soy: a direct sandwich ELISA based on polyclonal rabbit antibody (ab) to raw soy flakes, a commercial and an in-house competitive ELISA both based on ab to denatured, 'renatured' soy protein, an enzyme-allergoso...

  20. Cellular telephone-based radiation detection instrument

    Science.gov (United States)

    Craig, William W. (Pittsburg, CA); Labov, Simon E. (Berkeley, CA)

    2011-06-14

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  1. Radiation delivery system and method

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, Scott A. (Overland Park, KS); Robison, Thomas W. (Los Alamos, NM); Taylor, Craig M. V. (Jemez Springs, NM)

    2002-01-01

    A radiation delivery system and method are described. The system includes a treatment configuration such as a stent, balloon catheter, wire, ribbon, or the like, a portion of which is covered with a gold layer. Chemisorbed to the gold layer is a radiation-emitting self-assembled monolayer or a radiation-emitting polymer. The radiation delivery system is compatible with medical catheter-based technologies to provide a therapeutic dose of radiation to a lesion following an angioplasty procedure.

  2. Error detection method

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Eric J.

    2013-06-11

    An apparatus, program product, and method that run an algorithm on a hardware based processor, generate a hardware error as a result of running the algorithm, generate an algorithm output for the algorithm, compare the algorithm output to another output for the algorithm, and detect the hardware error from the comparison. The algorithm is designed to cause the hardware based processor to heat to a degree that increases the likelihood of hardware errors to manifest, and the hardware error is observable in the algorithm output. As such, electronic components may be sufficiently heated and/or sufficiently stressed to create better conditions for generating hardware errors, and the output of the algorithm may be compared at the end of the run to detect a hardware error that occurred anywhere during the run that may otherwise not be detected by traditional methodologies (e.g., due to cooling, insufficient heat and/or stress, etc.).

  3. Environmental radiation detection via thermoluminescence

    Science.gov (United States)

    Miller, S.D.

    1993-03-23

    The method and apparatus of the present invention relate to cryogenically cooling a thermoluminescent material, exposing it to a low level of radiation (less than about 1 R) while it is at the cooled temperature, warming the thermoluminescent material to room temperature'' and counting the photons emitted during heating. Sufficient sensitivity is achieved without exposing the thermoluminescent material to ultraviolet light thereby simplifying the measurements.

  4. Practical application of narrow area radiation method

    International Nuclear Information System (INIS)

    This paper describes the estimation of attainable quality on X-ray radiographs and an application of narrow area radiation method. Results are obtained as follows; 1) The fundamental data of factors governing quality on radiographs were collected and were arranged as empirical equations. Then the detectability of I.Q.I. wires and blow-holes were calculated numerically. The calculated values almost agreed with the experimental values within practical limits of error. 2) The optimum object-film distance in the narrow area radiation method was calculated under minimization of the detectability of I.Q.I. wires. 3) The narrow area radiation method was applied to the welds for corner joints of truss-chord members. The detectability of blow-holes with this method was better than that using ordinary methods. (author)

  5. Soybean allergen detection methods

    DEFF Research Database (Denmark)

    Pedersen, Mona H; Holzhauser, Thomas; Bisson, Caroline; Conti, Amedeo; Jensen, Louise B; Skov, Per S; Bindslev-Jensen, Carsten; Brinch, Ditte S; Poulsen, Lars K

    2008-01-01

    Soybean containing products are widely consumed, thus reliable methods for detection of soy in foods are needed in order to make appropriate risk assessment studies to adequately protect soy allergic patients. Six methods were compared using eight food products with a declared content of soy: a...... direct sandwich ELISA based on polyclonal rabbit antibody (ab) to raw soy flakes, a commercial and an in-house competitive ELISA both based on ab to denatured, 'renatured' soy protein, an enzyme-allergosorbent test (EAST) inhibition based on two sera from soy allergic patients, histamine release (HR...

  6. A study on measurement of neutrons generated in radiation therapy – Measurement of neurons in CR-39 detection method

    International Nuclear Information System (INIS)

    Highlights: ? To measure the neutrons generated in a linear accelerator. ? Both fast neutrons and thermal neutrons produced an increase in the dose of neutrons generated with increasing irradiation dose. ? The generation of neutrons increased when a wedge filter was used. ? When the SRS cone that required a high dose was used, more neutrons were detected. -- Abstract: The CR-39 [diethylene glycol bis-(allylcarbonate)] neuron detection method was used to measure the dose of neutrons generated in X-ray (photon) therapy conducted in a linear accelerator, and to use high-energy photons as part of the clinical applications to examine the problems associated with the dose for patients caused by the generation of neutrons from high-energy photons used for cancer therapy. According to the experimental results, 0.35 mSv, 0.65 mSv 1.82 mSv of fast neutrons on average were generated from 1 Gy, 2 Gy and 5 Gy of photon irradiation, respectively, whereas 0.26 mSv, 0.56 mSv and 1.23 mSv of thermal neutrons were generated. Both fast neutrons and thermal neutrons produced an increase in the dose of neutrons generated with increasing irradiation dose. With in regard to the dose generated within and around the irradiation area of the photon rays, it was confirmed that more neutrons were generated within the irradiation area. A wedge filer was used to measure the generation of neutrons. According to the measurement results, the generation of neutrons increased when a wedge filter was used. When the SRS cone that required a high dose was used, more neutrons were detected than those in the previous experiment. When fast neutrons were used, 2.85 mSv neutrons on average were generated from 5 Gy of photon irradiation. When thermal neutrons were used, 1.37 mSv neutrons on average were generated from 5 Gy of photon irradiation. Overall, approximately 1.6 times and 1.12 times more fast and thermal neutrons, respectively, were generated than in the case of a general treatment with 5 Gy of photon irradiation.

  7. Application of the microbiological method DEFT/APC and DNA comet assay to detect ionizing radiation processing of minimally processed vegetables

    International Nuclear Information System (INIS)

    Marketing of minimally processed vegetables (MPV) are gaining impetus due to its convenience, freshness and apparent healthy. However, minimal processing does not reduce pathogenic microorganisms to safe levels. Food irradiation is used to extend the shelf life and inactivation of food-borne pathogens, Its combination with minimal processing could improve the safety and quality of MPV. Two different food irradiation detection methods, a biological, the DEFT/APC, and another biochemical, the DNA Comet Assay were applied to MPV in order to test its applicability to detect irradiation treatment. DEFT/APC is a microbiological screening method based on the use of the direct epi fluorescent filter technique (DEFT) and the aerobic plate count (APC). DNA Comet Assay detects DNA damage due to ionizing radiation. Samples of lettuce, chard, watercress, dandelion, kale, chicory, spinach, cabbage from retail market were irradiated O.5 kGy and 1.0 kGy using a 60 Co facility. Irradiation treatment guaranteed at least 2 log cycle reduction for aerobic and psychotropic microorganisms. In general, with increasing radiation doses, DEFT counts remained similar independent of irradiation processing while APC counts decreased gradually. The difference of the two counts gradually increased with dose increment in all samples. It could be suggested that a DEFT/APC difference over 2.0 log would be a criteria to judge if a MPV was treated by irradiation. DNA Comet Assay allowed distinguishing non-irradiated samples from irradiated ones, which showed different types of comets owing to DNA fragmentation. Both DEFT/APC method and DNA Comet Assay would be satisfactorily used as a screening method for indicating irradiation processing. (author)

  8. Detection, measurement, and gravitational radiation

    Science.gov (United States)

    Finn, Lee S.

    1992-12-01

    The optimum design, construction, and use of the Laser Interferometer Gravitational Wave Observatory (LIGO), VIRGO, or Laser Gravitational Wave Observatory (LAGOS) gravitational radiation detectors depends upon accurate calculations of their sensitivity to different sources of radiation. Here I examine how to determine the sensitivity of these instruments to sources of gravitational radiation by considering the process by which data are analyzed in a noisy detector. The problem of detection (is a signal present in the output of the detector\\?) is separated from that of measurement (what are the parameters that characterize the signal in the detector output\\?). By constructing the probability that the detector output is consistent with the presence of a signal, I show how to quantify the uncertainty that the output contains a signal and is not simply noise. Proceeding further, I construct the probability distribution that the parametrization ? that characterizes the signal has a certain value. From the distribution and its mode I determine volumes V(P) in parameter space such that ??V(P) with probability P [owing to the random nature of the detector noise, the volumes V(P) are always different, even for identical signals in the detector output], thus quantifying the uncertainty in the estimation of the signal parametrization. These techniques are suitable for analyzing the output of a noisy detector. If we are designing a detector, or determining the suitability of an existing detector for observing a new source, then we do not have detector output to analyze but are interested in the ``most likely'' response of the detector to a signal. I exploit the techniques just described to determine the ``most likely'' volumes V(P) for detector output that would result in a parameter probability distribution with given mode. Finally, as an example, I apply these techniques to determine the anticipated sensitivity of the LIGO and LAGOS detectors to the gravitational radiation from a perturbed Kerr black hole.

  9. Comparative study using Monte Carlo methods of the radiation detection efficiency of LSO, LuAP, GSO and YAP scintillators for use in positron emission imaging (PET)

    International Nuclear Information System (INIS)

    The radiation detection efficiency of four scintillators employed, or designed to be employed, in positron emission imaging (PET) was evaluated as a function of the crystal thickness by applying Monte Carlo Methods. The scintillators studied were the LuSiO5 (LSO), LuAlO3 (LuAP), Gd2SiO5 (GSO) and the YAlO3 (YAP). Crystal thicknesses ranged from 0 to 50 mm. The study was performed via a previously generated photon transport Monte Carlo code. All photon track and energy histories were recorded and the energy transferred or absorbed in the scintillator medium was calculated together with the energy redistributed and retransported as secondary characteristic fluorescence radiation. Various parameters were calculated e.g. the fraction of the incident photon energy absorbed, transmitted or redistributed as fluorescence radiation, the scatter to primary ratio, the photon and energy distribution within each scintillator block etc. As being most significant, the fraction of the incident photon energy absorbed was found to increase with increasing crystal thickness tending to form a plateau above the 30 mm thickness. For LSO, LuAP, GSO and YAP scintillators, respectively, this fraction had the value of 44.8, 36.9 and 45.7% at the 10 mm thickness and 96.4, 93.2 and 96.9% at the 50 mm thickness. Within the plateau area approximately (57-59)% (59-63)% (52-63)% and (58-61)% of this fraction was due to scattered and reabsorbed radiation for the LSO, GSO, YAP and LuAP scintillators, respectively. In all cases, a negligible fraction (<0.1%) of the absorbed energy was found to escape the crystal as fluorescence radiation

  10. Comparative study using Monte Carlo methods of the radiation detection efficiency of LSO, LuAP, GSO and YAP scintillators for use in positron emission imaging (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Nikolopoulos, Dimitrios [Department of Medical Instruments Technology, Technological Educational Institution of Athens, Ag. Spiridonos 12210, Athens (Greece); Kandarakis, Ioannis [Department of Medical Instruments Technology, Technological Educational Institution of Athens, Ag. Spiridonos 12210, Athens (Greece)]. E-mail: kandarakis@teiath.gr; Tsantilas, Xenophon [Department of Medical Physics, University of Athens, Athens (Greece); Valais, Ioannis [Department of Medical Instruments Technology, Technological Educational Institution of Athens, Ag. Spiridonos 12210, Athens (Greece); Cavouras, Dionisios [Department of Medical Instruments Technology, Technological Educational Institution of Athens, Ag. Spiridonos 12210, Athens (Greece); Louizi, Anna [Department of Medical Physics, University of Athens, Athens (Greece)

    2006-12-20

    The radiation detection efficiency of four scintillators employed, or designed to be employed, in positron emission imaging (PET) was evaluated as a function of the crystal thickness by applying Monte Carlo Methods. The scintillators studied were the LuSiO{sub 5} (LSO), LuAlO{sub 3} (LuAP), Gd{sub 2}SiO{sub 5} (GSO) and the YAlO{sub 3} (YAP). Crystal thicknesses ranged from 0 to 50 mm. The study was performed via a previously generated photon transport Monte Carlo code. All photon track and energy histories were recorded and the energy transferred or absorbed in the scintillator medium was calculated together with the energy redistributed and retransported as secondary characteristic fluorescence radiation. Various parameters were calculated e.g. the fraction of the incident photon energy absorbed, transmitted or redistributed as fluorescence radiation, the scatter to primary ratio, the photon and energy distribution within each scintillator block etc. As being most significant, the fraction of the incident photon energy absorbed was found to increase with increasing crystal thickness tending to form a plateau above the 30 mm thickness. For LSO, LuAP, GSO and YAP scintillators, respectively, this fraction had the value of 44.8, 36.9 and 45.7% at the 10 mm thickness and 96.4, 93.2 and 96.9% at the 50 mm thickness. Within the plateau area approximately (57-59)% (59-63)% (52-63)% and (58-61)% of this fraction was due to scattered and reabsorbed radiation for the LSO, GSO, YAP and LuAP scintillators, respectively. In all cases, a negligible fraction (<0.1%) of the absorbed energy was found to escape the crystal as fluorescence radiation.

  11. Detection methods of irradiated foodstuffs

    International Nuclear Information System (INIS)

    Full text: Food irradiation has, in certain circumstances, an important role to play both in promoting food safety and in reducing food losses. The safety and availability of nutritious food are essential components of primary health care. WHO actively encourages the proper use of food irradiation in the fight against foodborne diseases and food losses. To this end, it collaborates closely with FAO and IAEA. Food irradiation can have a number of beneficial effects, including delay of ripening and prevention of sprouting; control of insects, parasites, helminths, pathogenic and spoilage bacteria, moulds and yeasts; and sterilization, which enables commodities to be stored unrefrigerated for long periods. The 1990s witnessed a significant advancement in food irradiation processing. As a result, progress has been made in commercialization of the technology, culminating in greater international trade in irradiated foods and the implementation of differing regulations relating to its use in many countries. Codex General Standard for Irradiated Foodstuffs and Recommended International Code of Practice for the Operation of Irradiation Facilities Used for the Treatment of Foods regulate food irradiation at international level. At European Union level there are in power Directive 1999/2/EC and Directive1999/3/EC. Every particular country has also its own regulations regarding food irradiation. In Romania, since 2002 the Norms Regarding Foodstuffs and Food Ingredients Treated by Ionizing Radiation are in power. These Norms are in fact the Romanian equivalent law of the European Directives 1999/2/EC and 1999/3/EC. The greater international trade in irradiated foods has led to the demand by consumers that irradiated food should be clearly labeled as such and that methods capable of differentiating between irradiated and nonirradiated products should be available. Thus a practical basis was sought to allow consumers to exercise a free choice as to which food they purchase. If a food is marketed as irradiated or if irradiated goods are sold without the appropriate labeling, then detection tests should be able to prove the authenticity of the product. For the moment in Romania there is not any food control laboratory able to detect irradiated foodstuffs. The Technological Irradiation Department coordinates and co finances a research project aimed to establish the first Laboratory of Irradiated Foodstuffs Detection. The detection methods studied in this project are the ESR methods (for cellulose EN 1787/2000, bone EN 1786/1996 and crystalline sugar EN 13708/2003), the TL method (EN 1788/2001), the PSL method (EN 13751/2002) and the DNA Comet Assay method (EN 13784/2001). The above detection methods will be applied on various foodstuffs such: garlic, onion, potatoes, rice, beans, wheat, maize, pistachio, sunflower seeds, raisins, figs, strawberries, chicken, beef, fish, pepper, paprika, thyme, laurel and mushrooms. As an example of the application of a detection method there are presented the ESR spectra of irradiated and nonirradiated paprika acquired according to ESR detection method for irradiated foodstuffs containing cellulose. First of all it can be noticed that the intensity of the signal of cellulose is much higher for the irradiated sample than that for the nonirradiated one and second that appear two radiation specific signals symmetrical to the cellulose signal. These two radiation specific signals prove the irradiation treatment of paprika. (author)

  12. Management of the baseline shift using a new and simple method for respiratory-gated radiation therapy: Detectability and effectiveness of a flexible monitoring system

    International Nuclear Information System (INIS)

    Purpose: In respiratory-gated radiation therapy, a baseline shift decreases the accuracy of target coverage and organs at risk (OAR) sparing. The effectiveness of audio-feedback and audio-visual feedback in correcting the baseline shift in the breathing pattern of the patient has been demonstrated previously. However, the baseline shift derived from the intrafraction motion of the patient's body cannot be corrected by these methods. In the present study, the authors designed and developed a simple and flexible system. Methods: The system consisted of a web camera and a computer running our in-house software. The in-house software was adapted to template matching and also to no preimage processing. The system was capable of monitoring the baseline shift in the intrafraction motion of the patient's body. Another marker box was used to monitor the baseline shift due to the flexible setups required of a marker box for gated signals. The system accuracy was evaluated by employing a respiratory motion phantom and was found to be within AAPM Task Group 142 tolerance (positional accuracy <2 mm and temporal accuracy <100 ms) for respiratory-gated radiation therapy. Additionally, the effectiveness of this flexible and independent system in gated treatment was investigated in healthy volunteers, in terms of the results from the differences in the baseline shift detectable between the marker positions, which the authors evaluated statistically. Results: The movement of the marker on the sternum [1.599 ± 0.622 mm (1 SD)] was substantially decreased as compared with the abdomen [6.547 ± 0.962 mm (1 SD)]. Additionally, in all of the volunteers, the baseline shifts for the sternum [-0.136 ± 0.868 (2 SD)] were in better agreement with the nominal baseline shifts than was the case for the abdomen [-0.722 ± 1.56 mm (2 SD)]. The baseline shifts could be accurately measured and detected using the monitoring system, which could acquire the movement of the marker on the sternum. The baseline shift-monitoring system with the displacement-based methods for highly accurate respiratory-gated treatments should be used to make most of the displacement-based gating methods. Conclusions: The advent of intensity modulated radiation therapy and volumetric modulated radiation therapy facilitates margin reduction for the planning target volumes and the OARs, but highly accurate irradiation is needed to achieve target coverage and OAR sparing with a small margin. The baseline shifts can affect treatment not only with the respiratory gating system but also without the system. Our system can manage the baseline shift and also enables treatment irradiation to be undertaken with high accuracy.

  13. A method and setup for specific detection of alpha radiation and/or beta- and gamma radiation with proportional counters in the presence of the other radiation component, and application

    International Nuclear Information System (INIS)

    The invention consists in a method to differentiate alpha radiation from beta and gamma radiation with the use of proportional counters. The electrical signals induced by the different radiations between the anode and cathode of a proportional counter tube are distinguished by their current amplitudes. For the registration of alpha radiation the only parameter to be measured is the current amplitude, which can be measured with a setup, including the following elements: an amplifier stage with the time characteristic of a simple RC-integrating circuit, which produces an output signal proportional to the time integral of the tube current similar to the ordinary energy dependent measurements; a splitting of the output signal of this stage into a first signal branch with a differentiation circuit to obtain a signal proportional to the tube current, followed by an integral discriminator the output signals of which are related with alpha particles, and a second signal branch with a post amplifier, followed by an integral discriminator, the output signals of which are related with alpha, beta and gamma radiations; an anticoincidence circuit for the signals of branch 1 and 2 to produce signal pulses which are related with beta or gamma radiations. The most important application of this method and/or setup lies in the field of radiation protection. (orig.)

  14. Physics and engineering of radiation detection

    CERN Document Server

    Ahmed, Syed Naeem

    2015-01-01

    Physics and Engineering of Radiation Detection presents an overview of the physics of radiation detection and its applications. It covers the origins and properties of different kinds of ionizing radiation, their detection and measurement, and the procedures used to protect people and the environment from their potentially harmful effects. The second edition is fully revised and provides the latest developments in detector technology and analyses software. Also, more material related to measurements in particle physics and a complete solutions manual have been added.

  15. Chromatographic methods in radiation chemistry

    International Nuclear Information System (INIS)

    Recent developments in detectors for liquid chromatographic analysis have increased detection sensitivities by several orders of magnitude. Many products in the radiolysis of organic substrates can now be determined at micromolar levels. With this sensitivity it is possible to examine radiolytic systems in detail with doses as low as 100 rads. As a result one can determine initial yields in studies which previously have not been possible. This presentation describes studies of the oxidation of aromatic systems by HPLC methods involving spectrophotometric detection with diode array detectors. Digital storage of 3-dimensional data makes it possible to display readily the chromatographic data in a variety of formats. As a result one obtains an in depth understanding of the product distribution and considerable insight into the radiation chemical mechanism. These spectroscopic approaches can be supplemented by chromatographic studies employing electrochemical, refractive index, radiochemical and ion detectors which are particularly useful when reference samples of radiolytic products are not available. We illustrate these approaches with results from recent studies of the radiolytic oxidation of substituted naphthalenes and biphenyls where the complex mixtures of isomeric products can be resolved by HPLC methods. These studies provide information on the features which control the position of attack of OH on aromatic systems. (author)

  16. Network Algorithms for Detection of Radiation Sources

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nageswara S [ORNL; Brooks, Richard R [Clemson University; Wu, Qishi [University of Memphis

    2014-01-01

    In support of national defense, Domestic Nuclear Detection Office s (DNDO) Intelligent Radiation Sensor Systems (IRSS) program supported the development of networks of radiation counters for detecting, localizing and identifying low-level, hazardous radiation sources. Industry teams developed the first generation of such networks with tens of counters, and demonstrated several of their capabilities in indoor and outdoor characterization tests. Subsequently, these test measurements have been used in algorithm replays using various sub-networks of counters. Test measurements combined with algorithm outputs are used to extract Key Measurements and Benchmark (KMB) datasets. We present two selective analyses of these datasets: (a) a notional border monitoring scenario that highlights the benefits of a network of counters compared to individual detectors, and (b) new insights into the Sequential Probability Ratio Test (SPRT) detection method, which lead to its adaptations for improved detection. Using KMB datasets from an outdoor test, we construct a notional border monitoring scenario, wherein twelve 2 *2 NaI detectors are deployed on the periphery of 21*21meter square region. A Cs-137 (175 uCi) source is moved across this region, starting several meters from outside and finally moving away. The measurements from individual counters and the network were processed using replays of a particle filter algorithm developed under IRSS program. The algorithm outputs from KMB datasets clearly illustrate the benefits of combining measurements from all networked counters: the source was detected before it entered the region, during its trajectory inside, and until it moved several meters away. When individual counters are used for detection, the source was detected for much shorter durations, and sometimes was missed in the interior region. The application of SPRT for detecting radiation sources requires choosing the detection threshold, which in turn requires a source strength estimate, typically specified as a multiplier of the background radiation level. A judicious selection of this source multiplier is essential to achieve optimal detection probability at a specified false alarm rate. Typically, this threshold is chosen from the Receiver Operating Characteristic (ROC) by varying the source multiplier estimate. ROC is expected to have a monotonically increasing profile between the detection probability and false alarm rate. We derived ROCs for multiple indoor tests using KMB datasets, which revealed an unexpected loop shape: as the multiplier increases, detection probability and false alarm rate both increase until a limit, and then both contract. Consequently, two detection probabilities correspond to the same false alarm rate, and the higher is achieved at a lower multiplier, which is the desired operating point. Using the Chebyshev s inequality we analytically confirm this shape. Then, we present two improved network-SPRT methods by (a) using the threshold off-set as a weighting factor for the binary decisions from individual detectors in a weighted majority voting fusion rule, and (b) applying a composite SPRT derived using measurements from all counters.

  17. Three-dimensional, position-sensitive radiation detection

    Science.gov (United States)

    He, Zhong; Zhang, Feng

    2010-04-06

    Disclosed herein is a method of determining a characteristic of radiation detected by a radiation detector via a multiple-pixel event having a plurality of radiation interactions. The method includes determining a cathode-to-anode signal ratio for a selected interaction of the plurality of radiation interactions based on electron drift time data for the selected interaction, and determining the radiation characteristic for the multiple-pixel event based on both the cathode-to-anode signal ratio and the electron drift time data. In some embodiments, the method further includes determining a correction factor for the radiation characteristic based on an interaction depth of the plurality of radiation interactions, a lateral distance between the selected interaction and a further interaction of the plurality of radiation interactions, and the lateral positioning of the plurality of radiation interactions.

  18. Radiation Detection Material Discovery Initiative at PNNL

    Science.gov (United States)

    Milbrath, Brian

    2006-05-01

    Today's security threats are being met with 30-year old radiation technology. Discovery of new radiation detection materials is currently a slow and Edisonian process. With heightened concerns over nuclear proliferation, terrorism and unconventional warfare, an alternative strategy for identification and development of potential radiation detection materials must be adopted. Through the Radiation Detection Materials Discovery Initiative, PNNL focuses on the science-based discovery of next generation materials for radiation detection by addressing three ``grand challenges'': fundamental understanding of radiation detection, identification of new materials, and accelerating the discovery process. The new initiative has eight projects addressing these challenges, which will be described, including early work, paths forward and the opportunities for collaboration.

  19. Leak detection method

    International Nuclear Information System (INIS)

    Purpose: To perform satisfactory automatic scram for reactors by reliable leak detection in LMFBR type reactors. Method: A plurality of leak detectors each given with a channel number are provided to equipments and pipeways in a nuclear power plant. A digital computer receives the outputs from the leak detectors and judges, if the predetermined number of detectors are actuated, whether the plurality of actuated detectors are at the positions adjacent to each other. If they are at the adjacent positions, the digital computer judges that liquid leaks occur. That is, the digital computer judges the degree of significance for the locations of the leak detectors from their channel numbers, and issues a plant stop signal where the leak is judged and if the degree of significance is high. (Horiuchi, T.)

  20. Evaluation methods for detecting changes in beam output and energy in radiation beams from high-energy linear accelerators

    OpenAIRE

    Ravichandran R; Binukumar J; Davis C; Krishnamurthy K; Sivakumar S

    2007-01-01

    There is need for simple methods for checking consistency of beam outputs and energy in linear accelerators used for radiotherapy. A method was designed by the department using perspex phantom with which the dosimetric data of two medical linear accelerators (Clinac 600 CD, Clinac 2300 CD) were evaluated over a period of 30 months. The efficacy of methods followed was checked. Routine beam consistency checks were designed for photon beams with 15 cm/ 5 cm depth ionizations in perspex phantom ...

  1. Deterministic methods in radiation transport

    Energy Technology Data Exchange (ETDEWEB)

    Rice, A.F.; Roussin, R.W. (eds.)

    1992-06-01

    The Seminar on Deterministic Methods in Radiation Transport was held February 4--5, 1992, in Oak Ridge, Tennessee. Eleven presentations were made and the full papers are published in this report, along with three that were submitted but not given orally. These papers represent a good overview of the state of the art in the deterministic solution of radiation transport problems for a variety of applications of current interest to the Radiation Shielding Information Center user community.

  2. Deterministic methods in radiation transport

    International Nuclear Information System (INIS)

    The Seminar on Deterministic Methods in Radiation Transport was held February 4--5, 1992, in Oak Ridge, Tennessee. Eleven presentations were made and the full papers are published in this report, along with three that were submitted but not given orally. These papers represent a good overview of the state of the art in the deterministic solution of radiation transport problems for a variety of applications of current interest to the Radiation Shielding Information Center user community

  3. Detecting radiation with your smartphone

    CERN Multimedia

    Agnes Szeberenyi

    2014-01-01

    The winners of the CERN EIROforum Prize in the European Union Competition for Young Scientists 2013 (EUCYS), Michał Gumiela and Rafał Tomasz Kozik from Poland, have just spent an exciting week exploring CERN from 1 to 5 September. The students visited several CERN experiments and facilities and had ample time to interact with scientists on how to improve their invention further.   Michał Gumiela (left) and Rafał Tomasz Kozik (right) with their CERN host, Sabrina El Yacoubi (middle) at the ALICE detector. Michał (21) and Rafał (20) both won a young physicist prize in Poland before submitting their work on “Studies of the applicability of CMOS and CCD sensors for detection of ionising radiation” to the EUCYS competition. “It all started with Fukushima,” recalls Michał. The high school students met in 2011 at a physics workshop, where they started discussing digital photos taken around the Fukushima nuclear plant after the radiation leak. &ldqu...

  4. Development of detection/analysis for radiation induced mutations using new DNA analyzing techniques. Construction of effective probe and primer, and their detection method

    International Nuclear Information System (INIS)

    An investigation was made on the genome structure of 28 S rDNA in the respect of radiation-induced double strand cleavages in DNA. It has been reported that there is an insertion of retro-transposon in some rDNA. There is a possibility that rDNA may have a specific structure composed of several regions of different sensitivities to radiation exposure. Hence, the structure and the functions of such regions were investigated. This region was as long as 2.5 Mb in length and divided into inserted type and un-inserted one. FISH showed that the inserted regions are composed of mini-clusters and the structure was high-ordered. A new primer was constructed so as to provide PCR products of about 5 Kb in length. When the DNA was exposed to γ-ray (60Co and 137Cs), the amount of PCR products was dose-dependently increased up to 10 Gy and the increase was 15-20 % at the dose. Therefore, it was suggested that PCR amplification was enhanced because of the destruction of higher-ordered structure caused by radiation exposure. The sensitivity of some DNA region to 60Co or 137Cs exposure was different from that of other regions in respect of the formation of double strand cleavage. Therefore, it was thought that such high-ordered genome region could be distinguishable from other regions with the differences in radiation sensitivity of genome DNA. (M.N.)

  5. Main Achievements 2003-2004 - Interdisciplinary Research - Radiation detection methods for health, earth and environmental sciences - Thermoluminescence (TL) detectors

    International Nuclear Information System (INIS)

    The IFJ has over 35 years of experience in the development, production and application of new types of thermoluminescence (TL) detectors, particularly LiF:Mg,Ti and LiF:Mg,Cu,P. Over 600,000 LiF detectors produced at the IFJ PAN are routinely applied in dosimetry services and hospitals in 30 countries. The current research in the field of thermoluminescence concentrates in space dosimetry and novel 2-dimensional detectors for medical applications. The space project (named Matroshka), organized by the European Space Agency, is one of the most ambitious dosimetry experiments in space. In February 2004 an anatomical model of the human body (a humanoid phantom), equipped with over 3500 dedicated thermoluminescent detectors (TLD), developed and produced at IFJ and tested at the Chiba heavy ion accelerator in Japan, was installed outside the International Space Station (ISS) to determine the cosmic radiation doses absorbed in human organs, which would be experienced by astronauts in open space. The phantom will remain in space for one year, after which the detectors will be returned to the IFJ for analysis

  6. Radiation Detection Center on the Front Lines

    International Nuclear Information System (INIS)

    Many of today's radiation detection tools were developed in the 1960s. For years, the Laboratory's expertise in radiation detection resided mostly within its nuclear test program. When nuclear testing was halted in the 1990s, many of Livermore's radiation detection experts were dispersed to other parts of the Laboratory, including the directorates of Chemistry and Materials Science (CMS); Physics and Advanced Technologies (PAT); Defense and Nuclear Technologies (DNT); and Nonproliferation, Arms Control, and International Security (NAI). The RDC-- was formed to maximize the benefit of radiation detection technologies being developed in 15 to 20 research and development (R and D) programs. These efforts involve more than 200 Laboratory employees across eight directorates, in areas that range from electronics to computer simulations. The RDC's primary focus is the detection, identification, and analysis of nuclear materials and weapons. A newly formed outreach program within the RDC-- is responsible for conducting radiation detection workshops and seminars across the country and for coordinating university student internships. Simon Labov, director of the RDC, says, ''Virtually all of the Laboratory's programs use radiation detection devices in some way. For example, DNT uses radiation detection to create radiographs for their work in stockpile stewardship and in diagnosing explosives; CMS uses it to develop technology for advancing the detection, diagnosis, and treatment of cancer; and the Energy and Environment Directorate uses radiation detection in the Marshall Islands to monitor the aftermath of nuclear testing in the Pacific. In the future, the National Ignition Facility will use radiation detection to probe laser targets and study shock dynamics.''

  7. Radiation Detection Center on the Front Lines

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A

    2005-09-20

    Many of today's radiation detection tools were developed in the 1960s. For years, the Laboratory's expertise in radiation detection resided mostly within its nuclear test program. When nuclear testing was halted in the 1990s, many of Livermore's radiation detection experts were dispersed to other parts of the Laboratory, including the directorates of Chemistry and Materials Science (CMS); Physics and Advanced Technologies (PAT); Defense and Nuclear Technologies (DNT); and Nonproliferation, Arms Control, and International Security (NAI). The RDC was formed to maximize the benefit of radiation detection technologies being developed in 15 to 20 research and development (R&D) programs. These efforts involve more than 200 Laboratory employees across eight directorates, in areas that range from electronics to computer simulations. The RDC's primary focus is the detection, identification, and analysis of nuclear materials and weapons. A newly formed outreach program within the RDC is responsible for conducting radiation detection workshops and seminars across the country and for coordinating university student internships. Simon Labov, director of the RDC, says, ''Virtually all of the Laboratory's programs use radiation detection devices in some way. For example, DNT uses radiation detection to create radiographs for their work in stockpile stewardship and in diagnosing explosives; CMS uses it to develop technology for advancing the detection, diagnosis, and treatment of cancer; and the Energy and Environment Directorate uses radiation detection in the Marshall Islands to monitor the aftermath of nuclear testing in the Pacific. In the future, the National Ignition Facility will use radiation detection to probe laser targets and study shock dynamics.''

  8. Radiation dosimetry instrumentation and methods

    CERN Document Server

    Shani, Gad

    2000-01-01

    Radiation dosimetry has made great progress in the last decade, mainly because radiation therapy is much more widely used. Since the first edition, many new developments have been made in the basic methods for dosimetry, i.e. ionization chambers, TLD, chemical dosimeters, and photographic films. Radiation Dosimetry: Instrumentation and Methods, Second Edition brings to the reader these latest developments. Written at a high level for medical physicists, engineers, and advanced dosimetrists, it concentrates only on evolvement during the last decade, relying on the first edition to provide the basics.

  9. Radiation, ionization, and detection in nuclear medicine

    International Nuclear Information System (INIS)

    Up-to-date information on a wide range of topics relating to radiation, ionization, and detection in nuclear medicine. In-depth coverage of basic radiophysics relating to diagnosis and therapy. Extensive discussion of instrumentation and radiation detectors. Detailed information on mathematical modelling of radiation detectors. Although our understanding of cancer has improved, the disease continues to be a leading cause of death across the world. The good news is that the recent technological developments in radiotherapy, radionuclide diagnostics and therapy, digital imaging systems, and detection technology have raised hope that cancer will in the future be combatted more efficiently and effectively. For this goal to be achieved, however, safe use of radionuclides and detailed knowledge of radiation sources are essential. Radiation, Ionization, and Detection in Nuclear Medicine addresses these subjects and related issues very clearly and elaborately and will serve as the definitive source of detailed information in the field. Individual chapters cover fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding; the detection and measurement of radiation exposure, with detailed information on mathematical modelling; medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.

  10. Radiation, ionization, and detection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Tapan K. [Radiation Monitoring Devices Research, Nuclear Medicine, Watertown, MA (United States)

    2013-08-01

    Up-to-date information on a wide range of topics relating to radiation, ionization, and detection in nuclear medicine. In-depth coverage of basic radiophysics relating to diagnosis and therapy. Extensive discussion of instrumentation and radiation detectors. Detailed information on mathematical modelling of radiation detectors. Although our understanding of cancer has improved, the disease continues to be a leading cause of death across the world. The good news is that the recent technological developments in radiotherapy, radionuclide diagnostics and therapy, digital imaging systems, and detection technology have raised hope that cancer will in the future be combatted more efficiently and effectively. For this goal to be achieved, however, safe use of radionuclides and detailed knowledge of radiation sources are essential. Radiation, Ionization, and Detection in Nuclear Medicine addresses these subjects and related issues very clearly and elaborately and will serve as the definitive source of detailed information in the field. Individual chapters cover fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding; the detection and measurement of radiation exposure, with detailed information on mathematical modelling; medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.

  11. Indirect detection of radiation sources through direct detection of radiolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C. (Tracy, CA); Fischer, Larry E. (Los Gatos, CA); Felter, Thomas E. (Livermore, CA)

    2010-04-20

    A system for indirectly detecting a radiation source by directly detecting radiolytic products. The radiation source emits radiation and the radiation produces the radiolytic products. A fluid is positioned to receive the radiation from the radiation source. When the fluid is irradiated, radiolytic products are produced. By directly detecting the radiolytic products, the radiation source is detected.

  12. Crack detecting method

    International Nuclear Information System (INIS)

    A penetration liquid or a slow drying penetration liquid prepared by mixing a penetration liquid and a slow drying liquid is filled to the inside of an artificial crack formed to a member to be detected such as of boiler power generation facilities and nuclear power facilities. A developing liquid is applied to the periphery of the artificial crack on the surface of a member to be detected. As the slow-drying liquid, an oil having a viscosity of 56 is preferably used. Loads are applied repeatedly to the member to be detected, and when a crack is caused to the artificial crack, the permeation liquid penetrates into the crack. The penetration liquid penetrated into the crack is developed by the developing liquid previously coated to the periphery of the artificial crack of the surface of the member to be detected. When a crack is caused, since the crack is developed clearly even if it is a small opening, the crack can be recognized visually reliably. (I.N.)

  13. Physics and engineering of radiation detection

    CERN Document Server

    Ahmed, Syed Naeem

    2007-01-01

    Physics and Engineering of Radiation Detection presents an overview of basic physics of radiation and its applications and covers the origins and properties of different kinds of ionizing radiation, their detection and measurement, and the procedures used to protect people and the environment from their potentially harmful effects. Covering both the basic physics of radiation and its applications, it will provide an up-to-date and coherent account of the origins and properties of the different kinds of ionizing radiation, and their detection and measurement. This book will illustrate the basic physical principles with an abundance of practical, worked-out examples, numerical problems, real world applications, and data, including biological effects, radon, risk assessment, and statistics.

  14. Current trends in ionizing radiation detection

    International Nuclear Information System (INIS)

    Ionizing radiation is a both a natural and man-made phenomena that plays a major role in contemporary applications. The detection of this radiation has evolved over the past several decades from simple observations to precise measurements in space, time, and energy, even in harsh environmental conditions. In this paper, we present a snapshot of the current state-of-the-art in radiation measurement technology, highlighting the major applications and detector developments

  15. Device for detecting ionizing radiation

    International Nuclear Information System (INIS)

    The present invention relates to ionizing radiation sensors, and , more particularly, to semiconductor spectrometers with thermoelectric cooling, and can most advantageously be used in mineral raw material exploration and evaluation under field conditions. The spectrometer comprises a vacuum chamber with an entrance window for passing the radiation therethrough. The vacuum chamber accommodates a thermoelectric cooler formed by a set of peltier elements. A heat conducting plate is mounted on the cold side of the thermoelectric cooler, and its hot side is provided with a radiator. Mounted on the heat conducting plate are sets of peltier elements, integral with the thermoelectric cooler and independent of one another. The peltier elements of these sets are stacked so as to develop the minimum temperature conditions on one set carrying a semiconductor detector and to provide the maximum refrigeration capacity conditions on the other set provided with the field-effect transistor mounted thereon

  16. Nonlinear Multiantenna Detection Methods

    Directory of Open Access Journals (Sweden)

    Chen Sheng

    2004-01-01

    Full Text Available A nonlinear detection technique designed for multiple-antenna assisted receivers employed in space-division multiple-access systems is investigated. We derive the optimal solution of the nonlinear spatial-processing assisted receiver for binary phase shift keying signalling, which we refer to as the Bayesian detector. It is shown that this optimal Bayesian receiver significantly outperforms the standard linear beamforming assisted receiver in terms of a reduced bit error rate, at the expense of an increased complexity, while the achievable system capacity is substantially enhanced with the advent of employing nonlinear detection. Specifically, when the spatial separation expressed in terms of the angle of arrival between the desired and interfering signals is below a certain threshold, a linear beamformer would fail to separate them, while a nonlinear detection assisted receiver is still capable of performing adequately. The adaptive implementation of the optimal Bayesian detector can be realized using a radial basis function network. Two techniques are presented for constructing block-data-based adaptive nonlinear multiple-antenna assisted receivers. One of them is based on the relevance vector machine invoked for classification, while the other on the orthogonal forward selection procedure combined with the Fisher ratio class-separability measure. A recursive sample-by-sample adaptation procedure is also proposed for training nonlinear detectors based on an amalgam of enhanced -means clustering techniques and the recursive least squares algorithm.

  17. Liquid chromatography detection unit, system, and method

    Energy Technology Data Exchange (ETDEWEB)

    Derenzo, Stephen E.; Moses, William W.

    2015-10-27

    An embodiment of a liquid chromatography detection unit includes a fluid channel and a radiation detector. The radiation detector is operable to image a distribution of a radiolabeled compound as the distribution travels along the fluid channel. An embodiment of a liquid chromatography system includes an injector, a separation column, and a radiation detector. The injector is operable to inject a sample that includes a radiolabeled compound into a solvent stream. The position sensitive radiation detector is operable to image a distribution of the radiolabeled compound as the distribution travels along a fluid channel. An embodiment of a method of liquid chromatography includes injecting a sample that comprises radiolabeled compounds into a solvent. The radiolabeled compounds are then separated. A position sensitive radiation detector is employed to image distributions of the radiolabeled compounds as the radiolabeled compounds travel along a fluid channel.

  18. Liquid chromatography detection unit, system, and method

    Energy Technology Data Exchange (ETDEWEB)

    Derenzo, Stephen E; Moses, William W

    2015-11-06

    An embodiment of a liquid chromatography detection unit includes a fluid channel and a radiation detector. The radiation detector is operable to image a distribution of a radiolabeled compound as the distribution travels along the fluid channel. An embodiment of a liquid chromatography system includes an injector, a separation column, and a radiation detector. The injector is operable to inject a sample that includes a radiolabeled compound into a solvent stream. The position sensitive radiation detector is operable to image a distribution of the radiolabeled compound as the distribution travels along a fluid channel. An embodiment of a method of liquid chromatography includes injecting a sample that comprises radiolabeled compounds into a solvent. The radiolabeled compounds are then separated. A position sensitive radiation detector is employed to image distributions of the radiolabeled compounds as the radiolabeled compounds travel along a fluid channel.

  19. Radiation Detection, Response and Recovery

    International Nuclear Information System (INIS)

    Mission: Strengthen the capabilities of partner countries to deter, detect, and interdict illicit trafficking of special nuclear and other radioactive materials at international border crossings including airports, seaports, and other points of entry/exit. Strategy: Develop cooperative efforts to mitigate the risk of illicit trafficking through: • Search, detection, and identification of nuclear and other radioactive materials; • Development of response procedures and capabilities; • Deterrence of future trafficking in illicit nuclear and nuclear-related materials. Goal: Deliver an effective and sustainable global capability to deter, detect, and interdict illicit trafficking in special nuclear and other radioactive materials

  20. Methods of DNA methylation detection

    Science.gov (United States)

    Maki, Wusi Chen (Inventor); Filanoski, Brian John (Inventor); Mishra, Nirankar (Inventor); Rastogi, Shiva (Inventor)

    2010-01-01

    The present invention provides for methods of DNA methylation detection. The present invention provides for methods of generating and detecting specific electronic signals that report the methylation status of targeted DNA molecules in biological samples.Two methods are described, direct and indirect detection of methylated DNA molecules in a nano transistor based device. In the direct detection, methylated target DNA molecules are captured on the sensing surface resulting in changes in the electrical properties of a nano transistor. These changes generate detectable electronic signals. In the indirect detection, antibody-DNA conjugates are used to identify methylated DNA molecules. RNA signal molecules are generated through an in vitro transcription process. These RNA molecules are captured on the sensing surface change the electrical properties of nano transistor thereby generating detectable electronic signals.

  1. A Voltage Quality Detection Method

    DEFF Research Database (Denmark)

    Chen, Zhe; Wei, Mu

    2008-01-01

    This paper presents a voltage quality detection method based on a phase-locked loop (PLL) technique. The technique can detect the voltage magnitude and phase angle of each individual phase under both normal and fault power system conditions. The proposed method has the potential to evaluate various...

  2. Material for ionizing radiation detection

    International Nuclear Information System (INIS)

    New scintillation material is claimed, namely, a lead dichloride single crystal activated with europium within 0.01 mol.% and 5 mol.%. For the same size and the same detector-source configuration, the detection efficiency of the PbCl2(Eu) material is better by up to 40% than the conventional NaI(Tl). Thus, for the same detection efficiency the detector element of the new material can significantly be reduced in size. The PbCl2(Eu) single crystal was grown by crystallization from the melt, finished into a cylindrical shape and encased in metal with a glass front window. The single crystal is attached to the window using silicone oil. Magnesium oxide powder is used as a reflector between the crystal and the case. (M.D.)

  3. Detecting transition radiation from a magnetic moment

    OpenAIRE

    Ivanov, Igor P.; Karlovets, Dmitry V.

    2013-01-01

    Electromagnetic radiation can be emitted not only by particle charges but also by magnetic moments and higher electric and magnetic multipoles. However experimental proofs of this fundamental fact are extremely scarce. In particular, the magnetic moment contribution has never been observed in any form of polarization radiation. Here, we propose to detect it using vortex electrons carrying large orbital angular momentum (OAM) \\ell. The relative contribution of the OAM-induced...

  4. GaTe semiconductor for radiation detection

    Science.gov (United States)

    Payne, Stephen A. (Castro Valley, CA); Burger, Arnold (Nashville, TN); Mandal, Krishna C. (Ashland, MA)

    2009-06-23

    GaTe semiconductor is used as a room-temperature radiation detector. GaTe has useful properties for radiation detectors: ideal bandgap, favorable mobilities, low melting point (no evaporation), non-hygroscopic nature, and availability of high-purity starting materials. The detector can be used, e.g., for detection of illicit nuclear weapons and radiological dispersed devices at ports of entry, in cities, and off shore and for determination of medical isotopes present in a patient.

