WorldWideScience

Sample records for radiation air model

  1. Macroscopic Model of Geomagnetic-Radiation from Air Showers

    OpenAIRE

    Scholten, Olaf,; Werner, Klaus

    2008-01-01

    We have developed a macroscopic description of coherent electro-magnetic radiation from air showers initiated by ultra-high energy cosmic rays in the presence of the geo-magnetic field. This description offers a simple and direct insight in the relation between the properties of the air shower and the time-structure of the radio pulse. As we show the structure of the pulse is a direct reflection of the important length scales in the shower.

  2. Macroscopic model of geomagnetic-radiation from air showers

    International Nuclear Information System (INIS)

    We have developed a macroscopic description of coherent electro-magnetic radiation from air showers initiated by ultra-high energy cosmic rays in the presence of the geomagnetic field. This description offers a simple and direct insight in the relation between the properties of the air shower and the time-structure of the radio pulse. As we show, the structure of the pulse is a direct reflection of the important length scales in the shower.

  3. Macroscopic model of geomagnetic-radiation from air showers

    Science.gov (United States)

    Scholten, Olaf; Werner, Klaus

    2009-06-01

    We have developed a macroscopic description of coherent electro-magnetic radiation from air showers initiated by ultra-high energy cosmic rays in the presence of the geomagnetic field. This description offers a simple and direct insight in the relation between the properties of the air shower and the time-structure of the radio pulse. As we show, the structure of the pulse is a direct reflection of the important length scales in the shower.

  4. Macroscopic Model of Geomagnetic-Radiation from Air Showers, II

    CERN Document Server

    Scholten, Olaf; Werner, Klaus

    2010-01-01

    The generic properties of the emission of coherent radiation from a moving charge distribution are discussed. The general structure of the charge and current distributions in an extensive air shower are derived. These are subsequently used to develop a very intuitive picture for the properties of the emitted radio pulse. Using this picture can be seen that the structure of the pulse is a direct reflection of the shower profile. At higher frequencies the emission is suppressed because the wavelength is shorter than the important length scale in the shower. It is shown that radio emission can be used to distinguish proton and iron induced air showers.

  5. Macroscopic Model of Geomagnetic-Radiation from Air Showers, II

    OpenAIRE

    Scholten, Olaf; de Vries, Krijn D.; Werner, Klaus

    2010-01-01

    The generic properties of the emission of coherent radiation from a moving charge distribution are discussed. The general structure of the charge and current distributions in an extensive air shower are derived. These are subsequently used to develop a very intuitive picture for the properties of the emitted radio pulse. Using this picture can be seen that the structure of the pulse is a direct reflection of the shower profile. At higher frequencies the emission is suppresse...

  6. Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain)

    International Nuclear Information System (INIS)

    Solar radiation is a primary driver for many physical, chemical and biological processes on the earth's surface. Complete and accurate solar radiation data at a specific region are quite indispensable to the solar energy related research. For locations where measured values are not available, a number of formulas and models have been developed to estimate solar radiation. This study aimed to calibrate seven existing models and develop one new model for estimating global solar radiation data using temperature measured data for seven stations located in Madrid, Spain. This work concludes that empirical models based on temperature give good results in any location if the parameters are correctly adjusted. A newly developed model that include the difference between maximum and minimum daily air temperature, and the saturation vapour pressures at temperature maximum and minimum, provided estimates with less error than other models. According to the results, the new model showed the best estimation for all stations and therefore is recommended. It is believed that the model developed in this work is applicable for estimating the daily global solar radiation on a horizontal surface at any site in Community of Madrid, Spain. The daily global solar radiation values produced by this approach can be used in the design and estimation of the performance of solar applications.

  7. Advances in Atmospheric Radiation Measurements and Modeling Needed to Improve Air Safety

    Science.gov (United States)

    Tobiska, W. Kent; Atwell, William; Beck, Peter; Benton, Eric; Copeland, Kyle; Dyer, Clive; Gersey, Brad; Getley, Ian; Hands, Alex; Holland, Michael; Hong, Sunhak; Hwang, Junga; Jones, Bryn; Malone, Kathleen; Meier, Matthias M.; Mertens, Chris; Phillips, Tony; Ryden, Keith; Schwadron, Nathan; Wender, Stephen A.; Wilkins, Richard; Xapsos, Michael A.

    2015-04-01

    Air safety is tied to the phenomenon of ionizing radiation from space weather, primarily from galactic cosmic rays but also from solar energetic particles. A global framework for addressing radiation issues in this environment has been constructed, but more must be done at international and national levels. Health consequences from atmospheric radiation exposure are likely to exist. In addition, severe solar radiation events may cause economic consequences in the international aviation community due to exposure limits being reached by some crew members. Impacts from a radiation environment upon avionics from high-energy particles and low-energy, thermalized neutrons are now recognized as an area of active interest. A broad community recognizes that there are a number of mitigation paths that can be taken relative to the human tissue and avionics exposure risks. These include developing active monitoring and measurement programs as well as improving scientific modeling capabilities that can eventually be turned into operations. A number of roadblocks to risk mitigation still exist, such as effective pilot training programs as well as monitoring, measuring, and regulatory measures. An active international effort toward observing the weather of atmospheric radiation must occur to make progress in mitigating radiation exposure risks. Stakeholders in this process include standard-making bodies, scientific organizations, regulatory organizations, air traffic management systems, aircraft owners and operators, pilots and crew, and even the public.

  8. An improved mathematical model for prediction of air quantity to minimise radiation levels in underground uranium mines.

    Science.gov (United States)

    Panigrahi, Durga Charan; Sahu, Patitapaban; Mishra, Devi Prasad

    2015-02-01

    Ventilation is the primary means of controlling radon and its daughter concentrations in an underground uranium mine environment. Therefore, prediction of air quantity is the vital component for planning and designing of ventilation systems to minimise the radiation exposure of miners in underground uranium mines. This paper comprehensively describes the derivation and verification of an improved mathematical model for prediction of air quantity, based on the growth of radon daughters in terms of potential alpha energy concentration (PAEC), to reduce the radiation levels in uranium mines. The model also explains the prediction of air quantity depending upon the quality of intake air to the stopes. This model can be used to evaluate the contribution of different sources to radon concentration in mine atmosphere based on the measurements of radon emanation and exhalation. Moreover, a mathematical relationship has been established for quick prediction of air quantity to achieve the desired radon daughter concentration in the mines. PMID:25461521

  9. Spectroscopic Challenges in the Modelling and Diagnostics of High Temperature Air Plasma Radiation for Aerospace Applications

    International Nuclear Information System (INIS)

    State-of-the-art spectroscopic models of the radiative transitions of interest for Earth re-entry and ground-based diagnostic facilities for aerospace applications are reviewed. The spectral range considered extends from the vacuum ultraviolet to the mid-infrared range (80 nm to 5.5 ?m). The modeling results are compared with absolute intensity measurements of the ultraviolet-visible-infrared emission of a well-characterized high-temperature air plasma produced with a 50 kW inductively coupled radio-frequency plasma torch, and with high-resolution absorption spectra from the Center for Astrophysics in the vacuum ultraviolet. The Spectroscopic data required to better model the spectral features of interest for aerospace applications are discussed

  10. Collisional-radiative model in air for earth re-entry problems

    International Nuclear Information System (INIS)

    A nonlinear time-dependent two-temperature collisional-radiative model for air plasma has been developed for pressures between 1 kPa and atmospheric pressure to be applied to the flow conditions of space vehicle re-entry into the Earth's atmosphere. The model consists of 13 species: N2, O2, N, O, NO, N2+, O2+, N+, O+, NO+, O2-, O- in their ground state and major electronic excited states and of electrons. Many elementary processes are considered given the temperatures involved (up to 10 000 K). Time scales to reach the final nonequilibrium or equilibrium steady states are derived. Then we apply our model to two typical re-entry situations and show that O2- and O- play an important role during the ionization phase. Finally, a comparison with existing reduced kinetic mechanisms puts forward significant discrepancies for high velocity flows when the flow is in chemical nonequilibrium and smaller discrepancies when the flow is close to chemical equilibrium. This comparison illustrates the interest of using a time-dependent collisional-radiative model to validate reduced kinetic schemes for the relevant time scales of the flows studied

  11. Radiation Effects Investigations Based on Atmospheric Radiation Model (ATMORAD) Considering GEANT4 Simulations of Extensive Air Showers and Solar Modulation Potential.

    Science.gov (United States)

    Hubert, Guillaume; Cheminet, Adrien

    2015-07-01

    The natural radiative atmospheric environment is composed of secondary cosmic rays produced when primary cosmic rays hit the atmosphere. Understanding atmospheric radiations and their dynamics is essential for evaluating single event effects, so that radiation risks in aviation and the space environment (space weather) can be assessed. In this article, we present an atmospheric radiation model, named ATMORAD (Atmospheric Radiation), which is based on GEANT4 simulations of extensive air showers according to primary spectra that depend only on the solar modulation potential (force-field approximation). Based on neutron spectrometry, solar modulation potential can be deduced using neutron spectrometer measurements and ATMORAD. Some comparisons between our methodology and standard approaches or measurements are also discussed. This work demonstrates the potential for using simulations of extensive air showers and neutron spectroscopy to monitor solar activity. PMID:26151172

  12. Vibrational and electronic collisional-radiative model in air for Earth entry problems

    International Nuclear Information System (INIS)

    The two-temperature collisional-radiative model CoRaM-AIR, working over a wide range for pressure and temperatures, has been developed for the flow conditions around a space vehicle entering the Earth's atmosphere. The species N2, O2, NO, N, O, Ar, N2+, O2+, NO+, N+, O+, Ar+, and free electrons are taken into account. The model is vibrationally specific on the ground electronic state of N2, O2, and NO, and electronically specific for all species, with a total of 169 vibrational states and 829 electronic states, respectively. A wide set of elementary processes is considered under electron and heavy particle impact given the temperatures involved (up to 30?000?K). This set corresponds to almost 700?000 forward and backward elementary processes. The relaxation from initial thermal or chemical nonequilibrium is studied for dissociation-ionization situations in conditions related to the FIRE II flight experiment. Boltzmann plots clearly prove that the vibrational and electronic excitation distributions are far from being Boltzmanian. In particular, high-lying vibrational levels remain underpopulated for most of the duration of the relaxation. This relaxation can be separated in a first phase characterized by the dissociation and the excitation of the molecular species, and a second phase leading to the excitation and the ionization of the dissociation products. Owing to the vibrational relaxation, the time scales are slightly higher than the ones predicted by former kinetic mechanisms usually used in flow simulations. In the present FIRE II conditions, radiation does not play a significant role

  13. Application of a Reynolds stress turbulence model to a supersonic radiating hydrogen-air diffusion flame

    Science.gov (United States)

    Chandrasekhar, R.; Tiwari, S. N.

    1993-01-01

    A second-order differential Reynolds Stress turbulence model has been applied to the Favre-averaged Navier-Stokes equations for the study of supersonic flows with finite-rate chemistry and radiation. An assumed Beta Probability Density Function is applied to account for the chemical source terms and the radiative flux terms in the conservation equations. A seven-species, seven-reaction finite rate chemistry mechanism is used to simulate the combustion process. The tangent slab approximation is used in radiative flux formulation. A pseudo-gray gas model is used to represent the absorption-emission characteristics of the participating species. The turbulence/radiation interaction is achieved via a new formulation. The resulting formulation is validated by comparison with experimental data on reacting supersonic axisymmetric jets. Results obtained for specific conditions indicate that the effect of chemical reaction on the turbulence is significant. Also, the radiative heat transfer is enhanced by the turbulence.

  14. Sensitivity of modelled sulfate radiative forcing to DMS concentration and air-sea flux formulation

    Science.gov (United States)

    Tesdal, J.-E.; Christian, J. R.; Monahan, A. H.; von Salzen, K.

    2015-09-01

    In this study, we use an atmospheric general circulation model with explicit aerosol chemistry (CanAM4.1) and several climatologies of surface ocean DMS concentration to assess uncertainties about the climate impact of ocean DMS efflux. Despite substantial variation in the spatial pattern and seasonal evolution of simulated DMS fluxes, the global mean radiative forcing is approximately linearly proportional to the global mean surface flux of DMS; the spatial and temporal distribution of ocean DMS efflux has only a minor effect on the global radiation balance. The effect of the spatial structure, however, generates statistically significant changes in the global mean concentrations of some aerosol species. The effect of seasonality on net radiative forcing is larger than that of spatial distribution, and is significant at global scale.

  15. Assessing the transferability of support vector machine model for estimation of global solar radiation from air temperature

    International Nuclear Information System (INIS)

    Highlights: • Transferability of SVM in estimation of solar radiation is investigated. • Radiation at estimation site could be well estimated by SVM developed at source site. • A strategy for selecting a suitable source site is presented. • SVM accuracy is affected by distance and temperature difference between two sites. • RMSE of SVM shows logarithm or linearly relationship with altitude of source site. - Abstract: Exploring novel methods for estimation of global solar radiation from air temperature has been being a focus in many studies. This paper evaluates the transferability of support vector machines (SVM) for estimation of solar radiation in subtropical zone in China. Results suggest that solar radiation at one site (estimation site) could be well estimated by SVM model developed at another site (source site). The accuracy of estimation is affected by the distance and temperature difference between two sites, and altitude of source site. Higher correlations between RMSE of SVM and distance, and temperature differences are observed in northeastern region, increasing the reliability and confidence of SVM model developed at nearby stations. While lower correlations between RMSE and distance, and temperature differences are observed in southwest plateau region. When the altitude of estimation site is lower than 1200 m, RMSE show logarithm relationship with altitude of source sites where the altitude are lower than that of estimation site. Otherwise, RMSE show linearly relationship with altitude of source sites where the altitude are higher than 200 m but lower than that of the estimation site. This result suggests that solar radiation could be also estimated using SVM model developed at the site with similar but lower altitude. Based on these results, a strategy that takes into account the climatic conditions, topography, distance, and altitude for selecting a suitable source site is presented. The findings can guide and ease the appropriate choice of source sites for estimation of solar radiation at estimation site

  16. Standard value for radiation length in air

    International Nuclear Information System (INIS)

    Radiation length in air was studied. Calculations were finished that give new values for t sub o in atomic oxygen and nitrogen which are entirely free of dependence on the Thomas-Fermi approximate model. With the usual small corrections for atmospheric A and CO2, these give t sub o air = 37.15 g cm/2, in close agreement with a value recommended, but in contrast to t sub o air = 36.66 g cm/2 obtained using the Thomas-Fermi approximation

  17. A female pelvic bone shape model for air/bone separation in support of synthetic CT generation for radiation therapy.

    Science.gov (United States)

    Liu, Lianli; Cao, Yue; Fessler, Jeffrey A; Jolly, Shruti; Balter, James M

    2016-01-01

    Separating bone from air in MR data is one of the major challenges in using MR images to derive synthetic CT. The problem is further complicated when the anatomic regions filled with air are altered across scans due to air mobility, for instance, in pelvic regions, thereby the air regions estimated using an ultrashort echo time (UTE) sequence are invalid in other image series acquired for multispectral classification. This study aims to develop and investigate a female pelvic bone shape model to identify low intensity regions in MRI where air is unlikely to be present in support of synthetic CT generation without UTE imaging. CT scans of 30 patients were collected for the study, 17 of them also have corresponding MR scans. The shape model was built from the CT dataset, where the reference image was aligned to each of the training images using B-spline deformable registration. Principal component analysis was performed on B-spline coefficients for a compact model where shape variance was described by linear combination of principal modes. The model was applied to identify pelvic bone in MR images by deforming the corresponding MR data of the reference image to target MR images, where the search space of the deformation process was constrained within the subspace spanned by principal modes. The local minima in the search space were removed effectively by the shape model, thus supporting an efficient binary search for the optimal solution. We evaluated the model by its efficacy in identifying bone voxels and excluding air regions. The model was tested across the 17 patients that have corresponding MR scans using a leave-one-out cross validation. A simple model using the first leading principal mode only was found to achieve reasonable accuracy, where an averaged 87% of bone voxels were correctly identified. Finally dilation of the optimally fit bone mask by 5?mm was found to cover 96% of bone voxels while minimally impacting the overlap with air (below 0.4%). PMID:26624989

  18. New combined models for estimating daily global solar radiation from measured air temperature in semi-arid climates: Application in Ghardaïa, Algeria

    International Nuclear Information System (INIS)

    Highlights: • New combined models been introduced for estimating daily global solar radiation. • The BNN is the most accurate model compared with combined models. • Results indicate that the new calibrated models are able to estimate the global solar. - Abstract: In this paper, combined empirical models and a Bayesian neural network (BNN) model have been developed to estimate daily global solar radiation (GSR) on a horizontal surface in Ghardaïa, Algeria. An experimental database of daily GSR, maximum and minimum air temperatures of the year 2006 has been used to estimate the coefficients of the empirical models, as well as to train the BNN model. Six months of the year 2007 (summer period: May, June, July, and winter period: October, November, December) have been used to test the calibrated models, while six months of the year 2012 (from 1st February to 31th July) have been used to check generalisation capability of the developed models as well as the BNN model. Results indicate that the new calibrated models are able to estimate the global solar radiation with an excellent accuracy in this location. Calibrated models are also compared with the developed BNN model to show their effectiveness

  19. Response of air stagnation frequency to anthropogenically enhanced radiative forcing

    OpenAIRE

    Horton, Daniel E.; Harshvardhan; Diffenbaugh, Noah S.

    2012-01-01

    Stagnant atmospheric conditions can lead to hazardous air quality by allowing ozone and particulate matter to accumulate and persist in the near-surface environment. By changing atmospheric circulation and precipitation patterns, global warming could alter the meteorological factors that regulate air stagnation frequency. We analyze the response of the National Climatic Data Center (NCDC) Air Stagnation Index (ASI) to anthropogenically enhanced radiative forcing using global climate model pro...

  20. Modeling air travel behavior

    OpenAIRE

    Warburg, Valdemar

    2006-01-01

    Modeling passengers’ flight choice behavior is valuable to understanding the increasingly competitive airline market and predicting air travel demands. This report estimates standard and mixed multinomial logit models of itinerary choice for business travel, based on a stated preference survey conducted in 2001. Previous work on air travel behavior modeling hasalmost exclusively been confined to studying either airport or airline choice. However, two recent papers have expanded the stu...

  1. Air and radiation monitoring stations

    CERN Multimedia

    AUTHOR|(SzGeCERN)582709

    2015-01-01

    CERN has around 100 monitoring stations on and around its sites. New radiation measuring stations, capable of detecting even lower levels of radiation, were installed in 2014. Two members of HE-SEE group (Safety Engineering and Environment group) in front of one of the new monitoring stations.

  2. SESAM: a model for the calculation of radiation exposure by emission of pollutants with the exhaust air in the case of a multi-source situation

    International Nuclear Information System (INIS)

    The report deals with the calculation of the individual radiation exposure in the catchment area of several nuclear emitters. A model and computer program, SESAM - Calculation of the Radiation Exposure by Emission of Pollutants with the Exhaust air in the Case of a Multi-Source Situation -, was developed which makes possible all the evaluations of long-time exposure which are relevant for the licensing process - such as the determination of the maximum individual radiation exposure to the various organs at the worst receiving point - together with the exposure of the environment by several nuclear emission sources - such as, for example, several units of a power plant facility, the various emitters of a waste management center, or even consideration of the previous exposure of a site by nuclear emission sources

  3. The Radiation Protection Authority's air filter stations

    International Nuclear Information System (INIS)

    The Norwegian Radiation Protection Authority currently has five air filter stations located at various sites throughout Norway. The stations are important for surveying airborne radioactivity, and for the assessment and composition of any emissions in the case of mishaps and accidents. There are similar stations throughout Europe, and the inter-state collaboration makes it possible to track any emissions of radioactive substances. (Author)

  4. Radiation control coatings installed on federal buildings at Tyndall Air Force Base. Volume 2: Long-term monitoring and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, T.W.; Childs, P.W.

    1998-06-01

    The US Department of Energy`s (DOE`s) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate a new technology. The results of the program give federal agency decision makers more hands-on information with which to validate a decision to utilize a new technology in their facilities. This is the second volume of a two-volume report that describes the effects of radiation control coatings installed on federal buildings at Tyndall Air Force Base (AFB) in Florida by ThermShield International. ORNL`s Buildings Technology Center (BTC) was assigned the responsibility for gathering, analyzing, and reporting on the data to describe the effects of the coatings. The first volume described the monitoring plan and its implementation, the results of pre-coating monitoring, the coating installation, results from fresh coatings compared to pre-coating results, and a plan to decommission the monitoring equipment. This second volume updates and completes the presentation of data to compare performance of fresh coatings with weathered coatings.

  5. Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations

    Energy Technology Data Exchange (ETDEWEB)

    Bourdon, A [Ecole Centrale Paris, EM2C, UPR CNRS 288, Grande voie des vignes, 92295 Chatenay-Malabry Cedex (France); Pasko, V P [Communications and Space Sciences Laboratory, Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Liu, N Y [Communications and Space Sciences Laboratory, Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Celestin, S [Ecole Centrale Paris, EM2C, UPR CNRS 288, Grande voie des vignes, 92295 Chatenay-Malabry Cedex (France); Segur, P [Universite de Toulouse, LAPLACE, CNRS, INPT, UPS, 118 route de Narbonne, 31062 Toulouse Cedex 9 (France); Marode, E [Ecole Superieure d' Electricite, LPGP, UMR CNRS 8578, Plateau du moulon, 3 rue Joliot Curie, 91192 Gif-sur-Yvette (France)

    2007-08-15

    This paper presents formulation of computationally efficient models of photoionization produced by non-thermal gas discharges in air based on three-group Eddington and improved Eddington (SP{sub 3}) approximations to the radiative transfer equation, and on effective representation of the classic integral model for photoionization in air developed by Zheleznyak et al (1982) by a set of three Helmholtz differential equations. The reported formulations represent extensions of ideas advanced recently by Segur et al (2006) and Luque et al (2007), and allow fast and accurate solution of photoionization problems at different air pressures for the range 0.1 < p{sub O{sub 2}} < 150 Torr cm, where p{sub O{sub 2}} is the partial pressure of molecular oxygen in air in units of Torr (p{sub O{sub 2}} = 150 Torr) at atmospheric pressure) and R in cm is an effective geometrical size of the physical system of interest. The presented formulations can be extended to other gases and gas mixtures subject to availability of related emission, absorption and photoionization coefficients. The validity of the developed models is demonstrated by performing direct comparisons of the results from these models and results obtained from the classic integral model. Specific validation comparisons are presented for a set of artificial sources of photoionizing radiation with different Gaussian dimensions, and for a realistic problem involving development of a double-headed streamer at ground pressure. The reported results demonstrate the importance of accurate definition of the boundary conditions for the photoionization production rate for the solution of second order partial differential equations involved in the Eddington, SP{sub 3} and the Helmholtz formulations. The specific algorithms derived from the classic photoionization model of Zheleznyak et al (1982), allowing accurate calculations of boundary conditions for differential equations involved in all three new models described in this paper, are presented. It is noted that the accurate formulation of boundary conditions represents an important task needed for a successful extension of the proposed formulations to two- and three-dimensional physical systems with obstacles of complex geometry (i.e. electrodes, dust particles, aerosols, etc), which are opaque for the photoionizing UV photons.

  6. Coherent radiation from extensive air showers

    Science.gov (United States)

    Scholten, Olaf; de Vries, Krijn D.; Werner, Klaus

    2012-01-01

    The generic properties of the emission of coherent radiation from a moving charge distribution are discussed. The general structure of the charge and current distributions in an extensive air shower are derived. These are subsequently used to develop a very intuitive picture for the properties of the emitted radio pulse. Using this picture can be seen that the structure of the pulse is a direct reflection of the shower profile. At higher frequencies the emission is suppressed because the wavelength is shorter than the important length scale in the shower. It is shown that radio emission can be used to distinguish proton- and iron-induced air showers.

  7. 40 CFR 1.41 - Office of Air and Radiation.

    Science.gov (United States)

    2010-07-01

    ... 2010-07-01 false Office of Air and Radiation. 1.41 Section 1.41 Protection of...Headquarters § 1.41 Office of Air and Radiation. The Office of Air and Radiation is under supervision of the Assistant...

  8. Air quality model guideline

    International Nuclear Information System (INIS)

    Alberta Environment has developed a guidelines for operations and proposed operations that require approvals under the province's Environmental Protection and Enhancement Act or that operate under a code of practice for emissions to the atmosphere. In an effort to ensure consistency in the use of dispersion models for regulatory applications in Alberta, this document provided detailed guidance on suitable methods and approaches that should be employed to assess air quality from emission sources, specifically, information required to demonstrate that a source meets the Alberta ambient air quality objectives. The document outlined the statutory authority and provided an overview of the approach. It provided detailed advice on the types and uses of dispersion models with particular reference to the modelling protocol, input data, and output interpretation. Guidance on the application of regulatory models were also presented. Various models were described and their intended uses were explained. Internet addresses for different modelling resources were also offered. Last, some information about regional modelling in the province of Alberta was discussed. 40 refs., 4 tabs., 7 figs., 3 appendices.

  9. Radiation control at open-air sediment fixation facility

    International Nuclear Information System (INIS)

    For disposal of radioactive wastes at NPP A-1 it was necessary to built special facilities for their treatment. One of them is a facility for sediment fixation by its cementation that was designed and constructed by VUJE a.s. in 2004 -2005. A 3D model of this facility is shown. Except of technological parts of the facility , the system of radiation control plays an important role, too. Range of the radiation control system fulfils demands of the valid legislative documents, the technical design of the technology sediment fixation and the present state of objects VYZ Jaslovske Bohunice. The radiation control system has been designed for monitoring of radiological situation during normal operation as well as during radiation accidents. System of radiation control at fixation facility covers: (1) personnel radiation control; (2) radiation control of working area (semi servicing areas); (3) radiation control of gaseous releases; (4) radiation control of the facility technology, monitoring of the vicinity of the open-air facility; (5) informational system of radiation control. (authors)

  10. Thermal computations for electronics conductive, radiative, and convective air cooling

    CERN Document Server

    Ellison, Gordon

    2010-01-01

    IntroductionPrimary mechanisms of heat flowConductionApplication example: Silicon chip resistance calculationConvectionApplication example: Chassis panel cooled by natural convectionRadiationApplication example: Chassis panel cooled only by radiation 7Illustrative example: Simple thermal network model for a heat sinked power transistorIllustrative example: Thermal network circuit for a printed circuit boardCompact component modelsIllustrative example: Pressure and thermal circuits for a forced air cooled enclosureIllustrative example: A single chip package on a printed circuit board-the proble

  11. Air quality and radiative forcing impacts of anthropogenic volatile organic compound emissions from ten world regions

    OpenAIRE

    Fry, M. M.; M. D. Schwarzkopf; Z. Adelman; J. J. West

    2013-01-01

    Non-methane volatile organic compounds (NMVOCs) influence air quality and global climate change through their effects on secondary air pollutants and climate forcers. Here we simulate the air quality and radiative forcing (RF) impacts of changes in ozone, methane, and sulfate from halving anthropogenic NMVOC emissions globally and from 10 regions individually, using a global chemical transport model and a standalone radiative transfer model. Halving global NMVOC emissions decreases glo...

  12. Mental models of radiation

    International Nuclear Information System (INIS)

    Laymen and experts participated in interviews designed to reveal their 'mental models' of the processes potentially causing the miscommunications between experts and the public. We analyzed their responses in terms of an 'expert model' circumscribing scientifically relevant information. From results, there are gaps even between experts. Experts on internal exposure focused mainly on artificial radiation and high level of radiation. Experts on radiation biology focused on medical radiation, level of risk, environmental radiation, and hot springs. Experts on dosimetric performance focused on atomic power generation and needs of radiological protection. It means that even experts, they have interests only on their own specialized field. (author)

  13. Response of air stagnation frequency to anthropogenically enhanced radiative forcing

    International Nuclear Information System (INIS)

    Stagnant atmospheric conditions can lead to hazardous air quality by allowing ozone and particulate matter to accumulate and persist in the near-surface environment. By changing atmospheric circulation and precipitation patterns, global warming could alter the meteorological factors that regulate air stagnation frequency. We analyze the response of the National Climatic Data Center (NCDC) air stagnation index (ASI) to anthropogenically enhanced radiative forcing using global climate model projections of late-21st century climate change (SRESA1B scenario). Our results indicate that the atmospheric conditions over the highly populated, highly industrialized regions of the eastern United States, Mediterranean Europe, and eastern China are particularly sensitive to global warming, with the occurrence of stagnant conditions projected to increase by 12–25% relative to late-20th century stagnation frequencies (3–18 + days yr?1). Changes in the position/strength of the polar jet, in the occurrence of light surface winds, and in the number of precipitation-free days all contribute to more frequent late-21st century air mass stagnation over these high-population regions. In addition, we find substantial inter-model spread in the simulated response of stagnation conditions over some regions using either native or bias corrected global climate model simulations, suggesting that changes in the atmospheric circulation and/or the distribution of precipitation represent important sources of uncertainty in the response of air quality to global warming. (letter)

  14. Solar radiation models - review

    Directory of Open Access Journals (Sweden)

    M. Jamil Ahmad, G.N. Tiwari

    2010-05-01

    Full Text Available In the design and study of solar energy, information on solar radiation and its components at a given location is very essential. Solar radiation data are required by solar engineers, architects, agriculturists and hydrologists for many applications such as solar heating, cooking, drying and interior illumination of buildings. For this purpose, in the past, several empirical correlations have been developed in order to estimate the solar radiation around the world. The main objective of this study is to review the global solar radiation models available in the literature. There are several formulae which relate global radiation to other climatic parameters such as sunshine hours, relative humidity and maximum temperature. The most commonly used parameter for estimating global solar radiation is sunshine duration. Sunshine duration can be easily and reliably measured and data are widely available.

  15. New radiation limits and air crew exposure

    International Nuclear Information System (INIS)

    Commercial aircraft have optimum cruising speed of 800 - 900 km/h and the cruising altitude near 13 km.The flight paths are assigned according to airway corridors and safety requirements.The relatively high dose-equivalent rates at cruising altitudes near 13 km (about 0.5-2 mSv/h, and the shielding effect of the atmosphere corresponds to about 2 M of water) can cause exposures greater than 5 mSv/y, for a crew with full-time flight (500-600 h/y).The radiation exposure of the crew in commercial air traffic has been studied for the associations of the crews and airline management and published, and regulatory authorities are slowly accepting the fact that there indeed is a problem which needs investigations and protective regulation

  16. Ambient radiation level and air borne activity at RRCAT, Indore

    International Nuclear Information System (INIS)

    In order to assess the impact on ambient radiation level and airborne activity after the nuclear accident at Fukushima, radioactivity levels were measured at RRCAT Indore premises by Emergency Response Centre (ERC), RRCAT. The report presents the monitoring data obtained from IERMON (Indian Environmental Radiation Monitoring Network) and from air sampling carried out at RRCAT premises. The monitoring was performed over a period of around one and half months from 15th March 2011 to 5th May 2011. The IERMON data indicated no increase in radiation level at RRCAT premises. Air borne activity data obtained from air sampler also indicated no increase in air borne activity above background level

  17. Radiation risk estimation models.

    OpenAIRE

    Hoel, D. G.

    1987-01-01

    Cancer risk models and their relationship to ionizing radiation are discussed. There are many model assumptions and risk factors that have a large quantitative impact on the cancer risk estimates. Other health end points such as mental retardation may be an even more serious risk than cancer for those with in utero exposures.

  18. Solar radiation modelling

    Science.gov (United States)

    Zakšek, Klemen; Podobnikar, Tomaž; Oštir, Krištof

    2005-03-01

    The Sun is the main energy source of the life on the Earth. Thus, solar radiation energy data and models are important for many areas of research and applications. Many parameters influence the amount of solar energy at a particular standing point of the Earth's surface; therefore, many solar radiation models were produced in the last few years. Solar radiation energy depends mostly on incidence angle, which is defined by astronomical and surface parameters. Our solar radiation model is based on defining incidence angle by computing normal-to-the-surface tangent plane and direction of the Sun. If a part of the surface is in the shadow, it receives lesser energy than sunny areas. That is why shadow determination is an important part of the model. The sky is usually not completely clear, so meteorological parameters had to be integrated into the model. Meteorological model distinguishes among direct and diffuse Sun radiation. The model was tested and implemented for the whole Slovenia and it was also compared with previous studies. Case study surface data were calculated from the DEM with a 25 m resolution. The astronomical data, which were required for virtual Sun motion simulation around the Earth, were derived from the astronomical almanac. Meteorological data were acquired from observed mean values on 24 meteorological stations between 1961 and 1990. All calculations were made for hours and decades and finally, the annual quasiglobal radiation energy, which is the energy received by inclined plane from the Sun in one year, was calculated from the sum of all the energies of all the decades.

  19. Office of radiation and indoor air: Program description

    International Nuclear Information System (INIS)

    The goal of the Environmental Protection Agency's (EPA) Office of Radiation and Indoor Air is to protect the public and the environment from exposures to radiation and indoor air pollutants. The Office develops protection criteria, standards, and policies and works with other programs within EPA and other agencies to control radiation and indoor air pollution exposures; provides technical assistance to states through EPA's regional offices and other agencies having radiation and indoor air protection programs; directs an environmental radiation monitoring program; responds to radiological emergencies; and evaluates and assesses the overall risk and impact of radiation and indoor air pollution. The Office is EPA's lead office for intra- and interagency activities coordinated through the Committee for Indoor Air Quality. It coordinates with and assists the Office of Enforcement in enforcement activities where EPA has jurisdiction. The Office disseminates information and works with state and local governments, industry and professional groups, and citizens to promote actions to reduce exposures to harmful levels of radiation and indoor air pollutants

  20. Removal of Pseudomonas aeruginosa in hospital air using microwave radiation

    Directory of Open Access Journals (Sweden)

    firouz valipour

    2013-09-01

    Conclusion: Microwave radiation with high functionality can be used to remove bacterial air pollutions. They can help to control biological agents in hospitals and medical centers with good efficiency.

  1. Geostatistical models for air pollution

    International Nuclear Information System (INIS)

    The objective of this paper is to present geostatistical models applied to the spatial characterisation of air pollution phenomena. A concise presentation of the geostatistical methodologies is illustrated with practical examples. The case study was conducted in an underground copper-mine located on the southern of Portugal, where a biomonitoring program using lichens has been implemented. Given the characteristics of lichens as indicators of air pollution it was possible to gather a great amount of data in space, which enabled the development and application of geostatistical methodologies. The advantages of using geostatistical models compared with deterministic models, as environmental control tools, are highlighted. (author)

  2. Incoherent microwave radiation of an extensive air shower

    Science.gov (United States)

    Filonenko, A. D.

    2014-05-01

    Incoherent radiation of relativistic electrons (positrons) of an extensive air shower in the ultrahigh energy range (˜10 GHz) has been studied. The method of the division of an electron track into coherent segments has been used to estimate the power of a radio signal and to determine the radiation pattern. Comparison of the signal with radio noise of an antenna has shown that this radiation can be detected by modern engineering instruments and applied to detect ultrahigh-energy cosmic particles.

  3. Molecular Bremsstrahlung Radiation at GHz Frequencies in Air

    CERN Document Server

    Samarai, I Al; Deligny, O; Letessier-Selvon, A; Montanet, F; Settimo, M; Stassi, P

    2016-01-01

    A detection technique for ultra-high energy cosmic rays, complementary to the fluorescence technique, would be the use of the molecular Bremsstrahlung radiation emitted by low-energy ionization electrons left after the passage of the showers in the atmosphere. In this article, a detailed estimate of the spectral intensity of photons at ground level originating from this radiation is presented. The spectral intensity expected from the passage of the high-energy electrons of the cascade is also estimated. The absorption of the photons in the plasma of electrons/neutral molecules is shown to be negligible. The obtained spectral intensity is shown to be $2\\times10^{-21} $W cm$^{-2}$ GHz$^{-1}$ at 10 km from the shower core for a vertical shower induced by a proton of $10^{17.5}$ eV. In addition, a recent measurement of Bremsstrahlung radiation in air at gigahertz frequencies from a beam of electrons produced at 95 keV by an electron gun is also discussed and reasonably reproduced by the model.

  4. Many polarized radiative transfer models

    International Nuclear Information System (INIS)

    This note is an introduction to the reprint of the 1991 JQSRT article 'A new polarized atmospheric radiative transfer model' by K.F. Evans and G.L. Stephens. We discuss the significance of the article, how our two plane-parallel polarized radiative transfer codes came about, how our codes have been used, and more recent developments in polarized radiative transfer modeling.

  5. Chandra Radiation Environment Modeling

    Science.gov (United States)

    Minow, Joseph I.; Blackwell, W. C.

    2003-01-01

    CRMFLX (Chandra Radiation Model of ion FluX) is a radiation environment risk mitigation tool for use as a decision aid in planning the operations times for Chandra's Advanced CCD Imaging Spectrometer (ACIS) detector. The accurate prediction of the proton flux environment with energies of 100 - 200 keV is needed in order to protect the ACIS detector against proton degradation. Unfortunately, protons of this energy are abundant in the region of space Chandra must operate, and on-board particle detectors do not measure proton flux levels of the required energy range. This presentation will describe the plasma environment data analysis and modeling basis of the CRMFLX engineering environment model developed to predict the proton flux in the solar wind, magnetosheath, and magnetosphere phenomenological regions of geospace. The recently released CRMFLX Version 2 implementation includes an algorithm that propagates flux from an observation location to other regions of the magnetosphere based on convective ExB and VB-curvature particle drift motions. This technique has the advantage of more completely filling out the database and makes maximum use of limited data obtained during high Kp periods or in areas of the magnetosphere with poor satellite flux measurement coverage.

  6. Air Quality – monitoring and modelling

    Directory of Open Access Journals (Sweden)

    Marius DEACONU

    2012-12-01

    Full Text Available Air pollution is a major concern for all nations, regardless of their development. The rapid growth of the industrial sector and urban development have lead to significant quantities of substances and toxic materials, mostly discharged into the atmosphere and having adverse effects both on human health and environment in general. Human society has to recognize that environment has only a limited capacity to process all of its waste without major changes. Each of us is a pollutant but also a victim of pollution. If monitoring of air pollutants is particularly important for assessing the air quality at any moment, by modelling the monitoring data spectacular results are obtained both through the factor analysis and identification of potential pollution mitigation measures. Latest equipment and techniques come and support these problems giving medium and long term solutions.

  7. Frontiers in air quality modelling

    Directory of Open Access Journals (Sweden)

    A. Colette

    2013-08-01

    Full Text Available The first pan-European kilometre-scale atmospheric chemistry simulation is introduced. The continental-scale air pollution episode of January 2009 is modelled with the CHIMERE offline chemistry-transport model with a massive grid of 2 million horizontal points, performed on 2000 CPU of a high performance computing system hosted by the Research and Technology Computing Center at the French Alternative Energies and Atomic Energy Commission (CCRT/CEA. Besides the technical challenge, we find that model biases are significantly reduced, especially over urban areas. The high resolution grid also allows revisiting the contribution of individual city plumes to the European burden of pollution, providing new insights for designing air pollution control strategies.

  8. Lowland rice yield estimates based on air temperature and solar radiation

    International Nuclear Information System (INIS)

    Two regression equations were developed to estimate lowland rice yield as a function of air temperature and incoming solar radiation, during the crop yield production period in Pindamonhangaba, SP, Brazil. The following rice cultivars were used: IAC-242, IAC-100, IAC-101 and IAC-102. The value of optimum air temperature obtained was 25.0°C and of optimum global solar radiation was 475 cal.cm-2, day-1. The best agrometeorological model was the one that related least deviation of air temperature and solar radiation in relation to the optimum value obtained through a multiple linear regression. The yield values estimated by the model showed good fit to actual yields of lowland rice (less than 10%). (author)

  9. Radiation exposure during air and ground transportation

    International Nuclear Information System (INIS)

    The results of a one year study program of radiation exposure experienced on both domestic and international flights of the China Airline and the Far East Airline in the Pacific, Southeast Asia and Taiwan areas and on trains and buses on Taiwan island are reported. CaSO4:Dy thermoluminescent dosimeters were used. It has been shown that transit exposures may amount to 10 times that on the ground with an altitude varying from 3,050 to 12,200 m. (U.K.)

  10. Radiation exposure on different air routes

    International Nuclear Information System (INIS)

    Radiation exposure of aircrew personnel has obtained special emphasis by a European Council decision to consider the increased radiation level at high altitudes in the Earth's atmosphere as occupational exposure. The radiation field at typical jet cruising altitudes arises from cascade-like interaction processes of primary cosmic rays with the top layers of the atmosphere and is composed of various charged and uncharged particles in a broad energy range. The metrological assessment of all constituents with reasonable detection efficiency commonly requires a large set of experimental devices. Lithium fluoride thermoluminescent dosemeters (TLDs) evaluated according to the high-temperature ratio (HTR) method represent an appropriate alternative. The methodology was developed at the Atomic Institute of the Austrian Universities to determine absorbed dose and average LET of a mixed radiation field of unknown composition. The relative intensity of combined peaks 6 and 7 in the LiF glow curve compared with the main peak 5 are used as an indication of the average LET. Extensive irradiation campaigns with high-energy ions of different Z ranging from H to Fe established a HTR vs. LET calibration curve. The HTR method has previously been applied with great success on several space missions (including measurements onboard space station Mir, space shuttles, bio-satellites and the International Space Station) as well as in radiotherapeutic dosimetry. Within this paper measurements on several north-bound and equatorial flight routes originating from Vienna, Austria, and Cologne, Germany, are reviewed. The obtained route dose rates range from 2.1 ?Sv/h to 6.7 ?Sv/h and are compared with Monte Carlo simulations by means of the well-established algorithm CARI-6M, taking into account accurate route and altitude profiles on a 10-minutes scale. Contrary to previous releases of the program, the CARI-6M calculations proved to be in general agreement with the experimental data, although the values for north-bound routes are still underestimated by up to 15 % as neutrons contribute roughly 60 % of the dose equivalent. However, the most important insufficiency common to all simulations concerns the treatment of irregularly occurring solar flares. (author)

  11. Solar radiation models - review

    OpenAIRE

    M. Jamil Ahmad, G.N. Tiwari, Anil Kumar Singh, Manisha Sharma, H.N. Singh

    2010-01-01

    In the design and study of solar energy, information on solar radiation and its components at a given location is very essential. Solar radiation data are required by solar engineers, architects, agriculturists and hydrologists for many applications such as solar heating, cooking, drying and interior illumination of buildings. For this purpose, in the past, several empirical correlations have been developed in order to estimate the solar radiation around the world. The main objective of this ...

  12. Propagation speed of ?-radiation in air

    International Nuclear Information System (INIS)

    To perform such measurements the availability of a gamma radiation source in which two ?-rays are emitted simultaneously in opposite directions -as already used(5,6) as well as applied in the present case- turns out to be essential to the feasibility of the experiment, as far as no reflection techniques could be used. Such suitable source was the positron emitter 22Na placed in a metal container in which the positrons are stopped and annihilated when reacting with the medium electrons, in such way originating -as it is very well established from momentum/energy conservation laws(7)- two ?-rays, energy 511 KeV each, both emitted simultaneously in opposite directions. In all these previous experiments were used photomultiplier detectors coupled to NaI(Tl) crystal scintillators, which have a good energy resolution but a deficient time resolution for such purposes. Presently, as an innovatively improvement, were used BaF2 and CsF crystal scintillators which display a much better time resolution. (author)

  13. Water, air, Earth and cosmic radiation.

    Science.gov (United States)

    Bassez, Marie-Paule

    2015-06-01

    In the context of the origin of life, rocks are considered mainly for catalysis and adsorption-desorption processes. Here it is shown how some rocks evolve in energy and might induce synthesis of molecules of biological interest. Radioactive rocks are a source of thermal energy and water radiolysis producing molecular hydrogen, H2. Mafic and ultramafic rocks evolve in water and dissolved carbon dioxide releasing thermal energy and H2. Peridotites and basalts contain ferromagnesian minerals which transform through exothermic reactions with the generation of heat. These reactions might be triggered by any heating process such as radioactive decay, hydrothermal and subduction zones or post-shock of meteorite impacts. H2 might then be generated from endothermic hydrolyses of the ferromagnesian minerals olivine and pyroxene. In both cases of mafic and radioactive rocks, production of CO might occur through high temperature hydrogenation of CO2. CO, instead of CO2, was proven to be necessary in experiments synthesizing biological-type macromolecules with a gaseous mixture of CO, N2 and H2O. In the geological context, N2 is present in the environment, and the activation source might arise from cosmic radiation and/or radionuclides. Ferromagnesian and radioactive rocks might consequently be a starting point of an hydrothermal chemical evolution towards the abiotic formation of biological molecules. The two usually separate worlds of rocks and life are shown to be connected through molecular and thermodynamic chemical evolution. This concept has been proposed earlier by the author (Bassez J Phys: Condens Matter 15:L353-L361, 2003, 2008a, 2008b; Bassez Orig Life Evol Biosph 39(3-4):223-225, 2009; Bassez et al. 2011; Bassez et al. Orig Life Evol Biosph 42(4):307-316, 2012, Bassez 2013) without thermodynamic details. This concept leads to signatures of prebiotic chemistry such as radionuclides and also iron and magnesium carbonates associated with serpentine and/or talc, which were discussed at the 2014 European Astrobiology Network Association conference on Signatures of Life. PMID:25777464

  14. Considerations on the microwave radiation emitted by extended air showers

    CERN Document Server

    Conti, E

    2015-01-01

    The emission of microwave radiation by extended air showers produced by high energy cosmic rays has been investigated for more than half a century. We discuss the expected emitted power as a function of the cosmic ray energy and of the microwave frequency, for both coherent and incoherent emission mechanisms. We show that the available experimental data are not sufficient to clearly identify the emission mechanisms and quantify the emission yield. We infer that the bremsstralhung radiation emission could be exploited for the detection of astronomical $\\gamma$-rays with energy above 10 GeV in the 1-10 GHz frequency range, and propose an experimental scheme to verify such idea.

  15. Stochastic Modeling of Traffic Air Pollution

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2014-01-01

    In this paper, modeling of traffic air pollution is discussed with special reference to infrastructures. A number of subjects related to health effects of air pollution and the different types of pollutants are briefly presented. A simple model for estimating the social cost of traffic related air pollution is derived. Several authors have published papers on this very complicated subject, but no stochastic modelling procedure have obtained general acceptance. The subject is discussed basis of a deterministic model. However, it is straightforward to modify this model to include uncertain parameters and using simple Monte Carlo techniques to obtain a stochastic estimate of the costs of traffic air pollution for infrastructures.

  16. Solar radiation estimation using sunshine hour and air pollution index in China

    International Nuclear Information System (INIS)

    Highlights: • Aerosol can affect coefficients of A–P equation to estimate solar radiation. • Logarithmic model performed best, according to MBE, MABE, MPE, MAPE, RMSE and NSE. • Parameters of A–P model can be adjusted by API, geographical position and altitude. • A general equation to estimate solar radiation was established in China. - Abstract: Angström–Prescott (A–P) equation is the most widely used empirical relationship to estimate global solar radiation from sunshine hours. A new approach based on Air Pollution Index (API) data is introduced to adjust the coefficients of A–P equation in this study. Based on daily solar radiation, sunshine hours and API data at nine meteorological stations from 2001 to 2011 in China, linear, exponential and logarithmic models are developed and validated. When evaluated by performance indicators of mean bias error, mean absolute bias error, mean percentage error, mean absolute percentage error, root mean square error, and Nash–Sutcliffe Equation, it is demonstrated that logarithmic model performed better than the other models. Then empirical coefficients for three models are given for each station and the variations of these coefficients are affected by API, geographical position, and altitude. This indicates that aerosol can play an important role in estimation solar radiation from sunshine hours, especially in those highly polluted regions. Finally, a countrywide general equation is established based on the sunshine hour data, API and geographical parameters, which can be used to estimate the daily solar radiation in areas where the radiation data is not available

  17. Simulating aerosol–radiation–cloud feedbacks on meteorology and air quality over eastern China under severe haze conditions in winter

    OpenAIRE

    Zhang, B.; Wang, Y X; J. M. Hao

    2014-01-01

    The aerosol–radiation–cloud feedbacks on meteorology and air quality over eastern China under severe winter haze conditions during January~2013 are simulated using the fully coupled on-line Weather Research and Forecasting/Chemistry (WRF-Chem) model. Three simulation scenarios including different aerosol configurations are undertaken to distinguish the impact of aerosol radiative (direct and semi-direct) and indirect effects on meteorological variables and air quality...

  18. Ultraviolet radiation and air contamination during total hip replacement

    International Nuclear Information System (INIS)

    Ultraviolet (uv) radiation of the operating room was assessed bacteriologically in an open randomized study of 30 total hip procedures. Volumetric air-sampling demonstrated that the number of colony forming units (cfu m-3) were significantly reduced (P less than 0.001) by uv light, both close to the wound and in the periphery of the operating room. No adverse effects of the uv-irradiation were observed either in the patients or the staff. In operating rooms fitted with a zonal ventilation system and with an air change rate of about 70 h-1, the addition of uv irradiation during surgery may achieve ultra clean air. However, in conventionally ventilated operating rooms uv-irradiation alone is probably not sufficient to do so

  19. Stochastic Modeling of Traffic Air Pollution

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2014-01-01

    In this paper, modeling of traffic air pollution is discussed with special reference to infrastructures. A number of subjects related to health effects of air pollution and the different types of pollutants are briefly presented. A simple model for estimating the social cost of traffic related air pollution is derived. Several authors have published papers on this very complicated subject, but no stochastic modelling procedure have obtained general acceptance. The subject is discussed basis of a...

  20. Alleviating operating temperature of concentration solar cell by air active cooling and surface radiation

    International Nuclear Information System (INIS)

    In the present paper, a heat transfer model for a multi-junction concentrating solar cell system has been developed. The model presented in this work includes the GaInP/GaAs/Ge triple-junction solar cell with a ventilation system in which air is forced to flow within a duct behind the solar cell assembly and its holders and accessories (anti-reflective glass cover, adhesive material, and aluminum back plate). A mathematical model for the entire system is presented and the finite difference technique has been used to solve the governing equations. Results showed that the interaction of surface radiation and air convection could adequately cool the solar cell at medium concentration ratios. For high concentration ratios, the channel width would need to be narrowed to micro-meter values to maintain the required efficiency of cooling. The conjugation effect has been shown to be significant and has a noticeable effect on the maximum solar cell temperature. Furthermore, the air inlet velocity and channel width were also found to have major effects on the cell temperature. -- Highlights: • A model has been developed to predict the solar cell temperature cooling by air. • Cell temperature can be remarkably reduced with the presence of surface radiation. • Cell temperature is extremely dependent on air inlet velocity and channel width. • Conjugation effect has a noticeable effect on the maximum solar cell temperature

  1. Waveform-Controlled Terahertz Radiation from the Air Filament Produced by Few-Cycle Laser Pulses

    CERN Document Server

    Bai, Ya; Xu, Rongjie; Li, Chuang; Liu, Peng; Zeng, Zhinan; Zhang, Zongxin; Lu, Haihe; Li, Ruxin; Xu, Zhizhan

    2012-01-01

    Waveform-controlled Terahertz (THz) radiation is of great importance due to its potential application in THz sensing and coherent control of quantum systems. We demonstrated a novel scheme to generate waveform-controlled THz radiation from air plasma produced when carrier-envelope-phase (CEP) stabilized few-cycle laser pulses undergo filamentation in ambient air. We launched CEP-stabilized 10 fs-long (~ 1.7 optical cycles) laser pulses at 1.8 {\\mu}m into air and found that the generated THz waveform can be controlled by varying the filament length and the CEP of driving laser pulses. Calculations using the photocurrent model and including the propagation effects well reproduce the experimental results, and the origins of various phase shifts in the filament are elucidated.

  2. Waveform-controlled terahertz radiation from the air filament produced by few-cycle laser pulses.

    Science.gov (United States)

    Bai, Ya; Song, Liwei; Xu, Rongjie; Li, Chuang; Liu, Peng; Zeng, Zhinan; Zhang, Zongxin; Lu, Haihe; Li, Ruxin; Xu, Zhizhan

    2012-06-22

    Waveform-controlled terahertz (THz) radiation is of great importance due to its potential application in THz sensing and coherent control of quantum systems. We demonstrated a novel scheme to generate waveform-controlled THz radiation from air plasma produced when carrier-envelope-phase (CEP) stabilized few-cycle laser pulses undergo filamentation in ambient air. We launched CEP-stabilized 10 fs-long (~1.7 optical cycles) laser pulses at 1.8 ?m into air and found that the generated THz waveform can be controlled by varying the filament length and the CEP of driving laser pulses. Calculations using the photocurrent model and including the propagation effects well reproduce the experimental results, and the origins of various phase shifts in the filament are elucidated. PMID:23004609

  3. Multi-Group Reductions of LTE Air Plasma Radiative Transfer in Cylindrical Geometries

    Science.gov (United States)

    Scoggins, James; Magin, Thierry Edouard Bertran; Wray, Alan; Mansour, Nagi N.

    2013-01-01

    Air plasma radiation in Local Thermodynamic Equilibrium (LTE) within cylindrical geometries is studied with an application towards modeling the radiative transfer inside arc-constrictors, a central component of constricted-arc arc jets. A detailed database of spectral absorption coefficients for LTE air is formulated using the NEQAIR code developed at NASA Ames Research Center. The database stores calculated absorption coefficients for 1,051,755 wavelengths between 0.04 µm and 200 µm over a wide temperature (500K to 15 000K) and pressure (0.1 atm to 10.0 atm) range. The multi-group method for spectral reduction is studied by generating a range of reductions including pure binning and banding reductions from the detailed absorption coefficient database. The accuracy of each reduction is compared to line-by-line calculations for cylindrical temperature profiles resembling typical profiles found in arc-constrictors. It is found that a reduction of only 1000 groups is sufficient to accurately model the LTE air radiation over a large temperature and pressure range. In addition to the reduction comparison, the cylindrical-slab formulation is compared with the finite-volume method for the numerical integration of the radiative flux inside cylinders with varying length. It is determined that cylindrical-slabs can be used to accurately model most arc-constrictors due to their high length to radius ratios.

  4. Impact of Asian Dust on Global Surface Air Quality and Radiation Budget

    Science.gov (United States)

    Chin, Mian; Diehl, Thomas; Yu, Hongbin; Ginoux, Paul

    2006-01-01

    Dust originating from Asian deserts and desertification areas can be transported regionally and globally to affect surface air quality, visibility, and radiation budget not only at immediate downwind locations (e.g., eastern Asia) but also regions far away from the sources (e.g., North America). Deposition of Asian dust to the North Pacific Ocean basin influences the ocean productivity. In this study, we will use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, remote sensing data form satellite and from the ground-based network, and in-situ data from aircraft and surface observations to address the following questions: - What are the effects of Asian dust on the surface air quality and visibility over Asia and North America? - What are the seasonal and spatial variations of dust deposition to the North Pacific Ocean? How does the Asian dust affect surface radiation budget?

  5. Drying Strategy of Shrimp using Hot Air Convection and Hybrid Infrared Radiation/Hot Air Convection

    Directory of Open Access Journals (Sweden)

    Supawan TIRAWANICHAKUL

    2008-01-01

    Full Text Available The main objective of the research was to study the effect of drying temperatures using infrared irradiation and electric heating convection on dehydration and was to investigate the effect of drying conditions on the quality of the shrimp. Two sizes of fresh shrimp (100 shrimp/kg and 200 shrimp/kg with initial moisture content of 270 - 350 % dry-basis were dried under various conditions while the final moisture content of dried shrimp was in ranges between 20 and 25 % dry-basis. Hot air flow rates of 1.0 -   1.2 m/s, drying temperatures of 40 - 90 °C and infrared intensities of 1,785.7 - 3,571.4 W/m2 were used in these experiments. The experimental results showed that the rate of moisture content transfer of both sizes of shrimps decreased exponentially with drying time while increasing drying temperature significantly affected to the drying kinetics and quality of the shrimps. Effective diffusion coefficients of both shrimps were determined by a diffusion model forming a finite cylindrical shape was in order of 10-7 m2/s and this effective diffusion coefficient value was relatively dependent on the drying temperature compared to the initial moisture content. The quality analysis of dried shrimp using an infrared source and electric heating source found that the redness value (Hunter a-value of dried samples using hybrid infrared radiation and electric heating had a higher colour uniformity than other drying methods. Additionally, shrinkage and rehydration properties were insignificantly different for all drying strategies (p < 0.05 and drying using infrared radiation had higher drying rates compared to electric heat convection, corresponding to relatively low drying times.

  6. Radiation doses arising from the air transport of radioactive materials

    International Nuclear Information System (INIS)

    There is a compelling need for the transport of radioactive material by air because of the requirement by hospitals throughout the world for urgent delivery for medical purposes. Many countries have no radionuclide-producing capabilities and depend on imports: a range of such products is supplied from the United Kingdom. Many of these are short lived, which explains the need for urgent delivery. The only satisfactory method of delivery on a particular day to a particular destination is often by the use of scheduled passenger air service. The International Civil Aviation Organization's Technical Instructions for the Safe Transport of Dangerous Goods by Air (ICAO 1987-1988), prescribe the detailed requirements applicable to the international transport of dangerous goods by air. Radioactive materials are required to be separated from persons and from undeveloped photographic films or plates: minimum distances as a function of the total sum of transport indexes are given in the Instructions. A study, which included the measurement and assessment of the radiation doses resulting from the transport of radioactive materials by air from the UK, has been performed by the National Radiological Protection Board (NRPB) on behalf of the Civil Aviation Authority (CAA) and the Department of Transport (DTp)

  7. Air pollution model for point source

    International Nuclear Information System (INIS)

    Mathematical models of air pollution have a broad practical application. They are irreplaceable wherever it is not possible to determine a state of air pollution by measuring of a noxious agent concentration. By creating of a suitable model of air pollution we can assess a state of the air quality but we also to predict the pollution that can occur at given atmospheric conditions. The created model is a suitable tool for controlling the activity of TEKO and for the evaluation of the quality of air in a monitored area of the city of Kosice. A sufficient knowledge in the given field is a condition. The input data and information necessary for creating such a model of polluted air is another important factor. (authors)

  8. Air pollution model for point source

    OpenAIRE

    Jozef Ma?ala; Viliam Carach

    2006-01-01

    Mathematical models of air pollution have a broad practical application. They are irreplaceable wherever it is not possible to determine a state of air pollution by measuring of a noxious agent concentration. By creating of a suitable model of air pollution we can assess a state of the air quality but we also to predict the pollution that can occur at given atmospheric conditions. The created model is a suitable tool for controlling the activity of TEKO and for the evaluation of the quality o...

