WorldWideScience

Sample records for quantum dot-cavity system

  1. Reducing dephasing in coupled quantum dot-cavity systems by engineering the carrier wavefunctions

    DEFF Research Database (Denmark)

    Nysteen, Anders; Nielsen, Per Kær

    2012-01-01

    We demonstrate theoretically how photon-assisted dephasing by the electron-phonon interaction in a coupled cavity-quantum dot system can be significantly reduced for specific QD-cavity detunings. Our starting point is a recently published theory,1 which considers longitudinal acoustic phonons, described by a non-Markovian model, interacting with a coupled quantum dot-cavity system. The reduction of phonon-induced dephasing is obtained by placing the cavity-quantum dot system inside an infinite slab, assuming spherical electronic wavefunctions. Based on our calculations, we expect this to have important implications in single-photon sources, allowing the indistinguishability of the photons to be improved.

  2. Exciton-polariton dynamics in quantum dot-cavity system

    International Nuclear Information System (INIS)

    Full text: One of the basic requirement for quantum information processing systems is the ability to completely control the state of a single qubit. This imply in know all sources of decoherence and elaborate ways to avoid them. In recent work, A. Laucht et al. [1] presented detailed theoretical and experimental investigations of electrically tunable single quantum dot (QD) - photonic crystal (PhC) nanocavity systems operating in the strong coupling regime of the light matter interaction. Unlike previous studies, where the exciton-cavity spectral detuning was varied by changing the lattice temperature, or by the adsorption of inert gases at low temperatures, they employ the quantum confined Stark-effect to electro-optically control the exciton-cavity detuning. The new built device enabled them to systematically probe the emission spectrum of the strongly coupled system as a function of external control parameters, as for example the incoherent excitation power density or the lattice temperature. Those studies reveal for the first time insights in dephasing mechanisms of 0D exciton polaritons [1]. In another study [2], using a similar device, they investigate the coupling between two different QDs with a single cavity mode. In both works, incoherent pumping was used, but for quantum information, coherent and controlled excitations are necessary. Here, we theoretically investigate the dynamics a single quantum dot inside a cavity under coherent pulse excitation and explore a wide range of parameters, as for example, the exciton-cavity detunings, the excitation power, the spontaneous decay, and pure dephasing. We use density matrix formalism in the Lindblad form, and we solve it numerically. Our results show that coherent excitation can be used to probe strong coupling between exciton and cavity mode by monitoring the exciton Rabi oscillation as function of the cavity detuning. This can give new insights for future experimental measurement focusing on quantum information processing. 1] A. Laucht et all. Phys. Rev. Lett. 103, 087405 (2009); [2] A. Laucht et all Phys. Rev. B 82, 075305 (2010). (author)

  3. Exciton-polariton dynamics in quantum dot-cavity system

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Antonio F.; Lima, William J.; Villas-Boas, Jose M. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Fisica

    2012-07-01

    Full text: One of the basic requirement for quantum information processing systems is the ability to completely control the state of a single qubit. This imply in know all sources of decoherence and elaborate ways to avoid them. In recent work, A. Laucht et al. [1] presented detailed theoretical and experimental investigations of electrically tunable single quantum dot (QD) - photonic crystal (PhC) nanocavity systems operating in the strong coupling regime of the light matter interaction. Unlike previous studies, where the exciton-cavity spectral detuning was varied by changing the lattice temperature, or by the adsorption of inert gases at low temperatures, they employ the quantum confined Stark-effect to electro-optically control the exciton-cavity detuning. The new built device enabled them to systematically probe the emission spectrum of the strongly coupled system as a function of external control parameters, as for example the incoherent excitation power density or the lattice temperature. Those studies reveal for the first time insights in dephasing mechanisms of 0D exciton polaritons [1]. In another study [2], using a similar device, they investigate the coupling between two different QDs with a single cavity mode. In both works, incoherent pumping was used, but for quantum information, coherent and controlled excitations are necessary. Here, we theoretically investigate the dynamics a single quantum dot inside a cavity under coherent pulse excitation and explore a wide range of parameters, as for example, the exciton-cavity detunings, the excitation power, the spontaneous decay, and pure dephasing. We use density matrix formalism in the Lindblad form, and we solve it numerically. Our results show that coherent excitation can be used to probe strong coupling between exciton and cavity mode by monitoring the exciton Rabi oscillation as function of the cavity detuning. This can give new insights for future experimental measurement focusing on quantum information processing. 1] A. Laucht et all. Phys. Rev. Lett. 103, 087405 (2009); [2] A. Laucht et all Phys. Rev. B 82, 075305 (2010). (author)