  5. Undoped polycarbonate for detection of environmental radiation

    International Nuclear Information System (INIS)

    The enormous area of damage to Japan's Fukushima Daiichi nuclear power plant requires radiation detectors with robust base substrates to monitor high-dose-rate environmental radiation with long-term stability. Undoped aromatic ring polymers have considerable potential as base substrates in radiation detection. Here, we characterise polycarbonate (PC), which has excellent transparency, shock, radiation, and weather resistance, heat tolerance, and anti-abrasion qualities. It has a density of 1.20 g/cm3, an excitation maximum of 310 nm, and short-wavelength emission with a maximum at 350-nm. By taking into account its emission spectrum, we determined an effective refractive index of 1.64. PC has a light yield that is 0.67 times that of undoped poly (ethylene terephthalate). These results reveal that readily available PC is an effective base substrate for use in large-area radiation detectors for the nuclear power plant recovery process. (author)

  6. Mobile Radiation Detection System against Nuclear Terrorism

    International Nuclear Information System (INIS)

    After the September 11th, 2001, terrorist attacks in the USA, the discovery of Al-Qaeda's experimentation to build dirty bomb and the death of a former officer of the Russian Federal Security Service from Po-210- induced acute radiation exposure, the threats relating to nuclear and radioactive materials have become a matter of increased international concern. Detection of illicit transport and trafficking of nuclear and radioactive materials is necessary for prevention of nuclear terrorism, since failure in detection might lead to catastrophic results. A mobile radiation detection system plays an important role in preventing the potential dangers posed by illicit transport and trafficking of such dangerous materials because it can monitor the suspicious vehicle at place beyond terrorist's expectation which makes intentionally a detour about the portal monitor deployed at seaports, airports, and key traffic checkpoints. The mobile radiation detection system using one NaI, two plastic scintillation, and two He-3 detectors has been developed. This paper describes the developed mobile radiation detection system and experimental results for its performance assessment

  7. Mobile Radiation Detection System against Nuclear Terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Sung Woo; Yoo, Ho Sik; Jang, Sung Soon; Kim, Jung Soo; Yoon, Wan Ki [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2009-05-15

    After the September 11{sup th}, 2001, terrorist attacks in the USA, the discovery of Al-Qaeda's experimentation to build dirty bomb and the death of a former officer of the Russian Federal Security Service from Po-210- induced acute radiation exposure, the threats relating to nuclear and radioactive materials have become a matter of increased international concern. Detection of illicit transport and trafficking of nuclear and radioactive materials is necessary for prevention of nuclear terrorism, since failure in detection might lead to catastrophic results. A mobile radiation detection system plays an important role in preventing the potential dangers posed by illicit transport and trafficking of such dangerous materials because it can monitor the suspicious vehicle at place beyond terrorist's expectation which makes intentionally a detour about the portal monitor deployed at seaports, airports, and key traffic checkpoints. The mobile radiation detection system using one NaI, two plastic scintillation, and two He-3 detectors has been developed. This paper describes the developed mobile radiation detection system and experimental results for its performance assessment.

  8. Detection system built from commercial integrated circuits for real-time measurement of radiation dose and quality using the variance method

    International Nuclear Information System (INIS)

    A small, specialised amplifier using commercial integrated circuits (ICs) was developed to measure radiation dose and quality in real time using a microdosimetric ion chamber and the variance method. The charges from a microdosimetric ion chamber, operated in the current mode, were repeatedly collected for a fixed period of time for 20 cycles of 100 integrations, and processed by this specialised amplifier to produce signal pulse heights between 0 and 10 V. These signals were recorded by a multi-channel analyser coupled to a computer. FORTRAN programs were written to calculate the dose and dose variance. The dose variance produced in the ion chamber is a microdosimetric measure of radiation quality. Benchmark measurements of different brands of ICs were conducted. Results demonstrate that this specialised amplifier is capable of distinguishing differences of radiation quality in various high-dose-rate radiation fields including X rays, gamma rays and mixed neutron-gamma radiation from the research reactor at Texas A and M Univ. (authors)

  9. Analytical detection methods for irradiated foods

    International Nuclear Information System (INIS)

    The present publication is a review of scientific literature on the analytical identification of foods treated with ionizing radiation and the quantitative determination of absorbed dose of radiation. Because of the extremely low level of chemical changes resulting from irradiation or because of the lack of specificity to irradiation of any chemical changes, a few methods of quantitative determination of absorbed dose have shown promise until now. On the other hand, the present review has identified several possible methods, which could be used, following further research and testing, for the identification of irradiated foods. An IAEA Co-ordinated Research Programme on Analytical Detection Methods for Irradiation Treatment of Food ('ADMIT'), established in 1990, is currently investigating many of the methods cited in the present document. Refs and tab

  10. The latest photodetectors for radiation detection

    International Nuclear Information System (INIS)

    In the recent application of radiation detection, performances required for photodetectors vary in the wide range. Meanwhile, new photodetectors have been continuously developed by HAMAMATSU for these requirements. The performances and the test results of such new photodetectors are discussed in this paper. (author)

  11. Composite scintillators for detection of ionizing radiation

    Science.gov (United States)

    Dai, Sheng (Knoxville, TN) [Knoxville, TN; Stephan, Andrew Curtis (Knoxville, TN) [Knoxville, TN; Brown, Suree S. (Knoxville, TN) [Knoxville, TN; Wallace, Steven A. (Knoxville, TN) [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  12. A new vehicle detection method

    Directory of Open Access Journals (Sweden)

    Zebbara Khalid

    2011-09-01

    Full Text Available This paper presents a new vehicle detection method from images acquired by cameras embedded in a moving vehicle. Given the sequence of images, the proposed algorithms should detect out all cars in realtime. Related to the driving direction, the cars can be classified into two types. Cars drive in the same direction as the intelligent vehicle (IV and cars drive in the opposite direction. Due to the distinct features of these two types, we suggest to achieve this method in two main steps. The first one detects all obstacles from images using the so-called association combined with corner detector. The second step is applied to validate each vehicle using AdaBoost classifier. The new method has been applied to different images data and the experimental results validate the efficacy of our method.

  13. Network algorithms for detection of radiation sources

    International Nuclear Information System (INIS)

    Networks of radiation counters have been recently developed for detecting low-level, hazardous radiation sources, and they have been utilized in indoor and outdoor characterization tests. Subsequently, the test measurements have been “replayed” using multiple sub-networks, which enabled the analysis of various scenarios beyond the tests. We present a particle filter algorithm that combines measurements from gamma counters across the network to detect radiation sources. Using replays from an outdoor test, we construct a border monitoring scenario that consists of twelve 2 in.×2 in. NaI detectors or counters deployed on the periphery to monitor a 42×42 m2 region. A 137Cs source is moved across this region, starting several meters outside and finally moving away from it. The measurements from individual, pairs and boundary detectors are replayed using the particle filter algorithm. The algorithm outputs demonstrate, both quantitatively and qualitatively, the benefits of networking all boundary counters: the source is detected meters before it enters the region, while being inside, and until moving several meters away. On the other hand, when counters are used individually or in pairs, the source is detected for much shorter durations, and sometimes not detected at all while inside the region

  14. Network algorithms for detection of radiation sources

    Science.gov (United States)

    Rao, Nageswara S. V.; Sen, Satyabrata; Prins, Nicholas J.; Cooper, Daniel A.; Ledoux, Robert J.; Costales, James B.; Kamieniecki, Krzysztof; Korbly, Steven E.; Thompson, Jeffrey K.; Batcheler, James; Brooks, Richard R.; Wu, Chase Q.

    2015-06-01

    Networks of radiation counters have been recently developed for detecting low-level, hazardous radiation sources, and they have been utilized in indoor and outdoor characterization tests. Subsequently, the test measurements have been "replayed" using multiple sub-networks, which enabled the analysis of various scenarios beyond the tests. We present a particle filter algorithm that combines measurements from gamma counters across the network to detect radiation sources. Using replays from an outdoor test, we construct a border monitoring scenario that consists of twelve 2 in.×2 in. NaI detectors or counters deployed on the periphery to monitor a 42×42 m2 region. A 137Cs source is moved across this region, starting several meters outside and finally moving away from it. The measurements from individual, pairs and boundary detectors are replayed using the particle filter algorithm. The algorithm outputs demonstrate, both quantitatively and qualitatively, the benefits of networking all boundary counters: the source is detected meters before it enters the region, while being inside, and until moving several meters away. On the other hand, when counters are used individually or in pairs, the source is detected for much shorter durations, and sometimes not detected at all while inside the region.

  15. A new vehicle detection method

    OpenAIRE

    Zebbara Khalid; Mohamed El Ansari; Abdenbi Mazoul

    2011-01-01

    This paper presents a new vehicle detection method from images acquired by cameras embedded in a moving vehicle. Given the sequence of images, the proposed algorithms should detect out all cars in realtime. Related to the driving direction, the cars can be classified into two types. Cars drive in the same direction as the intelligent vehicle (IV) and cars drive in the opposite direction. Due to the distinct features of these two types, we suggest to achieve this method in two main steps. The ...

  16. Waveshifters and Scintillators for Ionizing Radiation Detection

    International Nuclear Information System (INIS)

    Scintillation and waveshifter materials have been developed for the detection of ionizing radiation in an STTR program between Ludlum Measurements, Inc. and the University of Notre Dame. Several new waveshifter materials have been developed which are comparable in efficiency and faster in fluorescence decay than the standard material Y11 (K27) used in particle physics for several decades. Additionally, new scintillation materials useful for fiber tracking have been developed which have been compared to 3HF. Lastly, work was done on developing liquid scintillators and paint-on scintillators and waveshifters for high radiation environments

  17. Method of designing radiation shielding

    International Nuclear Information System (INIS)

    In a case where a plurality of radiation generators, such as charged particle accelerators are disposed in adjacent with each other, since the maximum intensity of radiation rays does not corresponded to the maximum radiation dose on a radiation dose measuring plane, automatic calculation can not be conducted. Then, in the present invention, a great number of measuring points are set on the radiation measuring plane which is divided depending on the radiation shielding members having different shielding effects. For each of the measuring points, the radiation shielding members are indicated on an infinite plane, radiation doses leaked from a radiation generating sources are calculated and they are summed up to calculate the leaked radiation dose at each of the measuring points. The calculation can be conducted by a computer programming, and since all of the radiation generation sources contribute to the summed-up leaked radiation dose at each of the measuring points, the radiation shielding members can be designed depending on the maximum dose. Then, the radiation shielding member can be designed to the minimum size to minimize the radiation generator, thereby enabling to reduce the cost. (N.H.)

  18. Method and apparatus for radiation dose measurement

    International Nuclear Information System (INIS)

    A method is described for determining an irradiation dose comprising the steps of: (a) subjecting a solution of known concentrations of ceric and cerous ions, in the presence of sulphuric acid, to gamma or electron irradiation, (b) measuring the electrochemical potential difference, in a suitable detecting cell, between an unirradiated solution containing known concentrations of ceric and cerous ions and the irradiated solution which initially contained the same known concentrations of ceric and cerous ions so as to produce a signal proportional to the electrochemical potential difference, and (c) converting the signal electronically to give an output proportional to the radiation dose received by the irradiated solution. (author)

  19. Multichannel Digital Emulator of Radiation Detection Systems

    International Nuclear Information System (INIS)

    A digital system for emulating in real time signals from generic setups for radiation detection is presented. The instrument is not a pulse generator of recorded shapes but a synthesizer of random pulses compliant to programmable statistics for energy and occurrence time. Completely programmable procedures for emulation of noise, disturbances and reference level variation can be implemented. The instrument has been realized and fully tested. (authors)

  20. Collimator for a radiation detection camera

    International Nuclear Information System (INIS)

    A nonfocusing collimator is described which provides two separate views of a portion of a body, such as an organ, simultaneously by employing a first and second plurality of parallel channels. The collimator may comprise a plurality of sections, each producig a first and second view, and being capable of producing a plurality of composite views. This is for use in a radiation detection camera with applications in biomedical radiography, particularly of moving organs such as the heart. (Auth.)

  1. Detection of radiation processing in onions

    International Nuclear Information System (INIS)

    Two breeds of onions were used for irradiation. Both breeds were divided into two parts - the first was irradiated with a dose of 80 Gy and the second served as a control. The two parts were stored under the same conditions. Conductometry, liquid chromatography and spectrophotometry were used for detecting the radiation processing of the onions. Only from the spectrophotometric determination of 2-desoxysaccharides it was possible to safely distinguish irradiated onions from non-irradiated controls throughout storage time. (E.S.)

  2. Detection of alpha radiation in a beta radiation field

    Science.gov (United States)

    Mohagheghi, Amir H. (Albuquerque, NM); Reese, Robert P. (Edgewood, NM)

    2001-01-01

    An apparatus and method for detecting alpha particles in the presence of high activities of beta particles utilizing an alpha spectrometer. The apparatus of the present invention utilizes a magnetic field applied around the sample in an alpha spectrometer to deflect the beta particles from the sample prior to reaching the detector, thus permitting detection of low concentrations of alpha particles. In the method of the invention, the strength of magnetic field required to adequately deflect the beta particles and permit alpha particle detection is given by an algorithm that controls the field strength as a function of sample beta energy and the distance of the sample to the detector.

  3. Selective spectral detection of continuum terahertz radiation

    Science.gov (United States)

    Kaufmann, P.; Marcon, R.; Marun, A.; Kudaka, A. S.; Bortolucci, E.; Zakia, M. B.; Diniz, J. A.; Cassiano, M. M.; Pereyra, P.; Godoy, R.; Timofeevsky, A. V.; Nikolaev, V. A.; Pereira Alves da Silva, A. M.; Fernandes, L. O. T.

    2010-07-01

    The knowledge of THz continuum spectra is essential to investigate the emission mechanisms by high energy particle acceleration processes. Technical challenges appear for obtaining selective spectral sensing in the far infrared range to diagnose radiation produced by solar flare burst emissions measured from space as well as radiation produced by high energy electrons in laboratory accelerators. Efforts are been carried out intended for the development of solar flare high cadence radiometers at two THz frequencies to operate outside the terrestrial atmosphere (i.e. at 3 and 7 THz). One essential requirement is the efficient suppression of radiation in the visible and near infrared. Experimental setups have been assembled for testing (a) THz transmission of "low-pass" filters: rough surface mirrors; membranes Zitex G110G and TydexBlack; (b) a fabricated 2.4 THz resonant grid band-pass filter transmission response for polarization and angle of incidence; (c) radiation response from distinct detectors: adapted commercial microbolometer array using HRFZ-Si window, pyroelectric module and Golay cell; qualitative detection of solar radiation at a sub-THz frequency has been tested with a microbolometer array placed at the focus of the 1.5 m reflector for submillimeter waves (SST) at El Leoncito, Argentina Andes.

  4. Composition and apparatus for detecting gamma radiation

    Science.gov (United States)

    Hofstetter, Kenneth J. (Aiken, SC)

    1994-01-01

    A gamma radiation detector and a radioluminiscent composition for use therein. The detector includes a radioluminscent composition that emits light in a characteristic wavelength region when exposed to gamma radiation, and means for detecting said radiation. The composition contains a scintillant such as anglesite (PbSO.sub.4) or cerussite (PbCO.sub.3) incorporated into an inert, porous glass matrix via a sol-gel process. Particles of radiation-sensitive scintillant are added to, a sol solution. The mixture is polymerized to form a gel, then dried under conditions that preserve the structural integrity and radiation sensitivity of the scintillant. The final product is a composition containing the uniformly-dispersed scintillant in an inert, optically transparent and highly porous matrix. The composition is chemically inert and substantially impervious to environmental conditions including changes in temperature, air pressure, and so forth. It can be fabricated in cylinders, blocks with holes therethrough for flow of fluid, sheets, surface coatings, pellets or other convenient shapes.

  5. Composition and apparatus for detecting gamma radiation

    Science.gov (United States)

    Hofstetter, K.J.

    1994-08-09

    A gamma radiation detector and a radioluminescent composition for use therein. The detector includes a radioluminescent composition that emits light in a characteristic wavelength region when exposed to gamma radiation, and means for detecting said radiation. The composition contains a scintillant such as anglesite (PbSO[sub 4]) or cerussite (PbCO[sub 3]) incorporated into an inert, porous glass matrix via a sol-gel process. Particles of radiation-sensitive scintillant are added to, a sol solution. The mixture is polymerized to form a gel, then dried under conditions that preserve the structural integrity and radiation sensitivity of the scintillant. The final product is a composition containing the uniformly-dispersed scintillant in an inert, optically transparent and highly porous matrix. The composition is chemically inert and substantially impervious to environmental conditions including changes in temperature, air pressure, and so forth. It can be fabricated in cylinders, blocks with holes therethrough for flow of fluid, sheets, surface coatings, pellets or other convenient shapes. 3 figs.

  6. New method to detect radiotherapy gamma field

    International Nuclear Information System (INIS)

    Full text: This paper describes a novel method, which allows one to measure the intensity distribution of energetic gamma radiation field, used typically in radiation therapy. Traditionally, measurements are based on a detector system of one or more ionization chambers or an array of semiconductor diodes, which are working in the so called current mode. Therefore, in these methods the spatial resolution is limited by the size of the individual chamber- or diode unit and varies typically from one to five centimeters. The improvement in the resolution leads one to decrease the unit size, increase their amount and, consequently, the electronics (amplifiers etc.), because each detection unit needs its own channel. Better resolution is getting more important question together with the generalization of the Intensity Modulated Radiation Therapy (IMRT) but, unfortunately, the improvement in spatial resolution can only be achieved by increasing considerably the total expenses. Our detection method offers a solution to improve the spatial resolution with very low extra costs. It relies on a position sensitive avalanche counter (PSAC), which owns good position resolution and detection efficiency abilities for heavy ions. Due to the extremely high intensity and low ionization properties of gamma radiation, direct monitoring of gamma field with PSAC has not been possible so far. Therefore, a converter with an adequate cross section to photo fission reactions is used to convert the high intensity gamma field to a 'low' intensity field of heavy fission fragments, which then have the intensity distribution similar to the original gammas. The fragments have an excellent capability to ionize the chamber gas and the discrete pulses can easily be sorted out from the background. By this way the resolution of one millimeter in a typical total gamma field area and with a very simple applied electronics can be achieved. The chamber is also very robust against the radiation damages, which is not the case e.g. with the semiconductor diodes. The converter and wire thicknesses, wire voltages and gas pressure are the parameters, which allow one to optimize the operation of the detector for the certain accelerator conditions. In the final paper we will introduce our detection system and its construction in more detail. We also give the first results about the tests we have carried out in the laboratory and in a hospital accelerator and compare the resolutions to the ones existing in the recent detectors. (author)

  7. Radiation detection technology assessment program (RADTAP)

    International Nuclear Information System (INIS)

    The U.S. Customs Service and the U.S. Department of Energy (DOE) conducted a technical and operational assessment of gamma ray radiation detection equipment during the period May 5-16, 1997 at a testing facility in North Carolina. The effort was entitled, ''Radiation Detection Technology Assessment Program (RADTAP)'', and was conducted for the purpose of assessing the applicability, sensitivity and robustness of a diverse suite of gamma ray detection and identification equipment for possible use by Customs and other law enforcement agencies. Thirteen companies entered 25 instruments into the assessment program. All detection equipment entered had to exhibit a minimum sensitivity of 20 micro-R per hour (background included) from a Cesium-137 point source. Isotope identifying spectrometers entered were man portable and operable at room temperature with read-out that could be interpreted by non-technical personnel. Radioactive sources used in the assessment included special nuclear material, industrial and health isotopes. Evaluators included Customs inspectors and technical experts from DOE and Customs. No conclusions or recommendations were issued based on the quantitative and qualitative test results, however, the results of the program provided law enforcement agencies with the necessary data to select equipment that best meets their operational needs and budgets. (author)

  8. Method and apparatus for measuring electromagnetic radiation

    Science.gov (United States)

    Been, J. F. (inventor)

    1973-01-01

    An apparatus and method are described in which the capacitance of a semiconductor junction subjected to an electromagnetic radiation field is utilized to indicate the intensity or strength of the radiation.

  9. Development of the Neutron Radiation Detection Technology

    International Nuclear Information System (INIS)

    This research is carried out by focusing on the following four matters. First, the neutron sensor with the best suited sensitivity which can detect neutron dose was designed and manufactured. Comparing the experimental results with the numerical simulation results, the optimal neutron sensory device which consists of individualized PIN diode was developed. Second, on the basis of the capacity which was gotten from the measurements and evaluations on dosimetry module at the KCCH neutron tests, the neutron test module was accurately designed with efficient detecting algorithm. Third, the classification on the neutron detecting signal was performed. On the basis of measurement and analysis of the KCCH neutron test results, the linearity to the neutron sensitivity was evaluated and the signal classification was researched for the final test at NIST Fourth, the characteristics of radiation hardening on neutron dosimetry circuit was evaluated to improve the reliability of dosimetry circuit as high dose of neutron detonates

  10. Survey of Anomaly Detection Methods

    Energy Technology Data Exchange (ETDEWEB)

    Ng, B

    2006-10-12

    This survey defines the problem of anomaly detection and provides an overview of existing methods. The methods are categorized into two general classes: generative and discriminative. A generative approach involves building a model that represents the joint distribution of the input features and the output labels of system behavior (e.g., normal or anomalous) then applies the model to formulate a decision rule for detecting anomalies. On the other hand, a discriminative approach aims directly to find the decision rule, with the smallest error rate, that distinguishes between normal and anomalous behavior. For each approach, we will give an overview of popular techniques and provide references to state-of-the-art applications.

  11. Bubble Radiation Detection: Current and Future Capability

    International Nuclear Information System (INIS)

    Despite a number of noteworthy achievements in other fields, superheated droplet detectors (SDDs) and bubble chambers (BCs) have not been used for nuclear nonproliferation and arms control. This report examines these two radiation-detection technologies in detail and answers the question of how they can be or should be ''adapted'' for use in national security applications. These technologies involve closely related approaches to radiation detection in which an energetic charged particle deposits sufficient energy to initiate the process of bubble nucleation in a superheated fluid. These detectors offer complete gamma-ray insensitivity when used to detect neutrons. They also provide controllable neutron-energy thresholds and excellent position resolution. SDDs are extraordinarily simple and inexpensive. BCs offer the promise of very high efficiency (∼75%). A notable drawback for both technologies is temperature sensitivity. As a result of this problem, the temperature must be controlled whenever high accuracy is required, or harsh environmental conditions are encountered. The primary findings of this work are listed and briefly summarized below: (1) SDDs are ready to function as electronics-free neutron detectors on demand for arms-control applications. The elimination of electronics at the weapon's location greatly eases the negotiability of radiation-detection technologies in general. (2) As a result of their high efficiency and sharp energy threshold, current BCs are almost ready for use in the development of a next-generation active assay system. Development of an instrument based on appropriately safe materials is warranted. (3) Both kinds of bubble detectors are ready for use whenever very high gamma-ray fields must be confronted. Spent fuel MPC and A is a good example where this need presents itself. (4) Both kinds of bubble detectors have the potential to function as low-cost replacements for conventional neutron detectors such as 3He tubes. For SDDs, this requires finding some way to get boron into the detector. For BCs, this requires finding operating conditions permitting a high duty cycle

  12. Landmine detection by neutron methods

    International Nuclear Information System (INIS)

    The development of the novel nuclear methods in the field of landmine identification requires a more precise knowledge of microscopic and macroscopic atomic and nuclear data. In addition, the effect of the weight and density of the explosives on the observation of the anomaly in a dry sand environment was examined by different dummy landmines using a hand-held neutron thermalization detector. The concept of the backscattering spectrometry and its possible use for landmine detection are also discussed. (author)

  13. Plastic scintillator-based radiation detector for mobile radiation detection system against nuclear/radiological terrorism

    International Nuclear Information System (INIS)

    Illicit trafficking of nuclear or radioactive materials has become a serious world wide problem. Due to operational constraints of radiation detection system for such nuclear security application, a radiation detector with large effective area is needed to maximize its sensitivity. This paper suggests a new method of using plastic scintillation detector as a cost-effective mobile radiation detection system. Monte Carlo simulation code, MCNPX, has been used to analyze spectral distribution available from the plastic detector and to derive algorithmic process with a view to discriminating targeted sources from ambient background radiation. Theoretical results in present work showed that the targeted sources which might be used for nuclear/radiological terrorism could be discriminated from Nationally Occurring Radioactive Material (NORM) or background.

  14. Plastic scintillator-based radiation detector for mobile radiation detection system against nuclear/radiological terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Sung-Woo; Yoo, Ho-Sik; Jang, Sung Soon; Kim, Jung Soo; Yoon, Wan-Ki [Korea Institute of Nuclear Nonproliferation and Control, 573 Expo-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Jun, In Sub [RadTek. Co., Daejeon 305-308 (Korea, Republic of); Kim, Kwang Hyun [College of Dentistry, Chosun University, Gwangju 305-308 (Korea, Republic of)], E-mail: radkim@chosun.ac.kr

    2009-06-01

    Illicit trafficking of nuclear or radioactive materials has become a serious world wide problem. Due to operational constraints of radiation detection system for such nuclear security application, a radiation detector with large effective area is needed to maximize its sensitivity. This paper suggests a new method of using plastic scintillation detector as a cost-effective mobile radiation detection system. Monte Carlo simulation code, MCNPX, has been used to analyze spectral distribution available from the plastic detector and to derive algorithmic process with a view to discriminating targeted sources from ambient background radiation. Theoretical results in present work showed that the targeted sources which might be used for nuclear/radiological terrorism could be discriminated from Nationally Occurring Radioactive Material (NORM) or background.

  15. Cellular telephone-based wide-area radiation detection network

    Science.gov (United States)

    Craig, William W. (Pittsburg, CA); Labov, Simon E. (Berkeley, CA)

    2009-06-09

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  16. Detecting solar chameleons through radiation pressure

    CERN Document Server

    Baum, Sebastian

    2014-01-01

    Light scalar fields can drive accelerated expansion of the universe. Hence, scalars are obvious dark energy candidates. To make these models compatible with test of General Relativity in the solar system and fifth force searches on earth, one needs to screen them. One possibility is the chameleon mechanism, which renders an effective mass depending on the local energy density. If chameleons exist, they can be produced in the sun and detected on earth through their radiation pressure. We calculate the solar chameleon spectrum and the sensitivity of an experiment to be carried out at CAST, CERN, utilizing a radiation pressure sensor currently under development at INFN, Trieste. We show that such an experiment will be sensitive to a wide range of model parameters and signifies a pioneering effort searching for chameleons in unprobed paramterspace.

  17. Method and apparatus for detecting neutrons

    International Nuclear Information System (INIS)

    The instant invention is a method for making and using an apparatus for detecting neutrons. Scintillating optical fibers are fabricated by melting SiO2 with a thermal neutron capturing substance and a scintillating material in a reducing atmosphere. The melt is then drawn into fibers in an anoxic atmosphere. The fibers may then be coated and used directly in a neutron detection apparatus, or assembled into a geometrical array in a second, hydrogen-rich, scintillating material such as a polymer. Photons generated by interaction with thermal neutrons are trapped within the coated fibers and are directed to photoelectric converters. A measurable electronic signal is generated for each thermal neutron interaction within the fiber. These electronic signals are then manipulated, stored, and interpreted by normal methods to infer the quality and quantity of incident radiation. When the fibers are arranged in an array within a second scintillating material, photons generated by kinetic neutrons interacting with the second scintillating material and photons generated by thermal neutron capture within the fiber can both be directed to photoelectric converters. These electronic signals are then manipulated, stored, and interpreted by normal methods to infer the quality and quantity of incident radiation. 5 figs

  18. Detection of transient species in radiation chemistry

    International Nuclear Information System (INIS)

    Intense energetic electron pulses can be used to produce substantial quantities of transient species in condensed phase radiolysis. Pulsed electron beams have considerable flux advantage over a typical laser photon pulse. The time frame of various events in radiolysis requires a range of time-resolution capabilities in the detection instrumentation, and the information content and spectral resolution of various techniques differ. Restricting our attention to the condensed phase, we will outline fast detection methods that can be used to detect (1) emission: streak cameras and fast photomultipliers; (2) absorption: pulse probe methods using Cherenkov and fast digitizers; (3) conductivity DC and microwave, and (4) three magnetic resonance methods: time-resolved EPR, time-resolved optically detected magnetic resonance, and time-resolved NMR detection of nuclear resonance. Utilizing the above techniques, we can study very short-lived ions, radicals and excited states in both radiolysis and in photoionization. One finds many parallels in the chemistry of transient species in the high-energy regime where the energy input into the condensed phase is more than sufficient to cause ionization. The future challenge is to develop novel detection methods in order to allow significant advances in real time capabilities of radiolytic experiments made possible by the next generation of accelerators

  19. Method for detecting toxic gases

    Science.gov (United States)

    Stetter, Joseph R. (Naperville, IL); Zaromb, Solomon (Hinsdale, IL); Findlay, Jr., Melvin W. (Bolingbrook, IL)

    1991-01-01

    A method capable of detecting low concentrations of a pollutant or other component in air or other gas, utilizing a combination of a heating filament having a catalytic surface of a noble metal for exposure to the gas and producing a derivative chemical product from the component, and an electrochemical sensor responsive to the derivative chemical product for providing a signal indicative of the product. At concentrations in the order of about 1-100 ppm of tetrachloroethylene, neither the heating filament nor the electrochemical sensor is individually capable of sensing the pollutant. In the combination, the heating filament converts the benzyl chloride to one or more derivative chemical products which may be detected by the electrochemical sensor.

  20. Pencil-shaped radiation detection ionization chamber

    International Nuclear Information System (INIS)

    A radiation detection ionization chamber is described. It consists of an elongated cylindrical pencil-shaped tubing forming an outer wall of the chamber and a center electrode disposed along the major axis of the tubing. The length of the chamber is substantially greater than the diameter. A cable connecting portion at one end of the chamber is provided for connecting the chamber to a triaxial cable. An end support portion is connected at the other end of the chamber for supporting and tensioning the center electrode. 17 claims

  1. Dosimetry methods for the estimation of exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Ionizing radiations, by their nature, have required for their detection the use of suitable devices generically referred detecting systems. The detection of secondary particles arising during the processes of ionization and excitation to the passage of radiation in the environment, have constituted the basis of the measurement methods. A detector system is a device that converts the energy of the incident radiation on a signal (electrical, photochemical, etc.) that is easily processable from the technological point of view, but without distorting the original information. These devices have provided qualitative or quantitative information about the radiation of interest. The detector system is a set of a detector together with a processing system. This system has based its operation in methods of: gas ionization, scintillation, semiconductor, film, thermoluminescence, among others. (author)

  2. Landmine Detection by Scatter Radiation Radiography.

    Science.gov (United States)

    Campbell, John Gordon

    The application of scatter radiation radiography to the detection of buried nonmetallic antitank landmines is examined. A combination of calculations and measurements is used to address the problem. The primary calculation tool in a Monte Carlo photon transport code. Measurements are made with an x-ray source, sodium iodide detector, and soil box positioning system. The soil box containing a model of a nonmetallic antitank mine is moved beneath the x-ray source to simulate both the forward motion of a vehicle transporting the detection system and raster of the beam to search a path of sufficient width to allow safe passage. Calculations are used to suggest mine detection mechanisms and to optimize geometric parameters and x-ray beam quality. Measurements are used to validate the calculation results for a small detector and produce images of buried mines. The calculations are extended to large area detectors which are required to provide path searches of approximately three meter widths. Environmental parameters such as height sensitivity, soil density and moisture content, and inhomogeneities are examined in both calculations and measurements. Power requirements are also addressed. A system based upon detector collimation to emphasize differences in the multiple scattered components, characteristic of soil and the explosive found in mines, is found to be capable of mine detection at depths of burial of at least 7.5 cm at power levels compatible with portability, and at speeds, path widths, detection probabilities and false alarm probabilities consistent with operational requirements. Detection at greater depths is possible in soil recently disturbed by mine burial. Images of holes refilled with loose soil can be distinguished from those of buried mines by their characteristic features. However, the refilled hole images bear some resemblance to those of mines laid on the soil surface. A compound detector, consisting of both collimated and uncollimated regions, can be used to overcome this problem and increase the probability of detection of mines buried at shallow depths.

  3. Detecting solar chameleons through radiation pressure

    CERN Document Server

    Baum, S; Hoffmann, D H H; Karuza, M; Semertzidis, Y K; Upadhye, A; Zioutas, K

    2014-01-01

    Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and "fifth force" searches on Earth, one needs to screen them. One possibility is the so-called "chameleon" mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary re...

  4. Apparatus for processing electromagnetic radiation and method

    Science.gov (United States)

    Gatewood, George D. (Inventor)

    1983-01-01

    Measuring apparatus including a ruled member having alternate transparent and opaque zones. An optical coupler connecting the ruled member with electromagnetic radiation-conversion apparatus. The conversion apparatus may include a photomultiplier and a discriminator. Radiation impinging on the ruled member will, in part, be converted to electrical pulses which correspond to the intensity of the radiation. A method of processing electromagnetic radiation includes providing a member having alternating dark and light zones, establishing movement of the member through the beam of electromagnetic radiation with the dark zones interrupting passage of radiation through the rule, providing an optical coupler to connect a portion of the radiation with a conversion station where the radiation portion is converted into an electrical pulse which is related to the intensity of the radiation received at the conversion station. The electrical pulses may be counted and the digitized signals stored or permanently recorded to produce positional information.

  5. Method for acoustic signal detection

    International Nuclear Information System (INIS)

    The disclosure relates to a method and apparatus for acoustic signal detection, adapted for use in acoustic velocity well logging to measure the difference in transit times of an acoustic signal between a transmitter and two or more receivers. In a preferred embodiment of the present invention two timing measurements of the signal arriving at each of two receivers may be made by activating zero crossing detectors at the arrival of the first negative and first positive half-cycles at each receiver. A transit time is calculated from the zero crossing times following the first negative half-cycle. This first transit time may be checked for accuracy by comparing the first transit time with a second transit time calculated from zero crossing times following the first positive half-cycles, by comparing the first transit time to a previously measured transit time and/or by detecting the order of arrival of the negative and positive half-cycles to determine whether the half-cycles have been detected out of sequence at either receiver. Should the first transit time be determined to be inaccurate, the previously measured transit time or the second transit time may be substituted therefor

  6. Explosives detection system and method

    Science.gov (United States)

    Reber, Edward L. (Idaho Falls, ID); Jewell, James K. (Idaho Falls, ID); Rohde, Kenneth W. (Idaho Falls, ID); Seabury, Edward H. (Idaho Falls, ID); Blackwood, Larry G. (Idaho Falls, ID); Edwards, Andrew J. (Idaho Falls, ID); Derr, Kurt W. (Idaho Falls, ID)

    2007-12-11

    A method of detecting explosives in a vehicle includes providing a first rack on one side of the vehicle, the rack including a neutron generator and a plurality of gamma ray detectors; providing a second rack on another side of the vehicle, the second rack including a neutron generator and a plurality of gamma ray detectors; providing a control system, remote from the first and second racks, coupled to the neutron generators and gamma ray detectors; using the control system, causing the neutron generators to generate neutrons; and performing gamma ray spectroscopy on spectra read by the gamma ray detectors to look for a signature indicative of presence of an explosive. Various apparatus and other methods are also provided.

  7. Bubble Radiation Detection: Current and Future Capability

    Energy Technology Data Exchange (ETDEWEB)

    AJ Peurrung; RA Craig

    1999-11-15

    Despite a number of noteworthy achievements in other fields, superheated droplet detectors (SDDs) and bubble chambers (BCs) have not been used for nuclear nonproliferation and arms control. This report examines these two radiation-detection technologies in detail and answers the question of how they can be or should be ''adapted'' for use in national security applications. These technologies involve closely related approaches to radiation detection in which an energetic charged particle deposits sufficient energy to initiate the process of bubble nucleation in a superheated fluid. These detectors offer complete gamma-ray insensitivity when used to detect neutrons. They also provide controllable neutron-energy thresholds and excellent position resolution. SDDs are extraordinarily simple and inexpensive. BCs offer the promise of very high efficiency ({approximately}75%). A notable drawback for both technologies is temperature sensitivity. As a result of this problem, the temperature must be controlled whenever high accuracy is required, or harsh environmental conditions are encountered. The primary findings of this work are listed and briefly summarized below: (1) SDDs are ready to function as electronics-free neutron detectors on demand for arms-control applications. The elimination of electronics at the weapon's location greatly eases the negotiability of radiation-detection technologies in general. (2) As a result of their high efficiency and sharp energy threshold, current BCs are almost ready for use in the development of a next-generation active assay system. Development of an instrument based on appropriately safe materials is warranted. (3) Both kinds of bubble detectors are ready for use whenever very high gamma-ray fields must be confronted. Spent fuel MPC and A is a good example where this need presents itself. (4) Both kinds of bubble detectors have the potential to function as low-cost replacements for conventional neutron detectors such as {sup 3}He tubes. For SDDs, this requires finding some way to get boron into the detector. For BCs, this requires finding operating conditions permitting a high duty cycle.

  8. Monte Carlo Radiation Hydrodynamics with Implicit Methods

    CERN Document Server

    Roth, Nathaniel

    2014-01-01

    We explore the application of Monte Carlo transport methods to solving coupled radiation-hydrodynamics problems. We use a time-dependent, frequency-dependent, 3-dimensional radiation transport code, that is special relativistic and includes some detailed microphysical interactions such as resonant line scattering. We couple the transport code to two different 1-dimensional (non-relativistic) hydrodynamics solvers: a spherical Lagrangian scheme and a Eulerian Godunov solver. The gas-radiation energy coupling is treated implicitly, allowing us to take hydrodyanimcal time-steps that are much longer than the radiative cooling time. We validate the code and assess its performance using a suite of radiation hydrodynamical test problems, including ones in the radiation energy dominated regime. We also develop techniques that reduce the noise of the Monte Carlo estimated radiation force by using the spatial divergence of the radiation pressure tensor. The results suggest that Monte Carlo techniques hold promise for s...

  9. Organic materials and devices for detecting ionizing radiation

    Science.gov (United States)

    Doty, F. Patrick (Livermore, CA); Chinn, Douglas A. (Livermore, CA)

    2007-03-06

    A .pi.-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The .pi.-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are .pi.-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (.gtoreq.10.sup.9 ohmcm), these .pi.-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the .pi.-conjugated polymer material to measure electron/hole pair formation. A layer of the .pi.-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area. The semiconducting polymer material can be easily fabricated in layers about 10 .mu.m to 100 .mu.m thick. These thin polymer layers and their associated electrodes can be stacked to form unique multi-layer detector arrangements that occupy small volume.

  10. Evaluation of methods to leak test sealed radiation sources

    International Nuclear Information System (INIS)

    The methods for the leak testing of sealed radiation sources were reviewed. One hundred and thirty-one equipment vendors were surveyed to identify commercially available leak test instruments. The equipment is summarized in tabular form by radiation type and detector type for easy reference. The radiation characteristics of the licensed sources were reviewed and summarized in a format that can be used to select the most suitable detection method. A test kit is proposed for use by inspectors when verifying a licensee's test procedures. The general elements of leak test procedures are discussed

  11. Radiation detector arrangements and methods

    International Nuclear Information System (INIS)

    The patent describes a radiation detector arrangement. It comprises at least one detector element in the form of a temperature-sensitive resistor whose electrical resistance changes in response to radiation incident on the detector element, the resistor having a high positive temperature coefficient of electrical resistance at a transition in its electrical conductance, circuit means for applying a voltage across the resistor during operation of the detector arrangement, and temperature-regulation means for regulating the temperature of the resistor so as to operate the resistor in the transition, characterised in that the temperature-regulation means comprises the resistor and the circuit means which passes sufficient current through the resistor by resistance heating to a position in the transition at which a further increase in its temperature in response to incident radiation reduces the resistance heating by reducing the current, thereby stabilizing the temperature of the resistor at the position. The positive temperature coefficient at the position being sufficiently high that the change in the resistance heating produced by a change in the temperature of the resistor at the position is larger than a change in power of the incident radiation required to produce that same change in temperature of the resistor in the absence of any change in resistance heating

  12. Aerial Radiation Detection Vehicle Manned and Unmanned Concepts

    International Nuclear Information System (INIS)

    We are developing an Unmanned Aerial Radiation Detection Vehicle that will give new abilities to the Manned Aerial Radiation Detection Vehicle, Air-Ram. A comparison between the two systems will be given, and a report to our first Unmanned Aerial Radiation Detection Vehicle flight. Air-Ram The Air-Ram system, figure 1, has been developed to measure and display online radiation level measurements taken above the radiation area with a chopper. The detected radiation levels are presented on a topographical map with the flight path colored with the radiation intensities. The air crew and controllers on the ground are updated every two seconds. It enables first responders to complete and real time picture of a radiological event which is essential in order to be able to activate and direct ground operations if necessary. The system measures radiation levels and produces a spectrum graph used to identify the isotopes

  13. Spacesuit Radiation Shield Design Methods

    Science.gov (United States)

    Wilson, John W.; Anderson, Brooke M.; Cucinotta, Francis A.; Ware, J.; Zeitlin, Cary J.

    2006-01-01

    Meeting radiation protection requirements during EVA is predominantly an operational issue with some potential considerations for temporary shelter. The issue of spacesuit shielding is mainly guided by the potential of accidental exposure when operational and temporary shelter considerations fail to maintain exposures within operational limits. In this case, very high exposure levels are possible which could result in observable health effects and even be life threatening. Under these assumptions, potential spacesuit radiation exposures have been studied using known historical solar particle events to gain insight on the usefulness of modification of spacesuit design in which the control of skin exposure is a critical design issue and reduction of blood forming organ exposure is desirable. Transition to a new spacesuit design including soft upper-torso and reconfigured life support hardware gives an opportunity to optimize the next generation spacesuit for reduced potential health effects during an accidental exposure.

  14. Statistical methods in radiation physics

    CERN Document Server

    Turner, James E; Bogard, James S

    2012-01-01

    This statistics textbook, with particular emphasis on radiation protection and dosimetry, deals with statistical solutions to problems inherent in health physics measurements and decision making. The authors begin with a description of our current understanding of the statistical nature of physical processes at the atomic level, including radioactive decay and interactions of radiation with matter. Examples are taken from problems encountered in health physics, and the material is presented such that health physicists and most other nuclear professionals will more readily understand the application of statistical principles in the familiar context of the examples. Problems are presented at the end of each chapter, with solutions to selected problems provided online. In addition, numerous worked examples are included throughout the text.

  15. Development of detection methods for irradiated foods - Detection method for radiolytic products of irradiated foods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyong Su; Kim, Sun Min; Park, Eun Ryong; Lee, Hae Jung; Kim, Eun Ah; Jo, Jung Ok [Chosun University, Kwangju (Korea)

    1999-04-01

    Meat (beef, pork, chicken) and nut (sesame, perilla, black sesame, peanut) were irradiated with /sup 60/Co gamma-ray. A process to detect radiation-induced hydrocarbons and 2-alkylcyclobutanones includes the extraction of fat from meat and nut, separation of hydrocarbons and 2-alkylcyclobutanones with a florisil column and identification of GC/MS methods. Concentrations of the produced hydrocarbons and 2-alkylcyclobutanones tended to increase linearly with the dose levels of irradiation in beef, pork and chicken, while concentrations of radiation-induced hydrocarbons were different individually at the same dose level. In meat, hydrocarbons and 2-alkylcyclobutanones originated from oleic acid were found in a large amount. The concentrations of radiation-induced hydrocarbons were relatively constant during 16 weeks. In nut, hydrocarbons originated from oleic acid and linoleic acid were the major compounds whereas results of perilla was similar to meat. Radiation-induced hydrocarbons were increased linearly with the irradiation dose and remarkably detected at 0.5 kGy and over. 44 refs., 30 figs., 14 tabs. (Author)

  16. Method of radiodiagnosis of radiation pneumonite

    International Nuclear Information System (INIS)

    To increase the accuracy of radiation pneumonite diagnosis in patients with lung cancer prior to, in the process of and after radiation therapy, lung tomography is conducted and the mean optical density of the lung at the level of the tumour centre is determined densitometrically. The method suggested permits to trace the character, course and radiation reaction pronouncement in the affected lung objectively and in dynamics

  17. Radiation detection technique on the fishery foods

    International Nuclear Information System (INIS)

    Recently irradiation of fishery products such as sea bream, lobster etc has been spreading in South-east Asia. It is thus necessary to establish a detection technique for irradiated foods . This study aimed to investigate the effects of irradiation on the production of tyrosine isomers with relation to the status of food sample (frozen and cold-storage) and also the stabilities of the isomers in frozen foods after irradiation. Production of tyrosin isomers (meta-tyrosine, ortho-tyrosine) due to ?-ray irradiation (5 kGy) were observed in the muscles of frozen prawns as well as those at room temperature and the contents of these isomers after the irradiation was not different between the two states of the sample. The content increased depending on the radiation dose. The contents of these tyrosine isomers were not changed after storage at -20degC for 120 days. Therefore, it was thought that the tyrosine isomers were available as an effective indicator for detection of an irradiated food. (M.N.)

  18. Detecting solar chameleons through radiation pressure

    International Nuclear Information System (INIS)

    Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and “fifth force” searches on Earth, one needs to screen them. One possibility is the so-called “chameleon” mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on Earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary results from a force/pressure sensor, currently under development at INFN Trieste, to be mounted in the focal plane of one of the X-Ray telescopes of the CAST experiment at CERN. We show, that such an experiment signifies a pioneering effort probing uncharted chameleon parameter space

  19. Detecting solar chameleons through radiation pressure

    Directory of Open Access Journals (Sweden)

    S. Baum

    2014-12-01

    Full Text Available Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and “fifth force” searches on Earth, one needs to screen them. One possibility is the so-called “chameleon” mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on Earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary results from a force/pressure sensor, currently under development at INFN Trieste, to be mounted in the focal plane of one of the X-Ray telescopes of the CAST experiment at CERN. We show, that such an experiment signifies a pioneering effort probing uncharted chameleon parameter space.