  9. Neural network models in greenhouse air temperature prediction

    OpenAIRE

    Ferreira, P. M.; E.A. Faria; Ruano, A. E.

    2002-01-01

    The adequacy of radial basis function neural networks to model the inside air temperature of a hydroponic greenhouse as a function of the outside air temperature and solar radiation, and the inside relative humidity, is addressed. As the model is intended to be incorporated in an environmental control strategy both off-line and on-line methods could be of use to accomplish this task. In this paper known hybrid off-line training methods and on-line learning algorithms are analyzed. An off-line...

  10. Simulation model air-to-air plate heat exchanger

    International Nuclear Information System (INIS)

    A simple simulation model of an air-to-air plate heat exchanger is presented. The model belongs to a collection of simulation models that allows the efficient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is to shorten computation time and to use only input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part-load operation mode, which is becoming increasingly important in energy efficient HVAC systems. The models are intended to be used for yearly energy calculations or load calculations with time steps of about 10 minutes or larger. Short- time dynamic effects, which are of interest for different aspects of control theory, are neglected. The part-load behavior is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part-load condition. If the heat transfer coefficients on the two exchanger sides are not equal (i. e. due to partial bypassing of air), their ratio can be easily calculated and set as a parameter. The model is static and uses explicit equations only. The explicit model formulation ensures short computation time and numerical stability, which allows using the model with sophisticated engineering methods like automatic system optimization. This paper fully outlines the algorithm description and its simplifications. It is not tailored for any particular simulation program to ensure easy implementation in any simulation program

  11. Effect of ionizing radiation on moist air systems

    International Nuclear Information System (INIS)

    The radiation chemistry of nitrogen/oxygen/water systems is reviewed. General radiolytic effects in dry nitrogen/oxygen systems are relatively well characterized. Irradiation results in the formation of steady state concentrations of ozone, nitrous oxide and nitrogen dioxide. In closed systems, the concentration observed depends on the total dose, temperature and initial gas composition. Only three studies have been published that focus on the radiation chemistry of nitrogen/oxygen/water homogeneous gas systems. Mixed phase work that is relevant to the gaseous system is also summarized. The presence of water vapor results in the formation of nitric acid and significantly changes the chemistry observed in dry air systems. Mechanistic evidence from the studies reviewed are summarized and discussed in relation to characterizing the gas phase during the containment period of a repository in tuff

  12. Influence of future air pollution mitigation strategies on total aerosol radiative forcing

    OpenAIRE

    Kloster, S.; Dentener, F.; Feichter, J.; F. Raes; J. Van Aardenne; Roeckner, E.; Lohmann, U.; Stier, P; Swart, R.

    2008-01-01

    We apply different aerosol and aerosol precursor emission scenarios reflecting possible future control strategies for air pollution in the ECHAM5-HAM model, and simulate the resulting effect on the Earth's radiation budget. We use two opposing future mitigation strategies for the year 2030: one in which emission reduction legislation decided in countries throughout the world are effectively implemented (current legislation; CLE 2030) and one in which all technical options for emission re...

  13. Detailed Radiative Transport Modeling of a Radiative Divertor

    CERN Document Server

    Wan, A S; Scott, H A; Post, D; Rognlien, T D

    1995-01-01

    An effective radiative divertor maximizes the utilization of atomic processes to spread out the energy deposition to the divertor chamber walls and to reduce the peak heat flux. Because the mixture of neutral atoms and ions in the divertor can be optically thick to a portion of radiated power, it is necessary to accurately model the magnitude and distribution of line radiation in this complex region. To assess their importance we calculate the effects of radiation transport using CRETIN, a multi-dimensional, non-local thermodynamic equilibrium simulation code that includes the atomic kinetics and radiative transport processes necessary to model the complex environment of a radiative divertor. We also include neutral transport to model radiation from recycling neutral atoms. This paper presents a case study of a high-recycling radiative divertor with a typical large neutral pressure at the divertor plate to estimate the impact of H line radiation on the overall power balance in the divertor region with conside...

  14. Evaluation of gas radiation models in CFD modeling of oxy-combustion

    International Nuclear Information System (INIS)

    Highlights: • CFD modeling of a typical industrial water tube boiler is conducted. • Different combustion processes were considered including air and oxy-fuel combustion. • SGG, EWBM, Leckner, Perry and WSGG radiation models were considered in the study. • EWBM is the most accurate model and it’s considered to be the benchmark model. • Characteristics of oxy-fuel combustion are compared to those of air–fuel combustion. - Abstract: Proper determination of the radiation energy is very important for proper predictions of the combustion characteristics inside combustion devices using CFD modeling. For this purpose, different gas radiation models were developed and applied in the present work. These radiation models vary in their accuracy and complexity according to the application. In this work, a CFD model for a typical industrial water tube boiler was developed, considering three different combustion environments. The combustion environments are air–fuel combustion (21% O2 and 79% N2), oxy-fuel combustion (21% O2 and 79% CO2) and oxy-fuel combustion (27% O2 and 73% CO2). Simple grey gas (SGG), exponential wide band model (EWBM), Leckner, Perry and weighted sum of grey gases (WSGG) radiation models were examined and their influences on the combustion characteristics were evaluated. Among those radiation models, the EWBM was found to provide close results to the experimental data for the present boiler combustion application. The oxy-fuel combustion characteristics were analyzed and compared with those of air–fuel combustion

  15. Priliminary Modeling of Air Breakdown with the ICEPIC code

    CERN Document Server

    Schulz, A E; Cartwright, K L; Mardahl, P J; Peterkin, R E; Bruner, N; Genoni, T; Hughes, T P; Welch, D

    2004-01-01

    Interest in air breakdown phenomena has recently been re-kindled with the advent of advanced virtual prototyping of radio frequency (RF) sources for use in high power microwave (HPM) weapons technology. Air breakdown phenomena are of interest because the formation of a plasma layer at the aperture of an RF source decreases the transmitted power to the target, and in some cases can cause significant reflection of RF radiation. Understanding the mechanisms behind the formation of such plasma layers will aid in the development of maximally effective sources. This paper begins with some of the basic theory behind air breakdown, and describes two independent approaches to modeling the formation of plasmas, the dielectric fluid model and the Particle in Cell (PIC) approach. Finally we present the results of preliminary studies in numerical modeling and simulation of breakdown.

  16. OpenAIRE - Data Model Specification

    OpenAIRE

    2010-01-01

    The OpenAIRE web site will offer functionalities for administrators, anonymous and registered users to manage an Information Space of FP7-funded open access publications. The aim of this document is to describe the conceived structure and semantics of this Information Space, i.e., the Open AIRE data model, by providing an abstract definition of its main entities and the relationships between them. In this definitional process, the intended interaction (Task 7.2) between the OpenAIRE Informati...

  17. Air quality modeling in Warsaw Metropolitan Area

    OpenAIRE

    Piotr Holnicki; Zbigniew Nahorski

    2013-01-01

    Decision support of air quality management needs to connect several categories of the input data with the analytical process of air pollution dispersion. The aim of the respective model of air pollution is to provide a quantitative assessment of environmental impact of emission sources in a form of spatial/temporal maps of pollutants’ concentration or deposition in the domain. These results are in turn used in assessment of environmental risk and supporting respective planning actions. Howeve...

  18. Mathematical modeling of photochemical air pollution

    International Nuclear Information System (INIS)

    This paper summarizes the key elements of a project directed at developing a comprehensive mathematical model capable of describing the formation and transport of chemically reacting species in the turbulent planetary boundary layer. The model is intended for routine application in the design and evaluation of urban-scale air pollution control strategies. Some examples illustrating the use of the model in the South Coast Air Basin of Southern California are presented

  19. Air pollution radiative and microphysical impacts on rainfall

    Science.gov (United States)

    Rosenfeld, D.

    2008-12-01

    Aerosols affect rainfall in various ways: The microphysical effects slow the conversion of cloud drop to hydrometeors. In shallow clouds it means suppression of precipitation. In deep clouds with warm base the delay of precipitation to heights where freezing can occur this leads to invigoration of the clouds due to the added latent heat release of freezing. When the aerosol load becomes heavy the radiative effects of suppressing surface heating can decrease the convection. In addition, delaying the onset of precipitation to great heights leads to greater evaporation of smaller precipitation efficiency due to more evaporation of cloud water and hydrometeors. An example of the impacts of heavy air pollution is available for China. Time series of rainfall, thunderstorms, temperatures, winds and aerosols for the period of 1953-2005 have been analyzed at the Xian valley and the nearby Mount Hua in central China, for assessing the impact of the increasing air pollution thunderstorms on convective precipitation. Adding aerosols to pristine air initially increases convective rainfall. However, aerosol amounts have been shown to be sufficiently high so that added aerosols suppress convection and precipitation, by both radiative and microphysical effects, even at the starting of the analysis period at the 1950's. It was found that the aerosols negative radiative forcing stabilized the lowest troposphere by about 1°C. The stabilization resulted in less vertical exchanges of air, which caused reduction in the lowland surface winds and increase in the mountain top wind speeds. The decreased instability caused a decrease in the frequency of the thunderstorm normalized by rainfall amount in the lowland due to the thick aerosol layer above, but not at the mountaintop, above which the aerosol layer was much thinner. The indicated decreasing trend of mountain precipitation was associated with a similar size decreasing trend in thunderstorm frequency. This decrease was contributed from light and moderate (<25 mm day-1) days. These patterns of rainfall changes at the mountains are consistent with the microphysical suppressive effects of aerosols. Despite the dramatic relative decrease in the already originally scarce thunderstorm activity in the Xian valley, the rainfall amount there appears to have little diurnal cycle, and respectively shows little trend with the increasing aerosol amounts. Because only small fraction of the rainfall in Xian is generated by local instability, as indicated by the flat diurnal cycle, it appears to be a condition which is unsuitable for quantifying the impact of heavy aerosols on rainfall amounts. However, the dramatic relative decrease of the scarce thunderstorms in Xian suggests that this effect can be substantial. Such study should be extended to other areas where the control of local surface heating dominates the rainfall amounts.

  20. Lean hydrogen-air-steam mixture combustion models

    International Nuclear Information System (INIS)

    Hydrogen combustion computer models are needed to evaluate the consequences of deliberate or accidental ignition of hydrogen-air-steam mixtures with a reactor containment building. Phenomenological flame-propagation models for hydrogen-air-steam mixture deflagrations are described. The models treat the concentration regime in which combustion is complete and the near-lean-limit regime in which buoyant flame propagation and extinction are important. Empirical representations of burning velocities and flame geometries are utilized in both regimes. Transient overpressures calculated with these models are compared to recent data obtained in several test programs. Although reasonable agreement is obtained in many cases, the comparisons suggest that the model could be improved by accounting for self-induced flame turbulence and for radiative heat losses before the flame reaches the vessel wall

  1. Validation of the community radiative transfer model

    International Nuclear Information System (INIS)

    To validate the Community Radiative Transfer Model (CRTM) developed by the U.S. Joint Center for Satellite Data Assimilation (JCSDA), the discrete ordinate radiative transfer (DISORT) model and the line-by-line radiative transfer model (LBLRTM) are combined in order to provide a reference benchmark. Compared with the benchmark, the CRTM appears quite accurate for both clear sky and ice cloud radiance simulations with RMS errors below 0.2 K, except for clouds with small ice particles. In a computer CPU run time comparison, the CRTM is faster than DISORT by approximately two orders of magnitude. Using the operational MODIS cloud products and the European Center for Medium-range Weather Forecasting (ECMWF) atmospheric profiles as an input, the CRTM is employed to simulate the Atmospheric Infrared Sounder (AIRS) radiances. The CRTM simulations are shown to be in reasonably close agreement with the AIRS measurements (the discrepancies are within 2 K in terms of brightness temperature difference). Furthermore, the impact of uncertainties in the input cloud properties and atmospheric profiles on the CRTM simulations has been assessed. The CRTM-based brightness temperatures (BTs) at the top of the atmosphere (TOA), for both thin (?30) clouds, are highly sensitive to uncertainties in atmospheric temperature and cloud top pressure. However, for an optically thick cloud, the CRTM-based BTs are not sensitive to the uncertainties of cloud optical thickness, effective particle size, and atmospheric humidity profiles. On the contrary, the uncertainties of the CRTM-based TOA BTs resulting from effective particle size and optical thickness are not negligible in an optically thin cloud.

  2. Air Tightness of US Homes: Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.

    2006-05-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses that database to develop a model for estimating air leakage as a function of climate, building age, floor area, building height, floor type, energy-efficiency and low-income designations. The model developed can be used to estimate the leakage distribution of populations of houses.

  3. Mixed conflict model for Air Traffic Control

    OpenAIRE

    Feydy, Thibaut; Barnier, Nicolas; Brisset, Pascal; Durand, Nicolas

    2005-01-01

    Airspace congestion is today the most critical issue European Air Traffic Management (ATM) has to face. Current real-time Air Traffic Control (ATC) is achieved by human controllers. One of their main tasks is to keep separation between aircraft, asking to the pilots to do basic avoidance manoeuvres. We propose here two mixed CSP models of this separation issue, combining discrete and continuous variables. An implementation of these models allows to produce optimal solutions for problems where...

  4. Air Quality – monitoring and modelling

    OpenAIRE

    Marius DEACONU; Mihaiella CRETU

    2012-01-01

    Air pollution is a major concern for all nations, regardless of their development. The rapid growth of the industrial sector and urban development have lead to significant quantities of substances and toxic materials, mostly discharged into the atmosphere and having adverse effects both on human health and environment in general. Human society has to recognize that environment has only a limited capacity to process all of its waste without major changes. Each of us is a pollutant but also a v...

  5. Surface Flux Modeling for Air Quality Applications

    Directory of Open Access Journals (Sweden)

    Limei Ran

    2011-08-01

    Full Text Available For many gasses and aerosols, dry deposition is an important sink of atmospheric mass. Dry deposition fluxes are also important sources of pollutants to terrestrial and aquatic ecosystems. The surface fluxes of some gases, such as ammonia, mercury, and certain volatile organic compounds, can be upward into the air as well as downward to the surface and therefore should be modeled as bi-directional fluxes. Model parameterizations of dry deposition in air quality models have been represented by simple electrical resistance analogs for almost 30 years. Uncertainties in surface flux modeling in global to mesoscale models are being slowly reduced as more field measurements provide constraints on parameterizations. However, at the same time, more chemical species are being added to surface flux models as air quality models are expanded to include more complex chemistry and are being applied to a wider array of environmental issues. Since surface flux measurements of many of these chemicals are still lacking, resistances are usually parameterized using simple scaling by water or lipid solubility and reactivity. Advances in recent years have included bi-directional flux algorithms that require a shift from pre-computation of deposition velocities to fully integrated surface flux calculations within air quality models. Improved modeling of the stomatal component of chemical surface fluxes has resulted from improved evapotranspiration modeling in land surface models and closer integration between meteorology and air quality models. Satellite-derived land use characterization and vegetation products and indices are improving model representation of spatial and temporal variations in surface flux processes. This review describes the current state of chemical dry deposition modeling, recent progress in bi-directional flux modeling, synergistic model development research with field measurements, and coupling with meteorological land surface models.

  6. On radiofrequency component of transition radiation of extensive air shower

    International Nuclear Information System (INIS)

    The mechanism of radio emission caused by the transition radiation of the contrarily charged particles of the expensive air shower in the magnetic field of the Earth is studied for the first time. It is established that for the showers with the energy about 1022 eV the maximum stage whereof is reached at the sea level the electrical field voltage constitutes 60 ?V/m MHz at the distance of 500 km from the shower axis. The spectrum intensity maximum is in the area corresponding to the atmospheric disturbances minimum (? 1 ?Hz). These conditions stimulate the formulation of the experiment on the high-energy cosmic ray radio detection, the scheme whereof is proposed in this work

  7. Mathematical Models for Room Air Distribution

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    1982-01-01

    A number of different models on the air distribution in rooms are introduced. This includes the throw model, a model on penetration length of a cold wall jet and a model for maximum velocity in the dimensioning of an air distribution system in highly loaded rooms and shows that the amount of heat removed from the room at constant penetration length is proportional to the cube of the velocities in the occupied zone. It is also shown that a large number of diffusers increases the amount of heat wh...

  8. Mathematical Models for Room Air Distribution - Addendum

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    1982-01-01

    A number of different models on the air distribution in rooms are introduced. This includes the throw model, a model on penetration length of a cold wall jet and a model for maximum velocity in the dimensioning of an air distribution system in highly loaded rooms and shows that the amount of heat removed from the room at constant penetration length is proportional to the cube of the velocities in the occupied zone. It is also shown that a large number of diffusers increases the amount of heat wh...

  9. Nanodiamond formation via thermal radiation from an air shock

    Science.gov (United States)

    de Carli, Paul

    2013-06-01

    Nanodiamonds have recently been found in sediments of Younger Dryas age, about 12,900 years ago. Carbon isotope ratios imply that the source of carbon was terrestrial organic matter and rule out the possibility that the diamond was of cosmic origin, e.g., from an influx of meteorites. The nanodiamonds are associated with mineral spherules (and other shapes) that have compositions and textures consistent with the rapid melting and solidification of local soil. The inferred temperatures are much too high for natural events such as forest fires. Similar deposits of nanodiamond have been found in the 65 million year old K-Pg layer associated with the ca. 200 km diameter Chicxulub impact crater. Nanodiamond have also been reported in the vicinity of the Tunguska event, presumed to be the result of an air shock produced by the interaction of a rapidly moving cosmic body with the Earth's atmosphere. We infer that the nanodiamonds were formed when the thermal radiation from the air shock pyrolyzed surface organic matter. Rapid reaction locally depleted the atmosphere of oxygen and the remaining carbon could condense as nanodiamond. A similar mechanism can be invoked to account for the formation of nanodiamond as a froduct of the detonation of ozygen-deficient high explosives.

  10. Slot Region Radiation Environment Models

    Science.gov (United States)

    Sandberg, Ingmar; Daglis, Ioannis; Heynderickx, Daniel; Evans, Hugh; Nieminen, Petteri

    2013-04-01

    Herein we present the main characteristics and first results of the Slot Region Radiation Environment Models (SRREMs) project. The statistical models developed in SRREMs aim to address the variability of trapped electron and proton fluxes in the region between the inner and the outer electron radiation belt. The energetic charged particle fluxes in the slot region are highly dynamic and are known to vary by several orders of magnitude on both short and long timescales. During quiet times, the particle fluxes are much lower than those found at the peak of the inner and outer belts and the region is considered benign. During geospace magnetic storms, though, this region can fill with energetic particles as the peak of the outer belt is pushed Earthwards and the fluxes can increase drastically. There has been a renewed interest in the potential operation of commercial satellites in orbits that are at least partially contained within the Slot Region. Hence, there is a need to improve the current radiation belt models, most of which do not model the extreme variability of the slot region and instead provide long-term averages between the better-known low and medium Earth orbits (LEO and MEO). The statistical models developed in the SRREMs project are based on the analysis of a large volume of available data and on the construction of a virtual database of slot region particle fluxes. The analysis that we have followed retains the long-term temporal, spatial and spectral variations in electron and proton fluxes as well as the short-term enhancement events at altitudes and inclinations relevant for satellites in the slot region. A large number of datasets have been used for the construction, evaluation and inter-calibration of the SRREMs virtual dataset. Special emphasis has been given on the use and analysis of ESA Standard Radiation Environment Monitor (SREM) data from the units on-board PROBA-1, INTEGRAL, and GIOVE-B due to the sufficient spatial and long temporal coverage of the slot region. In addition, other datasets such as EI/AZUR, MEA/CRRES, ERMD/XMM also have been considered and processed. The output of the models provides mean and peak energetic particle fluxes for a given mission duration as determined by confidence levels for different time scales. Validation studies and comparison with standard radiation belt models, such as AE8-AP8 have been also performed. The SRREMs project has been commissioned by ESA/ESTEC through contract 4000104839.

  11. Estimation of Biomass Burning Influence on Air Pollution around Beijing from an Aerosol Retrieval Model

    OpenAIRE

    Sonoyo Mukai; Masayoshi Yasumoto; Makiko Nakata

    2014-01-01

    We investigate heavy haze episodes (with dense concentrations of atmospheric aerosols) occurring around Beijing in June, when serious air pollution was detected by both satellite and ground measurements. Aerosol retrieval is achieved by radiative transfer simulation in an Earth atmosphere model. We solve the radiative transfer problem in the case of haze episodes by successive order of scattering. We conclude that air pollution around Beijing in June is mainly due to increased emissions of an...

  12. Adaptive Grid Use in Air Quality Modeling

    Directory of Open Access Journals (Sweden)

    Mehmet Talat Odman

    2011-09-01

    Full Text Available The predictions from air quality models are subject to many sources of uncertainty; among them, grid resolution has been viewed as one that is limited by the availability of computational resources. A large grid size can lead to unacceptable errors for many pollutants formed via nonlinear chemical reactions. Further, insufficient grid resolution limits the ability to perform accurate exposure assessments. To address this issue in parallel to increasing computational power, modeling techniques that apply finer grids to areas of interest and coarser grids elsewhere have been developed. Techniques using multiple grid sizes are called nested grid or multiscale modeling techniques. These approaches are limited by uncertainty in the placement of finer grids since pertinent locations may not be known a priori, loss in solution accuracy due to grid boundary interface problems, and inability to adjust to changes in grid resolution requirements. A different approach to achieve local resolution involves using dynamic adaptive grids. Various adaptive mesh refinement techniques using structured grids as well as mesh enrichment techniques on unstructured grids have been explored in atmospheric modeling. Recently, some of these techniques have been applied to full blown air quality models. In this paper, adaptive grid methods used in air quality modeling are reviewed and categorized. The advantages and disadvantages of each adaptive grid method are discussed. Recent advances made in air quality simulation owing to the use of adaptive grids are summarized. Relevant connections to adaptive grid modeling in weather and climate modeling are also described.

  13. Refined weighted sum of gray gases model for air-fuel combustion and its impacts

    DEFF Research Database (Denmark)

    Yin, Chungen

    2013-01-01

    Radiation is the principal mode of heat transfer in utility boiler furnaces. Models for radiative properties play a vital role in reliable simulations of utility boilers and simulation-based design and optimization. The weighted sum of gray gases model (WSGGM) is one of the most widely used models in computational fluid dynamics (CFD) simulation of air-fuel combustion processes. It represents a reasonable compromise between an oversimplified gray gas model and a comprehensive approach addressing...

  14. Standard climate models radiation codes underestimate black carbon radiative forcing

    Directory of Open Access Journals (Sweden)

    G. Myhre

    2014-10-01

    Full Text Available Radiative forcing (RF of black carbon (BC in the atmosphere is estimated using radiative transfer codes of various complexities. Here we show that the 2-stream radiative transfer codes used most in climate models give too strong forward scattering, leading to enhanced absorption at the surface and too weak absorption by BC. Such calculations are found to underestimate RF by 10% for global mean, all sky conditions, relative to the more sophisticated multi-stream models. The underestimation occurs primarily for low surface albedo, even though BC is more efficient for absorption of solar radiation at high surface albedo.

  15. Dispersion model maps spread of Fukushima radiation

    Science.gov (United States)

    Schultz, Colin

    2013-01-01

    When water flooded the Japanese Fukushima Daiichi nuclear power plant on 11 March 2011, killing power to the plant and destroying its backup generators, the earthquake-triggered disaster resulted in a major nuclear accident, with the plant pouring radioactive material into the air and the water. Research into the effects of the radiation on humans and the environment has been ongoing, but to ensure the accuracy of these aftermath investigations requires understanding the precise concentrations, distribution patterns, and timing of the radionuclide emissions. To provide such an assessment for the marine environment, Estournel et al. used an ocean and atmosphere dispersion model to simulate the movements of radioactive cesium-137 throughout the Japanese coastal waters for 3.5 months following the earthquake.

  16. Discharge air system: modelling and optimal control

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, G.R.; Zaheer-Uddin, M. [Concordia Univ., Centre for Building Studies, Montreal, PQ (Canada)

    1999-07-01

    A state-space model of a discharge air system (DAS) is developed. Simulation results obtained from the developed model compare well with the published experimental data. The optimal control strategies and optimal performance of DAS to step changes in setpoints are given for two cases: a heating case with temperatures control, and a cooling case with temperature and humidity control. Results show that the outputs (discharge air temperature and humidity ratio) of the system reach the chosen setpoints rapidly and smoothly compared with that of PI control results published in the literature. (Author)

  17. Radiative transfer in LTE air plasmas for temperatures up to 15,000 K

    International Nuclear Information System (INIS)

    Radiative transfer in local thermodynamic and chemical equilibrium N2-O2 plasmas is analyzed in this study using a line-by-line approach. The contributions of line absorption by atoms, ions and of continuous absorption by atoms, ions and molecules to the absorption coefficient of heated air are calculated. These data combined to our previous work on the contribution of molecular electronic systems to heated air radiation (J. Quant. Spectrosc. Radiat. Transfer 72 (2002) 503) lead to a reliable and exhaustive spectroscopic data base for radiative transfer in air plasmas and for temperatures up to 15,000 K. Line-by-line radiative transfer calculations are carried out for a simple planar geometry with prescribed temperature profiles. The spectral distribution of radiative fluxes and volumetric powers is analyzed and the relative contributions of continuum and line radiation are discussed

  18. Radiative transfer in LTE air plasmas for temperatures up to 15,000 K

    Energy Technology Data Exchange (ETDEWEB)

    Chauveau, Sophie; Deron, Christine; Perrin, M.-Y.; Riviere, Philippe; Soufiani, Anouar

    2003-03-01

    Radiative transfer in local thermodynamic and chemical equilibrium N{sub 2}-O{sub 2} plasmas is analyzed in this study using a line-by-line approach. The contributions of line absorption by atoms, ions and of continuous absorption by atoms, ions and molecules to the absorption coefficient of heated air are calculated. These data combined to our previous work on the contribution of molecular electronic systems to heated air radiation (J. Quant. Spectrosc. Radiat. Transfer 72 (2002) 503) lead to a reliable and exhaustive spectroscopic data base for radiative transfer in air plasmas and for temperatures up to 15,000 K. Line-by-line radiative transfer calculations are carried out for a simple planar geometry with prescribed temperature profiles. The spectral distribution of radiative fluxes and volumetric powers is analyzed and the relative contributions of continuum and line radiation are discussed.

  19. Overview of atmospheric ionizing radiation (AIR) research: SST-present

    Science.gov (United States)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; Clem, J. M.; De Angelis, G.; Friedberg, W.

    2003-01-01

    The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of ICRP-recommended exposure limits (1990) with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented. Published by Elsevier Ltd on behalf of COSPAR.

  20. On the geomagnetic mechanism of the radiation of an extensive air shower

    Science.gov (United States)

    Filonenko, A. D.

    2013-04-01

    The radiation field of the elementary particles of an extensive air shower in the geomagnetic field has been examined. According to the solutions of Maxwell's equation for an electron (positron) taking into account ionization losses, the radiation of the shower is determined only by the bremsstrahlung and geomagnetic mechanism. The Cherenkov component of radiation is almost absent.

  1. Uncertainty in Regional Air Quality Modeling

    Science.gov (United States)

    Digar, Antara

    Effective pollution mitigation is the key to successful air quality management. Although states invest millions of dollars to predict future air quality, the regulatory modeling and analysis process to inform pollution control strategy remains uncertain. Traditionally deterministic ‘bright-line’ tests are applied to evaluate the sufficiency of a control strategy to attain an air quality standard. A critical part of regulatory attainment demonstration is the prediction of future pollutant levels using photochemical air quality models. However, because models are uncertain, they yield a false sense of precision that pollutant response to emission controls is perfectly known and may eventually mislead the selection of control policies. These uncertainties in turn affect the health impact assessment of air pollution control strategies. This thesis explores beyond the conventional practice of deterministic attainment demonstration and presents novel approaches to yield probabilistic representations of pollutant response to emission controls by accounting for uncertainties in regional air quality planning. Computationally-efficient methods are developed and validated to characterize uncertainty in the prediction of secondary pollutant (ozone and particulate matter) sensitivities to precursor emissions in the presence of uncertainties in model assumptions and input parameters. We also introduce impact factors that enable identification of model inputs and scenarios that strongly influence pollutant concentrations and sensitivity to precursor emissions. We demonstrate how these probabilistic approaches could be applied to determine the likelihood that any control measure will yield regulatory attainment, or could be extended to evaluate probabilistic health benefits of emission controls, considering uncertainties in both air quality models and epidemiological concentration-response relationships. Finally, ground-level observations for pollutant (ozone) and precursor concentrations (oxides of nitrogen) have been used to adjust probabilistic estimates of pollutant sensitivities based on the performance of simulations in reliably reproducing ambient measurements. Various observational metrics have been explored for better scientific understanding of how sensitivity estimates vary with measurement constraints. Future work could extend these methods to incorporate additional modeling uncertainties and alternate observational metrics, and explore the responsiveness of future air quality to project trends in emissions and climate change.

  2. Natural gamma radiation in air versus soil nature in Portugal

    International Nuclear Information System (INIS)

    In this work in situ gamma spectrometry is used to correlate natural gamma radiation doses to the predominant type of soils in Portugal. Natural terrestrial gamma radiation has its origin on cosmogenic and primordial nuclides (the uranium and thorium series and 40K). The importance of these nuclides in each type of soil is a consequence of soil formation from the different original rocks. Mechanical, chemical and biochemical processes determine the concentration of the primordial radionuclides present in each type of soil. Former studies of natural gamma radiation provided data on the dose rate in air 1 meter above ground for all administrative regions of Portuguese mainland and allowed the making of the radiological map of Portugal. Some of these points were selected for the present study, representing high, intermediate and low dose rate regions. The characterization of each selected point was performed by the identification of the primordial radionuclides present in the soil, their relative contribution to the dose and final evaluation of the total dose. The relative contributions of 232Th and 238U series and 40K to the dose were calculated after the analysis of the data obtained by in situ gamma spectrometry and yielded: for intrusive rocks 45 ± 7%, 25 ± 6% and 30 ± 5%, respectively for the thorium and uranium series and potassium; for sedimentary rocks 32 ± 5%, 22 ± 4% and 46 ± 5% and for metamorphic rocks 42 ± 8%, 22 ± 9% and 36 ± 13%. The relative contribution to the dose rate was determined and yielded: for intrusive rocks 67 ± 29 nGy.h-1, 37 ± 14 nGy.h-1 and 43 ± 14 nGy.h-1, respectively for the thorium and uranium series and potassium; for sedimentary rocks 12 ± 5 nGy.h-1, 8 ± 2 nGy.h-1 and 17 ± 6 nGy.h-1 and for metamorphic rocks 46 ± 36 nGy.h-1, 25 ± 20 nGy.h-1 and 31 ± 11 nGy.h-1. The ranges of the measured data and the contributions to the total dose rate for each type of soil are mentioned on the full paper. (author)

  3. Influence of future air pollution mitigation strategies on total aerosol radiative forcing

    Directory of Open Access Journals (Sweden)

    S. Kloster

    2008-11-01

    Full Text Available We apply different aerosol and aerosol precursor emission scenarios reflecting possible future control strategies for air pollution in the ECHAM5-HAM model, and simulate the resulting effect on the Earth's radiation budget. We use two opposing future mitigation strategies for the year 2030: one in which emission reduction legislation decided in countries throughout the world are effectively implemented (current legislation; CLE 2030 and one in which all technical options for emission reductions are being implemented independent of their cost (maximum feasible reduction; MFR 2030.

    We consider the direct, semi-direct and indirect radiative effects of aerosols. The total anthropogenic aerosol radiative forcing defined as the difference in the top-of-the-atmosphere radiation between 2000 and pre-industrial times amounts to ?2.00 W/m2. In the future this negative global annual mean aerosol radiative forcing will only slightly change (+0.02 W/m2 under the "current legislation" scenario. Regionally, the effects are much larger: e.g. over Eastern Europe radiative forcing would increase by +1.50 W/m2 because of successful aerosol reduction policies, whereas over South Asia it would decrease by ?1.10 W/m2 because of further growth of emissions. A "maximum feasible reduction" of aerosols and their precursors would lead to an increase of the global annual mean aerosol radiative forcing by +1.13 W/m2. Hence, in the latter case, the present day negative anthropogenic aerosol forcing could be more than halved by 2030 because of aerosol reduction policies and climate change thereafter will be to a larger extent be controlled by greenhouse gas emissions.

    We combined these two opposing future mitigation strategies for a number of experiments focusing on different sectors and regions. In addition, we performed sensitivity studies to estimate the importance of future changes in oxidant concentrations and the importance of the aerosol microphysical coupling within the range of expected future changes. For changes in oxidant concentrations caused by future air pollution mitigation, we do not find a significant effect for the global annual mean radiative aerosol forcing. In the extreme case of only abating SO2 or carbonaceous emissions to a maximum feasible extent, we find deviations from additivity for the radiative forcing over anthropogenic source regions up to 10% compared to an experiment abating both at the same time.

  4. Air quality modeling in Warsaw Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Piotr Holnicki

    2013-04-01

    Full Text Available Decision support of air quality management needs to connect several categories of the input data with the analytical process of air pollution dispersion. The aim of the respective model of air pollution is to provide a quantitative assessment of environmental impact of emission sources in a form of spatial/temporal maps of pollutants’ concentration or deposition in the domain. These results are in turn used in assessment of environmental risk and supporting respective planning actions. However, due to the complexity of the forecasting system and the required input data, such environmental prognosis and related decisions contain many potential sources of imprecision and uncertainty. The main sources of uncertainty are commonly considered meteorological and emission input data. This paper addresses the problem of emission uncertainty, and impact of this uncertainty on the forecasted air pollution concentrations and adverse health effects. The computational experiment implemented for Warsaw Metropolitan Area, Poland, encompasses one-year forecast with the year 2005 meteorological dataset. The annual mean concentrations of the main urban pollutants are computed. The impact of uncertainty in emission field inventory is also considered. Uncertainty assessment is based on the Monte Carlo technique where the regional scale CALPUFF model is the main forecasting tool used in air quality analysis.

  5. Tracks FAQs: What is Modeled Air Data?

    Centers for Disease Control (CDC) Podcasts

    2011-04-25

    In this podcast, CDC Tracking experts discuss modeled air data. Do you have a question for our Tracking experts? Please e-mail questions to trackingsupport@cdc.gov.  Created: 4/25/2011 by National Center for Environmental Health, Division of Environmental Hazards and Health Effects, Environmental Health Tracking Branch.   Date Released: 4/25/2011.

  6. Air quality modeling for emergency response applications

    International Nuclear Information System (INIS)

    The three-dimensional diagnostic wind field model (MATHEW) and the particle-in-cell transport and diffusion model (ADPIC) are used by the Atmospheric Release Advisory Capability (ARAC) for real-time assessments of the consequences from accidental releases of radioactivity into the atmosphere. For the dispersion of hazardous heavier-than-air gases, a time-dependent, three-dimensional finite element model (FEM3) is used. These models have been evaluated extensively against a wide spectrum of field experiments involving the release of chemically inert tracers or heavier-than-air gases. The results reveal that the MATHEW/ADPIC models are capable of simulating the spatial and temporal distributions of tracer concentration to within a factor of 2 for 50% of the measured tracer concentrations for near surface releases in relatively flat terrain and within a factor of 2 for 20% of the comparisons for elevated releases in complex terrain. The FEM3 model produces quite satisfactory simulations of the spatial and temporal distributions of heavier-than-air gases, typically within a kilometer of the release point. The ARAC consists of a centralized computerized emergency response system that is capable of supporting up to 100 sites and providing real-time predictions of the consequence of transportation accidents that may occur anywhere. It utilizes pertinent accident information, local and regional meteorology, and terrain as input to the MATHEW/ADPIC models for the consequence analysis. It has responded to over 150 incidents and exercises over the past decade

  7. Determination of the potential radiation exposure of the population close to the Asse II mine caused by deduction of radioactive substances with the discharge air in the normal operation using the ''Atmospheric Radionuclide-Transport-Model'' (ARTM); Ermittlung der potenziellen Strahlenexposition der Bevoelkerung in der Umgebung der Schachtanlage Asse II infolge Ableitung radioaktiver Stoffe mit den abwettern im bestimmungsgemaessen Betrieb mittels des ''atmospaerischen Radionuklid-Transport-Modells'' ARTM

    Energy Technology Data Exchange (ETDEWEB)

    Esch, D.; Wittwer, C. [Bundesamt fuer Strahlenschutz, Salzgitter (Germany)

    2014-01-20

    Between 1967 and 1978 125.787 packages filled with low-level and intermediate-level radioactive waste were emplaced in the mining plant Asse II. Volatile radioactive substances like H-3, C-14 and Rn-222 are released from the emplaced waste. These substances reach the ventilated parts of the mine and are released with the discharge air. The potential radiation exposure of the population caused by deduction of radioactive substances with the discharge air in the normal operation is determined by the ''Atmospheric Radionuclide-Transport-Model'' (ARTM). As result the maximal deductions of volatile radioactive substances with the discharge air in the normal operation of the Asse II mine lead to radiation exposure of the population, which is considerably lower than the permissible values of application rate.

  8. SCROLL, a superconfiguration collisional radiative model with external radiation

    International Nuclear Information System (INIS)

    A collisional radiative model for calculating non-local thermodynamical-equilibrium (non-LTE) spectra of heavy atoms in hot plasmas has been developed. It takes into account the numerous excited an autoionizing states by using superconfigurations. These are split systematically until the populations converge. The influence of an impinging radiation field has recently been added to the model. The effect can be very important. (author)

  9. Guidance for air sampling at nuclear facilities. [Radiation monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Breslin, A.J.

    1976-11-01

    The principal uses of air sampling at nuclear facilities are to monitor general levels of radioactive air contamination, identify sources of air contamination, and evaluate the effectiveness of contaminant control equipment, determine exposures of individual workers, and provide automatic warning of hazardous concentrations of radioactivity. These applications of air sampling are discussed with respect to standards of occupational exposure, instrumentation, sample analysis, sampling protocol, and statistical treatment of concentration data. Emphasis is given to the influence of spacial and temporal variations of radionuclide concentration on the location, duration, and frequency of air sampling.

  10. The direct and inverse problems of an air-saturated poroelastic cylinder submitted to acoustic radiation

    Directory of Open Access Journals (Sweden)

    Erick Ogam

    2011-09-01

    Full Text Available A wave-fluid saturated poroelastic structure interaction model based on the modified Biot theory (MBT and plane-wave decomposition using orthogonal cylindrical functions is developed. The model is employed to recover from real data acquired in an anechoic chamber, the poromechanical properties of a soft cellular melamine cylinder submitted to an audible acoustic radiation. The inverse problem of acoustic diffraction is solved by constructing the objective functional given by the total square of the difference between predictions from the MBT interaction model and diffracted field data from experiment. The faculty of retrieval of the intrinsic poromechanical parameters from the diffracted acoustic fields, indicate that a wave initially propagating in a light fluid (air medium, is able to carry in the absence of mechanical excitation of the specimen, information on the macroscopic mechanical properties which depend on the microstructural and intrinsic properties of the solid phase.

  11. The direct and inverse problems of an air-saturated poroelastic cylinder submitted to acoustic radiation

    Science.gov (United States)

    Ogam, Erick; Fellah, Z. E. A.

    2011-09-01

    A wave-fluid saturated poroelastic structure interaction model based on the modified Biot theory (MBT) and plane-wave decomposition using orthogonal cylindrical functions is developed. The model is employed to recover from real data acquired in an anechoic chamber, the poromechanical properties of a soft cellular melamine cylinder submitted to an audible acoustic radiation. The inverse problem of acoustic diffraction is solved by constructing the objective functional given by the total square of the difference between predictions from the MBT interaction model and diffracted field data from experiment. The faculty of retrieval of the intrinsic poromechanical parameters from the diffracted acoustic fields, indicate that a wave initially propagating in a light fluid (air) medium, is able to carry in the absence of mechanical excitation of the specimen, information on the macroscopic mechanical properties which depend on the microstructural and intrinsic properties of the solid phase.

  12. Action levels for radon in indoor air and underground work-places. Radiation protection - Leaflet 5

    International Nuclear Information System (INIS)

    Radon in dwellings is the main source of human exposure to ionizing radiation. Recommended action levels are given for radon in indoor air, radon at underground work-places, radon in household water and radioactivity in building materials. 10 refs

  13. Combined effects of air temperature, wind, and radiation on the resting metabolism of avian raptors

    International Nuclear Information System (INIS)

    American kestrels, Falco sparverius; red-tailed hawks, Buteo jamaicensis; and golden eagles, Aquila chrysaetos, were perched in a wind tunnel and subjected to various combinations of air temperature, wind, and radiation. Oxygen consumption was measured under the various combinations of environmental variables, and multiple regression equations were developed to predict resting metabolism as a function of body mass, air temperature, wind speed, and radiation load

  14. Modeling solar radiation at the Earth's surface recent advances

    CERN Document Server

    Badescu, Viorel

    2008-01-01

    Solar radiation data is important for a wide range of applications, e.g. in engineering, agriculture, health sector, and in many fields of the natural sciences. A few examples showing the diversity of applications may include: architecture and building design e.g. air conditioning and cooling systems; solar heating system design and use; solar power generation; weather and climate prediction models; evaporation and irrigation; calculation of water requirements for crops; monitoring plant growth and disease control; skin cancer research. Solar radiation data must be provided in a variety of f

  15. A dispersion modelling system for urban air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Karppinen, A.; Kukkonen, J.; Nordlund, G.; Rantakrans, E.; Valkama, I.

    1998-10-01

    An Urban Dispersion Modelling system UDM-FMI, developed at the Finnish Meteorological Institute is described in the report. The modelling system includes a multiple source Gaussian plume model and a meteorological pre-processing model. The dispersion model is an integrated urban scale model, taking into account of all source categories (point, line, area and volume sources). It includes a treatment of chemical transformation (for NO{sub 2}) wet and dry deposition (for SO{sub 2}) plume rise, downwash phenomena and dispersion of inert particles. The model allows also for the influence of a finite mixing height. The model structure is mainly based on the state-of-the-art methodology. The system also computes statistical parameters from the time series, which can be compared to air quality guidelines. The relevant meteorological parameters for the dispersion model are evaluated using data produced by a meteorological pre-processor. The model is based mainly on the energy budget method. Results of national investigations have been used for evaluating climate-dependent parameters. The model utilises the synoptic meteorological observations, radiation records and aerological sounding observations. The model results include the hourly time series of the relevant atmospheric turbulence 51 refs.

  16. A Macroscopic Description of Coherent Geo-Magnetic Radiation from Cosmic Ray Air Showers

    CERN Document Server

    Scholten, O; Rusydi, F

    2007-01-01

    We have developed a macroscopic description of coherent electro-magnetic radiation from air showers initiated by ultra-high energy cosmic rays due to the presence of the geo-magnetic field. This description offers a simple and direct insight in the relation between the properties of the air shower and the time-structure of the radio pulse.

  17. Influence of future air pollution mitigation strategies on total aerosol radiative forcing

    Directory of Open Access Journals (Sweden)

    S. Kloster

    2008-03-01

    Full Text Available We apply different aerosol and aerosol precursor emission scenarios reflecting possible future control strategies for air pollution in the ECHAM5-HAM model, and simulate the resulting effect on the Earth's radiation budget. We use two opposing future mitigation strategies for the year 2030: one in which emission reduction legislation decided in countries throughout the world are effectively implemented (current legislation; CLE 2030 and one in which all technical options for emission reductions are being implemented independent of their cost (maximum feasible reduction; MFR 2030.

    We consider the direct, semi-direct and indirect radiative effects of aerosols. The total anthropogenic aerosol radiative forcing defined as the difference in the top-of-the-atmosphere radiation between 2000 and pre-industrial times amounts to ?2.05 W/m2. In the future this negative global annual mean aerosol radiative forcing will only slightly change (+0.02 W/m2 under the "current legislation" scenario. Regionally, the effects are much larger: e.g. over Eastern Europe radiative forcing would increase by +1.50 W/m2 because of successful aerosol reduction policies, whereas over South Asia it would decrease by ?1.10 W/m2 because of further growth of emissions. A "maximum feasible reduction" of aerosols and their precursors would lead to an increase of the global annual mean aerosol radiative forcing by +1.13 W/m2. Hence, in the latter case, the present day negative anthropogenic aerosol forcing cloud be more than halved by 2030 because of aerosol reduction policies and climate change thereafter will be to a larger extend be controlled by greenhouse gas emissions.

    We combined these two opposing future mitigation strategies for a number of experiments focusing on different sectors and regions. In addition, we performed sensitivity studies to estimate the importance of future changes in oxidant concentrations and the importance of the aerosol microphysical coupling within the range of expected future changes. For changes in oxidant concentrations in the future within a realistic range, we do not find a significant effect for the global annual mean radiative aerosol forcing. In the extreme case of only abating SO2 or carbonaceous emissions to a maximum feasible extent, we find deviations from additivity for the radiative forcing over anthropogenic source regions up to 10% compared to an experiment abating both at the same time.

  18. VALMET-A valley air pollution model

    Energy Technology Data Exchange (ETDEWEB)

    Whiteman, C.D.; Allwine, K.J.

    1983-09-01

    Following a thorough analysis of meteorological data obtained from deep valleys of western Colorado, a modular air-pollution model has been developed to simulate the transport and diffusion of pollutants released from an elevated point source in a well-defined mountain valley during the nighttime and morning transition periods. This initial version of the model, named VALMET, operates on a valley cross section at an arbitrary distance down-valley from a continuous point source. The model has been constructed to include parameterizations of the major physical processes that act to disperse pollution during these time periods. The model has not been fully evaluated. Further testing, evaluations, and development of the model are needed. Priorities for further development and testing are provided.

  19. AIR INGRESS ANALYSIS: COMPUTATIONAL FLUID DYNAMIC MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang

    2010-08-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.

  20. TH-C-17A-09: Direct Visualization and Monitoring of Medical Radiation Beams in Air

    International Nuclear Information System (INIS)

    Purpose: Radiation therapy errors are rare but potentially catastrophic. Recent fatal incidents could have been avoided by utilizing real-time methods of monitoring delivery of radiation during treatment. However, few existing methods are practical enough to be used routinely. The study presents the first experimental demonstration of a novel non-perturbing method of monitoring radiation therapy through the phenomena of air scintillation. Methods: Monitoring of radiation delivery was devised by leveraging the phenomena of nitrogen excitation in air by ionizing radiation. The excitation induced weak luminescence in the 300–400 nm range, a process called air scintillation. An electron-multiplication charge-coupled device camera (f/0.95 lens; 440 nm shortpass) was set-up in a clinical treatment vault and was used to capture air scintillation images of kilovoltage and megavoltage beams. Monte Carlo simulations were performed to determine the correlation of radiation dose to air scintillation. Results: Megavoltage beams from a Varian Clinac 21EX and kilovoltage beams from an orthovoltage unit (50 kVp, 30 mA) were visualized with a relatively short exposure time (10 s). Cherenkov luminescence produced in a plastic transparent phantom did not interfere with detection of air scintillation. The image intensity displayed an inverse intensity falloff (r2 = 0.89) along the central axis and was proportional to dose rate (r2 = 0.9998). As beam energy increased, the divergence of the imaged beam decreased. Last, air scintillation was visualized during a simulated total skin irradiation electron treatment. Conclusion: Air scintillation can be clinically detected to monitor a radiation beam in an inexpensive and non-perturbing manner. This new method is advantageous in monitoring for gross delivery and uniquely capable of wide area in a single acquisition, such as the case for online verification of total body / skin / lymphoid irradiation treatments

  1. OpenAIRE - OpenAIRE sustainability model

    OpenAIRE

    Schmidt, Birgit; Manghi, Paolo; Manola, Natalia; Zoppi, Franco

    2012-01-01

    This report outlines first steps for the development and implementation of a sustainability plan for OpenAIRE, with the aim to outline how OpenAIRE could be moved from a pilot to a permanent infrastructure. OpenAIRE, a project co-funded by the European Commission's Seventh Framework Program (2009-2012), needs to define a Sustainability Roadmap for its human network of open access experts (National Open Access Desks) and coordinators as well as its technical infrastructure and services. This r...

  2. Air quality and radiative forcing impacts of anthropogenic volatile organic compound emissions from ten world regions

    Directory of Open Access Journals (Sweden)

    M. M. Fry

    2013-08-01

    Full Text Available Non-methane volatile organic compounds (NMVOCs influence air quality and global climate change through their effects on secondary air pollutants and climate forcers. Here we simulate the air quality and radiative forcing (RF impacts of changes in ozone, methane, and sulfate from halving anthropogenic NMVOC emissions globally and from 10 regions individually, using a global chemical transport model and a standalone radiative transfer model. Halving global NMVOC emissions decreases global annual average tropospheric methane and ozone by 36.6 ppbv and 3.3 Tg, respectively, and surface ozone by 0.67 ppbv. All regional reductions slow the production of PAN, resulting in regional to intercontinental PAN decreases and regional NOx increases. These NOx increases drive tropospheric ozone increases nearby or downwind of source regions in the Southern Hemisphere (South America, Southeast Asia, Africa, and Australia. Some regions' NMVOC emissions contribute importantly to air pollution in other regions, such as East Asia, Middle East, and Europe, whose impact on US surface ozone is 43%, 34%, and 34% of North America's impact. Global and regional NMVOC reductions produce widespread negative net RFs (cooling across both hemispheres from tropospheric ozone and methane decreases, and regional warming and cooling from changes in tropospheric ozone and sulfate (via several oxidation pathways. The total global net RF for NMVOCs is estimated as 0.0277 W m?2 (~1.8% of CO2 RF since the preindustrial. The 100 yr and 20 yr global warming potentials (GWP100, GWP20 are 2.36 and 5.83 for the global reduction, and 0.079 to 6.05 and ?1.13 to 18.9 among the 10 regions. The NMVOC RF and GWP estimates are generally lower than previously modeled estimates, due to differences among models in ozone, methane, and sulfate sensitivities, and the climate forcings included in each estimate. Accounting for a~fuller set of RF contributions may change the relative magnitude of each region's impacts. The large variability in the RF and GWP of NMVOCs among regions suggest that regionally-specific metrics may be necessary to include NMVOCs in multi-gas climate trading schemes.

  3. Air quality and radiative forcing impacts of anthropogenic volatile organic compound emissions from ten world regions

    Science.gov (United States)

    Fry, M. M.; Schwarzkopf, M. D.; Adelman, Z.; West, J. J.

    2014-01-01

    Non-methane volatile organic compounds (NMVOCs) influence air quality and global climate change through their effects on secondary air pollutants and climate forcers. Here we simulate the air quality and radiative forcing (RF) impacts of changes in ozone, methane, and sulfate from halving anthropogenic NMVOC emissions globally and from 10 regions individually, using a global chemical transport model and a standalone radiative transfer model. Halving global NMVOC emissions decreases global annual average tropospheric methane and ozone by 36.6 ppbv and 3.3 Tg, respectively, and surface ozone by 0.67 ppbv. All regional reductions slow the production of peroxyacetyl nitrate (PAN), resulting in regional to intercontinental PAN decreases and regional NOx increases. These NOx increases drive tropospheric ozone increases nearby or downwind of source regions in the Southern Hemisphere (South America, Southeast Asia, Africa, and Australia). Some regions' NMVOC emissions contribute importantly to air pollution in other regions, such as East Asia, the Middle East, and Europe, whose impact on US surface ozone is 43%, 34%, and 34% of North America's impact. Global and regional NMVOC reductions produce widespread negative net RFs (cooling) across both hemispheres from tropospheric ozone and methane decreases, and regional warming and cooling from changes in tropospheric ozone and sulfate (via several oxidation pathways). The 100 yr and 20 yr global warming potentials (GWP100, GWP20) are 2.36 and 5.83 for the global reduction, and 0.079 to 6.05 and -1.13 to 18.9 among the 10 regions. The NMVOC RF and GWP estimates are generally lower than previously modeled estimates, due to the greater NMVOC/NOx emissions ratios simulated, which result in less sensitivity to NMVOC emissions changes and smaller global O3 burden responses, in addition to differences in the representation of NMVOCs and oxidation chemistry among models. Accounting for a fuller set of RF contributions may change the relative magnitude of each region's impacts. The large variability in the RF and GWP of NMVOCs among regions suggest that regionally specific metrics may be necessary to include NMVOCs in multi-gas climate trading schemes.

  4. QUANTIFYING SUBGRID POLLUTANT VARIABILITY IN EULERIAN AIR QUALITY MODELS

    Science.gov (United States)

    In order to properly assess human risk due to exposure to hazardous air pollutants or air toxics, detailed information is needed on the location and magnitude of ambient air toxic concentrations. Regional scale Eulerian air quality models are typically limited to relatively coar...

  5. Waveform-Controlled Terahertz Radiation from the Air Filament Produced by Few-Cycle Laser Pulses

    OpenAIRE

    Bai, Ya; Song, Liwei; Xu, Rongjie; Li, Chuang; LIU, PENG; Zeng, Zhinan; Zhang, Zongxin; Lu, Haihe; Li, Ruxin; Xu, Zhizhan

    2012-01-01

    Waveform-controlled Terahertz (THz) radiation is of great importance due to its potential application in THz sensing and coherent control of quantum systems. We demonstrated a novel scheme to generate waveform-controlled THz radiation from air plasma produced when carrier-envelope-phase (CEP) stabilized few-cycle laser pulses undergo filamentation in ambient air. We launched CEP-stabilized 10 fs-long (~ 1.7 optical cycles) laser pulses at 1.8 {\\mu}m into air and found that t...

  6. Are passive smoking, air pollution and obesity a greater mortality risk than major radiation incidents?

    Directory of Open Access Journals (Sweden)

    Smith Jim T

    2007-04-01

    Full Text Available Abstract Background Following a nuclear incident, the communication and perception of radiation risk becomes a (perhaps the major public health issue. In response to such incidents it is therefore crucial to communicate radiation health risks in the context of other more common environmental and lifestyle risk factors. This study compares the risk of mortality from past radiation exposures (to people who survived the Hiroshima and Nagasaki atomic bombs and those exposed after the Chernobyl accident with risks arising from air pollution, obesity and passive and active smoking. Methods A comparative assessment of mortality risks from ionising radiation was carried out by estimating radiation risks for realistic exposure scenarios and assessing those risks in comparison with risks from air pollution, obesity and passive and active smoking. Results The mortality risk to populations exposed to radiation from the Chernobyl accident may be no higher than that for other more common risk factors such as air pollution or passive smoking. Radiation exposures experienced by the most exposed group of survivors of Hiroshima and Nagasaki led to an average loss of life expectancy significantly lower than that caused by severe obesity or active smoking. Conclusion Population-averaged risks from exposures following major radiation incidents are clearly significant, but may be no greater than those from other much more common environmental and lifestyle factors. This comparative analysis, whilst highlighting inevitable uncertainties in risk quantification and comparison, helps place the potential consequences of radiation exposures in the context of other public health risks.

  7. Direct radiative effect of the Russian wildfires and their impact on air temperature and atmospheric dynamics during August 2010

    OpenAIRE

    Péré, J C; Bessagnet, B; Mallet, M; F. Waquet; Chiapello, I.; Minvielle, F.; Pont, V.; Menut, L.

    2013-01-01

    The present study aims at investigating the shortwave aerosol direct radiative forcing (ADRF) and its feedback on air temperature and atmospheric dynamics during a major fire event that occurred in Russia during August 2010. The methodology is based on an off-line coupling between the CHIMERE chemistry-transport and the Weather Research and Forecasting (WRF) models. First, simulations for the period 5–12 August 2010 have been evaluated by using AERONET and satellite measurements of the P...

  8. 10 CFR Appendix A to Part 835 - Derived Air Concentrations (DAC) for Controlling Radiation Exposure to Workers at DOE Facilities

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Derived Air Concentrations (DAC) for Controlling Radiation... RADIATION PROTECTION Pt. 835, App. A Appendix A to Part 835—Derived Air Concentrations (DAC) for Controlling... controlling individual internal doses in accordance with § 835.209, identifying the need for air monitoring...

  9. Environmental Protection Agency, Office of Air and Radiation

    Science.gov (United States)

    ... Administrator Phone: (202) 564-7400 William Niebling, Senior Advisor for Congressional and International Affairs Phone: (202) 564-9616 Deborah Jordan, Senior Policy Advisor Phone: (202) 564-7400 The Office of Air ...

  10. Modeling the radiation characteristics of woodwind instruments

    OpenAIRE

    Caussé, René; Noisternig, Markus; Le Piouffle, Vincent; Misdariis, Nicolas

    2012-01-01

    In reverberant acoustic environments the perception of timbre at a listener?s position depends on the radiation characteristics of the sound source. Numerous studies have shown that radiation patterns of acoustic instruments vary with frequency and time. Thus, one area of large concern that is a topic of ongoing research is the measurement, reproduction, and compact description of sound source radiation patterns. A simple and efficient physical model for calculating the directional pattern of...

  11. Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation

    Directory of Open Access Journals (Sweden)

    Alexandre Bryan Heinemann

    2012-01-01

    Full Text Available Crop models are ideally suited to quantify existing climatic risks. However, they require historic climate data as input. While daily temperature and rainfall data are often available, the lack of observed solar radiation (Rs data severely limits site-specific crop modelling. The objective of this study was to estimate Rs based on air temperature solar radiation models and to quantify the propagation of errors in simulated radiation on several APSIM/ORYZA crop model seasonal outputs, yield, biomass, leaf area (LAI and total accumulated solar radiation (SRA during the crop cycle. The accuracy of the 5 models for estimated daily solar radiation was similar, and it was not substantially different among sites. For water limited environments (no irrigation, crop model outputs yield, biomass and LAI was not sensitive for the uncertainties in radiation models studied here.

  12. Models for human exposure to air pollution

    International Nuclear Information System (INIS)

    Four models for human exposure to air pollution are discussed and compared. Simple microenvironment monitoring measures pollutant concentrations at fixed locations, regarded as proxies for similar locations or microenvironments. This model does not require pollutant measurements on the individual level, therefore is easy to implement. However, the model can be used only to estimate the average exposure in a population and does not provide any estimate of the variability and distribution of individual exposures. Replicated microenvironment monitoring provides some estimates of the variability and distribution. However, because of the possible discrepancy between the microenvironment concentration distribution and the individual concentration distribution, some adjustment might be necessary. Integrated personal monitoring allows direct estimation of the average exposure as well as the variability and distribution of individual exposures. Coupled with the appropriate time budget data, a regression analysis can be applied to estimate the contribution from each microenvironment type

  13. Daily total global solar radiation modeling from several meteorological data

    Science.gov (United States)

    Bilgili, Mehmet; Ozgoren, Muammer

    2011-05-01

    This paper investigates the modeling of the daily total global solar radiation in Adana city of Turkey using multi-linear regression (MLR), multi-nonlinear regression (MNLR) and feed-forward artificial neural network (ANN) methods. Several daily meteorological data, i.e., measured sunshine duration, air temperature and wind speed and date of the year, i.e., monthly and daily, were used as independent variables to the MLR, MNLR and ANN models. In order to determine the relationship between the total global solar radiation and other meteorological data, and also to obtain the best independent variables, the MLR and MNLR analyses were performed with the "Stepwise" method in the Statistical Packages for the Social Sciences (SPSS) program. Thus, various models consisting of the combination of the independent variables were constructed and the best input structure was investigated. The performances of all models in the training and testing data sets were compared with the measured daily global solar radiation values. The obtained results indicated that the ANN method was better than the other methods in modeling daily total global solar radiation. For the ANN model, mean absolute error (MAE), mean absolute percentage error (MAPE), correlation coefficient ( R) and coefficient of determination ( R 2) for the training/testing data set were found to be 0.89/1.00 MJ/m2 day, 7.88/9.23%, 0.9824/0.9751, and 0.9651/0.9508, respectively.

  14. The dynamic radiation environment assimilation model (DREAM)

    International Nuclear Information System (INIS)

    The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate results than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.

  15. The dynamic radiation environment assimilation model (DREAM)

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Geoffrey D [Los Alamos National Laboratory; Koller, Josef [Los Alamos National Laboratory; Tokar, Robert L [Los Alamos National Laboratory; Chen, Yue [Los Alamos National Laboratory; Henderson, Michael G [Los Alamos National Laboratory; Friedel, Reiner H [Los Alamos National Laboratory

    2010-01-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate results than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.

  16. Mathematical model of radiation-adsorption purification

    International Nuclear Information System (INIS)

    A mathematical model has been developed for a process for removing harmful substances by radiation and absorption that permits the selection of the optimum treatment parameters: liquid pumping rate, length and cross-sectional area of the adsorption bed, and radiation adsorption dose rate

  17. A numerical model for multigroup radiation hydrodynamics

    International Nuclear Information System (INIS)

    We present in this paper a multigroup model for radiation hydrodynamics to account for variations of the gas opacity as a function of frequency. The entropy closure model (M1) is applied to multigroup radiation transfer in a radiation hydrodynamics code. In difference from the previous grey model, we are able to reproduce the crucial effects of frequency-variable gas opacities, a situation omnipresent in physics and astrophysics. We also account for the energy exchange between neighbouring groups which is important in flows with strong velocity divergence. These terms were computed using a finite volume method in the frequency domain. The radiative transfer aspect of the method was first tested separately for global consistency (reversion to grey model) and against a well-established kinetic model through Marshak wave tests with frequency-dependent opacities. Very good agreement between the multigroup M1 and kinetic models was observed in all tests. The successful coupling of the multigroup radiative transfer to the hydrodynamics was then confirmed through a second series of tests. Finally, the model was linked to a database of opacities for a Xe gas in order to simulate realistic multigroup radiative shocks in Xe. The differences with the previous grey models are discussed.

  18. Seeing the invisible: Direct visualization of therapeutic radiation beams using air scintillation

    International Nuclear Information System (INIS)

    Purpose: To assess whether air scintillation produced during standard radiation treatments can be visualized and used to monitor a beam in a nonperturbing manner. Methods: Air scintillation is caused by the excitation of nitrogen gas by ionizing radiation. This weak emission occurs predominantly in the 300–430 nm range. An electron-multiplication charge-coupled device camera, outfitted with an f/0.95 lens, was used to capture air scintillation produced by kilovoltage photon beams and megavoltage electron beams used in radiation therapy. The treatment rooms were prepared to block background light and a short-pass filter was utilized to block light above 440 nm. Results: Air scintillation from an orthovoltage unit (50 kVp, 30 mA) was visualized with a relatively short exposure time (10 s) and showed an inverse falloff (r2 = 0.89). Electron beams were also imaged. For a fixed exposure time (100 s), air scintillation was proportional to dose rate (r2 = 0.9998). As energy increased, the divergence of the electron beam decreased and the penumbra improved. By irradiating a transparent phantom, the authors also showed that Cherenkov luminescence did not interfere with the detection of air scintillation. In a final illustration of the capabilities of this new technique, the authors visualized air scintillation produced during a total skin irradiation treatment. Conclusions: Air scintillation can be measured to monitor a radiation beam in an inexpensive and nonperturbing manner. This physical phenomenon could be useful for dosimetry of therapeutic radiation beams or for online detection of gross errors during fractionated treatments

  19. Validation of spectral gas radiation models under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Johann Valentin

    2013-05-15

    Combustion of hydrocarbon fuels with pure oxygen results in a different flue gas composition than combustion with air. Standard computational-fluid-dynamics (CFD) spectral gas radiation models for air combustion are therefore out of their validity range in oxyfuel combustion. This thesis provides a common spectral basis for the validation of new spectral models. A literature review about fundamental gas radiation theory, spectral modeling and experimental methods provides the reader with a basic understanding of the topic. In the first results section, this thesis validates detailed spectral models with high resolution spectral measurements in a gas cell with the aim of recommending one model as the best benchmark model. In the second results section, spectral measurements from a turbulent natural gas flame - as an example for a technical combustion process - are compared to simulated spectra based on measured gas atmospheres. The third results section compares simplified spectral models to the benchmark model recommended in the first results section and gives a ranking of the proposed models based on their accuracy. A concluding section gives recommendations for the selection and further development of simplified spectral radiation models. Gas cell transmissivity spectra in the spectral range of 2.4 - 5.4 {mu}m of water vapor and carbon dioxide in the temperature range from 727 C to 1500 C and at different concentrations were compared in the first results section at a nominal resolution of 32 cm{sup -1} to line-by-line models from different databases, two statistical-narrow-band models and the exponential-wide-band model. The two statistical-narrow-band models EM2C and RADCAL showed good agreement with a maximal band transmissivity deviation of 3 %. The exponential-wide-band model showed a deviation of 6 %. The new line-by-line database HITEMP2010 had the lowest band transmissivity deviation of 2.2% and was therefore recommended as a reference model for the validation of simplified CFD models. In the second results section, spectral measurements (2.4 - 5.4 {mu}m) of a 70 kW turbulent natural gas ame in air blown combustion and in wet and dry oxyfuel combustion were compared with simulated spectra based on measured gas atmospheres. The line-by-line database HITEMP2010 and the two statistical-narrow-band models EM2C and RADCAL were used for the numerical simulation. The measured spectra showed large fluctuations due to turbulence. The averaged experimental intensity was found to be up to 75% higher than the simulated intensity, thus demonstrating the importance of the effect of turbulence-radiation-interaction in combustion simulations. Finally, total emissivities were calculated with the most common spectral models and compared with benchmark calculations by the detailed spectral line-by-line model HITEMP2010. The models were compared at path lengths ranging from 0.001m to 100m and at temperatures from 800 C to 1800 C for atmospheres of pure gases and of various combustion processes (air blown and oxyfuel combustion with wet and dry recirculation) as well as with different fuels (natural gas, brown coal and anthracite). The statistical-narrow-band models RADCAL and EM2C, the exponential-wide-band model and the statistical-line-width model were chosen as models, which are valid for oxyfuel combustion without modifications. A number of weighted-sum-of-grey-gases models from different authors were chosen as computationally efficient models especially developed for oxyfuel combustion. The statistical-narrow-band model EM2C had the highest accuracy with maximum deviations of up to 12%. The weighted-sum-of-grey-gases model from Johansson et al. [64] proved to be the most valid and versatile model for computationally efficient simulations of spectral gas properties with an overall accuracy of 21% or better.

  20. Estimation of biomass burning influence on air pollution around Beijing from an aerosol retrieval model.

    Science.gov (United States)

    Mukai, Sonoyo; Yasumoto, Masayoshi; Nakata, Makiko

    2014-01-01

    We investigate heavy haze episodes (with dense concentrations of atmospheric aerosols) occurring around Beijing in June, when serious air pollution was detected by both satellite and ground measurements. Aerosol retrieval is achieved by radiative transfer simulation in an Earth atmosphere model. We solve the radiative transfer problem in the case of haze episodes by successive order of scattering. We conclude that air pollution around Beijing in June is mainly due to increased emissions of anthropogenic aerosols and that carbonaceous aerosols from agriculture biomass burning in Southeast Asia also contribute to pollution. PMID:25250383

  1. Decomposition of radiational effects of model feedbacks

    International Nuclear Information System (INIS)

    Three separate doubled CO2 experiments with the statistical dynamic model are used to illustrate efforts to study the climate dynamics, feedbacks, and interrelationships of meteorological parameters by decomposing and isolating their individual effects on radiation transport

  2. Performance Analysis and Air Flow Optimization of Radiator Using Simulation

    Directory of Open Access Journals (Sweden)

    K.Ganesan*,

    2014-10-01

    Full Text Available Automotive engine cooling system takes care of excess heat produced during engine operation. It Regulates Engine surface temperature for engine optimum efficiency. Recent advancement in engine for power forced engine cooling system to develop new strategies to improve its radiator performance efficiency. Also to reduce fuel consumption along with controlling engine emission to indicated environmental pollution norms. This paper throws light on parameters optimization flow changes analysis which influences radiator performance along with reviews some of the systematically with new modern approaches to enhance radiator performance analysis with design and numerical analysis of water heating conductivity to transient analysis single sample tube in different copper graded material analysis in flow passing through the water comparing to the better cost effective and material data its analyzed using in ansys 14.5 version.

  3. Evaluation of hourly tilted surface radiation models

    International Nuclear Information System (INIS)

    This study investigates the performance of the isotropic and four anisotropic hourly tilted surface radiation models by using monthly average hourly utilizable energy as a standard of measure. Utilizable energy is the radiation above a specified threshold level. Differences between the utilizable energy measured and the utilizable energy predicted are observed for various surface slope/azimuth orientations and critical radiation levels. Normalized root mean square difference and normalized mean bias difference statistics are formed to quantify the ability of each model to estimate the utilizable energy on a tilted surface. The influence of horizontal diffuse radiation on tilted surface model performance is examined by comparing the predicted utilizable energy on a tilted surface using both measured horizontal diffuse and estimated horizontal diffuse found from diffuse fraction correlations. On an overall basis, the isotropic sky model showed the poorest performance and is not recommended for estimating the hourly radiation on a tilted surface. The anisotropic models have comparable performance to each other. There was no significant degradation of tilted surface model performance when the diffuse radiation is estimated from a diffuse fraction correlation rather than obtained from measurements

  4. Ultraviolet-B radiation enhancement in dielectric barrier discharge based xenon chloride exciplex source by air

    International Nuclear Information System (INIS)

    A single barrier dielectric barrier discharge tube of quartz with multi-strip Titanium-Gold (Ti-Au) coatings have been developed and utilized for ultraviolet-B (UV-B) radiation production peaking at wavelength 308?nm. The observed radiation at this wavelength has been examined for the mixtures of the Xenon together with chlorine and air admixtures. The gas mixture composition, chlorine gas content, total gas pressure, and air pressure dependency of the UV intensity, has been analyzed. It is found that the larger concentration of Cl2 deteriorates the performance of the developed source and around 2% Cl2 in this source produced optimum results. Furthermore, an addition of air in the xenon and chlorine working gas environment leads to achieve same intensity of UV-B light but at lower working gas pressure where significant amount of gas is air.

  5. Handbook of anatomical models for radiation dosimetry

    CERN Document Server

    Eckerman, Keith F

    2010-01-01

    Covering the history of human model development, this title presents the major anatomical and physical models that have been developed for human body radiation protection, diagnostic imaging, and nuclear medicine therapy. It explores how these models have evolved and the role that modern technologies have played in this development.

  6. Radiation exposure of the crew in commercial air traffic

    International Nuclear Information System (INIS)

    The routine radiation exposure of the crews in Yugoslav Airlines (JAT) has been studied and some previous results are presented. The flights of four selected groups of pilots (four aircraft types) have been studied during one year. Annual exposures and dose equivalents are presented. Some additional results and discussions are given. (1 fig., 4 tabs.)

  7. KREAM: Korean Radiation Exposure Assessment Model for Aviation Route Dose

    Science.gov (United States)

    Hwang, J.; Dokgo, K.; Choi, E. J.; Kim, K. C.; Kim, H. P.; Cho, K. S. F.

    2014-12-01

    Since Korean Air has begun to use the polar route from Seoul/ICN airport to New York/JFK airport on August 2006, there are explosive needs for the estimation and prediction against cosmic radiation exposure for Korean aircrew and passengers in South Korea from public. To keep pace with those needs of public, Korean government made the law on safety standards and managements of cosmic radiation for the flight attendants and the pilots in 2013. And we have begun to develop our own Korean Radiation Exposure Assessment Model (KREAM) for aviation route dose since last year funded by Korea Meteorological Administration (KMA). GEANT4 model and NRLMSIS 00 model are used for calculation of the energetic particles' transport in the atmosphere and for obtaining the background atmospheric neutral densities depending on altitude. For prediction the radiation exposure in many routes depending on the various space weather effects, we constructed a database from pre-arranged simulations using all possible combinations of R, S, and G, which are the space weather effect scales provided by the National Oceanic and Atmospheric Administration (NOAA). To get the solar energetic particles' spectrum at the 100 km altitude which we set as a top of the atmospheric layers in the KREAM, we use ACE and GOES satellites' proton flux observations. We compare the results between KREAM and the other cosmic radiation estimation programs such as CARI-6M which is provided by the Federal Aviation Agency (FAA). We also validate KREAM's results by comparison with the measurement from Liulin-6K LET spectrometer onboard Korean commercial flights and Korean Air Force reconnaissance flights.

  8. Study of the UV radiation bactericidal effect on the bacterial air flora in stock breeding premises

    International Nuclear Information System (INIS)

    The evidence obtained experimentally showed live-stock breeding premises to be constantly exposed to bacterial contamination (the number of microbial bodies may amount to 406000/per m3). The application of bactericide lamps DPT-2500 makes it possible to reduce within 1 min the number of viable microbial cells to 96.6%. Ultraviolet radiation reduces Escherichia coli per cent to 73.9% within 45 sec. These data formed a basis for using ultraviolet air radiation in live-stock breeding premises with heavy bacterial contamination; as a result, the bacterial air content was drastically reduced

  9. A pre design of monitoring for radiation and air contamination in compaction room of RWI

    International Nuclear Information System (INIS)

    The Radioactive Waste Installation (RWI) is a center for processing of radioactive waste coming from various installation applying nuclear science and technology. The RWI has been designed as according to safety standard, so that it will not generate negative impact to the working area and also to the environment. However some measurement should be conducted to know how big of radiation dose and contamination on the air in working area before exposure to the worker. In this case, we will conduct equipments pre design in working area of compaction. Measurement of the contamination uses vacuum pump connected through pipeline using filter while to measure the exposure of radiation uses thermoluminescence dosimeter. The aim of this research is to have pre design the equipments of radiation counter to know exposure of radiation and contamination air in working area compaction to support safety of worker in installation of PTLR. (author)

  10. Modeling of air flow through a narrow crack

    International Nuclear Information System (INIS)

    Radon transport in dwellings is governed to a significant extent by pressure differences and properties of transport pathways. A model of air flow through narrow cracks was created in order to facilitate prediction of air velocity and air flow. Theoretical calculations, based on numerical solution of a system of differential equations, were compared with measurements carried out on a window crack. (P.A.)

  11. Performance Analysis and Air Flow Optimization of Radiator Using Simulation

    OpenAIRE

    K.Ganesan*,; Ravikumar, P.

    2014-01-01

    Automotive engine cooling system takes care of excess heat produced during engine operation. It Regulates Engine surface temperature for engine optimum efficiency. Recent advancement in engine for power forced engine cooling system to develop new strategies to improve its radiator performance efficiency. Also to reduce fuel consumption along with controlling engine emission to indicated environmental pollution norms. This paper throws light on parameters optimization flow chan...

  12. Transport worker radiation exposures handling air shipments of radioactive materials

    International Nuclear Information System (INIS)

    Due to the continuing increase in the use of radioactive materials in nuclear medicine and industry there has been a corresponding rise in radioactive material (ram) package shipments via air carriers. Utilizing sensitive thermoluminescent dosimeters which were worn for 6-8 week periods annual transport worker dose estimates were made at several locations within New York State. The estimated doses as a function of transport index on the package label were as follows: freight forwarder servicing New York City Airports handled 31,000 TI units/y and 15 persons wore badges with whole body badge readings: 0.24, 0.60, 0.76, 0.78, 0.83, 0.99 and 1.69 rem/y; for a population dose of 0.36 man-rem/y, ring badges with positive results, 0.71, 1.03 and 1.11 rem/y; 5 air carriers at Buffalo Airport handled 5800 TJ units/y and 41 persons were monitored with 13 positive results: 2 at 0.24, 3 at 0.30, 0.25, 0.31, 2 at 0.37, 0.42, 0.48, 0.60, and 1.55 rem/y for a population dose of 0.14 man-rem/y, ring badge positive results: 0.24 and 6.01 rem/y; 4 freight forwarders at Buffalo Airport handled 3800 TI units/y and 52 persons were monitored with 3 positive results: 0.30, 0.36 and 0.67 rem/y for a population dose fo 0.201 man-rem/y, ring badge positive results: 0.31 and 0.42 rem/y; 4 air carriers and 3 freight forwarders at Rochester Airport handled 170 TI units/y and 19 persons wore badges and none gave an exposure above minimum detectable during monitored period. The annual population dose per TI were as follows: for New York City freight forwarder, 0.000012 man-rem/TI-y; for Buffalo Airport air carriers, 0.000024 man-rem/TI-y; for Buffalo Airport freight forwarder, 0.0000055 man-rem/TI-y

  13. AIRFLY: Measurement of the Air Fluorescence Radiation Induced by Electrons

    Energy Technology Data Exchange (ETDEWEB)

    Arciprete, F.; Goletti, C.; Matthiae, G.; Privitera, P.; Prosposito, P.; Salina, G.; Verzi, V. [University of Rome Tor Vergata and Sezione INFN di Roma II (Italy); Bohacova, M. [Inst. of Physics, Czech Academy of Science (Czech Republic); Bluemer, J. [University of Karlsruhe (Germany)]|[Forschungszentrum Karlsruhe (Germany); Bollmann, E. [Forschungszentrum Karlsruhe (Germany); Caruso, R. [INFN and Physics Department, L' Aquila University (Italy); Di Carlo, P. [INFN and Physics Department, L' Aquila University (Italy); Doubrava, M. [Czech Technical University (Czech Republic); Esposito, A. [Laboratori Nazionali di Frascati dell' INFN (Italy); Facal, P. [University of Rome Tor Vergata and Sezione INFN di Roma II (Italy); Fauth, A.C. [Universidade Estadual de Campinas, Brasil (Brazil); Hrabovsky, M. [Joint Laboratory of Optics of PU and Inst. of Physics AS CR (Czech Republic); Kemp, E. [Universidade Estadual de Campinas (Brazil); Klages, H.O.; Kleifges, M. [Forschungszentrum Karlsruhe (Germany); Klepser, S. [University of Karlsruhe (Germany); Iarlori, M. [INFN and Physics Department, L' Aquila University (Italy); Mazzitelli, G. [Laboratori Nazionali di Frascati dell' INFN (Italy); Nogima, H. [Universidade Estadual de Campinas, Brasil (Brazil); Nozka, L. [Joint Laboratory of Optics of PU and Inst. of Physics AS CR (Czech Republic); Palatka, M. [Joint Laboratory of Optics of PU and Inst. of Physics AS CR (Czech Republic); Petrera, S. [INFN and Physics Department, L' Aquila University (Italy); Ridky, J. [Inst. of Physics, Czech Academy of Science (Czech Republic); Rizi, V. [INFN and Physics Department, L' Aquila University (Italy); Schovanek, P. [Joint Laboratory of Optics of PU and Inst. of Physics AS CR (Czech Republic); Ulrich, A. [Munich Technical University (Germany); Vacek, V. [Czech Technical University (Czech Republic); Valente, P. [Laboratori Nazionali di Frascati dell' INFN (Italy); Waldenmaier, T. [Forschungszentrum Karlsruhe (Germany)

    2006-01-15

    The AIRFLY (AIR FLuorescence Yield) experiment objective is the precise measurement of the fluorescence yield in atmospheric gases. AIRFLY takes data at the Beam Test Facility of the INFN Laboratori Nazionali di Frascati. A first test performed on the beam line has allowed to verify the feasibility of the physics program which includes an absolute measurement of the fluorescence yield with a precision better than 5%, the measurement of the spectrum and of the yield dependence on the electron energy, gas pressure, temperature and composition. Details of the experimental apparatus and preliminary results from the test are reported.

  14. NCAQ panel examines uses and limitations of air quality models

    International Nuclear Information System (INIS)

    The results of a 22-member expert panel on dispersion modeling, which was convented by the National Commission on Air Quality in 1979, are reviewed. The panel affirmed the validity of using models in support of air quality regulations. It also recognized the need to convey some of the uncertainty in modeling and recommended technical details for the commission to consider

  15. Radiação solar estimada com base na temperatura do ar para três regiões de Minas Gerais Estimation of solar radiation by air temperature models for three regions of Minas Gerais

    Directory of Open Access Journals (Sweden)

    Cláudio R. da Silva

    2012-01-01

    Full Text Available A radiação solar incidente (Rs é uma variável importante em estudos agrícolas, particularmente para a estimativa da evapotranspiração e em modelos para produtividade. Entretanto, sua medição não é, em geral, realizada em estações meteorológicas convencionais. O objetivo deste trabalho foi avaliar nove modelos empíricos de estimativa de Rs, a partir da temperatura, para as regiões Metropolitana, Vale do Rio Doce e Zona da Mata em Minas Gerais. Dados de Rs diários foram obtidos por estações meteorológicas automáticas instaladas nessas regiões e pertencentes ao Instituto Nacional de Meteorologia (INMET. Para todos os modelos foram gerados coeficientes locais de calibração. O desempenho de cada método foi avaliado através dos seguintes indicadores: coeficiente de determinação (R², raiz quadrada do quadrado médio do erro (RQME, erro médio (EM e teste t. A pequena diferença entre os modelos avaliados indica que qualquer um desses modelos é passível de utilização mas, dado à simplicidade, desempenho e significância, o modelo de Hargreaves, calibrado e com dois coeficientes, é o mais aplicável para estimar a radiação solar incidente.The incident solar radiation (Rs is an important variable in agricultural studies, particularly for the estimation of evapotranspiration and yield models. However, its measurement is not commonly performed in conventional meteorological stations. The aim of this study was to evaluate nine empirical models to estimate Rs from the temperature for the Metropolitan, Vale do Rio Doce and Zona da Mata areas in Minas Gerais State, Brazil. The models used were Hargreaves, Annandale, Chen, Bristow & Campbell, Donatelli & Campbell and Hunt. Data used were obtained by Rs daily automatic weather stations installed in these regions and belonging to Instituto Nacional de Meteorologia (INMET. For all models local calibration coefficients were derived. The performance of each method was evaluated using the following statistical indicators: coefficient of determination (R², root mean square error (RMSE, mean bias error (MBE and test-t. The little difference between the models evaluated suggests that any of these models may be used. However, given the simplicity, performance and significance, the model of Hargreaves, calibrated and with two coefficients, is the most suitable for estimating incident solar radiation.

  16. Radiação solar estimada com base na temperatura do ar para três regiões de Minas Gerais / Estimation of solar radiation by air temperature models for three regions of Minas Gerais

    Scientific Electronic Library Online (English)

    Cláudio R. da, Silva; Valdiney J. da, Silva; José, Alves Júnior; Hudson de P., Carvalho.

    Full Text Available A radiação solar incidente (Rs) é uma variável importante em estudos agrícolas, particularmente para a estimativa da evapotranspiração e em modelos para produtividade. Entretanto, sua medição não é, em geral, realizada em estações meteorológicas convencionais. O objetivo deste trabalho foi avaliar n [...] ove modelos empíricos de estimativa de Rs, a partir da temperatura, para as regiões Metropolitana, Vale do Rio Doce e Zona da Mata em Minas Gerais. Dados de Rs diários foram obtidos por estações meteorológicas automáticas instaladas nessas regiões e pertencentes ao Instituto Nacional de Meteorologia (INMET). Para todos os modelos foram gerados coeficientes locais de calibração. O desempenho de cada método foi avaliado através dos seguintes indicadores: coeficiente de determinação (R²), raiz quadrada do quadrado médio do erro (RQME), erro médio (EM) e teste t. A pequena diferença entre os modelos avaliados indica que qualquer um desses modelos é passível de utilização mas, dado à simplicidade, desempenho e significância, o modelo de Hargreaves, calibrado e com dois coeficientes, é o mais aplicável para estimar a radiação solar incidente. Abstract in english The incident solar radiation (Rs) is an important variable in agricultural studies, particularly for the estimation of evapotranspiration and yield models. However, its measurement is not commonly performed in conventional meteorological stations. The aim of this study was to evaluate nine empirical [...] models to estimate Rs from the temperature for the Metropolitan, Vale do Rio Doce and Zona da Mata areas in Minas Gerais State, Brazil. The models used were Hargreaves, Annandale, Chen, Bristow & Campbell, Donatelli & Campbell and Hunt. Data used were obtained by Rs daily automatic weather stations installed in these regions and belonging to Instituto Nacional de Meteorologia (INMET). For all models local calibration coefficients were derived. The performance of each method was evaluated using the following statistical indicators: coefficient of determination (R²), root mean square error (RMSE), mean bias error (MBE) and test-t. The little difference between the models evaluated suggests that any of these models may be used. However, given the simplicity, performance and significance, the model of Hargreaves, calibrated and with two coefficients, is the most suitable for estimating incident solar radiation.

  17. Economic Modeling of Compressed Air Energy Storage

    Directory of Open Access Journals (Sweden)

    Rui Bo

    2013-04-01

    Full Text Available Due to the variable nature of wind resources, the increasing penetration level of wind power will have a significant impact on the operation and planning of the electric power system. Energy storage systems are considered an effective way to compensate for the variability of wind generation. This paper presents a detailed production cost simulation model to evaluate the economic value of compressed air energy storage (CAES in systems with large-scale wind power generation. The co-optimization of energy and ancillary services markets is implemented in order to analyze the impacts of CAES, not only on energy supply, but also on system operating reserves. Both hourly and 5-minute simulations are considered to capture the economic performance of CAES in the day-ahead (DA and real-time (RT markets. The generalized network flow formulation is used to model the characteristics of CAES in detail. The proposed model is applied on a modified IEEE 24-bus reliability test system. The numerical example shows that besides the economic benefits gained through energy arbitrage in the DA market, CAES can also generate significant profits by providing reserves, compensating for wind forecast errors and intra-hour fluctuation, and participating in the RT market.

  18. Evaluating NOx emission inventories for regulatory air quality modeling using satellite and air quality model data

    Science.gov (United States)

    Kemball-Cook, Susan; Yarwood, Greg; Johnson, Jeremiah; Dornblaser, Bright; Estes, Mark

    2015-09-01

    The purpose of this study was to assess the accuracy of NOx emissions in the Texas Commission on Environmental Quality's (TCEQ) State Implementation Plan (SIP) modeling inventories of the southeastern U.S. We used retrieved satellite tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI) together with NO2 columns from the Comprehensive Air Quality Model with Extensions (CAMx) to make top-down NOx emissions estimates using the mass balance method. Two different top-down NOx emissions estimates were developed using the KNMI DOMINO v2.0 and NASA SP2 retrievals of OMI NO2 columns. Differences in the top-down NOx emissions estimates made with these two operational products derived from the same OMI radiance data were sufficiently large that they could not be used to constrain the TCEQ NOx emissions in the southeast. The fact that the two available operational NO2 column retrievals give such different top-down NOx emissions results is important because these retrievals are increasingly being used to diagnose air quality problems and to inform efforts to solve them. These results reflect the fact that NO2 column retrievals are a blend of measurements and modeled data and should be used with caution in analyses that will inform policy development. This study illustrates both benefits and challenges of using satellite NO2 data for air quality management applications. Comparison with OMI NO2 columns pointed the way toward improvements in the CAMx simulation of the upper troposphere, but further refinement of both regional air quality models and the NO2 column retrievals is needed before the mass balance and other emission inversion methods can be used to successfully constrain NOx emission inventories used in U.S. regulatory modeling.

  19. Dispersion modeling of selected PAHs in urban air: A new approach combining dispersion model with GIS and passive air sampling.

    Czech Academy of Sciences Publication Activity Database

    Sá?ka, O.; Melymuk, L.; ?upr, P.; Dvorská, Alice; Klánová, J.

    2014-01-01

    Ro?. 90, oct (2014), s. 88-95. ISSN 1352-2310 Institutional support: RVO:67179843 Keywords : passive air sampling * air dispersion modeling * GIS * polycyclic aromatic hydrocarbons * emission inventories Subject RIV: DI - Air Pollution ; Quality Impact factor: 3.281, year: 2014

  20. Mathematical Models for Microbial Kill by Radiation

    International Nuclear Information System (INIS)

    A model is proposed based on the known radiation effects and genetic structures of the microorganisms, which leads to ND = N0 (1 -(1 - eD/D1)r)s. It is shown that this equation fits the experimental data very well. The physical theory for radiation effects is compared with the experimental results. It is suggested that repair plays a very dominant role and that the genetic material in the resistant microbes exists in multiples. (author)

  1. Cancer risk models for ionizing radiation.

    OpenAIRE

    Hoel, D. G.

    1987-01-01

    Risk estimation in radiation carcinogenesis depends primarily on epidemiological data and hazard rate models. The A-bomb survivors follow-up provides information on the complexity of this process. Several hazard rate models are briefly discussed and illustrated using the A-bomb experience.

  2. Canonical Ensemble Model for Black Hole Radiation

    Indian Academy of Sciences (India)

    Jingyi Zhang

    2014-09-01

    In this paper, a canonical ensemble model for the black hole quantum tunnelling radiation is introduced. In this model the probability distribution function corresponding to the emission shell is calculated to second order. The formula of pressure and internal energy of the thermal system is modified, and the fundamental equation of thermodynamics is also discussed.

  3. RRTM: A rapid radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Mlawer, E.J.; Taubman, S.J.; Clough, S.A. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States)

    1996-04-01

    A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.

  4. Coherent scattering of monochromatic RF radiation by ionization electrons of an extensive air shower

    Energy Technology Data Exchange (ETDEWEB)

    Filonenko, A. D., E-mail: filonenko_ad@dsip.net [Dal' Eastern Ukrainian National University (Ukraine)

    2013-10-15

    The possibility of detecting extensive air showers by recording and analyzing the radio pulse produced by the reradiation of a wave moving toward the cascade disk is considered. The coherent amplification of the scattered radiation in the direction of motion of the shower is shown to be due to a relativistic effect. An example of a real facility and its peculiarities are discussed.

  5. Coherent scattering of monochromatic RF radiation by ionization electrons of an extensive air shower

    Science.gov (United States)

    Filonenko, A. D.

    2013-10-01

    The possibility of detecting extensive air showers by recording and analyzing the radio pulse produced by the reradiation of a wave moving toward the cascade disk is considered. The coherent amplification of the scattered radiation in the direction of motion of the shower is shown to be due to a relativistic effect. An example of a real facility and its peculiarities are discussed.

  6. Coherent scattering of monochromatic RF radiation by ionization electrons of an extensive air shower

    International Nuclear Information System (INIS)

    The possibility of detecting extensive air showers by recording and analyzing the radio pulse produced by the reradiation of a wave moving toward the cascade disk is considered. The coherent amplification of the scattered radiation in the direction of motion of the shower is shown to be due to a relativistic effect. An example of a real facility and its peculiarities are discussed

  7. High-efficiency particulate air (HEPA) filter performance following service and radiation exposure

    International Nuclear Information System (INIS)

    Small HEPA filters were exposed to a 60Co source with a radiation strength of 3 x 107 rads per hour and then exposed to steam--air mixtures at several times filter design flow, followed by extended exposure to steam and air at reduced flow. Additional filters were exposed to air flow in a reactor confinement system and then similarly tested with steam--air mixture flows. The test data and calculated effects of filter pluggage with moisture on confinement system performance following potential reactor accidents are described. Gamma radiation exposure impaired the performance of new filters only slightly and temporarily improved performance of service aged filters. Normal confinement system service significantly impaired filter performance although not sufficiently to prevent adequate performance of the SRP confinement system following an unlikely reactor accident. Calculations based on measured filter pluggage indicate that during an accident air flow could be reduced approximately 50 percent with service-degraded HEPA filters present, or approximately 10 percent with new filters damaged by the radiation exposure. (U.S.)

  8. To the exposure of air crew members to cosmic radiation

    International Nuclear Information System (INIS)

    According to an ICRP recommendation, the exposure of jet aircraft crew to radiation should be considered as occupational exposure when the annual equivalent doses are liable to exceed 1 mSv. Many new data on this type of exposure collected since 1991 are presented and analyzed. The dose equivalent rates established are fitted as a function of flight altitude. An analysis of data from cosmic ray monitors has shown that the presence of cosmic rays in the Earth's atmosphere is rather stable since early 1992. An estimation was therefore made of the possible influence of the solar cycle phase by means of a transport code. The results obtained are compared with experimental data

  9. Hydrodynamic modeling of semi-planing hulls with air cavities

    Directory of Open Access Journals (Sweden)

    Matveev Konstantin I.

    2015-09-01

    Full Text Available High-speed heavy loaded monohull ships can benefit from application of drag-reducing air cavities under stepped hull bottoms. The subject of this paper is the steady hydrodynamic modeling of semi-planing air-cavity hulls. The current method is based on a linearized potential-flow theory for surface flows. The mathematical model description and parametric calculation results for a selected configuration with pressurized and open air cavities are presented.

  10. Hydrodynamic modeling of semi-planing hulls with air cavities

    Science.gov (United States)

    Matveev, Konstantin I.

    2015-09-01

    High-speed heavy loaded monohull ships can benefit from application of drag-reducing air cavities under stepped hull bottoms. The subject of this paper is the steady hydrodynamic modeling of semi-planing air-cavity hulls. The current method is based on a linearized potential-flow theory for surface flows. The mathematical model description and parametric calculation results for a selected configuration with pressurized and open air cavities are presented.

  11. Simulating aerosol–radiation–cloud feedbacks on meteorology and air quality over eastern China under severe haze conditions in winter

    Directory of Open Access Journals (Sweden)

    B. Zhang

    2014-10-01

    Full Text Available The aerosol–radiation–cloud feedbacks on meteorology and air quality over eastern China under severe winter haze conditions during January~2013 are simulated using the fully coupled on-line Weather Research and Forecasting/Chemistry (WRF-Chem model. Three simulation scenarios including different aerosol configurations are undertaken to distinguish the impact of aerosol radiative (direct and semi-direct and indirect effects on meteorological variables and air quality. Simulated spatial and temporal variations of PM2.5 are generally consistent with surface observations, with a mean bias of ?18.9 ?g m?3 (?15.0% averaged over 71 big cities in China. Comparisons between different scenarios reveal that aerosol radiative effects (direct effect and semi-direct effects result in reductions of downward shortwave flux at the surface, 2 m temperature, 10 m wind speed and planetary boundary layer (PBL height by up to 84.0 W m?2, 3.2 °C, 0.8 m s?1, and 268 m, respectively. The simulated impact of the aerosol indirect effects is comparatively smaller. Through reducing the PBL height and wind speeds, the aerosol effects lead to increases in surface concentrations of primary pollutants (CO and SO2 and PM2.5. The aerosol feedbacks on secondary pollutants such as surface ozone and PM2.5 mass concentrations show some spatial variations. Surface O3 mixing ratio is reduced by up to 6.9 ppb due to reduced incoming solar radiation and lower temperature. Comparisons of model results with observations show that inclusion of aerosol feedbacks in the model significantly improves model's performances in simulating meteorological variables and improves simulations of PM2.5 temporal distributions over the North China Plain, the Yangtze River Delta, the Pearl River Delta, and Central China. Although the aerosol–radiation–cloud feedbacks on aerosol mass concentrations are subject to uncertainties, this work demonstrates the significance of aerosol–radiation–cloud feedbacks for real-time air quality forecasting under haze conditions.

  12. Simulating aerosol-radiation-cloud feedbacks on meteorology and air quality over eastern China under severe haze conditions in winter

    Science.gov (United States)

    Zhang, Bin; Wang, Yuxuan; Hao, Jiming

    2015-04-01

    The aerosol-radiation-cloud feedbacks on meteorology and air quality over eastern China under severe winter haze conditions during January 2013 are simulated using the fully coupled on-line Weather Research and Forecasting/Chemistry (WRF-Chem) model. Three simulation scenarios including different aerosol configurations are undertaken to distinguish the impact of aerosol radiative (direct and semi-direct) and indirect effects on meteorological variables and air quality. Simulated spatial and temporal variations of PM2.5 are generally consistent with surface observations, with a mean bias of -18.9 ?g/m3 (-15.0%) averaged over 71 big cities in China. Comparisons between different scenarios reveal that aerosol radiative effects (direct effect and semi-direct effects) result in reductions of downward shortwave flux at the surface, 2 m temperature, 10 m wind speed and planetary boundary layer (PBL) height by up to 84.0 W/m2, 3.2 oC, 0.8 m/s, and 268 m, respectively. The simulated impact of the aerosol indirect effects is comparatively smaller. Through reducing the PBL height and wind speeds, the aerosol effects lead to increases in surface concentrations of primary pollutants (CO and SO2) and PM2.5. The aerosol feedbacks on secondary pollutants such as surface ozone and PM2.5 mass concentrations show some spatial variations. Surface O3 mixing ratio is reduced by up to 6.9 ppb due to reduced incoming solar radiation and lower temperature. Comparisons of model results with observations show that inclusion of aerosol feedbacks in the model significantly improves model performance in simulating meteorological variables and improves simulations of PM2.5 temporal distributions over the North China Plain, the Yangtze River Delta, the Pearl River Delta, and Central China. Although the aerosol-radiation-cloud feedbacks on aerosol mass concentrations are subject to uncertainties, this work demonstrates the significance of aerosol-radiation-cloud feedbacks for real-time air quality forecasting under haze conditions.

  13. Air Quality Modeling in Support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    OpenAIRE

    Vlad Isakov; Saravanan Arunachalam; Stuart Batterman; Sarah Bereznicki; Janet Burke; Kathie Dionisio; Val Garcia; David Heist; Steve Perry; Michelle Snyder; Alan Vette

    2014-01-01

    A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related air pollutants and adverse health outcomes. A hybrid air quality modeling approach was used to estimate exposure to traffic-related air pollutants in support of the Near-Road Exposures and Effects of Urban Air Pollutan...

  14. Air

    Science.gov (United States)

    ... to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... comes from the natural breakdown of uranium in soil, rock, and water and gets into the air ...

  15. A physical approach to air pollution climatological modelling in a complex site

    International Nuclear Information System (INIS)

    A Gaussian climatological model which takes into account physical factors affecting air pollutant dispersion, such as nocturnal radiative inversion and mixing height evolution, associated with land breeze and sea breeze regimes, respectively, has been applied to the topographically complex area of La Spezia (a basin surrounded by hilly terrain, located on the Italian coast). Results from the measurements of the dynamic and thermodynamic structure of the lower atmosphere, obtained by a series of field experiments, are utilized in the model to calculate SO2 seasonal average concentrations. The model has been tested on eight three-monthly periods by comparing the simulated values with the ones measured at the SO2 stations of the local air pollution monitoring network. Comparison of simulated and measured values was very satisfactory and proved the applicability of the implemented model for urban planning and establishment of air quality strategies also at a topographically complex site. (author)

  16. Modeling of the propagation of streamers in methane-air mixtures using the 3-group SP3 photoionization model

    Science.gov (United States)

    Liu, N. Y.; Pasko, V. P.; Bourdon, A.; Celestin, S.; Segur, P.; Marode, E.

    2008-10-01

    Non-thermal plasma assisted ignition and combustion receives increasing attention recently [e.g., Starikovskaia, J. Phys. D, 39, R265, 2006]. Experimental and numerical work has shown that the application of transient plasma discharges (including the stages of streamer propagation and streamer-to-spark transition) in the ignition of propane-air or methane-air mixtures significantly reduces the ignition delay time [e.g., Pancheshnyi et al., IEEE Trans. Plasma Sci., 34, 2478, 2006; Naidis, J. Phys. D, 40, 4525, 2007]. In this work, we study the propagation of streamers in methane-air mixtures. We have recently developed a photoionization model based on radiative transfer theory, called 3-group SP3 model, for the simulation of streamer discharges in air [Bourdon et al., Plasma Sources Sci. Technol. 16, 656, 2007; Liu et al., Appl. Phys. Lett., 91, 211501, 2007]. In this talk, we show it is straightforward to apply the 3-goup SP3 model to the simulation of streamers in methane-air mixtures. We report the modeling results on the propagation of streamers in methane-air mixtures and the associated heating of the gas mixtures. We also discuss the effects of addition of methane to air on the dynamics of the streamer.

  17. Evaluation of AirGIS: a GIS-based air pollution and human exposure modelling system

    DEFF Research Database (Denmark)

    Ketzel, Matthias; Berkowicz, Ruwim

    2011-01-01

    This study describes in brief the latest extensions of the Danish Geographic Information System (GIS)-based air pollution and human exposure modelling system (AirGIS), which has been developed in Denmark since 2001 and gives results of an evaluation with measured air pollution data. The system shows, in general, a good performance for both long-term averages (annual and monthly averages), short-term averages (hourly and daily) as well as when reproducing spatial variation in air pollution concentrations. Some shortcomings and future perspectives of the system are discussed too.

  18. Propagation speed of {gamma}-radiation in air

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcante, Jose T.P.D.; Silva, Paulo R.J.; Saitovitch, Henrique [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Macedo Junior, Marcelo A.V. [Centro Federal de Educacao Tecnologica de Quimica de Nilopolis (CEFET), RJ (Brazil)

    2008-07-01

    To perform such measurements the availability of a gamma radiation source in which two {gamma}-rays are emitted simultaneously in opposite directions -as already used(5,6) as well as applied in the present case- turns out to be essential to the feasibility of the experiment, as far as no reflection techniques could be used. Such suitable source was the positron emitter {sup 22}Na placed in a metal container in which the positrons are stopped and annihilated when reacting with the medium electrons, in such way originating -as it is very well established from momentum/energy conservation laws(7)- two {gamma}-rays, energy 511 KeV each, both emitted simultaneously in opposite directions. In all these previous experiments were used photomultiplier detectors coupled to NaI(Tl) crystal scintillators, which have a good energy resolution but a deficient time resolution for such purposes. Presently, as an innovatively improvement, were used BaF{sub 2} and CsF crystal scintillators which display a much better time resolution. (author)

  19. Bayesian Analysis of a Reduced-Form Air Quality Model

    Science.gov (United States)

    Numerical air quality models are being used for assessing emission control strategies for improving ambient pollution levels across the globe. This paper applies probabilistic modeling to evaluate the effectiveness of emission reduction scenarios aimed at lowering ground-level oz...

  20. Estimation of solar radiation for use in crop modelling

    International Nuclear Information System (INIS)

    The aim of this study was to determine the accuracy and applicability of a number of existing and newly developed formulae for calculating solar radiation from other weather variables. Data were taken from eight sites in Ontario, Canada, that had long-term daily weather data sets which included solar radiation. Daily recorded values of minimum and maximum air temperature and precipitation, together with calculated values for clear sky radiation, were used in the formulae. Clear sky radiation was calculated as a function of latitude, day of year, solar angle, and solar constant. Coefficients for five formulae were fitted using data from Elora, Canada. Correlation coefficients between values calculated for individual days and measured data, and errors, were then computed. A newly developed formula that included the maximum temperature, the difference between maximum and minimum temperature, precipitation, and precipitation squared, provided estimates with less error than other formulae. Coefficients for this model and for one other formula were then fitted to data from seven sites. The root mean square error (RMSE) between values calculated for individual days with the newly developed model and measured data for Ontario (Elora) was 4.1 MJ m?2 day?1 with a standard deviation of 0.29 MJ m?2 day?1. When coefficients from one site were used for other sites, the RMSE increased as a linear function of distance between sites; in contrast, when measurements from one site were used for other sites, the RMSE increased curvilinearly with distance. Comparison of errors involved when using coefficients from one site as contrasted to using measured solar radiation indicated that it would be preferable to use measured radiation values if the distance between sites was less than 390 km. Because the RMSE at this separation may not be acceptable for some applications, it was suggested that the curve relating RMSE to separation of sites could be used to establish a 'critical' distance within which measurements should be made. (author)

  1. Effects of moisture release and radiation properties in pulverized fuel combustion: A CFD modelling study

    DEFF Research Database (Denmark)

    Yin, Chungen

    2015-01-01

    Pulverized fuels (PF) prepared and fired in utility boilers always contain some moisture. For some fuels with high moisture contents (e.g., brown coals), the share of the evaporation enthalpy is quite significant compared to the heat released during combustion, which often needs to be reclaimed to improve the plant efficiency and is also expected to affect the combustion process. Thermal radiation is the principal mode of heat transfer in combustion. In PF furnaces, radiation consists of contribution from both participating gases and solid particles, in which gas and particle radiation properties play an important role. There are different methods or models in the literature to address fuel moisture release and radiation properties, some of which may be inappropriate and can produce misleading results. This paper compares the different methods and models and demonstrates their implementation and impacts via a computational fluid dynamics (CFD) study of a 609 MWe pulverized coal-fired utility boiler. Overall speaking, it is suggested to add the free moisture in the fuel to the primary air stream while lump the bound moisture with volatiles in PF combustion modelling, although different methods for fuel moisture release may not induce distinct difference in combustion of PF with relatively low moisture content. For radiation, it has to be emphasized that particle radiation largely overwhelms gas radiation in PF combustion. The current tide of radiation research that over-focuses on gas radiation while over-simplifies particle radiation or even neglects particle radiation needs to be turned. Even for gaseous fuel combustion in which particle radiation is negligible, more generic model for gas radiative properties that can naturally and correctly accommodate the changes in combustion condition (e.g., oxy-fuel or air–fuel), account for the variations in CO2 and H2O concentrations in a flame, and include the impacts of other participating gases (e.g., CO and hydrocarbons) needs to be derived for combustion CFD community.

  2. Radiative Neutrino Model with Inert Triplet Scalar

    CERN Document Server

    Okada, Hiroshi

    2015-01-01

    We study a one-loop induced radiative neutrino model with an inert isospin triplet scalar field, in which we discuss current neutrino oscillation data, lepton flavor violations, muon anomalous magnetic moment, and a dark matter candidate. We show global analysis combining all the constraints, and briefly mention another possibility.

  3. Response of tomato to radiation intensity and air temperature under plastic-house ultraviolet protection

    International Nuclear Information System (INIS)

    Enhance of ultraviolet radiation intensity on the earth surface affected by ozon depletion on stratospheric layer cause changing on the response of plant to radiation quality. One technique for reducing photo destructive UV radiation is micro climate modification by using mulch and plastic-cover UV protection. So that, growth and yield of plant can be optimalized. This research designed an experiment to find out the effect of two kinds of plastic-cover, UV plastic and conventional plastic, on microclimate condition and tomato performance under plastic-house. The result of this research described that mulch and plastic cover can modify radiation and air temperature under plastics-house, but it can not improve growth and yield of the tomato

  4. Experimental technique of calibration of symmetrical air pollution models

    Indian Academy of Sciences (India)

    P Kumar

    2005-10-01

    Based on the inherent property of symmetry of air pollution models,a Symmetrical Air Pollution Model Index (SAPMI)has been developed to calibrate the accuracy of predictions made by such models,where the initial quantity of release at the source is not known.For exact prediction the value of SAPMI should be equal to 1.If the predicted values are overestimating then SAPMI is > 1and if it is underestimating then SAPMI is < 1.Speci?c design for the layout of receptors has been suggested as a requirement for the calibration experiments.SAPMI is applicable for all variations of symmetrical air pollution dispersion models.

  5. Radiation impact caused by activation of air from the future GSI accelerator facility fair

    International Nuclear Information System (INIS)

    The Gesellschaft fuer Schwerionenforschung in Darmstadt is planning a new accelerator Facility for Antiproton and Ion Research (FAIR). Two future experimental areas are regarded to be the most decisive points concerning the activation of air. One is the area for the production of antiprotons. A second crucial experimental area is the so-called Super Fragment Separator. The production of radioactive isotopes in air is calculated using the residual nuclei option of the Monte Carlo program FLUKA. The results are compared with the data for the activation of air given by Sullivan and in IAEA report 283. The resulting effective dose is calculated using a program package from the German Federal Office for Radiation Protection, the Bundesamt fuer Stranlenschutz. The results demonstrate that a direct emission of the total radioactivity produced into the air will probably conflict with the limits of the German Radiation Protection Ordinance. Special measures have to be planned in order to reduce the amount of radioactivity released into the air. (authors)

  6. Data assimilation for air quality models

    DEFF Research Database (Denmark)

    Silver, Jeremy David

    2014-01-01

    The chemical composition of the Earth’s atmosphere has major ramifications for not only human health, but also biodiversity and the climate; hence there are scientific, environmental and societal interests in accurate estimates of atmospheric chemical composition and in understanding the governing chemical and physical dynamics. Concentrations of atmospheric trace gases such as ozone, carbon monoxide and nitrogen dioxide vary substantially in space and time, and this variation can be investigated by various methods including direct measurements, remote-sensing measurements and atmospheric chemistry-transport models (CTMs). Each of these methods has their limitations: direct measurements provide only data at point locations and may not be representative of a wider area, remotely-sensed data from polar-orbiting satellites cannot investigate diurnal variation, and CTM simulations are often associated with higher uncertainties. It is possible, however, to combine information from measurements and models to moreaccurately estimate the state of the atmosphere using a statistically consistent framework known as “data assimilation”. In this study, three data assimilation schemes are implemented and evaluated. The data assimilation schemes are coupled to the Danish Eulerian Hemispheric Model (DEHM), a large-scale three-dimensional off-line CTM, and the data ingested were retrievals of atmospheric composition from polar-orbiting satellites. The three assimilation techniques applied were: a three-dimensional optimal interpolation procedure (OI), an Ensemble Kalman Filter (EnKF), and a three-dimensional variational scheme (3D-var). The three assimilation procedures are described and tested. A multi-faceted approach is taken for the verification, using independent measurements from surface air-quality monitoring stations, satellite retrievals of atmospheric chemical composition and comparison with idealised simulations. The 3D-var and EnKF schemes are capable of performing multi-species adjustments, meaning that observations of different chemical components can be assimilated simultaneously. Furthermore, observations of one chemical species can be used to adjust concentrations of other (unobserved) species. Most of the methodology used in data assimilation for CTMs is based on developments within the field of numerical weather prediction, where multiparameter assimilation schemes are the norm. The verification of the 3D-var and EnKF schemes are expanded to assess the potential benefits of joint multi-species adjustments (c.f. adjusting individual species independently) or direct adjustment of unobserved species.

  7. Improving the marketing abilities of some egyptian exports using radiation technology in cairo air port

    International Nuclear Information System (INIS)

    The economics of establishing a food irradiation facility at cairo airport are discussed together with the effect of various parameters on uint processing costs. This study comprises the determination of the commodity mix for the egyptian food commodities that are proposed for irradiation and export from the cairo airport. The commodity mix is distributed for the full utilization of the working capacity and the evaluation of the type of the irradiation facility and also the radiation source strength. The financial analysis for such an irradiation facility is also carried out. It provides a model for calculating specific unit processing costs by correlating known capital costs with annual operation cost and annual throughputs. We analyzed the cost- benefit of the proposed food irradiation facility. We took into account the cost of the capital investment, operation and other additional parameters and then estimated the unit cost. The investment criteria utilized for commercial evaluation were internal rate of return (I.I.R.) and pay back period (P.B.P.). The irradiation cost and the additional income are also discussed. The results of this analysis showed that the installation of the an irradiation unit for the establishment of food irradiation unit in cairo air port in would be economically feasible

  8. Mathematical models for microbial kill by radiation

    International Nuclear Information System (INIS)

    A model is proposed based on the known radiation effects and genetic structures of the microorganisms, which leads to Nsub(D)=N0(1-(1-esup(-D/Dsub(1))sup(r))sup(s). It is shown that this equation fits the experimental data very well. The physical theory for radiation effects is compared with the experimental results. It is suggested that repair plays a very dominant role and that the genetic material in the resistant microbes exists in multiples. (author)

  9. How air influences radiation dose deposition in multiwell culture plates. A Monte Carlo simulation of radiation geometry

    International Nuclear Information System (INIS)

    Radiation of experimental culture cells on plates with various wells can cause a risk of underdosage as a result of the existence of multiple air-water interfaces. The objective of our study was to quantify this error in culture plates with multiple wells. Radiation conditions were simulated with the GAMOS code, based on the GEANT4 code, and this was compared with a simulation performed with PENELOPE and measured data. We observed a slight underdosage of ?4% on the most superficial half of the culture medium. We believe that this underdosage does not have a significant effect on the dose received by culture cells deposited in a monolayer and adhered to the base of the wells. (author)

  10. A modeling perspective on cloud radiative forcing

    International Nuclear Information System (INIS)

    Radiation fields from a perpetual July integration of a T106 version of the ECM-WF operational model are used to identify the most appropriate way to diagnose cloud radiative forcing in a general circulation model, for the purposes of intercomparison between models. Differences between the Methods I and II of Cess and Potter (1987) and a variant method are addressed. Method I is shown to be the least robust of all methods, due to the potential uncertainties related to persistent cloudiness, length of the sampling period and biases in retrieved clear-sky quantities due to insufficient sampling of the diurnal cycle. Method II is proposed as an unambiguous way to produce consistent radiative diagnostics for intercomparing model results. The impact of the three methods on the derived sensitivities and cloud feedbacks following an imposed change in sea surface temperature is discussed. The sensitivity of the results to horizontal resolution is considered by using the diagnostics from parallel integrations with T21 version of the model

  11. Air kerma national standard of Russian Federation for x-ray and gamma radiation. Activity SSDL/VNIIM in medical radiation dosimetry field

    International Nuclear Information System (INIS)

    Primary standard of unities air kerma and air kerma rate X-ray and gamma radiation, placed at VNIIM, consists of: plate-parallel free-air ionization chamber IK 10-60 for low-energy X-ray in the generating potential range from 10 to 50 kV; plate-parallel free-air ionization chamber IK 50-400 for medium-energy X-ray in the generating potential range from 50 to 300 kV; cavity cylindrical graphite chambers C1 and C30 with volumes 1 cm3 and 30 cm3 for reproduction and transmission the dimensions gamma radiation unities using Cs-137 and Co-60 sources. The next irradiation facilities are used at VNIIM: in low-energy X-ray range: a constant-potential high-voltage generator and a tungsten-anode Xray tube with inherent filtration of around 1 mm Be; in medium-energy X-ray range: set on the basis of an industrial X-ray apparatus Isovolt-400 and a tungsten-anode X-ray tube with inherent filtration of around 3,5 mm Al; in gamma radiations field: units with a radioactive sources Cs-137 with activity 140 and 1200 GBq and Co-60 with activity 120 GBq and irradiation set with a source from Co-60 (activity 3200 GBq). The last one belongs to Central Research Institute for Radiology and Roentgenology (CNIRRI). For measuring currents and charges of standard chambers we use electrometers such as Keithley of model 6517A and B7-45 manufactured by 'Belvar' (Republic Belarus). The reference radiation qualities L, N, H series according to ISO 4037 and the radiation qualities RQR, RQA and RQF according to IEC 61267 for calibration and verification of the therapeutic, diagnostic measurement means are realized in the low-energy and medium-energy X-ray standards. The VNIIM air kerma primary standard of has been participated in the international comparisons: key comparison BIPM.R1(I)-K1 for gamma radiation of Co-60 in 1997; supplementary comparisons BIPM.R1(I)-S10 for gamma radiation of Cs-137 in 1997; key comparison BIPM.R1(I)-K2 for low-energy X-ray range in 1998; key comparison BIPM.R1(I)-K3 for medium-energy X-ray range in 1998. The results of comparisons are presented in the table 1. Dimensions of unities of air kerma and air kerma rate are transmitted from primary standard to secondary standards with expanded uncertainty from 1,3 to 2,5 % (k=2), which are including and at laboratory SSDL/VNIIM and base dosimetry laboratory CNIRRI. The comparisons of secondary standards with the primary standard VNIIM are performed one time in 5 years. The laboratory SSDL/VNIIM is the component of state primary standards laboratory in the field of measurement ionizing radiations VNIIM. SSDL/VNIIM has the secondary standard - universal dosimeter UNIDOS with ionization chambers of volume from 0,6 cm3 to 10 liters, radioactive sources from Fe-55, Cd-109, Am-241, Cs-137 and Co-60 with activity from 0,03 to 140 GBq. The primary standard equipment and facility on the basis industrial X-ray apparatus YRD-1 with a tungsten-anode X-ray tube and inherent filtration of around 3 mm Al (at generating potential from 50 to 250 kV) are used for calibration dosimetric devices in the field X-ray. There is termoluminescence dosimetric system such as KDT-02M with TL detectors from LiF for spending audit measurements by method 'dose-post'. Laboratory SSDL/VNIIM and base dosimetric laboratory CNIRRI are carried out calibrations and verifications of air kerma and air kerma rate reference standards and working measurement means for X-ray and gamma therapy and diagnostics, belonging to the oncology and diagnostic centers, clinics and hospitals. The laboratory CNIRRI fulfils the verification of measurement means and supervision of the application in the medical radiology, but the regional departments of radial diagnostics put into practice monitoring of doses, obtained by patients and staff at fulfilling of diagnostic and medical procedures. The diagnostic and clinical dosimeters are calibrated directly under the primary standard of air kerma and air kerma rate for achievement the highest accuracy. At 2000-2001 this calibrations were carried out for the Belarusian Research Institute of Oncol

  12. ROLE OF MODELS IN AIR QUALITY MANAGEMENT DECISIONS

    Science.gov (United States)

    Within the frame of the US-India bilateral agreement on environmental cooperation, a team of US scientists have been helping India in designing emission control policies to address urban air quality problems. This presentation discusses how air quality models need to be used for ...