  20. Detecting solar chameleons through radiation pressure

    Energy Technology Data Exchange (ETDEWEB)

    Baum, S., E-mail: sebastian.baum@cern.ch [Uppsala Universitet, Box 516, SE 75120, Uppsala (Sweden); European Organization for Nuclear Research (CERN), Gèneve (Switzerland); Cantatore, G. [Università di Trieste, Via Valerio 2, 34127 Trieste (Italy); INFN Trieste, Padriciano 99, 34149 Trieste (Italy); Hoffmann, D.H.H. [Institut für Kernphysik, TU-Darmstadt, Schlossgartenstr. 9, D-64289 Darmstadt (Germany); Karuza, M. [INFN Trieste, Padriciano 99, 34149 Trieste (Italy); Phys. Dept. and CMNST, University of Rijeka, R. Matejcic 2, Rijeka (Croatia); Semertzidis, Y.K. [Center for Axion and Precision Physics Research (IBS), Daejeon 305-701 (Korea, Republic of); Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Upadhye, A. [Physics Department, University of Wisconsin–Madison, 1150 University Avenue, Madison, WI 53706 (United States); Zioutas, K., E-mail: konstantin.zioutas@cern.ch [European Organization for Nuclear Research (CERN), Gèneve (Switzerland); University of Patras, GR 26504 Patras (Greece)

    2014-12-12

    Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and “fifth force” searches on Earth, one needs to screen them. One possibility is the so-called “chameleon” mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on Earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary results from a force/pressure sensor, currently under development at INFN Trieste, to be mounted in the focal plane of one of the X-Ray telescopes of the CAST experiment at CERN. We show, that such an experiment signifies a pioneering effort probing uncharted chameleon parameter space.

  1. Detecting solar chameleons through radiation pressure

    Science.gov (United States)

    Baum, S.; Cantatore, G.; Hoffmann, D. H. H.; Karuza, M.; Semertzidis, Y. K.; Upadhye, A.; Zioutas, K.

    2014-12-01

    Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and "fifth force" searches on Earth, one needs to screen them. One possibility is the so-called "chameleon" mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on Earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary results from a force/pressure sensor, currently under development at INFN Trieste, to be mounted in the focal plane of one of the X-Ray telescopes of the CAST experiment at CERN. We show, that such an experiment signifies a pioneering effort probing uncharted chameleon parameter space.

  2. Detection methods for irradiated mites and insects

    International Nuclear Information System (INIS)

    Results of the study on the following tests for separation of irradiated pests from untreated ones are reported: (a) test for identification of irradiated mites (Acaridae) based on lack of fecundity of treated females; (b) test for identification of irradiated beetles based on their locomotor activity; (c) test for identification of irradiated pests based on electron spin resonance (ESR) signal derived from treated insects; (d) test for identification of irradiated pests based on changes in the midgut induced by gamma radiation; and (e) test for identification of irradiated pests based on the alterations in total proteins of treated adults. Of these detection methods, only the test based on the pathological changes induced by irradiation in the insect midgut may identify consistently either irradiated larvae or adults. This test is simple and convenient when a rapid processing technique for dehydrating and embedding the midgut is used. (author)

  3. Radiation detection and diagnosis of breast cancer

    International Nuclear Information System (INIS)

    The value of mammography in the symptomatic patient has been adequately documented, but its use as a detection procedure remains a question. Risk-benefit ratios, based primarily upon the study carried out by the Health Insurance Plan of Greater New York, have suggested that the technique has little value in individuals under age 50. Emphasis has been placed upon the possible carcinogenic effects of radiation as compared with the efficacy of mammography and the questionable influence of early diagnosis upon end results. Although technical advances have substantially reduced the exposure of the patient to radiation, the possibility of significant information loss as the result of these developments has been considered a potential drawback to their routine use. All of these factors have served to diminish both public and professional acceptance of the examination. Although current data do not allow complete resolution of these problems, certain conclusions may be drawn and trends established. The sum of these may indicate that minimal dose mammography is an accurate, low-risk procedure, capable of significantly altering the natural history of breast cancer. Whether or not the examination should be routinely used in women under age 50 remains open to question since the lack of experimental controls prohibits validation of the technique in terms of reduced mortality rates. Documentation of increased survival rates may partially assist in the established of a reliable risk-benefit ratio, but will not satisfy the statistical requirements of eliminating lead-bias, and self-selection. These questions may be resolved by studies now underway

  4. Particle detection systems and methods

    Science.gov (United States)

    Morris, Christopher L.; Makela, Mark F.

    2010-05-11

    Techniques, apparatus and systems for detecting particles such as muons and neutrons. In one implementation, a particle detection system employs a plurality of drift cells, which can be for example sealed gas-filled drift tubes, arranged on sides of a volume to be scanned to track incoming and outgoing charged particles, such as cosmic ray-produced muons. The drift cells can include a neutron sensitive medium to enable concurrent counting of neutrons. The system can selectively detect devices or materials, such as iron, lead, gold, uranium, plutonium, and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can concurrently detect any unshielded neutron sources occupying the volume from neutrons emitted therefrom. If necessary, the drift cells can be used to also detect gamma rays. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  5. Detection of food irradiation with luminescence methods

    International Nuclear Information System (INIS)

    Food irradiation is applied as method for the preservation of foods, the prevention of food spoilage and the inhibition of food-borne pathogens. Doses exceeding 10 kGy (10 kJ/kg) are not recommended by the WHO. The different legislation requires methods for the detection and the closimetry of irradiated foods. Among the physical methods based on the radiation-induced changes in inorganic, nonhygroscopic crystalline solids are thermoluminescence (TL), photostimulated luminescence (PSL) and lyoluminescence (LL) measurement. The luminescence methods were tested on natural minerals. Pure quartz, feldspars, calcite, aragonite and dolomite of known origin were irradiated, read out and analyzed to determine the influence of luminescence-activators and deactivators. Carbonate minerals show an orange-red TL easily detectable by blue-sensitive photomultiplier tubes. TIL-inactive carbonate samples may be identified by a lyoluminescence method using the reaction of trapped irradiation-generated charge carriers with the solvent during crystal-lattice breakup. The fine-ground mineral is dissolved in an alkaline complexing agent/chemiluminescence sensitizer/chemiluminescence catalyst (EDTA/luminol/hemin) reagent mixture. The TL and PSL of quartz is too weak to contribute a significant part for the corresponding signals in polymineral dust. Alkali and soda feldspar show intense TL and PSL. The temperature maxima in the TL glow curves allow a clear distinction. PSL does not give this additional information, it suffers from bleaching by ambient light and requires light-protection. Grain disinfestated with low irradiation doses (500 Gy) may not identified by both TL and PSL measurement. The natural TL of feldspar particles may be overlap with the irradiation-induced TL of other minerals. As a routine method, irradiated spices are identified with TL measurement. The dust particles have to be enriched by heavy-liquid flotation and centrifugation. The PSL method allows a clear identification of irradiated spices. The detection of irradiated seafood (mollusks and crustaceans) with TL is only possible for calcitic shells. The EDTA-luminol lyoluminescence is applicable for both calcitic and aragonitic shells, calcitic, amorphous and partially hydroxyapatitic crustacean molts, and poultry bones. The application of chemical methods is much more susceptible to errors.The high-performance liquid chromatography-determination of ortho- and metatyrosine in low-fat poultry and shrimp meat did not allow any positive identification of irradiated samples. (author)

  6. Comparison of Methods for Oscillation Detection

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Trangbæk, Klaus

    2006-01-01

    This paper compares a selection of methods for detecting oscillations in control loops. The methods are tested on measurement data from a coal-fired power plant, where some oscillations are occurring. Emphasis is put on being able to detect oscillations without having a system model and without...... using process knowledge. The tested methods show potential for detecting the oscillations, however, transient components in the signals cause false detections as well, motivating usage of models in order to remove the expected signals behavior....

  7. Study on NBR technology of low-level artificial gamma radiation detection

    International Nuclear Information System (INIS)

    Focus on a new technology called NBR, which is applied to low-level artificial gamma radiation detection. Introduce the basic principle of NBR, and discuss the method of applying this technology in the measurement. Low-level gamma radiation detection with NBR method is capable of differentiating artificial radiation from natural background rapidly. It fits for the discovery and alarm of illicit radioactive material in contra terrorism of nuclear and radiation, and is also applicable to 'orphan source' exploration in emergency response. (authors)

  8. FACE DETECTION USING EIGEN METHOD

    Directory of Open Access Journals (Sweden)

    HASHAAM NAEEM

    2012-03-01

    Full Text Available As continual research is being conducted in the area of computer vision, one of the most practical applications under vigorous development is in the construction of a robust face detection system. While the problem of detecting faces under various variations remains largely unsolved, a demonstration system as proof of concept that such systems are now becoming practical have been developed. A system capable of reliable detection, with reduced constraints in regards to the position and orientation of the face and the illumination and background of the image, has been implemented. Those face detection system is based upon “eigenfaces”, which has been separated into three major modules – pre-processing, construction of face space and face localization. A completely robust real-time face detectionsystem is still under heavy investigation and development, the implemented systems are still serving as an extendable foundation for future research.

  9. Detection of radiation-induced changes in electrochemical properties of austenitic stainless steels using miniaturized specimens and the single-loop electrochemical potentiokinetic reactivation method

    International Nuclear Information System (INIS)

    Single-loop electrochemical potentiokinetic reactivation testing of miniaturized (TEM) specimens can provide reliable data comparable to data obtained with larger specimens. Significant changes in electrochemical properties (increased reactivation current and Flade potential) were detected for PCA and type 316 stainless steels irradiated at 200--420 degrees C up to 7--9 dpa. Irradiations in the FFTF Materials Open Test Assembly and in the Oak Ridge Research Reactor are reported on. 45 figs., 5 tabs., 52 refs

  10. Detection of electromagnetic radiation using micromechanical multiple quantum wells structures

    Science.gov (United States)

    Datskos, Panagiotis G [Knoxville, TN; Rajic, Slobodan [Knoxville, TN; Datskou, Irene [Knoxville, TN

    2007-07-17

    An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well structure, physical stresses are created within the sensor, similar to a "bimetallic effect." The stresses cause the sensor to bend. The extent of deflection of the sensor can be measured through any of a variety of conventional means to provide a measurement of the photons striking the sensor. A large number of such sensors can be arranged in a two-dimensional array to provide imaging capability.

  11. Explosives detection using resonance fluorescence of bremsstrahlung radiation

    International Nuclear Information System (INIS)

    This patent describes a method for detecting explosive materials in a target, the explosive materials containing characteristically large or small amounts of one or more nuclear species of interest. It comprises resonantly exciting nuclei of the target with a beam of bremsstrahlung radiation, resonantly exciting nuclei of one or more reference scatterers with the beam of bremsstrahlung radiation transmitted through the target, each the reference scatterer comprising one or more of the nuclear species of interest, measuring the intensity of photons at energies of interest scattered from each the reference scatterer in a direction or directions, the energies of interest for each reference scatterer corresponding to the spacings between the quantized energy states of the nuclear species of interest of which the reference scatterer is comprised, and estimating the abundance of each nuclear species of interest in the target from the measured intensity of photons scattered from the reference scatterer or scatterers comprising the nuclear species

  12. Detection of radiation treatment of beans using DNA comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Ashfaq A.; Khan, Hasan M. E-mail: hmkhan@upesh.eduhmkhan_pk@yahoo.com; Delincee, Henry

    2002-03-01

    A simple technique of microgel electrophoresis of single cells (DNA Comet Assay) enabled a quick detection of radiation treatment of several kinds of leguminous beans (azuki, black, black eye, mung, pinto, red kidney and white beans). Each variety was exposed to radiation doses of 0.5, 1 and 5 kGy covering the permissible limits for insect disinfestation. The cells or nuclei from beans were extracted in cold PBS, embedded in agarose on microscope slides, lysed between 15 and 60 min in 2.5% SDS and electrophoresis was carried out at a voltage of 2 V/cm for 2-2.5 min. After silver staining, the slides were evaluated through an ordinary transmission microscope. In irradiated samples, fragmented DNA stretched towards the anode and the damaged cells appeared as a comet. The density of DNA in the tails increased with increasing radiation dose. However, in non-irradiated samples, the large molecules of DNA remained relatively intact and there was only minor or no migration of DNA; the cells were round or had very short tails only. Hence, the DNA comet assay provides an inexpensive, rapid and relatively simple screening method for the detection of irradiated beans.

  13. Detection of radiation treatment of beans using DNA comet assay

    Science.gov (United States)

    Khan, Ashfaq A.; Khan, Hasan M.; Delincée, Henry

    2002-03-01

    A simple technique of microgel electrophoresis of single cells (DNA Comet Assay) enabled a quick detection of radiation treatment of several kinds of leguminous beans (azuki, black, black eye, mung, pinto, red kidney and white beans). Each variety was exposed to radiation doses of 0.5, 1 and 5kGy covering the permissible limits for insect disinfestation. The cells or nuclei from beans were extracted in cold PBS, embedded in agarose on microscope slides, lysed between 15 and 60min in 2.5% SDS and electrophoresis was carried out at a voltage of 2V/cm for 2-2.5min. After silver staining, the slides were evaluated through an ordinary transmission microscope. In irradiated samples, fragmented DNA stretched towards the anode and the damaged cells appeared as a comet. The density of DNA in the tails increased with increasing radiation dose. However, in non-irradiated samples, the large molecules of DNA remained relatively intact and there was only minor or no migration of DNA; the cells were round or had very short tails only. Hence, the DNA comet assay provides an inexpensive, rapid and relatively simple screening method for the detection of irradiated beans.

  14. Detection of radiation treatment of beans using DNA comet assay

    International Nuclear Information System (INIS)

    A simple technique of microgel electrophoresis of single cells (DNA Comet Assay) enabled a quick detection of radiation treatment of several kinds of leguminous beans (azuki, black, black eye, mung, pinto, red kidney and white beans). Each variety was exposed to radiation doses of 0.5, 1 and 5 kGy covering the permissible limits for insect disinfestation. The cells or nuclei from beans were extracted in cold PBS, embedded in agarose on microscope slides, lysed between 15 and 60 min in 2.5% SDS and electrophoresis was carried out at a voltage of 2 V/cm for 2-2.5 min. After silver staining, the slides were evaluated through an ordinary transmission microscope. In irradiated samples, fragmented DNA stretched towards the anode and the damaged cells appeared as a comet. The density of DNA in the tails increased with increasing radiation dose. However, in non-irradiated samples, the large molecules of DNA remained relatively intact and there was only minor or no migration of DNA; the cells were round or had very short tails only. Hence, the DNA comet assay provides an inexpensive, rapid and relatively simple screening method for the detection of irradiated beans

  15. Active methods of early forest fire detection

    Science.gov (United States)

    Utkin, Andrei B.; Lavrov, Alexander; Vilar, Rui

    2011-02-01

    A method of automated early fire detection based on the light detection and ranging (lidar) technology is presented. Specific lidar configurations and their application to forest and industrial-environment fire surveillance are discussed.

  16. Ionizing radiation detection by Yb-doped silica optical fibers

    Science.gov (United States)

    De Mattia, Cristina; Veronese, Ivan; Fasoli, Mauro; Chiodini, Norberto; Mones, Eleonora; Cantone, Marie Claire; Cialdi, Simone; Gargano, Marco; Ludwig, Nicola; Bonizzoni, Letizia; Vedda, Anna

    2015-08-01

    Rare earths-doped silica optical fibers have shown promising results for ionizing radiation monitoring, thanks to their radio-luminescence (RL) properties. However, the use of these systems for accurate and precise dosimetric measurements in radiation fields above the Cerenkov energy threshold, like those employed in radiation therapy, is still challenging, since a spurious luminescence, namely the "stem effect," is also generated in the passive fiber portion exposed to radiation. The spurious signal mainly occurs in the UV-VIS region, therefore a dopant emitting in the near infrared may be suitable for an optical discrimination of the stem effect. In this work, the RL and dosimetric properties of Yb-doped silica optical fibers, produced by sol-gel technique, are studied, together with the methods and instruments to achieve an efficient optical detection of the Yb3+ emission, characterized by a sharp line at about 975 nm. The results demonstrate that the RL of Yb3+ is free from any spectral superposition with the spurious luminescence. This aspect, in addition with the suitable linearity, reproducibility, and sensitivity properties of the Yb-doped fibers, paves the way to their use in applications where an efficient stem effect removal is required.

  17. Main Achievements 2003-2004 - Interdisciplinary Research - Radiation detection methods for health, earth and environmental sciences - Natural radioactive elements in the environment

    International Nuclear Information System (INIS)

    Research on natural radioactive elements in the environment has been conducted. The main activities are focused on measurements of isotopes arising from natural radioactive series (especially radon). In 2004, the first two parts of survey within the frame of scientific cooperation between ''Vinca'' Institute and IFJ PAN were completed. Field measurements were carried out in Niska Banja Spa (Serbia and Montenegro). In this region extremely high radon (222Rn) concentrations in soil gas, to above 2 000 kBq/m3., very high values of radon exhalation rates (1,5 Bq/m2s) and radon concentration in water samples (> 500 Bq/l) were observed. Indoor radon concentrations in some houses exceeded 10 kBq/m3. A special model and computer code were developed for calculating and visualising radon distribution and its migration into houses (PhD thesis). At the Radon Study Field located in IFJ PAN, the influence of different parameters on the radon exhalation process are studied and changes of radon concentration in soil are investigated. The natural radiation level plays an important role in low background gamma spectroscopy. Long-term measurements of the gamma background level are being performed and their changes (e.g., post-Chernobyl or solar activity induced) studied

  18. Crystallization method employing microwave radiation

    International Nuclear Information System (INIS)

    This invention relates to a method of crystallizing materials from aqueous crystallization media. Zeolite materials, both natural and synthetic, have been demonstrated in the past to have catalytic properties for various types of hydrocarbon conversion. Certain zeolitic materials are ordered, porous crystalline metallosilicates having a definite crystalline structure as determined by X-ray diffraction within which there are a number of smaller cavities which may be interconnected by a number of still smaller channels or pores. These cavities and pores are uniform in size within a specific zeolite material. Since the dimensions of these pores are such as to accept for adsorption molecules of certain dimensions while rejecting those of large dimensions, these materials have come to be known as molecular sieves and are utilized in a variety of ways to take advantage of these properties. (author). 3 tabs

  19. Measuring methods for whole beta radiations

    International Nuclear Information System (INIS)

    It is necessary to know rapidly the outline information on environmental radiation depending on the conditions of releasing radioactive material into environment or the purposes of measuring them. Whole beta radiation measurement is used for this purpose. In other words, though nuclides are not identified, approximate radioactive decay is determined. The factors affecting the results of the whole beta radiation measurement include the proportion of beta emission of samples, continuity of energy spectra of beta ray, selection of calibration sources, selection and characteristics of measuring instruments, and self absorption by the samples. The maximum disturbance for detecting artificial radiations is the contribution of natural radioactivity contained in samples, though a part of the above factors is improved by correction. Since estimation of the disturbance so far involved comparatively large error, the whole beta radiation is expressed in a form of including the contribution of natural radioactivity. Though there are many factors for making the results uncertain, the whole beta radiation measurement offers still useful result. However, it is not suitable in case of soft ? nuclides such as tritium and 14C are dominant. The contents are divided into nine chapters including introduction, measurement criteria, rain and dust, sea water, land water, crops, milk, soil and sea bottom sediments, and marine organisms. This manual is the revised third edition, and the revised parts are summarized in appendix 1. (Wakatsuki, Y.)

  20. Rapid methods for detection of bacteria

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Andersen, B.Ø.; Miller, M.; Ursin, C.; Arvin, Erik; Albrechtsen, Hans-Jørgen

    Traditional methods for detection of bacteria in drinking water e.g. Heterotrophic Plate Counts (HPC) or Most Probable Number (MNP) take 48-72 hours to give the result. New rapid methods for detection of bacteria are needed to protect the consumers against contaminations. Two rapid methods...

  1. Detection of faults using a nuclear method

    International Nuclear Information System (INIS)

    A new method of fault trace detection employs a combination of ground radon analysis (low values extractable from fault gouge), and gamma rays detected by a portable NaI(Tl) detector attached to a multichannel analyzer in which the K-40 and Rn-220 daughters are detected in high amount in fault gouge. 15 m analysis time is required for each station. The method is superior to methods using gamma-ray analysis alone

  2. Physical problems in measuring the blood flow through organs by means of inhalation of noble gases with special regard to three-dimensional methods of radiation detection

    International Nuclear Information System (INIS)

    The paper gives a survey of the current indirect methods of blood flow measurement with the aid of radioactive isotopes. Liver, spleen, and kidneys were investigated in order to find out whether noble gas washout may also be carried out by inhalation and external measurement alone, which do not involve any disconfort to the patient. Compartment models were established for different organs, and the conditions of measurement chosen were such that the parameters of blood flow could be determined unambiguously. The problems encountered in liver blood flow determination are mainly due to the human anatomy. The complicated blood flow pattern makes the use of freely diffusible tracers advisable, especially in pathological cases. The values measured in normal livers using the inhalation method are consistent with the values obtained by other direct and indirect methods. In pathological cases, further information is required concerning the fat content of the liver. This information can be provided by means of a biopsy or indirectly by a double Xe/Kr measurement. Up to a fat content of 10% of the moist weight, the error in the blood flow values measured is < 20%. 3-dimensional measurements with ?-?-coincidences will help to eliminate possible sources of errors such as superimposed tissues and to shorten the time of measurement. The first in-vivo measurements carried out in the liver are presented. The inhalation method will not lead to better regional differentiation, since the tissue can only be enriched with low activity concentrations. For establishing general quantitative mean values, however, it is the ideal method owing to its reasonableness, absence of trauma, to the fact that it can be repeated after a short interval, and to its independence of the intact function of the organ. (orig./HP)

  3. Terahertz and Mid Infrared Radiation Generation, Detection and Applications

    CERN Document Server

    Pereira, Mauro F

    2011-01-01

    Terahertz (THz) and Mid-Infrared (MIR) radiation  (TERA-MIR) can be transmitted through nearly any material without causing biological harm. Novel and rapid methods of detection can be created with devices operation in these spectral ranges allowing scanning for weapons, detecting hidden explosives (including plastic landmines), controlling the quality of food and a host of other exciting applications.  This book focuses on mathematical and physical aspects of the field, on unifying these two spectral domains (THz and MIR) with regard to common sources, detectors, materials and applications, and on key interdisciplinary topics. The main THz and MIR source is the quantum cascade laser (QCL). Thus significant attention is paid to the challenge of turning this advanced technology into affordable commercial devices so as to exploit its enormous potential. However other alternatives to THz QCLs are also presented, e.g.  sub-terahertz imaging from avalanching GaAs bipolar transistors, Josephson junctions as THz ...

  4. Approximation methods in gravitational-radiation theory

    Science.gov (United States)

    Will, C. M.

    1986-01-01

    The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. Recent developments are summarized in two areas in which approximations are important: (a) the quadrupole approxiamtion, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.

  5. Neutronics methods for thermal radiative transfer

    International Nuclear Information System (INIS)

    The equations of thermal radiative transfer are time discretized in a semi-implicit manner, yielding a linear transport problem for each time step. The governing equation in this problem has the form of a neutron transport equation with fission but no scattering. Numerical methods are described, whose origins lie in neutron transport, and that have been successfully adapted to this new problem. Acceleration methods that have been developed specifically for the radiative transfer problem, but may have generalizations applicable in neutronics problems, are also discussed

  6. An image analysis technique for detection of radiation-induced DNA fragmentation after CHEF electrophoresis

    International Nuclear Information System (INIS)

    CHEF-electrophoresis was used as a technique to detect radiation-induced DNA breakage with special emphasis to biological relevant X-ray doses (0-10 Gy). Fluorescence detection of DNA-fragments using a sensitive image analysis system was directly compared with conventional scintillation counting of 3H-thymidine prelabelled DNA in HeLa S3 cells. It is shown that the image analysis-based fluorescence detection of fragmented DNA after ionizing radiation is as sensitive and reproducible as detection using radioactively prelabelled cells without the putative shortcomings of fluorescence detection methods described earlier (Blocher and Kuhni 1990). Therefore, the image analysis-based detection of radiation-induced DNA fragmentation after CHEF electrophoresis seems to be the most reliable method for applications to non-cycling cells and biopsy material. (Author)

  7. Investigation of detection technique of irradiated food. Detection of irradiated food by TL method

    International Nuclear Information System (INIS)

    Thermo luminescence (TL) method, one of detection method of irradiated food, was applied to black pepper. The inorganic substances such as dust, sand and soil adhered to food can capture irradiation energy and emit it by heat as luminescence. Black pepper of Turkey and Malaysia were irradiated 0.5-10KGy dose from 60Co radiation source. Although different TL emission curves were observed by the place of production and the particle size of inorganic substance adhered, the strength of emission was constant for a long time. The results proved that this method was a good detection method for irradiated food adhered inorganic substances. (S.Y.)

  8. FY2008 Report on GADRAS Radiation Transport Methods.

    Energy Technology Data Exchange (ETDEWEB)

    Mattingly, John K.; Mitchell, Dean James; Harding, Lee; Varley, Eric S.; Hilton, Nathan R. [Sandia National Laboratories, Livermore, CA

    2008-10-01

    The primary function of the Gamma Detector Response and Analysis Software (GADRAS) is the solution of inverse radiation transport problems, by which the con-figuration of an unknown radiation source is inferred from one or more measured radia-tion signatures. GADRAS was originally developed for the analysis of gamma spec-trometry measurements. During fiscal years 2007 and 2008, GADRAS was augmented to implement the simultaneous analysis of neutron multiplicity measurements. This report describes the radiation transport methods developed to implement this new capability. This work was performed at the direction of the National Nuclear Security Administration's Office of Nonproliferation Research and Development. It was executed as an element of the Proliferation Detection Program's Simulation, Algorithm, and Modeling element. Acronyms BNL Brookhaven National Laboratory CSD Continuous Slowing-Down DU depleted uranium ENSDF Evaluated Nuclear Structure Data Files GADRAS Gamma Detector Response and Analysis Software HEU highly enriched uranium LANL Los Alamos National Laboratory LLNL Lawrence Livermore National Laboratory NA-22 Office of Nonproliferation Research and Development NNDC National Nuclear Data Center NNSA National Nuclear Security Administration ODE ordinary differential equation ONEDANT One-dimensional diffusion accelerated neutral particle transport ORNL Oak Ridge National Laboratory PARTISN Parallel time-dependent SN PDP Proliferation Detection Program RADSAT Radiation Scenario Analysis Toolkit RSICC Radiation Safety Information Computational Center SAM Simulation, Algorithms, and Modeling SNL Sandia National Laboratories SNM special nuclear material ToRI Table of Radioactive Isotopes URI uniform resource identifier XML Extensible Markup Language

  9. A Fault Detection Method for Reversible Circuits

    OpenAIRE

    Maryam Barshan; Somayeh Bahramnejad; Zeinab Kalantary

    2011-01-01

    This paper represents a redundancy based mechanism for fault detection in reversiblecircuits. In this method reversible circuit has been duplicated for fault detection. This duplication isbased on self complementary feature of reversible circuits. We have used a fully redundant circuitand a comparator for the purpose fault detection. In order to analyze the proposed method, singleand double faults have been investigated in the following four cases: fault tolerant comparator andsingle fault, n...

  10. Robust statistical methods for automated outlier detection

    Science.gov (United States)

    Jee, J. R.

    1987-01-01

    The computational challenge of automating outlier, or blunder point, detection in radio metric data requires the use of nonstandard statistical methods because the outliers have a deleterious effect on standard least squares methods. The particular nonstandard methods most applicable to the task are the robust statistical techniques that have undergone intense development since the 1960s. These new methods are by design more resistant to the effects of outliers than standard methods. Because the topic may be unfamiliar, a brief introduction to the philosophy and methods of robust statistics is presented. Then the application of these methods to the automated outlier detection problem is detailed for some specific examples encountered in practice.

  11. Detection of irradiated pulses by PSL method

    International Nuclear Information System (INIS)

    Photostimulated luminescence (PSL) as a screening method is very simple and rapid to detect irradiated foods but various disadvantages (light induced fading of PSL signal or response to clean foods with minerals insensitive to PSL measurement). In this study the characteristics of radiation induced PSL for 10 kinds of pulses (Chinese Soybean and Adzuki bean, Pinto bean, Cowpea, Green gram, Canadian Blue pea and Soybean, American Black-eyed pea and Chickpea, Red Kidney Bean) were investigated. The screening-PSL (s-PSL) cumulate counts of pulses significantly increased with irradiation dose up to 3 kGy. The s-PSL cumulate counts of irradiated pulses gradually decreased with increasing storage periods. The s-PSL cumulate counts of all pulse samples irradiated at a minimum dose of 0.5kGy exceeded considerably the upper screening threshold (5000 counts) regardless of storage period. Calibrated PSL (Cal-PSL) were obtained by re-irradiating the pulse samples with a gamma ray dose of 1 kGy and the PSL ratios (s-PSL/Cal-PSL) were calculated for normalization of sensitivity of the pulse samples. The PSL ratio at each irradiation dose was almost similar regardless of kind of pulses. (author)

  12. Detection of the strange bodies on the conveyor belt using gamma radiation technique

    International Nuclear Information System (INIS)

    The aim of this paper is to present a method for the computation of the activity of a gamma radiation source used in a radiometric assembly designed to detect the strange bodies (iron, stone or wood-made granules) within the textile material on the conveyor belt. The mathematical modelling method based on the Monte Carlo procedure has been used, with different values of the errors of types I and II; the investigation method is the transmission of gamma radiations. (Author)

  13. Geometric phase shift for detection of gravitational radiation

    OpenAIRE

    Mitskievich, N. V.; Nesterov, A. I.

    2004-01-01

    An effect of geometrical phase shift is predicted for a light beam propagating in the field of a gravitational wave. Gravitational radiation detection experiments are proposed using this new effect, the corresponding estimates being given.

  14. Control volume finite element method for radiation

    International Nuclear Information System (INIS)

    In this paper a new methodology is presented by the authors for the numerical treatment of radiative heat transfer in emitting, absorbing and scattering media. This methodology is based on the utilisation of Control Volume Finite Element Method (CVFEM) and the use, for the first time, of matrix formulation of the discretized Radiative Transfer Equation (RTE). The advantages of the proposed methodology is to avoid problems that confronted when previous techniques are used to predict radiative heat transfer, essentially, in complex geometries and when there is scattering and/or non-black boundaries surfaces. Besides, the new formulation of the discretized RTE presented in this paper makes it possible to solve the algebraic system by direct or iterative numerical methods. The theoretical background of CVFEM and matrix formulation is presented in the text. The proposed technique is applied to different test problems, and the results compared favourably against other published works. Moreover this paper discusses in detail the effects of some radiative parameters, such as optical thickness and walls emissivities on the spatial evolution of the radiant heat flux. The numerical simulation of radiative heat transfer for different cases using the algorithm proposed in this work has shown that the developed computer procedure needs an accurate CPU time and is exempt of any numerical oscillations

  15. Method of detecting sulfur dioxide

    Science.gov (United States)

    Spicer, Leonard D. (Salt Lake City, UT); Bennett, Dennis W. (Clemson, SC); Davis, Jon F. (Salt Lake City, UT)

    1985-01-01

    (CH.sub.3).sub.3 SiNSO is produced by the reaction of ((CH.sub.3).sub.3 Si).sub.2 NH with SO.sub.2. Also produced in the reaction are ((CH.sub.3).sub.3 Si).sub.2 O and a new solid compound [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ]. Both (CH.sub.3).sub.3 SiNSO and [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] have fluorescent properties. The reaction of the subject invention is used in a method of measuring the concentration of SO.sub.2 pollutants in gases. By the method, a sample of gas is bubbled through a solution of ((CH.sub.3).sub.3 Si).sub.2 NH, whereby any SO.sub.2 present in the gas will react to produce the two fluorescent products. The measured fluorescence of these products can then be used to calculate the concentration of SO.sub.2 in the original gas sample. The solid product [NH.sub.4][(CH.sub.3).sub.3 SiOSO.sub.2 ] may be used as a standard in solid state NMR spectroscopy.

  16. Statistical Studies on Sequential Probability Ratio Test for Radiation Detection

    International Nuclear Information System (INIS)

    A Sequential Probability Ratio Test (SPRT) algorithm helps to increase the reliability and speed of radiation detection. This algorithm is further improved to reduce spatial gap and false alarm. SPRT, using Last-in-First-Elected-Last-Out (LIFELO) technique, reduces the error between the radiation measured and resultant alarm. Statistical analysis determines the reduction of spatial error and false alarm

  17. Small Teleoperated Robot for Nuclear Radiation and Chemical Leak Detection

    OpenAIRE

    Kui Qian; Aiguo Song; Jiatong Bao; Huatao Zhang

    2012-01-01

    In order to meet the actual requirements of nuclear radiation and chemical leak detection, and emergency response, a new small teleoperated robot for nuclear radiation and chemical detection is proposed. A small?size robot is manufactured according to technical requirements and the overall structure and control system is described. Meanwhile, based on the principles of human?robot interaction, a user?friendly human?robot interaction interface is designed to provide a good telepresence for the...

  18. Apparatus complex for pulse infrared radiation detection

    International Nuclear Information System (INIS)

    Apparatus complex, where het4erogeneous carrier (HC) on the basis of thermoplast with magnetic particle layer used as sensitivity clement to record plasma infrared pulse radiation and productio process of the carrier are described. Main sensitometrical parameters of heterogeneous carrier are as follows: sensitivity-2x10-2 J/cm2; dynamic range - 3; photographic width - 1.4; resolution - 50 mm-1. It is shown, that application of HC as sensitive element of the apparatus to record pulse radiation 2ill allow to solve problems of recording of fast-occurring processes within infrared range of wave lengthes

  19. Ensemble approaches for improving community detection methods

    OpenAIRE

    Dahlin, Johan; Svenson, Pontus

    2013-01-01

    Statistical estimates can often be improved by fusion of data from several different sources. One example is so-called ensemble methods which have been successfully applied in areas such as machine learning for classification and clustering. In this paper, we present an ensemble method to improve community detection by aggregating the information found in an ensemble of community structures. This ensemble can found by re-sampling methods, multiple runs of a stochastic community detection meth...

  20. Methods for estimating solar radiation under canopy

    International Nuclear Information System (INIS)

    The life of vegetation under a woodland canopy is greatly influenced by the quantity and the quality of solar radiation reaching the forest floor. A method was developed to estimate the distribution of solar radiation under canopy throughout the year. This paper describes in detail a technique for interpreting canopy picture taken with a fisheye lens. Through a scanner for digitazing the photographs and a personal computer for their interpretation accurate readings have been obtained at a low cost. The results show the mean monthly sunnines and the length and intensity of each sunflecks throughout the year for each site where a picture is taken; the values are calculated considering every single opening in the canopy, as visible from the site. The paper also describes the application of tridimensional models of the canopy to estimate the same radiation parameters for any site within the forest

  1. Visualization of radiation dose by bioanalytical methods

    International Nuclear Information System (INIS)

    The quantitative evaluation of 'invisible' radiation exposure is essential to predict health effects and to provide appropriate medical care and evaluation concerning the prognosis of exposed persons. Because it is usually difficult to carry out physical dose measurements by dosimeters in the case of unexpected radiation exposure during accidents or disasters, post hoc dose evaluations using biological specimen of exposed people, called 'biological dosimetry', is indispensable. Although many dose evaluation methods have been developed up to now, the cytogenetic method used to measure the chromosomal aberration frequency of lymphocytes is frequently used as the gold standard from the perspective of accuracy. In addition to that, in this manuscript several applicable dose evaluation methods using biological specimens, such as red blood cells, teeth, nucleic acids and small metabolites, are described and discussed. (author)

  2. Developing methods for detecting radioactive scrap

    International Nuclear Information System (INIS)

    During the last 10 years, there have been major developments in radiation detection systems used for catching shielded radioactive sources in scrap metal. The original testing required to determine the extent of the problem and the preliminary designs of the first instruments will be discussed. Present systems available today will be described listing their advantages and disadvantages. In conclusion, the newest developments and state of the art equipment will also be included describing the limits and most appropriate locations for the systems

  3. Einstein as armchair detective: The case of stimulated radiation

    CERN Document Server

    Natarajan, Vasant

    2013-01-01

    Einstein was in many ways like a detective on a mystery trail, though in his case he was on the trail of nature's mysteries and not some murder mystery! And like all good detectives he had a style. It consisted of taking facts that he knew were correct and forcing nature into a situation that would contradict this established truth. In this process she would be forced to reveal some new truths. Einstein's 1917 paper on the quantum theory of radiation is a classic example of this style and enabled him to predict the existence of stimulated radiation starting from an analysis of thermodynamic equilibrium between matter and radiation.

  4. Detection of charged-particle ionising radiation

    International Nuclear Information System (INIS)

    The use of plastic track detectors in teaching institutions is discussed. The fundamentals of track detection are described and studies that may be performed within the confines of a modestly equipped laboratory are discussed and illustrated. (author)

  5. Improved GLR method to instrument failure detection

    International Nuclear Information System (INIS)

    The generalized likehood radio(GLR) method performs statistical tests on the innovations sequence of a Kalman-Buchy filter state estimator for system failure detection and its identification. However, the major drawback of the convensional GLR is to hypothesize particular failure type in each case. In this paper, a method to solve this drawback is proposed. The improved GLR method is applied to a PWR pressurizer and gives successful results in detection and identification of any failure. Furthmore, some benefit on the processing time per each cycle of failure detection and its identification can be accompanied. (Author)

  6. Biological indicators for detection of radiation exposure

    International Nuclear Information System (INIS)

    The following research results are reported: Low radiation doses induce a temporary and acute cellular reaction which reduces the TdR-kinase activity in the bone marrow cells of the mouse to a value of about 65% of normal activity. This reaction is coupled with an excitation of the radical detoxification system which leads to an increase in the intracellular concentration of free glutathion. This protection from radicals becomes evident through the radiation resistance of the TdR-K which, after low-dose pre-treatment, develops over a period of a few hours and decays after about ten hours. Any analysis of tissue damage has to take into account the fact that the low-dose induced, potential cellular damage has to be put into relation to the effects in those cells who have undergone the reaction enhancing the radical detoxification. When evaluating the tissue net effect in the low-dose radiation range, one therefore has to take into account the possibility of prevailing biopositive effects. (orig./MG)

  7. Molecular methods for pathogen detection and quantification

    Science.gov (United States)

    Ongoing interest in convenient, inexpensive, fast, sensitive and accurate techniques for detecting and/or quantifying the presence of soybean pathogens has resulted in increased usage of molecular tools. The method of extracting a molecular target (usually DNA or RNA) for detection depends wholly up...

  8. TROL - Solving the underwater radiation detection enigma

    International Nuclear Information System (INIS)

    Designed by Fathoms in consultation with UKAEA, Dounreay, to detect buried radiological particles in ground 50m below the sea surface, TROL (Tracked Remote Offshore Logging) is the world's first tracked robotic system capable of delivering gamma spectroscopy in real-time, the genesis of which developed from Fathoms diving and undersea systems technology. This short article examines how an integrated approach to science and technology can be managed through quality processes to deliver superior solutions. The tracked ROV (Remote Operated Vehicle) is designed specifically to meet the challenging demands of real-time subsea particle detection. Positioning of the vehicle by the ultra-short baseline acoustic system was integrated with the surface support vessel's differential GPS navigation system to produce accurate positions of detected particles. (author)

  9. Novelty and change detection radiation physics experiments

    OpenAIRE

    Jabor, Abbas

    2007-01-01

    This thesis deals with the detection and analysis of low-level natural and induced radioactivity. Using high energy-resolution Ge detectors in low-level counting areas airborne radioactivity’s like Be-7 and Cs-137 have been investigated. The experimental facilities and techniques are described in some detail. One of the aims in this work is the studying of change detection in the amount of the activity received on the earth from events that happen at the solar system. Information about this i...

  10. Automated Methods for Multiplexed Pathogen Detection

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Dockendorff, Brian P.; Quinonez-Diaz, Maria D.; Valdez, Catherine O.; Shutthanandan, Janani I.; Tarasevich, Barbara J.; Grate, Jay W.; Bruckner-Lea, Cindy J.

    2005-09-01

    Detection of pathogenic microorganisms in environmental samples is a difficult process. Concentration of the organisms of interest also co-concentrates inhibitors of many end-point detection methods, notably, nucleic acid methods. In addition, sensitive, highly multiplexed pathogen detection continues to be problematic. The primary function of the BEADS (Biodetection Enabling Analyte Delivery System) platform is the automated concentration and purification of target analytes from interfering substances, often present in these samples, via a renewable surface column. In one version of BEADS, automated immunomagnetic separation (IMS) is used to separate cells from their samples. Captured cells are transferred to a flow-through thermal cycler where PCR, using labeled primers, is performed. PCR products are then detected by hybridization to a DNA suspension array. In another version of BEADS, cell lysis is performed, and community RNA is purified and directly labeled. Multiplexed detection is accomplished by direct hybridization of the RNA to a planar microarray. The integrated IMS/PCR version of BEADS can successfully purify and amplify 10 E. coli O157:H7 cells from river water samples. Multiplexed PCR assays for the simultaneous detection of E. coli O157:H7, Salmonella, and Shigella on bead suspension arrays was demonstrated for the detection of as few as 100 cells for each organism. Results for the RNA version of BEADS are also showing promising results. Automation yields highly purified RNA, suitable for multiplexed detection on microarrays, with microarray detection specificity equivalent to PCR. Both versions of the BEADS platform show great promise for automated pathogen detection from environmental samples. Highly multiplexed pathogen detection using PCR continues to be problematic, but may be required for trace detection in large volume samples. The RNA approach solves the issues of highly multiplexed PCR and provides ''live vs. dead'' capabilities. However, sensitivity of the method will need to be improved for RNA analysis to replace PCR.

  11. Application of Terahertz Radiation to the Detection of Corrosion under the Shuttle's Thermal Protection System

    Science.gov (United States)

    Madaras, Eric I.; Anastasi, Robert F.; Smith, Stephen W.; Seebo, Jeffrey P.; Walker, James L.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2007-01-01

    There is currently no method for detecting corrosion under Shuttle tiles except for the expensive process of tile removal and replacement; hence NASA is investigating new NDE methods for detecting hidden corrosion. Time domain terahertz radiation has been applied to corrosion detection under tiles in samples ranging from small lab samples to a Shuttle with positive results. Terahertz imaging methods have been able to detect corrosion at thicknesses of 5 mils or greater under 1" thick Shuttle tiles and 7-12 mils or greater under 2" thick Shuttle tiles.

  12. Smart Surfaces: New Coatings & Paints with Radiation Detection Functionality

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Choi, J

    2007-03-12

    Paints are being developed and tested that might ultimately be able to detect radiological agents in the environment by incorporating special pigments into an organic polymeric binder that can be applied as a paint or coatings. These paints detect radioactive sources and contaminants with inorganic or organic scintillation or thermo-luminescent pigments, which are selected based upon the radiation ({alpha}, {beta}, {gamma} or n) to be detected, and are shown in Figure 1.

  13. Detection of CO2 laser radiation in a ferrite

    Science.gov (United States)

    Haroyan, H.; Makaryan, A.; Movsisyan, K.; Nazari, Farokh; Tadevosyan, V.; Julfayan, H.

    2016-01-01

    The detection of plane polarized, amplitude modulated radiation of CO2 laser (? ? 10 µm) in a transparent ferrite at room temperature is experimentally performed. It is shown that the detected signal is observed when the magnetization of the ferrite reaches the saturation value. The dependence of detected signal parameters on the external magnetic field is well correlated with the magnetization curve of the ferrite sample.

  14. Single electron detection and spectroscopy via relativistic cyclotron radiation

    CERN Document Server

    Asner, D M; de Viveiros, L; Doe, P J; Fernandes, J L; Fertl, M; Finn, E C; Formaggio, J A; Furse, D; Jones, A M; Kofron, J N; LaRoque, B H; Leber, M; McBride, E L; Miller, M L; Mohanmurthy, P; Monreal, B; Oblath, N S; Robertson, R G H; Rosenberg, L J; Rybka, G; Rysewyk, D; Sternberg, M G; Tedeschi, J R; Thummler, T; VanDevender, B A; Woods, N L

    2014-01-01

    It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spec- trometer. We observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta elec- tron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta sp...

  15. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Asner, David M.; Bradley, Rich; De Viveiros Souza Filho, Luiz A.; Doe, Peter J.; Fernandes, Justin L.; Fertl, M.; Finn, Erin C.; Formaggio, Joseph; Furse, Daniel L.; Jones, Anthony M.; Kofron, Jared N.; LaRoque, Benjamin; Leber, Michelle; MCBride, Lisa; Miller, M. L.; Mohanmurthy, Prajwal T.; Monreal, Ben; Oblath, Noah S.; Robertson, R. G. H.; Rosenberg, Leslie; Rybka, Gray; Rysewyk, Devyn M.; Sternberg, Michael G.; Tedeschi, Jonathan R.; Thummler, Thomas; VanDevender, Brent A.; Woods, N. L.

    2015-04-01

    It has been understood since 1897 that accelerating charges should emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spectrometer. We observe the cyclotron radiation emitted by individual electrons that are produced with mildly-relativistic energies by a gaseous radioactive source and are magnetically trapped. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work is a proof-of-concept for future neutrino mass experiments using this technique.

  16. Radiation information recording and reading method and device

    International Nuclear Information System (INIS)

    Radiation rays transmitting object or radiation rays emitted from a material to be tested are irradiated to a radiation information recording medium containing a material which forms a color center by irradiation of radiation rays by coloring the recording medium to record radiation information. Further, a light having a wavelength within a range of the absorption region owned by the color center is irradiated, to read radiation information by optoelectrically detecting the light reflected from the recording medium. Although the reading speed (image forming speed) is limited by a time constant of the light detector, remarkable improvement of image forming speed can be attained compared with a conventional method which utilizes photoluminescence of a photoluminescent material. Further, it can be utilized irrespective of the amount of photoluminescence or photoluminescent response characteristics. In addition, laser beams had to be taken into consideration in the prior art but it is no more necessary to separate the reading laser beams and reflecting lights, thereby enabling to simplify the device. (N.H.)

  17. Radionuclide detection devices and associated methods

    Science.gov (United States)

    Mann, Nicholas R. (Rigby, ID); Lister, Tedd E. (Idaho Falls, ID); Tranter, Troy J. (Idaho Falls, ID)

    2011-03-08

    Radionuclide detection devices comprise a fluid cell comprising a flow channel for a fluid stream. A radionuclide collector is positioned within the flow channel and configured to concentrate one or more radionuclides from the fluid stream onto at least a portion of the radionuclide collector. A scintillator for generating scintillation pulses responsive to an occurrence of a decay event is positioned proximate at least a portion of the radionuclide collector and adjacent to a detection system for detecting the scintillation pulses. Methods of selectively detecting a radionuclide are also provided.

  18. Radiation analysis devices, radiation analysis methods, and articles of manufacture

    Science.gov (United States)

    Roybal, Lyle Gene

    2010-06-08

    Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.