  13. Sigmoidal response model for radiation risk

    International Nuclear Information System (INIS)

    From epidemiologic studies, we find no measurable increase in the incidences of birth defects and cancer after low-level exposure to radiation. Based on modern understanding of the molecular basis of teratogenesis and cancer, I attempt to explain thresholds observed in atomic bomb survivors, radium painters, uranium workers and patients injected with Thorotrast. Teratogenic injury induced by doses below threshold will be completely eliminated as a result of altruistic death (apoptosis) of injured cells. Various lines of evidence obtained show that oncomutations produced in cancerous cells after exposure to radiation are of spontaneous origin and that ionizing radiation acts not as an oncomutation inducer but as a tumor promoter by induction of chronic wound-healing activity. The tissue damage induced by radiation has to be repaired by cell growth and this creates opportunity for clonal expansion of a spontaneously occurring preneoplastic cell. If the wound-healing error model is correct, there must be a threshold dose range of radiation giving no increase in cancer risk. (author)

  14. Improvement of local air coolers model in ISAAC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, See Darl; Kim, Dong Ha; Park, Soo Yong; Paik, Chan Young

    2004-02-01

    The purpose of this paper is to assess a new local air coolers model in ISAAC 2.0, as ISAAC 1.0 could model local air coolers only at two locations. In the new model, local air coolers up to twelve locations could be handled. Large LOCA and loss of feed water sequences were selected for the model comparison. Two cases were analyzed with ISAAC 2.0: one with 6 local air coolers in one of the fueling machine room and in the steam generator room, respectively, and the other with 3 local air coolers at both fueling machine room and 6 local air coolers in the steam generator room. The study assumes that the safety systems such as emergency core cooling system, shield cooling system and moderator cooling system are unavailable. According to the ISAAC 2.0 results, the new local air coolers model showed almost no difference between two cases. Also it was found that as the location of LACs increased, the new model worked properly and the effect of LACs was consistent regardless the accident initiators.

  15. FUZZY MODELLING OF LIQUID DESICCANT BASED AIR DEHUMIDIFICATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Harpreet Singh,

    2011-04-01

    Full Text Available This paper describes the Mamdani fuzzy models of heat exchanger and dehumidifier (absorber of an air dehumidification process occurring in a packed bed using liquid desiccant. Temperature of water used ascooling medium at the inlet of heat exchanger, temperature of desiccant solution(from the regenerator ,inlet air humidity ratio of humid air, flow rate per unit cross-sectional area, temperature of desiccant solution(from the heat exchanger have been taken as different variables for packed bed using liquid desiccant .Mamdani Fuzzy model is developed using the above mentioned variables to predict the water condensation rate from the air to the desiccant solution in terms of known operating parameters. The model predictions were compared against a reliable set of experimental data available in the literature and respective mathematical models for their validation. Integrated fuzzy model was also developed forliquid desiccant system

  16. Coherent Radiation from Extensive Air Showers in the Ultra-High Frequency Band

    OpenAIRE

    Alvarez-Muñiz, Jaime; Carvalho Jr., Washington R.; Romero-Wolf, Andrés; Tueros, Matías; Zas, Enrique

    2012-01-01

    Using detailed Monte Carlo simulations we have characterized the features of the radio emission of inclined air showers in the Ultra-High Frequency band (300 MHz - 3 GHz). The Fourier-spectrum of the radiation is shown to have a sizable intensity well into the GHz frequency range. The emission is mainly due to transverse currents induced by the geomagnetic field and to the excess charge produced by the Askaryan effect. At these frequencies only a significantly reduced volume...

  17. Air filled ionization chambers and their response to high LET radiation

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki; Jäkel, Oliver

    2009-01-01

    Background Air filled ionization chambers (ICs) are widely used for absolute dosimetry, not only in photon beams but also in beams of heavy charged particles. Within the IC, electron hole pairs are generated by the energy deposition originating from incoming radiation. High-LET particles create a high density of charge carriers in the core of particle tracks. As a consequence an increased (so called "initial") recombination of the charge carriers takes place, besides of the general (volume) reco...

  18. Problems with models of the radiation belts

    International Nuclear Information System (INIS)

    The current standard models of the radiation-belt environment have many shortcomings, not the least of which is their extreme age. Most of the data used for them were acquired in the 1960's and early 1970's. Problems with the present models, and the ways in which data from more recent missions are being or can be used to create new models with improved functionality, are described. The phenomenology of the radiation belts, the effects on space systems, and geomagnetic coordinates and modeling are discussed. Errors found in present models, their functional limitations, and problems with their implementation and use are detailed. New modeling must address problems at low altitudes with the south Atlantic anomaly, east-west asymmetries and solar cycle variations and at high altitudes with the highly dynamic electron environment. The important issues in space environment modeling from the point of view of usability and relationship with effects evaluation are presented. New sources of data are discussed. Future requirements in the data, models, and analysis tools areas are presented

  19. Sensitivities of radiative-convective climate models

    International Nuclear Information System (INIS)

    We have compared sensitivities of four different radiative-convective climate models. Although surface temperature sensitivities with respect to changes in solar constant and atmospheric, CO2 concentration are almost the same in all models, sensitivity with respect to some other climate variables varies up to a factor of 2. We have found that the surface temperature sensitivity with respect to changes of the lapse rate is high in all models, and we emphasize the importance of a lapse rate--surface temperature feedback

  20. Principles of the radiative ablation modeling

    International Nuclear Information System (INIS)

    Indirectly driven inertial confinement fusion (ICF) rests on the setting up of a radiation temperature within a laser cavity and on the optimization of the capsule implosion ablated by this radiation. In both circumstances, the ablation of an optically thick medium is at work. The nonlinear radiation conduction equations that describe this phenomenon admit different kinds of solutions called generically Marshak waves. In this paper, a completely analytic model is proposed to describe the ablation in the subsonic regime relevant to ICF experiments. This model approximates the flow by a deflagrationlike structure where Hugoniot relations are used in the stationary part from the ablation front up to the isothermal sonic Chapman-Jouguet point and where the unstationary expansion from the sonic point up to the external boundary is assumed quasi-isothermal. It uses power law matter properties. It can also accommodate arbitrary boundary conditions provided the ablation wave stays very subsonic and the surface temperature does not vary too quickly. These requirements are often met in realistic situations. Interestingly, the ablated mass rate, the ablation pressure, and the absorbed radiative energy depend on the time history of the surface temperature, not only on the instantaneous temperature values. The results compare very well with self-similar solutions and with numerical simulations obtained by hydrodynamic code. This analytic model gives insight into the physical processes involved in the ablation and is helpful for optimization and sensitivity studies in many situations of interest: radiation temperature within a laser cavity, acceleration of finite size medium, and ICF capsule implosion, for instance.

  1. Mixed deterministic statistical modelling of regional ozone air pollution

    KAUST Repository

    Kalenderski, Stoitchko Dimitrov

    2011-03-17

    We develop a physically motivated statistical model for regional ozone air pollution by separating the ground-level pollutant concentration field into three components, namely: transport, local production and large-scale mean trend mostly dominated by emission rates. The model is novel in the field of environmental spatial statistics in that it is a combined deterministic-statistical model, which gives a new perspective to the modelling of air pollution. The model is presented in a Bayesian hierarchical formalism, and explicitly accounts for advection of pollutants, using the advection equation. We apply the model to a specific case of regional ozone pollution-the Lower Fraser valley of British Columbia, Canada. As a predictive tool, we demonstrate that the model vastly outperforms existing, simpler modelling approaches. Our study highlights the importance of simultaneously considering different aspects of an air pollution problem as well as taking into account the physical bases that govern the processes of interest. © 2011 John Wiley & Sons, Ltd..

  2. Sensitivity/uncertainty analysis for free-in-air tissue kerma due to initial radiation at Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    Uncertainty estimates and cross correlations by range/survivor have been calculated for the Hiroshima and Nagasaki free-in-air (FIA) tissue kerma obtained from two-dimensional air/ground transport calculations. The uncertainties due to modeling parameter and basic nuclear transport data uncertainties were calculated for 700-, 1000-, and 1500-m ground ranges. Only the FIA tissue kerma due to initial radiation was treated in the analysis; the uncertainties associated with terrain and building shielding and phantom attenuation were not considered in this study. Uncertainties of --20% were obtained for the prompt neutron and secondary gamma kerma and 30% for the prompt gamma kerma at both cities. The uncertainties on the total prompt kerma at Hiroshima and Nagasaki are --18 and 15%, respectively. The estimated uncertainties vary only slightly by ground range and are fairly highly correlated. The total prompt kerma uncertainties are dominated by the secondary gamma uncertainties, which in turn are dominated by the modeling parameter uncertainties, particularly those associated with the weapon yield and radiation sources

  3. Biologically based multistage modeling of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of epidemiologic studies using multistage carcinogenesis models that incorporate the ''initiation, promotion, and malignant conversion'' paradigm of carcinogenesis are indicating that promotion of initiated cells is the most important cellular mechanism driving the shape of the age specific hazard for many types of cancer. Second, we have realized that many of the genes that are modified in early stages of the carcinogenic process contribute to one or more of four general cellular pathways that confer a promotional advantage to cells when these pathways are disrupted.

  4. Modeling air quality over China: Results from the Panda project

    Science.gov (United States)

    Katinka Petersen, Anna; Bouarar, Idir; Brasseur, Guy; Granier, Claire; Xie, Ying; Wang, Lili; Wang, Xuemei

    2015-04-01

    China faces strong air pollution problems related to rapid economic development in the past decade and increasing demand for energy. Air quality monitoring stations often report high levels of particle matter and ozone all over the country. Knowing its long-term health impacts, air pollution became then a pressing problem not only in China but also in other Asian countries. The PANDA project is a result of cooperation between scientists from Europe and China who joined their efforts for a better understanding of the processes controlling air pollution in China, improve methods for monitoring air quality and elaborate indicators in support of European and Chinese policies. A modeling system of air pollution is being setup within the PANDA project and include advanced global (MACC, EMEP) and regional (WRF-Chem, EMEP) meteorological and chemical models to analyze and monitor air quality in China. The poster describes the accomplishments obtained within the first year of the project. Model simulations for January and July 2010 are evaluated with satellite measurements (SCIAMACHY NO2 and MOPITT CO) and in-situ data (O3, CO, NOx, PM10 and PM2.5) observed at several surface stations in China. Using the WRF-Chem model, we investigate the sensitivity of the model performance to emissions (MACCity, HTAPv2), horizontal resolution (60km, 20km) and choice of initial and boundary conditions.

  5. The influence of gas radiation on the thermal behavior of a 2D axisymmetric turbulent non-premixed methane–air flame

    International Nuclear Information System (INIS)

    Highlights: • The study evaluates the importance of thermal radiation in a methane–air flame. • The radiative properties are treated with the WSGG based on HITEMP 2010. • The turbulence–radiation interaction (TRI) is based on a RANS approach. • Radiation strongly affected the temperature field but not the chemical composition. • Neglecting TRI led to a lower estimate of the radiation heat transfer. - Abstract: This paper presents a study of the effect of thermal radiation in the simulation of a turbulent, non-premixed methane–air flame. In such a problem, two aspects need to be considered for a precise evaluation of the thermal radiation: the turbulence–radiation interactions (TRI), and the local variation of the radiative properties of the participating species, which are treated here with the weighted-sum-of-gray-gases (WSGG) model based on newly obtained correlations from HITEMP2010 database. The chemical reactions rates were considered as the minimum values between the Arrhenius and Eddy Break-Up rates. A two-step global reaction mechanism was used, while the turbulence modeling was considered via standard k–? model. The source terms of the energy equation consisted of the heat generated in the chemical reaction rates as well as in the radiation exchanges. The discrete ordinates method (DOM) was employed to solve the radiative transfer equation (RTE), including the TRI. Comparisons of simulations with/without radiation (which in turn was solved with/without TRI) demonstrated that the temperature, the radiative heat source, and the wall heat flux were importantly affected by thermal radiation, while the influence on species concentrations proved to be negligible. Inclusion of thermal radiation led to results that were closer to experimental data available in the literature for the same test case considered in this paper. Inclusion of TRI improved the agreement, although in a smaller degree. The main influence of TRI was mainly on global results, such as the peak temperature and the radiant fraction. The results show the importance of thermal radiation for an accurate prediction of the thermal behavior of a combustion chamber

  6. Pulsar Radiation Models - Radio to High Energies

    Science.gov (United States)

    Venter, Christo; Harding, Alice

    Rotation-powered pulsars emit over nearly 19 decades of energy. Although an all-encompassing answer as to the origin of this broad-band emission remains elusive nearly 50 years after their discovery, the theorist does have a few tools in his / her toolkit to aid investigation. Phase-averaged spectra give clues as to the emitting particles, their acceleration, environment, and the radiation mechanism. Moreover, the phase-evolution of spectra constrains the radiation energetics and environment as different parts of the magnetosphere are exposed to the observer during the pulsar's rotation. A detailed model furthermore critically depends on the specification of the emission geometry. Modeling the light curves probes this fundamental geometric assumption, which is closely tied to the posited magnetospheric structure. Studying many versions of the same system helps to constrain critical population-averaged quantities, discover population trends, and probe model performance for different regions of phase space. When coupled with population synthesis, such modeling can provide powerful discrimination between competing emission models. Polarization properties may provide complementary constraints on the magnetic field orientation and pulsar geometry. Lastly, comparison of parameters inferred from independent models for the different wavebands yields necessary crosschecks. It is indeed fortunate that the past few years have witnessed an incredible increase in number and improved characterization of rotation-powered pulsars. We will review how the enhanced quality and quantity of data are providing impetus for further model refinement.

  7. Modelling and control of an air-to-air heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Zaheer-Uddin, M.; Wang, J.C.Y. (Concordia Univ., Sir George Williams Campus, Montreal, PQ (Canada). Centre for Building Studies)

    1994-03-01

    Analytical modelling, controller design and simulation of an air-to-air runaround coil heat recovery system are studied. Simulation results showing the transient response characteristics of the open-loop and closed-loop system are given. Results show that the designed controllers are able to hold the preheat temperature and the storage tank temperature at their respective setpoints irrespective of changes in outdoor and exhaust (source heat) temperatures. (author)

  8. A coupled surface/subsurface flow model accounting for air entrapment and air pressure counterflow

    DEFF Research Database (Denmark)

    Delfs, Jens Olaf; Wang, Wenqing; Kalbacher, Thomas; Singh, Ashok; Kolditz, Olaf

    2013-01-01

    This work introduces the soil air system into integrated hydrology by simulating the flow processes and interactions of surface runoff, soil moisture and air in the shallow subsurface. The numerical model is formulated as a coupled system of partial differential equations for hydrostatic (diffusive wave) shallow flow and two-phase flow in a porous medium. The simultaneous mass transfer between the soil, overland, and atmosphere compartments is achieved by upgrading a fully established leakance c...

  9. Modelling of Trichel pulses in a negative corona in air

    International Nuclear Information System (INIS)

    The authors of this paper succeeded in numerical modelling of continuous sequence of Trichel pulses in a negative point-to-plane corona in dry air at atmospheric pressure. The results of theoretical calculations well agree with experimental data. (authors)

  10. SAFARI 2000 Modeled Tropospheric Air Mass Trajectories, Dry Season 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The ETA Forecast Trajectory Model was used to produce forecasts of air-parcel trajectories twice a day at three pressure levels over seven sites in...

  11. SAFARI 2000 Modeled Tropospheric Air Mass Trajectories, Dry Season 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — The ETA Forecast Trajectory Model was used to produce forecasts of air-parcel trajectories twice a day at three pressure levels over seven sites in Southern Africa...

  12. Radiation exposure of the aircrew and passengers on some Czechoslovak air lines

    International Nuclear Information System (INIS)

    According to the ICRP 60 recommendation, the aircrew should be included among workers whose exposure to cosmic radiation is considered to be occupational exposure. This brings about the need for a more precise determination and the mapping of the exposure level on different air routes. The results are presented of measurements performed by the staff of the Institute of Radiation Dosimetry on board of CSA aircraft (TU 154 M and A 310-300 Airbus) in 1991-1992. A number of passive and active devices were used to measure the ionizing and neutron component of cosmic radiation. The results obtained confirm the basic ideas about the influence of various factors on the exposure level. The interpretation of data is discussed in detail, particularly with respect to its possible modification based on new data on particle spectra on board of subsonic civil transport aircraft. (author) 2 tabs., 4 figs., 24 refs

  13. Radiative Transfer Models for Be Stars.

    Czech Academy of Sciences Publication Activity Database

    Kor?áková, Daniela; Kubát, Ji?í

    Les Ulis : European Astronomical Society, 2008 - ( Wolf , S.; Allard, F.; Stee, P.), s. 23-30 ISBN 978-2-7598-0074-2. ISSN 1633-4760. - (EAS Publications Series. 28). [Perspectives in Radiative Transfer and Interferometry. Château de Pizay (FR), 14.05.2007-16.05.2007] Institutional research plan: CEZ:AV0Z10030501 Keywords : stellar atmosphere models * numerical methods * overview Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  14. Modelling of the Through-air Bonding Process

    OpenAIRE

    Hossain, M.; M. Acar, Ph.D.; W. Malalasekera

    2009-01-01

    A computational fluid dynamics (CFD) modelling ofthe through-air bonding process of nonwoven fabricproduction is reported in this article. In the throughairprocess, hot air is passed through the fibrous webto heat and melt polymer fibers. Molten polymersubsequently flows to the point of contact betweenany two fibers to produce a bond. Two differentmodelling strategies are adapted to produce acomprehensive understanding of the through-airbonding process. In macroscale modelling, a CFDmodel is ...

  15. VALMET: a valley air pollution model. Final report. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Whiteman, C.D.; Allwine, K.J.

    1985-04-01

    An air quality model is described for predicting air pollution concentrations in deep mountain valleys arising from nocturnal down-valley transport and diffusion of an elevated pollutant plume, and the fumigation of the plume on the valley floor and sidewalls after sunrise. Included is a technical description of the model, a discussion of the model's applications, the required model inputs, sample calculations and model outputs, and a full listing of the FORTRAN computer program. 55 refs., 27 figs., 6 tabs.

  16. Control of asthma triggers in indoor air with air cleaners: a modeling analysis

    Directory of Open Access Journals (Sweden)

    Allen Joseph G

    2008-08-01

    Full Text Available Abstract Background Reducing exposure to environmental agents indoors shown to increase asthma symptoms or lead to asthma exacerbations is an important component of a strategy to manage asthma for individuals. Numerous investigations have demonstrated that portable air cleaning devices can reduce concentrations of asthma triggers in indoor air; however, their benefits for breathing problems have not always been reproducible. The potential exposure benefits of whole house high efficiency in-duct air cleaners for sensitive subpopulations have yet to be evaluated. Methods We used an indoor air quality modeling system (CONTAM developed by NIST to examine peak and time-integrated concentrations of common asthma triggers present in indoor air over a year as a function of natural ventilation, portable air cleaners, and forced air ventilation equipped with conventional and high efficiency filtration systems. Emission rates for asthma triggers were based on experimental studies published in the scientific literature. Results Forced air systems with high efficiency filtration were found to provide the best control of asthma triggers: 30–55% lower cat allergen levels, 90–99% lower risk of respiratory infection through the inhalation route of exposure, 90–98% lower environmental tobacco smoke (ETS levels, and 50–75% lower fungal spore levels than the other ventilation/filtration systems considered. These results indicate that the use of high efficiency in-duct air cleaners provide an effective means of controlling allergen levels not only in a single room, like a portable air cleaner, but the whole house. Conclusion These findings are useful for evaluating potential benefits of high efficiency in-duct filtration systems for controlling exposure to asthma triggers indoors and for the design of trials of environmental interventions intended to evaluate their utility in practice.

  17. Comparison of mathematical models for radiation fractionation

    International Nuclear Information System (INIS)

    Radiation fractionation data can be plotted in four planes: long N-log D, dose-reciprocal total dose, dose-response, and dose-recovery dose. Properties of curves in these planes corresponding to five models are developed. One model assumes that total dose is a power function of the number of fractions; the other four models assume that the dose-log surviving fraction curve is described by a multitarget, a two component (product of single-hit and multitarget factors), a quadratic, and a cubic function, respectively. Several nonlinear regression criteria are defined and corresponding computer programs have been developed. Best fits for the five models are found for three specific data sets involving normal tissues in mice. One regression criterion and three models are shown to be unsuitable

  18. Atmospheric transmittance model for photosynthetically active radiation

    Energy Technology Data Exchange (ETDEWEB)

    Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana [Physics Department, West University of Timisoara, V Parvan 4, 300223 Timisoara (Romania); Pop, Nicolina [Department of Physical Foundations of Engineering, Politehnica University of Timisoara, V Parvan 2, 300223 Timisoara (Romania); Calinoiu, Delia [Mechanical Engineering Faculty, Politehnica University of Timisoara, Mihai Viteazu 1, 300222 Timisoara (Romania)

    2013-11-13

    A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, Ångström's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms.

  19. APPLICATIONS OF DECISION THEORY TECHNIQUES IN AIR POLLUTION MODELING

    Science.gov (United States)

    The study applies methods of operations research to two basic areas of air pollution modeling: (1) the generation of wind fields for use in models of regional scale transport, diffusion and chemistry; and (2) the application of models in studies of optimal pollution control strat...

  20. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    Science.gov (United States)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  1. Multicomponent gas mixture air bearing modeling via lattice Boltzmann method

    Science.gov (United States)

    Tae Kim, Woo; Kim, Dehee; Hari Vemuri, Sesha; Kang, Soo-Choon; Seung Chung, Pil; Jhon, Myung S.

    2011-04-01

    As the demand for ultrahigh recording density increases, development of an integrated head disk interface (HDI) modeling tool, which considers the air bearing and lubricant film morphology simultaneously is of paramount importance. To overcome the shortcomings of the existing models based on the modified Reynolds equation (MRE), the lattice Boltzmann method (LBM) is a natural choice in modeling high Knudsen number (Kn) flows owing to its advantages over conventional methods. The transient and parallel nature makes this LBM an attractive tool for the next generation air bearing design. Although LBM has been successfully applied to single component systems, a multicomponent system analysis has been thwarted because of the complexity in coupling the terms for each component. Previous studies have shown good results in modeling immiscible component mixtures by use of an interparticle potential. In this paper, we extend our LBM model to predict the flow rate of high Kn pressure-driven flows in multicomponent gas mixture air bearings, such as the air-helium system. For accurate modeling of slip conditions near the wall, we adopt our LBM scheme with spatially dependent relaxation times for air bearings in HDIs. To verify the accuracy of our code, we tested our scheme via simple two-dimensional benchmark flows. In the pressure-driven flow of an air-helium mixture, we found that the simple linear combination of pure helium and pure air flow rates, based on helium and air mole fraction, gives considerable error when compared to our LBM calculation. Hybridization with the existing MRE database can be adopted with the procedure reported here to develop the state-of-the-art slider design software.

  2. Neuro-models for discharge air temperature system

    International Nuclear Information System (INIS)

    Nonlinear neuro-models for a discharge air temperature (DAT) system are developed. Experimental data gathered in a heating ventilating and air conditioning (HVAC) test facility is used to develop multi-input multi-output (MIMO) and single-input single-output (SISO) neuro-models. Several different network architectures were explored to build the models. Results show that a three layer second order neural network structure is necessary to achieve good accuracy of the predictions. Results from the developed models are compared, and some observations on sensitivity and standard deviation errors are presented

  3. Neuro-models for discharge air temperature system

    Energy Technology Data Exchange (ETDEWEB)

    Zaheer-uddin, M.; Tudoroiu, N. [Concordia University, Montreal (Canada). Centre for Building Studies

    2004-04-01

    Nonlinear neuro-models for a discharge air temperature (DAT) system are developed. Experimental data gathered in a heating ventilating and air conditioning (HVAC) test facility is used to develop multi-input multi-output (MIMO) and single-input single-output (SISO) neuro-models. Several different network architectures were explored to build the models. Results show that a three layer second order neural network structure is necessary to achieve good accuracy of the predictions. Results from the developed models are compared, and some observations on sensitivity and standard deviation errors are presented. (author)

  4. Review of air quality modeling techniques. Volume 8

    International Nuclear Information System (INIS)

    Air transport and diffusion models which are applicable to the assessment of the environmental effects of nuclear, geothermal, and fossil-fuel electric generation are reviewed. The general classification of models and model inputs are discussed. A detailed examination of the statistical, Gaussian plume, Gaussian puff, one-box and species-conservation-of-mass models is given. Representative models are discussed with attention given to the assumptions, input data requirement, advantages, disadvantages and applicability of each

  5. Solar radiation practical modeling for renewable energy applications

    CERN Document Server

    Myers, Daryl Ronald

    2013-01-01

    Written by a leading scientist with over 35 years of experience working at the National Renewable Energy Laboratory (NREL), Solar Radiation: Practical Modeling for Renewable Energy Applications brings together the most widely used, easily implemented concepts and models for estimating broadband and spectral solar radiation data. The author addresses various technical and practical questions about the accuracy of solar radiation measurements and modeling. While the focus is on engineering models and results, the book does review the fundamentals of solar radiation modeling and solar radiation m

  6. A comparison between weighted sum of gray and spectral CK radiation models for heat transfer calculations in furnaces

    Energy Technology Data Exchange (ETDEWEB)

    El Ammouri, F.; Plessier, R.; Till, M.; Marie, B.; Djavdan, E. [Air Liquide Centre de Recherche Claude Delorme, 78 - Jouy-en-Josas (France)

    1996-12-31

    Coupled reactive fluid dynamics and radiation calculations are performed in air and oxy-fuel furnaces using two gas radiative property models. The first one is the weighted sum of gray gases model (WSGG) and the second one is the correlated-k (CK) method which is a spectral model based on the cumulative distribution function of the absorption coefficient inside a narrow band. The WSGG model, generally used in industrial configurations, is less time consuming than the CK model. However it is found that it over-predicts radiative fluxes by about 12 % in industrial furnaces. (authors) 27 refs.

  7. Mathematical Modeling of Hot Air Drying of Spinach Leaves in Universal Hot Air Oven

    Directory of Open Access Journals (Sweden)

    A.K.Upadhyaya , Bhupendra Gupta , Sanjeev Garg , Mohan Singh , Mukesh Pandey

    2012-06-01

    Full Text Available The objective of this study was to develop a model for drying characteristic curve of Spinach in Universal Hot Air Oven .Drying experiment were conducted using a constant air velocity2.2m/s and three drying air temperature of 55, 65, and75 oC with two pretreatment conditions and load densities that are given respectively condition (Blanched and Unblanched load density (3kg/m2, 3.5 kg/m2.The drying rate increased with increased in temperature and decrease with increase in time. Pretreatment and load densities had an insignificant role on drying rate. The experimental drying data of spinach applied to four moisture ratio models, namely, page l, modified page, generalized exponential, and two term models. Nonlinear regression analysis performed to relate the parameters of the model with the drying conditions. The performance of these models evaluated by comparing the coefficient of determination, R2, and reduced chi-square, ?2, between the observed and predicted moisture ratio. Among all these model page model was found to be best describe the drying behavior of spinach leaves .the standard error of estimation was least(0.004-0.031 as well as coefficient of determination (R2was highest (0.991-1 in page model as compared to other models.

  8. InMAP: a new model for air pollution interventions

    Science.gov (United States)

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    2015-10-01

    Mechanistic air pollution models are essential tools in air quality management. Widespread use of such models is hindered, however, by the extensive expertise or computational resources needed to run most models. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations - the air pollution outcome generally causing the largest monetized health damages - attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model (WRF-Chem) within an Eulerian modeling framework, to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. InMAP uses a variable resolution grid that focuses on human exposures by employing higher spatial resolution in urban areas and lower spatial resolution in rural and remote locations and in the upper atmosphere; and by directly calculating steady-state, annual average concentrations. In comparisons run here, InMAP recreates WRF-Chem predictions of changes in total PM2.5 concentrations with population-weighted mean fractional error (MFE) and bias (MFB) R2 ~ 0.99. Among individual PM2.5 species, the best predictive performance is for primary PM2.5 (MFE: 16 %; MFB: 13 %) and the worst predictive performance is for particulate nitrate (MFE: 119 %; MFB: 106 %). Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. Features planned for future model releases include a larger spatial domain, more temporal information, and the ability to predict ground-level ozone (O3) concentrations. The InMAP model source code and input data are freely available online.

  9. Research on Dependable Ionizing Radiation Protection based on Model i*

    OpenAIRE

    Tan Hai; Shahnawaz Talpur; Imran Ali Qureshi

    2013-01-01

    The software’s unreliability mostly attributes to an erroneous analysis on the requirements done at the beginning. In this paper, we apply the tool of i* frame requirement modeling and build early requirement model against ionizing radiation. After finding out possible risks and corresponding solutions during the process of modeling analysis, we propose reasoning models against ionizing radiation. The radiation protection system  with  the  above models  can  figure out  the  purpose  of agen...

  10. Measurement and Modeling of Particle Radiation in Coal Flames

    DEFF Research Database (Denmark)

    Ba?ckstro?m, Daniel; Johansson, Robert

    2014-01-01

    This work aims at developing a methodology that can provide information of in-flame particle radiation in industrial-scale flames. The method is based on a combination of experimental and modeling work. The experiments have been performed in the high-temperature zone of a 77 kWth swirling lignite flame. Spectral radiation, total radiative intensity, gas temperature, and gas composition were measured, and the radiative intensity in the furnace was modeled with an axisymmetric cylindrical radiation model using Mie theory for the particle properties and a statistical narrow-band model for the gas properties. The in-flame particle radiation was measured with a Fourier transform infrared (FTIR) spectrometer connected to a water-cooled probe via fiber optics. In the cross-section of the flame investigated, the particles were found to be the dominating source of radiation. Apart from giving information about particle radiation and temperature, the methodology can also provide estimates of the amount of soot radiation and the maximum contribution from soot radiation compared to the total particle radiation. In the center position in the flame, the maximum contribution from soot radiation was estimated to be less than 40% of the particle radiation. As a validation of the methodology, the modeled total radiative intensity was compared to the total intensity measured with a narrow angle radiometer and the agreement in the results was good, supporting the validity of the used approach.

  11. Direct radiative effect of the Russian wildfires and their impact on air temperature and atmospheric dynamics during August 2010

    Directory of Open Access Journals (Sweden)

    J. C. Péré

    2013-06-01

    Full Text Available The present study aims at investigating the shortwave aerosol direct radiative forcing (ADRF and its feedback on air temperature and atmospheric dynamics during a major fire event that occurred in Russia during August 2010. The methodology is based on an off-line coupling between the CHIMERE chemistry-transport and the Weather Research and Forecasting (WRF models. First, simulations for the period 5–12 August 2010 have been evaluated by using AERONET and satellite measurements of the POLarization and Directionality of the Earth's Reflectance (POLDER and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP sensors. During this period, elevated POLDER AOT are found over a large part of Eastern Europe with values above 2 (at 550 nm in the aerosol plume. According to CALIOP observations, particles remain confined within the first five kilometres of the atmospheric layer. Comparisons with satellite measurements show the ability of CHIMERE to reproduce the regional and vertical distribution of aerosols during their transport from the source region. Over Moscow, AERONET measurements indicate an important increase of AOT (340 nm from 0.7 on 5 August to 2–4 between 6 and 10 August when the aerosol plume is advected over the city. Particles are mainly observed in the fine size mode (radius in the range 0.2–0.4 ?m and are characterized by elevated SSA (0.95–0.96 between 440 and 1020 nm. Also, comparisons of simulations with AERONET measurements show that aerosol physical-optical properties (size distribution, AOT, SSA have been well simulated over Moscow in term of intensity and/or spectral dependence. Secondly, modelled aerosol optical properties have been used as input in the radiative transfer code of WRF to evaluate their direct radiative impact. Simulations indicate a significant reduction of solar radiation at the ground (up to 80–150 W m?2 in diurnal-averaged over a large part of Eastern Europe due to the presence of the aerosol plume. This ADRF causes an important reduction of the near-surface air temperature between 0.2 and 2.6°C at a regional scale. Moscow has been also affected by the aerosol plume, especially between 6 and 10 August. During this period, aerosol causes a significant reduction of surface shortwave radiation (up to 70–84 W m?2 in diurnal-averaged with a moderate part (20–30% due to solar absorption within the aerosol layer. The resulting feedbacks lead to a cooling of the air up to 1.6°C at the surface and 0.1°C at an altitude of 1500–2000 m (in diurnal-averaged, that contribute to stabilize the atmospheric boundary layer (ABL. Indeed, a reduction of the ABL height of 13 to 65% have been simulated during daytime in presence of aerosols. This decrease is the result of a lower air entrainment as the vertical wind speed in the ABL is shown to be reduced by 5 to 80% (at midday when the feedback of the ADRF is taken into account. In turn, CHIMERE simulations driven by the WRF meteorological fields including this ADRF feedback result in a large increase in the modeled near-surface PM10 concentrations (up to 99% due to their lower vertical dilution in the ABL, which tend to reduce model biases with the ground PM10 values observed over Moscow during this specific period.

  12. A coupled surface/subsurface flow model accounting for air entrapment and air pressure counterflow

    DEFF Research Database (Denmark)

    Delfs, Jens Olaf; Wang, Wenqing

    2013-01-01

    This work introduces the soil air system into integrated hydrology by simulating the flow processes and interactions of surface runoff, soil moisture and air in the shallow subsurface. The numerical model is formulated as a coupled system of partial differential equations for hydrostatic (diffusive wave) shallow flow and two-phase flow in a porous medium. The simultaneous mass transfer between the soil, overland, and atmosphere compartments is achieved by upgrading a fully established leakance concept for overland-soil liquid exchange to an air exchange flux between soil and atmosphere. In a new algorithm, leakances operate as a valve for gas pressure in a liquid-covered porous medium facilitating the simulation of air out-break events through the land surface. General criteria are stated to guarantee stability in a sequential iterative coupling algorithm and, in addition, for leakances to control the mass exchange between compartments. A benchmark test, which is based on a classic experimental data set on infiltration excess (Horton) overland flow, identified a feedback mechanism between surface runoff and soil air pressures. Our study suggests that air compression in soils amplifies surface runoff during high precipitation at specific sites, particularly in near-stream areas. © 2013 Springer-Verlag Berlin Heidelberg.

  13. A 331 WIMPy Dark Radiation Model

    CERN Document Server

    Kelso, Chris; Profumo, Stefano; Queiroz, Farinaldo S; da Silva, P S Rodrigues

    2013-01-01

    Recent observations suggest that the number of relativistic degrees of freedom in the early universe might exceed what predicted in the standard cosmological model. If even a small, percent-level fraction of dark matter particles are produced relativistically, they could mimic the effect of an extra realistic species at matter-radiation equality while obeying BBN, CMB and Structure Formation bounds. We show that this scenario is quite naturally realized with a weak-scale dark matter particle and a high-scale "mother" particle within a well motivated 3-3-1 gauge model, which is particularly interesting for being consistent with electroweak precision measurements, with recent LHC results, and for offering a convincing explanation for the number of generations in the Standard Model.

  14. A 331 WIMPy dark radiation model

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, Chris [University of Utah, Department of Physics and Astronomy, Salt Lake City, UT (United States); Pires, C.A. de S.; Rodrigues da Silva, P.S. [Universidade Federal da Paraiba, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, PB (Brazil); Profumo, Stefano; Queiroz, Farinaldo S. [University of California, Department of Physics and Santa Cruz Institute for Particle Physics, Santa Cruz, CA (United States)

    2014-03-15

    Recent observations suggest that the number of relativistic degrees of freedom in the early universe might exceed what is predicted in the standard cosmological model. If even a small, percent-level fraction of dark matter particles are produced relativistically, they could mimic the effect of an extra realistic species at matter-radiation equality while obeying BBN, CMB and Structure Formation bounds. We show that this scenario is quite naturally realized with a weak-scale dark matter particle and a high-scale ''mother'' particle within a well-motivated 3-3-1 gauge model, which is particularly interesting for being consistent with electroweak precision measurements, with recent LHC results, and for offering a convincing explanation for the number of generations in the Standard Model. (orig.)

  15. Modelling the emission of pesticides from covered structures to air

    OpenAIRE

    Holterman, H.J.; Sapounas, A.; Beulke, S.; Os, E.A., van; Glass, C.R.

    2012-01-01

    Emissions of plant protection products (PPP) from covered structures to the air outside were estimated to support the European Food Safety Authority (EFSA) in the development of guidance on risk assessments for protected crops. Such emissions are mainly caused by loss of volatilised PPPs through the vents in the covered structures. The newly developed VEGA model (Ventilated Emissions from Greenhouse to Air) describes the fate of PPPs after a spray application inside covered structures. Simula...

  16. Methodology for Modeling the Microbial Contamination of Air Filters

    OpenAIRE

    Joe, Yun Haeng; Yoon, Ki Young; Hwang, Jungho

    2014-01-01

    In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtra...

  17. Development and Evaluation of Global Solar Radiation Models Based on Sunshine Hours and Meteorological Data

    Directory of Open Access Journals (Sweden)

    A Majnoni-Heris

    2009-01-01

    Full Text Available Global solar radiation (Rs has wide applications in several disciplines. The data of measured or predicted Rs are widely applied by solar engineers, architects, agriculturists and hydrologists. Due to the importance of Rs, several empirical models have been developed to predict its values all over the world. In this study, Angstrom model was calibrated based on the ratio of actual and possible sunshine hours n/N by using measured daily data of Rs at Bajghah meteorological station in Fars province during 2003-2004. The model was modified by using air temperature for considering the effect of cloudy conditions as well as n/N ratios. The results showed that using both the air temperatures and the ratios of n/N led to a higher accuracy. In regard to estimation of the Rs values, the results showed that mean air temperatures have a higher accuracy compared with differences between maximum and minimum air temperatures. Also, a new local model with higher accuracy was developed based on a number of daily meteorological parameters such as deficit vapor pressure, relative humidity, precipitation, mean air temperature, maximum and minimum air temperatures difference and n/N. This new local model that used different meteorological parameters had the highest accuracy in comparison with the other models. Also, a number of models developed by other investigators for estimation of Rs were calibrated for the study area. Finally, different selected models were validated by using the measured data of Rs in 2005. The results showed that the developed local multi-variable model provided higher accuracy results in comparison with the other radiation models.

  18. Radiation damage in graphite - A new model

    International Nuclear Information System (INIS)

    The standard model for interpretation of radiation damage of graphite invokes self-interstitials and vacancies and their aggregation to explain observed dimensional changes. Vacancies aggregate into lines which heal and contract the basal planes, interstitials aggregate into interlayer disks which expand the dimension perpendicular to the layers. Small clusters of interstitials (Cn, n = 4±2) appear which expand the interlayer distance, d002, but for an unknown reason can disappear and not evolve into disks. First principles calculations show that these aggregations are improbable at low temperatures (below 250oC) and that the observed annealing at these temperatures would be impossible. Our calculations show the inadequacies and motivate a new, robust and atomistically based model. At low temperatures, point defects are immobile, but form sturdy links between planes which cause buckling. Since the planes are effectively 'flexible but inextensible', the crystal expands perpendicular and contracts parallel to the basal planes. At higher temperatures, radiation damage causes collisions with planes, which then fold. At all stages, point defects do form, but their aggregation effects are minority effects at all but the highest temperatures. This new model has major implications for the interpretation of Wigner energy. (author)

  19. Evaluation of the quality of hot air dehydrated onion coming from gamma radiated bulbs

    International Nuclear Information System (INIS)

    The purpose of this work was to evaluate the quality of hot air dehydrated onion, as regards physical and chemical characteristics, coming from the regional product that was gamma irradiated for sprout inhibition. We worked with the onion variety Valenciana Sintetica 14. Radio inhibition was made 30 days post harvest with gamma radiation from a 60Co source at the Centro Atomico Ezeiza-CNEA, using a dose of 60 Gy. The skin of the bulbs was manually removed and the bulbs were cut in pieces 3 mm thick and between 1 and 3 cm long. The material was dehydrated in a rotating dryer with forced air circulation at 60 C degrees, between 0.8 and 1.7 m/s air speed and at ambient relative humidity. Dehydration was made 80 days after post-irradiation. The quality of the dehydrated onion was evaluated by the following physical- chemical analysis: total solids content, pungency (indirectly measured by pyruvic acid content assessment), color, pH, carbon hydrates and sensorial analysis. All analytical determinations were made in triplicate. The results obtained showed there are no significant changes between the averages of the physical-chemical properties of the control dehydrated samples and those coming from the radio-inhibited raw matter. According to the sensorial analysis, only the color of dehydrated onion was affected by the radio inhibition process. However, and according to the panel members comment, the greatest browning degree observed in ionizing radiation treated onion seemed to result more attractive to them. It may be concluded that radio inhibited regional onion can be useful as raw matter for hot air dehydrated product. It must be remarked that its use would extend the product use by dehydration plants, thus implying an increase of their processing capacity with the corresponding financial benefit. (author)

  20. Effect of clean indoor air laws on smokers: the clean air module of the SimSmoke computer simulation model

    OpenAIRE

    Levy, D.; Friend, K; Polishchuk, E.

    2001-01-01

    OBJECTIVES—To develop a simulation model to examine the effects of clean indoor air laws on prevalence rates and smoking attributable deaths.?METHODS—Based on empirical and theoretical research, the effects of clean air laws are modelled by type of law. The model considers clean air laws at the state levels between 1993 and 2000, and projects the number of smokers and smoking attributable deaths in the USA under different scenarios from 2000 onward.?RESULTS—The model predicts that comprehensi...

  1. Stomatal resistance of rice leaves as influenced by radiation intensity and air humidity

    International Nuclear Information System (INIS)

    This paper describes results of field experiments of relationships between meteorological conditions and stomatal resistance of rice leaves. The magnitude of stomatal resistance of rice leaves was measured by a porometer at important three developmental stages of rice plants. Stomatal resistance (rs) changed very clearly throughout sunny days in relation to diurnal variation in solar radiation intensity (St) and leaf air vapor concentration deficit (HD). Stomatal resistance of the adaxial surface of rice leaves was found to be the same to that of the abaxial surface in the magnitude, indicating that the water vapor fluxes at the both surfaces of rice leaves are equal with each other. The dependence of non-dimensional stomatal resistance [rs/rm·k(HD)2] on solar radiation intensity (St) was well approximated by a hyperbolic function. The relationship between HD and [rs/rm(1+St, m/St)] was expressed by a quadratic function of HD

  2. Study of filamentation dynamics of ultrashort laser radiation in air: beam diameter effect

    International Nuclear Information System (INIS)

    A single filamentation of femtosecond gigawatt laser radiation with a millimeter-size aperture upon collimated and sharply focused propagation in atmospheric air at 800 nm and 400 nm wavelengths is studied both theoretically and experimentally. The influence of beam initial radius on the parameters of the forming filament is analyzed. Three filament parameters, namely, start coordinate, filament length, and longitudinal continuity are considered. We report that unlike Marburger’s formula the single filamentation onset reveals marked nonquadratic dependence on the laser beam radius providing the same initial pulse power. Additionally, for sharply focused radiation the minor dependence of the filament length on the laser beam diameter at the constant initial pulse intensity was experimentally revealed. (paper)

  3. Gaschromatographic proof of nitrous oxide concentrations in air by means of radiation ionization detectors

    International Nuclear Information System (INIS)

    For the analysis of nitrous oxide concentrations at workplaces in operating theatres, gaschromatography is a particularly suitable method if it is possible to measure nitrous oxide concentrations in the ppm to ppb region. For this, most frequently used gaschromatographic detectors (flame ionization detector, thermal conductivity detector) are unsuitable, whereas radiation ionization detectors can be used successfully. The investigations using detectors designed at the Central Institute for Isotopes and Radiation Research of the GDR Academy of Sciences showed that a high-temperature electron-capture detector (ECD), working at a temperatur of 250 0C, enables the determination of traces of nitrous oxide with a detection limit of about 200 ppb, while the helium detector has a limit of 50 ppb of nitrous oxide in room air. Since the helium detector requires extremely pure carrier gas, the high-temperature ECD appears more suitable for analyzing nitrous oxide. (author)

  4. Radiation exposure of workers assigned to the maintenance of air surveillance radar

    International Nuclear Information System (INIS)

    The French Defence Radiation Protection Service (SPRA) conducted a study to assess the radiation exposure of personnel assigned to the maintenance of the Palmier radar in an Air Force Base. The aim of the study was the assessment of the annual effective doses received by personnel assigned to these maintenance operations, and the measurement of equivalent dose rates in the area in order to realize radiological zoning. In two measurement campaigns, the annual individual effective doses, measured by passive whole-body OSL InlightR dosimeters, consolidated the results obtained by radiometric measurements. Moreover, the equivalent dose rate shows wide variations in relation to the position of the operator in the emitter's area. From these results, the authors propose recommendations for categorization of workers, radiological zoning and dose monitoring procedures. (authors)

  5. A mixed-integer optimization model for Air Traffic Deconfliction

    OpenAIRE

    Cafieri, Sonia; Brisset, Pascal; Durand, Nicolas

    2010-01-01

    A mixed-integer nonlinear optimization model is presented for the resolution of aircraft conflict. Aircraft conflicts occur when aircraft sharing the same airspace are "too close" to each other and represent a crucial problem in Air Traffic Management. We describe the model and show some numerical experiments.

  6. Air Quality Modeling of Traffic-related Air Pollutants for the NEXUS Study

    Science.gov (United States)

    The paper presents the results of the model applications to estimate exposure metrics in support of an epidemiologic study in Detroit, Michigan. A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characteriz...

  7. Evaluation of temperature-based global solar radiation models in China

    DEFF Research Database (Denmark)

    Liu, Xiaoying; Mei, Xurong; Li, Yuzhong; Wang, Qingsuo; Jensen, Jens Raunsø; Zhang, Yanqing; Porter, John Roy

    2009-01-01

    Estimation of global solar radiation (Rs) from the daily range of air temperature (¿T) offers an important alternative in the absence of measured Rs or sunshine duration because of the wide availability of air temperature data. In this paper, we assessed 16 Rs models including modified versions of the Bristow and Campbell (B-C) and the Hargreaves (Harg) models across a wide range of agro-ecological conditions in China. Using long-term data from 15 sites in Northeast, North China Plain and Northw...

  8. Validation of spectral gas radiation models under oxyfuel conditions. Part A: Gas cell experiments

    DEFF Research Database (Denmark)

    Becher, Valentin; Clausen, Sønnik; Fateev, Alexander; Spliethoff, Hartmut

    2011-01-01

    AbstractCombustion of hydrocarbon fuels with pure oxygen results in a different flue gas composition as combustion with air. Standard CFD spectral gas radiation models for air combustion are out of their validity range. The series of three articles provides a common spectral basis for the validation of new developed models. In part A of the series gas cell transmissivity spectra in the spectral range of 2.4–5.4?m of water vapor and carbon dioxide in the temperature range from 727 to 1500° C and ...

  9. Comparison of the performance of net radiation calculation models

    OpenAIRE

    Kjaersgaard, Jeppe Hvelplund; Cuenca, Richard Henry; Martínez-Cob, Antonio; Gavilán Zafra, Pedro; Plauborg, F. L.; Mollerup, M.; Hansen, S.

    2009-01-01

    Daily values of net radiation are used in many applications of crop-growth modeling and agricultural water management. Measurements of net radiation are not part of the routine measurement program at many weather stations and are commonly estimated based on other meteorological parameters. Daily values of net radiation were calculated using three net outgoing long-wave radiation models and compared to measured values. Four meteorological datasets representing two climate regimes, a sub-humid,...

  10. Measurement and Modeling of Particle Radiation in Coal Flames

    DEFF Research Database (Denmark)

    Ba?ckstro?m, Daniel; Johansson, Robert; Andersson, Klas Jerker; Johnsson, Filip; Clausen, Sønnik; Fateev, Alexander

    2014-01-01

    This work aims at developing a methodology that can provide information of in-flame particle radiation in industrial-scale flames. The method is based on a combination of experimental and modeling work. The experiments have been performed in the high-temperature zone of a 77 kWth swirling lignite flame. Spectral radiation, total radiative intensity, gas temperature, and gas composition were measured, and the radiative intensity in the furnace was modeled with an axisymmetric cylindrical radiatio...

  11. Comparison of the performance of net radiation calculation models

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Cuenca, R.H.; Martinez-Cob, A.; Gavilán, P.; Plauborg, Finn; Mollerup, Mikkel; Hansen, Søren

    2009-01-01

    Daily values of net radiation are used in many applications of crop-growth modeling and agricultural water management. Measurements of net radiation are not part of the routine measurement program at many weather stations and are commonly estimated based on other meteorological parameters. Daily values of net radiation were calculated using three net outgoing long-wave radiation models and compared to measured values. Four meteorological datasets representing two climate regimes, a sub-humid, hi...

  12. Evaluation of indoor air quality in a department of radiation oncology located underground

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Taek; Kwon, Byung Hyun; Kang, Dong Mug; Ki, Yong Kan; Kim, Dong Won [Pusan National University, Busan (Korea, Republic of); Shin, Yong Chul [Inje University, Busan (Korea, Republic of)

    2005-12-15

    Indoor air quality (IAQ) in the radiation treatment center which is generally located underground is important to the health of hospital workers and patients treated over a long period of time. This study was conducted to measure and analyze the factors related to IAQ and subjective symptoms of sick building syndrome, and to establish the causes influencing IAQ and find a solution to the problems. Self administrated questionnaire was conducted to check the workers' symptoms and understanding of the work environment. Based on a preliminary investigation, the factors related to IAQ such as temperature, humidity, fine particulate, carbon dioxide, carbon monoxide, formaldehyde, total volatile organic compounds (TVOC), and radon gas were selected and measured for a certain period of time in specific sites where hospital workers stay long in a day. And we also evaluated the surrounding environment and the efficiency of the ventilating system simultaneously, and measured the same factors at the first floor (outdoor) to compare with outdoor air quality. All collected data were assessed by the recommended standard for IAQ of the domestic and international environmental organizations. Hospital workers were discontented with foul odors, humidity and particulate. They complained symptoms related to musculo-skeletal system, neurologic system, and mucosal-irritation. Most of the factors were not greater than the recommended standard, but the level of TVOC was third or fourth times as much as the measuring level of some offices in the United States. The frequency and the amount of the ventilating system were adequate, however, the problem arising in the position of outdoor-air inlets and indoor-air outlets involved a risk of the indraft of contaminated air. A careful attention was a requirement in handling and keeping chemical substances including a developing solution which has a risk of TVOC emissions, and repositioning the ventilating system was needed to solve the contaminated-air circulation immediately. We verified that some IAQ-related factors and inadequate ventilating system could cause subjective symptoms in hospital workers. The evaluation of IAQ was surely needed to improve the underground working environment for hospital workers and patients. On the basis of these data, from now on, we should actively engage in designs of the department of radiation oncology or improvement in environment of the existing facilities.

  13. Radiation induced peroxidation in model lipid systems

    International Nuclear Information System (INIS)

    In the studies of radiation induced lipid peroxidation, lecithin-liposomes and aqueous micellar solutions of sodium linoleate (or linoleic acid) have been used as models of lipid membrane systems. The liposomes and aqueous linoleate micelles were irradiated in the presence of 02 and N2O/O2 (80:20 v/v). The peroxidation was initiated using gamma radiation from 60Co radiation source and was monitored by measuring the increase in absorbance of conjugated diene at 232 nm and by the thiobarbituric acid (TBA) test. The decomposition of hydroperoxides during TBA assay produced a small fraction of malonaldehyde (20%), subsequently forming TBA-malonaldehyde complex with an adsorption characteristic at 532 nm. The hydroperoxide formation has been shown to increase with increasing dosage. The presence of N2O/O2 has been shown to enhance the formation of hydroperoxides in irradiated liposomes but not in irradiated linoleate and the explanation has been presented. The hydroxyl radical is the main species responsible for initiating the lipid peroxidation. However, intermolecular reaction has been suggested to be responsible for enhancing hydroperoxide yield in the model lipid systems considered here. The oxidation products observed in oxygenated systems and N2O/O2systems are similar. The reduced-oxidation products of irradiated linoleate are 9-/13-hydroxy-10,12/9, 11-octadecadienoic acids, 14-hydroxy-9,12-octadecadienoic acid, 9-/10-/12-hydroxy-12-/12-/9-octadecenoic acids, 9-/10-hydroxyoctadecanoic acids, 9,10-/12,13-dihydroxy-12-/9-octadecenoic acids and 9,12,13-dihydroxyoctadecanoic acids. In irradiated liposomes, the reduced-oxidation products are 9-hydroxy-10,12-octadecadienoic acid, 5-hydroxy 6,8,11,14-eico-satetranoic acid and 9-/10-hydroxyoctadecanoic acids. The reaction mechanisms accounting for the product formation are proposed. The other minor products including hydrocarbons have also been identified and their formation are discussed. (author)

  14. Modelling non-isothermal flow and air leakage in a steel reheating furnace

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yongxiang; Jokilaakso, A.

    1997-12-31

    This progress report will give a brief summary on the modeling of the steel reheating furnace at Rautaruukki Oy carried out in Spring 1997 (January - June), after the basic 3-D flow model for the industrial scale steel reheating fumace in 1996. The current report includes the following modelling tasks: (1) Improving the convergence of the basic flow models, (2) Non-isothermal flow model with convective heat transfer, (3) Non-isothermal flow models for air leakage at charge and discharge doors, (4) Preliminary radiative heat transfer models. A reliable gas flow pattern is very important for the modelling of the fumace heat transfer. Gas flow in principle dominates the heat transfer characteristics and the temperature distribution in the fumace. The previous 3-D gas model was preliminary, and the main objectives were to construct the basic flow model, test the model workability, and obtain approximate flow pattern. Air leakage into the reheating fumace takes place in the charge and discharge doors of the fumace during operation. It not only brings local and overall cooling in the fumace, but also may cause extra oxidation to the steel slab surfaces and thus increase surface scaling. Therefore, it is important to known how the leakage air is mixed with the combustion gases and where the air travels in the fumace. Radiative heat transfer plays very important role in the total heat transfer to the slabs in the fumace. Radiation heat transfer modeling is the final goal in this project. A lot of efforts have been made for improving the convergence in the computation, in order to obtain more reliable gas flow pattern and mixing behaviour. The model is very difficult to converge due to the high velocity difference from 3 sets of gas burners. Different scales of relaxation factors were tested, but no efficient factors were found. EXPERT system as well as the local relaxation near the burner regions could not give reasonable improvements in convergence. In addition to the on-line relaxation parameter changes, a new automatic relaxation tool SARAH provided in PHOENICS 2.2 was also used to speed the convergence. It gave some help, but did not solve the convergence problem completely. One useful hint proved from the SARAH test is that the relaxation factors for velocity components should be much higher than the ones suggested by the menu system, and much higher than the factors EXPERT gives. This helped the later manual tests which gave finally a reasonable set of factors. In the current report, good convergence were reached in all the models, with the optimised relaxation factors. Air leaked into the furnace at about room temperature with different thermophysical properties, especially the density and viscosity. This non-isothermal mixing with hot gases cannot be realistically modeled unless heat transfer is taken into account. Before the full radiation models are established, convective heat transfer was considered in the air leakage models. In the convective heat transfer models, the non-isothermal mixing behaviour of air with hot gases can almost be represented, because the total cooling due to radiative heat transfer in the furnace is not very high. At the same time, a convective heat transfer model was made, in order to check the flow pattern change due to heat transfer. In the models with convective heat transfer, a through model debugging was carried out in order to get correct and complete wall boundary conditions. After the air leakage tests, a complete radiative heat transfer model was constructed. In this model, complete wall temperature and radiation boundary conditions were established. Detailed division of slab upper/lower surfaces as well as for other solid surfaces with different temperatures were made. In the beginning, conflict of GRND3 non-equilibrium wall functions with the six-flux model was encountered. It always overflew during the model ending stage for result file writing. Debugging of different wall radiation patches and covals didn`t give any explanation. Checking carefully the result files, it was found th

  15. Modeling of the Lunar Radiation Environment

    Science.gov (United States)

    de Angelis, G.; Badavi, F. F.; Clem, J. M.; Blattnig, S. R.; Clowdsley, M. S.; Nealy, J. E.; Tripathi, R. K.; Wilson, J. W.

    2007-04-01

    In view of manned missions targeted to the Moon, for which radiation exposure is one of the greatest challenges to be tackled, it is of fundamental importance to have available a tool, which allows the determination of the particle flux and spectra at any time and at any point of the lunar surface. With this goal in mind, a new model of the Moon's radiation environment due to Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE) has been developed. Primary particles reach the lunar surface, and are transported all throughout the subsurface layers, with backscattering patterns taken into account. The surface itself has been modeled as regolith and bedrock, with composition taken from the results of the instruments flown on the Apollo missions. Subsurface environments like lava tubes have been considered in the analysis. Particle transport has been performed with both deterministic and Monte Carlo codes with an adaptation for planetary surface geometry. Results are given in terms of fluxes, doses and LET, for most kinds of particles for various kinds of soil and rock chemical compositions.

  16. Modeling of the Lunar Radiation Environment

    International Nuclear Information System (INIS)

    In view of manned missions targeted to the Moon, for which radiation exposure is one of the greatest challenges to be tackled, it is of fundamental importance to have available a tool, which allows the determination of the particle flux and spectra at any time and at any point of the lunar surface. With this goal in mind, a new model of the Moon's radiation environment due to Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE) has been developed. Primary particles reach the lunar surface, and are transported all throughout the subsurface layers, with backscattering patterns taken into account. The surface itself has been modeled as regolith and bedrock, with composition taken from the results of the instruments flown on the Apollo missions. Subsurface environments like lava tubes have been considered in the analysis. Particle transport has been performed with both deterministic and Monte Carlo codes with an adaptation for planetary surface geometry. Results are given in terms of fluxes, doses and LET, for most kinds of particles for various kinds of soil and rock chemical compositions

  17. Mathematical modeling of heat transfer between the plant seedling and the environment during a radiation frost

    Directory of Open Access Journals (Sweden)

    Finnikov K.A.