  19. Radiation shielding fiber and its manufacturing method

    International Nuclear Information System (INIS)

    Purpose: To manufacture radiation shielding fibers of excellent shielding effects. Method: Fibers containing more than 1 mmol/g of carboxyl groups are bonded with heavy metals, or they are impregnated with an aqueous solution containing water-soluble heavy metal salts dissolved therein. Fibers as the substrate may be any of forms such as short fibers, long fibers, fiber tows, webs, threads, knitting or woven products, non-woven fabrics, etc. It is however necessary that fibers contain more than 1 mmol/g, preferably, from 2 to 7 mmol/g of carboxylic groups. Since heavy metals having radiation shielding performance are bonded to the outer layer of the fibers and the inherent performance of the fibers per se is possessed, excellent radiation shielding performance can be obtained, as well as they can be applied with spinning, knitting or weaving, stitching, etc. thus can be used for secondary fiber products such as clothings, caps, masks, curtains, carpets, cloths, etc. for use in radiation shieldings. (Kamimura, M.)

  20. Development of landmine detection system by using backscattering neutron method

    International Nuclear Information System (INIS)

    Metal detector could not detect many kinds of Anti-Personal landmines which consist of plastic and explosive materials, for example TNT, RDX, etc, hence nuclear radiation detector, namely the gamma rays and neutron detectors, is prospect to be applied. One nuclear method for determining the landmine is measuring the backscattering neutron. The concept of radiation detection is detecting bulk material landmine which contains hydrogen, nitrogen, oxygen, and/or carbon by irradiating the soil with neutrons and detecting the gamma rays and neutron radiation that appears on the soil surface as a result from neutron-soil/target interaction. The development of landmine detection system has been proposed by using thermal backscattering neutron method. However, some difficulties are caused by the complexity of conditions, for example humidity, soil contents, density of each material of landmines and others. The purpose of this study is to setup a detection system with high efficiency for detecting the landmine by utilizing backscattering neutron method. Previously, the landmine detection experiment has been based on measuring the difference in the total counts of neutron in two cases, which are with and without melamine target. Nevertheless, a detection problem still remains in the case of deeply location target to the surface and humid cases due to the domination of hydrogen effect. In the present work, in order to detect as efficient as possible the existence of landmine inside the soil, two methods are applied simultaneously. First, the total counts measurements are performed, and then the determination of epithermal and fast backscattering neutrons effect is measured by using the 3He detector with Cadmium covered. In order to obtain the dominant effect of hydrogen in all energy ranges, the total neutron count will be conducted firstly. The total neutron counts measurement is suitable when higher content hydrogen exist in the landmines rather than in the soil. The detection of carbon and nitrogen is also proposed to enhance the efficiency of the measurement based on its high elastic cross section. Therefore, the Monte Carlo simulation is performed to study the effect of C, N and H of the melamine when using targets such as C3H6N6, C3N6 and hydrogen. (author)

  1. Ambiguity Detection Methods in Context Free Grammar

    Directory of Open Access Journals (Sweden)

    Sundus Shaukat

    2014-06-01

    Full Text Available Problem arising in CFG (Context Free Grammar due to ambiguity can be trace to 1962. Even now there is no general method or procedure introduced to detect ambiguity in CFG. In parser generation and in language design, ambiguity in context free grammar, is a frequent problem as well as in application where it is used for the representation of physical structure. For creating a language it should be necessary that it is unambiguous. Ambiguity has some advantages as well as disadvantages. The aim of this study is to analyze different methods dealing with the ambiguity detection in Context Free Grammars. In this study, we will observe usefulness of Ambiguity Detection Method (ADM in CFG with respect to ambiguity detection, assurance of termination of the process and accuracy.

  2. Metagenomic Detection Methods in Biopreparedness Outbreak Scenarios

    DEFF Research Database (Denmark)

    Karlsson, Oskar Erik; Hansen, Trine; Knutsson, Rickard; Löfström, Charlotta; Granberg, Fredrik; Berg, Mikael

    2013-01-01

    , early detection and response are important in order to minimize the consequences. During the past 2 decades, advances in next-generation sequencing (NGS) technology have changed the playing field of molecular methods. Today, it is within reach to completely sequence the total microbiological content of...... debate, gaps in research, and future directions. Examples of metagenomic detection, as well as possible applications of the methods, are described in various biopreparedness outbreak scenarios.......In the field of diagnostic microbiology, rapid molecular methods are critically important for detecting pathogens. With rapid and accurate detection, preventive measures can be put in place early, thereby preventing loss of life and further spread of a disease. From a preparedness perspective...

  3. Radiation methods in research of ancient monuments

    International Nuclear Information System (INIS)

    A 'Laboratory of Quantitative Methods in Monument Research' is being built at the CTU Prague. Its primary orientation is the investigation of historic architecture, although other objects of art can also be investigated. In the first phase, two radiation methods are being established, but it is set up in such a way, that various other methods can readily be added in its future development. The radiation methods chosen for the initial development of the laboratory are: thermoluminescence dating and X-ray fluorescence analysis. The design of the automated TL-reader, built in our laboratories, is adjusted for the purpose of dating of historic brick architecture (which, of course, does not exclude applications for ceramics and other materials). The investigation of renaissance architecture in southern Bohemia and Moravia is under preparation as the first large campaign of this kind in the Czech Republic. Radionuclide X-ray fluorescence analysis has been chosen as the basic analytical method in the laboratory. The possibility of analyses of paintings and fired building materials (bricks, roof tiles) have been investigated. The first results in both the areas are very promising

  4. Radiation methods in research of ancient monuments

    Energy Technology Data Exchange (ETDEWEB)

    Cechak, T.; Gerndt, J.; Kubelik, M.; Musilek, L. E-mail: musilek@br.fjfi.cvut.cz; Pavlik, Milan

    2000-11-15

    A 'Laboratory of Quantitative Methods in Monument Research' is being built at the CTU Prague. Its primary orientation is the investigation of historic architecture, although other objects of art can also be investigated. In the first phase, two radiation methods are being established, but it is set up in such a way, that various other methods can readily be added in its future development. The radiation methods chosen for the initial development of the laboratory are: thermoluminescence dating and X-ray fluorescence analysis. The design of the automated TL-reader, built in our laboratories, is adjusted for the purpose of dating of historic brick architecture (which, of course, does not exclude applications for ceramics and other materials). The investigation of renaissance architecture in southern Bohemia and Moravia is under preparation as the first large campaign of this kind in the Czech Republic. Radionuclide X-ray fluorescence analysis has been chosen as the basic analytical method in the laboratory. The possibility of analyses of paintings and fired building materials (bricks, roof tiles) have been investigated. The first results in both the areas are very promising.

  5. Methods of measurements on incidental X-radiation from electron tubes

    International Nuclear Information System (INIS)

    The standard describes the method for detection of x-radiation and the method for the direct and indirect measurement of field pattern and exposure rate of random incidental radiation emanating from high voltage electron tubes. Required apparatus and calibration procedure for the exposure rate meter or film mount are described. (M.G.B.)

  6. Development of radiation detection and measurement systems

    Energy Technology Data Exchange (ETDEWEB)

    Moon, B. S.; Ham, C. S.; Chung, C. E. and others

    2000-03-01

    This report contains descriptions on the following six items. The first item is the result of a study on CsI(TI) crystals with their light emitting characteristics and the result of a study on plastic scintillators. The second item is the result of a study on advanced radiation detectors and includes experiments for the effect of using a Compton suppressor with an HPGe detector. For the third item, we describe the results of a design work done using EGS4 for a thickness gauge, a density gauge, and a level gauge. The fourth item contains descriptions on the prototype circuit systems developed for a level gauge, a thickness gauge, and for a survey meter. The fifth part contains the computed tomography algorithm and a prototype scanning system developed for a CT system. As the sixth and the last item, we describe the prototype high precision heat source and the prototype heat-voltage converter which we have designed and fabricated.

  7. Development of radiation detection and measurement systems

    International Nuclear Information System (INIS)

    This report contains descriptions on the following six items. The first item is the result of a study on CsI(TI) crystals with their light emitting characteristics and the result of a study on plastic scintillators. The second item is the result of a study on advanced radiation detectors and includes experiments for the effect of using a Compton suppressor with an HPGe detector. For the third item, we describe the results of a design work done using EGS4 for a thickness gauge, a density gauge, and a level gauge. The fourth item contains descriptions on the prototype circuit systems developed for a level gauge, a thickness gauge, and for a survey meter. The fifth part contains the computed tomography algorithm and a prototype scanning system developed for a CT system. As the sixth and the last item, we describe the prototype high precision heat source and the prototype heat-voltage converter which we have designed and fabricated

  8. Fuzzy-logic in radiation detection technique

    International Nuclear Information System (INIS)

    Fuzzy-logic more efficiently extracts the information flow carried by the detector signal than conventional evaluation procedures based on incomplete analytical modelling can do. Dose rate and contamination monitors are relatively simple systems. Nevertheless, the gain in performance due to fuzzy-logic is already remarkable. With increasing complexity of the structure of the radiation monitor the gain in performance increases likewise. Therefore the benefit is even higher when fuzzy-logic is embedded in activity accumulating air monitors. The extremely low limits on intake of uranium and transuranium isotopes, compared to the actual performance of radon-suppressing alpha-in-air-monitors in use today, call for fuzzy-logic also for this complex application. (orig.)

  9. Determination of Warning Detection Parameters Based on Data Portal Detection of Radiation in Port Klang, Malaysia

    International Nuclear Information System (INIS)

    Radiation Portal Monitor (RPM) has been installed in Malaysia since 2006. The passive radiation detection equipment are installed at the Malaysian border entrance such as airports, seaports and land borders with the aim of detecting illegal movement of nuclear or other radioactive materials. Each detection alarms from the RPM require secondary inspection aimed at confirming the presence and identification of radionuclides in the objects scanned by the RPM. It is known that other than nuclear and radioactive materials, materials containing naturally occurring radioactive material also emits radiation. This study was conducted to determine the parameters that can be used by border control authorities to distinguish between the types of detection by the RPM and to ensure that only certain detection alarm needs to undergo secondary inspection. This would help to save time, reduce cost and avoid disruption to existing seaport operations. This study only focused on gamma-ray detection based on the factor that the radiation has triggered a lot of detection alarms and that there are diverse materials containing naturally occurring radioactive material (NORM) in existence. This study showed that there are a large numbers of detection alarms-triggered by RPM that could be differentiated between TRUE alarms or FALSE alarms. Observations of the peak radiation count rate shape and interval, as well as the uniformity in the calculated values at the detectors can be used as parameters in the alarm detection assessment at the West Port, Port Klang, Selangor, Malaysia. (author)

  10. Numerical Methods in Polarized Radiative Transfer

    Science.gov (United States)

    Rees, D. E.; Geers, G.

    1996-03-01

    This paper looks at three aspects of numerical methods for solving polarized radiative transfer problems associated with spectral line formation in the presence of a magnetic field. First we prove “Murphy's law for Stokes evolution operators” which is the basis of the efficient algorithm used in the SPSR software package to compute the Stokes line depression contribution functions. Then we use a two-stream model to explain the efficacy of the field-free method in which the non-LTE line source function in a uniform magnetic field is approximated by the source function neglecting the magnetic field. Finally we introduce a totally new and computationally efficient approach to solving non-LTE problems based on a method of sparsely representing integral operators using wavelets. As an illustration, the wavelet method is used to solve the source function integral equation for a two-level atomic model in a finite atmosphere with coherent scattering, ignoring polarization.

  11. Injury detecting method by eddy current

    International Nuclear Information System (INIS)

    The present invention provides a highly accurate testing device for maintenance and detection of heat transfer pipes of a heat exchanger. Namely, in an injury detection test by using eddy current injuries of tubular materials are detected by inserting a testing probe formed by winding coils around a cylindrical coil bobbin to the inside of the tube, supplying DC-current to the coils and detecting the injuries by utilizing the eddy current generated in the tube. In a self-comparing type injury detection testing method by using eddy current, a difference between impedance changes of two coils disposed in adjacent with each other is taken out. In a testing coils using two coils are wound in a triangular waveform, and one of the coils is disposed to the other while being displaced by a length corresponding to 1/4 of the pitch of the waveform. With such a constitution, injuries of the tubular material in the circumference direction, which could not be detected so far, can be detected without worsening the performance of the self-comparing method and not increasing the length of the coil than required. In order to wind the coils in the complicated waveform, protruded guide is formed on the coil bobbin, not by using the existent method of disposing grooved guides on the coil bobbin. (I.S.)

  12. Review of using gallium nitride for ionizing radiation detection

    Science.gov (United States)

    Wang, Jinghui; Mulligan, Padhraic; Brillson, Leonard; Cao, Lei R.

    2015-09-01

    With the largest band gap energy of all commercial semiconductors, GaN has found wide application in the making of optoelectronic devices. It has also been used for photodetection such as solar blind imaging as well as ultraviolet and even X-ray detection. Unsurprisingly, the appreciable advantages of GaN over Si, amorphous silicon (a-Si:H), SiC, amorphous SiC (a-SiC), and GaAs, particularly for its radiation hardness, have drawn prompt attention from the physics, astronomy, and nuclear science and engineering communities alike, where semiconductors have traditionally been used for nuclear particle detection. Several investigations have established the usefulness of GaN for alpha detection, suggesting that when properly doped or coated with neutron sensitive materials, GaN could be turned into a neutron detection device. Work in this area is still early in its development, but GaN-based devices have already been shown to detect alpha particles, ultraviolet light, X-rays, electrons, and neutrons. Furthermore, the nuclear reaction presented by 14N(n,p)14C and various other threshold reactions indicates that GaN is intrinsically sensitive to neutrons. This review summarizes the state-of-the-art development of GaN detectors for detecting directly and indirectly ionizing radiation. Particular emphasis is given to GaN's radiation hardness under high-radiation fields.

  13. Solid state nuclear track detection principles, methods and applications

    CERN Document Server

    Durrani, S A; ter Haar, D

    1987-01-01

    Solid State Nuclear Track Detection: Principles, Methods and Applications is the second book written by the authors after Nuclear Tracks in Solids: Principles and Applications. The book is meant as an introduction to the subject solid state of nuclear track detection. The text covers the interactions of charged particles with matter; the nature of the charged-particle track; the methodology and geometry of track etching; thermal fading of latent damage trails on tracks; the use of dielectric track recorders in particle identification; radiation dossimetry; and solid state nuclear track detecti

  14. Multi-sensor radiation detection, imaging, and fusion

    Science.gov (United States)

    Vetter, Kai

    2016-01-01

    Glenn Knoll was one of the leaders in the field of radiation detection and measurements and shaped this field through his outstanding scientific and technical contributions, as a teacher, his personality, and his textbook. His Radiation Detection and Measurement book guided me in my studies and is now the textbook in my classes in the Department of Nuclear Engineering at UC Berkeley. In the spirit of Glenn, I will provide an overview of our activities at the Berkeley Applied Nuclear Physics program reflecting some of the breadth of radiation detection technologies and their applications ranging from fundamental studies in physics to biomedical imaging and to nuclear security. I will conclude with a discussion of our Berkeley Radwatch and Resilient Communities activities as a result of the events at the Dai-ichi nuclear power plant in Fukushima, Japan more than 4 years ago.

  15. Development of radiation detection and measurement system - Development of scintillation radiation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hee Dong; Kim, Wan [Kyungpook National University, Taegu (Korea); Kim, Do Sung [Taegu University, Taegu (Korea)

    2000-03-01

    We have been fabricated CsI(Tl) scintillation crystals and plastic scintillators for radiation-based measuring equipment. CsI (Tl) single crystals doped with thallium as an activator were grown using the Czochralski method. The crystal structure of grown CsI(Tl) was bcc, and it was confirmed that its lattice constant was 4,568 A. The spectral range of luminescence of CsI(Tl) was 350 {approx} 700 nm independent of thallium concentration, and the fast component of the luminescence was decreased with increasing thallium concentration. The energy resolution of CsI(Tl) scintillator doped with 0.1 mole% thallium was about 9% for 137 Cs {gamma}-rays. The relation formula of {gamma}-ray energy versus energy resolution was ln(FWHM%)=-0.705ln({epsilon})+6.75. The radiation damage of CsI(Tl) increased in proportion to thallium concentration and radiation damage of CsI(Tl) increased in proportion to thallium concentration and radiation dosage, and the irradiated crystals were colored reddish. The radiation induced absorption bands appeared around 355, 425, 520 and 555 nm, and their energy level were about 3.50, 2.88, 2.39 and 2.21 eV. Plastic scintillators were fabricated thermal polymerization method. Those were polymerizing at 120 deg. C, during 72 hours, and annealing at 75 deg. C, during 24 hours. When the concentration of 1st solute was 1.5 wt% and concentration of 2nd solute was 0.01 wt%, the characteristics of scintillation were very excellent. Also 3.0 wt% tetraphenyl lead were loaded to improve the detection efficiency of {gamma}-ray. The range of emission spectrum was 400 {approx} 450nm, and the central peak was 415 nm. The radiation damage was not appear under 1*10{sup 3}Gy, but the color of plastic scintillator was changed to brown, over 1*10{sup 4}Gy exposured. 84 refs., 39 figs. (Author)

  16. A Novel Method of Line Detection using Image Integration Method

    Science.gov (United States)

    Lin, Daniel; Sun, Bo

    2015-03-01

    We developed a novel line detection algorithm based on image integration method. Hough Transformation uses spatial image gradient method to detect lines on an image. This is problematic because if the image has a region of high noise intensity, the gradient would point towards the noisy region . Denoising the noisy image requires an application of sophisticated noise reduction algorithm which increases computation complexity. Our algorithm can remedy this problem by averaging the pixels around the image region of interest. We were able to detect collagen fiber lines on an image produced by confocal microscope.

  17. Optimised mounting conditions for poly (ether sulfone) in radiation detection

    International Nuclear Information System (INIS)

    Poly (ether sulfone) (PES) is a candidate for use as a scintillation material in radiation detection. Its characteristics, such as its emission spectrum and its effective refractive index (based on the emission spectrum), directly affect the propagation of light generated to external photodetectors. It is also important to examine the presence of background radiation sources in manufactured PES. Here, we optimise the optical coupling and surface treatment of the PES, and characterise its background. Optical grease was used to enhance the optical coupling between the PES and the photodetector; absorption by the grease of short-wavelength light emitted from PES was negligible. Diffuse reflection induced by surface roughening increased the light yield for PES, despite the high effective refractive index. Background radiation derived from the PES sample and its impurities was negligible above the ambient, natural level. Overall, these results serve to optimise the mounting conditions for PES in radiation detection. - Highlights: • Mounting conditions for PES in radiation detection are optimised. • Optical coupling, surface treatment, and background sources are discussed. • Absorption by optical grease of short-wavelength light emitted from PES was negligible. • Despite the high effective refractive index for PES, light yield was increased by surface roughness. • Radiation background from the PES plate itself was not above the ambient level

  18. A biodosemeter that utilises isolated enzymes to detect ionising radiation

    International Nuclear Information System (INIS)

    The development of a biosensor for the detection of ionising radiation (biodosemeter) utilising the advantageous properties of the photosystem II (PSII) complex and its response to ionising radiation is reported. The transducer signal for this biosensor can be fluorescence, which is dependent on photosynthetic activity. Exposure of biological material to ionising radiation leads to a loss of function due to the destruction of critical structures. Radiation target theory predicts an exponential decrease in biochemical activity that is dependent on the absorbed radiation energy and directly proportional to the mass of the individual molecules possessing this activity. The activity is lost whenever the protein is hit since very high energy is transferred through the chain. Several approaches were used to optimise the immobilisation of PSII complexes to improve the sensitivity of the biodosemeter. (author)

  19. Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation.

    Science.gov (United States)

    Asner, D M; Bradley, R F; de Viveiros, L; Doe, P J; Fernandes, J L; Fertl, M; Finn, E C; Formaggio, J A; Furse, D; Jones, A M; Kofron, J N; LaRoque, B H; Leber, M; McBride, E L; Miller, M L; Mohanmurthy, P; Monreal, B; Oblath, N S; Robertson, R G H; Rosenberg, L J; Rybka, G; Rysewyk, D; Sternberg, M G; Tedeschi, J R; Thümmler, T; VanDevender, B A; Woods, N L

    2015-04-24

    It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Although first derived in 1904, cyclotron radiation from a single electron orbiting in a magnetic field has never been observed directly. We demonstrate single-electron detection in a novel radio-frequency spectrometer. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay end point, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments. PMID:25955048

  20. Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation

    Science.gov (United States)

    Asner, D. M.; Bradley, R. F.; de Viveiros, L.; Doe, P. J.; Fernandes, J. L.; Fertl, M.; Finn, E. C.; Formaggio, J. A.; Furse, D.; Jones, A. M.; Kofron, J. N.; LaRoque, B. H.; Leber, M.; McBride, E. L.; Miller, M. L.; Mohanmurthy, P.; Monreal, B.; Oblath, N. S.; Robertson, R. G. H.; Rosenberg, L. J.; Rybka, G.; Rysewyk, D.; Sternberg, M. G.; Tedeschi, J. R.; Thümmler, T.; VanDevender, B. A.; Woods, N. L.; Project 8 Collaboration

    2015-04-01

    It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Although first derived in 1904, cyclotron radiation from a single electron orbiting in a magnetic field has never been observed directly. We demonstrate single-electron detection in a novel radio-frequency spectrometer. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay end point, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.

  1. Development of Quantum Devices and Algorithms for Radiation Detection and Radiation Signal Processing

    International Nuclear Information System (INIS)

    The main functions of spectroscopy system are signal detection, filtering and amplification, pileup detection and recovery, dead time correction, amplitude analysis and energy spectrum analysis. Safeguards isotopic measurements require the best spectrometer systems with excellent resolution, stability, efficiency and throughput. However, the resolution and throughput, which depend mainly on the detector, amplifier and the analog-to-digital converter (ADC), can still be improved. These modules have been in continuous development and improvement. For this reason we are interested with both the development of quantum detectors and efficient algorithms of the digital processing measurement. Therefore, the main objective of this thesis is concentrated on both 1. Study quantum dot (QD) devices behaviors under gamma radiation 2. Development of efficient algorithms for handling problems of gamma-ray spectroscopy For gamma radiation detection, a detailed study of nanotechnology QD sources and infrared photodetectors (QDIP) for gamma radiation detection is introduced. There are two different types of quantum scintillator detectors, which dominate the area of ionizing radiation measurements. These detectors are QD scintillator detectors and QDIP scintillator detectors. By comparison with traditional systems, quantum systems have less mass, require less volume, and consume less power. These factors are increasing the need for efficient detector for gamma-ray applications such as gamma-ray spectroscopy. Consequently, the nanocomposite materials based on semiconductor quantum dots has potential for radiation detection via scintillation was demonstrated in the literature. Therefore, this thesis presents a theoretical analysis for the characteristics of QD sources and infrared photodetectors (QDIPs). A model of QD sources under incident gamma radiation detection is developed. A novel methodology is introduced to characterize the effect of gamma radiation on QD devices. The rate equations of the QD devices under gamma radiation are studied. The effect of incident gamma radiation on the optical gain, power, and output photon densities are investigated.

  2. Method for Rapid Detection of Cyanogenic Bacteria

    OpenAIRE

    Castric, Kathleen F.; Castric, Peter A.

    1983-01-01

    An agar plate method is described in which the production of hydrogen cyanide by as many as 50 microbial isolates per plate may be detected. Cyanide produced by the organisms reacts with copper(II) ethylacetoacetate and 4,4′-methylenebis-(N,N-dimethylaniline) in a paper disk suspended above the microbial colonies. Cell growth occurs in depressions in the agar surface, which allows separation of colonies and enhances sensitivity of hydrogen cyanide detection.

  3. Method of Fault Detection and Rerouting

    Science.gov (United States)

    Medelius, Pedro J. (Inventor); Gibson, Tracy L. (Inventor); Lewis, Mark E. (Inventor)

    2013-01-01

    A system and method for detecting damage in an electrical wire, including delivering at least one test electrical signal to an outer electrically conductive material in a continuous or non-continuous layer covering an electrically insulative material layer that covers an electrically conductive wire core. Detecting the test electrical signals in the outer conductive material layer to obtain data that is processed to identify damage in the outer electrically conductive material layer.

  4. Eye blinking-based method for detecting driver drowsiness.

    Science.gov (United States)

    Ma'touq, Jumana; Al-Nabulsi, Jamal; Al-Kazwini, Akeel; Baniyassien, Ahmed; Al-Haj Issa, Ghassan; Mohammad, Haitham

    2014-11-01

    Drowsy driving is a major cause of traffic accidents. Eye blinking is considered as important evidence of driver drowsiness. In this paper, a portable and low cost device for monitoring a driver's drowsiness is proposed. The proposed system consists of two main parts that detect eye blinking based on IR sensors mounted on eyewear. Depending on the reflected and absorbed IR radiation, this system detects and classifies the eye blinking into normal blinking (NB) or prolonged blinking (PB). The detected prolonged blinking is used to trigger an audio/visual alarm system which draws the driver's attention back. The system was simulated initially by LabVIEW® software. Moreover, the system was bench tested on 15 adult volunteers; eye blinking were detected and classified successfully for all subjects. The results of this research are promising and additional investigation is required to further improve the method. PMID:25340719

  5. ITRAP. Illicit trafficking radiation detection assessment program

    International Nuclear Information System (INIS)

    Illicit trafficking in nuclear materials (nuclear criminality) has become more and more a problem, due to the circulation of the a high number of radioactive sources and the big amount of nuclear material, particularly, caused by the changes of the organisational infrastructures to supervise these material within the successor states of the former Soviet Union. The IAEA data base counts at present more than 300 verified cases. The endangering cased thereby ranges from possible health defect for the publication to terrorists activities and production of nuclear weapons. In addition to the primary criminal reasons the illegal deposal of radioactive sources as salvage, scrap and others show a further problem, which has lead to severe accidents and lethal effects in the past (e.g. Goiana, Mexiko). As the study ITRAP (Illicit Trafficking Radiation Assessment Program) can show, also in Austria the cases of partly considerable contaminated scrap transports from neighbouring countries exists. Some countries have already under taken countermeasures (e.g. Monitoring at the Finnish-Russian and German-Polish border, border monitoring in Italy). The International Atomic Energy Agency (IAEA) has reacted on this actual problem by setting up a new program to fight against nuclear criminality and has suggested a pilot study for the practical test of border monitoring systems. Aim of the study was to work out the technical requirements and the practicability of an useful monitoring system at border crossings. The results of the study will be offered by the IAEA to the member states as international recommendations for border monitoring systems. (author)

  6. A Method for Ultrashort Electron Pulse Shape-Measurement Using Coherent Synchrotron Radiation

    OpenAIRE

    Geloni, G. A.; Saldin, E.L.; E.A. Schneidmiller; Yurkov, M.V.

    2003-01-01

    In this paper we discuss a method for nondestructive measurements of the longitudinal profile of sub-picosecond electron bunches for X-Ray Free Electron Lasers (XFELs). The method is based on the detection of the Coherent Synchrotron Radiation (CSR) spectrum produced by a bunch passing a dipole magnet system. This work also contains a systematic treatment of synchrotron radiation theory which lies at the basis of CSR. Standard theory of synchrotron radiation uses several app...

  7. Conducted and radiated noise in detection devices

    International Nuclear Information System (INIS)

    Conducted and radiated noise is an external noise which affects the quality of the signals of the detectors. An external noise can be reduced, usually, by shielding. This was the situation with 'older fashion' devices which uses boxes and coaxial cables. As the devices becomes more complex, the shielding of the detectors is more and more difficult and the transmission lines evolves from coaxial cables to twisted pair cables which are no more shielded. In such situation, the conducted and radiated noise (C and R noise) becomes important. Due to complexity of a real detector, the main work is based on experiments with components and simulations of some specific problems, associated with CDC detector. The first experiment was done to understand how the C and R noise is propagated. The emission device was a set of coils (between 3 and 5 turns with diameter from 10 to 50 mm) feed by an 74S140 driver. A pulse of about 8 ns width was generated. A coil of reception of about the same physical characteristics was used to see the emitted pulse. When the two coils are separated by about 80 cm, the receiver generated no signal. But, if along the two coils, a conductive material is introduced (a wire for instance), the receiver senses a signal. This signal is not changed too much if the wire is or not connected to ground. The explanation is simple: the pulse in the emitting coil produces an EM pulse which spreads in space. If a conductive material is around, the EM energy is received by that conductor and it is propagated at tens of meters with small attenuation. When this energy reaches the end of the conductor, it is radiated in space. If some other conductors are around, the energy is received and propagated by that conductors. This experiment was done for about 20 kinds of conductors (different coax cables, twisted-pair ribbons, power cables, metallic bars) and with many coils (different diameters and numbers of turns). It was measured the pk-to-pk level, decay constant and frequencies of oscillations (eigen frequencies). Because a Fourier analyzer was not available, the eigen-frequencies were just evaluated by the oscilloscope. The conclusions are: 1. For a 8 ns width pulse, the oscillation is damped in time with a constant between about 100 ns for cooper bars and double-shielded coaxes and up to around 600 ns for twisted-pair ribbons; 2. The frequency of these oscillations depends on the conductor under test and so they are eigen-frequencies of that conductor. For a RG 59BU cable (F and G) the dominant EF was 20 MHZ as for the same RG59U (Amphenol) the EF was 69 MHZ. This is so because the technology to make the shielding is different. For a cooper bar for instance EF was measures as 46 MHz for 3.7 mm diameter and 26 MHz for 2.35 mm diameter. To understand if these EM pulses which propagate everywhere are important or not we have to remind that these pulses propagate on the surface of the conductors. For a shielded coax, they cannot go inside to change the signal. The situation in totally different when such pulse reaches a twisted-pair cable. The signal is superimposed on the useful signal and is propagated as a 'normal' signal. For this situation, the receiver of a twisted pair cable is differential so that the common mode signal could be rejected by a proper designed receiver. This is so only at the receiver side. If such noise propagates toward the source of signal (the output of the preamplifier for instance), when this EM energy goes inside the transmitter, the electronic device reacts at these EM pulses. Its reaction can be a signal which goes back to line and this is impossible to be rejected by receiver because is like a normal differential signal. For a user it looks like being generated by the detector. In an experiment, a real preamplifier, a real ribbon (about 5 meter long) and a real receiver were connected on a table. An 8 ns pulse was inserted somewhere on that 5 meter twisted-pair cable and the signal on the receiver was monitored. The input of the preamplifier was connected to ground. Due to simulated noise, on

  8. Monte Carlo method in radiation transport problems

    International Nuclear Information System (INIS)

    In neutral radiation transport problems (neutrons, photons), two values are important: the flux in the phase space and the density of particles. To solve the problem with Monte Carlo method leads to, among other things, build a statistical process (called the play) and to provide a numerical value to a variable x (this attribution is called score). Sampling techniques are presented. Play biasing necessity is proved. A biased simulation is made. At last, the current developments (rewriting of programs for instance) are presented due to several reasons: two of them are the vectorial calculation apparition and the photon and neutron transport in vacancy media

  9. Three Methods of Detection of Hydrazines

    Science.gov (United States)

    Griffin, Timothy; Berger, Cristina

    2010-01-01

    Three proposed methods for measuring trace quantities of hydrazines involve ionization and detection of hydrazine derivatives. These methods are intended to overcome the limitations of prior hydrazine- detection methods. Hydrazine (Hz), monomethylhydrazine (MMH), and unsymmetrical dimethylhydrazine (UDMH) are hypergolic fuels and are highly reactive, toxic, and corrosive. A capability to measure concentrations of hydrazines is desirable for detecting leaks and ensuring safety in aerospace settings and in some industrial settings in which these compounds are used. One of the properties (high reactivity) that make it desirable to detect trace amounts of hydrazines also makes it difficult to detect hydrazines and measure their concentrations accurately using prior methods: significant amounts are lost to thermal and catalytic decomposition prior to detection. Further complications arise from the sticky nature of hydrazines: Sample hydrazine molecules tend to become irreversibly adsorbed onto solid surfaces with which they come into contact during transport to detectors, giving rise to drift in detector responses. In each proposed method, the reactive, sticky nature of hydrazines would be turned to advantage by providing a suitably doped substrate surface with which the hydrazines would react. The resulting hydrazine derivatives would be sufficiently less sticky and sufficiently more stable so that fewer molecules would be lost to decomposition or adsorption during transport. Consequently, it would be possible to measure concentration with more sensitivity and less error than in prior techniques. The first proposed method calls for the use of a recently developed technique known as desorption electrospray ionization (DESI), in which a pneumatically assisted micro -electrospray at ambient pressure is directed at a surface of interest. In this case, the surface of interest would be that of a substrate described above.

  10. Micronuclei: sensitivity for the detection of radiation induced damage

    International Nuclear Information System (INIS)

    The in vitro cytokinesis-block (CB) micronucleus (MN) assay for human peripheral blood has been used extensively for the assessment of chromosomal damage induced by ionizing radiation and chemicals and considered a suitable biological dosimeter for estimating in vivo whole body exposures, particularly in the case of large scale radiation accidents. One of the major drawbacks of the MN assay is its reduced sensitivity for the detection of damage induced by low doses of low LET radiation, due to the high variability among the spontaneous MN frequencies. It is suggested that age, smoking habit and sex are the main confounding factors that contribute to the observed variability. Previous work in our laboratory, shows a significant positive correlation of the spontaneous and radiation induced MN frequencies with age and smoking habit, the latter being the strongest confounder. These findings led to in vitro studies of the dose-response relationships for smoking and non smoking donors evaluated separately, using 60Co ? rays. The objectives of the present work are: 1-To increase the amount of data of the dose-response relationships, using ? rays from a 60Co source, for smoking and non smoking donors, in order to find, if applicable, a correction factor for the calibration curve that takes into account the smoking habit of the individual in the case of accidental overexposure dose assessment, particularly in the low dose range. 2-To establish general conclusions on the current state of the technique. The sample for smoking and non smoking calibration curves was enlarged in the range of 0Gy to 2Gy. The fitting of both curves, performed up to the 2Gy dose, resulted in a linear quadratic model. MN distribution among bi nucleated cells was found to be over dispersed with respect to Poisson distribution, the average ratio of variance to mean being 1.13 for non smokers and 1.17 for smokers. Each fitted calibration curve, for smoking and non smoking donors, fell within the 95% confidence curves of the other, with the exception of the spontaneous frequency values of both calibration curves. Thus, for the accidental overexposure dose assessment it seems to be appropriate to use a pooled data (smokers + non smokers) calibration curve and in the case of dose assessment up to 0.5Gy, it is convenient to use the corresponding spontaneous term in the yield equation; associated to the individual smoking habit condition. General conclusions: 1-The high and variable spontaneous MN frequency prevents an adequate dose estimation below 0.2-0.3Gy of low LET radiation. 2-At high doses, of low LET radiation, the sensitivity of the MN test is lower than the conventional aberration methods (dicentrics) due to the smaller squared term in the yield equation. 3-Radiation induced MN tend to be over dispersed with respect to Poisson distribution. Over dispersion increases the standard error on the observed yield and thus the uncertainties on the dose estimation. (author)

  11. Non-contact acoustic radiation force impulse microscopy via photoacoustic detection for probing breast cancer cell mechanics

    OpenAIRE

    Hwang, Jae Youn; Kang, Bong Jin; Lee, Changyang; Kim, Hyung Ham; Park, Jinhyoung; Zhou, Qifa; Shung, K. Kirk.

    2014-01-01

    We demonstrate a novel non-contact method: acoustic radiation force impulse microscopy via photoacoustic detection (PA-ARFI), capable of probing cell mechanics. A 30 MHz lithium niobate ultrasound transducer is utilized for both detection of phatoacoustic signals and generation of acoustic radiation force. To track cell membrane displacements by acoustic radiation force, functionalized single-walled carbon nanotubes are attached to cell membrane. Using the developed microscopy evaluated with ...

  12. Networked gamma radiation detection system for tactical deployment

    Science.gov (United States)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Smith, Ethan; Guss, Paul; Mitchell, Stephen

    2015-08-01

    A networked gamma radiation detection system with directional sensitivity and energy spectral data acquisition capability is being developed by the National Security Technologies, LLC, Remote Sensing Laboratory to support the close and intense tactical engagement of law enforcement who carry out counterterrorism missions. In the proposed design, three clusters of 2? × 4? × 16? sodium iodide crystals (4 each) with digiBASE-E (for list mode data collection) would be placed on the passenger side of a minivan. To enhance localization and facilitate rapid identification of isotopes, advanced smart real-time localization and radioisotope identification algorithms like WAVRAD (wavelet-assisted variance reduction for anomaly detection) and NSCRAD (nuisance-rejection spectral comparison ratio anomaly detection) will be incorporated. We will test a collection of algorithms and analysis that centers on the problem of radiation detection with a distributed sensor network. We will study the basic characteristics of a radiation sensor network and focus on the trade-offs between false positive alarm rates, true positive alarm rates, and time to detect multiple radiation sources in a large area. Empirical and simulation analyses of critical system parameters, such as number of sensors, sensor placement, and sensor response functions, will be examined. This networked system will provide an integrated radiation detection architecture and framework with (i) a large nationally recognized search database equivalent that would help generate a common operational picture in a major radiological crisis; (ii) a robust reach back connectivity for search data to be evaluated by home teams; and, finally, (iii) a possibility of integrating search data from multi-agency responders.

  13. Novel methods for detecting buried explosive devices

    Energy Technology Data Exchange (ETDEWEB)

    Kercel, S.W.; Burlage, R.S.; Patek, D.R.; Smith, C.M. [Oak Ridge National Lab., TN (United States); Hibbs, A.D.; Rayner, T.J. [Quantum Magnetics, Inc., San Diego, CA (United States)

    1997-04-01

    Oak Ridge National Laboratory (ORNL) and Quantum Magnetics, Inc. (QM) are exploring novel landmine detection technologies. Technologies considered here include bioreporter bacteria, swept acoustic resonance, nuclear quadrupole resonance (NQR), and semiotic data fusion. Bioreporter bacteria look promising for third-world humanitarian applications; they are inexpensive, and deployment does not require high-tech methods. Swept acoustic resonance may be a useful adjunct to magnetometers in humanitarian demining. For military demining, NQR is a promising method for detecting explosive substances; of 50,000 substances that have been tested, none has an NQR signature that can be mistaken for RDX or TNT. For both military and commercial demining, sensor fusion entails two daunting tasks, identifying fusible features in both present-day and emerging technologies, and devising a fusion algorithm that runs in real-time on cheap hardware. Preliminary research in these areas is encouraging. A bioreporter bacterium for TNT detection is under development. Investigation has just started in swept acoustic resonance as an approach to a cheap mine detector for humanitarian use. Real-time wavelet processing appears to be a key to extending NQR bomb detection into mine detection, including TNT-based mines. Recent discoveries in semiotics may be the breakthrough that will lead to a robust fused detection scheme.

  14. Systems and methods for neutron detection using scintillator nano-materials

    Energy Technology Data Exchange (ETDEWEB)

    Letant, Sonia Edith; Wang, Tzu-Fang

    2016-03-08

    In one embodiment, a neutron detector includes a three dimensional matrix, having nanocomposite materials and a substantially transparent film material for suspending the nanocomposite materials, a detector coupled to the three dimensional matrix adapted for detecting a change in the nanocomposite materials, and an analyzer coupled to the detector adapted for analyzing the change detected by the detector. In another embodiment, a method for detecting neutrons includes receiving radiation from a source, converting neutrons in the radiation into alpha particles using converter material, converting the alpha particles into photons using quantum dot emitters, detecting the photons, and analyzing the photons to determine neutrons in the radiation.

  15. Method for decontaminating radiation metal waste

    International Nuclear Information System (INIS)

    This report describes a method for decontaminating radiation metal waste characterized by the following properties: in order to decontaminate radiation metal waste of various shapes produced by facilities involved with radioactive substances, non-complex shapes are decontaminated by electropolishing the materials in a neutral saline solution. Complex shapes are chemically decontaminated by means of an acid solution containing permanganic acid or an alkaline solution and a mineral acid solution. After neutralizing the solutions used for chemical decontamination, the radioactive material is separated and removed. Further, in the decontamination method for radioactive metal waste, a supernatant liquid is reused as the electrolyte in electropolishing decontamination. Permanganic ions (MnO4-) are reduced to manganese dioxide (MnO2) and deposited prior to neutralizing the solution used for chemical decontamination. Once manganese dioxide (MnO2) has been separated and removed, it is re-used as the electrolyte in electropolishing decontamination by means of a process identical to the separation process for radioactive substances. 3 figs

  16. The problem of the detection threshold in radiation measurement

    International Nuclear Information System (INIS)

    In all cases encountered in practical radiation measurement, the basic problem is to differentiate between the lowest measured value and the zero value (background, natural background radiation, etc.). For this purpose, on the mathematical side, tests based on hypotheses are to be applied. These will show the probability of differentiation between two values having the same random spread. By means of these tests and the corresponding error theory, a uniform treatment of the subject, applicable to all problems relating to measuring technique alike, can be found. Two basic concepts are found in this process, which have to be defined in terms of semantics and nomenclature: Decision threshold and detection threshold, or 'minimum detectable mean value'. At the decision threshold, one has to decide (with a given statistical error probability) whether a measured value is to be attributed to the background radiation, accepting the zero hypothesis, or whether this value differs significantly from the background radiation (error of 1rst kind). The minimum detectable mean value is the value which, with a given decision threshold, can be determined with sufficient significance to be a measured value and thus cannot be mistaken as background radiation (alternative hypothesis, error of 2nd kind). Normally, the two error types are of equal importance. It may happen, however, that one type of error gains more importance, depending on the approach. (orig.)

  17. Development of a novel gamma probe for detecting radiation direction

    Science.gov (United States)

    Pani, R.; Pellegrini, R.; Cinti, M. N.; Longo, M.; Donnarumma, R.; D'Alessio, A.; Borrazzo, C.; Pergola, A.; Ridolfi, S.; De Vincentis, G.

    2016-01-01

    Spatial localization of radioactive sources is currently a main issue interesting different fields, including nuclear industry, homeland security as well as medical imaging. It is currently achieved using different systems, but the development of technologies for detecting and characterizing radiation is becoming important especially in medical imaging. In this latter field, radiation detection probes have long been used to guide surgery, thanks to their ability to localize and quantify radiopharmaceutical uptake even deep in tissue. Radiolabelled colloid is injected into, or near to, the tumor and the surgeon uses a hand-held radiation detector, the gamma probe, to identify lymph nodes with radiopharmaceutical uptkake. The present work refers to a novel scintigraphic goniometric probe to identify gamma radiation and its direction. The probe incorporates several scintillation crystals joined together in a particular configuration to provide data related to the position of a gamma source. The main technical characteristics of the gamma locator prototype, i.e. sensitivity, spatial resolution and detection efficiency, are investigated. Moreover, the development of a specific procedure applied to the images permits to retrieve the source position with high precision with respect to the currently used gamma probes. The presented device shows a high sensitivity and efficiency to identify gamma radiation taking a short time (from 30 to 60 s). Even though it was designed for applications in radio-guided surgery, it could be used for other purposes, as for example homeland security.

  18. Simulating and Detecting Radiation-Induced Errors for Onboard Machine Learning

    Science.gov (United States)

    Wagstaff, Kiri L.; Bornstein, Benjamin; Granat, Robert; Tang, Benyang; Turmon, Michael

    2009-01-01

    Spacecraft processors and memory are subjected to high radiation doses and therefore employ radiation-hardened components. However, these components are orders of magnitude more expensive than typical desktop components, and they lag years behind in terms of speed and size. We have integrated algorithm-based fault tolerance (ABFT) methods into onboard data analysis algorithms to detect radiation-induced errors, which ultimately may permit the use of spacecraft memory that need not be fully hardened, reducing cost and increasing capability at the same time. We have also developed a lightweight software radiation simulator, BITFLIPS, that permits evaluation of error detection strategies in a controlled fashion, including the specification of the radiation rate and selective exposure of individual data structures. Using BITFLIPS, we evaluated our error detection methods when using a support vector machine to analyze data collected by the Mars Odyssey spacecraft. We found ABFT error detection for matrix multiplication is very successful, while error detection for Gaussian kernel computation still has room for improvement.

  19. Quantitative boron detection by neutron transmission method

    International Nuclear Information System (INIS)

    //Quantitative boron detection is mainly performed by chemical methods like colorimetric titration. High neutron absorption cross section of natural boron makes attractive its detection by absorption measurements. This work is an extension of earlier investigations where neutron radiography technique was used for boron detection. In the present investigation, the neutron absorption rate of boron containing solutions is the way to measure quantitatively the boron content of the solutions. The investigation was carried out in Istanbul TRIGA Mark-II reactor. In the end of the experiments, it was observed that even |ppw| grade boron in aqueous solution can be easily detected. The use of this method is certainly very useful for boron utilizing industries like glass and steel industries.The major disadvantage of the method is the obligation to use always aqueous solutions to be able to detect homogeneously the boron content. Then, steel or glass samples have to be put first in an appropriate solution form. The irradiation of steel samples can give the distribution of boron by the help of a imaging and this suggested method will give its quantitative measurement. The superiority of this method are its quick response time and its accuracy. To test this accuracy, a supposed unknown , solution of boric acid is irradiated and then calculated by the help of the calibration curve. The measured value of boric acid was 0.89 mg and the calculated value was found to be 0.98 mg which gives an accuracy of 10 %. It was also seen that the method is more accurate for low concentration. (authors)

  20. Stroboscopic detection of nuclear forward-scattered synchrotron radiation

    International Nuclear Information System (INIS)

    Stroboscopic detection of nuclear forward-scattered synchrotron radiation is proposed and applied. Stroboscopic measurements provide energy-resolved spectra and relax the condition on the bunch mode. This concept is applied to study the magnetism in CaFeO3 under high pressure

  1. Detection of radiation pressure acting on 2009 BD

    Science.gov (United States)

    Micheli, Marco; Tholen, David J.; Elliott, Garrett T.

    2012-05-01

    We report the direct detection of radiation pressure on the asteroid 2009 BD, one of the smallest multi-opposition near-Earth objects currently known, with H ˜ 28.4. Under the purely gravitational model of NEODyS the object is currently considered a possible future impactor, with impact solutions starting in 2071. The detection of a radiation-related acceleration allows us to estimate an Area to Mass Ratio ( AMR) for the object, that can be converted (under some assumptions) into a range of possible values for its average density. Our result AMR = (2.97 ± 0.33) × 10 -4 m 2 kg -1 is compatible with the object being of natural origin, and it is narrow enough to exclude a man-made nature. The possible origin of this object, its future observability, and the importance of radiation pressure in the impact monitoring process are also discussed.