    2010-11-01

    Full Text Available The power of the internal heat source sufficient to maintain a positive temperature of plants during one of the possible form of cold stress - radiation frost was determined with the help of numerical simulation.The simulation of unsteady heat transfer in the soil-plant-air system in the conditions of radiation frost showed that the the ground part of plants is cooling most rapidly, and this process is partially slowed down by the natural-convection heat transfer with warmer air. If the frost is not continuous, the radiative cooling is the main danger for plant. The necessary power of heat-production inside plant that allows it to avoid hypothermia depends both on natural conditions and the size of the plant. For plants with a typical diameter of the stem about 2 mm this heat-production should be from 50 to 100 W / kg. Within 2 hours a total amount of heat about 0.5 MJ / kg in the plant should be allocated. Larger plants will have a smaller surface to mass ratio, and the maintaining of it's temperature will require a lower cost of nutrients per unit, accordingly. Modeling of the influence of plant surface trichomes presence on the process of its cooling showed that the role of trichomes in the protection of plants from hypothermia during radiation frost usually is negative due to the fact that the presence of trichomes increases the radiative heat transfer from the plant and the impediment in air movement near the plant reduces heat flux entering the plant from a warmer air. But in cases where the intensity of heat generation within the plant is sufficient for the maintenance of the plant temperature higher than the air temperature, the presence of trichomes impairs heat transfer from plant to air, and therefore contributes to a better heating of plants.

  18. Mathematical model of an air-filled alpha stirling refrigerator

    Science.gov (United States)

    McFarlane, Patrick; Semperlotti, Fabio; Sen, Mihir

    2013-10-01

    This work develops a mathematical model for an alpha Stirling refrigerator with air as the working fluid and will be useful in optimizing the mechanical design of these machines. Two pistons cyclically compress and expand air while moving sinusoidally in separate chambers connected by a regenerator, thus creating a temperature difference across the system. A complete non-linear mathematical model of the machine, including air thermodynamics, and heat transfer from the walls, as well as heat transfer and fluid resistance in the regenerator, is developed. Non-dimensional groups are derived, and the mathematical model is numerically solved. The heat transfer and work are found for both chambers, and the coefficient of performance of each chamber is calculated. Important design parameters are varied and their effect on refrigerator performance determined. This sensitivity analysis, which shows what the significant parameters are, is a useful tool for the design of practical Stirling refrigeration systems.

  19. A Hybrid Neural Network Prediction Model of Air Ticket Sales

    Directory of Open Access Journals (Sweden)

    Han-Chen Huang

    2013-11-01

    Full Text Available Air ticket sales revenue is an important source of revenue for travel agencies, and if future air ticket sales revenue can be accurately forecast, travel agencies will be able to advance procurement to achieve a sufficient amount of cost-effective tickets. Therefore, this study applied the Artificial Neural Network (ANN and Genetic Algorithms (GA to establish a prediction model of travel agency air ticket sales revenue. By verifying the empirical data, this study proved that the established prediction model has accurate prediction power, and MAPE (mean absolute percentage error is only 9.11%. The established model can provide business operators with reliable and efficient prediction data as a reference for operational decisions.

  20. Development of a distributed air pollutant dry deposition modeling framework

    International Nuclear Information System (INIS)

    A distributed air pollutant dry deposition modeling system was developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry deposition of carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter less than 10 microns (PM10) to trees can be spatially quantified. Employing nationally available road network, traffic volume, air pollutant emission/measurement and meteorological data, the developed system provides a framework for the U.S. city managers to identify spatial patterns of urban forest and locate potential areas for future urban forest planting and protection to improve air quality. To exhibit the usability of the framework, a case study was performed for July and August of 2005 in Baltimore, MD. - Highlights: ? A distributed air pollutant dry deposition modeling system was developed. ? The developed system enhances the functionality of i-Tree Eco. ? The developed system employs nationally available input datasets. ? The developed system is transferable to any U.S. city. ? Future planting and protection spots were visually identified in a case study. - Employing nationally available datasets and a GIS, this study will provide urban forest managers in U.S. cities a framework to quantify and visualize urban forest structure and its air pollution removal effect.

  1. Mathematical models for atmospheric pollutants. Appendix D. Available air quality models. Final report

    International Nuclear Information System (INIS)

    Models that are available for the analysis of airborne pollutants are summarized. In addition, recommendations are given concerning the use of particular models to aid in particular air quality decision making processes. The air quality models are characterized in terms of time and space scales, steady state or time dependent processes, reference frames, reaction mechanisms, treatment of turbulence and topography, and model uncertainty. Using these characteristics, the models are classified in the following manner: simple deterministic models, such as air pollution indices, simple area source models and rollback models; statistical models, such as averaging time models, time series analysis and multivariate analysis; local plume and puff models; box and multibox models; finite difference or grid models; particle models; physical models, such as wind tunnels and liquid flumes; regional models; and global models

  2. Joint space-time geostatistical model for air quality surveillance

    Science.gov (United States)

    Russo, A.; Soares, A.; Pereira, M. J.

    2009-04-01

    Air pollution and peoples' generalized concern about air quality are, nowadays, considered to be a global problem. Although the introduction of rigid air pollution regulations has reduced pollution from industry and power stations, the growing number of cars on the road poses a new pollution problem. Considering the characteristics of the atmospheric circulation and also the residence times of certain pollutants in the atmosphere, a generalized and growing interest on air quality issues led to research intensification and publication of several articles with quite different levels of scientific depth. As most natural phenomena, air quality can be seen as a space-time process, where space-time relationships have usually quite different characteristics and levels of uncertainty. As a result, the simultaneous integration of space and time is not an easy task to perform. This problem is overcome by a variety of methodologies. The use of stochastic models and neural networks to characterize space-time dispersion of air quality is becoming a common practice. The main objective of this work is to produce an air quality model which allows forecasting critical concentration episodes of a certain pollutant by means of a hybrid approach, based on the combined use of neural network models and stochastic simulations. A stochastic simulation of the spatial component with a space-time trend model is proposed to characterize critical situations, taking into account data from the past and a space-time trend from the recent past. To identify near future critical episodes, predicted values from neural networks are used at each monitoring station. In this paper, we describe the design of a hybrid forecasting tool for ambient NO2 concentrations in Lisbon, Portugal.

  3. Monitoring of radiation fields in a waste tank model: Virtual radiation dosimetry

    International Nuclear Information System (INIS)

    The University of Florida (UF) has developed a coupled radiation computation and three-dimensional modeling simulation code package. This package combines the Deneb Robotics' IGRIP three-dimensional solid modeling robotic simulation code with the UF developed VRF (Virtual Radiation Field) Monte Carlo based radiation computation code. The code package allows simulated radiation dose monitors to be placed anywhere on simulated robotic equipment to record the radiation doses which would be sustained when carrying out tasks in radiation environments. Comparison with measured values in the Hanford Waste Tank C-106 shows excellent results. The code shows promise of serving as a major tool in the design and operation of robotic equipment in radiation environments to ensure freedom from radiation caused failure

  4. Mathematical modeling of compression processes in air-driven boosters

    International Nuclear Information System (INIS)

    The compressed air in normal pressure is used as the source of power of the air-driven booster. The continuous working of air-driven boosters relies on the difference of surface area between driven piston and driving piston, i.e., the different forces acting on the pistons. When the working surface area of the driving piston for providing power is greater than that of the driven piston for compressing gas, the gas in compression chamber will be compressed. On the basis of the first law of thermodynamics, the motion regulation of piston is analyzed and the mathematical model of compression processes is set up. Giving a calculating example, the vary trends of gas pressure and pistons' move in working process of booster have been gotten. The change of parameters at different working conditions is also calculated and compared. And the corresponding results can be referred in the design of air-driven boosters

  5. First-principles modeling of Li-air battery materials

    Science.gov (United States)

    Radin, Maxwell; Siegel, Donald

    2011-03-01

    Of the many possible battery chemistries, the so-called ``Li-air'' system is noteworthy in that its theoretical capacity (~ 5 kWh/kg, including mass of oxygen) exceeds that of any electrochemical system. Perhaps more importantly, the simplified composition of its air cathode -- involving only the inlet of oxygen from the atmosphere -- has the potential to provide cost benefits in comparison to the Li-ion systems of today. Although the first rechargeable Li-air battery was demonstrated by Abraham and Jiang 14 years ago, its performance in many dimensions remains poor, and relatively little computational work has been done to elucidate performance-limiting phenomena. This talk will introduce the basic properties and main performance issues associated with Li-air batteries. Opportunities for first-principles modeling to assist in overcoming these obstacles will be highlighted.

  6. The role of clouds in improving the regression model for hourly values of diffuse solar radiation

    International Nuclear Information System (INIS)

    The study introduces a new regression model developed to estimate the hourly values of diffuse solar radiation at the surface. The model is based on the clearness index and diffuse fraction relationship, and includes the effects of cloud (cloudiness and cloud type), traditional meteorological variables (air temperature, relative humidity and atmospheric pressure observed at the surface) and air pollution (concentration of particulate matter observed at the surface). The new model is capable of predicting hourly values of diffuse solar radiation better than the previously developed ones (R2 = 0.93 and RMSE = 0.085). A simple version with a large applicability is proposed that takes into consideration cloud effects only (cloudiness and cloud height) and shows a R2 = 0.92.

  7. Investigation of low frequency molecular Bremsstrahlung radiation from laser induced breakdown of air

    Science.gov (United States)

    Paturi, Prem Kiran; Lakshminarayanan, Vinoth Kumar; Elle, Manikanta; Chelikani, Leela; Acrhem Team

    2015-05-01

    Low frequency electromagnetic radiation (30-1000 MHz), due to molecular Bremsstrahlung, from ns and ps laser induced breakdown (LIB) of atmospheric air is studied. In the plasma formed by the LIB of atmospheric air, interaction of charged particles with neutral clusters of atoms and molecules result in the emission of low frequency radiation. With increasing laser intensity, the plasma frequency (?P) comes closer to the laser frequency (?L) , leading to higher degree of ionization. This is observed to reduce the electron-neutral interactions decreasing the low frequency emissions. Thus the emissions from ps LIB are 2-3 orders smaller than those from ns LIB. While traversing from the loose to tight focusing conditions, the emissions from ns LIB and ps LIB were observed to be increasing and decreasing, respectively. This confirms the role of the number of seed electrons and their interaction with neutrals on the low frequency emissions. The emissions were observed to be spectral selective, dependent on the polarization state of the input laser pulses and the detecting antenna. The work is supported by Defence Research and Developement Organization, India through Grants-in-Aid Program.

  8. Quality assurance for radon exposure chambers at the National Air and Radiation Environmental Laboratory, Montgomery, Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Semler, M.O.; Sensintaffar, E.L. [National Air and Radiation Environmental Laboratory, Montgomery, AL (United States)

    1993-12-31

    The Office of Radiation and Indoor Air, U.S. Environmental Protection Agency (EPA), operates six radon exposure chambers in its two laboratories, the National Air and Radiation Environmental Laboratory (NAREL) in Montgomery, Alabama, and the Las Vegas Facility, Las Vegas, Nevada. These radon exposure chambers are used to calibrate and test portable radon measuring instruments, test commercial suppliers of radon measurement services through the Radon Measurement Proficiency Program, and expose passive measurement devices to known radon concentrations as part of a quality assurance plan for federal and state studies measuring indoor radon concentrations. Both laboratories participate in national and international intercomparisons for the measurement of radon and are presently working with the National Institute of Standards and Technology (NIST) to receive a certificate of traceability for radon measurements. NAREL has developed an estimate of the total error in its calibration of each chamber`s continuous monitors as part of an internal quality assurance program. This paper discusses the continuous monitors and their calibration for the three chambers located in Montgomery, Alabama, as well as the results of the authors intercomparisons and total error analysis.

  9. [Study of radiation dose rate in air at Setagaya in Tokyo].

    Science.gov (United States)

    Hachisuka, Akiko; Kimura, Yoshie; Nakamura, Ryosuke; Teshima, Reiko

    2011-01-01

    The great earthquake occurred at East Japan on March 11, 2011 and the following tsunami induced the accident which environmentally leaked radioactive materials from the nuclear power plant of the Fukushima Daiichi. We measured radiation dose rate in air by the NaI (Tl) scintillation and GM survey meters from March 15 to May 30 at Setagaya in Tokyo. Three measured points were at the 1m height from the ground on asphalt surfaced road, at the 5cm height from ground with weeds, and at the room of a reinforced concrete building. As a result, a transient increase was observed on March 15, a sustained rise was observed on both days of March 21 and 22. The latter was thought to be due to the radioactive rainfall. These measured values were compared with the radiation dose rate in air of the cities in Kanto area, and it was confirmed that the measured values at Setagaya are not so different from that of those cities. PMID:22259853

  10. MODEL DINAMIK PENGENDALIAN PENCEMARAN AIR KALI SURABAYA

    Directory of Open Access Journals (Sweden)

    Suwari Suwari

    2011-08-01

    Full Text Available The Surabaya River plays an important role as water supply of the Surabaya PDAM, irrigation, industry, transportation, and means of recreation. However, domestic, industrial, and agricultural waste that were discharged into the river stream polluted the Surabaya River and decreased the carrying capacity and assimilative capacity. Therefore, effort to monitor and control the Surabaya River water pollution need to be well organized and implemented. The aim of the research is to develop a model of water pollution control on Surabaya River region. The research was carried out based on field survey, in situ and laboratory sample examination, questionnaire, and expert judgment. Pollution control model developed in this study was built into three sub-models, namely: (1 ecology sub-model, (2 social sub-model, and (3 economy sub-model using powersim constructor 2.5 version. Pollution control scenarios were developed using prospective analysis. The results of water pollution parameters such as TSS, DO, BOD, COD, N-NO2, and the level of mercury (Hg were higher than the allowable class 1 standard. The sources of Surabaya River pollution mainly are domestic and industrial waste with total load of BOD, COD, and TSS are 55.49, 132.58, and 210.13 ton/day, respectively. According to water quality status, the Surabaya River is categorized as heavy polluted and the loading pollution need to be decreased. By using prospective analysis, there were five important factors that affect the future of the Surabaya River water pollution control, i.e.: (1 population growth and community awareness, (2 community perception, (3 implementation of regulations, (4 commitment/local government support, and (5 system and institutional capacity. There are three development scenarios, that are pessimistic, moderate and optimistic. The moderate and optimistic scenario are the realistic scenarios that occur in the future for Surabaya River water pollution control in considering of ecology, social and economy aspects.

  11. Modeling Air Stripping of Ammonia in an Agitated Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kofi, Adu-Wusu; Martino, Christopher J.; Wilmarth, William R.; Bennett, William M.; Peters, Robert s.

    2005-11-29

    A model has been developed to predict the rate of removal of ammonia (NH{sub 3}) from solution in a sparged agitated vessel. The model is first-order with respect to liquid-phase concentration of NH{sub 3}. The rate constant for the first-order equation is a function of parameters related to the vessel/impeller characteristics, the air/liquid properties as well as the process conditions. However, the vessel/impeller characteristics, the air/liquid properties, and the process conditions reduce the rate constant dependence to only three parameters, namely, the air sparge rate, the liquid volume or batch size, and the Henry's law constant of NH{sub 3} for the liquid or solution. Thus, the rate of removal is not mass-transfer limited. High air sparge rates, high temperatures, and low liquid volumes or batch sizes increase the rate of removal of NH{sub 3} from solution. The Henry's law constant effect is somewhat reflected in the temperature since Henry's law constant increases with increasing temperature. Data obtained from actual air stripping operation agree fairly well with the model predictions.

  12. Stochastic radiative transfer model for mixture of discontinuous vegetation canopies

    International Nuclear Information System (INIS)

    Modeling of the radiation regime of a mixture of vegetation species is a fundamental problem of the Earth's land remote sensing and climate applications. The major existing approaches, including the linear mixture model and the turbid medium (TM) mixture radiative transfer model, provide only an approximate solution to this problem. In this study, we developed the stochastic mixture radiative transfer (SMRT) model, a mathematically exact tool to evaluate radiation regime in a natural canopy with spatially varying optical properties, that is, canopy, which exhibits a structured mixture of vegetation species and gaps. The model solves for the radiation quantities, direct input to the remote sensing/climate applications: mean radiation fluxes over whole mixture and over individual species. The canopy structure is parameterized in the SMRT model in terms of two stochastic moments: the probability of finding species and the conditional pair-correlation of species. The second moment is responsible for the 3D radiation effects, namely, radiation streaming through gaps without interaction with vegetation and variation of the radiation fluxes between different species. We performed analytical and numerical analysis of the radiation effects, simulated with the SMRT model for the three cases of canopy structure: (a) non-ordered mixture of species and gaps (TM); (b) ordered mixture of species without gaps; and (c) ordered mixture of species with gaps. The analysis indicates that the variation of radiation fluxes between different species is proportional to the variation of species optical properties (leaf albedo, density of foliage, etc.) Gaps introduce significant disturbance to the radiation regime in the canopy as their optical properties constitute major contrast to those of any vegetation species. The SMRT model resolves deficiencies of the major existing mixture models: ignorance of species radiation coupling via multiple scattering of photons (the linear mixture model) or overestimation of this coupling due to neglecting spatial clumping of species (the TM approach). Thus, based on the former experience with mixture modeling, this study establishes an advanced theoretical basis for future mixture applications

  13. Modeling solar-driven ejector refrigeration system offering air conditioning for office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J.; Shen, H.G. [School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China)

    2009-02-15

    A lumped method combined with dynamic model is proposed for use in investigating the performance and solar fraction of a solar-driven ejector refrigeration system (SERS) using R134a, for office air conditioning application for buildings in Shanghai, China. Classical hourly outdoor temperature and solar radiation model were used to provide basic data for accurate analysis of the system performance. Results indicate that during the office working-time, i.e., from 9:00 to 17:00, the average COP and the average solar fraction of the system were 0.48 and 0.82 respectively when the operating conditions were: generator temperature (85 C), evaporator temperature (8 C) and condenser temperature varying with ambient temperature. Compared with traditional compressor based air conditioner, the system can save upto 80% electric energy when providing the same cooling capacity for office buildings. Hence, the system offers a good energy conservation method for office buildings. (author)

  14. Study of radiation-induced modification of FEP in nitrogen and air atmospheres

    International Nuclear Information System (INIS)

    Fluoropolymers are a class of polymer with specific characteristics like chemical inertia and stability under aggressive chemical environmental. These properties are a consequence of the chemical structure, C-F bonds. Poli (tetrafluoroethylene-co-hexafluoropropylene) (FEP) is inserting in these class of polymer. FEP has good chemical and physical resistance, its working in temperature of 200 degree C and has a surface extremely smooth. This polymer is used as component in films, coatings, tapes, wires and cables in a variety of industries including telecommunications, semiconductor, chemical, food processing and packaging. In this study was used film with 100mm of thickness that were submitted to gamma radiation under nitrogen and air atmospheres in order to observe the effect of atmosphere in the polymer matrix. The irradiated doses were: 5, 10, 20, 40 and 80kGy at room temperature. The characterization was made by thermogravimetric analysis (TG), scanning electron microscope (SEM) and infrared spectroscopy using attenuate reflectance (ATR-IR). The TG analysis shown two degradation steps and for the samples irradiated under air the initial degradation began 10 degrees earlier than the samples irradiated under nitrogen. After the analysis, the results obtained were expected: the degradation reactions occurred in the samples irradiated under air atmosphere and the film has no changes in the structure when was irradiated under nitrogen atmosphere. (author)

  15. Radiolytic yield of ozone in air for low dose neutron and x-ray/gamma-ray radiation

    International Nuclear Information System (INIS)

    Radiation ionizes surrounding air and produces molecular species, and these localized effects may be used as a signature of, and for quantification of, radiation. Low-level ozone production measurements from radioactive sources have been performed in this work to understand radiation chemical yields at low doses. The University of New Mexico AGN-201 M reactor was used as a tunable radiation source. Ozone levels were compared between reactor-on and reactor-off conditions, and differences (0.61 to 0.73 ppb) well below background levels were measured. Simulations were performed to determine the dose rate distribution and average dose rate to the air sample within the reactor, giving 35 mGy of mixed photon and neutron dose. A radiation chemical yield for ozone of 6.5±0.8 molecules/100 eV was found by a variance weighted average of the data. The different contributions of photons and neutrons to radiolytic ozone production are discussed. - Highlights: • Localized ozone production in air may be an indicator of radioactive material. • Radiolytic ozone work is dominated by high radiation fields in the saturation regime. • For low level measurements we used a reactor as a mixed photon/neutron source. • Monte Carlo simulations were performed to understand the dose profile to air. • Different contributions to ozone production are discussed for neutrons and photons

  16. Economic damages of ozone air pollution to crops using combined air quality and GIS modelling

    Science.gov (United States)

    Vlachokostas, Ch.; Nastis, S. A.; Achillas, Ch.; Kalogeropoulos, K.; Karmiris, I.; Moussiopoulos, N.; Chourdakis, E.; Banias, G.; Limperi, N.

    2010-09-01

    This study aims at presenting a combined air quality and GIS modelling methodological approach in order to estimate crop damages from photochemical air pollution, depict their spatial resolution and assess the order of magnitude regarding the corresponding economic damages. The analysis is conducted within the Greater Thessaloniki Area, Greece, a Mediterranean territory which is characterised by high levels of photochemical air pollution and considerable agricultural activity. Ozone concentration fields for 2002 and for specific emission reduction scenarios for the year 2010 were estimated with the Ozone Fine Structure model in the area under consideration. Total economic damage to crops turns out to be significant and estimated to be approximately 43 M€ for the reference year. Production of cotton presents the highest economic loss, which is over 16 M€, followed by table tomato (9 M€), rice (4.2 M€), wheat (4 M€) and oilseed rape (2.8 M€) cultivations. Losses are not spread uniformly among farmers and the major losses occur in areas with valuable ozone-sensitive crops. The results are very useful for highlighting the magnitude of the total economic impacts of photochemical air pollution to the area's agricultural sector and can potentially be used for comparison with studies worldwide. Furthermore, spatial analysis of the economic damage could be of importance for governmental authorities and decision makers since it provides an indicative insight, especially if the economic instruments such as financial incentives or state subsidies to farmers are considered.

  17. The experimental validation of a CFD model for a heating oven with natural air circulation

    International Nuclear Information System (INIS)

    This paper discusses a 3-D Computational Fluid Dynamics (CFD) model and presents experimental analysis of the flow and thermal processes within a laboratory heating oven with a natural air circulation. This device is used to store laboratory samples and products at a high, constant and spatially uniform temperature. The mathematical model included heat conduction in the insulated walls and convective and radiative (between walls) heat transfer in the volume of air within the oven. To formulate the mathematical model, a number of experiments were carried out to determine the temperature boundary conditions along the U-shaped heaters and the emissivity of the internal and external walls to determine the radiative heat fluxes. In addition, to validate the spatial temperature and velocity fields in the storage chamber and on the external oven walls, a set of thermocouples and Particle Image Velocimetry (PIV) were employed. The existing device was assessed in four configurations using a certification procedure that was performed at its maximum temperature level. The device was then numerically simulated using the mathematical model developed for this study. The results show satisfactory agreement between the experimental and computational velocity and temperature values. Furthermore, this study developed potential changes for the construction of this device that will improve the temperature uniformity within the storage space. -- Highlights: ? Temperature uniformity of oven was examined. ? The CFD model of drying oven was satisfactory validated. ? Potential modifications of drying oven were shown

  18. Flavour Dependent Gauged Radiative Neutrino Mass Model

    CERN Document Server

    Baek, Seungwon; Yagyu, Kei

    2015-01-01

    We propose a one-loop induced radiative neutrino mass model with anomaly free flavour dependent gauge symmetry: $\\mu$ minus $\\tau$ symmetry $U(1)_{\\mu-\\tau}$. A neutrino mass matrix satisfying current experimental data can be obtained by introducing a weak isospin singlet scalar boson that breaks $U(1)_{\\mu-\\tau}$ symmetry, an inert doublet scalar field, and three right-handed neutrinos in addition to the fields in the standard model. We find that a characteristic structure appears in the neutrino mass matrix: two-zero texture form which predicts three non-zero neutrino masses and three non-zero CP-phases which can be determined five well measured experimental inputs of two squared mass differences and three mixing angles. Furthermore, it is clarified that only the inverted mass hierarchy is allowed in our model. In a favored parameter set from the neutrino sector, the discrepancy in the muon anomalous magnetic moment between the experimental data and the the standard model prediction can be explained by the ...

  19. Flavour dependent gauged radiative neutrino mass model

    Science.gov (United States)

    Baek, Seungwon; Okada, Hiroshi; Yagyu, Kei

    2015-04-01

    We propose a one-loop induced radiative neutrino mass model with anomaly free flavour dependent gauge symmetry: ? minus ? symmetry U(1) ?- ? . A neutrino mass matrix satisfying current experimental data can be obtained by introducing a weak isospin singlet scalar boson that breaks U(1) ?- ? symmetry, an inert doublet scalar field, and three right-handed neutrinos in addition to the fields in the standard model. We find that a characteristic structure appears in the neutrino mass matrix: two-zero texture form which predicts three non-zero neutrino masses and three non-zero CP-phases from five well measured experimental inputs of two squared mass differences and three mixing angles. Furthermore, it is clarified that only the inverted mass hierarchy is allowed in our model. In a favored parameter set from the neutrino sector, the discrepancy in the muon anomalous magnetic moment between the experimental data and the the standard model prediction can be explained by the additional neutral gauge boson loop contribution with mass of order 100 MeV and new gauge coupling of order 10-3.

  20. Alpha and gamma radiation effects on air-water systems at high gas/liquid ratios

    International Nuclear Information System (INIS)

    Radiolysis tests were conducted on air-water systems to examine the effects of radiation on liquid phase chemistry under high gas/liquid volume (G/L) ratios that are characteristic of an unsaturated nuclear waste repository setting. Test parameters included temperatures of 25, 90, and 200 degrees C; gamma vs. alpha radiation; dose rates of ?3500 and 50,000 rad/h; and G/L ratios of 10 and 100. Formate, oxalate, and total organic carbon contents increased during irradiation of the air-water systems in gamma and alpha tests at low-dose rate (?3500 rad/h). Increases in organic components were not observed for tests run at 200 degrees C or high-dose rates (50,000 rad/h). In the tests where increases in organics occurred, the formate and oxalate were preferentially enriched in solutions that were rinsed from the test vessel walls. Nitrate (NO3-) is the dominant anion produced during the radiolysis reactions. Significant nitrite (NO2-) also occurs in some high-dose rate tests, with the reduced form of nitrogen possibly resulting from reactions with the test vessels. These results indicate that nitrogen acids are being produced and concentrated in the limited quantities of solution present in the tests. Nitrate + nitrite production varied inversely with temperature, with the lowest quantities being detected for the higher temperature tests. The G(NO3- + NO2-) values for the 25, 90, and 200 degrees C experiments with gamma radiation are 3.2 ± 0.7, 1.3 ± 1.0, and 0.4 ± 0.3, respectively. Thus, the elevated temperatures expected early in the life of a repository may counteract pH decreases resulting from nitrogen acid production. Little variation was observed in G values as a function of dose rate or gas/liquid ratio

  1. Ultraviolet radiation therapy and UVR dose models

    International Nuclear Information System (INIS)

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed

  2. Air filled ionization chambers and their response to high LET radiation

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels

    Background Air filled ionization chambers (ICs) are widely used for absolute dosimetry, not only in photon beams but also in beams of heavy charged particles. Within the IC, electron hole pairs are generated by the energy deposition originating from incoming radiation. High-LET particles create a high density of charge carriers in the core of particle tracks. As a consequence an increased (so called "initial") recombination of the charge carriers takes place, besides of the general (volume) recombination described by the Boag theory. A theory for a sub-type of initial recombination ("columnar" recombination) is the Jaffe theory, which was developed in 1913 by Jaffe. He solved a differential equation by applying several simplifications and approximations such as a Gaussian shaped track whose width serves as free parameter. These simplifications and the use of an simplified charge carrier distribution are leading to discrepancies between theory and experiments. Material and Methods We solved the fundamental differential equation presented by Jaffe numerically, taking into account both diffusion and recombination terms and realistic models of the initial charge carrier distribution developed by track structure theory. More specifically, we solved the equation for the geometrical setup of the Bragg-peak IC, which is a plane parallel IC with a 2 mm spacing between the electrodes. The sensitive volume of the IC is located in a thermoplastic housing of several mm thickness. Results We compare the experimental results of the collection efficiency of the Bragg peak IC to both the Jaffe theory and to our numerical solution of the diffusion recombination equation. Fitting a Jaffe curve to the measured collection efficiency resulted in values comparable to the literature. Calculations assuming radial dose distributions coming from track structure require long computation times, caused by the high spatial resolution and the subsequent requirements to temporal resolution. Conclusion Our numerical solution of the diffusion recombination assuming a Gaussian beam shape is relatively well described by the Jaffe theory. Additionally, preliminary results show that that the calculated response does not depend on the core radius of the radial dose distribution. References JAFFE, G.C:  On the theory of columnar recombination.  Annalen der Physik.  42, 303-344, 1913. KANAI, T. et al.: Initial recombination in a parallel-plate ionization chamber exposed to heavy ions Phys. Med. Biol. 43 3549–58, 1998. ELSAESSER, T. et al.: Impact of track structure on biological treatment planning ion ion radiotherapy. New Journal pf Physics 10. 075005, 2008

  3. Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: A case study for Iran

    Science.gov (United States)

    Shamshirband, Shahaboddin; Mohammadi, Kasra; Chen, Hui-Ling; Narayana Samy, Ganthan; Petkovi?, Dalibor; Ma, Chao

    2015-11-01

    Lately, the kernel extreme learning machine (KELM) has gained considerable importance in the scientific area due to its great efficiency, easy implementation and fast training speed. In this paper, for the first time the potential of KELM to predict the daily horizontal global solar radiation from the maximum and minimum air temperatures (Tmax and Tmin) is appraised. The effectiveness of the proposed KELM method is evaluated against the grid search based support vector regression (SVR), as a robust methodology. Three KELM and SVR models are developed using different input attributes including: (1) Tmin and Tmax, (2) Tmin and Tmax-Tmin, and (3) Tmax and Tmax-Tmin. The achieved results reveal that the best predictions precision is achieved by models (3). The achieved results demonstrate that KELM offers favorable predictions and outperforms the SVR. For the KELM (3) model, the obtained statistical parameters of mean absolute bias error, root mean square error, relative root mean square error and correlation coefficient are 1.3445 MJ/m2, 2.0164 MJ/m2, 11.2464% and 0.9057%, respectively for the testing data. As further examination, a month-by-month evaluation is conducted and found that in six months from May to October the KELM (3) model provides further accuracy than overall accuracy. Based upon the relative root mean square error, the KELM (3) model shows excellent capability in the period of April to October while in the remaining months represents good performance.

  4. The direct and inverse problems of an air-saturated poroelastic cylinder submitted to acoustic radiation

    OpenAIRE

    Erick Ogam; Z. E. A Fellah

    2011-01-01

    A wave-fluid saturated poroelastic structure interaction model based on the modified Biot theory (MBT) and plane-wave decomposition using orthogonal cylindrical functions is developed. The model is employed to recover from real data acquired in an anechoic chamber, the poromechanical properties of a soft cellular melamine cylinder submitted to an audible acoustic radiation. The inverse problem of acoustic diffraction is solved by constructing the objective functional given by the total square...

  5. ESTUDIO NUMÉRICO Y EXPERIMENTAL DE LAS PROPIEDADES Y FENÓMENOS RADIATIVOS EN UNA LLAMA DE METANO (CH4) CON AIRE ENRIQUECIDO / NUMERICAL AND EXPERIMENTAL STUDY OF THE RADIATIVE PROPERTIES AND PHENOMENA IN A METHANE (CH4) FLAME WITH ENRICHED AIR

    Scientific Electronic Library Online (English)

    JOSE LUIS, SUÁREZ; ANDRÉS AMELL, ARRIETA; FRANCISCO JAVIER, CADAVID.

    2011-02-01

    Full Text Available En este artículo, se presenta un estudio numérico y experimental del comportamiento de la radiación de una llama de metano con aire enriquecido con bajas concentraciones oxígeno. Se midió el flux de calor por radiación y se determinó su relación con el porcentaje de enriquecimiento del aire, permiti [...] endo estimar las propiedades radiantes de la llama en función del enriquecimiento con oxígeno. Se utilizó aire con concentraciones de oxígeno desde 21% hasta 22,5%. La simulación se realizó con el software Fluent V6.2.16 y para resolver la ecuación de transferencia radiativa se empleó el modelo de las Ordenadas Discretas. Las propiedades radiantes de la mezcla de gases de combustión (CO, CO2 y H2O) se cuantificaron empleando el modelo de la Suma Ponderada de Gases Grises (WSGGM). La experimentación se llevó a cabo empleando como combustible Gas Natural de la Guajira, un factor de aireación de 1,1 y una potencia térmica de 1,54 kW. Se utilizó un quemador de premezcla tipo Bunsen, en el que se inducía el aire, el cual a su vez es enriquecido con oxígeno proveniente de un cilindro. Abstract in english This article proposes a numerical and experimental study of the radiation behavior in a methane flame with air enhanced with oxygen at low concentrations. It was measured the heat flux by radiation and was determined its relationship with the percentage of enrichment of the air, which allowed to est [...] imate the radiant properties of the flame in terms of oxygen enrichment. Was used air with oxygen concentrations from 21% to 22,5%. The simulation was done with the software Fluent V6.2.16 and to solve the radiative transfer equation was used the Discrete Ordinates model. The radiant properties of the mixture of combustion gases (CO, CO2 and H2O) were quantified using the Weighted Sum of Gray Gases Model (WSGGM). The experiment was carried out using Guajira Natural Gas as fuel, an air factor equal to 1,1 and a thermal power of 1,54 kW.

  6. ANN-based modelling and estimation of daily global solar radiation data: A case study

    International Nuclear Information System (INIS)

    In this paper, an artificial neural network (ANN) models for estimating and modelling of daily global solar radiation have been developed. The data used in this work are the global irradiation HG, diffuse irradiation HD, air temperature T and relative humidity Hu. These data are available from 1998 to 2002 at the National Renewable Energy Laboratory (NREL) website. We have developed six ANN-models by using different combination as inputs: the air temperature, relative humidity, sunshine duration and the day of year. For each model, the output is the daily global solar radiation. Firstly, a set of 4 x 365 points (4 years) has been used for training each networks, while a set of 365 points (1 year) has been used for testing and validating the ANN-models. It was found that the model using sunshine duration and air temperature as inputs, gives good accurate results since the correlation coefficient is 97.65%. A comparative study between developed ANN-models and conventional regression models is presented in this study.

  7. Collisional-radiative modeling of W27+

    International Nuclear Information System (INIS)

    A detailed collisional radiative model of W27+ ions was constructed based on the atomic data calculated by relativistic atomic properties software Flexible Atomic Code. The strong electric dipole (E1) transitions mainly comes from the 4f ? 4d transition in W27+ ions with wavelength falls into VUV region (4.6 - 5.1 nm), while the wavelength of magnetic dipole (M1) transition among the fine structures of the first excited states falls into the visible optical region. Synthetic spectra in both regions are given theoretically with plasma condition in EBIT for experiment reference. Finally, the dependence of the intensity ratio on the electron density is provided as a potential diagnostic tool of Maxwellian plasmas. (author)

  8. Validation of a 3-D hemispheric nested air pollution model

    Directory of Open Access Journals (Sweden)

    L. M. Frohn

    2003-07-01

    Full Text Available Several air pollution transport models have been developed at the National Environmental Research Institute in Denmark over the last decade (DREAM, DEHM, ACDEP and DEOM. A new 3-D nested Eulerian transport-chemistry model: REGIonal high resolutioN Air pollution model (REGINA is based on modules and parameterisations from these models as well as new methods.

    The model covers the majority of the Northern Hemisphere with currently one nest implemented. The horizontal resolution in the mother domain is 150 km × 150 km, and the nesting factor is three. A chemical scheme (originally 51 species has been extended with a detailed description of the ammonia chemistry and implemented in the model. The mesoscale numerical weather prediction model MM5v2 is used as meteorological driver for the model. The concentrations of air pollutants, such as sulphur and nitrogen in various forms, have been calculated, applying zero nesting and one nest. The model setup is currently being validated by comparing calculated values of concentrations to measurements from approximately 100 stations included in the European Monitoring and Evalutation Programme (EMEP.

    The present paper describes the physical processes and parameterisations of the model together with the modifications of the chemical scheme. Validation of the model calculations by comparison to EMEP measurements for a summer and a winter month is shown and discussed. Furthermore, results from a sensitivity study of the model performance with respect to resolution in emission and meteorology input data is presented. Finally the future prospects of the model are discussed.

    The overall validation shows that the model performs well with respect to correlation for both monthly and daily mean values.

  9. Estimation of Global Solar Radiation in Rwanda Using Empirical Models

    Directory of Open Access Journals (Sweden)

    B. Safari

    2009-01-01

    Full Text Available Understanding solar radiation data is essential for modeling solar energy systems. The purpose of the present study was to estimate global solar radiation on horizontal surface using sunshine-based models. Angström-type polynomials of first and second order have been developed from long term records of monthly mean daily sunshine hour values and measured daily global solar radiation on horizontal surface at Kigali, Rwanda. Coefficients of those polynomials were derived using least square regression analysis. These coefficients were then used for the estimation of solar radiation in other places of Rwanda where measures of solar radiation do not exist but sunshine records are available.

  10. Stochastic modeling of p53-regulated apoptosis upon radiation damage

    CERN Document Server

    Bhatt, Divesh; Bahar, Ivet

    2011-01-01

    We develop and study the evolution of a model of radiation induced apoptosis in cells using stochastic simulations, and identified key protein targets for effective mitigation of radiation damage. We identified several key proteins associated with cellular apoptosis using an extensive literature survey. In particular, we focus on the p53 transcription dependent and p53 transcription independent pathways for mitochondrial apoptosis. Our model reproduces known p53 oscillations following radiation damage. The key, experimentally testable hypotheses that we generate are - inhibition of PUMA is an effective strategy for mitigation of radiation damage if the treatment is administered immediately, at later stages following radiation damage, inhibition of tBid is more effective.

  11. Pollutant dispersion models for issues of air pollution control

    International Nuclear Information System (INIS)

    14 papers entered separately into the data base were presented at the meeting for application-oriented dispersion models for issues of air pollution control. These papers focus on fields of application, availability of required input data relevant to emissions and meteorology, performance and accuracy of these methods and their practicability. (orig./PW)

  12. Discontinuous Galerkin Method for the Air Pollution Model

    CERN Document Server

    Zhao, Lite; Hou, Qinzhi

    2011-01-01

    In this paper we present the discontinuous Galerkin method to solve the problem of the two-dimensional air pollution model. The resulting system of ordinary differential equations is called the semidiscrete formulation. We show the existence and uniqueness of the ODE system and provide the error estimates for the numerical error.

  13. Numerical Modelling of Air Flow Attributes in a Contractions Chamber

    Directory of Open Access Journals (Sweden)

    Michalcová Vladimíra

    2014-12-01

    Full Text Available The article describes air flow turbulent attributes in the enclosed chamber of a rectangular cross-section contraction for the purpose of confirming its optimal shape. The task is solved numerically using Ansys Fluent software. Right models were selected based on the evaluated results at a contraction's outlet which were compared to the physics experiment

  14. A diffusion model for antiprotons and protons of cosmic radiation

    International Nuclear Information System (INIS)

    One target was to explain antiprotons in cosmic radiation. These particles are of special interest because they cannot or only partially be described by the classic propagation models of cosmic radiation. On the other hand, however, the nuclei flows as calculated by the ''leaky-box'' model show good correlation with the measured follow of the nuclei in cosmic radiation. The thesis also deals with the interpretation of the radial decrease of the proton flow of cosmic radiation in the galaxies (gradient) and the way in which this is connected to antiprotons. The leaky-box model assumes a monogeneous distribution of cosmic radiation in ghe galaxies, so that this gradient is a contradiction to the basic assumption of the leaky-box model. According to relevant observation results in the area of cosmic radiation a diffusion model is proposed which is locally independent and still simple enough to produce a random gradient needed for observation. (orig.)

  15. Arctic smoke – aerosol characteristics during a record air pollution event in the European Arctic and its radiative impact

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2007-02-01

    Full Text Available In early May 2006 a record high air pollution event was observed at Ny-Ålesund, Spitsbergen. An atypical weather pattern established a pathway for the rapid transport of biomass burning aerosols from agricultural fires in Eastern Europe to the Arctic. Atmospheric stability was such that the smoke was constrained to low levels, within 2 km of the surface during the transport. A description of this smoke event in terms of transport and main aerosol characteristics can be found in Stohl et al. (2007. This study puts emphasis on the radiative effect of the smoke. The aerosol size distribution was characterized as having an accumulation mode centered at 165–185 nm and almost 1.6 for geometric standard deviation of the mode. Nucleation and small Aitken mode particles were almost completely suppressed within the smoke plume measured at Ny-Ålesund. Chemical and microphysical aerosol information obtained at Mt. Zeppelin (474 m.a.s.l was used to derive input parameters for a one-dimensional radiation transfer model to explore the radiative effects of the smoke. The daily mean heating rate calculated on 2 May 2006 for the average size distribution and measured chemical composition reached 0.55 K day?1 at 0.5 km altitude for the assumed external mixture of the aerosols but showing much higher heating rates for an internal mixture (1.7 K day?1. In comparison a case study for March 2000 showed that the local climatic effects due to Arctic haze, using a regional climate model, HIRHAM, amounts to a maximum of 0.3 K day?1 of heating at 2 km altitude (Treffeisen et al., 2005.

  16. CFD model of air movement in ventilated façade: comparison between natural and forced air flow

    OpenAIRE

    Miguel Mora Pérez, Gonzalo López Patiño, P. Amparo López Jiménez

    2013-01-01

    This study describes computational fluid dynamics (CFD) modeling of ventilated façade. Ventilated façades are normal façade but it has an extra channel between the concrete wall and the (double skin) façade. Several studies found in the literature are carried out with CFD simulations about the behavior of the thermodynamic phenomena of the double skin façades systems. These studies conclude that the presence of the air gap in the ventilated façade affects the temperature in the building skin,...

  17. A mathematical model for radiation hydrodynamics

    Directory of Open Access Journals (Sweden)

    Sebastiano Pennisi

    1990-11-01

    Full Text Available We adopt here the idea of describing a radiation field by means of the radiation energy density E and the radiative flux vector F which must satisfy a set of evolution equations; in these equations an unknown tensorial function P(E,F appears that is determined by the methods of extended thermodynamics.

  18. Modelling of Air Bubble Rising in Water and Polymeric Solution

    Science.gov (United States)

    Hassan, N. M. S.; Khan, M. M. K.; Rasul, M. G.; Subaschandar, N.

    2010-06-01

    This study investigates a Computational Fluid Dynamics (CFD) model for a single air bubble rising in water and xanthan gum solution. The bubble rise characteristics through the stagnant water and 0.05% xanthan gum solution in a vertical cylindrical column is modelled using the CFD code Fluent. Single air bubble rise dispersed into the continuous liquid phase has been considered and modelled for two different bubble sizes. Bubble velocity and vorticity magnitudes were captured through a surface-tracking technique i.e. Volume of Fluid (VOF) method by solving a single set of momentum equations and tracking the volume fraction of each fluid throughout the domain. The simulated results of the bubble flow contours at two different heights of the cylindrical column were validated by the experimental results and literature data. The model developed is capable of predicting the entire flow characteristics of different sizes of bubble inside the liquid column.

  19. Improved air ventilation rate estimation based on a statistical model

    International Nuclear Information System (INIS)

    A new approach to air ventilation rate estimation from CO measurement data is presented. The approach is based on a state-space dynamic statistical model, allowing for quick and efficient estimation. Underlying computations are based on Kalman filtering, whose practical software implementation is rather easy. The key property is the flexibility of the model, allowing various artificial regimens of CO level manipulation to be treated. The model is semi-parametric in nature and can efficiently handle time-varying ventilation rate. This is a major advantage, compared to some of the methods which are currently in practical use. After a formal introduction of the statistical model, its performance is demonstrated on real data from routine measurements. It is shown how the approach can be utilized in a more complex situation of major practical relevance, when time-varying air ventilation rate and radon entry rate are to be estimated simultaneously from concurrent radon and CO measurements

  20. Modeling and Fluid Flow Analysis of Wavy Fin Based Automotive Radiator

    Directory of Open Access Journals (Sweden)

    Vishwa Deepak Dwivedi

    2015-01-01

    Full Text Available In continuous technological development, an automotive industry has increased the demand for high efficiency engines. A high efficiency engines in not only based on its performance but also for better fuel economy and less emission rate. Radiator is one of the important parts of the internal combustion engine cooling system. The manufacturing cost of the radiator is 20 percent of the whole cost of the engine. So improving the performance and reducing cost of radiators are necessary research. For higher cooling capacity of radiator, addition of fins is one of the approaches to increase the cooling rate of the radiator. In addition, heat transfer fluids at air and fluid side such as water and ethylene glycol exhibit very low thermal conductivity. As a result there is a need for new and innovative heat transfer fluids, known as “Nano fluid” for improving heat transfer rate in an automotive radiator. Recently there have been considerable research findings highlighting superior heat transfer performances of nanofluids about 15-25% of heat transfer enhancement can be achieved by using types of nanofluids. With these specific characteristics, the size and weight of an automotive car radiator can be reduced without affecting its heat transfer performance. An automotive radiator (Wavy fin type model is modeled on modeling software CATIA V5 and performance evaluation is done on pre-processing software ANSYS 14.0. The temperature and velocity distribution of coolant and air are analyzed by using Computational fluid dynamics environment software CFX. Results have shown that the rate of heat transfer is better when nano fluid (Si C + water is used as coolant, than the conventional coolant.

  1. GEANT4 validation in the calculation of absorbed dose in air due to gamma radiation emitted from the soil

    International Nuclear Information System (INIS)

    Geant, is a monte Carlo code system conceived essentially for optimization of detectors in particle physics field. It found some usage in other high energy branches such as medical physics. GEANT4 toolkit system, written in C++ oriented object programation language, is the recent version of Geant code. This powerful simulation tool is believed to be a viable alternative to other codes based on Monte Carlo methods in the calculation of photon transport. We have developed a new optimized geometry to simulate the soil in a Monte Carlo calculation of absorbed dose in air due to gamma radiation from sources distributed in the ground. This geometry was successfully implemented in Geant4 System. The method relative to the implementation is described. Simulation tests were conducted to compare the results issued from different approches were the soil is modelled either by a simple shape like a cylinder or by our new geometry. This work seems to be important to validate Geant4 in the calculation of absorbed dose in air due to radioactive sources distributed in the soil and to confirm the usage of GEANT4 toolkit system in such field of nuclear physics

  2. Solutions Network Formulation Report. NASA's Potential Contributions for Using Solar Ultraviolet Radiation in Conjunction with Photocatalysis for Urban Air Pollution Mitigation and Increasing Air Quality

    Science.gov (United States)

    Underwood, Lauren; Ryan, Robert E.

    2007-01-01

    This Candidate Solution is based on using NASA Earth science research on atmospheric ozone and aerosols data as a means to predict and evaluate the effectiveness of photocatalytically created surfaces (building materials like glass, tile and cement) for air pollution mitigation purposes. When these surfaces are exposed to near UV light, organic molecules, like air pollutants and smog precursors, will degrade into environmentally friendly compounds. U.S. EPA (Environmental Protection Agency) is responsible for forecasting daily air quality by using the Air Quality Index (AQI) that is provided by AIRNow. EPA is partnered with AIRNow and is responsible for calculating the AQI for five major air pollutants that are regulated by the Clean Air Act. In this Solution, UV irradiance data acquired from the satellite mission Aura and the OMI Surface UV algorithm will be used to help understand both the efficacy and efficiency of the photocatalytic decomposition process these surfaces facilitate, and their ability to reduce air pollutants. Prediction models that estimate photocatalytic function do not exist. NASA UV irradiance data will enable this capability, so that air quality agencies that are run by state and local officials can develop and implement programs that utilize photocatalysis for urban air pollution control and, enable them to make effective decisions about air pollution protection programs.

  3. 76 FR 31800 - Airworthiness Directives; Viking Air Limited Model DHC-3 (Otter) Airplanes

    Science.gov (United States)

    2011-06-02

    ...Directives; Viking Air Limited Model DHC-3 (Otter) Airplanes AGENCY: Federal Aviation Administration...the Viking Air Limited Model DHC-3 (Otter) airplanes equipped with a Honeywell...Viking Aircraft Limited Model DHC-3 (Otter) airplanes, all serial numbers,...

  4. Spatial distribution of emissions to air – the SPREAD model

    DEFF Research Database (Denmark)

    Plejdrup, Marlene Schmidt; Gyldenkærne, Steen

    2011-01-01

    The National Environmental Research Institute (NERI), Aarhus University, completes the annual national emission inventories for greenhouse gases and air pollutants according to Denmark’s obligations under international conventions, e.g. the climate convention, UNFCCC and the convention on long-range transboundary air pollution, CLRTAP. NERI has developed a model to distribute emissions from the national emission inventories on a 1x1 km grid covering the Danish land and sea territory. The new spatial high resolution distribution model for emissions to air (SPREAD) has been developed according to the requirements for reporting of gridded emissions to CLRTAP. Spatial emission data is e.g. used as input for air quality modelling, which again serves as input for assessment and evaluation of health effects. For these purposes distributions with higher spatial resolution have been requested. Previously, a distribution on the 17x17 km EMEP grid has been set up and used in research projects combined with detailed distributions for a few sectors or sub-sectors e.g. a distribution for emissions from road traffic on 1x1 km resolution. SPREAD is developed to generate improved spatial emission data for e.g. air quality modelling in exposure studies. SPREAD includes emission distributions for each sector in the Danish inventory system; stationary combustion, mobile sources, fugitive emissions from fuels, industrial processes, solvents and other product use, agriculture and waste. This model enables generation of distributions for single sectors and for a number of sub-sectors and single sources as well. This report documents the methodologies in this first version of SPREAD and presents selected results. Further, a number of potential improvements for later versions of SPREAD are addressed and discussed.

  5. Spatial distribution of emissions to air - the SPREAD model

    Energy Technology Data Exchange (ETDEWEB)

    Plejdrup, M.S.; Gyldenkaerne, S.

    2011-04-15

    The National Environmental Research Institute (NERI), Aarhus University, completes the annual national emission inventories for greenhouse gases and air pollutants according to Denmark's obligations under international conventions, e.g. the climate convention, UNFCCC and the convention on long-range transboundary air pollution, CLRTAP. NERI has developed a model to distribute emissions from the national emission inventories on a 1x1 km grid covering the Danish land and sea territory. The new spatial high resolution distribution model for emissions to air (SPREAD) has been developed according to the requirements for reporting of gridded emissions to CLRTAP. Spatial emission data is e.g. used as input for air quality modelling, which again serves as input for assessment and evaluation of health effects. For these purposes distributions with higher spatial resolution have been requested. Previously, a distribution on the 17x17 km EMEP grid has been set up and used in research projects combined with detailed distributions for a few sectors or sub-sectors e.g. a distribution for emissions from road traffic on 1x1 km resolution. SPREAD is developed to generate improved spatial emission data for e.g. air quality modelling in exposure studies. SPREAD includes emission distributions for each sector in the Danish inventory system; stationary combustion, mobile sources, fugitive emissions from fuels, industrial processes, solvents and other product use, agriculture and waste. This model enables generation of distributions for single sectors and for a number of sub-sectors and single sources as well. This report documents the methodologies in this first version of SPREAD and presents selected results. Further, a number of potential improvements for later versions of SPREAD are addressed and discussed. (Author)

  6. Search for molecular bremsstrahlung radiation signals in Ku band with coincidental operations of radio telescopes with air shower detectors

    OpenAIRE

    Fukushima Masaki; Sakurai Nobuyuki; Fujii Toshihiro; Akimune Hidetoshi; Iijima Takashi; Kuramoto Kazuyuki; Yamamoto Tokonatsu; Ogio Shoichi; Sagawa Hiroyuki

    2013-01-01

    Microwave radiation from extensive air showers is expected to provide a new technique to observe UHECR. We insatlled and operate radio telescopes in Osaka and at Telescope Array site in Utah, USA. In Osaka, we are coincidentally operating two Ku band radio telescopes with an air shower array which consists of nine plastic scintillators with about 10?m separation. In Utah, we installed two telescopes just beside the Black Rock Mesa fluorescence detector (FD) station of the Telescope Array expe...

  7. Modeling of external radiation from the transport of radionuclides across a canyon

    International Nuclear Information System (INIS)

    The Los Alamos Meson Physics Facility (LAMPF) is an 800-million electron volt, l mA intensity linear proton accelerator used for studying subatomic particles at relativistic velocities. Routine operation of the accelerator results in the formation of short-lived air activation products, primarily in the beam stop section of LAMPF. This study presents the results of monitoring and modeling external radiation levels from LAMPF emissions at three locations during 1984. Measured radiation exposures are presented for all three locations during a 49-day period. Hourly radiation levels are calculated for all sites and compared with the prevalent wind patterns during the study period. Predicted daily levels are compared with measured values at all of the sites. Accuracy of the model is compared for day and night conditions. Annual model predictions are also compared with TLD measurements

  8. Performance of Air Pollution Models on Massively Parallel Computers

    DEFF Research Database (Denmark)

    Brown, John; Hansen, Per Christian

    1996-01-01

    To compare the performance and use of three massively parallel SIMD computers, we implemented a large air pollution model on the computers. Using a realistic large-scale model, we gain detailed insight about the performance of the three computers when used to solve large-scale scientific problems that involve several types of numerical computations. The computers considered in our study are the Connection Machines CM-200 and CM-5, and the MasPar MP-2216

  9. Modeling of air pollution from the power plant ash dumps

    Science.gov (United States)

    Aleksic, Nenad M.; Bala?, Nedeljko

    A simple model of air pollution from power plant ash dumps is presented, with emission rates calculated from the Bagnold formula and transport simulated by the ATDL type model. Moisture effects are accounted for by assumption that there is no pollution on rain days. Annual mean daily sedimentation rates, calculated for the area around the 'Nikola Tesla' power plants near Belgrade for 1987, show reasonably good agreement with observations.

  10. Air pollution dispersion models for human exposure predictions in London.

    Science.gov (United States)

    Beevers, Sean D; Kitwiroon, Nutthida; Williams, Martin L; Kelly, Frank J; Ross Anderson, H; Carslaw, David C

    2013-01-01

    The London household survey has shown that people travel and are exposed to air pollutants differently. This argues for human exposure to be based upon space-time-activity data and spatio-temporal air quality predictions. For the latter, we have demonstrated the role that dispersion models can play by using two complimentary models, KCLurban, which gives source apportionment information, and Community Multi-scale Air Quality Model (CMAQ)-urban, which predicts hourly air quality. The KCLurban model is in close agreement with observations of NO(X), NO(2) and particulate matter (PM)(10/2.5), having a small normalised mean bias (-6% to 4%) and a large Index of Agreement (0.71-0.88). The temporal trends of NO(X) from the CMAQ-urban model are also in reasonable agreement with observations. Spatially, NO(2) predictions show that within 10's of metres of major roads, concentrations can range from approximately 10-20 p.p.b. up to 70 p.p.b. and that for PM(10/2.5) central London roadside concentrations are approximately double the suburban background concentrations. Exposure to different PM sources is important and we predict that brake wear-related PM(10) concentrations are approximately eight times greater near major roads than at suburban background locations. Temporally, we have shown that average NO(X) concentrations close to roads can range by a factor of approximately six between the early morning minimum and morning rush hour maximum periods. These results present strong arguments for the hybrid exposure model under development at King's and, in future, for in-building models and a model for the London Underground. PMID:23443237

  11. Infrared Radiography: Modeling X-ray Imaging without Harmful Radiation

    Science.gov (United States)

    Zietz, Otto; Mylott, Elliot; Widenhorn, Ralf

    2015-01-01

    Planar x-ray imaging is a ubiquitous diagnostic tool and is routinely performed to diagnose conditions as varied as bone fractures and pneumonia. The underlying principle is that the varying attenuation coefficients of air, water, tissue, bone, or metal implants within the body result in non-uniform transmission of x-ray radiation. Through the…

  12. Plutonium air transportable package Model PAT-1. Safety analysis report

    International Nuclear Information System (INIS)

    The document is a Safety Analysis Report for the Plutonium Air Transportable Package, Model PAT-1, which was developed by Sandia Laboratories under contract to the Nuclear Regulatory Commission (NRC). The document describes the engineering tests and evaluations that the NRC staff used as a basis to determine that the package design meets the requirements specified in the NRC ''Qualification Criteria to Certify a Package for Air Transport of Plutonium'' (NUREG-0360). By virtue of its ability to meet the NRC Qualification Criteria, the package design is capable of safely withstanding severe aircraft accidents. The document also includes engineering drawings and specifications for the package. 92 figs, 29 tables

  13. Surface air temperature variability in global climate models

    CERN Document Server

    Davy, Richard

    2012-01-01

    New results from the Coupled Model Inter-comparison Project phase 5 (CMIP5) and multiple global reanalysis datasets are used to investigate the relationship between the mean and standard deviation in the surface air temperature. A combination of a land-sea mask and orographic filter were used to investigate the geographic region with the strongest correlation and in all cases this was found to be for low-lying over-land locations. This result is consistent with the expectation that differences in the effective heat capacity of the atmosphere are an important factor in determining the surface air temperature response to forcing.

  14. Modelling Domestic Air Transport Demand and Evaluating under Scenarios

    Directory of Open Access Journals (Sweden)

    Cenk Ozan

    2014-09-01

    Full Text Available The lack of balance and integration between transportation modes in Turkey is one of the main problems. In this study, domestic air transport demand is modeled and evaluated under scenarios. For this purpose, indexing method which is able to indicate observed monthly and seasonal variations in demand is used. Proposals are suggested in order to overcome the lack of balance between transportation modes. In modeling, purchasing power parity and jet fuel prices as independent variables are used. Results showed that the developed model using indexing method is substantially sensitive to observed monthly and seasonal variations in domestic air transport demand. Furthermore, in the event that there are optimistic an increase in the income level and a crawl in the jet fuel prices, domestic air transport can rival with railways for second place in the transportation modes behind highways. For this reason, it is considered regulation on wages policy and tax of jet fuel prices necessary to support development of domestic air transport demand.