  2. Automatic cloud amount detection by surface longwave downward radiation measurements

    Science.gov (United States)

    Dürr, Bruno; Philipona, R.

    2004-03-01

    Naked-eye observation of sky cloud cover has widely resisted automation. Automatic cloud cover detection systems suitable also for nighttime operation often demand large equipment investments and expensive data processing. An automatic partial cloud amount detection algorithm (APCADA) is presented, based only on accurate measurements of longwave downward radiation, temperature, and relative humidity at screen level height. APCADA provides cloud cover estimates every 10 min during daytime and nighttime and is applicable to radiation stations without knowledge of synoptic cloud observations. Naked-eye observations from seven radiation sites spanning from arctic to tropical climates have been compared to APCADA estimates. Results show that about 86% of all cases agree within ±1-octa cloud amount difference for sites with moderate climate, 82% for sites with arctic climate, and 78% for the site with tropical climate. For a maximum ±2-octa cloud amount difference, average site percentages range from 90% up to 95%.

  3. GMDD: a database of GMO detection methods

    OpenAIRE

    Guo Rong; Liang Wanqi; Marvin Hans JP; Kleter Gijs A; Shen Kailin; Kim Banghyun; Yang Litao; Dong Wei; Zhang Dabing

    2008-01-01

    Abstract Background Since more than one hundred events of genetically modified organisms (GMOs) have been developed and approved for commercialization in global area, the GMO analysis methods are essential for the enforcement of GMO labelling regulations. Protein and nucleic acid-based detection techniques have been developed and utilized for GMOs identification and quantification. However, the information for harmonization and standardization of GMO analysis methods at global level is needed...

  4. Method for detecting gas turbine engine flashback

    Science.gov (United States)

    Singh, Kapil Kumar; Varatharajan, Balachandar; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin Paul

    2012-09-04

    A method for monitoring and controlling a gas turbine, comprises predicting frequencies of combustion dynamics in a combustor using operating conditions of a gas turbine, receiving a signal from a sensor that is indicative of combustion dynamics in the combustor, and detecting a flashback if a frequency of the received signal does not correspond to the predicted frequencies.

  5. Verifying model for statistical hypothesis in detection of noncoherent radiation

    Science.gov (United States)

    Babin, Vasile D.; Ersen, Simion; Moldovan, Adrian; Iftimia, Nicusor

    1998-07-01

    A mode of quantic detection for noncoherent optical radiation as noise limit is presented. Using the representation on coherent state of density matrix operators ((rho) ) and of detection operators ((pi) ), the detection probability (Qd), false alarm probability (Qo) and signal-noise ratio (S/Z), are estimated, as function of the number of freedom degrees of temporal oscillation modes (Mt) and of the spatial oscillation modes (Ms). A validation algorithm of statistical hypotheses, resulted from noncoherent optical field analysis, is made using Newman-Pearson criterion.

  6. ANOLE Portable Radiation Detection System Field Test and Evaluation Campaign

    International Nuclear Information System (INIS)

    Handheld, backpack, and mobile sensors are elements of the Global Nuclear Detection System for the interdiction and control of illicit radiological and nuclear materials. They are used by the U.S. Department of Homeland Security (DHS) and other government agencies and organizations in various roles for border protection, law enforcement, and nonproliferation monitoring. In order to systematically document the operational performance of the common commercial off-the-shelf portable radiation detection systems, the DHS Domestic Nuclear Detection Office conducted a test and evaluation campaign conducted at the Nevada Test Site from January 18 to February 27, 2006. Named 'Anole', it was the first test of its kind in terms of technical design and test complexities. The Anole test results offer users information for selecting appropriate mission-specific portable radiation detection systems. The campaign also offered manufacturers the opportunity to submit their equipment for independent operationally relevant testing to subsequently improve their detector performance. This paper will present the design, execution, and methodologies of the DHS Anole portable radiation detection system test campaign

  7. Fault detection with principal component pursuit method

    Science.gov (United States)

    Pan, Yijun; Yang, Chunjie; Sun, Youxian; An, Ruqiao; Wang, Lin

    2015-11-01

    Data-driven approaches are widely applied for fault detection in industrial process. Recently, a new method for fault detection called principal component pursuit(PCP) is introduced. PCP is not only robust to outliers, but also can accomplish the objectives of model building, fault detection, fault isolation and process reconstruction simultaneously. PCP divides the data matrix into two parts: a fault-free low rank matrix and a sparse matrix with sensor noise and process fault. The statistics presented in this paper fully utilize the information in data matrix. Since the low rank matrix in PCP is similar to principal components matrix in PCA, a T2 statistic is proposed for fault detection in low rank matrix. And this statistic can illustrate that PCP is more sensitive to small variations in variables than PCA. In addition, in sparse matrix, a new monitored statistic performing the online fault detection with PCP-based method is introduced. This statistic uses the mean and the correlation coefficient of variables. Monte Carlo simulation and Tennessee Eastman (TE) benchmark process are provided to illustrate the effectiveness of monitored statistics.

  8. Development of disease preventive method using radiated pathogenic microorganisms, cell lines and animals

    International Nuclear Information System (INIS)

    The effects of radiation were investigated on pathogenic plasmid aiming at a development of a method to induce mutagenesis in plasmid DNA by radiation. To construct an experimental system which allows to detect a plasmid-segregated cell, kanamycin-resistant casette was inserted into pX02, a capsule plasmid in Bacillus anthracis to produce acpA:: Kmr by homologous recombination. This plasmid is thought available for analyzing the rate of plasmid segregation caused by radiation. Next, developments of detection and determination methods for various cytokines were attempted by RT-PCR method with an aim to investigate the expression changes of cytokine mRNA in calf immunocytes by radiation. In calf peripheral monocytes and alveolar macrophages, expressions of cytokine mRNAs such as IL-4, IFN? and GM-CSF mRNA as well as IL-1?, IL-1?, IL-2 and IL-6 were detected by RT-PCR method. (M.N.)

  9. Method of risk reduction in radiation therapy

    International Nuclear Information System (INIS)

    Reduction of risk to the patient undergoing radiotherapy is discussed in this paper. It is generally accepted that radiation tumor doses delivered should be within 5% of that prescribed. It is also generally taken that no harm will come to a patient if the dose to a particular organ is within 10% of that considered tolerable. I was aware of that statement 30 years ago and I assume that it has an even longer history. There are suggestions from time to time that both of these criteria are too wide. With modern measuring instruments, diagnostic methods and calculation techniques, it is possible to reduce the tumor dose criteria to 4% and perhaps to 3%. There is also some clinical data which suggests that local tumor control may depend upon very precise delivery of radiation dose. Shukovsky has published data indicated that local control of squamous carcinoma of the supraglottic larynx may depend sharply upon dose differences as small as 5%. Thus we are in a time of tightening dose standards which may have justification in clinical findings

  10. Intrusion detection using pattern recognition methods

    Science.gov (United States)

    Jiang, Nan; Yu, Li

    2007-09-01

    Today, cyber attacks such as worms, scanning, active attackers are pervasive in Internet. A number of security approaches are proposed to address this problem, among which the intrusion detection system (IDS) appears to be one of the major and most effective solutions for defending against malicious users. Essentially, intrusion detection problem can be generalized as a classification problem, whose goal is to distinguish normal behaviors and anomalies. There are many well-known pattern recognition algorithms for classification purpose. In this paper we describe the details of applying pattern recognition methods to the intrusion detection research field. Experimenting on the KDDCUP 99 data set, we first use information gain metric to reduce the dimensionality of the original feature space. Two supervised methods, the support vector machine as well as the multi-layer neural network have been tested and the results display high detection rate and low false alarm rate, which is promising for real world applications. In addition, three unsupervised methods, Single-Linkage, K-Means, and CLIQUE, are also implemented and evaluated in the paper. The low computational complexity reveals their application in initial data reduction process.

  11. [A simple method to detect disaccharides deficiency].

    Science.gov (United States)

    Laguens, M; Collura, J; Marrone, R; Diogurdi, E; Lequerica, J; Camaño, M

    2003-01-01

    A simple method, easy to perform during an endoscopic procedure, fast and inexpensive, that allows detecting deficiencies in lactase, sucrase or maltase activities is presented. Briefly, method consists in placing a duodenal biopsy sample in an adequate vial containing lactose, sucrose or maltose solution during a few minutes, and then, adding a few drops of a glucose reactive from commercial origin. Presence of any enzymatic activity is demonstrated when released glucose from any of the disaccharides chosen reacts with the second reactive, turning solution to a red colour. Its utility is discussed and compared with other diagnostic methods. PMID:14708498

  12. Application of organic semiconductors for the detection of ionizing radiations

    International Nuclear Information System (INIS)

    One year aged organic bilayer Al/PCTDA/CuPc/ITO structure prepared with ICB deposition method has been used to evaluate the influence of ionising radiation to electrical properties of the structure. Small sources of α, β and γ radiation were used for preliminary measurements. Capacitance and current measurements were performed on samples with and without presence of ionising radiation and results compared. Effect of β and γ radiation has not been confirmed due to the limited activity of available sources. Presence of α radiation has noticeably changed the capacitance of reversely biased structure and produced increase of current through the structure. We have tried to explain the capacitance properties using the model previously developed for the organic bilayer structures, but we did not manage to resolve all effects involved. (author)

  13. X-ray tomography detection methods

    International Nuclear Information System (INIS)

    The improvement in the performance of X-ray tomographs involves the study of more efficient detectors, hence the important effort now being undertaken by various teams in the design of new detection systems. After defining the parameters which make it possible to select a detection method for an X-ray tomograph, the technical and operating characteristics of the following detectors are briefly reviewed: gas ionization chamber, multiwire grid chambers, ionization chamber with a condensed medium (liquid xenon), scintillation detector (with scintillator and photodetector) and semiconductor detectors (CdTe and HgI2) operating at ambient temperature

  14. Traumatic brain injury detection using electrophysiological methods.

    Directory of Open Access Journals (Sweden)

    David O. Keyser, Ph.D.

    2015-02-01

    1. Individual qEEG measures provide limited diagnostic utility for mTBI. However, many measures can be important features of qEEG discriminant functions, which do show significant promise as mTBI detection tools. 2. ERPs offer utility in mTBI detection. In fact, evidence indicates that ERPs can identify abnormalities in cases where EEGs alone are nondisclosing. 3. The standard mathematical procedures used in the characterization of mTBI EEGs should be expanded to incorporate newer methods of analysis including nonlinear dynamical analysis, complexity measures, analysis of causal interactions, graph theory and information dynamics. 4. and 5. are too long to include here

  15. Blinds Methods for Detecting Image Fakery.

    Czech Academy of Sciences Publication Activity Database

    Saic, Stanislav; Mahdian, Babak

    Praha : IEEE, 2008 - (Sanson, L.; Fliegel, K.), s. 280-286 ISBN 978-1-4244-1816-9. [42th Annual 2008 IEEE International Carnahan conference on Security Technology. Praha (CZ), 13.10.2008-16.10.2008] R&D Projects: GA ?R GA102/08/0470 Institutional research plan: CEZ:AV0Z10750506 Keywords : Image forensics * image tampering * Forgery detection * Authentication Subject RIV: IN - Informatics, Computer Science http://library.utia.cas.cz/separaty/2008/ZOI/saic-blinds methods for detecting image fakery.pdf

  16. Photostimulated luminescence detection and radiation effects on cinnamon (Cinnamomum zeylanicum) spice.

    Science.gov (United States)

    Marcazzó, J; Sanchez-Barrera, C E; Urbina-Zavala, A; Cruz-Zaragoza, E

    2015-10-01

    The increase of disease borne pathogens in foods has promoted the use of new technologies in order to eliminate these pathogen microorganisms and extend the shelf-life of the foodstuffs. In particular, Cinnamon (Cinnamomum zeylanicum) contains an important number of pathogen microorganisms and it is frequently sterilized by gamma radiation. However, it is important to develop the detection methods for irradiated food in order to keep the dose control and also to analyze the radiation effects in their chemical property. This work reports (i) the photostimulated luminescence (PSL) detection of irradiated cinnamon and thermoluminescence (TL) detection of the inorganic polymineral fraction separated from this spice, and (ii) the proximate chemical analysis carried out on fat, protein and dietetic fiber contents. The detection limits using the PSL and TL methods were 500 Gy and 10 Gy, respectively, and the fat content was increased significantly with the gamma dose that could be related to the lipid oxidation in the cinnamon. PMID:26133665

  17. Development of detection methods for irradiated foods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Seung; Kim, Chong Ki; Lee, Hae Jung [Korea Atomic Energy Research Insitiute, Taejon (Korea, Republic of); Kim, Kyong Su [Chosun University, Kwangju (Korea, Republic of)

    1999-04-01

    To identify irradiated foods, studies have been carried out with electron spin resonance (ESR) spectroscopy on bone containing foods, such as chicken, pork, and beef. The intensity of the signal induced in bones increased linearly with irradiation doses in the range of 1.0 kGy to 5.0 kGy, and it was possible to distinguish between samples given low and high doses of irradiation. The signal stability for 6 weeks made them ideal for the quick and easy identification of irradiated meats. The analysis of DNA damage made on single cells by agarose gel electrophoresis (DNA 'comet assay') can be used to detect irradiated food. All the samples irradiated with over 0.3 kGy were identified to detect post-irradiation by the tail length of their comets. Irradiated samples showed comets with long tails, and the tail length of the comets increased with the dose, while unirradiated samples showed no or very short tails. As a result of the above experiment, the DNA 'comet assay' might be applied to the detection of irradiated grains as a simple, low-cost and rapid screening test. When fats are irradiated, hydrocarbons contained one or two fewer carbon atoms are formed from the parent fatty acids. The major hydrocarbons in irradiated beef, pork and chicken were 1,7-hexadecadiene and 8-heptadecene originating from leic acid. 1,7 hexadecadiene was the highest amount in irradiated beef, pork and chicken. Eight kinds of hydrocarbons were identified from irradiated chicken, among which 1,7-hexadecadiene and 8-heptadecen were detected as major compounds. The concentration of radiation-induced hydrocarbons was relatively constant during 16 weeks.

  18. Development of detection methods for irradiated foods

    International Nuclear Information System (INIS)

    To identify irradiated foods, studies have been carried out with electron spin resonance (ESR) spectroscopy on bone containing foods, such as chicken, pork, and beef. The intensity of the signal induced in bones increased linearly with irradiation doses in the range of 1.0 kGy to 5.0 kGy, and it was possible to distinguish between samples given low and high doses of irradiation. The signal stability for 6 weeks made them ideal for the quick and easy identification of irradiated meats. The analysis of DNA damage made on single cells by agarose gel electrophoresis (DNA 'comet assay') can be used to detect irradiated food. All the samples irradiated with over 0.3 kGy were identified to detect post-irradiation by the tail length of their comets. Irradiated samples showed comets with long tails, and the tail length of the comets increased with the dose, while unirradiated samples showed no or very short tails. As a result of the above experiment, the DNA 'comet assay' might be applied to the detection of irradiated grains as a simple, low-cost and rapid screening test. When fats are irradiated, hydrocarbons contained one or two fewer carbon atoms are formed from the parent fatty acids. The major hydrocarbons in irradiated beef, pork and chicken were 1,7-hexadecadiene and 8-heptadecene originating from leic acid. 1,7 hexadecadiene was the highest amount in irradiated beef, pork and chicken. Eight kinds of hydrocarbons were identified from irradiated chicken, among which 1,7-hexadecadiene and 8-heptadecen were detected as major compounds. The concentration of radiation-induced hydrocarbons was relatively constant during 16 weeks

  19. Passive radiation detection using optically active CMOS sensors

    Science.gov (United States)

    Dosiek, Luke; Schalk, Patrick D.

    2013-05-01

    Recently, there have been a number of small-scale and hobbyist successes in employing commodity CMOS-based camera sensors for radiation detection. For example, several smartphone applications initially developed for use in areas near the Fukushima nuclear disaster are capable of detecting radiation using a cell phone camera, provided opaque tape is placed over the lens. In all current useful implementations, it is required that the sensor not be exposed to visible light. We seek to build a system that does not have this restriction. While building such a system would require sophisticated signal processing, it would nevertheless provide great benefits. In addition to fulfilling their primary function of image capture, cameras would also be able to detect unknown radiation sources even when the danger is considered to be low or non-existent. By experimentally profiling the image artifacts generated by gamma ray and ? particle impacts, algorithms are developed to identify the unique features of radiation exposure, while discarding optical interaction and thermal noise effects. Preliminary results focus on achieving this goal in a laboratory setting, without regard to integration time or computational complexity. However, future work will seek to address these additional issues.

  20. Investigation of antiques with radiation methods

    International Nuclear Information System (INIS)

    The authenticity of three European medieval swords had to be proven. In addition, the production techniques used by the medieval smiths were studied. For the assessment of antiques and objects of art, both examination of the material and stylistic studies are required in nearly all cases. In most of these cases, not only one but several essentially different investigation methods have to be applied during the study of the material. Nuclear and radiation techniques are favoured, primarily because these can frequently be carried out non-invasively, which is essential in the study of objects of high value, since taking samples from the objects might devalue them significantly. Using nuclear techniques such as neutron activation analysis (NAA) or photon activation analysis (PAA), large volumes of material can be analysed in many cases, so it is possible to investigate the entire body of the object or large parts of it. Thus meaningful results with a high degree of representativeness can be obtained nondestructively. In activation analysis, the material under study is exposed to irradiation by subatomic particles - neutrons, photons, protons, etc. During bombardment with these, radioactive nuclides are produced through nuclear reactions. The radionuclides decay by emission of different types of radiation. Among these, photons (γ or characteristic X rays) are preferred for use in analytical evaluation. The energy distribution of X and γ rays is characteristic for each radionuclide. Measured with an appropriate spectrometer, the spectra can be used for simultaneous multicomponent analyses. Since the method is based upon nuclear reactions, only the element composition can be determined; normally no chemical speciation is possible

  1. Delay-Line Three-Dimensional Position Sensitive Radiation Detection

    Science.gov (United States)

    Jeong, Manhee

    High-resistivity silicon(Si) in large volumes and with good charge carrier transport properties has been produced and achieved success as a radiation detector material over the past few years due to its relatively low cost as well as the availability of well-established processing technologies. One application of that technology is in the fabrication of various position-sensing topologies from which the incident radiation's direction can be determined. We have succeeded in developing the modeling tools for investigating different position-sensing schemes and used those tools to examine both amplitude-based and time-based methods, an assessment that indicates that fine position-sensing can be achieved with simpler readout designs than are conventionally deployed. This realization can make ubiquitous and inexpensive deployment of special nuclear materials (SNM) detecting technology becomes more feasible because if one can deploy position-sensitive semiconductor detectors with only one or two contacts per side. For this purpose, we have described the delay-line radiation detector and its optimized fabrication. The semiconductor physics were simulated, the results from which guided the fabrication of the guard ring structure and the detector electrode, both of which included metal-field-plates. The measured improvement in the leakage current was confirmed with the fabricated devices, and the structures successfully suppressed soft-breakdown. We also demonstrated that fabricating an asymmetric strip-line structure successfully minimizing the pulse shaping and increases the distance through which one can propagate the information of the deposited charge distribution. With fabricated delay-line detectors we can acquire alpha spectra (Am-241) and gamma spectra (Ba-133, Co-57 and Cd-109). The delay-line detectors can therefore be used to extract the charge information from both ion and gamma-ray interactions. Furthermore, standard charge-sensitive circuits yield high SNR pulses. The detectors and existing electronics can therefore be used to yield imaging instruments for neutron and gamma-rays, in the case of silicon. For CZT, we would prefer to utilize current sensing to be able to clearly isolate the effects of the various charge-transport non-idealities, the full realization of which awaits the fabrication of the custom-designed TIA chip.

  2. Detection of radiation of powerful fiber lasers reflected back from metals in course of laser processing

    International Nuclear Information System (INIS)

    The method allowing to detect in real time the laser radiation reflected from metal in course of its processing by powerful fiber ytterbium lasers is proposed. It is shown that there is a correspondence between the behavior of a reflected back signal and the oscillatory processes in a liquid bath of the fused metal

  3. Measurement of filament length generated by an intense femtosecond laser pulse using electromagnetic radiation detection

    Science.gov (United States)

    Hosseini, S. A.; Ferland, B.; Chin, S. L.

    We present a new method to measure the length of a filament induced by the propagation of intense femtosecond laser pulses in air. We used an antenna to detect electromagnetic pulses radiated from multipole moments inside the filament oscillating at the plasma frequency. The results are compared with the values detected from the backscattered fluorescence induced by multiphoton ionization of nitrogen molecules excited inside the filament. The values are found to be in good agreement.

  4. Subclinical thyroid disease after radiation therapy detected by radionuclide scanning

    International Nuclear Information System (INIS)

    Purpose: The actuarial risk for developing benign or malignant thyroid disease following radiation therapy (RT) is controversial, but may be as high as 50% at 20 years. An effective screening modality should be specific but not overly sensitive, a limitation of ultrasound. We questioned whether Technetium-99 m pertechnetate (99mTc TcO4-) scanning could detect clinically significant disease in ostensibly disease-free cancer survivors. Methods and Materials: Eligibility criteria included an interval of at least 5 years after RT to the cervical region, a thyroid gland that was normal to palpation, euthyroid status determined by clinical examination, free T4 and TSH. The 34 patients scanned included 16 children (99mTc TcO4-scanning was 33 years (range, 13.6-58 years), providing a mean interval of 13 years (range, 5.3-26.6years). The mean RT dose to the thyroid was 36.4 Gy (range, 19.5-52.5). Thyroid scanning was performed with a 5 mCi dose of 99mTc TcO4- obtaining flow, immediate and delayed static, and pinhole collimator images. Results: Seven patients (21.6%) had abnormal scans, and the percentage was higher among children (25%) and females (25%) compared to adults (16.7%) and males (16.7%), respectively. Two of 34 patients (5.9%) were discovered to have a thyroid cancer; histopathologies were papillary and follicular carcinoma. Conclusion: In this population of clinically normal cancer survivors who had been irradiated to the cervical region, subclinical thyroid disease, of potential clinical significance, was detected by 99mTc TcO4- in about 20%. Children may be more commonly affected. Although the cost effectiveness of screening will require a larger sample number, we propose a surveillance schema for this patient population

  5. Study on novel radiation remote-sensing method based on laser spectroscopic measurement of radiation induced radicals

    International Nuclear Information System (INIS)

    In order to develop a radiation intensity or absorbed dose rate monitor with high radiation resistance in intense radiation fields, we have proposed a novel radiation remote-sensing method based on high sensitive CRD (Cavity ring-down) laser spectroscopic measurement of radiation induced radicals. We have simulated the yields of radiation induced radicals by solving numerically rate equations. As results of model calculations, the principal product is ozone and its saturated yield reaches several dozen ppb level with absorbed dose rate 1 Gy/s. From results of preliminary experiments on the CRD spectroscopy for ozone as a target radical, the detection limit concentration of ozone for present system is estimated to be 6 ppb at least. Through the comparison between the results of experiments and simulations, it is found that the detection limit of absorbed dose rate is 0.3 Gy/s for present system. Based on this radiation remote-sensing method the prototype system will be designed and demonstrated experimentally in high-intense radiation field. (T. Tanaka)

  6. Hough transform methods used for object detection

    International Nuclear Information System (INIS)

    The Hough transform (HT) is a robust parameter estimator of multi-dimensional features in images. The HT is an established technique which evidences a shape by mapping image edge points into a parameter space. The HT is technique which is used to isolate curves of a give shape in an image. The classical HT requires that the curve be specified in some parametric from and, hence is most commonly used in the detection of regular curves. The HT has been generalized so that it is capable of detecting arbitrary curved shapes. The main advantage of this transform technique is that it is very tolerant of gaps in the actual object boundaries the classical HT for the detection of line , we will indicate how it can be applied to the detection of arbitrary shapes. Sometimes the straight line HT is efficient enough to detect features such as artificial curves. The HT is an established technique for extracting geometric shapes based on the duality definition of the points on a curve and their parameters. This technique has been developed for extracting simple geometric shapes such as lines, circles and ellipses as well as arbitrary shapes. The HT provides robustness against discontinuous or missing features, points or edges are mapped into a partitioned parameter of Hough space as individual votes where peaks denote the feature of interest represented in a non-analytically tabular form. The main drawback of the HT technique is the computational requirement which has an exponential growth of memory space and processing time as the number of parameters used to represent a primitive increases. For this reason most of the research on the HT has focused on reducing the computational burden for extracting of arbitrary shapes under more general transformations include a overview of describing the methods for the detection image processing programs are frequently required to detect and particle classification in an industrial setting, a standard algorithms for this detection lines, circles, and ellipses shapes in image by using the HT. The methods and algorithms working to detect the objects, in which captured from 3-dimension real image to 2-dimension image. (Author)

  7. Flexible Receiver Radiation Detection System (FRRDS) Users Manual

    International Nuclear Information System (INIS)

    The Flexible Receiver Radiation Detection System (FRRDS) comprises a control computer, a remote data acquisition subsystem, and three hyperpure germanium gamma radiation detectors. The scope of this document is the description of various steps for the orderly start-up, use, and shutdown of the FRRDS. Only those items necessary for these oprations are included. This document is a companion to WHC-SD-W151-UM-002, 'Operating Instructions for the 42 Inch Flexible Receiver,' WHC-SD-W151-UM-003, 'Operating Instructions for the 4-6 Inch Flexible Receiver,' and the vendor supplied system users guide (Ref. 6)

  8. A non-parametric method for correction of global radiation observations

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Perers, Bengt; Nielsen, Henrik Aalborg

    2013-01-01

    This paper presents a method for correction and alignment of global radiation observations based on information obtained from calculated global radiation, in the present study one-hour forecast of global radiation from a numerical weather prediction (NWP) model is used. Systematical errors detected in the observations are corrected. These are errors such as: tilt in the leveling of the sensor, shadowing from surrounding objects, clipping and saturation in the signal processing, and errors from d...

  9. Research and Design of Rootkit Detection Method

    Science.gov (United States)

    Liu, Leian; Yin, Zuanxing; Shen, Yuli; Lin, Haitao; Wang, Hongjiang

    Rootkit is one of the most important issues of network communication systems, which is related to the security and privacy of Internet users. Because of the existence of the back door of the operating system, a hacker can use rootkit to attack and invade other people's computers and thus he can capture passwords and message traffic to and from these computers easily. With the development of the rootkit technology, its applications are more and more extensive and it becomes increasingly difficult to detect it. In addition, for various reasons such as trade secrets, being difficult to be developed, and so on, the rootkit detection technology information and effective tools are still relatively scarce. In this paper, based on the in-depth analysis of the rootkit detection technology, a new kind of the rootkit detection structure is designed and a new method (software), X-Anti, is proposed. Test results show that software designed based on structure proposed is much more efficient than any other rootkit detection software.

  10. Self-occluding quad NaI directional gamma radiation detector for standoff radiation detection

    Science.gov (United States)

    Portnoy, David; Mattson, John

    2011-09-01

    Currently there is a significant amount of interest in standoff radiation detection. One of the biggest challenges is to separate small radiation signals from large varying background radiation. Many systems have been developed to address this problem that rely on coded-aperture and/or Compton imaging. These imaging systems tend to be large, heavy, complex, and therefore expensive. In this paper we report on the development of a self-occluding directional gamma radiation sensor that is relatively small (kg), inexpensive, and simple in design. Laboratory and field measurements suggest that these sensors will work as well as the gamma imaging systems for many radiation detection applications at a fraction of the cost, weight, and complexity. An azimuth can be resolved with a standard deviation of 7° in 10 seconds for a source yielding 45 CPS at the detector in a 300 CPS background radiation field. This paper describes the self-occluding quad NaI directional gamma radiation detector, the impact of gamma energy and distance on angular precision and accuracy, and potential applications.

  11. Detecting data anomalies methods in distributed systems

    Science.gov (United States)

    Mosiej, Lukasz

    2009-06-01

    Distributed systems became most popular systems in big companies. Nowadays many telecommunications companies want to hold large volumes of data about all customers. Obviously, those data cannot be stored in single database because of many technical difficulties, such as data access efficiency, security reasons, etc. On the other hand there is no need to hold all data in one place, because companies already have dedicated systems to perform specific tasks. In the distributed systems there is a redundancy of data and each system holds only interesting data in appropriate form. Data updated in one system should be also updated in the rest of systems, which hold that data. There are technical problems to update those data in all systems in transactional way. This article is about data anomalies in distributed systems. Avail data anomalies detection methods are shown. Furthermore, a new initial concept of new data anomalies detection methods is described on the last section.

  12. Radiation Detection Scenario Analysis Toolbox (RADSAT) Test Case Implementation Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Shaver, Mark W.

    2010-09-27

    Final report for the project. This project was designed to demonstrate the use of the Radiation Detection Scenario Analysis Toolbox (RADSAT) radiation detection transport modeling package (developed in a previous NA-22 project) for specific radiation detection scenarios important to proliferation detection.

  13. Comparison of three methods of microsatellite detection

    DEFF Research Database (Denmark)

    Christensen, Mariann; Sunde, Lone; Bolund, L; Orntoft, T F

    1999-01-01

    Examination of microsatellites is frequent in the diagnosis of cancer. Microsatellites are repeat DNA sequences scattered throughout the human genome. These repeat regions are very frequent and highly polymorphic elements. In this study we focus on dinucleotide repeats. We compared three different methods for the detection of microsatellites: use of the ABI Prism 377 fluorescence sequencer, autoradiography and silver-stained gels. DNA was extracted from various clinical samples and amplified by ...

  14. Ultrasound Imaging Methods for Breast Cancer Detection:

    OpenAIRE

    Ozmen, N.

    2014-01-01

    The main focus of this thesis is on modeling acoustic wavefield propagation and implementing imaging algorithms for breast cancer detection using ultrasound. As a starting point, we use an integral equation formulation, which can be used to solve both the forward and inverse problems. This thesis contains three main topics: forward modeling, imaging and inversion methods, and a short description of essential steps needed to work with measured data. First, acoustic wavefield propagation u...

  15. Detection Method of TOXOPLASMA GONDII Tachyzoites

    Science.gov (United States)

    Eassa, Souzan; Bose, Chhanda; Alusta, Pierre; Tarasenko, Olga

    2011-06-01

    Tachyzoites are considered to be the most important stage of Toxoplasma gondii which causes toxoplasmosis. T. gondii is, an obligate intracellular parasite which infects a wide range of cells. The present study was designed to develop a method for an early detection of T. gondii tachyzoites. The method comprised of a binding assay which was analyzed using principal component and cluster analysis. Our data showed that glycoconjugates GC1, GC2, GC3 and GC10 exhibit a significantly higher binding affinity for T. gondii tachyzoites as compared to controls (T. gondii only, PAA only, GC 1, 2, 3, and 10 only).

  16. Methods of detecting defective nuclear fuel elements

    International Nuclear Information System (INIS)

    A method is specified for ultrasonically detecting defective nuclear fuel elements while under water and spaced within a nuclear fuel assembly of the type used in water cooled reactors. The method consists of inserting an ultrasonic search unit having an ultrasonic transducer element into the spaces between the fuel elements; aligning the transducer element with a fuel element to be examined; energising the transducer element to transmit an ultrasonic pulse into the fuel element to be examined; and measuring the ultrasonic echoes reflected. (author)

  17. A method for characterizing photon radiation fields

    International Nuclear Information System (INIS)

    Uncertainty in dosimetric and exposure rate measurements can increase in areas where multi-directional and low-energy photons (< 100 keV) exist because of variations in energy and angular measurement response. Also, accurate measurement of external exposures in spatially non-uniform fields may require multiple dosimetry. Therefore, knowledge of the photon fields in the workplace is required for full understanding of the accuracy of dosimeters and instruments, and for determining the need for multiple dosimeters. This project was designed to develop methods to characterize photon radiation fields in the workplace, and to test the methods in a plutonium facility. The photon field at selected work locations was characterized using TLDs and a collimated NaI(Tl) detector from which spatial variations in photon energy distributions were calculated from measured spectra. Laboratory results showed the accuracy and utility of the method. Field measurement results combined with observed work patterns suggested the following: (1) workers are exposed from all directions, but not isotropically, (2) photon energy distributions were directionally dependent, (3) stuffing nearby gloves into the glovebox reduced exposure rates significantly, (4) dosimeter placement on the front of the chest provided for a reasonable estimate of the average dose equivalent to workers' torsos, (5) justifiable conclusions regarding the need for multiple dosimetry can be made using this quantitative method, and (6) measurements of the exposure rates with ionization chambers pointed with open beta windows toward the glovebox provided the highest measured rates, although absolute accuracy of the field measurements still needs to be assessed

  18. A method for characterizing photon radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, J.J.; Hsu, H.H. [Los Alamos National Lab., NM (United States); Hsieh, F.H.; Borak, T.B. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Radiological Health Sciences

    1999-04-01

    Uncertainty in dosimetric and exposure rate measurements can increase in areas where multi-directional and low-energy photons (< 100 keV) exist because of variations in energy and angular measurement response. Also, accurate measurement of external exposures in spatially non-uniform fields may require multiple dosimetry. Therefore, knowledge of the photon fields in the workplace is required for full understanding of the accuracy of dosimeters and instruments, and for determining the need for multiple dosimeters. This project was designed to develop methods to characterize photon radiation fields in the workplace, and to test the methods in a plutonium facility. The photon field at selected work locations was characterized using TLDs and a collimated NaI(Tl) detector from which spatial variations in photon energy distributions were calculated from measured spectra. Laboratory results showed the accuracy and utility of the method. Field measurement results combined with observed work patterns suggested the following: (1) workers are exposed from all directions, but not isotropically, (2) photon energy distributions were directionally dependent, (3) stuffing nearby gloves into the glovebox reduced exposure rates significantly, (4) dosimeter placement on the front of the chest provided for a reasonable estimate of the average dose equivalent to workers` torsos, (5) justifiable conclusions regarding the need for multiple dosimetry can be made using this quantitative method, and (6) measurements of the exposure rates with ionization chambers pointed with open beta windows toward the glovebox provided the highest measured rates, although absolute accuracy of the field measurements still needs to be assessed.

  19. A new IQ detection method for LLRF

    International Nuclear Information System (INIS)

    Digital LLRF technology has been widely used in new generation particle accelerators. IF quadrature sampling is a common method for amplitude and phase detection. Many strategies, which obey the same rule of fsample=(M/N)fIF (M/N is a rational number), have been proposed to reduce the effects of spectrum aliasing. However, we found that M/N does not need to be a rational number according to Shannon's theorem. Therefore, we propose a new IQ detection method in this paper. This method is based on a special IIR filter which is derived from an RLC circuit. The unique characteristic of the method is that the value of fIF is independent of the value of fsample. We have set up an experimental platform to verify our method. A 122.88 MHz sampling clock is used to sample a 3 MHz IF signal. The DDS and PI control techniques are used to realize the closed-loop control. Results show that the stability of the system is within ± 0.05% (peak to peak) for the amplitude, and with ±0.03° (peak to peak) for the phase in 5 h.

  20. A new IQ detection method for LLRF

    Science.gov (United States)

    Qiu, Feng; Gao, Jie; Lin, Hai-ying; Liu, Rong; Ma, Xin-peng; Sha, Peng; Sun, Yi; Wang, Guang-wei; Wang, Qun-yao; Xu, Bo; Zeng, Ri-hua

    2012-05-01

    Digital LLRF technology has been widely used in new generation particle accelerators. IF quadrature sampling is a common method for amplitude and phase detection. Many strategies, which obey the same rule of fsample=(M/N)fIF (M/N is a rational number), have been proposed to reduce the effects of spectrum aliasing. However, we found that M/N does not need to be a rational number according to Shannon's theorem. Therefore, we propose a new IQ detection method in this paper. This method is based on a special IIR filter which is derived from an RLC circuit. The unique characteristic of the method is that the value of fIF is independent of the value of fsample. We have set up an experimental platform to verify our method. A 122.88 MHz sampling clock is used to sample a 3 MHz IF signal. The DDS and PI control techniques are used to realize the closed-loop control. Results show that the stability of the system is within ± 0.05% (peak to peak) for the amplitude, and with ±0.03° (peak to peak) for the phase in 5 h.

  1. A new IQ detection method for LLRF

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Feng, E-mail: qiuf@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Gao, Jie; Lin, Hai-ying; Liu, Rong [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Ma, Xin-peng [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Sha, Peng; Sun, Yi; Wang, Guang-wei; Wang, Qun-yao; Xu, Bo [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zeng, Ri-hua [European Spallation Source ESS ABP.O Box 176, SE-221 00 Lund (Sweden)

    2012-05-21

    Digital LLRF technology has been widely used in new generation particle accelerators. IF quadrature sampling is a common method for amplitude and phase detection. Many strategies, which obey the same rule of f{sub sample}=(M/N)f{sub IF} (M/N is a rational number), have been proposed to reduce the effects of spectrum aliasing. However, we found that M/N does not need to be a rational number according to Shannon's theorem. Therefore, we propose a new IQ detection method in this paper. This method is based on a special IIR filter which is derived from an RLC circuit. The unique characteristic of the method is that the value of f{sub IF} is independent of the value of f{sub sample}. We have set up an experimental platform to verify our method. A 122.88 MHz sampling clock is used to sample a 3 MHz IF signal. The DDS and PI control techniques are used to realize the closed-loop control. Results show that the stability of the system is within {+-} 0.05% (peak to peak) for the amplitude, and with {+-}0.03 Degree-Sign (peak to peak) for the phase in 5 h.

  2. Noise Radiation Measure-Sound Power and its Test Methods

    OpenAIRE

    Zeng Xianren; Zuo Yanyan

    2013-01-01

    This study mainly aims to study the characteristics and theory of sound radiation of steady-state vibration. Study shows that sound radiation power of steady-state vibration is constant. And taking excavator for experimental object by hemisphere surface method, the radiated sound power of the excavator is the same as testing the sound pressure on various surfaces based on relevant international standard. Finally, a test method of radiated sound power for cylindrical vibration object is proposed.

  3. Development of landmine detection system by measuring radiations from landmine

    International Nuclear Information System (INIS)

    Since mines left underground are small and covered with plastics, not with metal, ordinary metal detection system is difficult to detect, new landmine detection system by irradiating neutrons using a portable D-D nuclear fusion neutron source and measuring radiations from landmine has been developed. Neutron reaction with an explosive emits capture gamma ray having specific energy. The atomicity density ratio in an explosive can identify a kind as well as presence of a mine by measuring capture gamma ray of different energy produced by hydrogen and nitrogen at the same time. In addition, a position of a mine can be identified with measuring a backscattering neutron with plural detectors at the same time. Using melamine powder instead of explosive, the detection system using a BGO scintillator surrounded by a NAI scintillator was demonstrated in the experiment. Its field test is planned in March 2007. (T. Tanaka)

  4. Radiation detection using the color changes of lilac spodumene

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Raquel A.P.; Mello, Ana Carolina S.; Lima, Hestia R.B.R.; Campos, Simara Santos; Souza, Suzana O., E-mail: raoliceira@fisica.ufs.b [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Physics Dept.

    2009-07-01

    The use of radiation in industrial processes currently offers several advantages in the field of sterilization of medical and pharmaceuticals products, the preservation of food, and a variety of other products widely used in modern society. A dosimetry of confidence is a key parameter for the quality assurance of radiation processing and the irradiated products. This work investigates dosimetric properties in natural spodumene, LiAlSi{sub 2}O{sub 6}, called kunzite, from Minas Gerais State, Brazil. After X irradiation on the samples in powder form was detected a change in color of the crystal where the dose received. This makes a possible viability of this material is applied in research on development of radiation detectors using the change in color of purple spodumene. (author)

  5. Radiation detection using the color changes of lilac spodumene

    International Nuclear Information System (INIS)

    The use of radiation in industrial processes currently offers several advantages in the field of sterilization of medical and pharmaceuticals products, the preservation of food, and a variety of other products widely used in modern society. A dosimetry of confidence is a key parameter for the quality assurance of radiation processing and the irradiated products. This work investigates dosimetric properties in natural spodumene, LiAlSi2O6, called kunzite, from Minas Gerais State, Brazil. After X irradiation on the samples in powder form was detected a change in color of the crystal where the dose received. This makes a possible viability of this material is applied in research on development of radiation detectors using the change in color of purple spodumene. (author)

  6. Infrared luminescence for real time ionizing radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Veronese, Ivan, E-mail: ivan.veronese@unimi.it; Mattia, Cristina De; Cantone, Marie Claire [Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Fasoli, Mauro; Chiodini, Norberto; Vedda, Anna [Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Via Cozzi 55, 20125 Milano (Italy); Mones, Eleonora [Medical Physics Department, Azienda Ospedaliera Maggiore della Carità, Corso Mazzini 18, 28100 Novara (Italy)

    2014-08-11

    Radio-luminescence (RL) optical fiber sensors enable a remote, punctual, and real time detection of ionizing radiation. However, the employment of such systems for monitoring extended radiation fields with energies above the Cerenkov threshold is still challenging, since a spurious luminescence, namely, the “stem effect,” is also generated in the passive fiber portion exposed to radiation. Here, we present experimental measurements on Yb-doped silica optical fibers irradiated with photon fields of different energies and sizes. The results demonstrate that the RL of Yb{sup 3+}, displaying a sharp emission line at about 975?nm, is free from any spectral superposition with the spurious luminescence. This aspect, in addition with the suitable linearity, reproducibility, and sensitivity properties of the Yb-doped fibers, paves the way to their use in applications where an efficient stem effect removal is required.

  7. EPR detection of foods preserved with ionizing radiation

    International Nuclear Information System (INIS)

    The applicability of the epr technique for the detection of dried vegetables, mushrooms, some spices, flavour additives and some condiments preserved with ionizing radiation is discussed. The epr signals recorded after exposure to gamma rays and to the beams of 10 MeV electrons from linac are stable, intense and specific enough as compared with those observed with nonirradiated samples and could be used for the detection of irradiation. However, stability of radiation induced epr signals produced in these foods depends on storage condition. No differences in shapes (spectral parameters) and intensities of the epr spectra recorded with samples exposed to the same doses of gamma rays (60Co) and 10 MeV electrons were observed

  8. Small Teleoperated Robot for Nuclear Radiation and Chemical Leak Detection

    Directory of Open Access Journals (Sweden)

    Kui Qian

    2012-09-01

    Full Text Available In order to meet the actual requirements of nuclear radiation and chemical leak detection, and emergency response, a new small teleoperated robot for nuclear radiation and chemical detection is proposed. A small?size robot is manufactured according to technical requirements and the overall structure and control system is described. Meanwhile, based on the principles of human?robot interaction, a user?friendly human?robot interaction interface is designed to provide a good telepresence for the operator, helping the operator to perceive and judge the robot’s situation to better assist in making the right decisions and in giving timely operation instructions. The experiment results show the robot system operates reliably and meets the technical requirements.

  9. Position sensitive detection of neutrons in high radiation background field

    Energy Technology Data Exchange (ETDEWEB)

    Vavrik, D., E-mail: vavrik@itam.cas.cz [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, Prague (Czech Republic); Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Prosecka 76, 190 00 Prague 9 (Czech Republic); Jakubek, J.; Pospisil, S. [Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Prosecka 76, 190 00 Prague 9 (Czech Republic); Vacik, J. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rez, 250 68 Prague, Czech Republic (Czech Republic)

    2014-01-15

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high ? and e{sup ?} radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 ?m{sup 2}) spectroscopic Timepix detector adapted for neutron detection utilizing very thin {sup 10}B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10{sup ?4}.

  10. Radiation Detection System for Prevention of Radiological and Nuclear Terrorism

    International Nuclear Information System (INIS)

    After the September 11 terrorist attack, the threat of a potential for a radiological or nuclear terrorist attack became more apparent. The threats relating to radiological or nuclear materials include a Radiological Dispersion Device (RDD), an Improved Nuclear Device (IND) or a State Nuclear Device (such as a Soviet manufactured suitcase nuclear weapon). For more effective countermeasures against the disaster, multilayer protection concept - prevention of smuggling of radioactive or nuclear material into our country through seaports or airports, detection and prevention of the threat materials in transit on a road, and prevention of their entry into a target building - is recommended. Due to different surrounding circumstances of where detection system is deployed, different types of radiation detection systems are required. There have been no studies on characteristics of detection equipment required under Korean specific conditions. This paper provides information on technical requirements of radiation detection system to achieve multi-layer countermeasures for the purpose of protecting the public and environment against radiological and nuclear terrorism

  11. Radiation Detection System for Prevention of Radiological and Nuclear Terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Sung-Woo; Yoo, Ho-Sik; Jang, Sung-Sun; Kim, Jae-Kwang; Kim, Jung-Soo [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2007-07-01

    After the September 11 terrorist attack, the threat of a potential for a radiological or nuclear terrorist attack became more apparent. The threats relating to radiological or nuclear materials include a Radiological Dispersion Device (RDD), an Improved Nuclear Device (IND) or a State Nuclear Device (such as a Soviet manufactured suitcase nuclear weapon). For more effective countermeasures against the disaster, multilayer protection concept - prevention of smuggling of radioactive or nuclear material into our country through seaports or airports, detection and prevention of the threat materials in transit on a road, and prevention of their entry into a target building - is recommended. Due to different surrounding circumstances of where detection system is deployed, different types of radiation detection systems are required. There have been no studies on characteristics of detection equipment required under Korean specific conditions. This paper provides information on technical requirements of radiation detection system to achieve multi-layer countermeasures for the purpose of protecting the public and environment against radiological and nuclear terrorism.

  12. Development of a distributed radiation detection system using optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, F.; Inouchi, Goro; Takada, Eiji; Takahashi, Hiroyuki; Iguchi, Tetsuo; Nakazawa, Masaharu [Tokyo Univ. (Japan). Faculty of Engineering; Kakuta, Tsunemi

    1996-07-01

    We have confirmed the importance of temperature and dose rate for the response of Ge-doped fibers to radiation. A phenomenological model have been found to account for temperature and dose rate effects. From this model it is possible to make dose predictions from attenuation measurements when the temperature and dose rate are known. Ge-doped fibers have been found to have a relatively low sensitivity to both neutron and gamma radiation. In addition, temperature and dose rate dependencies complicate the analysis. However we point out that these problems may all be solved if we use fibers, such as P-doped fibers, which contain color centers of long lifetime. This would remove both the temperature and dose rate dependencies that complicate the use of Ge-doped fibers, in addition the radiation sensitivity is increased. Finally OTDR has been investigated as a possible read-out method for distributed radiation measurements. For our system the minimum pulse length was 3ns, giving a spatial resolution in the meter range and a response length to radiation of about 10 m if accurate dose values where to be obtained. We found OTDR to be a suitable method for radiation induced attenuation measurements in optical fibers, especially for long fiber lengths and long time scales where questions of light source stability becomes important for other systems. (S.Y.)

  13. Detecting the radiation amplitude zero in ep?ep?

    International Nuclear Information System (INIS)

    Results showing the radiation amplitude zero in e/sup +- /p?e/sup +- /p? are presented. There are two terms contributing to the differential cross section in each case. One term has the zero while the other does not. Nevertheless, there remains a sizable dip which could be experimentally detected at HERA (DESY). The position of the dip provides a measure of the quark charges via real photons

  14. Designing metal-organic frameworks for radiation detection

    International Nuclear Information System (INIS)

    Five metal-organic frameworks (MOFs) were synthesized and investigated via steady-state photoluminescence and radioluminescence measurements. Unique spectral features were observed in the 2.5 MeV proton spectra, corresponding to differences in the electronic and crystalline structures of each material. Targeted structural transformations and infiltration with extrinsic dopants were also employed to modify the luminescence of these frameworks, establishing MOFs as a platform to design new radiation detection materials.

  15. Nanometer transistors for emission and detection of THz radiation

    International Nuclear Information System (INIS)

    Experimental results concerning detection and emission of THz electromagnetic radiation in nanometer Field Effect Transistors are reviewed. The experiments were performed on GaAs/GaAlAs and GaInAs/AlInAs High Electron Mobility Transistors and Si Metal Oxide Semiconductor Field Effect Transistors at room and liquid helium temperatures. The results are interpreted within a model of the electron plasma instability in the transistor channel

  16. Waterborne Pathogens: Detection Methods and Challenges

    Directory of Open Access Journals (Sweden)

    Flor Yazmín Ramírez-Castillo

    2015-05-01

    Full Text Available Waterborne pathogens and related diseases are a major public health concern worldwide, not only by the morbidity and mortality that they cause, but by the high cost that represents their prevention and treatment. These diseases are directly related to environmental deterioration and pollution. Despite the continued efforts to maintain water safety, waterborne outbreaks are still reported globally. Proper assessment of pathogens on water and water quality monitoring are key factors for decision-making regarding water distribution systems’ infrastructure, the choice of best water treatment and prevention waterborne outbreaks. Powerful, sensitive and reproducible diagnostic tools are developed to monitor pathogen contamination in water and be able to detect not only cultivable pathogens but also to detect the occurrence of viable but non-culturable microorganisms as well as the presence of pathogens on biofilms. Quantitative microbial risk assessment (QMRA is a helpful tool to evaluate the scenarios for pathogen contamination that involve surveillance, detection methods, analysis and decision-making. This review aims to present a research outlook on waterborne outbreaks that have occurred in recent years. This review also focuses in the main molecular techniques for detection of waterborne pathogens and the use of QMRA approach to protect public health.

  17. Sensing Methods for Detecting Analog Television Signals

    Science.gov (United States)

    Rahman, Mohammad Azizur; Song, Chunyi; Harada, Hiroshi

    This paper introduces a unified method of spectrum sensing for all existing analog television (TV) signals including NTSC, PAL and SECAM. We propose a correlation based method (CBM) with a single reference signal for sensing any analog TV signals. In addition we also propose an improved energy detection method. The CBM approach has been implemented in a hardware prototype specially designed for participating in Singapore TV white space (WS) test trial conducted by Infocomm Development Authority (IDA) of the Singapore government. Analytical and simulation results of the CBM method will be presented in the paper, as well as hardware testing results for sensing various analog TV signals. Both AWGN and fading channels will be considered. It is shown that the theoretical results closely match with those from simulations. Sensing performance of the hardware prototype will also be presented in fading environment by using a fading simulator. We present performance of the proposed techniques in terms of probability of false alarm, probability of detection, sensing time etc. We also present a comparative study of the various techniques.

  18. Failed fuel detection method and detection device therefor

    International Nuclear Information System (INIS)

    The present invention provide a method and a device for detecting a failed fuel, in which the detection sensitivity of delayed neutrons released from fission products leaked from a defective fuel assembly in a FBR type reactor is improved. That is, a fist neutron detector is disposed at a position near an intermediate heat exchanger of the FBR type reactor, where the level of prompt neutrons emitted from a reactor core is low. A second neutron detector is disposed at a place except for the vicinity of the intermediate heat exchanger, where the level of prompt neutrons emitted from the reactor core is also low. A calculation processing section is disposed for outputting a calculated difference signals calculated based on the output signals from the first neutron detector and the output signal from the second neutron detector. With such a constitution, signal components of the failed fuel can be determined at a good sensitivity efficiency based on the calculation difference between both of the signals from the first neutron detector which outputs addition signals for each of components of the failed fuel and the back ground of the reactor and from the second neutron detector which outputs background component signals of the reactor core. (I.S.)

  19. Method for the diffraction of terrestrial radiation, GAMMA radiation, etc

    International Nuclear Information System (INIS)

    The patent claim concerns shielding against so-called earth radiation. These rays originate from water veins etc., cannot be defined any closer, and are supposed to cause injury to health. The author claims that shielding is possible with the aid of welding electrodes which have cores of nickel. (ORU/LN)

  20. Detection and spectral measurements of coherent synchrotron radiation at FLASH

    International Nuclear Information System (INIS)

    The operation of high-gain free-electron laser (FEL) underlies tremendous demands on high quality electron beams with high peak currents. At the Free-Electron-Laser in Hamburg (FLASH), two magnetic bunch compressors are used to compress the electron bunches longitudinally. In the bunch compressor magnets, these short electron bunches generate coherent synchrotron radiation (CSR). This CSR contains information on the longitudinal bunch profile, which is relevant for driving an FEL. In order to investigate coherent synchrotron radiation at the second bunch compressor BC3 at FLASH, a new setup behind the last dipole was installed. For the detection of coherent synchrotron radiation, which is emitted in the infrared regime, pyroelectric detectors were used. These pyroelectric detectors have been calibrated at the free-electron laser FELIX in the wavelength range from 5 ?m to 110 ?m. For characterisation of the emitted radiation, a transverse scanning device was used to measure the transverse intensity distribution. Various transmission filters were used to obtain additional information about the spectral content. In order to get spectral information with high resolution over a wide wavelength range, a rotating mirror spectrometer using reflective blazed gratings was installed. Using this spectrometer, the first spectral measurements of coherent synchrotron radiation at FLASH in a wavelength range from 10 ?m to 160 ?m were done. (orig.)

  1. Detection and spectral measurements of coherent synchrotron radiation at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher

    2010-02-15

    The operation of high-gain free-electron laser (FEL) underlies tremendous demands on high quality electron beams with high peak currents. At the Free-Electron-Laser in Hamburg (FLASH), two magnetic bunch compressors are used to compress the electron bunches longitudinally. In the bunch compressor magnets, these short electron bunches generate coherent synchrotron radiation (CSR). This CSR contains information on the longitudinal bunch profile, which is relevant for driving an FEL. In order to investigate coherent synchrotron radiation at the second bunch compressor BC3 at FLASH, a new setup behind the last dipole was installed. For the detection of coherent synchrotron radiation, which is emitted in the infrared regime, pyroelectric detectors were used. These pyroelectric detectors have been calibrated at the free-electron laser FELIX in the wavelength range from 5 {mu}m to 110 {mu}m. For characterisation of the emitted radiation, a transverse scanning device was used to measure the transverse intensity distribution. Various transmission filters were used to obtain additional information about the spectral content. In order to get spectral information with high resolution over a wide wavelength range, a rotating mirror spectrometer using reflective blazed gratings was installed. Using this spectrometer, the first spectral measurements of coherent synchrotron radiation at FLASH in a wavelength range from 10 {mu}m to 160 {mu}m were done. (orig.)

  2. Halocarbon refrigerant detection methods. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tapscott, R.E.; Sohn, C.W.

    1996-01-01

    The Montreal Protocol and the U.S. Clean Air Act limit the production of ozone-depleting substances, including many refrigerants. Three options for cost-effectively phasing out these refrigerants from Army installations are: (1) refrigerant containment, (2) retrofit conversion to accommodate alternative refrigerant, and (3) replacement with cooling systems using alternative refrigerant. This report contributes to the first option by identifying and assessing methods to detect chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants that leak from air-conditioning and refrigeration systems. As background, the report describes the relevant sections of the Montreal Protocol and the Clean Air Act, and gives an overview of refrigerants. This is followed by a description of the technologies used in refrigerant leak detection, and a survey of detector types available and their price ranges. Appendixes provide an extensive list of detector products and their specifications, plus manufacturer addresses and phone numbers.

  3. Energy Transfer Based Nanocomposite Scintillator for Radiation Detection

    Science.gov (United States)

    Aslam, Soha; Sahi, Sunil; Chen, Wei; Ma, Lun; Kenarangui, Rasool

    2014-09-01

    Scintillators are the materials that emit light upon irradiation with high energy radiation like X-ray or gamma-ray. Inorganic single crystal and organic (plastic and liquid) are the two most used scintillator types. Both of these scintillator kinds have advantages and disadvantages. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, single crystal scintillator such as NaI and CsI are very hygroscopic. On the other hand, organic scintillators have low density which limits their applications in gamma spectroscopy. Due to high quantum yield and size dependent emission, nanoparticles have attracted interested in various field of research. Here, we have studies the nanoparticles for radiation detection. We have synthesized nanoparticles of Cerium fluoride (CeF3), Zinc Oxide (ZnO), Cadmium Telluride (CdTe), Copper complex and Zinc sulfide (ZnS). We have used Fluorescence Resonance Energy Transfer (FRET) principle to enhance the luminescence properties of nanocomposite scintillator. Nanocomposites scintillators are structurally characterized with X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Optical properties are studied using Photoluminescence, UV-Visible and X-ray. Enhancements in the luminescence are observed under UV and X-ray excitation. Preliminary studies shows nanocomposite scintillators are promising for radiation detection. Scintillators are the materials that emit light upon irradiation with high energy radiation like X-ray or gamma-ray. Inorganic single crystal and organic (plastic and liquid) are the two most used scintillator types. Both of these scintillator kinds have advantages and disadvantages. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, single crystal scintillator such as NaI and CsI are very hygroscopic. On the other hand, organic scintillators have low density which limits their applications in gamma spectroscopy. Due to high quantum yield and size dependent emission, nanoparticles have attracted interested in various field of research. Here, we have studies the nanoparticles for radiation detection. We have synthesized nanoparticles of Cerium fluoride (CeF3), Zinc Oxide (ZnO), Cadmium Telluride (CdTe), Copper complex and Zinc sulfide (ZnS). We have used Fluorescence Resonance Energy Transfer (FRET) principle to enhance the luminescence properties of nanocomposite scintillator. Nanocomposites scintillators are structurally characterized with X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Optical properties are studied using Photoluminescence, UV-Visible and X-ray. Enhancements in the luminescence are observed under UV and X-ray excitation. Preliminary studies shows nanocomposite scintillators are promising for radiation detection. US Department of Homeland Security.

  4. Application of a thermoluminescence method for detection of irradiated spices

    International Nuclear Information System (INIS)

    Food irradiation is extremely effective at reducing food-borne illness as well as losses caused by infestation and contamination. Despite the well-established regulations that permit irradiation to control pathogens in spices, there are no widespread methods to detect previously irradiated food. Therefore, it has become necessary to develop new detection and dose determination methods for food subjected previously to irradiation. The present work deals with the application of the thermoluminescence (TL) phenomenon to detect irradiated spices. The process is based upon the thermoluminescence properties exhibited by the polymineral content of the irradiated specimen. After separating the organic material, it is possible to extract some polymineral substances that are suitable for thermoluminescence analysis due to interaction of the spice to ionising radiation. The method was successfully applied to examine irradiated and non-irradiated paprika of Mexican origin. The spice was irradiated with gamma rays at doses of 5, 10 and 15 kGy. The separated thermoluminescent polymineral was found to be composed mainly of quartz and feldspar. The thermoluminescence glow curve of the irradiated specimen shows a side band peaked 228, 268 and 336 deg. C, resembling pretty much the combined TL of quartz and feldspars. The method allows for the determination of the retrospective dose exposure. (author)

  5. Development of automatic analyzing system for radiation-induced mutation. Improvement of its detection efficacy and developments of effective probe and primer, and detection techniques

    International Nuclear Information System (INIS)

    From the previous project on high-speed autoanalyzing system for radiation-induced chromosome aberrations, it became possible to easily and certainly identify a centromere by fluorescence staining according to FISH method using a probe with the consensus sequence to ?-satellite DNA. However, this method was thought to be unappropriate for the analysis of dicentric chromosomes because the amount of the satellite DNA on the centromeres was in a wide range, 1-4%. Therefore, development of the detection method for radiation-induced mutation using a new fluorescent material was attempted in this study. First, a detection method using PCR for different genes was developed and a new method for purification of genome DNA from culture cells only with heat treatment was established. Then, real-time detection of genome DNA damaged by radiation was attempted. (M.N.)

  6. Occurence of natural and artificial radionuclides in the environment and methods of their detection

    International Nuclear Information System (INIS)

    The authors discuss occurence of radionuclides in the environment and illustrate the circulation of natural and artificial radioactive substances in the air, water and soil. Methods are presented of detecting radioactive contamination, including the sampling and detection of radiation emitted by radioactive isotopes contained in the samples. Various conditions as well as the kind of ionizing radiation emitters are taken into consideration. 19 refs. (author)

  7. Human Portable Radiation Detection System Communications Package Evaluation

    International Nuclear Information System (INIS)

    Testing and valuation of the Human Portable Radiation Detection System Communications Package for the US Coast Guard. The main components of the HCP field kit are an Archer Field PC(regsign) and an Iridium satellite phone, along with various charging components and cables. The Archer Field PC has an Enfora Global System for Mobile/General Packet Radio System (GSM/GPRS) wireless cellular modem installed via the compact flash (CF) port. The Iridium satellite phone has a serial communication interface attached. The Archer Field PC is running Windows Mobile(regsign) 5.0 operating system. Included Microsoft products are Excel(regsign) Mobile, PowerPoint(regsign) Mobile, Word(regsign) Mobile, and Internet Explorer(regsign) Mobile. There is an Outlook(regsign) Email program that can be accessed via sending a file or the Messaging link. The Cambridge Computer Corporation vxHpc program is installed to provide a Hyperterm-like software product. vxHpc supports multiple communication protocols. An AT and T SIM card was provided for the GSM wireless cellular modem. A check with AT and T determined the SIM card was not activated to provide cellular service. The Iridium satellite phone did not have a SIM card and has no service. The Archer Field PC boots into a HCP program, displaying the Main Menu. The following actions can be executed by selecting the appropriate box: Spectrum Download, Spectrum Transfer, and Admin Control. The Spectrum Download function uses the serial communication port to download data files from another device, such as a Radiation Isotope Identification Device (RIID). The Spectrum Transfer function uses either the installed wireless cellular modem or the Iridium satellite phone (attached to the serial communication port) to send data files to a computer modem at the Laboratories and Scientific Services (LSS). The Admin Control function allows entering phone numbers and data file deletion. PNNL recommends that DNDO (and/or CG) contact Sanmina and request a demo of the HCP Email data capability. The demo should include at a minimum three spectra data file attachments (background, known source, and unknown source) that are sent in the email package. The data should be sent using both included wireless cell phone hardware and the Iridium sat phone. The HCP has been optimized to operate on the Iridium Satellite Network, so that constraint needs to be factored into the selection of a service provider. It is also suggested that discussions with Sanmina work out the best method for CG personnel to use the HCP without requiring a separate email account for each HCP (e.g., similar to a BlackBerry using the member's email account), which should help make the HCP more user friendly.

  8. Radiation detection and situation management by distributed sensor networks

    Science.gov (United States)

    Frigo, Janette; Brennan, Sean; Esch, Ernst; Jackson, Diana; Kulathumani, Vinod; Rosten, Edward; Majerus, Patrick; Warniment, Adam; Mielke, Angela; Cai, Michael

    2009-05-01

    Detection of radioactive materials in an urban environment usually requires large, portal-monitor-style radiation detectors. However, this may not be a practical solution in many transport scenarios. Alternatively, a distributed sensor network (DSN) could complement portal-style detection of radiological materials through the implementation of arrays of low cost, small heterogeneous sensors with the ability to detect the presence of radioactive materials in a moving vehicle over a specific region. In this paper, we report on the use of a heterogeneous, wireless, distributed sensor network for traffic monitoring in a field demonstration. Through wireless communications, the energy spectra from different radiation detectors are combined to improve the detection confidence. In addition, the DSN exploits other sensor technologies and algorithms to provide additional information about the vehicle, such as its speed, location, class (e.g. car, truck), and license plate number. The sensors are in-situ and data is processed in real-time at each node. Relevant information from each node is sent to a base station computer which is used to assess the movement of radioactive materials.

  9. Fast neutron detection with silicon carbide semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Silicon carbide (SiC) radiation detectors are being developed for high-temperature applications in harsh radiation environments. Among these applications are characterization of nuclear reactor fuel and detection of concealed fissionable materials, which both require the optimization of SiC fast neutron detectors for detection and quantification of fission neutrons. In order to enhance fast-neutron sensitivity, proton recoil techniques are being used. Fission neutrons were simulated by using a 2.5-MeV deuterium-deuterium (D-D) neutron generator. In order to optimize the neutron detection sensitivity, 2.5-MeV neutron proton-recoil response measurements were made as a function of polyethylene converter layer thickness. Measurements were also made of the sensitivity of the SiC proton recoil detector as a function of angle of incidence of the neutrons. As expected from the angular sensitivity of the detector response, detection of neutrons normally incident to the detector face is favored allowing discrimination of background neutrons and possibly supplying information on the fissionable material location or configuration

  10. Radiation detection and situation management by distributed sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Jan, Frigo [Los Alamos National Laboratory; Mielke, Angela [Los Alamos National Laboratory; Cai, D Michael [Los Alamos National Laboratory

    2009-01-01

    Detection of radioactive materials in an urban environment usually requires large, portal-monitor-style radiation detectors. However, this may not be a practical solution in many transport scenarios. Alternatively, a distributed sensor network (DSN) could complement portal-style detection of radiological materials through the implementation of arrays of low cost, small heterogeneous sensors with the ability to detect the presence of radioactive materials in a moving vehicle over a specific region. In this paper, we report on the use of a heterogeneous, wireless, distributed sensor network for traffic monitoring in a field demonstration. Through wireless communications, the energy spectra from different radiation detectors are combined to improve the detection confidence. In addition, the DSN exploits other sensor technologies and algorithms to provide additional information about the vehicle, such as its speed, location, class (e.g. car, truck), and license plate number. The sensors are in-situ and data is processed in real-time at each node. Relevant information from each node is sent to a base station computer which is used to assess the movement of radioactive materials.

  11. Radiation detection and situation management by distributed sensor networks

    International Nuclear Information System (INIS)

    Detection of radioactive materials in an urban environment usually requires large, portal-monitor-style radiation detectors. However, this may not be a practical solution in many transport scenarios. Alternatively, a distributed sensor network (DSN) could complement portal-style detection of radiological materials through the implementation of arrays of low cost, small heterogeneous sensors with the ability to detect the presence of radioactive materials in a moving vehicle over a specific region. In this paper, we report on the use of a heterogeneous, wireless, distributed sensor network for traffic monitoring in a field demonstration. Through wireless communications, the energy spectra from different radiation detectors are combined to improve the detection confidence. In addition, the DSN exploits other sensor technologies and algorithms to provide additional information about the vehicle, such as its speed, location, class (e.g. car, truck), and license plate number. The sensors are in-situ and data is processed in real-time at each node. Relevant information from each node is sent to a base station computer which is used to assess the movement of radioactive materials

  12. Application of FISH method in evaluation of a radiation accident

    International Nuclear Information System (INIS)

    To study effects of long term radiation hazard and explore the possibility of the application of chromosome aberration and FISH method to dose retrospection and reconstruction, FISH method was used to detect biological destination of three accidental victims at 7.5 years after Xinzhou accident. In the meantime, conventional chromosomal aberration, G-banding, CB micronuclei and HPRT gene locus mutation assays were performed. In addition, the growth and development of Victim S, who suffered the radiation accident as a fetus, were examined. And comparison of dose estimations between chromosome aberration and FISH method of the victims was conducted. The results demonstrated that the biological dose estimated by translocation frequency is very close to the imitated dose by the physical way after the accident if enough cells are observed. It is suggested that FISH may be applied to dose retrospection and reconstruction. Obvious chromosomal aberrations still existed in the examined victims at 7.5 years after the accident and displayed good dose correlative dependence. The results also showed that the growth and development of S were basically normal after birth

  13. Studies on the calculation method of regional solar radiation

    International Nuclear Information System (INIS)

    Studies on the Calculation Method of Regional Solar Radiation 1. The significance and question of regional solar radiation The significance of regional solar radiation in agriculture is clear. To estimate regional agricultural producing potential, we need to know the regional solar radiation. In the field of hydrology, regional solar radiation is also important to estimate evapotranspiration of the region. There are so many slopes with different slope angles and slope directions in a region. So, we have to know how we can calculate slope radiation. The conversion

  14. A dual-sided coded-aperture radiation detection system

    International Nuclear Information System (INIS)

    We report the development of a large-area, mobile, coded-aperture radiation imaging system for localizing compact radioactive sources in three dimensions while rejecting distributed background. The 3D Stand-Off Radiation Detection System (SORDS-3D) has been tested at speeds up to 95 km/h and has detected and located sources in the millicurie range at distances of over 100 m. Radiation data are imaged to a geospatially mapped world grid with a nominal 1.25- to 2.5-m pixel pitch at distances out to 120 m on either side of the platform. Source elevation is also extracted. Imaged radiation alarms are superimposed on a side-facing video log that can be played back for direct localization of sources in buildings in urban environments. The system utilizes a 37-element array of 5x5x50 cm3 cesium-iodide (sodium) detectors. Scintillation light is collected by a pair of photomultiplier tubes placed at either end of each detector, with the detectors achieving an energy resolution of 6.15% FWHM (662 keV) and a position resolution along their length of 5 cm FWHM. The imaging system generates a dual-sided two-dimensional image allowing users to efficiently survey a large area. Imaged radiation data and raw spectra are forwarded to the RadioNuclide Analysis Kit (RNAK), developed by our collaborators, for isotope ID. An intuitive real-time display aids users in performing searches. Detector calibration is dynamically maintained by monitoring the potassium-40 peak and digitally adjusting individual detector gains. We have recently realized improvements, both in isotope identification and in distinguishing compact sources from background, through the installation of optimal-filter reconstruction kernels.

  15. Design of a Mobile Radiation Detection System for Seaports

    International Nuclear Information System (INIS)

    Pacific Northwest National Laboratory (PNNL) has developed a mobile radiation detection system for the U.S. Customs department. Based on the radiation detection instruments currently in use at many border crossings, the mobile radiation portal monitor (mRPM) consists of two Ludlum 4500-3000 detector panels, a package of sensors and a sensor integration module mounted to a medium duty truck chassis. The sensor package detects the presence of scanning targets (containers) and uses this to control operation of the detectors. The mRPM is designed to scan containerized cargo at seaports. A single mRPM can be driven past grounded or chassis-mounted containers (both sides of the container must be scanned for complete coverage), or a pair of mRPM systems can be parked opposite one another to form a relocatable portal. This rapidly reconfigurable system has proven to be very useful for targeted scanning of containers at multiple seaports. Since seaports are frequently space-constrained and contain few chokepoints, mobile systems that can be easily relocated allow customs operators to effectively scan cargo with minimal interference with the flow of commerce. Operators previously trained in the use of the stationary radiation portal monitors require minimal additional training to use the mRPM systems. The medium duty trucks employed are similar to one-ton crew cab pickup trucks, and a commercial driver's license is not required to operate them. In addition to successful deployments at seaports, the mRPM units have proven useful in other applications, such as preliminary characterization of rail cargo and targeted scanning at special events (political conventions)

  16. Apparatus and method for detecting explosives

    International Nuclear Information System (INIS)

    An apparatus is described for use in situations such as airports to detect explosives hidden in containers (for eg. suitcases). The method involves the evaluation of the quantities of oxygen and nitrogen within the container by neutron activation analysis and the determination of whether these quantities exceed predetermined limits. The equipment includes a small sub-critical lower powered reactor for thermal (0.01 to 0.10 eV) neutron production, a radium beryllium primary source, a deuterium-tritium reactor as a high energy (> 1.06 MeV) neutron source and Geiger counter detector arrays. (UK)

  17. Method and apparatus for detecting explosives

    Science.gov (United States)

    Moore, David Steven (Santa Fe, NM)

    2011-05-10

    A method and apparatus is provided for detecting explosives by thermal imaging. The explosive material is subjected to a high energy wave which can be either a sound wave or an electromagnetic wave which will initiate a chemical reaction in the explosive material which chemical reaction will produce heat. The heat is then sensed by a thermal imaging device which will provide a signal to a computing device which will alert a user of the apparatus to the possibility of an explosive device being present.

  18. Neutron-detecting apparatuses and methods of fabrication

    Science.gov (United States)

    Dahal, Rajendra P.; Huang, Jacky Kuan-Chih; Lu, James J. Q.; Danon, Yaron; Bhat, Ishwara B.

    2015-10-06

    Neutron-detecting structures and methods of fabrication are provided which include: a substrate with a plurality of cavities extending into the substrate from a surface; a p-n junction within the substrate and extending, at least in part, in spaced opposing relation to inner cavity walls of the substrate defining the plurality of cavities; and a neutron-responsive material disposed within the plurality of cavities. The neutron-responsive material is responsive to neutrons absorbed for releasing ionization radiation products, and the p-n junction within the substrate spaced in opposing relation to and extending, at least in part, along the inner cavity walls of the substrate reduces leakage current of the neutron-detecting structure.

  19. Novel Methods of Hydrogen Leak Detection

    International Nuclear Information System (INIS)

    For hydrogen to become a consumer fuel for automotive and domestic power generation, safety is paramount. Today's hydrogen systems are built with inherent safety measures and multiple levels of protection. However, human senses, in particular, the sense of smell, is considered the ultimate safeguards against leaks. Since hydrogen is an odorless gas, use of odorants to detect leaks, as is done in case of natural gas, is obvious solution. The odorants required for hydrogen used in fuel cells have a unique requirement which must be met. This is because almost all of the commercial odorants used in gas leak detection contain sulfur which acts as poison for the catalysts used in hydrogen based fuel cells, most specifically for the PEM (polymer electrolyte membrane or proton exchange membrane) fuel cells. A possible solution to this problem is to use non-sulfur containing odorants. Chemical compounds based on mixtures of acrylic acid and nitrogen compounds have been adopted to achieve a sulfur-free odorization of a gas. It is, therefore, desired to have a method and system for hydrogen leak detection using odorant which can incorporate a uniform concentration of odorant in the hydrogen gas, when odorants are mixed in the hydrogen storage or delivery means. It is also desired to develop methods where the odorant is not added to the bulk hydrogen, keeping it free of the odorization additives. A series of novel solutions are proposed which address the issues raised above. These solutions are divided into three categories as follows: 1. Methods incorporating an odorant in the path of hydrogen leak as opposed to adding it to the hydrogen gas. 2. Methods where odorants are generated in-situ by chemical reaction with the leaking hydrogen 3. Methods of dispensing and storing odorants in high pressure hydrogen gas which release odorants to the gas at a uniform and predetermined rates. Use of one or more of the methods described here in conjunction with appropriate engineering solutions will assure the ultimate safety of hydrogen use as a commercial fuel. (O.M.)

  20. Survey and evaluation of environmental radiation impact from industrial ?-ray defect detecting machine

    International Nuclear Information System (INIS)

    This article first described the defect detecting machine in ways of working principle, relevant standards, environmental impact of radiation, then analysed the radiation affecting range and dose rate of a ?-ray detecting machine to environment radiation with measured data, finally proposes some safety management and radiation protection measurement. (authors)

  1. Compact endocavity diagnostic probes for nuclear radiation detection

    Science.gov (United States)

    Cui, Yonggang; James, Ralph; Bolotnikov, Aleksey

    2014-08-26

    This invention relates to the field of radiation imaging. In particular, the invention relates to an apparatus and a method for imaging tissue or an inanimate object using a novel probe that has an integrated solid-state semiconductor detector and complete readout electronics circuitry.

  2. Assessment of Radiation Background Variation for Moving Detection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James Christopher [Los Alamos National Laboratory; Rennie, John Alan [Los Alamos National Laboratory; Toevs, James Waldo [Los Alamos National Laboratory; Wallace, Darrin J. [Los Alamos National Laboratory; Abhold, Mark Edward [Los Alamos National Laboratory

    2015-07-13

    The introduction points out that radiation backgrounds fluctuate across very short distances: factors include geology, soil composition, altitude, building structures, topography, and other manmade structures; and asphalt and concrete can vary significantly over short distances. Brief descriptions are given of the detection system, experimental setup, and background variation measurements. It is concluded that positive and negative gradients can greatly reduce the detection sensitivity of an MDS: negative gradients create opportunities for false negatives (nondetection), and positive gradients create a potentially unacceptable FAR (above 1%); the location of use for mobile detection is important to understand; spectroscopic systems provide more information for screening out false alarms and may be preferred for mobile use; and mobile monitor testing at LANL accounts for expected variations in the background.

  3. Heat induced damage detection in composite materials by terahertz radiation

    Science.gov (United States)

    Radzie?ski, Maciej; Mieloszyk, Magdalena; Rahani, Ehsan Kabiri; Kundu, Tribikram; Ostachowicz, Wies?aw

    2015-03-01

    In recent years electromagnetic Terahertz (THz) radiation or T-ray has been increasingly used for nondestructive evaluation of various materials such as polymer composites and porous foam tiles in which ultrasonic waves cannot penetrate but T-ray can. Most of these investigations have been limited to mechanical damage detection like inclusions, cracks, delaminations etc. So far only a few investigations have been reported on heat induced damage detection. Unlike mechanical damage the heat induced damage does not have a clear interface between the damaged part and the surrounding intact material from which electromagnetic waves can be reflected back. Difficulties associated with the heat induced damage detection in composite materials using T-ray are discussed in detail in this paper. T-ray measurements are compared for different levels of heat exposure of composite specimens.

  4. Practical methods for radiation survey in nuclear installations

    International Nuclear Information System (INIS)

    This study is placed to those who are responsible to perform radiation survey in the nuclear installations, especially the beginners. Therefore, it gives a comprehensive view to all-important aspects related to their work starting from the structure of atoms to the practical steps for radiation survey works. So, it clarify how to perform personal monitoring, methods for monitoring surface contamination, methods for measuring radioactivity of gases and radioactive aerosols in air, monitoring radiation doses, measuring radiation influences in workplaces and finally measuring internal exposure of radiation workers in nuclear installations. Finally, The study shows some cases of breaches of radiation protection rules in some American nuclear installations and describes the final results of these breaches. The aim of this is to assure that any breach or ignore to radiation protection principles may produce bad results, and there is no leniency in implementing environmental radiation protection principles. (author)

  5. Some methods for the detection of fissionable matter; Quelques methodes de detection des corps fissiles

    Energy Technology Data Exchange (ETDEWEB)

    Guery, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-03-01

    A number of equipments or processes allowing to detect uranium or plutonium in industrial plants, and in particular to measure solution concentrations, are studied here. Each method has its own field of applications and has its own performances, which we have tried to define by calculations and by experiments. The following topics have been treated: {gamma} absorptiometer with an Am source, detection test by neutron multiplication, apparatus for the measurement of the {alpha} activity of a solution, fissionable matter detection by {gamma} emission, fissionable matter detection by neutron emission. (author) [French] On examine ici plusieurs appareils ou procedes qui permettent de detecter l'uranium ou le plutonium dans les installations industrielles, et en particulier de mesurer les concentrations de solutions. Chacune des methodes a son domaine d'application et ses performances, qu'on a tente de definir par le calcul et par des experiences. Les sujets traites sont les suivants: absorptiometre {gamma} a source d'americium, essais de detection par multiplication neutronique, appareil de mesure de l'activite {alpha} d'une solution, detection des matieres fissiles par leur emission {gamma}, detection des matieres fissiles par leur emission neutronique. (auteur)

  6. Platelet antibody: review of detection methods

    International Nuclear Information System (INIS)

    The driving force behind development of in vitro methods for platelet antibodies is identification of plasma factors causing platelet destruction. Early methods relied on measurement of platelet activation. Current methods are more specific and use a purified antibody against immunoglobulin or complement, which is usually labeled with 125I or tagged with an enzyme or fluorescein. Comparisons of quantitation of platelet-associated IgG show wide variability between different methods. The disparate results can be related both to differences in binding of secondary antibodies to immunoglobulin in solution compared to immunoglobulins attached to platelets and to the improper assumption that the binding ratio between the secondary detecting and primary antiplatelet antibody is one. Most assays can 1) identify neonatal isoimmune thrombocytopenia and posttransfusion purpura, 2) help to differentiate between immune and nonimmune thrombocytopenias, 3) help to sort out the offending drug when drug-induced thrombocytopenia is suspected, and 4) identify platelet alloantibodies and potential platelet donors via a cross match assay for refractory patients. However, the advantages of quantitative assays over qualitative methods with respect to predictions of patients clinical course and response to different treatments remain to be investigated. 61 references

  7. Lagrangian based methods for coherent structure detection

    Science.gov (United States)

    Allshouse, Michael R.; Peacock, Thomas

    2015-09-01

    There has been a proliferation in the development of Lagrangian analytical methods for detecting coherent structures in fluid flow transport, yielding a variety of qualitatively different approaches. We present a review of four approaches and demonstrate the utility of these methods via their application to the same sample analytic model, the canonical double-gyre flow, highlighting the pros and cons of each approach. Two of the methods, the geometric and probabilistic approaches, are well established and require velocity field data over the time interval of interest to identify particularly important material lines and surfaces, and influential regions, respectively. The other two approaches, implementing tools from cluster and braid theory, seek coherent structures based on limited trajectory data, attempting to partition the flow transport into distinct regions. All four of these approaches share the common trait that they are objective methods, meaning that their results do not depend on the frame of reference used. For each method, we also present a number of example applications ranging from blood flow and chemical reactions to ocean and atmospheric flows.

  8. A Parallel Tracking Method for Acoustic Radiation Force Impulse Imaging

    OpenAIRE

    Dahl, Jeremy J.; Pinton, Gianmarco F.; Mark, L.; Agrawal, Vineet; Nightingale, Kathryn R.; TRAHEY, GREGG E.

    2007-01-01

    Radiation force-based techniques have been developed by several groups for imaging the mechanical properties of tissue. Acoustic Radiation Force Impulse (ARFI) imaging is one such method that uses commercially available scanners to generate localized radiation forces in tissue. The response of the tissue to the radiation force is determined using conventional B-mode imaging pulses to track micron-scale displacements in tissue. Current research in ARFI imaging is focused on producing real-time...

  9. Modification of thermoplastic polymers by radiation chemical methods

    International Nuclear Information System (INIS)

    The general conditions under which radiation chemical reactions can compete with conventional chemical reactions are first discussed, along with the advantages and shortcomings of electron accelerators which are commonly used as radiation sources for treatment of polymers. After a review of the reactions which occur on irradiation of thermoplastics, the practical application of degradatin and above all cross-linking by radiation (especially in polyethylene) is outlined. Finally, the different methods of grafting by radiation and their technical realization are discussed

  10. Method and system for detecting explosives

    Science.gov (United States)

    Reber, Edward L. (Idaho Falls, ID); Jewell, James K. (Idaho Falls, ID); Rohde, Kenneth W. (Idaho Falls, ID); Seabury, Edward H. (Idaho Falls, ID); Blackwood, Larry G. (Idaho Falls, ID); Edwards, Andrew J. (Idaho Falls, ID); Derr, Kurt W. (Idaho Falls, ID)

    2009-03-10

    A method of detecting explosives in a vehicle includes providing a first rack on one side of the vehicle, the rack including a neutron generator and a plurality of gamma ray detectors; providing a second rack on another side of the vehicle, the second rack including a neutron generator and a plurality of gamma ray detectors; providing a control system, remote from the first and second racks, coupled to the neutron generators and gamma ray detectors; using the control system, causing the neutron generators to generate neutrons; and performing gamma ray spectroscopy on spectra read by the gamma ray detectors to look for a signature indicative of presence of an explosive. Various apparatus and other methods are also provided.

  11. A novel mobile system for radiation detection and monitoring

    Science.gov (United States)

    Biafore, Mauro

    2014-05-01

    A novel mobile system for real time, wide area radiation surveillance has been developed within the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). The REWARD sensing units are small, mobile portable units with low energy consumption, which consist of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit is integrated by a wireless communication interface to send the data remotely to a monitoring base station as well as a GPS system to calculate the position of the tag. The system also incorporates middleware and high-level software to provide web-service interfaces for the exchange of information. A central monitoring and decision support system has been designed to process the data from the sensing units and to compare them with historical record in order to generate an alarm when an abnormal situation is detected. A security framework ensures protection against unauthorized access to the network and data, ensuring the privacy of the communications and contributing to the overall robustness and reliability of the REWARD system. The REWARD system has been designed for many different scenarios such as nuclear terrorism threats, lost radioactive sources, radioactive contamination or nuclear accidents. It can be deployed in emergency units and in general in any type of mobile or static equipment, but also inside public/private buildings or infrastructures. The complete system is scalable in terms of complexity and cost and offers very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system allows for a realistic introduction to the market. Authorities may start with a basic, low cost system and increase the complexity based on their evolving needs and budget constraints. On 24th September 2013, REWARD project received a prize as the best Innovative project related to the Not Conventional Threat (NCT) Chemical Biological Radiological Nuclear explosives (CBRNe) products. A highly distinguished jury stated that "the developed detection and surveillance system offers a perfect solution for end-users to enhance crucial capabilities in RN analysis, risk communication and surveillance in case of a radiation incident". A demonstration of the REWARD system is planned in Naples on September 2014. More information about the REWARD project can be found at www.reward-project.eu.

  12. Development of TOF-PET based on Cherenkov radiation detection

    International Nuclear Information System (INIS)

    We have proposed a new Time-of-Flight Positron Emission Tomography (TOF-PET) concept based on Cherenkov radiation detection, where lead glasses and fast micro-channel plate photo-multiplier tubes (MCP-PMTs) were adopted as the Cherenkov radiator and the photo detector, respectively. Through the Monte Carlo simulations and the preliminary experiments, we have estimated the basic performance of this technique. The simulation results have shown that the spatial resolution with TOF information under the time resolution ?T=100ps would be around 4 mm using the Maximum Likelihood-Expectation Maximization (ML-EM) algorithm and also the signal to noise ratio could be about three times better improved by using TOF information. The present detector element combined with the lead glass and MCP-PMT has been experimentally verified to have the time resolution of 170ps, which corresponds to the spatial resolution around 5 mm in the quasi-2D image reconstruction from the 1D experimental data. From these results, it would be concluded that the present technique could be a powerful candidate for the TOF-PET but the detection efficiency should be improved through redesigning the Cherenkov radiator materials and configuration. (author)

  13. Development of detection methods for irradiated foods - Development of detection method for radiolytic products of irradiated foods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyong Su; Lee, Eun Ryong; Hong, Hae Jung [Chosun University, Kwangju (Korea)

    2000-07-01

    Meats, nuts, legumes and cereals were irradiated with {sup 60}Co {gamma}-ray. The detection methods included the fat extraction from samples, isolation of hydrocarbons and 2-alkylcyclobutanones by florisil column chromatography and analyses of GC-FID and GC/MS analyzers. Concentrations of hydrocarbons and 2-clobutanones increased with the irradiation dose in meat, nuts, legumes and cereals. In nuts (sesame seeds, black sesame seeds, perilla seeds, pine nuts and peanuts), legumes (white beans, black soybeans, yellow bean sprout soybeans, mouse-eyed soybeans, mung beans, kidney beans and small red beans) and cereals (brown rice, corns and wheat), 8-heptadecene and 1,7-hexadecadiene originated from oleic acid and 6,9-heptadecadiene and 1,7,10-hexadecatriene induced from linoleic acids were the major hydrocarbons due to the composition of fatty acids. Concentrations of radiation-induced hydrocarbons in nuts were slightly reduced and hydrocarbons were still significantly detectable, during 6 months at -18 deg. C. In meats and nuts, 2-(5'-tetradecenyl)cyclobutanone formed from oleic acid was found in most. 2-Dodecylcyclobutanone was detected in a large amount. The concentrations of radiation-induced 2-alkylcyclobutanones in meats slightly decreased, but relatively constant during 6 months at -18 deg. C. 62 refs., 45 figs., 25 tabs. (Author)

  14. Nucleic acid detection system and method for detecting influenza

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hong; Song, Jian

    2015-03-17

    The invention provides a rapid, sensitive and specific nucleic acid detection system which utilizes isothermal nucleic acid amplification in combination with a lateral flow chromatographic device, or DNA dipstick, for DNA-hybridization detection. The system of the invention requires no complex instrumentation or electronic hardware, and provides a low cost nucleic acid detection system suitable for highly sensitive pathogen detection. Hybridization to single-stranded DNA amplification products using the system of the invention provides a sensitive and specific means by which assays can be multiplexed for the detection of multiple target sequences.

  15. Detection of irradiated powdered foods using photostimulated luminescence method

    International Nuclear Information System (INIS)

    Photostimulated luminescence (PSL) method provides a rapid and markedly sensitive technique to detect of any irradiated food that contain minerals. This method is also convenient as a first screening means in comparison with thermoluminescence (TL) method which requires separating minerals from the food materials. The present study reports the results of PSL measurements for both irradiated and non-irradiated powdered dry leaf vegetable obtained with the prototype of PSL system developed by our groups. This PSL system consists of pulsed Infra-Red (IR) source for photostimulation, single photon counting system for high sensitive detection of luminescence, and computer for data treatments. The PSL intensity of the leaf vegetable increased with increase of gamma radiation dose and show a linear relationship up to a dose of 1kGy. The PSL intensities after four months of storage under light shielding following gamma irradiation (0.49?3.1kGy) decreased to less than half of initial intensities. The PSL intensities of those decreased rapidly for 60 seconds and reached a steady level close to intensity of non-irradiated sample after 300 seconds following photostimulation. We used the information on the shape and slope of PSL intensity curve as a criteria to discriminate whether irradiated foods or not, and possible to detect the irradiation history of food irradiated with a 0.49kGy dose after four months of storage. (author)

  16. Radiation Mitigation Methods for Reprogrammable FPGA Project

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the needs of NASA is the development of avionic systems and components that have the capability to operate in extreme radiation and temperature environments...

  17. Control of radiation exposure (principles and methods)

    International Nuclear Information System (INIS)

    Biological risks are directly related to the tissue radiation dose, so it is very important to maintain personnel doses as low as realistically possible. This goal can be achieved by minimizing internal contamination and external exposure to radioactive sources

  18. Method of preparing radiation shielding materials

    International Nuclear Information System (INIS)

    Purpose: To improve the optical transparency and the mechanical strength of radiation shielding materials. Method: A monomer matrix consisting of a monomer (a) selected from one or more of alkyl methacrylate, hydroxy alkylacrylate, hydroxy alkylmethacrylate of 1-4 carbon atoms in alkyl group and styrene and a monomer (b) contained by 8-75 % by weight of the total amount of (a) and (b) and represented by the formula: CH2 = CR1 - CO - (A-O)sub(n) - CO - CR1 = CH2, where R1 represents H or CH3, A represents alkylene of 2-4 carbon atoms and n represents an integer of 2-60 or represented by the formula: (CH2 = CR2 - CO - O)sub(m) - B, where R2 represents H or CH3, B represents a hydrocarbon residue of 4-25 carbon atmos and m represents an integer of 2-4, is polymerized while incorporated with lead acrylate or lead methacylate by X% by weight of the total monomer and an organic acid salt of lead by Y parts by weight based on 100 parts by weight of the total monomer and represented by the formula: (RCOO)sub(a)Pb, where R represent a hydrocarbon residue of 5-20 carbon atoms and a represents an integer equal to the atomic valency of lead, such that X and Y satisfy the following relations: 200 >= Y >= 2 provided that 9 = Y >= 2/5 (X - 30) + 2 provided that 30 <= X <= 75. (Ikeda, J.)