  15. Experimental synergy combining lidar measurements so as to optically characterize aerosols: applications to air quality and radiative forcing

    International Nuclear Information System (INIS)

    The work carried out in this study is devoted to a better understanding of the evolution of aerosol physical, chemical and optical properties for urban pollution aerosols, dust and biomass burning particles. It mainly concerns the complex refractive index and the single-scattering albedo. Such a characterisation is indeed necessary so as to fulfil the requirements of scientific and societal air quality and global climate evolution questions. Our study is based on a synergy between different measurements platforms: ground-based or airborne measurements, together with active and passive remote sensing observations. Lidar in particular turns out to be an essential tool in order to assess horizontal and vertical variability of aerosol micro-physical and optical properties in the atmospheric boundary layer, but also in the residual layer, as well as in layers transported from the boundary layer to the free troposphere. The original methodology we developed highlights the importance of the geographical origin, the impact of aging and dynamical processes in the evolution of structural, optical and hygroscopic aerosol features. The related accurate determination of the properties in each aerosol layer is required for radiative fluxes and heating rates calculations in the atmospheric column. The radiative impact of both dust particles and biomass burning aerosols observed over the region of Niamey (Niger) was thus assessed during the dry season. These results reveal the need of a better characterisation of those significant aerosol properties for each layer in models. (author)

  16. Gravitational Radiation from Ultra High Energy Cosmic Rays in Models with Large Extra Dimensions

    CERN Document Server

    Koch, B; Bleicher, M; Koch, Ben; Drescher, Hans-Joachim; Bleicher, Marcus

    2006-01-01

    The effects of classical gravitational radiation in models with large extra dimensions are investigated for ultra high energy cosmic rays (CRs). The cross sections are implemented into a simulation package (SENECA) for high energy hadron induced CR air showers. We predict that gravitational radiation from quasi-elastic scattering could be observed at incident CR energies above $10^9$ GeV for a setting with more than two extra dimensions. It is further shown that this gravitational energy loss can alter the energy reconstruction for CR energies $E_{\\rm CR}\\ge 5\\cdot 10^9$ GeV.

  17. Modeling and simulation of radiation from hypersonic flows with Monte Carlo methods

    Science.gov (United States)

    Sohn, Ilyoup

    During extreme-Mach number reentry into Earth's atmosphere, spacecraft experience hypersonic non-equilibrium flow conditions that dissociate molecules and ionize atoms. Such situations occur behind a shock wave leading to high temperatures, which have an adverse effect on the thermal protection system and radar communications. Since the electronic energy levels of gaseous species are strongly excited for high Mach number conditions, the radiative contribution to the total heat load can be significant. In addition, radiative heat source within the shock layer may affect the internal energy distribution of dissociated and weakly ionized gas species and the number density of ablative species released from the surface of vehicles. Due to the radiation total heat load to the heat shield surface of the vehicle may be altered beyond mission tolerances. Therefore, in the design process of spacecrafts the effect of radiation must be considered and radiation analyses coupled with flow solvers have to be implemented to improve the reliability during the vehicle design stage. To perform the first stage for radiation analyses coupled with gas-dynamics, efficient databasing schemes for emission and absorption coefficients were developed to model radiation from hypersonic, non-equilibrium flows. For bound-bound transitions, spectral information including the line-center wavelength and assembled parameters for efficient calculations of emission and absorption coefficients are stored for typical air plasma species. Since the flow is non-equilibrium, a rate equation approach including both collisional and radiatively induced transitions was used to calculate the electronic state populations, assuming quasi-steady-state (QSS). The Voigt line shape function was assumed for modeling the line broadening effect. The accuracy and efficiency of the databasing scheme was examined by comparing results of the databasing scheme with those of NEQAIR for the Stardust flowfield. An accuracy of approximately 1 % was achieved with an efficiency about three times faster than the NEQAIR code. To perform accurate and efficient analyses of chemically reacting flowfield - radiation interactions, the direct simulation Monte Carlo (DSMC) and the photon Monte Carlo (PMC) radiative transport methods are used to simulate flowfield - radiation coupling from transitional to peak heating freestream conditions. The non-catalytic and fully catalytic surface conditions were modeled and good agreement of the stagnation-point convective heating between DSMC and continuum fluid dynamics (CFD) calculation under the assumption of fully catalytic surface was achieved. Stagnation-point radiative heating, however, was found to be very different. To simulate three-dimensional radiative transport, the finite-volume based PMC (FV-PMC) method was employed. DSMC - FV-PMC simulations with the goal of understanding the effect of radiation on the flow structure for different degrees of hypersonic non-equilibrium are presented. It is found that except for the highest altitudes, the coupling of radiation influences the flowfield, leading to a decrease in both heavy particle translational and internal temperatures and a decrease in the convective heat flux to the vehicle body. The DSMC - FV-PMC coupled simulations are compared with the previous coupled simulations and correlations obtained using continuum flow modeling and one-dimensional radiative transport. The modeling of radiative transport is further complicated by radiative transitions occurring during the excitation process of the same radiating gas species. This interaction affects the distribution of electronic state populations and, in turn, the radiative transport. The radiative transition rate in the excitation/de-excitation processes and the radiative transport equation (RTE) must be coupled simultaneously to account for non-local effects. The QSS model is presented to predict the electronic state populations of radiating gas species taking into account non-local radiation. The definition of the escape factor which is depende

  18. Predictive model of radiative neutrino masses

    Science.gov (United States)

    Babu, K. S.; Julio, J.

    2014-03-01

    We present a simple and predictive model of radiative neutrino masses. It is a special case of the Zee model which introduces two Higgs doublets and a charged singlet. We impose a family-dependent Z4 symmetry acting on the leptons, which reduces the number of parameters describing neutrino oscillations to four. A variety of predictions follow: the hierarchy of neutrino masses must be inverted; the lightest neutrino mass is extremely small and calculable; one of the neutrino mixing angles is determined in terms of the other two; the phase parameters take CP-conserving values with ?CP=?; and the effective mass in neutrinoless double beta decay lies in a narrow range, m??=(17.6-18.5) meV. The ratio of vacuum expectation values of the two Higgs doublets, tan?, is determined to be either 1.9 or 0.19 from neutrino oscillation data. Flavor-conserving and flavor-changing couplings of the Higgs doublets are also determined from neutrino data. The nonstandard neutral Higgs bosons, if they are moderately heavy, would decay dominantly into ? and ? with prescribed branching ratios. Observable rates for the decays ? ?e? and ??3? are predicted if these scalars have masses in the range of 150-500 GeV.

  19. Predictive Model of Radiative Neutrino Masses

    CERN Document Server

    Babu, K S

    2013-01-01

    We present a simple and predictive model of radiative neutrino masses. It is a special case of the Zee model which introduces two Higgs doublets and a charged singlet. We impose a family-dependent Z_4 symmetry acting on the leptons, which reduces the number of parameters describing neutrino oscillations to four. A variety of predictions follow: The hierarchy of neutrino masses must be inverted; the lightest neutrino mass is extremely small and calculable; one of the neutrino mixing angles is determined in terms of the other two; the phase parameters take CP-conserving values with \\delta_{CP} = \\pi; and the effective mass in neutrinoless double beta decay lies in a narrow range, m_{\\beta \\beta} = (17.6 - 18.5) meV. The ratio of vacuum expectation values of the two Higgs doublets, tan\\beta, is determined to be either 1.9 or 0.19 from neutrino oscillation data. Flavor-conserving and flavor-changing couplings of the Higgs doublets are also determined from neutrino data. The non-standard neutral Higgs bosons, if t...

  20. A method for natural background gamma radiation measurement using air-equivalent scintillation detector

    International Nuclear Information System (INIS)

    A method and a complete set of instruments are developed for measuring natural bachground gamma radiations using air-equivalent scintillation detectors - polystyrol with addition of silver activied zinx sulfide with effective atomic number 7.64. The detector is completed with a scintillation head, type VA-S-968, and one-channel analyser, type 20026. The callibrating coefficient relative to 226Ra is average 5.0x1014kg.A-1 x min-1. During measurement lasting 20 min, a 10 per cent alteration in the gamma background is registered with statistical error less than 20 per cent. The experimentally estimated registration efficacy dependence on the gamma quanta energy does not exceed +- 17 per cent. The counting statistics lends itself to further improvement by measurement time prolongation. (author)

  1. Radiation carbonization of cellulose, wood and lignin in the presence of air

    International Nuclear Information System (INIS)

    The process of radiaton carbonization of wood and its separate components (cellulose and lignin) under the effect of ?-radiation is studied. In the process of cellulose and wood meal irradiation a decrease in hydrogen content with the growth of irradiation dose is observed. Simultaneously with hydrogen loss the dose of ? 100 kGy an increase in carbon content and a decrease in oxygen content are observed. In wood meal carbon content decreases, oxygen content increases. In lignin the observed changes in the element composition do not exceed experimental error. The results obtained are considered from the viewpoint of dehydration of radicals, formed in the process of irradiation, as well as their oxidation by the air oxygen

  2. Radiation protection at the RA reactor, 1987 - Part IIb: Environmental radioactivity control, Air radioactivity control

    International Nuclear Information System (INIS)

    During the period from November 1985 - November 1988, within the radioactivity control on the Vinca Institute site air contamination radioactive aerosol contents was measured. Control was done on 4 measuring stations, two in the Institute and two locations in the direction of wind i.e. Belgrade, 2 km and 7 km away from the Institute respectively. This position of the measuring locations enables control of radiation safety of the Institute, as well as environment of Belgrade taking into account the existence of the reactor and other possible contaminants in the Institute. It is mentioned that the state of the measuring instrumentation is unchanged compared to the previous years and does not provide the possibility of proper program for environmental radioactivity control

  3. Estimation of Global Solar Radiation in Rwanda Using Empirical Models

    OpenAIRE

    B. Safari; J. Gasore

    2009-01-01

    Understanding solar radiation data is essential for modeling solar energy systems. The purpose of the present study was to estimate global solar radiation on horizontal surface using sunshine-based models. Angström-type polynomials of first and second order have been developed from long term records of monthly mean daily sunshine hour values and measured daily global solar radiation on horizontal surface at Kigali, Rwanda. Coefficients of those polynomials were derived using least squa...

  4. Modeling of air toxics from hydrocarbon pool fires

    International Nuclear Information System (INIS)

    While there is guidance for estimating the radiation hazards of fires (ARCHIE), there is little guidance on modeling the dispersion of hazardous materials from fires. The objective of this paper is to provide a review of the methodology used for modeling the impacts of liquid hydrocarbon pool fires. The required input variables for modeling of hydrocarbon pool fires include emission strength, emission duration, and dispersion characteristics. Methods for predicting the products of combustion including the use of literature values, test data, and thermodynamic equilibrium calculations are discussed. The use of energy balances coupled to radiative heat transfer calculations are presented as a method for determining flame temperature. Fire modeling literature is reviewed in order to determine other source release variables such as mass burn rate and duration and flame geometry

  5. General cloud cover modifier for clear sky solar radiation models

    Science.gov (United States)

    Myers, Daryl R.

    2007-09-01

    Worldwide lack of comprehensive measured solar radiation resource data for solar system design is well known. Several simple clear sky solar radiation models for computing hourly direct, diffuse and global hemispherical solar radiation have been developed over the past 25 years. The simple model of Richard Bird, Iqbal's parameterization C, and Gueymard's REST model are popular for estimating maximum hourly solar resources. We describe a simple polynomial in cloud cover (octa) modifier for these models that produces realistic time series of hourly solar radiation data representative of naturally occurring solar radiation conditions under all sky conditions. Surface cloud cover observations (Integrated Surface Hourly Data) from the National Climatic Data Center are the only additional (hourly) input data to model total hemispherical solar radiation under all sky conditions. Performance was evaluated using three years of hourly solar radiation data from 31 sites in the 1961-1990 National Solar Radiation Data Base. Mean bias errors range from - 10% to -20%, and are clear sky model dependant. Root mean square error of about 40%, are also dependent upon the particular model used and the uncertainty in the specific clear sky model inputs and lack of information on cloud type and spatial distributions.

  6. Ion recombination in parallel-plate free-air ionization chambers for synchrotron radiation

    International Nuclear Information System (INIS)

    The saturation characteristics of two sizes of parallel-plate free-air ionization chambers were investigated for synchrotron radiation at bending-magnet, wiggler and undulator beamlines of SPring-8. The gaps of the electrodes were 4.2 and 85 mm. The monoenergetic photon energies ranged from 10 to 115.56 keV and the air kerma rates from 0.2 mGy s-1 to 150 kGy s-1. Ion recombination at the high dose rate was found to be smaller than that predicted by Boag's expression, which was based on volume recombination, and the difference increased with an applied electric field. In the high dose rate region, the reciprocal of the current was linear to the reciprocal of the electric field near saturation, which represented the occurrence of initial recombination and diffusion loss. At the low electric field and the low dose rate, the reciprocal of the current was linear to the reciprocal of the square of the electric field. The reduction of total ion recombination was attributed to the shift of the contribution from volume recombination to initial recombination and diffusion loss

  7. Review of Air Exchange Rate Models for Air Pollution Exposure Assessments

    Science.gov (United States)

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings, where people spend their time. The AER, which is rate the exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pol...

  8. Radiation policy: a decision-making model.

    OpenAIRE

    Modan, B.

    1997-01-01

    Priority setting in radiation policy is complex because it depends to a large extent on risk perception. It has been shown repeatedly that the public is much more sensitive to potential harmful sequelae of radiation than to those of other environmental pollutants. Thus, cancer risk, particularly at low doses, has become a sociopolitical issue. The principle that radiation causes cancer, is life shortening, and causes an array of other pathologic disorders, is well accepted yet the quantificat...

  9. Air quality research: perspective from climate change modelling research.

    Science.gov (United States)

    Semazzi, Fredrick

    2003-06-01

    A major component of climate change is a manifestation of changes in air quality. This paper explores the question of air quality from the climate change modelling perspective. It reviews recent research advances on the cause-effect relationships between atmospheric air composition and climate change, primarily based on the Intergovernmental Panel on Climate Change (IPCC) assessment of climate change over the past decade. There is a growing degree of confidence that the warming world over the past century was caused by human-related changes in the composition of air. Reliability of projections of future climate change is highly dependent on future emission scenarios that have been identified that in turn depend on a multitude of complicated interacting social-economic factors. Anticipated improvements in the performance of climate models is a major source of optimism for better climate projections in the future, but the real benefits of its contribution will be closely coupled with other sources of uncertainty, and in particular emission projections. PMID:12676212

  10. Computer modelling of statistical properties of SASE FEL radiation

    Science.gov (United States)

    Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1997-06-01

    The paper describes an approach to computer modelling of statistical properties of the radiation from self amplified spontaneous emission free electron laser (SASE FEL). The present approach allows one to calculate the following statistical properties of the SASE FEL radiation: time and spectral field correlation functions, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and the radiation spectrum. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility being under construction at DESY.

  11. Estimation of Pan Evaporation Using Mean Air Temperature and Radiation for Monsoon Season in Junagadh Region

    Directory of Open Access Journals (Sweden)

    Manoj J. Gundalia

    2013-11-01

    Full Text Available The abstract should summarize the content of the paper. Try to keep the abstract below 200 words. Do not make references nor display equations in the abstract. The journal will be printed from the same-sized copy prepared by you. Your manuscript should be printed on A4 paper (21.0 cm x 29.7 cm. It is imperative that the margins The significance of major meteorological factors, that influence the evaporation were evaluated at daily time-scale for monsoon season using the data from Junagadh station, Gujarat (India. The computed values were compared. The solar radiation and mean air temperature were found to be the significant factors influencing pan evaporation (Ep. The negative correlation was found between relative humidity and (Ep, while wind speed, vapour pressure deficit and bright sunshine hours were found least correlated and no longer remained controlling factors influencing (Ep. The objective of the present study is to compare and evaluate the performance of six different methods based on temperature and radiation to select the most appropriate equations for estimating (Ep. The three quantitative standard statistical performance evaluation measures, coefficient of determination (R2 root mean square of errors-observations standard deviation ratio (RSR and Nash-Sutcliffe efficiency coefficient (E are employed as performance criteria. The results show that the Jensen equation yielded the most reliable results in estimation of (Ep and it can be recommended for estimating (Ep for monsoon season in the study region.

  12. X-ray radiation from the volume discharge in atmospheric-pressure air

    Science.gov (United States)

    Bratchikov, V. B.; Gagarinov, K. A.; Kostyrya, I. D.; Tarasenko, V. F.; Tkachev, A. N.; Yakovlenko, S. I.

    2007-07-01

    X-ray radiation from the volume discharge in atmospheric-pressure air is studied under the conditions when the voltage pulse rise time varies from 0.5 to 100 ns and the open-circuit voltage amplitude of the generator varies from 20 to 750 kV. It is shown that a volume discharge from a needle-like cathode forms at a relatively wide voltage pulse (to ?60 ns in this work). The volume character of the discharge is due to preionization by fast electrons, which arise when the electric field concentrates at the cathode and in the discharge gap. As the voltage pulse rise time grows, X-ray radiation comes largely from the discharge gap in accordance with previous experiments. Propagation of fast avalanche electrons in nitrogen subjected to a nonuniform unsteady electric field is simulated. It is demonstrated that the amount of hard X-ray photons grows not only with increasing voltage amplitude but also with shortening pulse rise time.

  13. The influence of the solar radiation model on the calcutated solar radiation from a horizontal surface to a tilted surface

    DEFF Research Database (Denmark)

    Andersen, Elsa; Lund, Hans; Furbo, Simon

    2004-01-01

    Measured solar radiation data are most commonly available as total solar radiation on a horizontal surface. When using solar radiation measured on horizontal to calculate the solar radiation on tilted surfaces and thereby the thermal performance of different applications such as buildings and solar heating systems, different solar radiation models can be used. The calculation of beam radiation from a horizontal surface to a tilted surface can be done exactly whereas different solar radiation mod...

  14. A Neural Network Based Intelligent Predictive Sensor for Cloudiness, Solar Radiation and Air Temperature

    OpenAIRE

    Ferreira, Pedro M.; Ruano, António E.; Gomes, João M.; Martins, Igor A. C.

    2012-01-01

    Accurate measurements of global solar radiation and atmospheric temperature, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the a...

  15. Incorporating principal component analysis into air quality model evaluation

    Science.gov (United States)

    Eder, Brian; Bash, Jesse; Foley, Kristen; Pleim, Jon

    2014-01-01

    The efficacy of standard air quality model evaluation techniques is becoming compromised as the simulation periods continue to lengthen in response to ever increasing computing capacity. Accordingly, the purpose of this paper is to demonstrate a statistical approach called Principal Component Analysis (PCA) with the intent of motivating its use by the evaluation community. One of the main objectives of PCA is to identify, through data reduction, the recurring and independent modes of variations (or signals) within a very large dataset, thereby summarizing the essential information of that dataset so that meaningful and descriptive conclusions can be made. In this demonstration, PCA is applied to a simple evaluation metric - the model bias associated with EPA's Community Multi-scale Air Quality (CMAQ) model when compared to weekly observations of sulfate (SO42-) and ammonium (NH4+) ambient air concentrations measured by the Clean Air Status and Trends Network (CASTNet). The advantages of using this technique are demonstrated as it identifies strong and systematic patterns of CMAQ model bias across a myriad of spatial and temporal scales that are neither constrained to geopolitical boundaries nor monthly/seasonal time periods (a limitation of many current studies). The technique also identifies locations (station-grid cell pairs) that are used as indicators for a more thorough diagnostic evaluation thereby hastening and facilitating understanding of the probable mechanisms responsible for the unique behavior among bias regimes. A sampling of results indicates that biases are still prevalent in both SO42- and NH4+ simulations that can be attributed to either: 1) cloud processes in the meteorological model utilized by CMAQ, which are found to overestimated convective clouds and precipitation, while underestimating larger-scale resolved clouds that are less likely to precipitate, and 2) biases associated with Midwest NH3 emissions which may be partially ameliorated using the bi-directional NH3 exchange option in CMAQ.

  16. Air temperature, radiation budget and area changes of Quisoquipina glacier in the Cordillera Vilcanota (Peru)

    Science.gov (United States)

    Suarez, Wilson; Macedo, Nicolás; Montoya, Nilton; Arias, Sandro; Schauwecker, Simone; Huggel, Christian; Rohrer, Mario; Condom, Thomas

    2015-04-01

    The Peruvian Andes host about 71% of all tropical glaciers. Although several studies have focused on glaciers of the largest glaciered mountain range (Cordillera Blanca), other regions have received little attention to date. In 2011, a new program has been initiated with the aim of monitoring glaciers in the centre and south of Peru. The monitoring program is managed by the Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI) and it is a joint project together with the Universidad San Antonio Abad de Cusco (UNSAAC) and the Autoridad Nacional del Agua (ANA). In Southern Peru, the Quisoquipina glacier has been selected due to its representativeness for glaciers in the Cordillera Vilcanota considering area, length and orientation. The Cordillera Vilcanota is the second largest mountain range in Peru with a glaciated area of approximately 279 km2 in 2009. Melt water from glaciers in this region is partly used for hydropower in the dry season and for animal breeding during the entire year. Using Landsat 5 images, we could estimate that the area of Quisoquipina glacier has decreased by approximately 11% from 3.66 km2 in 1990 to 3.26 km2 in 2010. This strong decrease is comparable to observations of other tropical glaciers. In 2011, a meteorological station has been installed on the glacier at 5180 m asl., measuring air temperature, wind speed, relative humidity, net short and longwave radiation and atmospheric pressure. Here, we present a first analysis of air temperature and the radiation budget at the Quisoquipina glacier for the first three years of measurements. Additionally, we compare the results from Quisoquipina glacier to results obtained by the Institut de recherche pour le développement (IRD) for Zongo glacier (Bolivia) and Antizana glacier (Ecuador). For both, Quisoquipina and Zongo glacier, net shortwave radiation may be the most important energy source, thus indicating the important role of albedo in the energy balance of the glacier surface. This indicates the importance of understanding the role of snow cover in ablation processes of tropical glaciers.

  17. Experimental analysis of airtightness and estimation of building air infiltration using two different single zone air infiltration models

    Directory of Open Access Journals (Sweden)

    Tijo Joseph, Animesh Dutta

    2014-01-01

    Full Text Available Building air leakage can contribute significantly to the energy consumption of a building. This paper presents the airtightness performance of a campus building located in Ontario, Canada. The air leakage rate through the building envelope was measured under stilted depressurization conditions following the ASTM E-779 standardized test method. With this test derived empirical leakage flow co-efficient and leakage flow exponent measures, the air infiltration rate for the building under varying wind and outside temperature conditions was calculated using two different single zone air infiltration models – the Lawrence Berkeley Laboratory model and the Alberta Air Infiltration model thus also allowing for a comparison of the results between the two mathematical models.

  18. Sunspot Modeling: From Simplified Models to Radiative MHD Simulations

    Directory of Open Access Journals (Sweden)

    Rolf Schlichenmaier

    2011-09-01

    Full Text Available We review our current understanding of sunspots from the scales of their fine structure to their large scale (global structure including the processes of their formation and decay. Recently, sunspot models have undergone a dramatic change. In the past, several aspects of sunspot structure have been addressed by static MHD models with parametrized energy transport. Models of sunspot fine structure have been relying heavily on strong assumptions about flow and field geometry (e.g., flux-tubes, "gaps", convective rolls, which were motivated in part by the observed filamentary structure of penumbrae or the necessity of explaining the substantial energy transport required to maintain the penumbral brightness. However, none of these models could self-consistently explain all aspects of penumbral structure (energy transport, filamentation, Evershed flow. In recent years, 3D radiative MHD simulations have been advanced dramatically to the point at which models of complete sunspots with sufficient resolution to capture sunspot fine structure are feasible. Here overturning convection is the central element responsible for energy transport, filamentation leading to fine-structure and the driving of strong outflows. On the larger scale these models are also in the progress of addressing the subsurface structure of sunspots as well as sunspot formation. With this shift in modeling capabilities and the recent advances in high resolution observations, the future research will be guided by comparing observation and theory.

  19. Research on Dependable Ionizing Radiation Protection based on Model i*

    Directory of Open Access Journals (Sweden)

    Tan Hai

    2013-07-01

    Full Text Available The software’s unreliability mostly attributes to an erroneous analysis on the requirements done at the beginning. In this paper, we apply the tool of i* frame requirement modeling and build early requirement model against ionizing radiation. After finding out possible risks and corresponding solutions during the process of modeling analysis, we propose reasoning models against ionizing radiation. The radiation protection system  with  the  above models  can  figure out  the  purpose  of agents  related  to radiant source and provide normal service even when the environment software system is being interfered. It can serve the ecological and economical society with stability and development.  The model is divided into several sections. Section 1 gives the outline of the dependant software. Section 2 illustrates the  i* frame  technology. Section 3, 4 and 5 cover the topic of dependant security requirement analysis, SD&SR model on ionizing radiation respectively. Section 6 gives the conclusion.

  20. Environmental Radiation Effects on Mammals A Dynamical Modeling Approach

    CERN Document Server

    Smirnova, Olga A

    2010-01-01

    This text is devoted to the theoretical studies of radiation effects on mammals. It uses the framework of developed deterministic mathematical models to investigate the effects of both acute and chronic irradiation in a wide range of doses and dose rates on vital body systems including hematopoiesis, small intestine and humoral immunity, as well as on the development of autoimmune diseases. Thus, these models can contribute to the development of the system and quantitative approaches in radiation biology and ecology. This text is also of practical use. Its modeling studies of the dynamics of granulocytopoiesis and thrombocytopoiesis in humans testify to the efficiency of employment of the developed models in the investigation and prediction of radiation effects on these hematopoietic lines. These models, as well as the properly identified models of other vital body systems, could provide a better understanding of the radiation risks to health. The modeling predictions will enable the implementation of more ef...

  1. EVENT: A new model of cloud-radiation interactions

    Science.gov (United States)

    Cook, P.; de Oliveira, C.; Haigh, J.; Trasi, N.; Goddard, A.

    2003-04-01

    Clouds cool the global climate by scattering solar radiation back into space but also warm the climate by scattering and absorbing radiation from the ground, so a clear understanding of cloud-radiation interactions is required for global climate models. EVENT, a general purpose code which uses the finite element-spherical harmonics method to solve neutral particle transport, has been adapted to study radiation propagation through large complex 3D cloud structures. EVENT is unique in atmospheric applications, it is computationally much faster than Monte Carlo techniques, and also more flexible and potentially faster than existing deterministic codes such as SHDOM. The results demonstrate the complex effects of cloud inhomogeneity on the 3D radiation field. For example within cloud layers radiation is scattered sideways from regions of high to low optical depth, the low optical depth regions forming "windows" through which much of the radiation passes, so that the overall albedo is reduced. Such complex interactions are difficult to calculate, the radiation field does not just depend on local optical depth, and demonstrates the need for a fast flexible model. EVENT has also been used to predict the pattern of radiation within a real cloud layer, where both the cloud structure and radiation was measured by a Met Office research aircraft, providing a test for the model.

  2. Dynamic evaluation of air quality models over European regions

    Science.gov (United States)

    Thunis, P.; Pisoni, E.; Degraeuwe, B.; Kranenburg, R.; Schaap, M.; Clappier, A.

    2015-06-01

    Chemistry-transport models are increasingly used in Europe for estimating air quality or forecasting changes in pollution levels. But with this increased use of modeling arises the need of harmonizing the methodologies to determine the quality of air quality model applications. This is complex for planning applications, i.e. when models are used to assess the impact of realistic or virtual emission scenarios. In this work, the methodology based on the calculation of potencies proposed by Thunis and Clappier (2014) to analyze the model responses to emission reductions is applied on three different domains in Europe (Po valley, Southern Poland and Flanders). This methodology is further elaborated to facilitate the inter-comparison process and bring in a single diagram the possibility of differentiating long-term from short-term effects. This methodology is designed for model users to interpret their model results but also for policy-makers to help them defining intervention priorities. The methodology is applied to both daily PM10 and 8 h daily maximum ozone.

  3. Consistent inclusion of radiation reaction into kinetic plasma modeling

    International Nuclear Information System (INIS)

    Complete text of publication follows. Radiation properties of laser plasma and the resulting collective effects due to the radiation reaction force are relevant for the most powerful lasers interacting with matter available in the laboratory today. The contribution of the radiation reaction force to the total force acting on a charged particle moving in plasma is analyzed. Radiation is principally included in the standard calculation of self-consistent fields. Since the high frequency part of the emitted radiation cannot always be resolved in numerical simulations due to a finite time step one can think to include radiation reaction using a consistent physical model. For these purposes we have derived a modified kinetic equation which describes the radiation damping as a result of non-Hamiltonian dynamics in phase space due to the interaction with radiation. We use this equation for the derivation of moment equations for macro-particles. As physical models for the radiation force we use the classical Lorentz-Abraham-Dirac (LAD) and the Landau-Lifshitz equations derived from LAD. Both models are incorporated into a large scale Particle-In-Cell code to treat the radiation self-action in the classical validity range, i.e. when the recoil energy of scattered photons is not too big in comparison with the energy of the interacting electron. The model has clear advantages for the treatment of coherent effects in laser field-plasma interaction. We also discuss consistent matching with a more elaborated semi-classical radiation model. The model has no limit for the recoil energy but suffers from a lack of coherence. Both models have to be used together to simulate multi-scale processes of electron acceleration, highly brillant X-ray sources and QED effects, which may become important in the course of the ELI project. Acknowledgements. This work has been funded by the Munich Centre of Advanced Photonics.

  4. Surface air temperature variability in global climate models

    OpenAIRE

    Richard Davy; Igor Esau

    2013-01-01

    New results from the Coupled Model Inter-comparison Project phase 5 (CMIP5) and multiple global reanalysis datasets are used to investigate the relationship between the mean and standard deviation in the surface air temperature. A combination of a land-sea mask and orographic filter were used to investigate the geographic region with the strongest correlation and in all cases this was found to be for low-lying over-land locations. This result is consistent with the expectati...

  5. Space-Time Fusion Under Error in Computer Model Output: An Application to Modeling Air Quality

    Science.gov (United States)

    In the last two decades a considerable amount of research effort has been devoted to modeling air quality with public health objectives. These objectives include regulatory activities such as setting standards along with assessing the relationship between exposure to air pollutan...

  6. The influence of the solar radiation model on the calcutated solar radiation from a horizontal surface to a tilted surface

    DEFF Research Database (Denmark)

    Andersen, Elsa; Lund, Hans

    2004-01-01

    Measured solar radiation data are most commonly available as total solar radiation on a horizontal surface. When using solar radiation measured on horizontal to calculate the solar radiation on tilted surfaces and thereby the thermal performance of different applications such as buildings and solar heating systems, different solar radiation models can be used. The calculation of beam radiation from a horizontal surface to a tilted surface can be done exactly whereas different solar radiation models can calculate the sky diffuse radiation. The sky diffuse radiation can either be assumed evenly distributed over the entire sky dome and calculated as pure isotropic radiation or by anisotropic radiation models that also uses contribution from circumsolar radiation in the calculation or by anisotropic radiation models that apart from the isotropic and circumsolar contribution uses horizon brightening in the calculation. The weather data are measured at the solar radiation measurement station, SMS at the Departmentof Civil Engineering at the Technical University of Denmark. In this study the weather data are combined with solar collector calculations based on solar collector test carried out at Solar Energy Center, SEC, Denmark. With measured solar radiation on horizontal and the different solar radiation processing models the total radiation is calculated on differently tilted and oriented surfaces and compared with the measured solar radiation on the different surfaces. Further, the impact on the yearly thermal performances of a solar collector using the different solar radiation processing models is investigated. The study shows that the isotropic diffuse radiation model is underestimating the diffuse radiation from south and overestimating the diffuse radiation from north, while the anisotropic models give a better estimate on the diffuse radiation from all directions.

  7. Modelling radiative heat transfer inside a basin type solar still

    International Nuclear Information System (INIS)

    Radiative heat transfer inside a basin type solar still has been investigated using two models with (model 1) and without (model 2) taking into account optical view factors. The coefficient of radiative heat exchange (hr,w-gc) between the water and cover surfaces of a practical solar still was computed using the two models. Simulation results show that model 1 yields lower values of hr,w-gc and the root mean square error than model 2. It is therefore concluded that the accuracy of modelling the performance of a basin-type solar still can be improved by incorporating view factors. - Highlights: • Radiative heat transfer in a basin type solar still has been investigated. • Two models with and without view factors were used. • The model with view factors exhibits a lower magnitude of root mean square error. • View factors affect the accuracy of modelling the performance of the solar still

  8. EMMA model: an advanced operational mesoscale air quality model for urban and regional environments

    International Nuclear Information System (INIS)

    Mesoscale air quality models are an important tool to forecast and analyse the air quality in regional and urban areas. In recent years an increased interest has been shown by decision makers in these types of software tools. The complexity of such a model has grown exponentially with the increase of computer power. Nowadays, medium workstations can run operational versions of these modelling systems successfully. Presents a complex mesoscale air quality model which has been installed in the Environmental Office of the Madrid community (Spain) in order to forecast accurately the ozone, nitrogen dioxide and sulphur dioxide air concentrations in a 3D domain centred on Madrid city. Describes the challenging scientific matters to be solved in order to develop an operational version of the atmospheric mesoscale numerical pollution model for urban and regional areas (ANA). Some encouraging results have been achieved in the attempts to improve the accuracy of the predictions made by the version already installed. (Author)

  9. Thermal conductive and radiative properties of solid foams: Traditional and recent advanced modelling approaches

    Science.gov (United States)

    Randrianalisoa, Jaona; Baillis, Dominique

    2014-10-01

    The current paper presents an overview of traditional and recent models for predicting the thermal properties of solid foams with open- and closed-cells. Their effective thermal conductivity has been determined analytically by empirical or thermal-resistance-network-based models. Radiative properties crucial to obtain the radiative conductivity have been determined analytically by models based on the independent scattering theory. Powerful models combine three-dimensional (3D) foam modelling (by X-ray tomography, Voronoi tessellation method, etc.) and numerical solution of transport equations. The finite-element method (FEM) has been used to compute thermal conductivity due to solid network for which the computation cost remains reasonable. The effective conductivity can be determined from FEM results combined with the conductivity due to the fluid, which can be accurately evaluated by a simple formula for air or weakly conducting gas. The finite volume method seems well appropriate for solving the thermal problem in both the solid and fluid phases. The ray-tracing Monte Carlo method constitutes the powerful model for radiative properties. Finally, 3D image analysis of foams is useful to determine topological information needed to feed analytical thermal and radiative properties models. xml:lang="fr"

  10. Application of photoionization models based on radiative transfer and the Helmholtz equations to studies of streamers in weak electric fields

    International Nuclear Information System (INIS)

    Recent advances in development of photoionization models in air based on radiative transfer and Helmholtz equations open new perspectives for efficient solution of nonthermal gas discharge problems involving complex geometries. Many practical applications require accurate modeling of streamer discharges developing in weak electric fields, in which the photoionization process significantly contributes to discharge dynamics. This paper (1) reports original studies, which demonstrate the validity and accuracy of the recently proposed photoionization models for studies of streamers in weak electric fields, and (2) introduces efficient boundary conditions for the photoinization models based on radiative transfer theory

  11. Modeling of Kinetics of Air Entrainment in Water Produced by Vertically Falling Water Flow

    OpenAIRE

    Adel? VAIDELIEN?; Arvaidas GALDIKAS; Paulius TERVYDIS

    2014-01-01

    This study analyzes the process of air entrainment in water caused by vertically falling water flow in the free water surface. The new kinetic model of air entrainment in water was developed. This model includes the process of air entrapment, as well as air removal, water sputtering and resorption. For the experimental part of this study a new method based on digital image processing was developed. Theoretical and experimental methods were used for determining air concentration and its distri...

  12. Modeling gamma radiation dose in dwellings due to building materials.

    Science.gov (United States)

    de Jong, Peter; van Dijk, Willem

    2008-01-01

    A model is presented that calculates the absorbed dose rate in air of gamma radiation emitted by building materials in a rectangular body construction. The basis for these calculations is formed by a fixed set of specific absorbed dose rates (the dose rate per Bq kg(-1) 238U, 232Th, and 40K), as determined for a standard geometry with the dimensions 4 x 5 x 2.8 m3. Using the computer codes Marmer and MicroShield, correction factors are assessed that quantify the influence of several room and material related parameters on the specific absorbed dose rates. The investigated parameters are the position in the construction; the thickness, density, and dimensions of the construction parts; the contribution from the outer leave; the presence of doors and windows; the attenuation by internal partition walls; the contribution from building materials present in adjacent rooms; and the effect of non-equilibrium due to 222Rn exhalation. To verify the precision, the proposed method is applied to three Dutch reference dwellings, i.e., a row house, a coupled house, and a gallery apartment. The averaged difference with MCNP calculations is found to be 4%. PMID:18091149

  13. Treatment of cloud radiative effects in general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.C.; Dudek, M.P.; Liang, X.Z.; Ding, M. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    We participate in the Atmospheric Radiation Measurement (ARM) program with two objectives: (1) to improve the general circulation model (GCM) cloud/radiation treatment with a focus on cloud verticle overlapping and layer cloud optical properties, and (2) to study the effects of cloud/radiation-climate interaction on GCM climate simulations. This report summarizes the project progress since the Fourth ARM Science Team meeting February 28-March 4, 1994, in Charleston, South Carolina.

  14. Econometric model for age- and population-dependent radiation exposures

    International Nuclear Information System (INIS)

    The economic impact associated with ionizing radiation exposures in a given human population depends on numerous factors including the individual's mean economic status as a function age, the age distribution of the population, the future life expectancy at each age, and the latency period for the occurrence of radiation-induced health effects. A simple mathematical model has been developed that provides an analytical methodology for estimating the societal econometrics associated with radiation effects are to be assessed and compared for economic evaluation

  15. The radiation budget in a regional climate model

    OpenAIRE

    Kothe, Steffen

    2012-01-01

    The aim of this study is a better understanding of radiation processes in regional climate models (RCMs) in order to quantify their impact and to reduce possible errors. A first important task in finding an answer to this question was to examine the accuracy of the components of the radiation budget in regional climate simulations. To this end, the simulated radiation budgets of two regional climate simulations for Europe were compared with a satellite-based reference. In the simulations with...

  16. Simplified models of electromagnetic and gravitational radiation damping

    OpenAIRE

    Kunze, Markus; Rendall, Alan D

    2001-01-01

    In previous work the authors analysed the global properties of an approximate model of radiation damping for charged particles. This work is put into context and related to the original motivation of understanding approximations used in the study of gravitational radiation damping. It is examined to what extent the results obtained previously depend on the particular model chosen. Comparisons are made with other models for gravitational and electromagnetic fields. The relati...

  17. Radiation fields, dosimetry, biokinetics and biophysical models for cancer induction by ionising radiation 1996-1999. Executive summary

    International Nuclear Information System (INIS)

    The Association Contract covers a range of research domains that are important to the Radiation Protection Research Action, especially in the areas 'Evaluation of Radiation Risks' and 'Understanding Radiation Mechanisms and Epidemiology'. Three research projects concentrate on radiation dosimetry research and two projects on the modelling of radiation carcinogenesis. The following list gives an overview on the topics and responsible scientific project leaders of the Association Contract: Study of radiation fields and dosimetry at aviation altitudes. Biokinetics and dosimetry of incorporated radionuclides. Dose reconstruction. Biophysical models for the induction of cancer by radiation. Experimental data for the induction of cancer by radiation of different qualities. (orig.)

  18. 76 FR 62605 - Airworthiness Directives; Viking Air Limited Model DHC-3 (Otter) Airplanes With Supplemental Type...

    Science.gov (United States)

    2011-10-11

    ...Directives; Viking Air Limited Model DHC-3 (Otter) Airplanes With Supplemental Type Certificate...applies to Viking Air Limited Model DHC-3 (Otter) airplanes equipped with a Honeywell TPE331...for Viking Air Limited Model DHC-3 (Otter) airplanes equipped with a Honeywell...

  19. NASA Space Radiation Program Integrative Risk Model Toolkit

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  20. Time-based collision risk modeling for air traffic management

    Science.gov (United States)

    Bell, Alan E.

    Since the emergence of commercial aviation in the early part of last century, economic forces have driven a steadily increasing demand for air transportation. Increasing density of aircraft operating in a finite volume of airspace is accompanied by a corresponding increase in the risk of collision, and in response to a growing number of incidents and accidents involving collisions between aircraft, governments worldwide have developed air traffic control systems and procedures to mitigate this risk. The objective of any collision risk management system is to project conflicts and provide operators with sufficient opportunity to recognize potential collisions and take necessary actions to avoid them. It is therefore the assertion of this research that the currency of collision risk management is time. Future Air Traffic Management Systems are being designed around the foundational principle of four dimensional trajectory based operations, a method that replaces legacy first-come, first-served sequencing priorities with time-based reservations throughout the airspace system. This research will demonstrate that if aircraft are to be sequenced in four dimensions, they must also be separated in four dimensions. In order to separate aircraft in four dimensions, time must emerge as the primary tool by which air traffic is managed. A functional relationship exists between the time-based performance of aircraft, the interval between aircraft scheduled to cross some three dimensional point in space, and the risk of collision. This research models that relationship and presents two key findings. First, a method is developed by which the ability of an aircraft to meet a required time of arrival may be expressed as a robust standard for both industry and operations. Second, a method by which airspace system capacity may be increased while maintaining an acceptable level of collision risk is presented and demonstrated for the purpose of formulating recommendations for procedures regulating air traffic management methods and industry standards governing performance requirements for avionics designed to support trajectory based operations.

  1. Practical aerodynamic simulation method using unstructured grid system. Prediction of cooling air flow rate and improvement of drag prediction accuracy; Hikozo koshi wo mochiita kuriki kaiseki. Radiator tsuka furyo no yosoku to furiki tokusei yosoku no kaien

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T.; Hanaoka, Y. [Isuzu Motors Ltd., Tokyo (Japan)

    2000-04-01

    Attention is focused on the expressibility of complicated shapes and the selection of turbulence models. Introduced in this paper are an analysis for the prediction of an air flow through a radiator by the use of an unstructured grid system which easily reproduces a complicated shape and the application of an SGS (Sub-Grid Scale) turbulence model to the Ahmed Model which is a simplified model assuming vehicular characteristics. The prediction of an air flow through a radiator is made using STARCD, and the Ahmed Model analysis is made using STARCD and PAM-FLOW. The outlines of the efforts are that (1) a CFD (Computational Fluid Dynamics) technique is developed using a unstructured grid system, applicable to the drafting of vehicle body aerodynamic designs, that (2) this technique is then applied to the prediction of air flows through the radiators of two different models CV (Concept Vehicle) and RV (Recreational Vehicle) to arrive at a conclusion that it is effective as a designing tool, that (3) a fan modelled by the pressure method yields a lower flow rate than actual even in the case of a detailed shape calculation model, and that (4), in the prediction of vehicle aerodynamic characteristics, an SGS turbulence model is found to be more suitable for the prediction of a flow field that accompanies an exfoliated flow than the generally accepted {kappa}-{epsilon} model. (NEDO)

  2. Optical tomographic in-air scanner for external radiation beam 3D gel dosimetry

    International Nuclear Information System (INIS)

    Full text: Optical CT scanners are used to measure 3D radiation dose distributions in radiosensitive gels. For radiotherapy dose verification, 3D dose measurements are useful for verification of complex linear accelerator treatment planning and delivery techniques. Presently optical CTs require the use of a liquid bath to match the refractive index of the gel to minimise refraction of the light rays leading to distortion and artifacts. This work aims to develop a technique for scanning gel samples in free-air, without the requirement for a matching liquid bath. The scanner uses a He-Ne laser beam, fanned across the acrylic cylindrical gel container by a rotating mirror. The gel container was designed to produce parallel light ray paths through the gel. A pin phantom was used to quantify geometrical distortion of the reconstructed image, while uniform field exposures were used to consider noise, uniformity and artifacts. Small diameter wires provided an indication of the spatial resolution of the scanner. Pin phantom scans show geometrical distortion comparable to scanners using matching fluid baths. Noise, uniformity and artifacts were not found to be major limitations for this scanner approach. Spatial resolution was limited by laser beam spot size, typically 0.4 mm full width half maximum. A free-air optical CT scanner has been developed with the advantage of scanning without a matching fluid bath. Test results show it has potential to provide suitable quality 3D dosimetry measurements for external beam dose verification, while offering significant advantages in convenience and efficiency for routine use.

  3. Mathematical model of the process of radiation-adsorption purification

    International Nuclear Information System (INIS)

    The mathematical model of the process of radiation-adsorption sterilization of water is developed which permits to choose optimum treatment parameters - liquid passing rate, length and cross section area of adsorption layer, radiation absorbed dose rate. The mathematical model has been tested at the pilot-experimental facility ''GURKh''-100000'' under 60Co ?-quantum irradiation of tap water. Quantitative correspondence of the experiment and calculation results confirms the mathematical model applicability for the description of the processes of radiation-adsorption purification and sterilization of water

  4. Modeling hourly diffuse solar-radiation in the city of Sao Paulo using a neural-network technique

    International Nuclear Information System (INIS)

    In this work, a perceptron neural-network technique is applied to estimate hourly values of the diffuse solar-radiation at the surface in Sao Paulo City, Brazil, using as input the global solar-radiation and other meteorological parameters measured from 1998 to 2001. The neural-network verification was performed using the hourly measurements of diffuse solar-radiation obtained during the year 2002. The neural network was developed based on both feature determination and pattern selection techniques. It was found that the inclusion of the atmospheric long-wave radiation as input improves the neural-network performance. On the other hand traditional meteorological parameters, like air temperature and atmospheric pressure, are not as important as long-wave radiation which acts as a surrogate for cloud-cover information on the regional scale. An objective evaluation has shown that the diffuse solar-radiation is better reproduced by neural network synthetic series than by a correlation model

  5. Air

    International Nuclear Information System (INIS)

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  6. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Avril Challoner

    2015-12-01

    Full Text Available NO2 and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person’s well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM, to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO2 indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO2 exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts.

  7. Solar radiation pressure model for the relay satellite of SELENE

    Science.gov (United States)

    Kubo-Oka, T.; Sengoku, A.

    1999-09-01

    A new radiation pressure model of the relay satellite of SELENE has been developed. The shape of the satellite was assumed to be a combination of a regular octagonal pillar and a column. Radiation forces acting on each part of the spacecraft were calculated independently and summed vectorially to obtain the mean acceleration of the satellite center of mass. We incorporated this new radiation pressure model into the orbit analysis software GEODYN-II and simulated the tracking data reduction process of the relay satellite. We compared two models: one is the new radiation pressure model developed in this work and the other a so-called "cannonball model" where the shape of the satellite is assumed to be a sphere. By the analysis of simulated two-way Doppler tracking data, we found that the new radiation pressure model reduces the observation residuals compared to the cannonball model. Moreover, we can decrease errors in the estimated lunar gravity field coefficients significantly by use of the new radiation pressure model.

  8. Air quality modeling in the Valley of Mexico: meteorology, emissions and forecasting

    Science.gov (United States)

    Garcia-Reynoso, A.; Jazcilevich, A. D.; Diaz-Nigenda, E.; Vazquez-Morales, W.; Torres-Jardon, R.; Ruiz-Suarez, G.; Tatarko, J.; Bornstein, R.

    2007-12-01

    The Valley of Mexico presents important challenges for air quality modeling: complex terrain, a great variety of anthropogenic and natural emissions sources, and high altitude and low latitude increasing the amount of radiation flux. The modeling group at the CCA-UNAM is using and merging state of the art models to study the different aspects that influence the air quality phenomenon in the Valley of Mexico. The air quality model MCCM that uses MM5 as its meteorological input has been a valuable tool to study important features of the complex and intricate atmospheric flows on the valley, such as local confluences and vertical fumigation. Air quality modeling has allowed studying the interaction between the atmospheres of the valleys surrounding the Valley of Mexico, prompting the location of measurement stations during the MILAGRO campaign. These measurements confirmed the modeling results and expanded our knowledge of the transport of pollutants between the Valleys of Cuernavaca, Puebla and Mexico. The urban landscape of Mexico City complicates meteorological modeling. Urban-MM5, a model that explicitly takes into account the influence of buildings, houses, streets, parks and anthropogenic heat, is being implemented. Preliminary results of urban-MM5 on a small area of the city have been obtained. The current emissions inventory uses traffic database that includes hourly vehicular activity in more than 11,000 street segments, includes 23 area emissions categories, more than 1,000 industrial sources and biogenic emissions. To improve mobile sources emissions a system consisting of a traffic model and a car simulator is underway. This system will allow for high time and space resolution and takes into account motor stress due to different driving regimes. An important source of emissions in the Valley of Mexico is erosion dust. The erosion model WEPS has been integrated with MM5 and preliminary results showing dust episodes over Mexico City have been obtained. A real time Ozone forecast model is being implemented for the Valley of Mexico whose performance is being evaluated.

  9. High fidelity chemistry and radiation modeling for oxy -- combustion scenarios

    Science.gov (United States)

    Abdul Sater, Hassan A.

    To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy Dissipation Concept (EDC) employing a 41-step detailed chemistry mechanism, the non-adiabatic extension of the equilibrium Probability Density Function (PDF) based mixture-fraction model and a two-step global finite rate chemistry model with modified rate constants proposed to work well in oxy-methane flames. Based on the results from this section, the equilibrium PDF model in conjunction with a high-fidelity non-gray model for the radiative properties of the gas-phase may be deemed as accurate to capture the major gas species concentrations, temperatures and flame lengths in oxy-methane flames. The third section examines the variations in radiative transfer predictions due to the choice of chemistry and gas-phase radiative property models. The radiative properties were estimated employing four weighted-sum-of-gray-gases models (WSGGM) that were formulated employing different spectroscopic/model databases. An average variation of 14 -- 17% in the wall incident radiative fluxes was observed between the EDC and equilibrium mixture fraction chemistry models, due to differences in their temperature predictions within the flame. One-dimensional, line-of-sight radiation calculations showed a 15 -- 25 % reduction in the directional radiative fluxes at lower axial locations as a result of ignoring radiation from CO and CH4. Under the constraints of fixed temperature and species distributions, the flame radiant power estimates and average wall incident radiative fluxes varied by nearly 60% and 11% respectively among the different WSGG models.

  10. Further evidence of the role of air pollution on solar ultraviolet radiation reaching the ground

    International Nuclear Information System (INIS)

    The influence of photochemical pollution on the ultraviolet radiation reaching the ground is examined. For this purpose, a series of UV-A and UV-B measurements as well as the results of a simple parametric model are compared. It was found that the hypothesis of UV-B depletion is significant at an almost 95 per cent confidence level. It is also indicated that the effect of photochemical pollution on UV-B levels reaching the ground is roughly three times the same effect on UV-A levels. (author)

  11. Space-Time Analysis of the Air Quality Model Evaluation International Initiative (AQMEII) Phase 1 Air Quality Simulations

    Science.gov (United States)

    This study presents an evaluation of summertime daily maximum ozone concentrations over North America (NA) and Europe (EU) using the database generated during Phase 1 of the Air Quality Model Evaluation International Initiative (AQMEII). The analysis focuses on identifying tempor...

  12. The cloud-aerosol-radiation (CAR) ensemble modeling system

    Science.gov (United States)

    Liang, X.-Z.; Zhang, F.

    2013-08-01

    A cloud-aerosol-radiation (CAR) ensemble modeling system has been developed to incorporate the largest choices of alternate parameterizations for cloud properties (cover, water, radius, optics, geometry), aerosol properties (type, profile, optics), radiation transfers (solar, infrared), and their interactions. These schemes form the most comprehensive collection currently available in the literature, including those used by the world's leading general circulation models (GCMs). CAR provides a unique framework to determine (via intercomparison across all schemes), reduce (via optimized ensemble simulations), and attribute specific key factors for (via physical process sensitivity analyses) the model discrepancies and uncertainties in representing greenhouse gas, aerosol, and cloud radiative forcing effects. This study presents a general description of the CAR system and illustrates its capabilities for climate modeling applications, especially in the context of estimating climate sensitivity and uncertainty range caused by cloud-aerosol-radiation interactions. For demonstration purposes, the evaluation is based on several CAR standalone and coupled climate model experiments, each comparing a limited subset of the full system ensemble with up to 896 members. It is shown that the quantification of radiative forcings and climate impacts strongly depends on the choices of the cloud, aerosol, and radiation schemes. The prevailing schemes used in current GCMs are likely insufficient in variety and physically biased in a significant way. There exists large room for improvement by optimally combining radiation transfer with cloud property schemes.

  13. Cloud-Aerosol-Radiation (CAR) ensemble modeling system

    Science.gov (United States)

    Liang, X.-Z.; Zhang, F.

    2013-04-01

    A Cloud-Aerosol-Radiation (CAR) ensemble modeling system has been developed to incorporate the largest choices of alternative parameterizations for cloud properties (cover, water, radius, optics, geometry), aerosol properties (type, profile, optics), radiation transfers (solar, infrared), and their interactions. These schemes form the most comprehensive collection currently available in the literature, including those used by the world leading general circulation models (GCMs). The CAR provides a unique framework to determine (via intercomparison across all schemes), reduce (via optimized ensemble simulations), and attribute specific key factors for (via physical process sensitivity analyses) the model discrepancies and uncertainties in representing greenhouse gas, aerosol and cloud radiative forcing effects. This study presents a general description of the CAR system and illustrates its capabilities for climate modeling applications, especially in the context of estimating climate sensitivity and uncertainty range caused by cloud-aerosol-radiation interactions. For demonstration purpose, the evaluation is based on several CAR standalone and coupled climate model experiments, each comparing a limited subset of the full system ensemble with up to 896 members. It is shown that the quantification of radiative forcings and climate impacts strongly depends on the choices of the cloud, aerosol and radiation schemes. The prevailing schemes used in current GCMs are likely insufficient in variety and physically biased in a significant way. There exists large room for improvement by optimally combining radiation transfer with cloud property schemes.

  14. Cloud-Aerosol-Radiation (CAR ensemble modeling system

    Directory of Open Access Journals (Sweden)

    X.-Z. Liang

    2013-04-01

    Full Text Available A Cloud-Aerosol-Radiation (CAR ensemble modeling system has been developed to incorporate the largest choices of alternative parameterizations for cloud properties (cover, water, radius, optics, geometry, aerosol properties (type, profile, optics, radiation transfers (solar, infrared, and their interactions. These schemes form the most comprehensive collection currently available in the literature, including those used by the world leading general circulation models (GCMs. The CAR provides a unique framework to determine (via intercomparison across all schemes, reduce (via optimized ensemble simulations, and attribute specific key factors for (via physical process sensitivity analyses the model discrepancies and uncertainties in representing greenhouse gas, aerosol and cloud radiative forcing effects. This study presents a general description of the CAR system and illustrates its capabilities for climate modeling applications, especially in the context of estimating climate sensitivity and uncertainty range caused by cloud-aerosol-radiation interactions. For demonstration purpose, the evaluation is based on several CAR standalone and coupled climate model experiments, each comparing a limited subset of the full system ensemble with up to 896 members. It is shown that the quantification of radiative forcings and climate impacts strongly depends on the choices of the cloud, aerosol and radiation schemes. The prevailing schemes used in current GCMs are likely insufficient in variety and physically biased in a significant way. There exists large room for improvement by optimally combining radiation transfer with cloud property schemes.

  15. A statistical model for characterizing common air pollutants in air-conditioned offices

    Science.gov (United States)

    Wong, L. T.; Mui, K. W.; Hui, P. S.

    Maintaining acceptable indoor air quality (IAQ) for a healthy environment is of primary concern, policymakers have developed different strategies to address the performance of it based on proper assessment methodologies and monitoring plans. It could be cost prohibitive to sample all toxic pollutants in a building. In search of a more manageable number of parameters for cost-effective IAQ assessment, this study investigated the probable correlations among the 12 indoor environmental parameters listed in the IAQ certification scheme of the Hong Kong Environment Protection Department (HKEPD) in 422 Hong Kong offices. These 12 parameters consists of nine indoor air pollutants: carbon dioxide (CO 2), carbon monoxide (CO), respirable suspended particulates (RSP), nitrogen dioxide (NO 2), ozone (O 3), formaldehyde (HCHO), total volatile organic compounds (TVOC), radon (Rn), airborne bacteria count (ABC); and three thermal comfort parameters: temperature ( T), relative humidity (RH) and air velocity ( V). The relative importance of the correlations derived, from largest to smallest loadings, was ABC, Rn, CO, RH, RSP, CO 2, TVOC, O 3, T, V, NO 2 and HCHO. Together with the mathematical expressions derived, an alternative sampling protocol for IAQ assessment with the three 'most representative and independent' parameters namely RSP, CO 2 and TVOC measured in an office environment was proposed. The model validity was verified with on site measurements from 43 other offices in Hong Kong. The measured CO 2, RSP and TVOC concentrations were used to predict the probable levels of the other nine parameters and good agreement was found between the predictions and measurements. This simplified protocol provides an easy tool for performing IAQ monitoring in workplaces and will be useful for determining appropriate mitigation measures to finally honor the certification scheme in a cost-effective way.

  16. Evaluation of air temperature distribution using thermal image under conditions of nocturnal radiative cooling in winter season over Shikoku area

    International Nuclear Information System (INIS)

    Using the thermal images offered by the infra-red thermometer and the LANDSAT, the air temperature distribution over mountainous regions were estimated under conditions of nocturnal radiative cooling in the winter season. The thermal image analyses by using an infra-red thermometer and the micrometeological observation were carried out around Zentsuji Kagawa prefecture. At the same time, the thermal image analyses were carried out by using the LANDSAT data. The LANDSAT data were taken on Dec. 7, 1984 and Dec. 5, 1989. The scenes covered the west part of Shikoku, southwest of Japan.The results were summarized as follows:Values of the surface temperature of trees, which were measured by an infra-red thermometer, were almost equal to the air temperature. On the other hand, DN values detected by LANDSAT over forest area were closely related with air temperature observed by AMeDAS. Therefore, it is possible to evaluate instantaneously a spatial distribution of the nocturnal air temperature from thermal image.The LANDSAT detect a surface temperature over Shikoku area only at 21:30. When radiative cooling was dominant, the thermal belt and the cold air lake were already formed on the mountain slopes at 21:30. Therfore, it is possible to estimate the characteristic of nocturnal temperature distribution by using LANDSAT data.It became clear that the temperature distribution estimated by thermal images offered by the infra-red thermometer and the LANDSAT was useful for the evaluation of rational land use for winter crops

  17. A NEW COMBINED LOCAL AND NON-LOCAL PBL MODEL FOR METEOROLOGY AND AIR QUALITY MODELING

    Science.gov (United States)

    A new version of the Asymmetric Convective Model (ACM) has been developed to describe sub-grid vertical turbulent transport in both meteorology models and air quality models. The new version (ACM2) combines the non-local convective mixing of the original ACM with local eddy diff...