  19. Thermoplastic elastomer IPNs using radiation methods

    International Nuclear Information System (INIS)

    Full text: Styrene swollen, cross-linked TPEs can be thermally processed to give a new class of sequential interpenetrating polymer network (IPN). There are however certain limitations with this procedure, particularly in relation to the thermally initiated polymerization, including: the microscopic texture of the original TPE may be modified, the butadiene component of the TPE may thermally oxidize, safety concerns with monomer vapors at elevated temperatures exist; the concentration of monomer in the swollen TPE may change and be uneven. The method cannot be readily extended to the use of a volatile second monomer, such as butadiene or isoprene. Gamma radiation crosslinking allows uniform penetration and ambient temperatures. We used the multifunctional cross-linker, TMPTA, as this has been shown to work well under these conditions with styrene. Peroxide cross-linked Solprene 475 was swollen in inhibitor-free styrene containing 0, 10 and 33% by weight TMPTA and irradiated at 3 kGy/hr for total doses ranging typically from 50 to 1000 kGy. Hardnesses (Durometer Shore D) increased from 50 to plateau at about 65 units, and tensile strengths are ? 10-15 MPa. Initial data indicates breaking strains in the range 20 to 90%. A key observation is that the products were of uniform hardness and appearance, in contrast to many of the thermally prepared materials in the past, which also showed yellowing due to polybutadiene oxidation. Products were stained with osmium tetroxide, ultramicrotomed and observed by TEM. The morphologies of the new materials are more uniform than before, with less evidence of orientation. The previous structures were typically of swollen styrene rich rods in a butadiene matrix, whereas here the TEMs reveal a spongelike texture

  20. A fast, simple method for screening radiation susceptibility genes by RNA interference

    International Nuclear Information System (INIS)

    Radiotherapy can cause unacceptable levels of damage to normal tissues in some cancer patients. To understand the molecular mechanisms underlying radiation-induced physiological responses, and to be able to predict the radiation susceptibility of normal tissues in individual patients, it is important to identify a comprehensive set of genes responsible for radiation susceptibility. We have developed a simple and rapid 96-well screening protocol using cell proliferation assays and RNA interference to identify genes associated with radiation susceptibility. We evaluated the performance of alamarBlue-, BrdU-, and sulforhodamine B-based cell proliferation assays using the 96-well format. Each proliferation assay detected the known radiation susceptibility gene, PRKDC. In a trial screen using 28 shRNA vectors, another known gene, CDKN1A, and one new radiation susceptibility gene, ATP5G3, were identified. Our results indicate that this method may be useful for large-scale screens designed to identify novel radiation susceptibility genes

  1. Cellular telephone-based radiation sensor and wide-area detection network

    Science.gov (United States)

    Craig, William W. (Pittsburg, CA); Labov, Simon E. (Berkeley, CA)

    2006-12-12

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  2. Detection of neutral particle radiation with the Mars Science Laboratory (MSL) Radiation Assessment Detector (RAD)

    International Nuclear Information System (INIS)

    RAD, the Radiation Assessment Detector on NASA's Mars Science Laboratory (MSL) rover mission is designed to detect a wide range of different particle species at energies up to 100 MeV/nuc. We present the beam testing results for the flight units of the RAD Sensor Head unit (RSH). Neutral particle response, anti-coincidence efficiency as well as behaviour for relativistic high-Z (up to iron) particles are shown. Additionally, we present the response of our RSH GEANT4 model for the expected (simulated) Mars surface radiation environment.

  3. Influence of ionising radiation on macromolecular components of wheat; possible use in detecting irradiated wheat

    International Nuclear Information System (INIS)

    The treatment of food by ionising radiation is already permitted by many governments and is under consideration by many others. Cereal are irradiated as a means of disinfestation, this study investigates the effects of such processing on the components of wheat and examines using such radiation induced changes to detect irradiation. Wheat has been irradiated with ionising radiation in the dose range up to 1 kGy. The rheological properties of doughs prepared from this irradiated wheat have been investigated. An immunological assay has been employed to investigate the effect of wheat irradiation on the integrity of gliadin. A method has been developed for the routine isolation of DNA from wheat. Radiation-induced disruption of the DNA double helix has been assessed in DNA extracted from irradiated wheat and calf thymus DNA irradiated in aqueous solution. (author)

  4. Detection of anisotropy in the cosmic blackbody radiation

    International Nuclear Information System (INIS)

    We have detected anisotropy in the cosmic blackbody radiation with a 33-GHz (0.9 cm) twin-antenna Dicke radiometer flown to an altitude of 20 km aborad a U-2 aircraft. In data distributed over two-thirds of the northern hemisphere, we observed an anisotropy which is well fitted by a first-order spherical harmonic with an amplitude of (3.5 +- 0.6) x 10-30K, and direction [11.0 +- 0.6 h right ascension (R.A.) and 60 +- 100 declination (dec)]. This observation is readily interpreted as due to motion of the earth relative to the radiation with a veliocity of 390 +- 60 km/sec

  5. Improvements in or relating to the detection of radiation

    International Nuclear Information System (INIS)

    A novel detector is described for use with a rotation only scanner in computerised axial tomography; the form of the detector overcomes the drift problems associated with the use of photomultipliers in conventional X-ray detection. The detector consists of a scintillator crystal such as caesium iodide whose resulting visible radiation is indicative of the amount of ionising radiation incident upon the crystal and which is viewed by a photo-diode. The photo-diode is operated in the photovoltaic current mode and the p-n junction is arranged to be close to the illuminated surface (typically up to 1.0 ?m depth). A possible circuit for integrating the induced electron current is also described. (U.K.)

  6. Thermoluminescence method for detection of irradiated food

    International Nuclear Information System (INIS)

    A method of thermoluminescence (TL) analysis was developed for the detection of irradiated foods. The TL method is based on the determination of thermoluminescence of adhering or contaminating minerals separated from foods by wet sieving and treatment with high density liquid. Carbon tetrachloride provided a suitable alternative for foods that form gels with water. Thermoluminescence response of minerals in a first TL measurement is normalised with a second TL measurement of the same mineral sample after calibration irradiation to a dose of 5 kGy. The decision about irradiation is made on the basis of a comparison of the two TL spectra: if the two TL glow curves match in shape and intensity the sample has been irradiated, and if they are clearly different it has not been irradiated. An attractive feature of TL analysis is that the mineral material itself is used for calibration; no reference material is required. Foods of interest in the investigation were herbs, spices, berries and seafood. The presence of minerals in samples is a criterion for application of the method, and appropriate minerals were found in all herbs, spices and berries. The most common minerals in terrestrial food were tecto-silicates - quartz and feldspars - which with their intense and stable thermoluminescence were well suited for the analysis. Mica proved to be useless for detection purposes, whereas carbonate in the form of calcite separated from intestines of seafood was acceptable. Fading of the TL signal is considerable in the low temperature part of the glow curve during a storage of several months after irradiation. However, spices and herbs could easily be identified as irradiated even after two years storage. Conditions for seafood, which is stored in a freezer, are different, and only slight fading was observed after one year. The effect of mineral composition and structure on TL was studied for feldspars. Feldspars originating from subtropical and tropical regions exhibit lower TL intensity than feldspars from cold regions, evidently because a more altered mineral structure is typical in warm water regions. A new autoradiographic method to determine luminescence of irradiated rock surfaces was developed for the study. The method of thermoluminescence analysis has been used for the official control analysis of irradiated food in Finland since 1990. In the course of the study, about 500 analyses were carried out for the Finnish Customs Laboratory. Eighty lots of irradiated herbs or spices and 10 lots of irradiated seafood were found. During the last two years, irradiated green tea in spice mixtures and irradiated frog legs have been detected. No irradiated berry or mushroom products have been found. Screening with a photostimulated luminescence (PSL) instrument, followed by TL analysis to confirm the positive and ambiguous samples, provides a reliable tool for the identification of irradiated food containing adhering or contaminating minerals. The reliability of the TL method was proved in European trials. Standardisation of the method has been undertaken by the European Committee for Standardization (CEN). A TL method based on the determination of TL silicate minerals in dry herbs and spices has recently been accepted as an official CEN standard. (orig.)

  7. Thermoluminescence method for detection of irradiated food

    Energy Technology Data Exchange (ETDEWEB)

    Pinnioja, S

    1998-12-31

    A method of thermoluminescence (TL) analysis was developed for the detection of irradiated foods. The TL method is based on the determination of thermoluminescence of adhering or contaminating minerals separated from foods by wet sieving and treatment with high density liquid. Carbon tetrachloride provided a suitable alternative for foods that form gels with water. Thermoluminescence response of minerals in a first TL measurement is normalised with a second TL measurement of the same mineral sample after calibration irradiation to a dose of 5 kGy. The decision about irradiation is made on the basis of a comparison of the two TL spectra: if the two TL glow curves match in shape and intensity the sample has been irradiated, and if they are clearly different it has not been irradiated. An attractive feature of TL analysis is that the mineral material itself is used for calibration; no reference material is required. Foods of interest in the investigation were herbs, spices, berries and seafood. The presence of minerals in samples is a criterion for application of the method, and appropriate minerals were found in all herbs, spices and berries. The most common minerals in terrestrial food were tecto-silicates - quartz and feldspars - which with their intense and stable thermoluminescence were well suited for the analysis. Mica proved to be useless for detection purposes, whereas carbonate in the form of calcite separated from intestines of seafood was acceptable. Fading of the TL signal is considerable in the low temperature part of the glow curve during a storage of several months after irradiation. However, spices and herbs could easily be identified as irradiated even after two years storage. Conditions for seafood, which is stored in a freezer, are different, and only slight fading was observed after one year. The effect of mineral composition and structure on TL was studied for feldspars. Feldspars originating from subtropical and tropical regions exhibit lower TL intensity than feldspars from cold regions, evidently because a more altered mineral structure is typical in warm water regions. A new autoradiographic method to determine luminescence of irradiated rock surfaces was developed for the study. The method of thermoluminescence analysis has been used for the official control analysis of irradiated food in Finland since 1990. In the course of the study, about 500 analyses were carried out for the Finnish Customs Laboratory. Eighty lots of irradiated herbs or spices and 10 lots of irradiated seafood were found. During the last two years, irradiated green tea in spice mixtures and irradiated frog legs have been detected. No irradiated berry or mushroom products have been found. Screening with a photostimulated luminescence (PSL) instrument, followed by TL analysis to confirm the positive and ambiguous samples, provides a reliable tool for the identification of irradiated food containing adhering or contaminating minerals. The reliability of the TL method was proved in European trials. Standardisation of the method has been undertaken by the European Committee for Standardization (CEN). A TL method based on the determination of TL silicate minerals in dry herbs and spices has recently been accepted as an official CEN standard. (orig.) 55 refs.

  8. Aging masks detection of radiation-induced brain injury

    Science.gov (United States)

    Shi, Lei; Olson, John; D’Agostino, Ralph; Linville, Constance; Nicolle, Michelle M.; Robbins, Michael E.; Wheeler, Kenneth T.; Brunso-Bechtold, Judy K.

    2011-01-01

    Fractionated partial or whole-brain irradiation (fWBI) is a widely used, effective treatment for primary and metastatic brain tumors, but it also produces radiation-induced brain injury, including cognitive impairment. Radiation-induced neural changes are particularly problematic for elderly brain tumor survivors who also experience age-dependent cognitive impairment. Accordingly, we investigated, i] radiation-induced cognitive impairment, and ii] potential biomarkers of radiation-induced brain injury in a rat model of aging. Fischer 344 × Brown Norway rats received fractionated whole-brain irradiation (fWBI rats, 40 Gy, 8 fractions over 4 wk) or sham-irradiation (Sham-IR rats) at 12 months of age; all analyses were performed at 26–30 months of age. Spatial learning and memory were measured using the Morris water maze (MWM), hippocampal metabolites were measured using proton magnetic resonance spectroscopy (1H MRS), and hippocampal glutamate receptor subunits were evaluated using Western blots. Young rats (7–10 month-old) were included to control for age effects. The results revealed that both Sham-IR and fWBI rats exhibited age-dependent impairments in MWM performance; fWBI induced additional impairments in the reversal MWM. 1H MRS revealed age-dependent decreases in neuronal markers, increases in glial markers, but no detectable fWBI-dependent changes. Western blot analysis revealed age-dependent, but not fWBI-dependent, glutamate subunit declines. Although previous studies demonstrated fWBI-induced changes in cognition, glutamate subunits, and brain metabolites in younger rats, age-dependent changes in these parameters appear to mask their detection in old rats, a phenomenon also likely to occur in elderly fWBI patients >70 years of age. PMID:21338580

  9. Spectral Analysis Method of Plastic Scintillator-based Radiation Detector against Nuclear/Radiological Terrorism

    International Nuclear Information System (INIS)

    In these days, the threats relating to nuclear or radioactive materials have become a matter of internationally increased grave concern. A plastic scintillation detector in radiation portal monitoring (RPM) application has been used to detect radioactive sources in steel scrap entering reprocessing facilities, and to detect illicit transport of radioactive material across border ports-of-entry. The detection systems for RPM application usually are large and can not easily be moved to a different location. For some situations, an inconspicuous and mobile system for the radioactive or nuclear material during road transport is needed. The mobile radiation detection system has employed a NaI- based radiation detector to detect and identify the material hidden in vehicle. There are some operational constraints - short measuring time, weak activity due to heavy shield of illegal source, long distance - of inspection system in such nuclear security applications. Due to these constraints, large area sensor is required to maximize its sensitivity. Large NaI material, however, is extremely expensive. In designing a radiation detector for prevention of illicit trafficking of nuclear or radioactive materials, the trade-off should be carefully optimized between performance and cost in order to achieve cost-effective inspection system. For the cost-effective mobile radiation detection system, this paper describes new spectral analysis method to use the crude spectroscopic information available from a plastic detector to discriminate other man-made radiation source from NORM

  10. Spectral Analysis Method of Plastic Scintillator-based Radiation Detector against Nuclear/Radiological Terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Sung-Woo; Yoo, Ho-Sik; Jang, Sung Soon; Kim, Jung-Soo; Yoon, Wan-Ki [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2008-10-15

    In these days, the threats relating to nuclear or radioactive materials have become a matter of internationally increased grave concern. A plastic scintillation detector in radiation portal monitoring (RPM) application has been used to detect radioactive sources in steel scrap entering reprocessing facilities, and to detect illicit transport of radioactive material across border ports-of-entry. The detection systems for RPM application usually are large and can not easily be moved to a different location. For some situations, an inconspicuous and mobile system for the radioactive or nuclear material during road transport is needed. The mobile radiation detection system has employed a NaI- based radiation detector to detect and identify the material hidden in vehicle. There are some operational constraints - short measuring time, weak activity due to heavy shield of illegal source, long distance - of inspection system in such nuclear security applications. Due to these constraints, large area sensor is required to maximize its sensitivity. Large NaI material, however, is extremely expensive. In designing a radiation detector for prevention of illicit trafficking of nuclear or radioactive materials, the trade-off should be carefully optimized between performance and cost in order to achieve cost-effective inspection system. For the cost-effective mobile radiation detection system, this paper describes new spectral analysis method to use the crude spectroscopic information available from a plastic detector to discriminate other man-made radiation source from NORM.

  11. Odour Detection Methods: Olfactometry and Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Sara Lovascio

    2011-05-01

    Full Text Available The complexity of the odours issue arises from the sensory nature of smell. From the evolutionary point of view olfaction is one of the oldest senses, allowing for seeking food, recognizing danger or communication: human olfaction is a protective sense as it allows the detection of potential illnesses or infections by taking into account the odour pleasantness/unpleasantness. Odours are mixtures of light and small molecules that, coming in contact with various human sensory systems, also at very low concentrations in the inhaled air, are able to stimulate an anatomical response: the experienced perception is the odour. Odour assessment is a key point in some industrial production processes (i.e., food, beverages, etc. and it is acquiring steady importance in unusual technological fields (i.e., indoor air quality; this issue mainly concerns the environmental impact of various industrial activities (i.e., tanneries, refineries, slaughterhouses, distilleries, civil and industrial wastewater treatment plants, landfills and composting plants as sources of olfactory nuisances, the top air pollution complaint. Although the human olfactory system is still regarded as the most important and effective “analytical instrument” for odour evaluation, the demand for more objective analytical methods, along with the discovery of materials with chemo-electronic properties, has boosted the development of sensor-based machine olfaction potentially imitating the biological system. This review examines the state of the art of both human and instrumental sensing currently used for the detection of odours. The olfactometric techniques employing a panel of trained experts are discussed and the strong and weak points of odour assessment through human detection are highlighted. The main features and the working principles of modern electronic noses (E-Noses are then described, focusing on their better performances for environmental analysis. Odour emission monitoring carried out through both the techniques is finally reviewed in order to show the complementary responses of human and instrumental sensing.

  12. Radiation detector and method of opaquing the mica window

    International Nuclear Information System (INIS)

    An improved particle detection tube is disclosed including a method for applying a radiation transparent electrically non-conductive, opaque to ultraviolet light coating to the mica window of the tube. The coating reduces erroneous counts by preventing arcing between the tube anode and window. A purified mineral bituminous hydrocarbon based wax coating is applied to the mica window by cleaning the window with a hydrocarbon or chlorinated solvent rinsing with isopropyl alcohol drying the window dissolving 4 to 20 milligrams of purified bituminous hydrocarbon based wax in 1 to 2 milliliters of a hydrocarbon or chlorinated solvent on the window, and rotating the tube until the solvent evaporates to produce a film of the wax thereon

  13. Radiative neutron capture cross section measurements using the spectrum method

    International Nuclear Information System (INIS)

    The capture cross section is determined through the ? ray spectrum emitted by the sample. The ? rays are detected with a central NaI scintillator surrounded by a NaI annulus. The spectrometer is used both in the anti-Compton and first escape modes at the same time. The time-of-flight technique is used to reduce the background. The pulse-height spectrum is unfolded and corrected for the spectrometer efficiency. A theoretical calculation is used to extrapolate the capture ?-ray spectrum below the experimental threshold or in the region containing ?-rays from the (n,n'?) reaction. The radiative capture cross section is then deduced from the capture spectrum. The method is applied to the capture cross section measurements of gold for 0.5 to 3.0 MeV neutrons

  14. Photocurrent-based detection of terahertz radiation in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Tomadin, Andrea, E-mail: andrea.tomadin@sns.it; Tredicucci, Alessandro; Vitiello, Miriam S.; Polini, Marco [NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56126 Pisa (Italy); Pellegrini, Vittorio [NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56126 Pisa (Italy); Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy)

    2013-11-18

    Graphene is a promising candidate for the development of detectors of Terahertz (THz) radiation. A well-known detection scheme due to Dyakonov and Shur exploits plasma waves in a field-effect transistor (FET), whereby a dc photovoltage is generated in response to a THz field. In the quest for devices with a better signal-to-noise ratio, we theoretically investigate a plasma-wave photodetector in which a dc photocurrent is generated in a graphene FET. The noise equivalent power of our device is shown to be much smaller than that of a Dyakonov-Shur detector in a wide spectral range.

  15. Radiation detection performance of very high gain avalanche photodiodes

    International Nuclear Information System (INIS)

    Large area silicon avalanche photodiodes (APDs) have been fabricated with maximum avalanche gains exceeding 10 000 and with relatively flat signal-to-noise performance from gains of a few hundred to gains of a few thousand. Gain and noise performance as well as detector speed of response is presented for APDs with active areas of 4 mm2 and 64 mm2. An overview of the performance of these devices as radiation detectors includes pulse height spectra using the APD as a scintillation spectrometer coupled to CsI(Tl) and to plastic scintillator, and also for direct detection of low energy X-rays. ((orig.))

  16. Direct detection of Black Holes via electromagnetic radiation

    OpenAIRE

    Sobrinho, J. L. G.; Augusto, P.

    2014-01-01

    Many black hole (BH) candidates exist, ranging from supermassive ($\\sim10^{6}$--$10^{10}$ M$_{\\odot}$) to stellar masses ($\\sim 1$--$100$ M$_{\\odot}$), all of them identified by indirect processes. Although there are no known candidate BHs with sub-stellar masses, these might have been produced in the primordial Universe. BHs emit radiation composed of photons, gravitons and, later in their lifes, massive particles. We explored the detection of such BHs with present day masses from $10^{-22}$...

  17. Improvements in or relating to radiation detection arrangements

    International Nuclear Information System (INIS)

    A radiation detection arrangement is described that that comprises a number of scintillator devices, and a single multi-channel photomultiplier tube. Light from the scintillator devices is incident on the photocathode through an entrance window in the tube and multiplier entrance separating means are provided whereby light from each of the devices is made to be incident upon the channel entrances of photomultiplier tube. Various geometrical forms for the scintillator devices are described. This arrangement avoids the use of large number of small photomultiplier tubes, which is expensive and gives rise to difficulties in stacking the tubes in closely spaced side-by-side relationship. (U.K.)

  18. SCREENING METHODS FOR THE DETECTION OF CARTELS

    Directory of Open Access Journals (Sweden)

    Mihail BU?U

    2014-06-01

    Full Text Available During their everyday activities, the economic operators conclude a multitude of agreements in tacit or written form, such as: contracts or conventions. Some of these arrangements are absolutely necessary for the development of their current activities. These are agreements which, by respecting the rules of competition, are able to bring benefits to consumers and to the entire economy, as a whole. On the other hand, the economic operators often conclude agreements which are harmful to the economy as well as to the consumers, violating the competition rules. Some examples in this respect are: operators’ agreements on price fixing, on market or customers sharing. Before investigating the violation of competition rules, the relevant authorities should identify the possibility of the existence of such illegalities. The theoretical models for detecting the cartels do represent a proactive tool concerning the antitrust activity of competition authorities. The present paper furnishes a review of the methods for detecting cartels as well as a part of their practical application.

  19. Radiation sterilization and other methods for sterilization of medical utensils

    International Nuclear Information System (INIS)

    Radiation sterilization with ?-radiation and electron beams use have been performed on the background of other methods especially the chemical sterilization with ethylene oxide. The state of legislation as well as economical analysis for comparison both methods have been done. 3 tabs

  20. Method of laser-radiation guiding in plasma

    CERN Document Server

    Khachatrian, A G

    2000-01-01

    The diffraction broadening of the intense laser radiation restricts its efficient use in many applications. Proposed in the present work is a method for laser radiation guiding in a density channel formed in plasma by a relativistic electron beam. The conditions and parameters of the relativistic beam ensuring the guiding by means of the proposed method have been examined.

  1. Radiation methods in dairy production and processing

    International Nuclear Information System (INIS)

    Various uses of radiotracers and radiation in dairy technology are described. In dairy production, radiotracers are used for studying: (1) rumen metabolism leading to protein synthesis (2) total body water, blood volume and sodium (3) minerals metabolism (4) relation between climatic stress and thyroid functioning of dairy animals (5) volume of milk in mammary glands (6) hormone level in dairy animals and (7) spermatozoa metabolism. In dairy processing, radiotracers are used for studying: (1) compositional analysis of milk and milk products and (2) efficiency of cleaning agents for cleaning dairy equipment. Ionizing radiation is used for: (1) preservation of milk and milk products and (2) sterilization of packaging materials. Radiation source has been used to monitor the over-run in ice-cream and the fill control for fluid in papar cartons. (M.G.B.)

  2. SARA (Spectroscopic Ambient Radiation Detection) Spectroscopic Monitoring Systems for Online Environmental Radiation Monitoring Edition 2008

    International Nuclear Information System (INIS)

    In the wake of a nuclear incident, it is essential that you can react promptly and provide a completely reliable assessment of the radiological situation. First and foremost, it is vital that your radiation early warning system can automatically detect any man-made isotopes in the environment and identify any changes in the composition of the ambient radiation. Before appropriate countermeasures can be implemented, it is crucial that authorities have accurate information about the type of contamination and its dispersion. TechniData's spectroscopic online monitoring system will improve your existing monitoring systems, provide important information about the composition of ambient radiation during an incident, and therefore help you to make the right decisions

  3. Hydraulic control unit detection method and device

    International Nuclear Information System (INIS)

    The present invention provides detection method and device for ensuring integrity of hydraulic control units of a BWR type power plant and shortening the term for plant periodical inspection. Namely, (1) the integrity of the hydraulic control units is confirmed based on the time required from the input of control rod driving signals to the hydraulic control units to the completion of the control rod operation, (2) the integrity of the hydraulic control units is confirmed based on the driving time per 1 notch of the notches formed on control rods, (3) the above-mentioned integrity is judged by setting the range of the time assumed as integral based on integral data previously measured and determining whether the above-mentioned time is within the predetermined range or not, (4) this operation is conducted during a periodical inspection, and inspection is conducted by disassembling only the hydraulic control unit which is judged to be not integral. (I.S.)

  4. Method of detecting a fuel element failure

    International Nuclear Information System (INIS)

    A method is described for detecting a fuel element failure in a liquid-sodium-cooled fast breeder reactor consisting of equilibrating a sample of the coolant with a molten salt consisting of a mixture of barium iodide and strontium iodide (or other iodides) whereby a large fraction of any radioactive iodine present in the liquid sodium coolant exchanges with the iodine present in the salt; separating the molten salt and sodium; if necessary, equilibrating the molten salt with nonradioactive sodium and separating the molten salt and sodium; and monitoring the molten salt for the presence of iodine, the presence of iodine indicating that the cladding of a fuel element has failed. (U.S.)

  5. A non-parametric method for correction of global radiation observations

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Perers, Bengt; Nielsen, Henrik Aalborg

    2013-01-01

    in the observations are corrected. These are errors such as: tilt in the leveling of the sensor, shadowing from surrounding objects, clipping and saturation in the signal processing, and errors from dirt and wear. The method is based on a statistical non-parametric clear-sky model which is applied to......This paper presents a method for correction and alignment of global radiation observations based on information obtained from calculated global radiation, in the present study one-hour forecast of global radiation from a numerical weather prediction (NWP) model is used. Systematical errors detected...... Technical University. The method can be useful for optimized use of solar radiation observations for forecasting, monitoring, and modeling of energy production and load which are affected by solar radiation....

  6. Instrumentation measurement and testing complex for detection and identification of radioactive materials using the emitted radiation

    International Nuclear Information System (INIS)

    Simultaneous measurement of neutron and gamma radiation is a very usefull method for effective nuclear materials identification and control. The gamma-ray-neutron complex described in the paper is based on two multi-layer 3He neutrons detectors and two High Pressure Xenon gamma-ray spectrometers assembled in one unit. All these detectors were callibrated on neutron and gamma-ray sources. The main characteristics of the instrumentation , its testing results and gamma-ray and neutron radiation parameters, which have been measured are represented in the paper. The gamma-neutron sources and fissile materials reliable detection and identification capability was demonstrated

  7. Development of Angular Eigenvalue Method for Radiation Transport Problems

    International Nuclear Information System (INIS)

    This paper describes the development of a new semianalytical method for radiation transport problems in slabs, i.e., the angular eigenvalue method (AEM), and its application to the penetration of gamma rays in slabs

  8. RADIATION PRESSURE DETECTION AND DENSITY ESTIMATE FOR 2011 MD

    Energy Technology Data Exchange (ETDEWEB)

    Micheli, Marco; Tholen, David J.; Elliott, Garrett T., E-mail: micheli@ifa.hawaii.edu, E-mail: tholen@ifa.hawaii.edu, E-mail: gte@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2014-06-10

    We present our astrometric observations of the small near-Earth object 2011 MD (H ? 28.0), obtained after its very close fly-by to Earth in 2011 June. Our set of observations extends the observational arc to 73 days, and, together with the published astrometry obtained around the Earth fly-by, allows a direct detection of the effect of radiation pressure on the object, with a confidence of 5?. The detection can be used to put constraints on the density of the object, pointing to either an unexpectedly low value of ?=(640±330)kg m{sup ?3} (68% confidence interval) if we assume a typical probability distribution for the unknown albedo, or to an unusually high reflectivity of its surface. This result may have important implications both in terms of impact hazard from small objects and in light of a possible retrieval of this target.

  9. Void Detection In Semiconductor Shielded Power Cable Insulation By Measurements Of Submillimeter Radiation Scattering

    Science.gov (United States)

    Cunningham, P. R.; Cheo, P. K.; Farina, J. D.

    1986-08-01

    The feasibility of detecting voids in triple extruded power cable insulation by measure-ment of Mie scatter power of incident farinfrared (FIR) laser radiation is explored. Measurements of scatter power of a 100-250 um range of void sizes in polyethylene insulation show that void scatter power and experimental SNR decrease as wavelength increases from 119 to 447 um. Extrapolations of experimental data to larger void sizes show that detection of voids larger than 250 on in polyethylene insulation at 447 pm wavelength would have acceptable SNR using direct detection methods with no noise reduction techniques. Triple extruded insulation was modeled by taking into account the attenuation of an insulation shield at 447 um with 14 percent transmission. Modeling results show simulated detection of voids in triple extruded insulation would provide acceptable SNR for detection of voids larger than 250 um using higher laser irradiance levels than those required for nonshielded, or tandem extruded, insulation.

  10. Two different hematocrit detection methods: Different methods, different results?

    Directory of Open Access Journals (Sweden)

    Schuepbach Reto A

    2010-03-01

    Full Text Available Abstract Background Less is known about the influence of hematocrit detection methodology on transfusion triggers. Therefore, the aim of the present study was to compare two different hematocrit-assessing methods. In a total of 50 critically ill patients hematocrit was analyzed using (1 blood gas analyzer (ABLflex 800 and (2 the central laboratory method (ADVIA® 2120 and compared. Findings Bland-Altman analysis for repeated measurements showed a good correlation with a bias of +1.39% and 2 SD of ± 3.12%. The 24%-hematocrit-group showed a correlation of r2 = 0.87. With a kappa of 0.56, 22.7% of the cases would have been transfused differently. In the-28%-hematocrit group with a similar correlation (r2 = 0.8 and a kappa of 0.58, 21% of the cases would have been transfused differently. Conclusions Despite a good agreement between the two methods used to determine hematocrit in clinical routine, the calculated difference of 1.4% might substantially influence transfusion triggers depending on the employed method.

  11. Radiation ecology. Devices and methods of dosimetry

    International Nuclear Information System (INIS)

    Radiation ecology problems as well as instruments and techniques applied in the dosimetry are considered. A concept of a maximum permissible dose for different population groups is presented. Three basic groups of critical organs are enumerated. A special attenuation is paid to the dosimetric monitoring of nuclear power plants and environment on a 10-12 km radius from the NPP

  12. Radiation impact arising from uses of neutrons for landmine detection

    International Nuclear Information System (INIS)

    Description and discussion are given to the studies which were performed to assess the radiation impact in soil when neutrons are used to detect land mines by nuclear techniques. This was achieved by irradiating soil samples collected at different depths from land mine fields located at different regions in Egypt. The samples were exposed to the maximum neutron fluence which can be applied during land mine detection This was performed by irradiating the soil samples by neutrons emitted from Californium-252 source. The gamma spectra emitted from the irradiated samples were measured by gamma ray spectrometers with Nal(Tl) and HPGe detectors. The observed gamma lines and their intensities were used to identify the corresponding radio-nuclides and the activity concentration of each isotope. Estimation was also performed to assess the amount of 40K isotope which is produced in soil when irradiation.by neutrons during land mine detection. The obtained results of measured radioactive elements produced from neutron irradiation show clearly that, the radioactive elements,24Na, 38Cl, 56Mn, and 59Fe are produced at very low level. The data also show no indication of 40K. This means that using neutrons for land mine detection do not cause any sizable level of 40K compared with the naturally occurring one

  13. Method of measuring high-dose ionizing radiation

    International Nuclear Information System (INIS)

    A method is presented for measuring high-dose ionizing radiation above 106 Gy (108 rad). Synthetic silica glass, produced from SiCl4 or silicon organic compounds in the oxyhydrogen flame or in oxygen plasma, is used as dosemeter material, and the intensity of the ultraviolet absorption bands at 220 nm occurring during irradiation is used as a measure for the absorbed radiation dose. The method is applied for dosimetry of ionizing radiation, preferably at nuclear reactors, and in intense radiation fields

  14. Possible standoff detection of ionizing radiation using high-power THz electromagnetic waves

    Science.gov (United States)

    Nusinovich, Gregory S.; Sprangle, Phillip; Romero-Talamas, Carlos A.; Rodgers, John; Pu, Ruifeng; Kashyn, Dmytro G.; Antonsen, Thomas M., Jr.; Granatstein, Victor L.

    2012-06-01

    Recently, a new method of remote detection of concealed radioactive materials was proposed. This method is based on focusing high-power short wavelength electromagnetic radiation in a small volume where the wave electric field exceeds the breakdown threshold. In the presence of free electrons caused by ionizing radiation, in this volume an avalanche discharge can then be initiated. When the wavelength is short enough, the probability of having even one free electron in this small volume in the absence of additional sources of ionization is low. Hence, a high breakdown rate will indicate that in the vicinity of this volume there are some materials causing ionization of air. To prove this concept a 0.67 THz gyrotron delivering 200-300 kW power in 10 microsecond pulses is under development. This method of standoff detection of concealed sources of ionizing radiation requires a wide range of studies, viz., evaluation of possible range, THz power and pulse duration, production of free electrons in air by gamma rays penetrating through container walls, statistical delay time in initiation of the breakdown in the case of low electron density, temporal evolution of plasma structure in the breakdown and scattering of THz radiation from small plasma objects. Most of these issues are discussed in the paper.

  15. Beta radiation detection with ultra-thin thermoluminescent samples

    International Nuclear Information System (INIS)

    The possibility of beta radiation detection using ultra-thin thermoluminescent (TL) Teledyne dosimeters was investigated. The studied samples were UT - CaSO4:Dy with a thickness of 20 microns. The beta irradiations were done utilizing the Beta Secondary Standard System of IPEN calibration laboratory, with 90Sr-90Y, 204Tl and 147Pm sources. The individual reproducibility of the samples was initially investigated. Fifteen TL detectors were used and ten irradiations of 35 m Gy (90Sr-90Y) under identical conditions were performed. The average reproducibility found was 1.51% (1 sigma). Dose calibration curves (TL X absorbed dose) were obtained with 90Sr-90Y, 204Tl and 147Pm sources. The UT - CaSO4:Dy samples were irradiated with the 90Sr-90Y source between 0145 and 300 m Gy; the linear response was observed from 0.50 m Gy. In the case of 204Tl, the TL response was measured from 0.1 to 100 m Gy, with linear behavior from 1 m Gy, while for 147Pm the samples were exposed to radiation between 0.1 and 45 m Gy, presenting linear response from 2 m Gy. The 90Sr-90Y irradiated detectors were exposed to ultraviolet (UV) light (250 nm) to study the possibility of optical fading occurrence. The angular dependence of the TL response was investigated for 90Sr-90Y (20 m Gy), 204Tl (1 m Gy) and 147Pm (1 m Gy) sources at angles of 0, 30, 45, 90, 120, 135, 150 and 1800. Transmission factors for different thicknesses of tissue equivalent materials were obtained for the UT - CaSO4:Dy samples, using the three available beta sources. Finally, the energy dependence of the detector TL response was investigated. The results obtained for UT - CaSO4:Dy show its great usefulness in beta radiation detection

  16. DETECCIÓN DE RADIACIÓN NO IONIZANTE / NON-IONIZING RADIATION DETECTION

    Scientific Electronic Library Online (English)

    GUSTAVO, NAVAS; JAIRO, TARAZONA; RODRIGO, CORREA.

    2009-12-01

    Full Text Available Se diseñó y construyó una red de sensores para detección de radiación no ionizante en la banda comprendida entre 800MHz y 2.5GHz. El sistema se basa en el sensor que muestra a la salida una tensión DC proporcional a la potencia de la señal RF a su entrada, sin importar el tipo de modulación. Esta re [...] d comprende cuatro antenas banda ancha, cuatro tarjetas sensoras, una tarjeta central y un software de visualización de datos. El comportamiento del sistema se analizó con diferentes configuraciones y con múltiples fuentes de radiación. Igualmente, se muestran los resultados de la simulación de una antena espiral de Arquímedes utilizando CST STUDIO TM y los experimentos realizados para caracterizar la antena banda ancha HG2404CU. Los resultados mostraron un eficiente sistema de detección de radiación electromagnética en la banda estudiada. Una aplicación inmediata de este trabajo, para la cual se están haciendo pruebas de campo, es la detección de llamadas de celulares en lugares no permitidos como centros carcelarios, bancos, entre otros. Abstract in english A sensors network for non-ionizing radiation detection in the band of 800 MHz to 2.5 GHz was designed and constructed. The system is based on a sensor which shows an output DC voltage proportional to the input RF signal. This network is made of four broad band antennas, four circuit board sensors, a [...] main board and data visualization software. The performance system was analyzed changing its configuration and using several radiation sources. The results presented include the simulation of an Archimedes antenna using CST STUDIO TM and the experimental results of a broad band HG2404CU antenna. The results have shown an efficient system for the electromagnetic radiation detection. As a second part of this work, this prototype will be used as a detector of cellular phone calls in places where they are not allowed such as prisons, banks and so on.

  17. Statistics of Monte Carlo methods used in radiation transport calculation

    International Nuclear Information System (INIS)

    Radiation transport calculation can be carried out by using either deterministic or statistical methods. Radiation transport calculation based on statistical methods is basic theme of the Monte Carlo methods. The aim of this lecture is to describe the fundamental statistics required to build the foundations of Monte Carlo technique for radiation transport calculation. Lecture note is organized in the following way. Section (1) will describe the introduction of Basic Monte Carlo and its classification towards the respective field. Section (2) will describe the random sampling methods, a key component of Monte Carlo radiation transport calculation, Section (3) will provide the statistical uncertainty of Monte Carlo estimates, Section (4) will describe in brief the importance of variance reduction techniques while sampling particles such as photon, or neutron in the process of radiation transport

  18. Synchrotron radiation. Basics, methods and applications

    International Nuclear Information System (INIS)

    Synchrotron radiation is today extensively used for fundamental and applied research in many different fields of science. Its exceptional characteristics in terms of intensity, brilliance, spectral range, time structure and now also coherence pushed many experimental techniques to previously un-reachable limits, enabling the performance of experiments unbelievable only few years ago. The book gives an up-to-date overview of synchrotron radiation research today with a view to the future, starting from its generation and sources, its interaction with matter, illustrating the main experimental technique employed and provides an overview of the main fields of research in which new and innovative results are obtained. The book is addressed to PhD students and young researchers to provide both an introductory and a rather deep knowledge of the field. It will also be helpful to experienced researcher who want to approach the field in a professional way.

  19. Synchrotron radiation. Basics, methods and applications

    Energy Technology Data Exchange (ETDEWEB)

    Mobilio, Settimio; Meneghini, Carlo [Roma Tre Univ. (Italy). Dept. of Science; Boscherini, Federico (ed.) [Bologna Univ. (Italy). Dept. of Physics and Astronomy

    2015-02-01

    Synchrotron radiation is today extensively used for fundamental and applied research in many different fields of science. Its exceptional characteristics in terms of intensity, brilliance, spectral range, time structure and now also coherence pushed many experimental techniques to previously un-reachable limits, enabling the performance of experiments unbelievable only few years ago. The book gives an up-to-date overview of synchrotron radiation research today with a view to the future, starting from its generation and sources, its interaction with matter, illustrating the main experimental technique employed and provides an overview of the main fields of research in which new and innovative results are obtained. The book is addressed to PhD students and young researchers to provide both an introductory and a rather deep knowledge of the field. It will also be helpful to experienced researcher who want to approach the field in a professional way.

  20. Apparatus and method to achieve high-resolution microscopy with non-diffracting or refracting radiation

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Jr., Kenneth W.; Bingham, Philip R.; Hawari, Ayman I.

    2012-11-06

    An imaging system employing a coded aperture mask having multiple pinholes is provided. The coded aperture mask is placed at a radiation source to pass the radiation through. The radiation impinges on, and passes through an object, which alters the radiation by absorption and/or scattering. Upon passing through the object, the radiation is detected at a detector plane to form an encoded image, which includes information on the absorption and/or scattering caused by the material and structural attributes of the object. The encoded image is decoded to provide a reconstructed image of the object. Because the coded aperture mask includes multiple pinholes, the radiation intensity is greater than a comparable system employing a single pinhole, thereby enabling a higher resolution. Further, the decoding of the encoded image can be performed to generate multiple images of the object at different distances from the detector plane. Methods and programs for operating the imaging system are also disclosed.

  1. Application of remote sensing methods for detection of water pollution degree in rivers and water reservoirs

    International Nuclear Information System (INIS)

    The paper presents non-contact registration methods of the electromagnetic radiation which can be used for the detection of water pollution in rivers and water reservoirs. These methods include aerial photographs, satellite images and thermograms. The satellite images need reprocessing to obtain the mutual comparability of the images from various multispectral scanners (TM and MSS)

  2. Non-contact acoustic radiation force impulse microscopy via photoacoustic detection for probing breast cancer cell mechanics.

    Science.gov (United States)

    Hwang, Jae Youn; Kang, Bong Jin; Lee, Changyang; Kim, Hyung Ham; Park, Jinhyoung; Zhou, Qifa; Shung, K Kirk

    2015-01-01

    We demonstrate a novel non-contact method: acoustic radiation force impulse microscopy via photoacoustic detection (PA-ARFI), capable of probing cell mechanics. A 30 MHz lithium niobate ultrasound transducer is utilized for both detection of phatoacoustic signals and generation of acoustic radiation force. To track cell membrane displacements by acoustic radiation force, functionalized single-walled carbon nanotubes are attached to cell membrane. Using the developed microscopy evaluated with agar phantoms, the mechanics of highly- and weakly-metastatic breast cancer cells are quantified. These results clearly show that the PA-ARFI microscopy may serve as a novel tool to probe mechanics of single breast cancer cells. PMID:25657870

  3. Development of damage evaluation method considering radiation induced stress relaxation

    International Nuclear Information System (INIS)

    In this study, we evaluated the dependence of dose and irradiation temperature on radiation hardening (RH), radiation induced segregation (RIS), radiation induced stress relaxation (RISR), swelling and corrosion characteristics of austenitic stainless steel irradiated by using ion accelerators with and without bending displacement constraint. Considering the effect of bending displacement constraint on damage phenomena, a concept of new evaluation method for materials damage was considered to apply to the structural design of components. (author)

  4. SHDOM: Spherical Harmonic Discrete Ordinate Method for atmospheric radiative transfer

    Science.gov (United States)

    Evans, K. Franklin

    2015-08-01

    The Spherical Harmonic Discrete Ordinate Method (SHDOM) radiative transfer model computes polarized monochromatic or spectral band radiative transfer in a one, two, or three-dimensional medium for either collimated solar and/or thermal emission sources of radiation. The model is written in a variant of Fortran 77 and in Fortran90 and requires a Fortran 90 compiler. Also included are programs for generating the optical property files input to SHDOM from physical properties of water cloud particles and aerosols.

  5. A Method for Ultrashort Electron Pulse Shape-Measurement Using Coherent Synchrotron Radiation

    CERN Document Server

    Geloni, G A; Schneidmiller, E A; Yurkov, M V

    2003-01-01

    In this paper we discuss a method for nondestructive measurements of the longitudinal profile of sub-picosecond electron bunches for X-Ray Free Electron Lasers (XFELs). The method is based on the detection of the Coherent Synchrotron Radiation (CSR) spectrum produced by a bunch passing a dipole magnet system. This work also contains a systematic treatment of synchrotron radiation theory which lies at the basis of CSR. Standard theory of synchrotron radiation uses several approximations whose applicability limits are often forgotten: here we present a systematic discussion about these assumptions. Properties of coherent synchrotron radiation from an electron moving along an arc of a circle are then derived and discussed. We describe also an effective and practical diagnostic technique based on the utilization of an electromagnetic undulator to record the energy of the coherent radiation pulse into the central cone. This measurement must be repeated many times with different undulator resonant frequencies in or...

  6. Radiation portal monitor system and method

    Science.gov (United States)

    Morris, Christopher (Los Alamos, NM); Borozdin, Konstantin N. (Los Alamos, NM); Green, J. Andrew (Los Alamos, NM); Hogan, Gary E. (Los Alamos, NM); Makela, Mark F. (Los Alamos, NM); Priedhorsky, William C. (Los Alamos, NM); Saunders, Alexander (Los Alamos, NM); Schultz, Larry J. (Los Alamos, NM); Sossong, Michael J. (Los Alamos, NM)

    2009-12-15

    A portal monitoring system has a cosmic ray charged particle tracker with a plurality of drift cells. The drift cells, which can be for example aluminum drift tubes, can be arranged at least above and below a volume to be scanned to thereby track incoming and outgoing charged particles, such as cosmic ray muons, whilst also detecting gamma rays. The system can selectively detect devices or materials, such as iron, lead, gold and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can also detect any radioactive sources occupying the volume from gamma rays emitted therefrom. If necessary, the drift tubes can be sealed to eliminate the need for a gas handling system. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  7. Electron cascades in sensors for optical detection of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    London, Richard A.; Lowry, Mark E.; Vernon, Stephen P.; Stewart, Richard E. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2013-10-21

    A new class of high-speed detectors, called RadOptic detectors, measures ionizing radiation incident on a transparent semiconductor by sensing changes in the refractive index with an optical probe beam. We describe the role of radiation-initiated electron cascades in setting the sensitivity and the spatial and temporal resolution of RadOptic detectors. We model electron cascades with both analytical and Monte Carlo computational methods. We find that the timescale for the development of an electron cascade is less than of order 100 fs and is not expected to affect the time response of a detector. The characteristic size of the electron cloud is typically less than 2 ?m, enabling high spatial resolution in imaging systems. The electron-hole pair density created by single x-rays is much smaller than the saturation density and, therefore, single events should not saturate the detector.

  8. Direct detection of Black Holes via electromagnetic radiation

    CERN Document Server

    Sobrinho, J L G

    2014-01-01

    Many black hole (BH) candidates exist, ranging from supermassive ($\\sim10^{6}$--$10^{10}$ M$_{\\odot}$) to stellar masses ($\\sim 1$--$100$ M$_{\\odot}$), all of them identified by indirect processes. Although there are no known candidate BHs with sub-stellar masses, these might have been produced in the primordial Universe. BHs emit radiation composed of photons, gravitons and, later in their lifes, massive particles. We explored the detection of such BHs with present day masses from $10^{-22}$ M$_{\\odot}$ to $10^{-11}$ M$_{\\odot}$. We determined the maximum distances ($d$) at which the current best detectors should be placed in order to identify such isolated BHs. Broadly, we conclude that in the visible and ultraviolet BHs can be directly detected at $d\\lesssim 10^7$ m while in the X-ray band the distances might reach $\\sim10^8$ m (of the order of the Earth-Moon distance) and in the $\\gamma$-ray band BHs might even be detected from as far as $\\sim 0.1$ pc. Since these results give us realistic hopes of direct...

  9. Recombination methods in the dosimetry of mixed radiation

    Energy Technology Data Exchange (ETDEWEB)

    Golnik, N. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1996-12-31

    The work describes the state of art of recombination methods developed for the dosimetry of mixed radiation fields. The existing theories of initial recombination of ions in gases is given. Recombination methods developed in IAE are reviewed in detail. The methods described here can be applied in mixed radiation fields of poorly known composition and practically unlimited energy range. Main dosimetric parameters such as absorbed dose, photon component to the absorbed dose, radiation quality factor, dose equivalent, ambient dose equivalent and some other quantities can be determined in single instrument. A novel method has been developed for determination of the energy loss distribution in the nanometric region. Experimental tests showed that the method is promising not only for radiation protection but also for radiobiological investigations. (author). 166 refs, 62 figs, 16 tabs.