  18. LINKING ETA MODEL WITH THE COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODELING SYSTEM: OZONE BOUNDARY CONDITIONS

    Science.gov (United States)

    A prototype surface ozone concentration forecasting model system for the Eastern U.S. has been developed. The model system is consisting of a regional meteorological and a regional air quality model. It demonstrated a strong prediction dependence on its ozone boundary conditions....

  19. A Linear Regression Model for Global Solar Radiation on Horizontal Surfaces at Warri, Nigeria

    Directory of Open Access Journals (Sweden)

    Michael S. Okundamiya

    2013-10-01

    Full Text Available The growing anxiety on the negative effects of fossil fuels on the environment and the global emission reduction targets call for a more extensive use of renewable energy alternatives. Efficient solar energy utilization is an essential solution to the high atmospheric pollution caused by fossil fuel combustion. Global solar radiation (GSR data, which are useful for the design and evaluation of solar energy conversion system, are not measured at the forty-five meteorological stations in Nigeria. The dearth of the measured solar radiation data calls for accurate estimation. This study proposed a temperature-based linear regression, for predicting the monthly average daily GSR on horizontal surfaces, at Warri (latitude 5.020N and longitude 7.880E an oil city located in the south-south geopolitical zone, in Nigeria. The proposed model is analyzed based on five statistical indicators (coefficient of correlation, coefficient of determination, mean bias error, root mean square error, and t-statistic, and compared with the existing sunshine-based model for the same study. The results indicate that the proposed temperature-based linear regression model could replace the existing sunshine-based model for generating global solar radiation data. Keywords: air temperature; empirical model; global solar radiation; regression analysis; renewable energy; Warri

  20. Air quality modeling in support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS).

    Science.gov (United States)

    Isakov, Vlad; Arunachalam, Saravanan; Batterman, Stuart; Bereznicki, Sarah; Burke, Janet; Dionisio, Kathie; Garcia, Val; Heist, David; Perry, Steve; Snyder, Michelle; Vette, Alan

    2014-09-01

    A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related air pollutants and adverse health outcomes. A hybrid air quality modeling approach was used to estimate exposure to traffic-related air pollutants in support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS) conducted in Detroit (Michigan, USA). Model-based exposure metrics, associated with local variations of emissions and meteorology, were estimated using a combination of the American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) and Research LINE-source dispersion model for near-surface releases (RLINE) dispersion models, local emission source information from the National Emissions Inventory, detailed road network locations and traffic activity, and meteorological data from the Detroit City Airport. The regional background contribution was estimated using a combination of the Community Multi-scale Air Quality (CMAQ) and the Space-Time Ordinary Kriging (STOK) models. To capture the near-road pollutant gradients, refined "mini-grids" of model receptors were placed around participant homes. Exposure metrics for CO, NOx, PM2.5 and its components (elemental and organic carbon) were predicted at each home location for multiple time periods including daily and rush hours. The exposure metrics were evaluated for their ability to characterize the spatial and temporal variations of multiple ambient air pollutants compared to measurements across the study area. PMID:25166917

  1. Air Quality Modeling in Support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS

    Directory of Open Access Journals (Sweden)

    Vlad Isakov

    2014-08-01

    Full Text Available A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related air pollutants and adverse health outcomes. A hybrid air quality modeling approach was used to estimate exposure to traffic-related air pollutants in support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS conducted in Detroit (Michigan, USA. Model-based exposure metrics, associated with local variations of emissions and meteorology, were estimated using a combination of the American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD and Research LINE-source dispersion model for near-surface releases (RLINE dispersion models, local emission source information from the National Emissions Inventory, detailed road network locations and traffic activity, and meteorological data from the Detroit City Airport. The regional background contribution was estimated using a combination of the Community Multi-scale Air Quality (CMAQ and the Space-Time Ordinary Kriging (STOK models. To capture the near-road pollutant gradients, refined “mini-grids” of model receptors were placed around participant homes. Exposure metrics for CO, NOx, PM2.5 and its components (elemental and organic carbon were predicted at each home location for multiple time periods including daily and rush hours. The exposure metrics were evaluated for their ability to characterize the spatial and temporal variations of multiple ambient air pollutants compared to measurements across the study area.

  2. A model for the calculation of the radiation dose from natural radionuclides in The Netherlands

    International Nuclear Information System (INIS)

    A model has been developed to calculate the radiation dose incurred from natural radioactivity indoors and outdoors, expressed in effective dose equivalence/year. The model is applied on a three rooms dwelling characterized by interconnecting air flows and on a dwelling with crawlspace. In this model the distinct parameters are variable in order to allow the investigation of the relative influence. The calculated effective dose equivalent for an adult in the dwelling was calculated to be about 1.7 mSv/year, composed of 15% from cosmic radiation, 35% from terrestrial radioactivity, 20% from radioactivity in the body and 30% from natural radionuclides in building materials. The calculations show an enhancement of about a factor of two in radon concentration in air in a room which is ventilated by air from an adjacent room. It is also shown that the attachment rate of radon products to aerosols and the plate-out effect are relatively important parameters influencing the magnitude of the dose rate. (Auth.)

  3. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Xingming Sun

    2015-07-01

    Full Text Available Air temperature (AT is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS. Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR. Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months.

  4. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network.

    Science.gov (United States)

    Sun, Xingming; Yan, Shuangshuang; Wang, Baowei; Xia, Li; Liu, Qi; Zhang, Hui

    2015-01-01

    Air temperature (AT) is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS). Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR). Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE) and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months. PMID:26213941

  5. MODELING OF RADIATING EFFECTS IN CAD OF MICROELECTRONICS ????????????? ???????????? ???????? ? ???? ????????????????

    Directory of Open Access Journals (Sweden)

    Achkasov V. N.

    2012-01-01

    Full Text Available The methods of modeling of radiating effects of microcircuits in microcircuits are submitted. The technique of designing, information and lingware is considered. The methods of an estimation of stability to transitive effects are offered

  6. Modeling of radiation effects in cells and tissues.

    Czech Academy of Sciences Publication Activity Database

    Friedland, W.; Kundrát, Pavel

    1. Amsterdam : Elsevier, 2014 - (Brahme, A.), s. 105-142 ISBN 978-0444536327. - (Reference Module in Biomedical Sciences) Institutional support: RVO:68378271 Keywords : ionizing radiation * iological effects * athematical modeling * echanistic simulations * onte Carlo simulations Subject RIV: BO - Biophysics

  7. Radiation Belt Environment Model: Application to Space Weather and Beyond

    Science.gov (United States)

    Fok, Mei-Ching H.

    2011-01-01

    Understanding the dynamics and variability of the radiation belts are of great scientific and space weather significance. A physics-based Radiation Belt Environment (RBE) model has been developed to simulate and predict the radiation particle intensities. The RBE model considers the influences from the solar wind, ring current and plasmasphere. It takes into account the particle drift in realistic, time-varying magnetic and electric field, and includes diffusive effects of wave-particle interactions with various wave modes in the magnetosphere. The RBE model has been used to perform event studies and real-time prediction of energetic electron fluxes. In this talk, we will describe the RBE model equation, inputs and capabilities. Recent advancement in space weather application and artificial radiation belt study will be discussed as well.

  8. Modelling of air resistance during drying of wood-chips

    OpenAIRE

    Karaj, S.; Barfuss, Isabel; Schalk, J.; Reisinger, G.; Pude, R.; Müller, Joachim

    2011-01-01

    The objective of this study was to investigate the parameters that affect the drying process of wood chips at low air flow conditions. This objective was determined by measuring the air pressure resistance being produced by wood chips by examining different variables such as: air flow rate, air velocity, wood chip size, bulk density, bulk height and porosity. The air flow resistance was measured inside a 3 meter high cylindrical air duct constructed at University of Hohenheim. Physical proper...

  9. Search for molecular bremsstrahlung radiation signals in Ku band with coincidental operations of radio telescopes with air shower detectors

    Directory of Open Access Journals (Sweden)

    Fukushima Masaki

    2013-06-01

    Full Text Available Microwave radiation from extensive air showers is expected to provide a new technique to observe UHECR. We insatlled and operate radio telescopes in Osaka and at Telescope Array site in Utah, USA. In Osaka, we are coincidentally operating two Ku band radio telescopes with an air shower array which consists of nine plastic scintillators with about 10?m separation. In Utah, we installed two telescopes just beside the Black Rock Mesa fluorescence detector (FD station of the Telescope Array experiment, and we operated the radio telescopes coincidentally with FD event triggers. We report the experimental setups and the results of these measurements.

  10. [Treatment of cloud radiative effects in general circulation models

    International Nuclear Information System (INIS)

    This is a renewal proposal for an on-going project of the Department of Energy (DOE)/Atmospheric Radiation Measurement (ARM) Program. The objective of the ARM Program is to improve the treatment of radiation-cloud in GCMs so that reliable predictions of the timing and magnitude of greenhouse gas-induced global warming and regional responses can be made. The ARM Program supports two research areas: (I) The modeling and analysis of data related to the parameterization of clouds and radiation in general circulation models (GCMs); and (II) the development of advanced instrumentation for both mapping the three-dimensional structure of the atmosphere and high accuracy/precision radiometric observations. The present project conducts research in area (I) and focuses on GCM treatment of cloud life cycle, optical properties, and vertical overlapping. The project has two tasks: (1) Development and Refinement of GCM Radiation-Cloud Treatment Using ARM Data; and (2) Validation of GCM Radiation-Cloud Treatment

  11. Radiation detection field test at the Federal Express (FedEx) air cargo facility at Denver International Airport (DIA)

    Science.gov (United States)

    Waters, Amy; Weirup, Dave; Hall, Howard; Dougan, Arden; Trombino, Dave; Mattesich, Gary; Hull, Ethan L.; Bahowick, Sally; Loshak, Alex; Gruidl, Jeremiah

    2004-07-01

    Lawrence Livermore National Laboratory (LLNL) recently conducted a field-test of radiation detection and identification equipment at the air cargo facility of Federal Express (FedEx) located at Denver International Airport (DIA) over a period of two weeks. Comprehensive background measurements were performed and were analyzed, and a trial strategy for detection and identification of parcels displaying radioactivity was implemented to aid in future development of a comprehensive protection plan. The purpose of this project was threefold: quantify background radiation environments at an air cargo facility; quantify and identify "nuisance" alarms; evaluate the performance of various isotope identifiers deployed in an operational environment. LLNL emplaced a primary screening detector that provided the initial detection of radiation anomalies in near real-time. Once detected, a secondary test location provided capability to perform higher-resolution analysis of the parcels or containers that triggered the primary detector. Two triggered radiation events were observed during the course of this project. Both of the radiation events were determined to be legitimate shipments of radioactive material. The overall effect of this project on FedEx operations and personnel was deemed to be minimal.

  12. Livermore regional air quality model: I. concept and development

    International Nuclear Information System (INIS)

    By using the Eulerian form of the mass conservation equation integrated vertically from the surface to the base of the inversion, two regional air quality models (LIRAQ-1 and LIRAQ-2) have been developed for use in the San Francisco Bay Area. The models consider the complex topography, changing meteorology and detailed source emission patterns in generating surface and vertical average pollutant concentrations with grid resolutions of 1, 2 or 5 km. The focus of LIRAQ-1 is the treatment of transport and dispersion of relatively nonreactive species, accomplished through use of a sophisticated transport prescription. The LIRAQ-2 model, employing a simpler transport scheme, treats photochemically active pollutants and incorporates a photochemical reaction set involving 19 species

  13. Development of a Combined Radiation and Burn Injury Model

    OpenAIRE

    Palmer, Jessica L; Deburghgraeve, Cory R.; Bird, Melanie D.; Hauer-Jensen, Martin; Kovacs, Elizabeth J.

    2011-01-01

    Combined radiation and burn injuries are likely to occur after nuclear events, such as a meltdown accident at a nuclear energy plant or a nuclear attack. Little is known about the mechanisms by which combined injuries result in higher mortality than by either insult alone, and few animal models exist for combined radiation and burn injury. Herein, the authors developed a murine model of radiation and scald burn injury. Mice were given a single dose of 0, 2, 4, 5, 6, or 9 Gray (Gy) alone, foll...

  14. Modelling of the Through-air Bonding Process

    Directory of Open Access Journals (Sweden)

    M. Hossain

    2009-06-01

    Full Text Available A computational fluid dynamics (CFD modelling ofthe through-air bonding process of nonwoven fabricproduction is reported in this article. In the throughairprocess, hot air is passed through the fibrous webto heat and melt polymer fibers. Molten polymersubsequently flows to the point of contact betweenany two fibers to produce a bond. Two differentmodelling strategies are adapted to produce acomprehensive understanding of the through-airbonding process. In macroscale modelling, a CFDmodel is developed treating the whole web as aporous media in order to investigate the effect ofprocess parameters. Results reveal that the timerequired to heat and melt the fibers decreases with theincreasing porosity of the web and the velocity of hotair. The CFD modelling technique is then used toanalyze the bonding process at a more fundamentallevel by considering the bonding of individual fibersat microscale. The effects of the fiber diameter,bonding temperature and contact angle between twofibers on the bonding time are investigated. Resultsshow that the time required to bond fibers is weaklyrelated to bonding temperature and fiber diameter.Fiber orientation angle, on the other hand, hassignificant effect on the progression of bondformation.

  15. Ontologies for the Integration of Air Quality Models and 3D City Models

    CERN Document Server

    Métral, Claudine; Karatzas, Kostas

    2012-01-01

    The holistic approach to sustainable urban planning implies using different models in an integrated way that is capable of simulating the urban system. As the interconnection of such models is not a trivial task, one of the key elements that may be applied is the description of the urban geometric properties in an "interoperable" way. Focusing on air quality as one of the most pronounced urban problems, the geometric aspects of a city may be described by objects such as those defined in CityGML, so that an appropriate air quality model can be applied for estimating the quality of the urban air on the basis of atmospheric flow and chemistry equations. In this paper we first present theoretical background and motivations for the interconnection of 3D city models and other models related to sustainable development and urban planning. Then we present a practical experiment based on the interconnection of CityGML with an air quality model. Our approach is based on the creation of an ontology of air quality models ...

  16. On an incompressible model in radiation hydrodynamics.

    Czech Academy of Sciences Publication Activity Database

    Ducomet, B.; Ne?asová, Šárka

    2015-01-01

    Ro?. 38, ?. 4 (2015), s. 765-774. ISSN 0170-4214 R&D Projects: GA ?R GA13-00522S Institutional support: RVO:67985840 Keywords : radiation hydrodynamics * incompressible Navier-Stokes-Fourier system * weak solution Subject RIV: BA - General Mathematics Impact factor: 0.918, year: 2014 http://onlinelibrary.wiley.com/doi/10.1002/mma.3107/abstract

  17. A model of interband radiative transition.

    Czech Academy of Sciences Publication Activity Database

    Dittrich, Jaroslav; Exner, Pavel; Hirokawa, M.

    2004-01-01

    Ro?. 56, ?. 3 (2004), s. 753-786. ISSN 0025-5645 R&D Projects: GA MŠk ME 482 Keywords : radiative transition * crystal spectral band * decay law Subject RIV: BE - Theoretical Physics Impact factor: 0.366, year: 2004

  18. Model error identification for the radiation belt data assimilation

    Science.gov (United States)

    Podladchikova, Tatiana; Kondrashov, Dmitri; Shprits, Yuri; Kellerman, Adam

    Accurate forecast models of relativistic electron fluxes in the Earth's radiation belts are of great importance for protecting and designing satellite hardware. The Versatile Electron Radiation Belt (VERB) code solves the Fokker-Planck diffusion equation, which allows one to create the model of evolution of the radiation belt electron phase space density (PSD). The physical-based model, together with satellites observations, is used in data assimilation with the Kalman filter for effective estimation of the radiation belts dynamics. In practice, the model errors arising from the imperfect description of PSD dynamics are poorly known, that may cause failure of the Kalman filter algorithm. Correct specification of model errors statistics is necessary for development of the next-generation of radiation belt specification models for the accurate prediction and mitigation of space weather effects in the hazardous space environment. In this study we present a first attempt to identify model errors statistics to provide optimal data assimilation output and the effective PSD reconstruction. The proposed approach to the identification of errors statistics is based on estimating the unknown bias and the covariance matrix of model errors from the sparse CRRES observations over a period of 441 days from July 28, 1990 to October 11, 1991. With our technique we demonstrate that model errors are biased. Neglecting the bias when applying a data assimilation algorithm to radiation belt electrons can cause significant errors of the PSD estimate during data gaps. Both the identified bias and the covariance matrix of model errors increase with increase of L-shell. Sensitivity of the PSD reconstruction to model errors statistics and advances of the improved physical based model based on the model errors identification are illustrated by a number of representative examples of the PSD reanalysis.

  19. User's guide to the LIRAQ model: an air pollution model for the San Francisco Bay Area

    International Nuclear Information System (INIS)

    The Livermore Regional Air Quality (LIRAQ) model comprises a set of computer programs that have been integrated into an easily used tool for the air quality planner. To assemble and modify the necessary data files and to direct model execution, a problem formulation program has been developed that makes possible the setup of a wide variety of studies involving perturbation of the emission inventory, changes to the initial and boundary conditions, and different choices of grid size and problem domain. In addition to describing the types of air quality problems for which the LIRAQ model may be used, this User's Guide provides detailed information on how to set up and conduct model simulations. Also included are descriptions of the formats of input data files so that the LIRAQ model may be applied to regions other than the San Francisco Bay Area

  20. Modeling Air Traffic Management Technologies with a Queuing Network Model of the National Airspace System

    Science.gov (United States)

    Long, Dou; Lee, David; Johnson, Jesse; Gaier, Eric; Kostiuk, Peter

    1999-01-01

    This report describes an integrated model of air traffic management (ATM) tools under development in two National Aeronautics and Space Administration (NASA) programs -Terminal Area Productivity (TAP) and Advanced Air Transport Technologies (AATT). The model is made by adjusting parameters of LMINET, a queuing network model of the National Airspace System (NAS), which the Logistics Management Institute (LMI) developed for NASA. Operating LMINET with models of various combinations of TAP and AATT will give quantitative information about the effects of the tools on operations of the NAS. The costs of delays under different scenarios are calculated. An extension of Air Carrier Investment Model (ACIM) under ASAC developed by the Institute for NASA maps the technologies' impacts on NASA operations into cross-comparable benefits estimates for technologies and sets of technologies.

  1. Modelling air pollution abatement in deep street canyons by means of air scrubbers

    OpenAIRE

    De Giovanni, Marina; Curci, Gabriele; Avveduto, Alessandro; Pace, Lorenzo; Salisburgo, Cesare Dari; Giammaria, Franco; Monaco, Alessio; Spanto, Giuseppe; Tripodi, Paolo

    2015-01-01

    Deep street canyons are characterized by weak ventilation and recirculation of air. In such environment, the exposure to particulate matter and other air pollutants is enhanced, with a consequent worsening of both safety and health. The main solution adopted by the international community is aimed at the reduction of the emissions. In this theoretical study, we test a new solution: the removal of air pollutants close to their sources by a network of Air Pollution Abatement (...

  2. An efficient tabulated collisional radiative equilibrium radiation transport model suitable for multidimensional hydrodynamics calculations

    International Nuclear Information System (INIS)

    A computationally efficient method for transporting radiation in multidimensional plasmas has been developed and evaluated. The basis of this method is a uniform plasma approximation that allows one to utilize existing escape probability techniques that are successfully used in one-dimensional (1D) calculations to approximately solve the multidimensional radiation transport problem. This method is superior to diffusion methods because (1) the probability of escape technique insures that the plasma goes to the correct optically thin and thick limits, (2) the effects of line absorption due to photoexcitations are modeled, and (3) this method uses source functions that are based on a self-consistent nonlocal thermodynamic equilibrium calculation, not an ad hoc assumption that the source functions are Planckian. This method is highly efficient because equation of state information from 1D calculations is tabulated as a function of plasma internal energy, ion density, and the line probability of escape from a uniform plasma, and then used in multidimensional calculations. Given the internal energy and ion density, and by calculating the line probability of escape from a zone of the multidimensional plasma, the equation of state, including emissivities and absorption coefficients, of the zone is determined from the table. Total radiative power, K-shell radiative power, total radiative yield, K-shell radiative yield, and plasma density and temperature profiles obtained from 1D Z-pinch calculations employing this method are in good agreement with the same powers, yields, and profiles calculated using a full radiation transport model. This method has been implemented in the 2D plasma radiating imploding source model code [F. L. Cochran et al., Phys. Plasmas 2, 2765 (1995)] to determine the influence of radiation transport in argon Z-pinch experiments performed on the Z machine [R. B. Spielman et al., Phys. Plasmas 5, 2105 (1998)] at Sandia National Laboratories

  3. The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990–2030

    Directory of Open Access Journals (Sweden)

    F. Raes

    2004-12-01

    Full Text Available To explore the relationship between tropospheric ozone and radiative forcing with changing emissions, we compiled two sets of global scenarios for the emissions of the ozone precursors methane (CH4, carbon monoxide (CO, non-methane volatile organic compounds (NMVOC and nitrogen oxides (NOx up to the year 2030 and implemented them in two global Chemistry Transport Models. The "Current Legislation" (CLE scenario reflects the current perspectives of individual countries on future economic development and takes the anticipated effects of presently decided emission control legislation in the individual countries into account. In addition, we developed a "Maximum technically Feasible Reduction" (MFR scenario that outlines the scope for emission reductions offered by full implementation of the presently available emission control technologies, while maintaining the projected levels of anthropogenic activities. Whereas the resulting projections of methane emissions lie within the range suggested by other greenhouse gas projections, the recent pollution control legislation of many Asian countries, requiring introduction of catalytic converters for vehicles, leads to significantly lower growth in emissions of the air pollutants NOx, NMVOC and CO than was suggested by the widely used IPCC (Intergovernmental Panel on Climate Change SRES (Special Report on Emission Scenarios scenarios (Nakicenovic et al., 2000. With the TM3 and STOCHEM models we performed several long-term integrations (1990–2030 to assess global, hemispheric and regional changes in CH4, CO, hydroxyl radicals, ozone and the radiative climate forcings resulting from these two emission scenarios. Both models reproduce realistically the observed trends in background ozone, CO, and CH4 concentrations from 1990 to 2002. For the "current legislation" case, both models indicate an increase of the annual average ozone levels in the Northern hemisphere by 5 ppbv, and up to 15 ppbv over the Indian sub-continent, comparing the 2020s with the 1990s. The corresponding higher ozone and methane burdens in the atmosphere increase radiative forcing by approximately 0.2 Wm?2. Full application of today's emissions control technologies, however, would bring down ozone below the levels experienced in the 1990s and would reduce the current radiative forcing of ozone and methane by approximately 0.1Wm?2. While methane reductions lead to lower ozone burdens and to less radiative forcing, further reductions of the air pollutants NO4 and NMVOC result in lower ozone, but at the same time increase the lifetime of methane. Control of methane emissions appears an efficient option to reduce tropospheric ozone as well as radiative forcing.

  4. Linearity of the air kerma values in relation to exposure times in a dental X radiation system

    International Nuclear Information System (INIS)

    The objective of this study was the evaluation of a dental X radiation system intensity variation studying the linearity of the air kerma rate in relation to the exposure time. This study was performed in a Dabi Atlante dental X radiation system. For the exposure time measurements the cone spacer was positioned perpendicular to the detector and the time was varied from 0 to 1.5 s. The air kerma measurements were made in the same conditions for FDD=20.0 cm and 27.5 cm. After that, the obtained values were plotted and a linear adjust was done for each set of measurements. The results showed that the maximum variation obtained was 7% for the third group of measurements for the exposure time of 1.5 s. This variation is less than the recommended limit of 20% published by the Brazilian Health Ministry Regulation 453. (author)

  5. Radiation Detection Field Test at the Federal Express (FedEx) Air Cargo Facility at Denver International Airport (DIA)

    Energy Technology Data Exchange (ETDEWEB)

    Weirup, D; Waters, A; Hall, H; Dougan, A; Trombino, D; Mattesich, G; Hull, E; Bahowick, S; Loshak, A; Gruidl, J

    2004-02-11

    Lawrence Livermore National Laboratory (LLNL) recently conducted a field-test of radiation detection and identification equipment at the air cargo facility of Federal Express (FedEx) located at Denver International Airport (DIA) over a period of two weeks. Comprehensive background measurements were performed and were analyzed, and a trial strategy for detection and identification of parcels displaying radioactivity was implemented to aid in future development of a comprehensive protection plan. The purpose of this project was threefold: {sm_bullet} Quantify background radiation environments at an air cargo facility. {sm_bullet} Quantify and identify ''nuisance'' alarms. {sm_bullet} Evaluate the performance of various isotope identifiers deployed in an operational environment (in this case, the operational environment included the biggest blizzard in over 90 years!).

  6. An optimization model for the US Air-Traffic System

    Science.gov (United States)

    Mulvey, J. M.

    1986-01-01

    A systematic approach for monitoring U.S. air traffic was developed in the context of system-wide planning and control. Towards this end, a network optimization model with nonlinear objectives was chosen as the central element in the planning/control system. The network representation was selected because: (1) it provides a comprehensive structure for depicting essential aspects of the air traffic system, (2) it can be solved efficiently for large scale problems, and (3) the design can be easily communicated to non-technical users through computer graphics. Briefly, the network planning models consider the flow of traffic through a graph as the basic structure. Nodes depict locations and time periods for either individual planes or for aggregated groups of airplanes. Arcs define variables as actual airplanes flying through space or as delays across time periods. As such, a special case of the network can be used to model the so called flow control problem. Due to the large number of interacting variables and the difficulty in subdividing the problem into relatively independent subproblems, an integrated model was designed which will depict the entire high level (above 29000 feet) jet route system for the 48 contiguous states in the U.S. As a first step in demonstrating the concept's feasibility a nonlinear risk/cost model was developed for the Indianapolis Airspace. The nonlinear network program --NLPNETG-- was employed in solving the resulting test cases. This optimization program uses the Truncated-Newton method (quadratic approximation) for determining the search direction at each iteration in the nonlinear algorithm. It was shown that aircraft could be re-routed in an optimal fashion whenever traffic congestion increased beyond an acceptable level, as measured by the nonlinear risk function.

  7. Occultation Modeling for Radiation Obstruction Effects on Spacecraft Systems

    Science.gov (United States)

    de Carufel, Guy; Li, Zu Qun; Harvey, Jason; Crues, Edwin Z.; Bielski, Paul

    2016-01-01

    A geometric occultation model has been developed to determine line-of-sight obstruction of radiation sources expected for different NASA space exploration mission designs. Example applications includes fidelity improvements for surface lighting conditions, radiation pressure, thermal and power subsystem modeling. The model makes use of geometric two dimensional shape primitives to most effectively model space vehicles. A set of these primitives is used to represent three dimensional obstructing objects as a two dimensional outline from the perspective of an observing point of interest. Radiation sources, such as the Sun or a Moon's albedo is represented as a collection of points, each of which is assigned a flux value to represent a section of the radiation source. Planetary bodies, such as a Martian moon, is represented as a collection of triangular facets which are distributed in spherical height fields for optimization. These design aspects and the overall model architecture will be presented. Specific uses to be presented includes a study of the lighting condition on Phobos for a possible future surface mission, and computing the incident flux on a spacecraft's solar panels and radiators from direct and reflected solar radiation subject to self-shadowing or shadowing by third bodies.

  8. Mathematical model and simulations of radiation fluxes from buried radionuclides

    International Nuclear Information System (INIS)

    A mathematical model and a simple Monte Carlo simulations were developed to predict radiation fluxes from buried radionuclides. The model and simulations were applied to measured (experimental) data. The results of the mathematical model showed good acceptable order of magnitude agreement. A good agreement was also obtained between the simple simulations and the experimental results. Thus, knowing the radionuclide distribution profiles in soil from a core sample, it can be applied to the model or simulations to estimate the radiation fluxes emerging from the soil surface. (author)

  9. A study on radiation dose analysis model

    International Nuclear Information System (INIS)

    CRONIC and GASPAR Codes, which are based on USNRC Regulatory Guide 1.109, ''Calculation of annual doses to man from routine releases of reactor effluents for the purpose of evaluatino. compliance with 10 CFR Part 50, Appendix I'', are tested and now ready for immediate use. CRONIC Code is a program which will compute the external whole body dose from the radiation emitted directly by radioactive clouds. Gaseous reactor effluents will reach finally to man through environmental media of surrounding area about nuclear power plant site. GASPAR Code is a program to estimate the individual and population doses from all pathways of gaseous radioactive effluents, and the allowable emission limit to meet the environmental radiation standard will be determined for specific nuclides. In 1982, these codes will be applied to the environmental impact assessment and safety analysis for the Kori site. (Author)

  10. AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Tyler D. [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Catling, David C., E-mail: robinson@astro.washington.edu [Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, WA 98195-1310 (United States)

    2012-09-20

    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

  11. Modelling and visualisation to support decision-making in air quality-related transport planning

    OpenAIRE

    Zahran, El-Said Mamdouh Mahmoud

    2010-01-01

    This thesis introduces three main elements to support decision-making in air quality-related transport planning. The first are novel automatic collection and processing algorithms for traffic flow and geospatial data for input to air pollution models of transport schemes under analysis. The second is a novel strategy to improve the modelling of air quality by the calibration of input background concentrations. The third is a novel 3D air pollution dispersion interface for the 3D visualisation...

  12. A modeling analysis of a heavy air pollution episode occurred in Beijing

    OpenAIRE

    An, X.; Zhu, T; Wang, Z.; Li, C.; Wang, Y

    2006-01-01

    The concentrations of fine particulate matter (PM) and ozone in Beijing often exceed healthful levels in recent years, therefore China is to taking steps to improve Beijing's air quality for the 2008 Olympic Games. In this paper, the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System was used to investigate a heavy air pollution episode in Beijing during 3–7 April 2005 to obtain the basic information of how heavy air pollution formed and the contributions of local...

  13. Mammalian laryngseal air sacs add variability to the vocal tract impedance: Physical and computational modeling

    OpenAIRE

    Riede, Tobias; Tokuda, Isao T.; Munger, Jacob B.; Thomson, Scott L.

    2008-01-01

    Cavities branching off the main vocal tract are ubiquitous in nonhumans. Mammalian air sacs exist in human relatives, including all four great apes, but only a substantially reduced version exists in humans. The present paper focuses on acoustical functions of the air sacs. The hypotheses are investigated on whether the air sacs affect amplitude of utterances and?or position of formants. A multilayer synthetic model of the vocal folds coupled with a vocal tract model was utilized. As an air s...

  14. Transfer function models to quantify the delay between air and ground temperatures in thawed active layers

    OpenAIRE

    E. Zenklusen Mutter; Blanchet, J.; Phillips, M.

    2011-01-01

    Air temperatures influence ground temperatures with a certain delay, which increases with depth. Borehole temperatures measured at 0.5 m depth in Alpine permafrost and air temperatures measured at or near the boreholes have been used to model this dependency. Statistical transfer function models have been fitted to the daily difference series of air and ground temperatures measured at seven different permafrost sites in the Swiss Alps.

    The relation between air and g...

  15. A hybrid modelling approach for assessing solar radiation

    Science.gov (United States)

    Shamim, M. A.; Bray, M.; Remesan, R.; Han, D.

    2015-11-01

    A hybrid technique for solar radiation estimation, a core part of hydrological cycle, is presented in this study which parameterises the cloud cover effect (cloud cover index) not just from the geostationary satellites but also the PSU/NCAR's Mesoscale Modelling system (MM5) model. This, together with output from a global clear sky radiation model and observed datasets of temperature and precipitation are used as inputs within the Gamma test (GT) environment for the development of nonlinear models for global solar radiation estimation. The study also explores the ability of Gamma test to determine the optimum input combination and data length selection. Artificial neural network- and local linear regression-based nonlinear techniques are used to test the proposed methodology, and the results have shown a high degree of correlation between the observed and estimated values. It is believed that this study will initiate further exploration of GT for improving informed data and model selection.

  16. Numerical modelling of air movement in road tunnels

    International Nuclear Information System (INIS)

    The objective of the Mechanical Ventilation Systems (MVS) in highway tunnels is to provide tunnel patrons with a reasonable degree of comfort during normal operation and to assist in keeping tunnels safe during emergencies. Temperature, humidity, and air velocity are among the parameters that determine the tunnel environment and indicate the level of MVS performance. To investigate the performance of the current emergency ventilation strategies for an existing tunnel system in the event of a fire, a research project is being conducted at the National Research Council of Canada. The primary objectives of the study are: a) to assess and validate the ability of in-place emergency ventilation strategies to control smoke spread and minimize the impact of smoke on tunnel users; and b) to recommend guidelines for improving ventilation operation to maximize intervention effectiveness. This will allow future development of an intelligent ventilation system based on a pre-established scenario of ventilation activated using automatic fire detection. The research study includes two phases, numerical and experimental phases. The numerical phase will use a CFD model (Solvent) to study smoke ventilation in the tunnel. The experimental phase will be used to calibrate and validate the CFD model and to establish the boundary conditions for the numerical model. Solvent was used to model a ventilation scenario using existing data. The current paper presents the initial efforts to validate the CFD model against onsite flow measurements conducted in the tunnel. The CFD model included aerodynamically significant physical features of the tunnel. (author)

  17. Modelling air?water flows in bottom outlets of dams

    OpenAIRE

    Liu, Ting

    2014-01-01

    If air is entrained in a bottom outlet of a dam in an uncontrolled way, the resulting air pockets may cause problems such as blowback, blowout and loss of discharge capacity. In order to provide guidance for bottom outlet design and operation, this study examines how governing parameters affect air entrainment, air-pocket transport and de-aeration and the surrounding flow structure in pipe flows. Both experimental and numerical approaches are used. Air can be entrained into the bottom outlet ...

  18. Air pollution modeling for an industrial complex and model performance evaluation

    International Nuclear Information System (INIS)

    Jamshedpur, the steel city of India situated in the eastern part of India is affected by increasing air pollution levels as a result of concentrated industrial activities. The impact of NOx emissions resulting from various air pollution sources, viz. industries, vehicles and domestic, was estimated using Industrial Source Complex Short-Term gaussian dispersion model. The contribution of NOx concentration from industrial, vehicular and domestic sources was found to be 53, 40 and 7%. Further statistical analysis was carried out to evaluate the model performance by comparing measured and predicted NOx concentrations. The model performance was found good with an accuracy of about 68%. (Author)

  19. The ``KILDER`` air pollution modelling system, version 2.0

    Energy Technology Data Exchange (ETDEWEB)

    Gram, F.

    1996-12-31

    This report describes the KILDER Air Pollution Modelling System, which is a system of small PC-programs for calculation of long-term emission, dispersion, concentration and exposure from different source categories. The system consists of three parts: (1) The dispersion models POI-KILD and ARE-KILD for point- and area-sources, respectively, (2) Meterological programs WINDFREC, STABFREC and METFREC, (3) Supporting programs for calculating emissions and exposure and for operating with binary data fields. The file structure is based on binary files with data fields. The data fields are matrices with different types of values and may be read into the computer or be calculated in other programs. 19 refs., 22 figs., 3 tabs.

  20. Plasmonic-cavity model for radiating nano-rod antennas

    DEFF Research Database (Denmark)

    Peng, Liang; Mortensen, N. Asger

    2014-01-01

    In this paper, we propose the analytical solution of nano-rod antennas utilizing a cylindrical harmonics expansion. By treating the metallic nano-rods as plasmonic cavities, we derive closed-form expressions for both the internal and the radiated fields, as well as the resonant condition and the radiation efficiency. With our theoretical model, we show that besides the plasmonic resonances, efficient radiation takes advantage of (a) rendering a large value of the rods' radius and (b) a central-fed profile, through which the radiation efficiency can reach up to 70% and even higher in a wide frequency band. Our theoretical expressions and conclusions are general and pave the way for engineering and further optimization of optical antenna systems and their radiation patterns.

  1. A radiative diffusion model for laser-compression simulations

    International Nuclear Information System (INIS)

    A radiation diffusion package is described which can handle the transport of continuum radiation arising from free-free and free-bound transitions in a laser-compressed plasma. This model has been incorporated into MEDUSA, a two temperature, 1-D Lagrangian computer code, and numerous computer runs have been carried out to study the effect of radiative preheat on target compression. The calculations show that in compression of a 10-?g solid carbon microsphere the radiation effects reduce the final target density by up to a factor of 6. In the case of a neon filled thin glass microballoon, the radiative preheat reduces maximum neon density by a factor of 3 while the maximum shell density drops from 105 Kg/m3 to 1.8 x 104 Kg/m3. (author)

  2. Linkage between an advanced air quality model and a mechanistic watershed model

    Directory of Open Access Journals (Sweden)

    K. Vijayaraghavan

    2010-09-01

    Full Text Available An offline linkage between two advanced multi-pollutant air quality and watershed models is presented. The models linked are (1 the Advanced Modeling System for Transport, Emissions, Reactions and Deposition of Atmospheric Matter (AMSTERDAM (a three-dimensional Eulerian plume-in-grid model derived from the Community Multiscale Air Quality (CMAQ model and (2 the Watershed Analysis Risk Management Framework (WARMF. The pollutants linked include gaseous and particulate nitrogen, sulfur and mercury compounds. The linkage may also be used to obtain meteorological fields such as precipitation and air temperature required by WARMF from the outputs of the meteorology chemistry interface processor (MCIP that processes meteorology simulated by the fifth generation Mesoscale Model (MM5 or the Weather Research and Forecast (WRF model for input to AMSTERDAM. The linkage is tested in the Catawba River basin of North and South Carolina for ammonium, nitrate and sulfate. Modeled air quality and meteorological fields transferred by the linkage can supplement the conventional measurements used to drive WARMF and may be used to help predict the impact of changes in atmospheric emissions on water quality.

  3. A Numerical Study of Tropical Sea-Air Interactions Using a Cloud Resolving Model Coupled with an Ocean Mixed-Layer Model

    Science.gov (United States)

    Shie, Chung-Lin; Tao, Wei-Kuo; Johnson, Dan; Simpson, Joanne; Li, Xiaofan; Sui, Chung-Hsiung; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Coupling a cloud resolving model (CRM) with an ocean mixed layer (OML) model can provide a powerful tool for better understanding impacts of atmospheric precipitation on sea surface temperature (SST) and salinity. The objective of this study is twofold. First, by using the three dimensional (3-D) CRM-simulated (the Goddard Cumulus Ensemble model, GCE) diabatic source terms, radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the OML model, the respective impact of individual component on upper ocean heat and salt budgets are investigated. Secondly, a two-way air-sea interaction between tropical atmospheric climates (involving atmospheric radiative-convective processes) and upper ocean boundary layer is also examined using a coupled two dimensional (2-D) GCE and OML model. Results presented here, however, only involve the first aspect. Complete results will be presented at the conference.

  4. Modelling relationships between lichen bioindicators, air quality and climate on a national scale: Results from the UK OPAL air survey

    International Nuclear Information System (INIS)

    Air pollution has many negative effects on the natural environment, from changes in plant growth patterns to loss of ecosystem function. This study uses citizen science to investigate national-scale patterns in the distribution and abundance of selected lichen species on tree trunks and branches, and to relate these to air pollution and climate. Volunteers collected data for nine lichen indicators on 19,334 deciduous trees. Submitted data provided information on species-level patterns, and were used to derive composite lichen indices. Multiple linear regression and ANCOVA were used to model the relationships between lichen response variables on Quercus spp. and pollution, climate and location. The study demonstrated significant relationships between patterns in indicator lichens and levels of N- and S-containing pollutants on trunks and twigs. The derived lichen indices show great potential as a tool to provide information on local, site-specific levels of air quality. -- Highlights: •Data on presence and abundance of selected lichens were collected by members of the public. •Indicator species and indices were modelled against air pollution and climate data. •Lichens and indices show significant relationships with nitrogenous air pollution. •Lichen indices are useful tools for providing information on local air quality. -- Data on selected lichen taxa collected by members of the public in England is used to show the relationship of indicator taxa and pollution indices to air pollution and climate data

  5. SRADLIB: A C Library for Solar Radiation Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Balenzategui, J. L. [Ciemat. Madrid (Spain)

    2000-07-01

    This document shows the result of an exhaustive study about the theoretical and numerical models available in the literature about solar radiation modelling. The purpose of this study is to develop or adapt mathematical models describing the solar radiation specifically for Spain locations as well as to create computer tools able to support the labour of researchers or engineers needing solar radiation data to solve or improve the technical or energetic performance of solar systems. As results of this study and revision, a C library (SRADLIB) is presented as a key for the compilation of the mathematical models from different authors, for the comparison among the different approaches and for its application in computer programs. Different topics related to solar radiation and its modelling are first discussed, including the assumptions and conventions adopted and describing the most accepted and used current state-of-the-art models. some typical problems in the numerical calculation of radiation values are also posed with the proposed solution. The document includes next a complete reference of the developed functions, with many examples of application and calculus. (Author) 24 refs.

  6. SRADLIB: A C Library for Solar Radiation Modelling

    International Nuclear Information System (INIS)

    This document shows the result of an exhaustive study about the theoretical and numerical models available in the literature about solar radiation modelling. The purpose of this study is to develop or adapt mathematical models describing the solar radiation specifically for Spain locations as well as to create computer tools able to support the labour of researchers or engineers needing solar radiation data to solve or improve the technical or energetic performance of solar systems. As result of this study and revision, a C library (SRADLIB) is presented as a key tool for the compilation of the mathematical models from different authors, for the comparison among the different approaches and for its application in computer programs. Different topics related to solar radiation and its modelling are first discussed, including the assumptions and conventions adopted and describing the most accepted and used current state-of-the-art models. Some typical problems in the numerical calculation of radiation values are also posed with the proposed solution. The document includes next a complete reference of the developed functions, with many examples of application and calculus. (Author) 24 refs

  7. Near Decade Long Tropospheric Air Temperature and Specific Humidity Records from AIRS for CMIP5 Model Evaluation

    Science.gov (United States)

    Tian, B.; Fetzer, E.; Kahn, B. H.; Teixeira, J.; Manning, E.; Hearty, T. J.

    2012-12-01

    The peer-reviewed analyses of multi-model outputs from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) experiments will be the most important basis for the next Intergovernmental Panel on Climate Change (IPCC) Assessment Report (AR5). To increase the fidelity of the IPCC AR5, an Obs4MIPs project has been initiated to collect some well-established and well-documented datasets, to organize them according to the CMIP5 model output requirements, and makes them available to the science community for CMIP5 model evaluation. The NASA Atmospheric Infrared Sounder (AIRS) project has produced monthly mean tropospheric air temperature (ta, K) and specific humidity (hus, kg/kg) products as part of the Obs4MIPS project. In this paper, we first describe these two AIRS datasets in terms of data description, origin, validation and caveats for model-observation comparison. We then document the climatological mean features of these two AIRS datasets and compare them to those from NASA's Modern Era Retrospective analysis for Research and Applications (MERRA) for AIRS data validation and CMIP5 model simulations for CMIP5 model evaluation. As expected, the 9-year AIRS data show several well-known climatological features of tropospheric ta and hus, such as the strong meridional and vertical gradients of tropospheric ta and hus and strong zonal gradient of tropospheric hus. AIRS data also show the strong connections between the tropospheric hus, atmospheric circulation and deep convection. In comparison to MERRA, AIRS seems to be colder in the free troposphere but warmer in the boundary layer with differences typically less than 1 K. AIRS is wetter (~10%) in the tropical boundary layer but drier (around 30%) in the tropical free troposphere and the extratropical troposphere. In particular, the large AIRS-MERRA hus differences are mainly located in the cloudy regions, such as the Intertropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ) and the mid-latitude storm tracks, indicating that the low sampling of AIRS in the cloudy regions may be the main reason for these differences This is in general consistent with the previous validation results. In comparison to AIRS and MERRA, the 16 CMIP5 models examined here can generally simulate the climatological features of tropospheric ta and hus well. However, several noticeable differences exist between the CMIP5 model simulation, the MERRA reanalysis and the AIRS observations. The CMIP5 models have a cold bias (around 2 K) in the troposphere, especially in the extratropical upper troposphere (around 3 K), and a warm bias in the boundary layer over the Southern Ocean near Antarctica. The upper-tropospheric cold bias is independent of reference datasets and exists in the majority of the CMIP5 models. The CMIP5 models also have the double-ITCZ syndrome in the troposphere from 1000 hPa to 300 hPa, i.e., the models are too dry at the equatorial convective regions while too moist over both off-equatorial sides especially in the tropical Pacific. This double-ITCZ bias exists in all 16 CMIP5 models examined and independent on the reference dataset.

  8. Modeling of Kinetics of Air Entrainment in Water Produced by Vertically Falling Water Flow

    Directory of Open Access Journals (Sweden)

    Adel? VAIDELIEN?

    2014-09-01

    Full Text Available This study analyzes the process of air entrainment in water caused by vertically falling water flow in the free water surface. The new kinetic model of air entrainment in water was developed. This model includes the process of air entrapment, as well as air removal, water sputtering and resorption. For the experimental part of this study a new method based on digital image processing was developed. Theoretical and experimental methods were used for determining air concentration and its distribution in water below the air-water interface. A new presented mathematical model of air entrainment process allows determining of air bubbles and water droplets concentrations distribution. The obtained theoretical and experimental results were in good agreement. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4871

  9. The problem of multicollinearity in horizontal solar radiation estimation models and a new model for Turkey

    International Nuclear Information System (INIS)

    Highlights: • Impacts of multicollinearity on solar radiation estimation models are discussed. • Accuracy of existing empirical models for Turkey is evaluated. • A new non-linear model for the estimation of average daily horizontal global solar radiation is proposed. • Estimation and prediction performance of the proposed and existing models are compared. - Abstract: Due to the considerable decrease in energy resources and increasing energy demand, solar energy is an appealing field of investment and research. There are various modelling strategies and particular models for the estimation of the amount of solar radiation reaching at a particular point over the Earth. In this article, global solar radiation estimation models are taken into account. To emphasize severity of multicollinearity problem in solar radiation estimation models, some of the models developed for Turkey are revisited. It is observed that these models have been identified as accurate under certain multicollinearity structures, and when the multicollinearity is eliminated, the accuracy of these models is controversial. Thus, a reliable model that does not suffer from multicollinearity and gives precise estimates of global solar radiation for the whole region of Turkey is necessary. A new nonlinear model for the estimation of average daily horizontal solar radiation is proposed making use of the genetic programming technique. There is no multicollinearity problem in the new model, and its estimation accuracy is better than the revisited models in terms of numerous statistical performance measures. According to the proposed model, temperature, precipitation, altitude, longitude, and monthly average daily extraterrestrial horizontal solar radiation have significant effect on the average daily global horizontal solar radiation. Relative humidity and soil temperature are not included in the model due to their high correlation with precipitation and temperature, respectively. While altitude has the highest relative impact on the average daily horizontal solar radiation, impact of temperature is greater than that of both longitude and precipitation

  10. Radiation dose modeling using IGRIP and Deneb/ERGO

    International Nuclear Information System (INIS)

    The Radiological Environment Modeling System (REMS) quantifies dose to humans in radiation environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO (Ergonomics) simulation software products. These commercially available products are augmented with custom C code to provide the radiation exposure information to and collect the radiation dose information from the workcell simulations. The emphasis of this paper is on the IGRIP and Deneb/ERGO parts of REMS, since that represents the extension to existing capabilities developed by the authors. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these database files to compute and accumulate dose to human devices (Deneb's ERGO human) during simulated operations around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. REMS was developed because the proposed reduction in the yearly radiation exposure limit will preclude or require changes in many of the manual operations currently being utilized in the Weapons Complex. This is particularly relevant in the area of dismantlement activities at the Pantex Plant in Amarillo, TX. Therefore, a capability was needed to be able to quantify the dose associated with certain manual processes so that the benefits of automation could be identified and understood

  11. The Goddard Chemistry Aerosol Radiation and Transport Model

    Science.gov (United States)

    Chin, Mian

    2005-01-01

    The Goddard Chemistry Aerosol Radiation and Transport (GOCART) model is one of the fourteen global models participating in the International AEROCOM activity. The Oslo workshop is the 4th AEROCOM workshop. In this workshop, we are going to show updated model results of global aerosol extinction and absorption, vertical profiles, and direct and indirect effects. We will also discuss with other participants on model similarities and discrepancies, issues related to comparisons with in-situ and remote sensing data, and future directions.

  12. Atmospheric dispersion models help to improve air quality; Los modelos de dispersion atmosferica ayudan a mejorar la calidad del aire

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.

    2013-07-01

    One of the main challenges of the atmospheric sciences is to reproduce as well as possible the phenomena and processes of pollutants in the atmosphere. To do it, mathematical models based in this case on fluid dynamics and mass and energy conservation equations, equations that govern the atmospheric chemistry, etc., adapted to the spatial scales to be simulated, are developed. The dispersion models simulate the processes of transport, dispersion, chemical transformation and elimination by deposition that air pollutants undergo once they are emitted. Atmospheric dispersion models with their multiple applications have become essential tools for the air quality management. (Author)

  13. Modeling of Radiation Risks for Human Space Missions

    Science.gov (United States)

    Fletcher, Graham

    2004-01-01

    Prior to any human space flight, calculations of radiation risks are used to determine the acceptable scope of astronaut activity. Using the supercomputing facilities at NASA Ames Research Center, Ames researchers have determined the damage probabilities of DNA functional groups by space radiation. The data supercede those used in the current Monte Carlo model for risk assessment. One example is the reaction of DNA with hydroxyl radical produced by the interaction of highly energetic particles from space radiation with water molecules in the human body. This reaction is considered an important cause of DNA mutations, although its mechanism is not well understood.

  14. A model code for the radiative theta pinch

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S., E-mail: leesing@optusnet.com.au [INTI International University, 71800 Nilai (Malaysia); Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone 3148 Australia (Australia); Physics Department, University of Malaya, Kuala Lumpur (Malaysia); Saw, S. H. [INTI International University, 71800 Nilai (Malaysia); Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone 3148 Australia (Australia); Lee, P. C. K. [Nanyang Technological University, National Institute of Education, Singapore 637616 (Singapore); Akel, M. [Department of Physics, Atomic Energy Commission, Damascus, P. O. Box 6091, Damascus (Syrian Arab Republic); Damideh, V. [INTI International University, 71800 Nilai (Malaysia); Khattak, N. A. D. [Department of Physics, Gomal University, Dera Ismail Khan (Pakistan); Mongkolnavin, R.; Paosawatyanyong, B. [Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10140 (Thailand)

    2014-07-15

    A model for the theta pinch is presented with three modelled phases of radial inward shock phase, reflected shock phase, and a final pinch phase. The governing equations for the phases are derived incorporating thermodynamics and radiation and radiation-coupled dynamics in the pinch phase. A code is written incorporating correction for the effects of transit delay of small disturbing speeds and the effects of plasma self-absorption on the radiation. Two model parameters are incorporated into the model, the coupling coefficient f between the primary loop current and the induced plasma current and the mass swept up factor f{sub m}. These values are taken from experiments carried out in the Chulalongkorn theta pinch.

  15. Different radiation impedance models for finite porous materials

    DEFF Research Database (Denmark)

    Nolan, Melanie; Jeong, Cheol-Ho

    2015-01-01

    The Sabine absorption coefficients of finite absorbers are measured in a reverberation chamber according to the international standard ISO 354. They vary with the specimen size essentially due to diffraction at the specimen edges, which can be seen as the radiation impedance differing from the infinite case. Thus, in order to predict the Sabine absorption coefficients of finite porous samples, one can incorporate models of the radiation impedance. In this study, different radiation impedance models are compared with two experimental examples. Thomasson’s model is compared to Rhazi’s method when coupled to the transfer matrix method (TMM). These methods are found to yield comparable results when predicting the Sabine absorption coefficients of finite porous materials. Discrepancies with measurement results can essentially be explained by the unbalance between grazing and non-grazing sound field in the reverberation chamber. A better agreement is found when incorporating the modal decomposition method to the models.

  16. MCNP model for the many KE-Basin radiation sources

    International Nuclear Information System (INIS)

    This document presents a model for the location and strength of radiation sources in the accessible areas of KE-Basin which agrees well with data taken on a regular grid in September of 1996. This modelling work was requested to support dose rate reduction efforts in KE-Basin. Anticipated fuel removal activities require lower dose rates to minimize annual dose to workers. With this model, the effects of component cleanup or removal can be estimated in advance to evaluate their effectiveness. In addition, the sources contributing most to the radiation fields in a given location can be identified and dealt with

  17. Modelling radiation damage to ESA's Gaia satellite CCDs

    OpenAIRE

    Seabroke, George; Holland, Andrew; Cropper, Mark

    2008-01-01

    The Gaia satellite is a high-precision astrometry, photometry and spectroscopic ESA cornerstone mission, currently scheduled for launch in late 2011. Its primary science drivers are the composition, formation and evolution of the Galaxy. Gaia will not achieve its scientific requirements without detailed calibration and correction for radiation damage. Microscopic models of Gaia's CCDs are being developed to simulate the effect of radiation damage, charge trapping, which causes charge transfer...

  18. Radiation Feedback in Hot Accretion-Disk Corona Models

    OpenAIRE

    M. Boettcher; Liang, E.P.; Smith, I. A.

    1998-01-01

    We present a detailed study of the observable effects of photoionization and Comptonization of line and continuum radiation from a cold accretion disk with a thin, warm, photoionized transition layer in the framework of self-consistent accretion-disk corona models for Galactic black-hole candidates. We use an iterative method to treat the non-linear radiation feedback between the transition layer and the hot corona numerically using a Monte-Carlo Comptonization code in combi...

  19. Highly physical penumbra solar radiation pressure modeling with atmospheric effects

    Science.gov (United States)

    Robertson, Robert; Flury, Jakob; Bandikova, Tamara; Schilling, Manuel

    2015-10-01

    We present a new method for highly physical solar radiation pressure (SRP) modeling in Earth's penumbra. The fundamental geometry and approach mirrors past work, where the solar radiation field is modeled using a number of light rays, rather than treating the Sun as a single point source. However, we aim to clarify this approach, simplify its implementation, and model previously overlooked factors. The complex geometries involved in modeling penumbra solar radiation fields are described in a more intuitive and complete way to simplify implementation. Atmospheric effects are tabulated to significantly reduce computational cost. We present new, more efficient and accurate approaches to modeling atmospheric effects which allow us to consider the high spatial and temporal variability in lower atmospheric conditions. Modeled penumbra SRP accelerations for the Gravity Recovery and Climate Experiment (GRACE) satellites are compared to the sub-nm/s2 precision GRACE accelerometer data. Comparisons to accelerometer data and a traditional penumbra SRP model illustrate the improved accuracy which our methods provide. Sensitivity analyses illustrate the significance of various atmospheric parameters and modeled effects on penumbra SRP. While this model is more complex than a traditional penumbra SRP model, we demonstrate its utility and propose that a highly physical model which considers atmospheric effects should be the basis for any simplified approach to penumbra SRP modeling.

  20. Highly physical penumbra solar radiation pressure modeling with atmospheric effects

    Science.gov (United States)

    Robertson, Robert; Flury, Jakob; Bandikova, Tamara; Schilling, Manuel

    2015-07-01

    We present a new method for highly physical solar radiation pressure (SRP) modeling in Earth's penumbra. The fundamental geometry and approach mirrors past work, where the solar radiation field is modeled using a number of light rays, rather than treating the Sun as a single point source. However, we aim to clarify this approach, simplify its implementation, and model previously overlooked factors. The complex geometries involved in modeling penumbra solar radiation fields are described in a more intuitive and complete way to simplify implementation. Atmospheric effects are tabulated to significantly reduce computational cost. We present new, more efficient and accurate approaches to modeling atmospheric effects which allow us to consider the high spatial and temporal variability in lower atmospheric conditions. Modeled penumbra SRP accelerations for the Gravity Recovery and Climate Experiment (GRACE) satellites are compared to the sub-nm/s2 precision GRACE accelerometer data. Comparisons to accelerometer data and a traditional penumbra SRP model illustrate the improved accuracy which our methods provide. Sensitivity analyses illustrate the significance of various atmospheric parameters and modeled effects on penumbra SRP. While this model is more complex than a traditional penumbra SRP model, we demonstrate its utility and propose that a highly physical model which considers atmospheric effects should be the basis for any simplified approach to penumbra SRP modeling.

  1. a Two-Dimensional Radiative-Convective Climate Model.

    Science.gov (United States)

    Kiehl, Jeffrey Theodore

    A two-dimensional radiative-convective climate model has been developed, which includes meridional heat transport, surface albedo feedback and lapse rate feedback. The radiative part of the model is based upon the one-dimensional radiative-convective model of Ramanathan (1976). The two -dimensional model is designed to calculate a mean annual zonally averaged temperature profile for a symmetric model earth. The two-dimensional model calculates the vertical temperature profile for six latitudinal belts of 15(DEGREES) width. These six belts serve as a basis set from which the temperature at any latitude can be calculated. The heat transport is parameterized in terms of a diffuse transport mechanism. The surface albedo feedback for latitudes above 45(DEGREES)N is derived from seasonal data for the present atmosphere. The lapse rate feedback is based upon the suggestions for Stone and Carlson (1979). Three climatic studies have been carried out with the model: increased CO(,2), variation of the solar constant, and variation of cloud amount and height. These studies suggest that the lapse rate parameterization of Stone and Carlson (1979) is extremely sensitive to climatic perturbations. The model proves to be very stable to variations in the solar constant when lapse rate feedback is removed. A great advantage to this model is its flexibility. The model is also computationally efficient compared to the three-dimensional models. Because of the flexibility and computational efficiency, this model can serve as a useful tool in studying the importance of various atmospheric processes.

  2. Modeling assessment of air emission flux of mercury from soils in terrestrial landscape components: model tests and sensitivities.