  10. Recombination methods in the dosimetry of mixed radiation

    International Nuclear Information System (INIS)

    The work describes the state of art of recombination methods developed for the dosimetry of mixed radiation fields. The existing theories of initial recombination of ions in gases is given. Recombination methods developed in IAE are reviewed in detail. The methods described here can be applied in mixed radiation fields of poorly known composition and practically unlimited energy range. Main dosimetric parameters such as absorbed dose, photon component to the absorbed dose, radiation quality factor, dose equivalent, ambient dose equivalent and some other quantities can be determined in single instrument. A novel method has been developed for determination of the energy loss distribution in the nanometric region. Experimental tests showed that the method is promising not only for radiation protection but also for radiobiological investigations. (author). 166 refs, 62 figs, 16 tabs

  11. Development of detection methods for irradiated foods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Seung; Nam, Hye Seon; Oh, Kyong Nam; Woo, Si Ho; Kim, Kyeung Eun; Yi, Sang Duk; Park, Jun Young; Kim, Kyong Su; Hwang, Keum Taek

    2000-04-01

    In 1999, we have been studied (1) on the detection of irradiated foods by ESR spectroscopy, by thermoluminescence, and by viscometry for physical measurements, (2) on the detection of hydrocarbons and 2-alkylcyclobutanones derived from fatty foods by GC/MS for chemical measurements, (3) on the screening and detection of irradiated foods by Comet assay and immunochemical (ELISA) technique for biological or biochemical measurements.

  12. Development of detection methods for irradiated foods

    International Nuclear Information System (INIS)

    In 1999, we have been studied (1) on the detection of irradiated foods by ESR spectroscopy, by thermoluminescence, and by viscometry for physical measurements, (2) on the detection of hydrocarbons and 2-alkylcyclobutanones derived from fatty foods by GC/MS for chemical measurements, (3) on the screening and detection of irradiated foods by Comet assay and immunochemical (ELISA) technique for biological or biochemical measurements

  13. Radiation shielding phenolic fibers and method of producing same

    International Nuclear Information System (INIS)

    A radiation shielding phenolic fiber is described comprising a filamentary phenolic polymer consisting predominantly of a sulfonic acid group-containing cured novolak resin and a metallic atom having a great radiation shielding capacity, the metallic atom being incorporated in the polymer by being chemically bound in the ionic state in the novolak resin. A method for the production of the fiber is discussed

  14. Method and apparatus to monitor a beam of ionizing radiation

    Science.gov (United States)

    Blackburn, Brandon W.; Chichester, David L.; Watson, Scott M.; Johnson, James T.; Kinlaw, Mathew T.

    2015-06-02

    Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.

  15. Method of detecting leakage in nuclear reactor containment vessel

    International Nuclear Information System (INIS)

    Object: To permit accurate and prompt detection of leakage of a radioactive substance. Structure: The rate of change of such factors as radiation dose, temperature and pressure in the containment vessel, and each detected rate of change is compared with a reference value. The running cycle of the condensed drain exhausting pump in a drain collecting tank within a predetermined period is detected, and it is also compared with a reference value. These comparisons determine the absence or presence of leakage. (Kamimura, M.)

  16. Detection of orphan radioactive sources during radiation monitoring

    International Nuclear Information System (INIS)

    Many radioactive sources are reported as lost every year from different parts of the world due to lack of administrative control or due to theft. Massive search operations carried out led to the discovery of some, few caused radiological emergencies in public domain and many are yet to be traced. Prevention of these orphan sources from causing inadvertent exposure of public can be achieved by timely search and detection operation for these sources. Systems and methodologies for search of orphan sources are developed as a part of BARC Emergency Response Centre's activities and are tested in many aerial and field radiation monitoring exercises. In this paper, results of an estimation carried out to assist the search and locating of orphan sources is presented. Dose rates have been compared at various monitoring locations of three inadequately shielded sources (137Cs, 60Co, 192Ir) of strength 3.7 TBq (100 Ci) each left inside a room of 30cm thick concrete wall. (author)

  17. Radiation detection with noble gases: Modeling and measurements

    Science.gov (United States)

    Dias, T. H. V. T.

    1999-06-01

    In most x-ray detection devices the radiation energy Ex is basically obtained in terms of the number n of sub-ionization electrons produced per absorbed photon in the detector filling, which is often a noble gas. Using Monte Carlo simulation, the absorption of x-rays and the development of the primary electron cloud in xenon have been investigated, and distributions of n for mono-energetic x-rays were obtained in the range Ex<40 keV. This study provided a detailed understanding of the response of xenon detectors to x-rays, analyzing and clarifying experimentally observed discontinuity effects. The behavior of full-energy as well as fluorescence-escape peaks is discussed.

  18. In-Situ Radiation Detection Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    MOHAGHEGHI,AMIR H.; REESE,ROBERT; MILLER,DAVID R.; MILLER,MARK LAVERNE; DUCE,STEPHEN

    2000-06-01

    The Department of Defense (DoD) has hundreds of facilities where radioactive materials have been used or are being used, including firing ranges, low-level radioactive waste disposal areas, and areas where past activities have resulted in environmental contamination. Affected sites range in size from a few acres to square miles. Impact to the DoD comes through military base closure and release to the public. It is important that radioactive contaminants are remediated to levels that result in acceptable risk to the public. Remediation requires characterization studies, e.g., sampling and surveys, to define the affected areas, removal actions, and final confirmatory sampling and surveys. Characterization of surface contamination concentrations has historically been performed using extensive soil sampling programs in conjunction with surface radiation surveys conducted with hand-held radiation monitoring equipment. Sampling is required within the suspect affected area and a large buffer area. Surface soil contaminant characterization using soil sampling and hand held monitoring are costly, time consuming, and result in long delays between submission of samples for analysis and obtaining of final results. This project took an existing, proven radiation survey technology that has had limited exposure and improved its capabilities by documenting correlation factors for various detector/radionuclide geometries that commonly occur in field surveys. With this tool, one can perform characterization and final release surveys much more quickly than is currently possible, and have detection limits that are as good as or better than current technology. This paper will discuss the capabilities of a large area plastic scintillation detector used in conjunction with a global positioning system (GPS) to improve site characterization, remediation, and final clearance surveys of the radioactively contaminated site. Survey results can rapidly identify areas that require remediation as well as guide surgical removal of contaminated soil that is above remediation guidelines. Post-remediation surveys can document that final radiological site conditions are within the remedial action limits.

  19. UTILIZATION OF PHOSWICH DETECTORS FOR SIMULTANEOUS, MULTIPLE RADIATION DETECTION

    International Nuclear Information System (INIS)

    A phoswich radiation detector is comprised of a phosphor sandwich in which several different phosphors are viewed by a common photomultiplier. By selecting the appropriate phosphors, this system can be used to simultaneously measure multiple radiation types (alpha, beta, gamma and/or neutron) with a single detector. Differentiation between the signals from the different phosphors is accomplished using digital pulse shape discrimination techniques. This method has been shown to result in accurate discrimination with highly reliable and versatile digital systems. This system also requires minimal component count (i.e. only the detector and a computer for signal processing). A variety of detectors of this type have been built and tested including: (1) a triple phoswich system for alpha/beta/gamma swipe counting, (2) two well-type detectors for measuring low levels of low energy photons in the presence of a high energy background, (3) a large area detector for measuring beta contamination in the presence of a photon background, (4) another large area detector for measuring low energy photons from radioactive elements such as uranium in the presence of a photon background. An annular geometry, triple phoswich system optimized for measuring alpha/beta/gamma radiation in liquid waste processing streams is currently being designed

  20. Improved Detection of Cherenkov Radiation using Wavelength-Shifting Paints

    Science.gov (United States)

    Schmookler, Barak; Ou, Longwu

    2014-03-01

    Photomultiplier Tubes (PMTs) are often used to detect Cherenkov radiation in accelerator-based physics experiments. Since the Cherenkov spectrum is inversely proportional to the square of the photon's wavelength, PMTs with relatively good quantum efficiencies in the ultraviolet region can produce on average a higher number of photoelectrons. The application of certain paints, which absorb light at ultraviolet wavelengths and emit in the visible spectrum, to the surface of some PMTs allows for better sampling of the Cherenkov spectrum. The effects of various wavelength-shifting (WLS) paints designed by Eljen Technologies were tested on ET Enterprises, Model: 9390KB PMTs. Using a 106Ru ?-source, Cherenkov light was produced in disks of fused silica. The charge spectrums of the PMTs were measured before and after application of the paint. The average number of photoelectrons produced from the Cherenkov radiation could be determined by knowing the value of the single-photoelectron peak and the mean of the charge spectrum. Four paints were tested, and the gain in the number photoelectrons produced varied from 10-35% for the different paints. Work Conducted at Thomas Jefferson National Accelerator Facility.

  1. Calculation method of solar radiation incident upon slopes considering topography

    International Nuclear Information System (INIS)

    When radiation in a basin is calculated, slope inclination, slope orientation and topography of surroundings have to be taken into account. The method of approximation to topography by triangles proposed by Miura et al. is employed to take slope characteristics and topography of surroundings into account. Authors prepared 360 directions' shades altitudes, i.e. every degree of angle, for each triangle in advance, and used these shades' altitudes to calculate both direct radiation on a slope diffuse radiation taking topography of surroundings into account. And authors show how to estimate hourly direct and diffuse solar radiation from hourly horizontal global radiation and synthesize hourly slope global radiation on slopes

  2. A new fault detection method for computer networks

    International Nuclear Information System (INIS)

    Over the past few years, fault detection for computer networks has attracted extensive attentions for its importance in network management. Most existing fault detection methods are based on active probing techniques which can detect the occurrence of faults fast and precisely. But these methods suffer from the limitation of traffic overhead, especially in large scale networks. To relieve traffic overhead induced by active probing based methods, a new fault detection method, whose key is to divide the detection process into multiple stages, is proposed in this paper. During each stage, only a small region of the network is detected by using a small set of probes. Meanwhile, it also ensures that the entire network can be covered after multiple detection stages. This method can guarantee that the traffic used by probes during each detection stage is small sufficiently so that the network can operate without severe disturbance from probes. Several simulation results verify the effectiveness of the proposed method

  3. Ferromagnetic Antenna and its Application to Generation and Detection of Gravitational Radiation

    OpenAIRE

    De Aquino, Fran

    2002-01-01

    A new type of antenna, which we have called Ferromagnetic Antenna, has been considered for Generation and Detection of Gravitational Radiation. A simple experiment, in which gravitational radiation at 10 GHz can be emitted and received in laboratory, is presented.

  4. The photochemical method for radiation abatement

    International Nuclear Information System (INIS)

    This report reviews the underlying chemistry of the photochemical method for removal of radioiodines from air and evaluates the concept with respect to various applications in the nuclear industry. The method uses ultraviolet light (200-300 nm) to convert organic iodides (RI) to elemental iodine (I2). The I2 is then reacted with ozone to form solid iodine oxides (I4O9 or (I2O5), which deposit inside a scrubber. It is concluded that the method is applicable to large-scale systems and would have several advantages over conventional methods of radioiodine abatement

  5. Linear method as the expansion technique of dynamical capabilities of detecting systems during reactor-physical investigations

    International Nuclear Information System (INIS)

    The method giving the possibility to create nuclear radiation detecting systems combining the current apparatus wide-range nature and dynamical capabilities of pulsed detecting systems is proposed. The above method uses peculiarities of the linear method which is based on the refusal of application of nonlinear devices shaping current pulses coming from radiation detectors. The block-diagram of the detecting device ensuring the linear operating regimes is considered. From radiation detector output the current pulses not subjecting to external nonlinear electric circuits shaping enter directly the integrating capacitor and loading. The results of linear detecting systems investigation have shown that the linear method allows by means of a standard fast-response apparatus to develop detecting systems possessing minimum energy threshold and differing by ennanced fast response. The possibilitity to perform measurements with detecting rate up to 1012-1014s-1 has been found experimentally

  6. Method of radiation therapy treatment planning

    International Nuclear Information System (INIS)

    A technique of radiation therapy treatment planning designed to allow the assignment of dosage limits directly to chosen points in the computer-displayed cross-section of the patient. These dosage limits are used as constraints in a linear programming attempt to solve for beam strengths, minimizing integral dosage. If a feasible plan exists, the optimized plan will be displayed for approval as an isodose pattern. If there is no feasible plan, the operator/therapist can designate some of the point dosage constraints as ''relaxed.'' Linear programming will then optimize for minimum deviation at the relaxed points. This process can be iterated and new points selected until an acceptable plan is realized. In this manner the plan is optimized for uniformity as well as overall low dosage. 6 claims, 6 drawing figures

  7. Computation of gamma radiation transport by the Monte Carlo method

    International Nuclear Information System (INIS)

    The program is discussed for the simulation of gamma radiation transport in material. Examples of the application of the Monte Carlo method for solving shielding problems, the calculation of spectrum shapes and buildup factors are given. (author)

  8. Laser-ultrasound spectroscopy apparatus and method with detection of shear resonances for measuring anisotropy, thickness, and other properties

    Science.gov (United States)

    Levesque, Daniel (Terrebonne, CA); Moreau, Andre (St-Bruno-de-Montarville, CA); Dubois, Marc (Montreal, CA); Monchalin, Jean-Pierre (Montreal, CA); Bussiere, Jean (St-Bruno, CA); Lord, Martin (Beloeil, CA); Padioleau, Christian (Montreal, CA)

    2000-01-01

    Apparatus and method for detecting shear resonances includes structure and steps for applying a radiation pulse from a pulsed source of radiation to an object to generate elastic waves therein, optically detecting the elastic waves generated in the object, and analyzing the elastic waves optically detected in the object. These shear resonances, alone or in combination with other information, may be used in the present invention to improve thickness measurement accuracy and to determine geometrical, microstructural, and physical properties of the object. At least one shear resonance in the object is detected with the elastic waves optically detected in the object. Preferably, laser-ultrasound spectroscopy is utilized to detect the shear resonances.

  9. Flaw detection of surface cracks by radioisotope method

    International Nuclear Information System (INIS)

    The radioisotope method is suggested to detect surface cracks in articles, it consists in coating the surface controlled by a penetrating liquid containing beryllium. Under ?-ray with the radioisoope 124Sb source surface cracks are detected by photoneutron recording. Detection of surface cracks in welds made of aUstenitic steel articles has been carried out. The method permits to detect defects during 12 min on 100 cm2 area. Prospects of method application in engineering industry are marked

  10. Differential Transformation Method for Temperature Distribution in a Radiating Fin

    DEFF Research Database (Denmark)

    Rahimi, M.; Hosseini, M. J.; Barari, Amin; Domairry, G.

    2011-01-01

    Radiating extended surfaces are widely used to enhance heat transfer between a primary surface and the environment. In this paper, the differential transformation method (DTM) is proposed for solving nonlinear differential equation of temperature distribution in a heat radiating fin. The concept of...... differential transformation is briefly introduced, and then we employed it to derive solutions of two nonlinear equations. The results obtained by DTM are compared with those derived from the analytical solution to verify the accuracy of the proposed method....

  11. A Method for Lung Boundary Detection

    Directory of Open Access Journals (Sweden)

    Samir Kumar Bandyopadhyay

    2012-02-01

    Full Text Available In computerized analysis of chest radiographs is the detection of the lung field boundaries. Once the boundaries of the lung fields are identified, physiological measurements of the lung features are possible. The properties of the boundary are determined by edge detection along with suitable filter algorithms. The aim of proposed work is to develop an experimental system which segmented and analysis of the lung boundaries in chest X-ray images. This paper presents boundary detection of lung using algorithms and results obtained quite satisfactory. This is tried to make a sharp distinction between the lung region and the exterior of the lung.

  12. A Decision Theoretic Approach to Evaluate Radiation Detection Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Nobles, Mallory A.; Sego, Landon H.; Cooley, Scott K.; Gosink, Luke J.; Anderson, Richard M.; Hays, Spencer E.; Tardiff, Mark F.

    2013-07-01

    There are a variety of sensor systems deployed at U.S. border crossings and ports of entry that scan for illicit nuclear material. In this work, we develop a framework for comparing the performance of detection algorithms that interpret the output of these scans and determine when secondary screening is needed. We optimize each algorithm to minimize its risk, or expected loss. We measure an algorithm’s risk by considering its performance over a sample, the probability distribution of threat sources, and the consequence of detection errors. While it is common to optimize algorithms by fixing one error rate and minimizing another, our framework allows one to simultaneously consider multiple types of detection errors. Our framework is flexible and easily adapted to many different assumptions regarding the probability of a vehicle containing illicit material, and the relative consequences of a false positive and false negative errors. Our methods can therefore inform decision makers of the algorithm family and parameter values which best reduce the threat from illicit nuclear material, given their understanding of the environment at any point in time. To illustrate the applicability of our methods, in this paper, we compare the risk from two families of detection algorithms and discuss the policy implications of our results.

  13. Application of the microbiological method DEFT/APC and DNA comet assay to detect ionizing radiation processing of minimally processed vegetables; Aplicacao do metodo microbiologico DEFT/APC e do teste do cometa na deteccao do tratamento com radiacao ionizante de hortalicas minimamente processadas

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Michel Mozeika

    2008-07-01

    Marketing of minimally processed vegetables (MPV) are gaining impetus due to its convenience, freshness and apparent healthy. However, minimal processing does not reduce pathogenic microorganisms to safe levels. Food irradiation is used to extend the shelf life and inactivation of food-borne pathogens, Its combination with minimal processing could improve the safety and quality of MPV. Two different food irradiation detection methods, a biological, the DEFT/APC, and another biochemical, the DNA Comet Assay were applied to MPV in order to test its applicability to detect irradiation treatment. DEFT/APC is a microbiological screening method based on the use of the direct epi fluorescent filter technique (DEFT) and the aerobic plate count (APC). DNA Comet Assay detects DNA damage due to ionizing radiation. Samples of lettuce, chard, watercress, dandelion, kale, chicory, spinach, cabbage from retail market were irradiated O.5 kGy and 1.0 kGy using a {sup 60} Co facility. Irradiation treatment guaranteed at least 2 log cycle reduction for aerobic and psychotropic microorganisms. In general, with increasing radiation doses, DEFT counts remained similar independent of irradiation processing while APC counts decreased gradually. The difference of the two counts gradually increased with dose increment in all samples. It could be suggested that a DEFT/APC difference over 2.0 log would be a criteria to judge if a MPV was treated by irradiation. DNA Comet Assay allowed distinguishing non-irradiated samples from irradiated ones, which showed different types of comets owing to DNA fragmentation. Both DEFT/APC method and DNA Comet Assay would be satisfactorily used as a screening method for indicating irradiation processing. (author)

  14. Development of medical application methods using radiation. Radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Woon; Lim, S. M.; Kim, E.H.; Woo, K. S.; Chung, W. S.; Lim, S. J.; Choi, T. H.; Hong, S. W.; Chung, H. Y.; No, W. C. [Korea Atomic Energy Research Institute. Korea Cancer Center Hospital, Seoul, (Korea, Republic of); Oh, B. H. [Seoul National University. Hospital, Seoul (Korea, Republic of); Hong, H. J. [Antibody Engineering Research Unit, Taejon (Korea, Republic of)

    1999-04-01

    In this project, we studied following subjects: 1. development of monoclonal antibodies and radiopharmaceuticals 2. clinical applications of radionuclide therapy 3. radioimmunoguided surgery 4. prevention of restenosis with intracoronary radiation. The results can be applied for the following objectives: (1) radionuclide therapy will be applied in clinical practice to treat the cancer patients or other diseases in multi-center trial. (2) The newly developed monoclonal antibodies and biomolecules can be used in biology, chemistry or other basic life science research. (3) The new methods for the analysis of therapeutic effects, such as dosimetry, and quantitative analysis methods of radioactivity, can be applied in basic research, such as radiation oncology and radiation biology.

  15. Development of medical application methods using radiation. Radionuclide therapy

    International Nuclear Information System (INIS)

    In this project, we studied following subjects: 1. development of monoclonal antibodies and radiopharmaceuticals 2. clinical applications of radionuclide therapy 3. radioimmunoguided surgery 4. prevention of restenosis with intracoronary radiation. The results can be applied for the following objectives: 1) radionuclide therapy will be applied in clinical practice to treat the cancer patients or other diseases in multi-center trial. 2) The newly developed monoclonal antibodies and biomolecules can be used in biology, chemistry or other basic life science research. 3) The new methods for the analysis of therapeutic effects, such as dosimetry, and quantitative analysis methods of radioactivity, can be applied in basic research, such as radiation oncology and radiation biology

  16. Apparatus and method for inhibiting the generation of excessive radiation

    International Nuclear Information System (INIS)

    This patent describes an apparatus for generating electron radiation or X-ray radiation. It comprises accelerator means for generating and accelerating electrons to form an electron beam which has a predetermined low intensity level for the generation of the electron radiation or a predetermined high intensity level for the generation of the X-ray radiation; supporting means for supporting a scattering foil and a target and for selectively moving either the foil into the trajectory of the electron beam having the low intensity level for generating the electron radiation upon impingement of the electrons there or on the target into the trajectory of the electron beam having the high intensity level for generating the X-ray radiation upon impingement of the electrons thereon; detecting means operable by the supporting means for sensing the position of the target relative to the trajectory of the electron beam; and inhibiting means coupled to the accelerator means and to the detecting means for preventing the generation of an electron beam having the high intensity level if the foil and not the target is positioned in the trajectory of the electron beam

  17. Study of Silicon Pixel Sensors for Synchrotron Radiation Detection

    CERN Document Server

    Li, Zhen-Jie; Hu, Ling-Fei; Liu, Peng; Yin, Hua-Xiang

    2015-01-01

    Hybrid pixel single-photon-counting detectors have been successfully employed and widely used in Synchrotron radiation X-ray detection. In this paper, the silicon pixel sensors for single X-ray photon detection, which operate in full-depletion mode have been studied. The pixel sensors were fabricated on 4-inch, N type, 320{\\mu}m thick, high-resistivity silicon wafers. The pixel sensors has a p+-in-n structure with varies of pixel size and gap size including guard-ring structures. Later, the pixel sensor was wire bonded to the ASIC circuits and tested for the performance of X-ray response in the synchrotron beam line (BSRF, 1W2B). From the S-curve scan, we could get the energy resolution and the linear properties between input energy and the equivalent generator amplitude. The pixel sensors we fabricated have a good energy linear and high count rate depending on the ASIC readout circuit. We get the 20% energy resolution above 10 keV photon energy via wire bonding. The energy resolution would get better if we b...

  18. Modification of Gravitational Anomaly Method in Hawking Radiation

    CERN Document Server

    Morita, Takeshi

    2009-01-01

    We argue an ambiguity of the derivation of the Hawking radiation through the gravitational anomaly method and propose modifications of this method such that it reproduces the correct thermal fluxes. In this modified gravitational anomaly method, we employ the two dimensional conformal field theory technique.

  19. Modification of Gravitational Anomaly Method in Hawking Radiation

    OpenAIRE

    Morita, Takeshi

    2009-01-01

    We discuss an ambiguity of the derivation of the Hawking radiation through the gravitational anomaly method and propose modifications of this method such that it reproduces the correct thermal fluxes. In this modified gravitational anomaly method, we employ the two-dimensional conformal field theory technique.

  20. Echo detected EPR as a tool for detecting radiation-induced defect signals in pottery

    Energy Technology Data Exchange (ETDEWEB)

    Zoleo, Alfonso, E-mail: alfonso.zoleo@unipd.it [Department of Chemical Sciences, University of Padova, via Marzolo 1, I-35131 Padova (Italy); Bortolussi, Claudia, E-mail: claudia.bortolussi@studenti.unipd.it [Department of Chemical Sciences, University of Padova, via Marzolo 1, I-35131 Padova (Italy); Brustolon, Marina, E-mail: marinarosa.brustolon@unipd.it [Department of Chemical Sciences, University of Padova, via Marzolo 1, I-35131 Padova (Italy)

    2011-08-15

    Archaeological fragments of pottery have been investigated by using CW-EPR and Echo Detected EPR (EDEPR). EDEPR allows to remove the CW-EPR dominant Fe(III) background spectrum, hiding much weaker signals potentially useful for dating purpose. EDEPR spectra attributed to a methyl radical and to feldspar defects have been recorded at room and low temperature for an Iron Age cooking ware (700 B.C.). A study on the dependence of EDEPR intensity over absorbed dose on a series of {gamma}-irradiated brick samples (estimated age of 562 {+-} 140 B.C.) has confirmed the potential efficacy of the proposed method for spotting defect signals out of the strong iron background. - Highlights: > Fe(III) CW-EPR signals cover CW-EPR-detectable defects in ceramics. > Echo detected EPR gets rid of Fe(III) signals, disclosing defect signals. > Echo detected EPR detects defect signals even at relatively low doses.

  1. Discontinuous Galerkin Methods for Neutrino Radiation Transport

    Science.gov (United States)

    Endeve, Eirik; Hauck, Cory; Xing, Yulong; Mezzacappa, Anthony

    2015-04-01

    We are developing new computational methods for simulation of neutrino transport in core-collapse supernovae, which is challenging since neutrinos evolve from being diffusive in the proto-neutron star to nearly free streaming in the critical neutrino heating region. To this end, we consider conservative formulations of the Boltzmann equation, and aim to develop robust, high-order accurate methods. Runge-Kutta discontinuous Galerkin (DG) methods, offer several attractive properties, including (i) high-order accuracy on a compact stencil and (ii) correct asymptotic behavior in the diffusion limit. We have recently developed a new DG method for the advection part for the transport solve, which is high-order accurate and strictly preserves the physical bounds of the distribution function; i.e., f ? [ 0 , 1 ] . We summarize the main ingredients of our bound-preserving DG method and discuss ongoing work to include neutrino-matter interactions in the scheme. Research sponsored in part by Oak Ridge National Laboratory, managed by UT-Battelle, LLC for the U. S. Department of Energy

  2. The effects of x-ray beam hardening on detective quantum efficiency and radiation dose.

    Science.gov (United States)

    Wong, Molly Donovan; Wu, Xizeng; Liu, Hong

    2011-01-01

    The goal of this preliminary study was to investigate the effects of x-ray beam hardening on the detective quantum efficiency (DQE) and the radiation dose of an inline x-ray imaging system. The ability to decrease the risk of harmful radiation to the patient without compromising the detection capability would more effectively balance the tradeoff between image quality and radiation dose, and therefore benefit the fields of diagnostic x-ray imaging, especially mammography. The DQE and the average glandular dose were both calculated under the same experimental conditions for a range of beam hardening levels, corresponding to no added beam hardening and two thicknesses each of Rhodium (Rh) and Molybdenum (Mo) filters. The dose calculation results demonstrate a reduction of 15% to 24% for the range of beam hardening levels. The comparison of all quantities comprising the DQE exhibit very close correlation between the results obtained without added beam hardening to the results corresponding to the range of beam hardening levels. For the specific experimental conditions utilized in this preliminary study, the results are an indication that the use of beam hardening holds the potential to reduce the radiation dose without decreasing the performance of the system. Future studies will seek to apply this method in a clinical environment and perform a comprehensive image quality evaluation, in an effort to further evaluate the potential of beam hardening to balance the tradeoff between dose and image quality. PMID:25214383

  3. A non-parametric method for correction of global radiation observations

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik

    2013-01-01

    This paper presents a method for correction and alignment of global radiation observations based on information obtained from calculated global radiation, in the present study one-hour forecast of global radiation from a numerical weather prediction (NWP) model is used. Systematical errors detected in the observations are corrected. These are errors such as: tilt in the leveling of the sensor, shadowing from surrounding objects, clipping and saturation in the signal processing, and errors from dirt and wear. The method is based on a statistical non-parametric clear-sky model which is applied to both the observed and the calculated radiation in order to find systematic deviations between them. The method is applied to correct global radiation observations from a climate station located at a district heating plant in Denmark. The results are compared to observations recorded at the Danish Technical University. The method can be useful for optimized use of solar radiation observations for forecasting, monitoring, and modeling of energy production and load which are affected by solar radiation.

  4. A regularized GMRES method for inverse blackbody radiation problem

    Directory of Open Access Journals (Sweden)

    Wu Jieer

    2013-01-01

    Full Text Available The inverse blackbody radiation problem is focused on determining temperature distribution of a blackbody from measured total radiated power spectrum. This problem consists of solving a first kind of Fredholm integral equation and many numerical methods have been proposed. In this paper, a regularized GMRES method is presented to solve the linear ill-posed problem caused by the discretization of such an integral equation. This method projects the orignal problem onto a lower dimensional subspaces by the Arnoldi process. Tikhonov regularization combined with GCV criterion is applied to stabilize the numerical iteration process. Three numerical examples indicate the effectiveness of the regularized GMRES method.

  5. Technical improvement and development of automatic detection method for genomic mutation

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Kiyomi; Takai, Setsuo; Togashi, Chikako; Itami, Jun [Research Inst. International Medical Center Japan, Tokyo (Japan)

    1998-02-01

    Aiming at automatic detection of genetic mutation, an investigation was made on sample preparing method for automatic detection and automatization of the preparing process. In this year, the second year of this research project, the chromosomal abnormalities in lymphocyte exposed to radiation were analyzed by highly accurate chromosome staining method to clarify the efficacy of the new staining method regarding dose effects, analyzing power for chromosomal abnormalities, etc. by comparing with the conventional method. Chromatin fibers of several hundred {mu} in length were found detectable by FISH, but the method was unsuitable for observation of the fibers in a nanometer level, suggesting that it is needed to prepare much purified samples through more complete deproteinization. Furthermore, primed in situ (PRINS) labelling method which targetted the repeated sequences in Y chromosome was found available for detecting chromatin fibers. (M.N.)

  6. Optimization of radiation monitoring methods of environment

    International Nuclear Information System (INIS)

    Full text : Report is devoted to the substantiation of the ways to optimize methods of providing radioecological monitoring (RM) in Ukraine. For this purpose the design features of RM at different levels, the analysis of modern requirements for the RM, the methods for RM ensuring were considered in the dissertation, the use for instrumentation supply of laboratories of new simplified methods, that were developed in this paper, was proposed. This work proposed to strengthen radiobiological component of monitoring, the advantages and disadvantages of the proposed methods were analyzed. The research of the spatial and vertical distribution of radionuclides in soils of the most polluted part of the Chernobyl zone was conducted using the proposed methods. For the first time the parameters of vertical migration of the isotopes 154Eu, 238-240Pu and 241Am in soil profiles of Ch NPP close zone were calculated. The parameters of vertical migration of 90Sr, 137Cs were refined. The calculations of effective environmental and semi-refined periods of above mentioned isotopes for different soil types were conducted, the estimation of dose rates to biota was done, and radioecological characterization of the test sites of the cooling pond was conducted. The features of radioecology of birds, rodents and shrews, bats and amphibians were studied. The dose rates for these species were assessed and their compliance with 103 ICRP Guiding. The species differences in the pollution of wild rodents, insectivores, passerine birds, amphibians and bats on a large amount of factual material were estimated. The investigation of the radioecological contamination of the features of the urbanized landscape was conducted on the example of Pripyat silty. The practical significance of the work is that the developed methods of non radiochemical determination of radiostrontium activity, alpha emitting isotopes of plutonium, which can significantly hasten and facilitate the evaluation of the corresponding concentration radionuclides in the environment, and significantly reduce economic costs. The method of intra vital measurement of 90Sr in small animals opens up fundamentally new opportunities for researchers in radioecology and radiobiology

  7. Biochemical and Radiobiological Factors in the Early Detection of Radiation Injury in Mammals

    International Nuclear Information System (INIS)

    In considering the body of radiobiological knowledge upon which the present possibilities for the development of an objective quantitative laboratory procedure for early detection of radiation injury depend, it is evident that there are at least three general categories of radiation effects which are relevant to this objective: (1) Products of the enzymatic-chemical breakdown of macromolecules, and lysis of killed or dying cells from radiosensitive tissues, for example deoxypolynucleotides from lymphoid tissues and bone marrow; (2) Radiation-induced inhibition of synthesis of deoxyribonucleic acid (DNA) and/or other macromolecules, eliciting alterations in tissue and blood concentrations and pool size of metabolic intermediates in the synthesis, for example, deoxycytidine; (3) Radiation-induced alterations, suppression, or cessation of specialized cell function; of particular interest here is the immunological functions of lymphocytes, including those in the circulating blood. For rodents, the exquisite radiosensitivity of bone-marrow-stem cells as well as of lymphocytes has been precisely measured by modern cellular radiobiological techniques: the colony-forming technique of Till and McCulloch, yielding a D0 for bone-marrow cells of about 80 R; and the graft-versus-host reactivity of transplanted lymphocytes yielding a similar D0 value. In our own hands, a modified colony-formation technique for dog bone-marrow cells irradiated in.vitro and in vivo give D0 values of ?100 R. Thus, on the basis of radiation sensitivity and the time-relationships for interphase cell death for lymphocytes, it appears that this cell class is probably the best ''candidate'' source for an early radiation-injury detection system. However,- the important report by Zicha and Buric indicates that extrapolation of biochemical data on radiation dosimetry from rodents to man is not necessarily feasible, at least in the. case of the urinary excretion of deoxycytidine after irradiation, since human liver actively de-aminates deoxycytidine, in contrast to rat liver. Biochemical and immunological tests on peripheral blood lymphocytes removed within hours after radiation exposure may afford a sensitive approach to early detection of radiation injury. Thus, DNA synthesis as measured by the incorporation of tritiated thymidine into .the DNA fraction is drastically inhibited in irradiated rat lymphocytes incubated in vitro, in response to the addition of phytohaemagglutinin. Theoretically, the responses of these easily accessible cells to phytohaemagglutinin and to other selected antigens in vitro should be amenable to quantitation after radiation-dose levels which elicit only minimal lymphopenie effects. Further studies on the molecular basis of these radiation effects on lymphocytes, together with deeper insights into the mechanism by which ionizing radiations initiate the sequence of events leading to the breakdown of DNA and the release of histdnes from nucleoproteins of these cells, are required for the implementation of practical methods for biochemical detection of radiation injury in man. (author)

  8. A comparison of moving object detection methods for real-time moving object detection

    Science.gov (United States)

    Roshan, Aditya; Zhang, Yun

    2014-06-01

    Moving object detection has a wide variety of applications from traffic monitoring, site monitoring, automatic theft identification, face detection to military surveillance. Many methods have been developed across the globe for moving object detection, but it is very difficult to find one which can work globally in all situations and with different types of videos. The purpose of this paper is to evaluate existing moving object detection methods which can be implemented in software on a desktop or laptop, for real time object detection. There are several moving object detection methods noted in the literature, but few of them are suitable for real time moving object detection. Most of the methods which provide for real time movement are further limited by the number of objects and the scene complexity. This paper evaluates the four most commonly used moving object detection methods as background subtraction technique, Gaussian mixture model, wavelet based and optical flow based methods. The work is based on evaluation of these four moving object detection methods using two (2) different sets of cameras and two (2) different scenes. The moving object detection methods have been implemented using MatLab and results are compared based on completeness of detected objects, noise, light change sensitivity, processing time etc. After comparison, it is observed that optical flow based method took least processing time and successfully detected boundary of moving objects which also implies that it can be implemented for real-time moving object detection.

  9. Method and apparatus for detection of nuclear fuel rod failures

    International Nuclear Information System (INIS)

    The invention described generally relates to nuclear fuel reactors, and more particularly relates to a method and apparatus, based upon vibration detection and analysis techniques, for detecting a failure or rupture of fuel elements or tubes containing nuclear fuel

  10. Method to detect steam generator tube leakage

    International Nuclear Information System (INIS)

    It is important for plant operation to detect minor leakages from the steam generator tube at an early stage, thus, leakage detection has been performed using a condenser air ejector gas monitor and a steam generator blow down monitor, etc. In this study highly-sensitive main steam line monitors have been developed in order to identify leakages in the steam generator more quickly and accurately. The performance of the monitors was verified and the demonstration test at the actual plant was conducted for their intended application to the plants. (author)

  11. Review on Islanding Detection Methods for Photovoltaic Inverter

    Directory of Open Access Journals (Sweden)

    Liu Mochen

    2013-07-01

    Full Text Available Solar power generation, which is regarded as an ideal environment-friendly manner for power generation, is getting more and more attention. When photovoltaic inverter is connected to the grid?the island effect is a special problem to confront. This paper briefly analyzes the island effects and makes a summary of both domestic and external research progress concerning islanding detection methods; the islanding detection methods can be divided into two classes: one is grid-side detection; the other is local detection. The local detection is generally divided into passive methods and active methods. The theory of advantages and disadvantages of those methods are briefly introduced in this paper. At the end of the paper, to deal with the disadvantages of those methods that are mentioned, it proposes the research direction for deeper study of islanding detection methods.

  12. EPR spectroscopy for the detection of foods treated with ionising radiation

    International Nuclear Information System (INIS)

    The advantage of electron paramagnetic resonance spectroscopy (EPR or ESR) as a tool for the control of irradiated food lies in its sensitivity and accuracy. Ionising radiation produces, in irradiated materials, paramagnetic species of different kinds, i.e. radicals, radical-ions and paramagnetic centres, which can be measured by EPR but most of them are not stable enough to be used for the detection of irradiation. It is because radiation-induced paramagnetic species are thermodynamically less stable than surrounding molecules and take part in fast radiolytic reactions leading to the formation of final diamagnetic products that they are not detectable by the EPR method. Most of organic radicals produced by radiation in the liquid phase ae unstable but if the unpaired electron is incorporated into the complex polymeric system as in peptides and polysaccharides and is structurally isolated from the water, its stability is markedly increased. Since 1954 it is known that ionising radiation produces paramagnetic entities in biological materials, cells and tissues and some are stable enough to be observed by EPR spectroscopy at room temperature. The present paper describes and discusses that part of results obtained by this group during the period of ADMIT activity (1989-94) which are original and may be useful to those who will be working in the near future on the development of uniform control systems for the detection of irradiated food. The intention was to focus attention on these facts and data which influence the certainty of the detection in both positive and negative manner. (author)

  13. Standardized Radiation Shield Design Methods: 2005 HZETRN

    Science.gov (United States)

    Wilson, John W.; Tripathi, Ram K.; Badavi, Francis F.; Cucinotta, Francis A.

    2006-01-01

    Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.

  14. Results of conservative surgery and radiation for mammographically detected ductal carcinoma in situ (DCIS)

    International Nuclear Information System (INIS)

    Purpose: The role of conservative surgery and radiation for mammographically detected ductal carcinoma in situ (DCIS) is controversial. In particular, there is little data for outcome with radiation in a group of patients comparable to those treated with local excision and surveillance (mammographic calcifications ?2.5cm, negative resection margins, negative post biopsy mammogram). This study reports outcome of conservative surgery and radiation for mammographically detected DCIS with an emphasis on results in patients considered candidates for excision alone. Methods and Materials: >From 1983 to 1992, 110 women with mammographically detected DCIS (77% calcifications ± mass) and no prior history of breast cancer underwent needle localization and biopsy with (55%) or without a re excision and radiation. Final margins of resection were negative in 62%, positive 7%, close 11%, and unknown 20%. The median patient age was 56 years. The most common histologic subtype was comedo (54%), followed by cribriform (22%). The median pathologic tumor size was 8 mm (range 2 mm to 5 cm). Forty-seven percent of patients with calcifications only had a negative post biopsy mammogram prior to radiation. Radiation consisted of treatment to the entire breast (median 50.00 Gy) and a boost to the primary site (97%) for a median total dose of 60.40 Gy. Results: With a median follow-up of 5.3 years, three patients developed a recurrence in the treated breast. The median interval to recurrence was 8.8 years and all were invasive cancers. Two (67%) occurred outside the initial quadrant. The 5- and 10-year actuarial rates of recurrence were 1 and 15%. Cause-specific survival was 100% at 5 and 10 years. Contralateral breast cancer developed in two patients. There were too few failures for statistical significance to be achieved with any of the following factors: patient age, family history, race, mammographic findings, location primary, pathologic size, histologic subtype, re excision, or final margin status. However, young age, positive or close margins, and the presence of a mass without calcifications had a trend for an increased risk of recurrence. There were no recurrences in the subset of 16 patients who would be candidates for surveillance by Lagios' criteria. Conclusion: For selected patients, conservative surgery and radiation for mammographically detected DCIS results in a low risk of recurrence in the treated breast and 100% 5- and 10-year cause-specific survival. Improved mammographic and pathologic evaluation results in better patient selection and reduces the risk of the subsequent appearance of DCIS in the biopsy site. The identification of risk factors for an ipsilateral invasive breast recurrence is evolving

  15. Gold Cleaning Methods for Electrochemical Detection Applications

    DEFF Research Database (Denmark)

    Fischer, Lee MacKenzie; Tenje, Maria; Heiskanen, Arto; Masuda, Noriyuki; Castillo, Jaime; Bentien, Anders; Emnéus, Jenny; Jakobsen, Mogens Havsteen; Boisen, Anja

    This work investigates methods for obtaining reliably clean gold film surfaces. Nine gold cleaning methods are investigated here: UV ozone photoreactor; potassium hydroxide-hydrogen peroxide; potassium hydroxide potential sweep; sulfuric acid hydrogen peroxide; sulfuric acid potential cycling...

  16. Application of a rapid screening method to detect irradiated meat in Brazil

    International Nuclear Information System (INIS)

    Complete text of publication follows. Based on the enormous potential for food irradiation in Brazil, and to ensure free consumer choice, there is a need to find a convenient and rapid method for detection of irradiated food. Since treatment with ionizing radiation causes DNA fragmentation, the analysis of DNA damage might be promising. In fact, DNA fragmentation measured in single cells by agarose gel electrophoresis - DNA Comet Assay - has shown to offer great potential as a rapid tool to detect whether a wide variety of foodstuffs has been radiation processed. However, more work is needed to exploit the full potential of this promising technique. In this paper, the DNA Comet Assay was used to identify exotic meat (boar, jacare and capybara), irradiated with 60Co gamma-rays. The applied radiation doses were 0, 1.5, 3.0 and 4.5 kGy. Analysis of the DNA migration enable a rapid identification of the radiation treatment

  17. Nuisance Source Population Modeling for Radiation Detection System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sokkappa, P; Lange, D; Nelson, K; Wheeler, R

    2009-10-05

    A major challenge facing the prospective deployment of radiation detection systems for homeland security applications is the discrimination of radiological or nuclear 'threat sources' from radioactive, but benign, 'nuisance sources'. Common examples of such nuisance sources include naturally occurring radioactive material (NORM), medical patients who have received radioactive drugs for either diagnostics or treatment, and industrial sources. A sensitive detector that cannot distinguish between 'threat' and 'benign' classes will generate false positives which, if sufficiently frequent, will preclude it from being operationally deployed. In this report, we describe a first-principles physics-based modeling approach that is used to approximate the physical properties and corresponding gamma ray spectral signatures of real nuisance sources. Specific models are proposed for the three nuisance source classes - NORM, medical and industrial. The models can be validated against measured data - that is, energy spectra generated with the model can be compared to actual nuisance source data. We show by example how this is done for NORM and medical sources, using data sets obtained from spectroscopic detector deployments for cargo container screening and urban area traffic screening, respectively. In addition to capturing the range of radioactive signatures of individual nuisance sources, a nuisance source population model must generate sources with a frequency of occurrence consistent with that found in actual movement of goods and people. Measured radiation detection data can indicate these frequencies, but, at present, such data are available only for a very limited set of locations and time periods. In this report, we make more general estimates of frequencies for NORM and medical sources using a range of data sources such as shipping manifests and medical treatment statistics. We also identify potential data sources for industrial source frequencies, but leave the task of estimating these frequencies for future work. Modeling of nuisance source populations is only useful if it helps in understanding detector system performance in real operational environments. Examples of previous studies in which nuisance source models played a key role are briefly discussed. These include screening of in-bound urban traffic and monitoring of shipping containers in transit to U.S. ports.

  18. Solar Radiation Management and Olivine Dissolution Methods in Climate Engineering

    Science.gov (United States)

    Kone, S.

    2014-12-01

    An overview of solar radiation management and olivine dissolution methods allows to discuss, comparatively, the benefits and consequences of these two geoengineering techniques. The combination of those two techniques allows to concomitantly act on the two main agents intervening in global warming: solar radiation and carbon dioxide. The earth surface temperature increases due mainly to carbon dioxide (a greenhouse gas) that keeps the solar radiation and causes the global warming. Two complementary methods to mitigate climate change are overviewed: SRM method, which uses injected aerosols, aims to reduce the amount of the inbound solar radiation in atmosphere; and olivine dissolution in water, a key chemical reaction envisaged in climate engineering , aiming to reduce the amount of the carbon dioxide in extracting it from atmosphere. The SRM method works on scenarios of solar radiation decrease and the olivine dissolution method works as a carbon dioxide sequestration method. Olivine dissolution in water impacts negatively on the pH of rivers but positively in counteracting ocean acidification and in transporting the silica in ocean, which has benefits for diatom shell formation.

  19. Alterations of mitochondrial DNA: a method for the detection of irradiated beef liver

    International Nuclear Information System (INIS)

    The study of the radio degradation of DNA is one of a number of phenomena being investigated to develop methods for identifying irradiated foods. The specific behaviour under radiation of the mitochondrial DNA from beef liver gives the possibility of detecting if the product has been irradiated or not. An identification method could finally be developed. The appraisal of the mitochondrial supercoiled DNA fraction constitutes an unambiguous detection test for beef liver irradiation. A total of 120 different samples were irradiated at 5 different doses. The dose limit of detection is lower than 2 kGy. No effects due to storage conditions were observed. (Author)

  20. Approximate design calculation methods for radiation streaming in shield irregularities

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Toshimasa; Hirao, Yoshihiro [Ship Research Inst., Mitaka, Tokyo (Japan); Yoritsune, Tsutomu

    1997-10-01

    Investigation and assessment are made for approximate design calculation methods of radiation streaming in shield irregularities. Investigation is made for (1) source, (2) definition of streaming radiation components, (3) calculation methods of streaming radiation, (4) streaming formulas for each irregularity, (5) difficulties in application of streaming formulas, etc. Furthermore, investigation is made for simple calculation codes and albedo data. As a result, it is clarified that streaming calculation formulas are not enough to cover various irregularities and their accuracy or application limit is not sufficiently clear. Accurate treatment is not made in the formulas with respect to the radiation behavior for slant incidence, bend part, offset etc., that results in too much safety factors in the design calculation and distrust of the streaming calculation. To overcome the state and improve the accuracy of the design calculation for shield irregularities, it is emphasized to assess existing formulas and develop better formulas based on systematic experimental studies. (author)