    Science.gov (United States)

    Tsiros, loannis X

    2002-03-01

    The abilities of a screening-level model to predict variations in elemental mercury (Hg0) air emissions from soils in terrestrial landscapes are examined by comparing simulation results to published observational data and by performing sensitivity analyses. Despite uncertainties and simplifications, the model results obtained offer some degree of confidence in the model's joint ability to relate readily available environmental parameters to airborne emissions of Hg predicted by coupling simple atmospheric and soil parameters with Hg cycling and transport algorithms. The model reasonably predicted the observational data in the considered data sets except for one site for which significant uncertainty was associated with model input data. Predictions are consistent with many trends observed in the field studies; better predictions were obtained for nonvegetated systems (relative errors between 0.4 and 9.7%) than for shaded-soil landscapes (relative errors between 2.3 and 27%). The model reflected field data showing that daily average emission rates of Hg0, formed by the reduction of Hg(II), are primarily controlled by changes in solar radiation, soil moisture, temperature, and, to a lesser extent, wind conditions. The model may have potential use in several preliminary studies to characterize trends of airborne Hg emitted from terrestrial sources to the atmosphere. PMID:11924865

  3. Dose loading mathematical modelling of moving through heterogeneous radiation fields

    International Nuclear Information System (INIS)

    Software component for management of data on gamma exposition dose spatial distribution was created in the frameworks of the Ukryttya information model creation. Availability of state-of-the-art programming technologies (NET., ObjectARX) for integration of different models of radiation-hazardous condition to digital engineer documentation system (AutoCAD) was shown on the basis of the component example

  4. Diffusion approximation for modeling of 3-D radiation distributions

    International Nuclear Information System (INIS)

    A three-dimensional transport code DIF3D, based on the diffusion approximation, is used to model the spatial distribution of radiation energy arising from volumetric isotropic sources. Future work will be concerned with the determination of irradiances and modeling of realistic scenarios, relevant to the battlefield conditions. 8 refs., 4 figs

  5. Meteorological and Wave Measurements for Improving Meteorological and Air Quality Modeling

    Science.gov (United States)

    Hare, J.; MacDonald, C.; Ray, A.; Fairall, C. W.; Pezoa, S.; Gibson, B.; Huang, C. H.

    2010-12-01

    A unique collaboration between corporate, government, and university researchers have teamed up to develop a marine environmental observations program on an offshore platform in the Gulf of Mexico. The meteorological and oceanographic sensors have been deployed for an extended period (12-24 months) on a Chevron service platform (90.5W, 29N) to collect boundary layer and sea surface data sufficient to improve dispersion modeling in and around the Gulf of Mexico. This task has recently been provided significant import, given the large industrial presence in the Gulf, the large regional population, and the recognized need for precise and accurate dispersion forecasts. Observations include marine boundary layer winds, height, and temperature, sea surface temperature and current, wave height, downwelling solar and infrared radiation, air-sea momentum and heat fluxes, and mean meteorological parameters. We will present a summary of the instrument deployment, show the initial time series of the observations, and provide context for the experimental outcomes.

  6. Application of semiinclusive hadron interaction model for analysis of extensive air showers

    International Nuclear Information System (INIS)

    Experimental data on extensive air showers (EAS) are analysed within the semiinclusive hadron interaction model. Calculations of various EAS muon, electron and hadron component characteristics are performed within the assumption of the primary cosmic radiation complex composition: 38% of protons, 19% of ?-particles, 13% of CNO group nuclei, 16% of nuclei with A=18-20, 14% of iron nuclei. It is shown, that it is not possible to obtain a sufficiently good description of all the EAS parameters even if the most complete data on hadron interactions in the accelerating energy area are available. Consequently, at the energy of above 2x1014 eV considerable changes in the elementary particle interaction character take place

  7. Assessing Air-Sea Interaction in the Evolving NASA GEOS Model

    Science.gov (United States)

    Clayson, Carol Anne; Roberts, J. Brent

    2015-01-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  8. Mathematical models of the theory of the radiative transfer

    International Nuclear Information System (INIS)

    We are interested in various different models arising in radiative transfer, which describe the interactions between the medium and the photons. The radiation is described in terms of energy and energy flux in the macroscopic view, the material being described by the Euler equations (radiative hydrodynamic model). In another way, the radiation can be seen as a collection of photons, in the microscopic view point; the photons can be absorbed or emitted by the material. The absorption and the emission of photons depend on the internal excitation and ionization state of the material. We begin with the local existence (in time) of smooth solutions to a system coupling the Euler equations and the transfer equation. This system describes the exchange of energy and moment between the radiation and the material. Next, we give an asymptotic discussion for this model in the NON-LTE regime and get a simple system: coupling the Euler equations with an elliptic equation. We show the existence of (smooth) shock profiles to this system and the regularity of the shock profile as a function of the strength of the shock. Then we study the asymptotic stability of the shock profile. Finally, we study a system describing the radiation and the internal state of the material, in the microscopic view point. We prove the existence of the solution to this system and study the convergence towards the statistical equilibrium. The theoretical results are illustrated by numerical simulations. (author)

  9. GPU acceleration experience with RRTMG long wave radiation model

    Science.gov (United States)

    Price, Erik; Mielikainen, Jarno; Huang, Bormin; Huang, HungLung A.; Lee, Tsengdar

    2013-10-01

    An Atmospheric radiative transfer model calculates radiative transfer of electromagnetic radiation through a planetary atmosphere. Both shortwave radiance and longwave radiance parameterizations in an atmospheric model calculate radiation fluxes and heating rates in the earth-atmospheric system. One radiative transfer model is the rapid radiative transfer model (RRTM), which calculates of longwave and shortwave atmospheric radiative fluxes and heating rates. Longwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, is based on the single-column reference code, RRTM. The RRTMG is a validated, correlated k-distribution band model for the calculation of longwave and shortwave atmospheric radiative fluxes and heating rates. The focus of this paper is on the RRTMG long wave (RRTMG_LW) model. In order to improve computational efficiency, RRTMG_LW incorporates several modifications compared to RRTM. In RRTM_LW there are 16 g points in each of the spectral bands for a total of 256 g points. In RRTMG_LW, the number of g points in each spectral band varies from 2 to 16 depending on the absorption in each band. RRTMG_LW employs a computationally efficient correlated-k method for radiative transfer calculations. It contains 16 spectral bands with various number of quadrature points (g points) in each of the bands. In total, there are 140 g points. The radiative effects of all significant atmospheric gases are included in RRTMG_LW. Active gas absorbers include H2O, O3, CO2, CH4, N2O, O2 and four types of halocarbons: CFC-11, CFC-12, CFC-22, and CCL4. RRTMG_LW also treats the absorption and scattering from liquid and ice clouds and aerosols. For cloudysky radiative transfer, a maximum-random cloud overlapping scheme is used. Small scale cloud variability, such as cloud fraction and the vertical overlap of clouds can be represented using a statistical technique in RRTMG_LW. Due to its accuracy, RRTMG_LW has been implemented operationally in many weather forecast and climate models. RRTMG_LW is in operational use in ECMWF weather forecast system, the NCEP global forecast system, the ECHAM5 climate model, Community Earth System Model (CESM) and the weather and forecasting (WRF) model. RRTMG_LW has also been evaluated for use in GFDL climate model. In this paper, we examine the feasibility of using graphics processing units (GPUs) to accelerate the RRTMG_LW as used by the WRF. GPUs can provide a substantial improvement in RRTMG speed by supporting the parallel computation of large numbers of independent radiative calculations. Furthermore, using commodity GPUs for accelerating RRTMG_LW allows getting a much higher computational performance at lower price point than traditional CPUs. Furthermore, power and cooling costs are significantly reduced by using GPUs. A GPU-compatible version of RRTMG was implemented and thorough testing was performed to ensure that the original level of accuracy is retained. Our results show that GPUs can provide significant speedup over conventional CPUs. In particular, Nvidia's GTX 680 GPU card can provide a speedup of 69x for the compared to its single-threaded Fortran counterpart running on Intel Xeon E5-2603 CPU.

  10. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    Science.gov (United States)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low-dose-rate dose to the bone marrow (mean = 2.5 Gy) was consistent with the measured ERR (0.62, 95% Cl =-0.2 to 1.9). Conclusions: An extended, biologically based model for leukemia that includes HSC initiation, inactivation, proliferation, and, uniquely for leukemia, long-range HSC migration predicts, %Kith reasonable accuracy, risks for radiationinduced leukemia associated with exposure to therapeutic doses of radiation.

  11. Computerized Simulation of Automotive Air-Conditioning System: Development of Mathematical Model and Its Validation

    Directory of Open Access Journals (Sweden)

    Haslinda Mohamed Kamar

    2012-03-01

    Full Text Available A semi-empirical model for simulating thermal and energy performance of an automotive air-conditioning (AAC system in passenger vehicles has been developed. The model consists of two sections, namely empirical evaporator correlations and dynamic load simulation. The correlations used consider sensible and latent heat transfer performance of the evaporator coil. The correlations were obtained from the experimental data of actual air conditioning system for a compact size passenger car. The sensible heat transfer correlation relates the evaporator air off dry-bulb temperature to inlet air dry-bulb temperature, humidity ratio, evaporator air velocity, condenser inlet air dry-bulb temperature, condenser air velocity and compressor speed. The latent heat transfer correlation relates the coil air-off humidity ratio to the same six independent variables. The dynamic load simulation model was developed based on the z-transfer function method with a one-minute time step. The cooling load calculations were performed using heat gain weighting factors. Heat extraction rate and cabin air dry-bulb temperature calculations were carried out using air temperature weighting factors. The empirical evaporator sensible and latent heat transfer correlations were embedded in the loads calculation program to enable the determination of evaporator inlet and outlet air conditions, the cabin air temperature and relative humidity. Comparisons with road test data indicated that the program was capable of predicting the performance of the automotive air-conditioning system with reasonable accuracy.

  12. Predicting Chandra CCD Degradation with the Chandra Radiation Model

    Science.gov (United States)

    Minow, Joseph I.; Blackwell, William C.; DePasquale, Joseph M.; Grant, Catherine E.; O'Dell, Stephen L.; Plucinsky, Paul P.; Schwartz, Daniel A.; Spitzbart, Bradley D.; Wolk, Scott J.

    2008-01-01

    Not long after launch of the Chandra X-Ray Observatory, it was discovered that the Advanced CCD Imaging Spectrometer (ACIS) detector was rapidly degrading due to radiation. Analysis by Chandra personnel showed that this degradation was due to 10w energy protons (100 - 200 keV) that scattered down the optical path onto the focal plane. In response to this unexpected problem, the Chandra Team developed a radiation-protection program that has been used to manage the radiation damage to the CCDs. This program consists of multiple approaches - scheduled sating of the ACIS detector from the radiation environment during passage through radiation belts, real-time monitoring of space weather conditions, on-board monitoring of radiation environment levels, and the creation of a radiation environment model for use in computing proton flux and fluence at energies that damage the ACIS detector. This radiation mitigation program has been very successful. The initial precipitous increase in the CCDs' charge transfer inefficiency (CTI) resulting from proton damage has been slowed dramatically, with the front-illuminated CCDS having an increase in CTI of only 2.3% per year, allowing the ASIS detector's expected lifetime to exceed requirements. This paper concentrates on one aspect of the Chandra radiation mitigation program, the creation of the Chandra Radiation Model (CRM). Because of Chandra's highly elliptical orbit, the spacecraft spends most of its time outside of the trapped radiation belts that present the severest risks to the ACIS detector. However, there is still a proton flux environment that must be accounted for in all parts of Chandra's orbit. At the time of Chandra's launch there was no engineering model of the radiation environment that could be used in the outer regions of the spacecraft's orbit, so the CRM was developed to provide the flux environment of 100 - 200 keV protons in the outer magnetosphere, magnetosheath, and solar wind regions of geospace. This presentation describes CRM, its role in Chandra operations, and its prediction of the ACIS CTI increase.

  13. Using multistage models to describe radiation-induced leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Little, M.P.; Muirhead, C.R. [National Radiological Protection Board, Chilton (United Kingdom); Boice, J.D. Jr.; Kleinerman, R.A. [National Cancer Inst., Rockville, MD (United States). Radiation Epidemiology Branch

    1995-12-01

    The Armitage-Doll model of carcinogenesis is fitted to data on leukaemia mortality among the Japanese atomic bomb survivors with the DS86 dosimetry and on leukaemia incidence in the International Radiation Study of Cervical Cancer patients. Two different forms of model are fitted: the first postulates up to two radiation-affected stages and the second additionally allows for the presence at birth of a non-trivial population of cells which have already accumulated the first of the mutations leading to malignancy. Among models of the first form, a model with two adjacent radiation-affected stages appears to fit the data better than other models of the first form, including both models with two affected stages in any order and models with only one affected stage. The best fitting model predicts a linear-quadratic dose-response and reductions of relative risk with increasing time after exposure and age at exposure, in agreement with what has previously been observed in the Japanese and cervical cancer data. However, on the whole it does not provide an adequate fit to either dataset. The second form of model appears to provide a rather better fit, but the optimal models have biologically implausible parameters (the number of initiated cells at birth is negative) so that this model must also be regarded as providing an unsatisfactory description of the data. (author).

  14. Air Pollution Exposure Model for Individuals (EMI) in Health Studies

    Science.gov (United States)

    In health studies, traffic-related air pollution is associated with adverse respiratory effects. Due to cost and participant burden of personal measurements, health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect ...

  15. Radiation Heat Transfer Effect on Thermal Sizing of Air-Cooling Heat Exchanger of Emergency Cooldown Tank

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joo Hyung; Kim, Young In; Kim, Keung Koo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Myoung Jun; Lee, Hee Joon [School of Mechanical Eng., Kookmin University, Seoul (Korea, Republic of)

    2014-10-15

    An attempt has begun to extend the life time of emergency cooldown tank (ECT) by Korea Atomic Energy Research Institute (KAERI) researchers. Moon et al. recently reported a basic concept upon how to keep the ECT in operation beyond 72 hours after an accident occurs without any active corrective actions for the postulated design basis accidents. When the SMART (System-integrated Modular Advanced Reac-Tor) received its Standard Design Approval (SDA) for the first time in the world, hybrid safety systems are applied. However, the passive safety systems of SMART are being enforced in response to the public concern for much safer reactors since the Fukushima accident occurred. The ECT is a major component of a passive residual heat removal system (PRHRS), which is one of the most important systems to enhance the safety of SMART. It is being developed in a SMART safety enhancement project to contain enough cooling water to remove a sensible heat and a decay heat from reactor core for 72 hours since an accident occurs. Moon et al. offered to install another heat exchanger above the ECT and to recirculate an evaporated steam into water, which enables the ECT to be in operation, theoretically, indefinitely. An investigation was made to determine how long and how many tubes were required to meet the purpose of the study. In their calculation, however, a radiation heat transfer effect was neglected. The present study is to consider the radiation heat transfer for the design of air-cooling heat exchanger. Radiation heat transfer is normally ignored in many situations, but this is not the case for the present study. Kim et al. conducted thermal sizing of scaled-down ECT heat exchanger, which will be used to validate experimentally the basic concept of the present study. Their calculation is also examined to see if a radiation heat transfer effect was taken into consideration. The thermal sizing of an air-cooling heat exchanger was conducted including radiation heat transfer. Investigations were made using several heat transfer correlations for natural convection of the vertical tubes and also the radiation heat transfer term. It is revealed that the radiation should not be neglected for the present air-cooling heat exchanger. This work will contribute to evaluate the feasibility of the basic concept upon an extension of the cooling period of ECT to longer than 72 hours, which will enhance the passive safety systems of SMART.

  16. Radiation Heat Transfer Effect on Thermal Sizing of Air-Cooling Heat Exchanger of Emergency Cooldown Tank

    International Nuclear Information System (INIS)

    An attempt has begun to extend the life time of emergency cooldown tank (ECT) by Korea Atomic Energy Research Institute (KAERI) researchers. Moon et al. recently reported a basic concept upon how to keep the ECT in operation beyond 72 hours after an accident occurs without any active corrective actions for the postulated design basis accidents. When the SMART (System-integrated Modular Advanced Reac-Tor) received its Standard Design Approval (SDA) for the first time in the world, hybrid safety systems are applied. However, the passive safety systems of SMART are being enforced in response to the public concern for much safer reactors since the Fukushima accident occurred. The ECT is a major component of a passive residual heat removal system (PRHRS), which is one of the most important systems to enhance the safety of SMART. It is being developed in a SMART safety enhancement project to contain enough cooling water to remove a sensible heat and a decay heat from reactor core for 72 hours since an accident occurs. Moon et al. offered to install another heat exchanger above the ECT and to recirculate an evaporated steam into water, which enables the ECT to be in operation, theoretically, indefinitely. An investigation was made to determine how long and how many tubes were required to meet the purpose of the study. In their calculation, however, a radiation heat transfer effect was neglected. The present study is to consider the radiation heat transfer for the design of air-cooling heat exchanger. Radiation heat transfer is normally ignored in many situations, but this is not the case for the present study. Kim et al. conducted thermal sizing of scaled-down ECT heat exchanger, which will be used to validate experimentally the basic concept of the present study. Their calculation is also examined to see if a radiation heat transfer effect was taken into consideration. The thermal sizing of an air-cooling heat exchanger was conducted including radiation heat transfer. Investigations were made using several heat transfer correlations for natural convection of the vertical tubes and also the radiation heat transfer term. It is revealed that the radiation should not be neglected for the present air-cooling heat exchanger. This work will contribute to evaluate the feasibility of the basic concept upon an extension of the cooling period of ECT to longer than 72 hours, which will enhance the passive safety systems of SMART

  17. Modelling the effects of air pollution on health using Bayesian Dynamic Generalised Linear Models

    OpenAIRE

    LEE, D.; Shaddick, G.

    2007-01-01

    The relationship between short-term exposure to air pollution and mortality or morbidity has been the subject of much recent research, in which the standard method of analysis uses Poisson linear or additive models. In this paper we use a Bayesian dynamic generalised linear model (DGLM) to estimate this relationship, which allows the standard linear or additive model to be extended in two ways: (i) the long-term trend and temporal correlation present in the health data can b...

  18. Performance of the meteorological radiation model during the solar eclipse of 29 March 2006

    Directory of Open Access Journals (Sweden)

    B. E. Psiloglou

    2007-12-01

    Full Text Available Various solar broadband models have been developed in the last half of the 20th century. The driving demand has been the estimation of available solar energy at different locations on earth for various applications. The motivation for such developments, though, has been the ample lack of solar radiation measurements at global scale. Therefore, the main goal of such codes is to generate artificial solar radiation series or calculate the availability of solar energy at a place.

    One of the broadband models to be developed in the late 80's was the Meteorological Radiation Model (MRM. The main advantage of MRM over other similar models was its simplicity in acquiring and using the necessary input data, i.e. air temperature, relative humidity, barometric pressure and sunshine duration from any of the many meteorological stations.

    The present study describes briefly the various steps (versions of MRM and in greater detail the latest version 5. To show the flexibility and great performance of the MRM, a harsh test of the code under the (almost total solar eclipse conditions of 29 March 2006 over Athens was performed and comparison of its results with real measurements was made. From this hard comparison it is shown that the MRM can simulate solar radiation during a solar eclipse event as effectively as on a typical day. Because of the main interest in solar energy applications about the total radiation component, MRM focuses on that. For this component, the RMSE and MBE statistical estimators during this study were found to be 7.64% and ?1.67% on 29 March as compared to the respective 5.30% and +2.04% for 28 March. This efficiency of MRM even during an eclipse makes the model promising for easy handling of typical situations with even better results.

  19. Computer Model to Estimate Reliability Engineering for Air Conditioning Systems

    International Nuclear Information System (INIS)

    Reliability engineering is used to predict the performance and optimize design and maintenance of air conditioning systems. Air conditioning systems are expose to a number of failures. The failures of an air conditioner such as turn on, loss of air conditioner cooling capacity, reduced air conditioning output temperatures, loss of cool air supply and loss of air flow entirely can be due to a variety of problems with one or more components of an air conditioner or air conditioning system. Forecasting for system failure rates are very important for maintenance. This paper focused on the reliability of the air conditioning systems. Statistical distributions that were commonly applied in reliability settings: the standard (2 parameter) Weibull and Gamma distributions. After distributions parameters had been estimated, reliability estimations and predictions were used for evaluations. To evaluate good operating condition in a building, the reliability of the air conditioning system that supplies conditioned air to the several The company's departments. This air conditioning system is divided into two, namely the main chilled water system and the ten air handling systems that serves the ten departments. In a chilled-water system the air conditioner cools water down to 40-45 degree F (4-7 degree C). The chilled water is distributed throughout the building in a piping system and connected to air condition cooling units wherever needed. Data analysis has been done with support a computer aided reliability software, this is due to the Weibull and Gamma distributions indicated that the reliability for the systems equal to 86.012% and 77.7% respectively. A comparison between the two important families of distribution functions, namely, the Weibull and Gamma families was studied. It was found that Weibull method performed for decision making.

  20. Air assisted lamellar keratectomy for the corneal haze model.

    Science.gov (United States)

    Kim, Soohyun; Park, Young Woo; Lee, Euiri; Park, Sang Wan; Park, Sungwon; Kim, Jong Whi; Seong, Je Kyung; Seo, Kangmoon

    2015-09-01

    To standardize the corneal haze model in the resection depth and size for efficient corneal haze development, air assisted lamellar keratectomy was performed. The ex vivo porcine corneas were categorized into four groups depending on the trephined depth: 250 µm (G1), 375 µm (G2), 500 µm(G3) and 750 µm (G4). The stroma was equally ablated at the five measurement sites in all groups. Significant differences were observed between the trephined corneal depths for resection and ablated corneal thickness in G1 (p haze was evaluated weekly until postoperative day 28. The occurrence of corneal haze in the AK group was significantly higher than that in the CK group beginning 14 days after surgery. Alpha-smooth muscle actin expression was significantly higher in the AK group (p haze. PMID:25797296

  1. Modelling of the indirect radiation effect due to background aerosols in Austria

    International Nuclear Information System (INIS)

    Aerosols and greenhouse gases are the two most important contributors to the anthropogenic climate change. The indirect aerosol effect is simulated in this study. The effects of black carbon are investigated. Usually, models use measured aerosol data as input, and their predictions are compared to cloud parameters measured independently from the aerosol measurements. The model developed in this study uses simultaneously measured values for the aerosol and the subsequent cloud. This way, more realistic predictions for the indirect aerosol effect can be expected. The model uses data from an earlier intensive measurement campaign at an Austrian background site. The aerosol and cloud data are taken from the FWF project P 131 43 - CHE and had been collected in 2000 at a measurement site on a mountain in the proximity of Vienna (Rax, 1680 m a.s.l.). The simulation model consists of two parts, a cloud droplet growth model and a radiative model. The growth model for cloud droplets computes the cloud droplet distribution originating from a measured aerosol distribution. The calculated cloud droplet size distributions that are used for further calculations are selected according to the measured liquid water content of the real-world cloud. The radiative model then computes the radiative forcing using the calculated cloud droplet size distribution. The cloud model is a cloud parcel model which describes an ascending air parcel containing the droplets. Turbulent diffusion (important for stratiform clouds) is realized through a simple approach. The model includes nucleation, condensation, coagulation and radiative effects. Because of radiative heating/cooling of the cloud droplets the temperature and the critical super-saturation of the droplets can change. For radiative transfer calculations, the radiative transfer code of the public domain program 'Streamer' was adapted for this study. 'Streamer' accounts for scattering and absorption of radiation in the whole spectral region by gases and particles. Built-in types of surface albedo as well as other values can be chosen. The radiative properties of the cloud depend on the single scattering properties of the cloud droplets, which in turn depend on the composition of the cloud droplets. In this study the cloud droplets are assumed to consist of water and black carbon. Different mixing types of black carbon in the cloud droplets are used for the calculations. The absorption of solar radiation of a cloud droplet can be significantly increased by black carbon. Sensitivity analysis showed that the radiative forcing due to the indirect effect depends strongly on the geometrical cloud thickness, shortwave surface albedo and on the rate of ascent. For 100 m cloud thickness, 0.35 m/s rate of ascent and a shortwave surface albedo of 0.35 (ice) the radiative forcing is -0.57 W/m2 and -0.15 W/m2 for a shortwave surface albedo of 0.9 (fresh snow), on average for the whole measurement campaign. Black carbon causes a positive forcing of 0.02 W/m2. (author)

  2. Modelling air pollution abatement in deep street canyons by means of air scrubbers

    CERN Document Server

    De Giovanni, Marina; Avveduto, Alessandro; Pace, Lorenzo; Salisburgo, Cesare Dari; Giammaria, Franco; Monaco, Alessio; Spanto, Giuseppe; Tripodi, Paolo

    2015-01-01

    Deep street canyons are characterized by weak ventilation and recirculation of air. In such environment, the exposure to particulate matter and other air pollutants is enhanced, with a consequent worsening of both safety and health. The main solution adopted by the international community is aimed at the reduction of the emissions. In this theoretical study, we test a new solution: the removal of air pollutants close to their sources by a network of Air Pollution Abatement (APA) devices. The APA technology depletes gaseous and particulate air pollutants by a portable and low-consuming scrubbing system, that mimics the processes of wet and dry deposition. We estimate the potential pollutant abatement efficacy of a single absorber by Computational Fluid Dynamics (CFD) method. The presence of the scrubber effectively creates an additional sink at the bottom of the canyon, accelerating its cleaning process by up to 70%, when an almost perfect scrubber (90% efficiency) is simulated. The efficacy of absorber is not...

  3. Modelling radiation damage to ESA's Gaia satellite CCDs

    CERN Document Server

    Seabroke, G M; Cropper, M S

    2008-01-01

    The Gaia satellite is a high-precision astrometry, photometry and spectroscopic ESA cornerstone mission, currently scheduled for launch in late 2011. Its primary science drivers are the composition, formation and evolution of the Galaxy. Gaia will achieve its scientific requirements with detailed calibration and correction for radiation damage. Microscopic models of Gaia's CCDs are being developed to simulate the charge trapping effect of radiation damage, which causes charge transfer inefficiency. The key to calculating the probability of a photoelectron being captured by a trap is the 3D electron density within each CCD pixel. However, this has not been physically modelled for Gaia CCD pixels. In this paper, the first of a series, we motivate the need for such specialised 3D device modelling and outline how its future results will fit into Gaia's overall radiation calibration strategy.

  4. A Computational Model of Cellular Response to Modulated Radiation Fields

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, Stephen J., E-mail: stephen.mcmahon@qub.ac.uk [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Butterworth, Karl T. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); McGarry, Conor K. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland (United Kingdom); Trainor, Colman [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); O' Sullivan, Joe M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland (United Kingdom); Hounsell, Alan R. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland (United Kingdom); Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom)

    2012-09-01

    Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.

  5. Development of AN Integrated Air Pollution Modeling System and Simulations of Ozone Distributions Over the LOS Angeles Basin

    Science.gov (United States)

    Lu, Rong

    It is well known that air pollution affects human health and the environment. The effectiveness of pollution control relies on the understanding of relationships between emissions and airborne pollutant concentrations, which are governed by atmospheric processes. Numerical models that mathematically describe the atmospheric dynamics and chemistry in details are powerful tools to investigate concentrations and distributions of pollutants in the atmosphere. An air pollution modeling system (APMS) is developed for urban and regional air quality studies. The system, which couples a mesoscale meteorological model (MMTD) with an air quality model (GATOR), has four major components: a meteorological dynamic model, a tracer transport code, detailed treatments of chemical and aerosol microphysical processes, and a radiative transfer code. The meteorological model solves fluid dynamic and thermodynamic equations over complex terrain, and incorporates physical processes such as turbulent diffusion, water vapor condensation and precipitation, solar and infrared radiative transfer, and ground surface processes. The tracer transport code computes the dispersion of gases and aerosols in the atmosphere, including emissions, and dry and wet depositions. The chemistry/aerosol module treats coupled gas-phase photochemistry and aerosol microphysics and chemistry. Aerosol processes include nucleation, coagulation, condensational growth, evaporation, sedimentation, chemical equilibrium and aqueous chemistry. The intensive measurement data collected during the Southern California Air Quality Study are used to assess the performances of the air pollution modeling system. The agreement between predictions and observations indicates that the model is able to reproduce the main features of mesoscale meteorology, tracer transport and dispersion, and pollutant transformations in urban and regional scales. Three-dimensional distributions and transport characteristics of pollutants over Southern California are investigated in this study. Elevated pollution layers which are frequently observed in the Los Angeles basin are simulated. Vertical circulations related to sea-breeze and mountain flows are found to create these layers. Pollutants in the basin can be vented by high mountains into free troposphere, transported to high desert regions through mountain passes, or injected into elevated layers. The pollution layers contribute to pollutant recirculation in the basin.

  6. Application of a three-dimensional model for assessing effects of small clear-cuttings on radiation and soil temperature

    DEFF Research Database (Denmark)

    Olchev, A.; Radler, K.

    2009-01-01

    A three-dimensional model Mixfor-3D of soil–vegetation–atmosphere transfer (SVAT) was developed and applied to estimate possible effects of tree clear-cutting on radiation and soil temperature regimes of a forest ecosystem. The Mixfor-3D model consists of several closely coupled 3D sub-models describing: forest stand structure; radiative transfer in a forest canopy; turbulent transfer of sensible heat, H2O and CO2 between ground surface and the atmospheric surface layer; evapotranspiration of ground surface vegetation and soil; heat and moisture transfer in soil. The model operates with the horizontal grid resolution, 2 m × 2 m; vertical resolution, 1 m and primary time step, 1 h. The model was tested against meteorological data obtained at a small clear-cutting area in Otterbach in central Germany during summer 2005. The meteorological data including air temperature and humidity, precipitation, solar radiation, wind speed and direction, soil temperatures at 10 and 20 cm depth were measured by five automaticstations within the clear-cut area. One reference station was placed about 100 m from the clear-cut inside the forest stand. Comparisons of modelled and measured solar radiation fluxes and soil temperature profiles showed that the model adequately describes the spatial heterogeneity and dynamics of these variables under different weather conditions. The model can be used to explore solar radiation and soil temperature patterns within heterogeneous forest plots, with applications to various silvicultural tasks.

  7. A dynamic model and an experimental study for the internal air and soil temperatures in an innovative greenhouse

    International Nuclear Information System (INIS)

    Highlights: • Simulation model for internal Greenhouse temperature including soil reflectance. • Greenhouse soil heat exchange affects internal temperature by approximately 12%. • Solar air heaters as greenhouse roof maintain better internal temperature year round. - Abstract: An innovative greenhouse which integrates a conventional greenhouse with roof mounted solar air heaters is used in this investigation. This design reduces the solar radiation incoming to the greenhouse in summer which reduced the load and cost of greenhouse cooling and provides a means of solar heating. Experimental measurements of the internal air and internal soil sub-layer temperatures in the greenhouse, without crops, were performed in Baghdad University, Baghdad, Iraq (33.3 °N, 44.4 °E). Measurements were recorded for clear and partly cloudy winter days. A dynamic model was developed to predict the all internal temperatures of the greenhouse. This model includes soil surface heat exchange with the greenhouse air which was found to give a more accurate prediction of the internal temperatures. Soil surface heat exchange has a positive contribution to the internal environment. The input parameters of the model were the measured meteorological conditions and the thermo-physical properties of the greenhouse components which include the cover, inside air, and soil. Comparisons between the predicted and measured results show good agreement. Also, results show that soil sub-layers inside the greenhouse at 50 cm depth are the best place for heat storage elements. The integrated system rendered maximum differences between ambient and internal air temperatures of 16 °C in February and 10 °C in June without operating any heating or cooling system

  8. Theoretical and experimental drying of a cylindrical sample by applying hot air and infrared radiation in an inert medium fluidized bed

    Scientific Electronic Library Online (English)

    B., Honarvar; D., Mowla.

    2012-06-01

    Full Text Available Drying of a cylindrical sample in a fluidized bed dryer containing inert particles was studied. For this purpose, a pilot-scaled fluidized bed dryer was constructed in which two different heat sources, hot air and infrared radiation were applied, and pieces of carrot were chosen as test samples. The [...] heat transfer coefficient for cylindrical objects in a fluidized bed was also measured. The heat absorption coefficient for carrot was studied. The absorption coefficient can be computed by dividing the absorbed heat by the carrot to the heat absorbed for the water and black ink. In this regard, absorbed heat values by the carrot, water and black ink were used A mathematical model was proposed based on the mass and heat transfer phenomena within the drying sample. The results obtained by the proposed model were in favorable agreement with the experimental data.

  9. Theoretical and experimental drying of a cylindrical sample by applying hot air and infrared radiation in an inert medium fluidized bed

    Directory of Open Access Journals (Sweden)

    B. Honarvar

    2012-06-01

    Full Text Available Drying of a cylindrical sample in a fluidized bed dryer containing inert particles was studied. For this purpose, a pilot-scaled fluidized bed dryer was constructed in which two different heat sources, hot air and infrared radiation were applied, and pieces of carrot were chosen as test samples. The heat transfer coefficient for cylindrical objects in a fluidized bed was also measured. The heat absorption coefficient for carrot was studied. The absorption coefficient can be computed by dividing the absorbed heat by the carrot to the heat absorbed for the water and black ink. In this regard, absorbed heat values by the carrot, water and black ink were used A mathematical model was proposed based on the mass and heat transfer phenomena within the drying sample. The results obtained by the proposed model were in favorable agreement with the experimental data.

  10. Improvement of an urban turbulence parametrization for meteorological operational forecast and air quality modeling

    OpenAIRE

    Muller, Clive

    2007-01-01

    During the last century, urban pollution has increased with the growth of cities. Urban air quality has become a high priority as it is directly linked to concerns such as human exposure and health. The present work is dedicated to urban air quality modeling with focus on urban meteorology. The main goal is to improve meteorological and air quality simulations in urban areas. Based on measurements and numerical air quality simulations, Chapter 3 describes the meteorological situation and test...

  11. Biophysical modelling of radiation damage in DNA and chromatin induced by radiation of different quality

    International Nuclear Information System (INIS)

    DNA double strand breaks in chromatin induced by high LET ionizing radiation are analysed on the basis of biophysical modeling and computer simulation. Theoretical and experimental data are presented arguing in favour of nonrandom clustered distribution of DNA double strand breaks in chromatin

  12. Managing a national radiation oncologist workforce: A workforce planning model

    International Nuclear Information System (INIS)

    Purpose: The specialty of radiation oncology has experienced significant workforce planning challenges in many countries. Our purpose was to develop and validate a workforce-planning model that would forecast the balance between supply of, and demand for, radiation oncologists in Canada over a minimum 10-year time frame, to identify the model parameters that most influenced this balance, and to suggest how this model may be applicable to other countries. Methods: A forward calculation model was created and populated with data obtained from national sources. Validation was confirmed using a historical prospective approach. Results: Under baseline assumptions, the model predicts a short-term surplus of RO trainees followed by a projected deficit in 2020. Sensitivity analyses showed that access to radiotherapy (proportion of incident cases referred), individual RO workload, average age of retirement and resident training intake most influenced balance of supply and demand. Within plausible ranges of these parameters, substantial shortages or excess of graduates is possible, underscoring the need for ongoing monitoring. Conclusions: Workforce planning in radiation oncology is possible using a projection calculation model based on current system characteristics and modifiable parameters that influence projections. The workload projections should inform policy decision making regarding growth of the specialty and training program resident intake required to meet oncology health services needs. The methods used are applicable to workforce planning for radiation oncology in other countries and for other comparable medical specialties.

  13. Semi-holographic model including the radiation component

    CERN Document Server

    del Campo, Sergio; Magaña, Juan; Villanueva, J R

    2014-01-01

    In this letter we study the semi holographic model which corresponds to the radiative version of the model proposed by Zhang et al. (Phys. Lett. B 694 (2010), 177) and revisited by C\\'ardenas et al. (Mon. Not. Roy. Astron. Soc. 438 (2014), 3603). This inclusion makes the model more realistic, so allows us to test it with current observational data and then answer if the inconsistency reported by C\\'ardenas et al. is relaxed.

  14. Dynamic model of counter flow air to air heat exchanger for comfort ventilation with condensation and frost formation

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Rose, JØrgen

    2009-01-01

    In cold climates heat recovery in the ventilation system is essential to reduce heating energy demand. Condensation and freezing occur often in efficient heat exchangers used in cold climates. To develop efficient heat exchangers and defrosting strategies for cold climates, heat and mass transfer must be calculated under conditions with condensation and freezing. This article presents a dynamic model of a counter flow air to air heat exchanger taking into account condensation and freezing and melting of ice. The model is implemented in Simulink and results are compared to measurements on a prototype heat exchanger for cold climates.

  15. Alternative model to the current DNA-damage-mutation model in radiation carcinogenesis

    International Nuclear Information System (INIS)

    A linear no-threshold model adopted by the International Commission on Radiological Protection and the National Council on Radiation Protection and Measurements assumes that DNA damage induced by ionizing radiations is a primary event resulting in cancer-related mutations. An alternative model in this paper proposes that radiation-induced stress response is a primary event for carcinogenesis. Several reports have been published supporting the latter and contradicting the former

  16. Modeling the Dependence of Power Diode on Temperature and Radiation

    Directory of Open Access Journals (Sweden)

    S.M. El-Ghanam

    2015-06-01

    Full Text Available A theoretical study had been carried out on the effect of radiation on the electrical properties of silicon power diodes. Computer program "PDRAD2013" was developed to solve the diode equations and to introduce the operating conditions and radiation effects upon its parameters. Temperature increase interrupts the electrical properties of the diode in the direction of drop voltage decrease across the p-n junction.. The model was analyzed under the influence of different radiation type (gamma-rays, neutrons, protons and electrons with various dose levels and energies. The carriers diffusion length were seriously affected leading to a large increase in the forward voltage. These effects were found to be function of radiation type, fluence and energy.

  17. Mechanistic issues for modeling radiation-induced segregation

    International Nuclear Information System (INIS)

    Model calculations of radiation-induced chromium depletion and radiation-induced nickel enrichment at grain boundaries are compared to measured depletions and enrichments. The model is calibrated to fit chromium depletion in commercial purity 304 stainless steel irradiated in boiling water reactor (BWR) environments. Predicted chromium depletion profiles and the dose dependence of chromium concentration at grain boundaries are in accord with measured trends. Evaluation of chromium and nickel profiles in three neutron, and two ion, irradiation environments reveal significant inconsistencies between measurements and predictions

  18. Modelling the luminous efficacy of solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, E. [Universidad Autonoma de Madrid (Spain). Dpto. de Fisica Aplicada; Soler, A.; Robledo, L. [Universidad de Madrid (Spain). Dpto. de Fisic a e Instalaciones Aplicadas

    2000-07-01

    The global and diffuse luminous efficacy models proposed in Muneer (1995), Muneer and Kinghorn (1997), have been tested with experimental data obtained in Madrid. When the models with local coefficients are statistically assessed with local data, global illuminance L{sub g} is estimated with an acceptable accuracy, but diffuse illuminance L{sub d} is overestimated for L{sub d} higher than about 25 klux. (author)

  19. A clinical intranet model for radiation oncology

    International Nuclear Information System (INIS)

    Purpose: A new paradigm in computing is being formulated from advances in client-server technology. This new way of accessing data in a network is referred to variously as Web-based computing, Internet computing, or Intranet computing. The difference between an internet and intranet being that the former is for global access and the later is only for intra-departmental access. Our purpose with this work is to develop a clinically useful radiation oncology intranet for accessing physically disparate data sources. Materials and Methods: We have developed an intranet client-server system using Windows-NT Server 4.0 running Internet Information Server (IIS) on the back-end and client PCs using a typical World Wide Web (WWW) browser. The clients also take advantage of the Microsoft Open Database Connectivity (ODBC) standard for accessing commercial database systems. The various data sources used include: a traditional Radiation Oncology Information (ROIS) System (VARiS 1.3tm); a 3-D treatment planning system (CAD Plantm); a beam scanning system (Wellhoffertm); as well as an electronic portal imaging device (PortalVisiontm) and a CT-Simulator providing digitally reconstructed radiographs (DRRs) (Picker AcQsimtm). We were able to leverage previously developed Microsoft Visual C++ applications without major re-writing of source code for this. Results: With the data sources and development materials used, we were able to develop a series of WWW-based clinical tool kits. The tool kits were designed to provide profession-specific clinical information. The physician's tool kit provides a treatment schedule for daily patients along with a dose summary from VARiS and the ability to review portal images and prescription images from the EPID and Picker. The physicists tool kit compares dose summaries from VARiS with an independent check against RTP beam data and serves as a quick 'chart-checker'. Finally, an administrator tool kit provides a summary of periodic charging information along with the ability to analyze other treatment quality statistics such as average time spent in each phase of the patient treatment cycle. Conclusion: A departmental clinical intranet is a good way to provide data from many different sources and formats in a seamless and quick fashion. We believe that this approach may be adopted in general by departments that have a full complement of clinical data sources in digital formats. For future work, we are working toward archiving selected subsets of our clinical data into a hospital-wide clinical data repository from a commercial company (Cerner)

  20. Models of air-staged low NOx burners

    International Nuclear Information System (INIS)

    In order to reduce pollutant emissions produced by power plants it was proposed the optimization of the combustion process by developing externally air-staged burners which promote an initial oxygen-deficient zone to reduce the formation of both thermal and fuel derived NOx. The secondary combustion air circulate on two concentric paths: an external and an internal air flow, respectively, and flows across two adjustable swirls. The secondary air was swirled to create the internal recirculation zone that stabilizes the flame and controls its properties. This also permits maintaining an optimum ratio of air velocities at partial loads. This burner concept involved the creation of an oxygen-deficient zone by the injection of some of the combustion air through tertiary air ports. The paper presents the proposed low-NOx burners and the estimation of the performances of such burner types.(author). 5 figs., 1 tab., 6 refs

  1. Radiation

    International Nuclear Information System (INIS)

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  2. Are passive smoking, air pollution and obesity a greater mortality risk than major radiation incidents?

    OpenAIRE

    Smith Jim T

    2007-01-01

    Abstract Background Following a nuclear incident, the communication and perception of radiation risk becomes a (perhaps the) major public health issue. In response to such incidents it is therefore crucial to communicate radiation health risks in the context of other more common environmental and lifestyle risk factors. This study compares the risk of mortality from past radiation exposures (to people who survived the Hiroshima and Nagasaki atomic bombs and those exposed after the Chernobyl a...

  3. Insights on radiation belt physics from the dynamics radiation environment assimilation model, DREAM

    International Nuclear Information System (INIS)

    Complete text of publication follows. The Dynamic Radiation Environment Assimilation Model (DREAM) is a coupled, inner magnetosphere model with modules that include the ring current, the radiation belts, self-consistent global magnetic fields, Kalman filter data assimilation, and customized user applications. DREAM was developed at Los Alamos National Laboratory with the goals of specifying, predicting and understanding the near-Earth space environment. Here we will focus on new understanding of physics of the inner magnetosphere that DREAM has provided and, even more specifically, on the physics of radiation belt acceleration, transport, and loss. One early and important contribution was providing definitive evidence that local acceleration processes acting inside or near geosynchronous orbit are required in order to explain radiation belt dynamics. Another critical process we investigated was loss of radiation belt electrons by radial diffusion or transport to the magnetopause. A critical calculation here is accurate determination of the adiabatic redistribution of particles due to the storm-time ring current (the 'Dst' effect) which can cause both apparent 'loss' of particles at a given satellite. At different times and at different energies, DREAM can determine whether the region outside the trapping boundary acts as a source (the plasma sheet) a sink (the magnetopause) or a combination of both. Another fundamental sink of radiation belt electrons is the atmospheric loss cone where pitch angle scattering can remove electrons trough precipitation. In the final topic for this talk we will describe how we use DREAM to determine the relationship between trapped and precipitating populations and how we relate LEO measurements to high-altitude measurements using observed and modeled characteristics of magnetospheric wave populations.

  4. Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models

    International Nuclear Information System (INIS)

    The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy's (DOE's) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM's highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM's experimental approach, and recent activities within the ARM program

  5. Air Pollution Modeling at Road Sides Using the Operational Street Pollution Model-A Case Study in Hanoi, Vietnam

    DEFF Research Database (Denmark)

    Hung, Ngo Tho; Ketzel, Matthias; Jensen, Steen Solvang; Oanh, Nguyen Thi Kim

    2010-01-01

    In many metropolitan areas, traffic is the main source of air pollution. The high concentrations of pollutants in streets have the potential to affect human health. Therefore, estimation of air pollution at the street level is required for health impact assessment. This task has been carried out in many developed countries by a combination of air quality measurements and modeling. This study focuses on how to apply a dispersion model to cities in the developing world, where model input data and ...

  6. Critical ingredients of Type Ia supernova radiative-transfer modelling

    Science.gov (United States)

    Dessart, Luc; Hillier, D. John; Blondin, Stéphane; Khokhlov, Alexei

    2014-07-01

    We explore the physics of Type Ia supernova (SN Ia) light curves and spectra using the 1D non-local thermodynamic equilibrium (non-LTE) time-dependent radiative-transfer code CMFGEN. Rather than adjusting ejecta properties to match observations, we select as input one `standard' 1D Chandrasekhar-mass delayed-detonation hydrodynamical model, and then explore the sensitivity of radiation and gas properties of the ejecta on radiative-transfer modelling assumptions. The correct computation of SN Ia radiation is not exclusively a solution to an `opacity problem', characterized by the treatment of a large number of lines. We demonstrate that the key is to identify and treat important atomic processes consistently. This is not limited to treating line blanketing in non-LTE. We show that including forbidden-line transitions of metals, and in particular Co, is increasingly important for the temperature and ionization of the gas beyond maximum light. Non-thermal ionization and excitation are also critical since they affect the colour evolution and the ?M15 decline rate of our model. While impacting little the bolometric luminosity, a more complete treatment of decay routes leads to enhanced line blanketing, e.g. associated with 48Ti in the U and B bands. Overall, we find that SN Ia radiation properties are influenced in a complicated way by the atomic data we employ, so that obtaining converged results is a real challenge. Nonetheless, with our fully fledged CMFGEN model, we obtain good agreement with the golden standard Type Ia SN 2005cf in the optical and near-IR, from 5 to 60 d after explosion, suggesting that assuming spherical symmetry is not detrimental to SN Ia radiative-transfer modelling at these times. Multi-D effects no doubt matter, but they are perhaps less important than accurately treating the non-LTE processes that are crucial to obtain reliable temperature and ionization structures.

  7. Development of a combined radiation and burn injury model.

    Science.gov (United States)

    Palmer, Jessica L; Deburghgraeve, Cory R; Bird, Melanie D; Hauer-Jensen, Martin; Kovacs, Elizabeth J

    2011-01-01

    Combined radiation and burn injuries are likely to occur after nuclear events, such as a meltdown accident at a nuclear energy plant or a nuclear attack. Little is known about the mechanisms by which combined injuries result in higher mortality than by either insult alone, and few animal models exist for combined radiation and burn injury. Herein, the authors developed a murine model of radiation and scald burn injury. Mice were given a single dose of 0, 2, 4, 5, 6, or 9 Gray (Gy) alone, followed by a 15% TBSA scald burn. All mice receiving ?4 Gy of radiation with burn survived combined injury. Higher doses of radiation (5, 6, and 9 Gy) followed by scald injury had a dose-dependent increase in mortality (34, 67, and 100%, respectively). Five Gy was determined to be the ideal dose to use in conjunction with burn injury for this model. There was a decrease in circulating white blood cells in burn, irradiated, and combined injury (5 Gy and burn) mice by 48 hours postinjury compared with sham (49.7, 11.6, and 57.3%, respectively). Circulating interleukin-6 and tumor necrosis factor-? were increased in combined injury at 48 hours postinjury compared with all other treatment groups. Prolonged overproduction of proinflammatory cytokines could contribute to subsequent organ damage. Decreased leukocytes might exacerbate immune impairment and susceptibility to infections. Future studies will determine whether there are long lasting consequences of this early proinflammatory response and extended decrease in leukocytes. PMID:21233728

  8. Radiative Corrections in Vector-Tensor Models

    CERN Document Server

    Buchel, A; Hanif, M T; Homayouni, S; Jia, J; McKeon, D G C

    2009-01-01

    We consider a two-form antisymmetric tensor field \\phi minimally coupled to a non-abelian vector field with a field strength F. Canonical analysis suggests that a pseudoscalar mass term \\frac{\\mu^2}{2} \\tr (\\phi\\wedge \\phi) for the tensor field eliminates degrees of freedom associated with this field. Explicit one loop calculations show that an additional coupling m\\tr(\\phi\\wedge F) (which can be eliminated classically by a tensor field shift) reintroduces tensor field degrees of freedom. We attribute this to the lack of the renormalizability in our vector-tensor model. We also explore a vector-tensor model with a tensor field scalar mass term \\frac {\\mu^2}{2} \\tr (\\phi\\wedge\\star \\phi) and coupling m\\tr(\\phi\\wedge \\star F). We comment on the Stueckelberg mechanism for mass generation in the Abelian version of the latter model.

  9. General models for estimating daily global solar radiation for different solar radiation zones in mainland China

    International Nuclear Information System (INIS)

    Highlights: • Five solar radiation (Rs) zones were identified by long-term mean daily Rs. • Temperature- and sunshine-based models for Rs estimation were given for each site. • General models were obtained using geographical factors and site-specific equations. • Results showed that the general model for each zone had an acceptable accuracy. - Abstract: Empirical models, proposed to estimate solar radiation (Rs) in various areas, were site-specific in essence. However, it is questionable when they are applied to other stations where there is no record of Rs. This study aimed to develop general models to estimate daily Rs for different solar radiation zones in mainland China. Daily weather data including Rs, sunshine duration, relative humidity, maximum and minimum temperatures were collected and analyzed from 83 stations. Two types of simple empirical equations, namely, temperature- and sunshine-based models, were obtained for each site. Five Rs zones were determined by k-means clustering algorithm based on long-term mean daily Rs. For each zone, the general model for Rs estimation was developed based on geographical factors (latitude, longitude and altitude) and site-specific models. Coefficient of residual mass (CRM), mean bias error (MBE), mean percentage error (MPE), root mean square error (RMSE) and percent root mean square error (%RMSE) were used to investigate the model performance. The comparative results between measured and estimated daily Rs showed that the general models had an acceptable accuracy. It is believed that the general models developed in this work can be reliable and applicable for the locations without available Rs data in mainland China

  10. Statistical Modeling of Spatio-Temporal Variability in Monthly Average Daily Solar Radiation over Turkey

    Directory of Open Access Journals (Sweden)

    Can Ertekin

    2007-11-01

    Full Text Available Though one of the most significant driving forces behind ecological processessuch as biogeochemical cycles and energy flows, solar radiation data are limited or non-existent by conventional ground-based measurements, and thus, often estimated from othermeteorological data through (geostatistical models. In this study, spatial and temporalpatterns of monthly average daily solar radiation on a horizontal surface at the ground levelwere quantified using 130 climate stations for the entire Turkey and its conventionally-accepted seven geographical regions through multiple linear regression (MLR models as afunction of latitude, longitude, altitude, aspect, distance to sea; minimum, maximum andmean air temperature and relative humidity, soil temperature, cloudiness, precipitation, panevapotranspiration, day length, maximum possible sunshine duration, monthly average dailyextraterrestrial solar radiation, and time (month, and universal kriging method. Theresulting 20 regional best-fit MLR models (three MLR models for each region based onparameterization datasets had R2adj values of 91.5% for the Central Anatolia region to 98.0%for the Southeast Anatolia region. Validation of the best-fit MLR models for each region led to R2 values of 87.7% for the Mediterranean region to 98.5% for the Southeast Anatoliaregion. The best-fit anisotropic semi-variogram models for universal kriging as a result ofone-leave-out cross-validation gave rise to R2 values of 10.9% in July to 52.4% inNovember. Surface maps of monthly average daily solar radiation were generated overTurkey, with a grid resolution of 500 m x 500 m.

  11. Radiative heating in global climate models

    Energy Technology Data Exchange (ETDEWEB)

    Baer, F.; Arsky, N.; Rocque, K. [Univ. of Maryland, College Park, MD (United States)

    1996-04-01

    LWR algorithms from various GCMs vary significantly from one another for the same clear sky input data. This variability becomes pronounced when clouds are included. We demonstrate this effect by intercomparing the various models` output using observed data including clouds from ARM/CART data taken in Oklahoma.

  12. Control of asthma triggers in indoor air with air cleaners: a modeling analysis

    OpenAIRE

    Allen Joseph G; Minegishi Taeko; Myatt Theodore A; MacIntosh David L

    2008-01-01

    Abstract Background Reducing exposure to environmental agents indoors shown to increase asthma symptoms or lead to asthma exacerbations is an important component of a strategy to manage asthma for individuals. Numerous investigations have demonstrated that portable air cleaning devices can reduce concentrations of asthma triggers in indoor air; however, their benefits for breathing problems have not always been reproducible. The potential exposure benefits of whole house high efficiency in-du...

  13. Curve fitting methods for solar radiation data modeling

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my; Singh, Balbir Singh Mahinder, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my [Department of Fundamental and Applied Sciences, Faculty of Sciences and Information Technology, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia)

    2014-10-24

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R{sup 2}. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.

  14. Curve fitting methods for solar radiation data modeling

    Science.gov (United States)

    Karim, Samsul Ariffin Abdul; Singh, Balbir Singh Mahinder

    2014-10-01

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R2. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.

  15. Curve fitting methods for solar radiation data modeling

    International Nuclear Information System (INIS)

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R2. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods

  16. Monitoring and modelling of the radiation climate at Abisko

    International Nuclear Information System (INIS)

    Photosynthetically active radiation (PAR), ultraviolet-B (UV-B) radiation and sun-minutes per hour have been monitored at Abisko Scientific Research Station in northern Sweden during the summer of 1994. The PAR and UV-B values have been compared to models, and from the comparison cloud transmission factors could be determined and compared for the two wavebands. For the whole period the clouds, on average, decreased the UV-B to 74.2% of what it would have been without clouds. This means that in simultaneous experiments in which vegetation was irradiated with extra UV-B corresponding to 15% depletion under clear skies, taking cloud cover into account, the radiation corresponds to 19.0% ozone depletion. Ozone column at Abisko during the summer 1994 estimated from measurements at Vindeln to the south of Abisko and Tromsoe to the north showed no depletion compared to a model based on values determined 3-4 decades earlier. (au)

  17. Influence of high air temperature and sun radiation upon the structure and quality of a blood system of calf

    International Nuclear Information System (INIS)

    It is ascertained that high air temperature (38-43 C), sharp sun radiation (2056-2500 kJ/m.h) affected the structure and quality of blood in investigated strains of calf. In a zone of high temperature the alternation of the morphological structure and quality of a blood system of black partly coloured and red steppe strains comes at 39-40 C being expressed in trustworthy decreasing of erythrocytes,leucocytes, haemoglobin contents, in alkaline reserve of the blood plasma reduced glutations and in increasing in oxydated glutations, in saturation of vein with oxygen. Exposition of animals under the sun at high air temperature during two hours doesn't change total quantity of blood albumen and its fractional structure. (author). 10 refs., 4 tabs

  18. Comparison of the standards for air kerma of the VNIIM and the BIPM for 60Co gamma radiation

    International Nuclear Information System (INIS)

    An indirect comparison of the standards for air kerma of the D.I. Mendeleev Institute for Metrology (VNIIM), Russian Federation, and of the Bureau International des Poids et Mesures (BIPM) was carried out in the 60Co radiation beam of the BIPM in November 2009. The comparison result, based on the calibration coefficient for a transfer standard and expressed as a ratio of the VNIIM and the BIPM standards for air kerma, is 1.0008 with a combined standard uncertainty of 1.8 * 10-3. The degrees of equivalence between the VNIIM and the other participants in this BIPM.RI(I)-K1 key comparison have been calculated and the results are presented in the form of a matrix. A graphical presentation is also given. (authors)

  19. Air quality over Europe: modelling gaseous and particulate pollutants

    Directory of Open Access Journals (Sweden)

    E. Tagaris

    2013-09-01

    Full Text Available Air quality over Europe using Models-3 (i.e., CMAQ, MM5, SMOKE modelling system is performed for winter (i.e., January 2006 and summer (i.e., July 2006 months with the 2006 TNO gridded anthropogenic emissions database. Higher ozone mixing ratios are predicted in southern Europe while higher NO2 levels are simulated over western Europe. Elevated SO2 values are simulated over eastern Europe and higher PM2.5 concentrations over eastern and western Europe. Regional average results suggest that NO2 and PM2.5 are underpredicted, SO2 is overpredicted, while Max8hrO3 is overpredicted for low mixing ratios and is underpredicted for the higher mixing ratios. However, in a number of countries observed and predicted values are in good agreement for the pollutants examined here. Speciated PM2.5 components suggest that NO3 is dominant during winter over western Europe and in a few eastern countries due to the high NO2 mixing ratios. During summer NO3 is dominant only in regions with elevated NH3 emissions. For the rest of the domain SO4 is dominant. Low OC concentrations are simulated mainly due to the uncertain representation of SOA formation.

  20. Correlation among the terrestrial gamma radiation, the indoor air 222Rn, and the tap water 222Rn in Switzerland.

    Science.gov (United States)

    Buchli, R; Burkart, W

    1989-11-01

    The external gamma radiation and the indoor air Rn (222Rn) concentration were measured in 55 houses of the South East Grisons, the Urseren valley, and the Upper Rhine valley (crystalline subsoils) and in 39 houses of the Molasse basin and the Helvetic nappes (sedimentary subsoils). In homes located on a crystalline subsoil, a mean cellar gamma level of 1.40 mGy y-1 was measured, which is twice the mean gamma level of 0.70 mGy y-1 found in homes built on a sedimentary subsoil. The cellar 222Rn gas concentration is about six times higher in houses with a crystalline subsoil (1232 Bq m-3) than in houses with a sedimentary subsoil (201 Bq m-3). Although a weak correlation is observed between the mean gamma radiation levels and mean cellar 222Rn gas concentrations for the five subregions investigated, the gamma levels and the 222Rn gas concentrations do not correlate for single homes. For the population living on the ground floor of a house with a crystalline subsoil, the gamma radiation and the indoor air 222Rn lead to estimated mean exposures of 1.16 mSv and 9.44 mSv effective dose equivalent per year, respectively. In houses with a sedimentary subsoil, these mean exposures lead to 0.68 mSv y-1 and 3.22 mSv y-1, respectively. A mean tap water 222Rn content of 38.3 Bq L-1 and 10.4 Bq L-1 was measured in 31 villages with a crystalline subsoil and 73 villages with a sedimentary subsoil, respectively. Radon-222 degasing from the tap water into the indoor air leads to an additional exposure of about 0.11 mSv y-1 and 0.03 mSv y-1 in homes with a crystalline subsoil and homes with a sedimentary subsoil, respectively. PMID:2592208