  4. Quantum Interference Induced Photon Blockade in a Coupled Single Quantum Dot-Cavity System

    Science.gov (United States)

    Tang, Jing; Geng, Weidong; Xu, Xiulai

    2015-03-01

    We propose an experimental scheme to implement a strong photon blockade with a single quantum dot coupled to a nanocavity. The photon blockade effect can be tremendously enhanced by driving the cavity and the quantum dot simultaneously with two classical laser fields. This enhancement of photon blockade is ascribed to the quantum interference effect to avoid two-photon excitation of the cavity field. Comparing with Jaynes-Cummings model, the second-order correlation function at zero time delay g(2)(0) in our scheme can be reduced by two orders of magnitude and the system sustains a large intracavity photon number. A red (blue) cavity-light detuning asymmetry for photon quantum statistics with bunching or antibunching characteristics is also observed. The photon blockade effect has a controllable flexibility by tuning the relative phase between the two pumping laser fields and the Rabi coupling strength between the quantum dot and the pumping field. Moreover, the photon blockade scheme based on quantum interference mechanism does not require a strong coupling strength between the cavity and the quantum dot, even with the pure dephasing of the system. This simple proposal provides an effective way for potential applications in solid state quantum computation and quantum information processing.

  5. Quantum nature of a strongly-coupled single quantum dot-cavity system

    CERN Document Server

    Hennessy, K; Badolato, A; Falt, S; Gerace, D; Gulde, S T; Hu, E L; Imamoglu, A; Winger, M

    2006-01-01

    Cavity quantum electrodynamics (QED) studies the interaction between a quantum emitter and a single radiation-field mode. When an atom is in strong coupling with a cavity mode1,2, it is possible to realize key quantum information processing (QIP) tasks, such as controlled coherent coupling and entanglement of distinguishable quantum systems. Realizing these tasks in the solid state is clearly desirable, and coupling semiconductor self-assembled quantum dots (QDs) to monolithic optical cavities is a promising route to this end. However, validating the efficacy of QDs in QIP applications requires confirmation of the quantum nature of the QD-cavity system in the strong coupling regime. Here we find a confirmation by observing quantum correlations in photoluminescence (PL) from a photonic crystal (PC) nanocavity3-5 interacting with one, and only one, QD located precisely at the cavity electric field maximum. When off-resonance, photon emission from the cavity mode and QD excitons is anti-correlated at the level o...

  6. Quantum Interference Induced Photon Blockade in a Coupled Single Quantum Dot-Cavity System

    CERN Document Server

    Tang, Jing; Xu, Xiulai

    2015-01-01

    We propose an experimental scheme to implement a strong photon blockade with a single quantum dot coupled to a nanocavity. The photon blockade effect can be tremendously enhanced by driving the cavity and the quantum dot simultaneously with two classical laser fields. This enhancement of photon blockade is ascribed to the quantum interference effect to avoid two-photon excitation of the cavity field. Comparing with Jaynes-Cummings model, the second-order correlation function at zero time delay $g^{(2)}(0)$ in our scheme can be reduced by two orders of magnitude and the system sustains a large intracavity photon number. A red (blue) cavity-light detuning asymmetry for photon quantum statistics with bunching or antibunching characteristics is also observed. The photon blockade effect has a controllable flexibility by tuning the relative phase between the two pumping laser fields and the Rabi coupling strength between the quantum dot and the pumping field. Moreover, the photon blockade scheme based on quantum in...

  7. Non-markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Nielsen, Torben Roland

    2010-01-01

    We investigate the influence of electron-phonon interactions on the dynamical properties of a quantum-dot-cavity QED system. We show that non-Markovian effects in the phonon reservoir lead to strong changes in the dynamics, arising from photon-assisted dephasing processes, not present in Markovian treatments. A pronounced consequence is the emergence of a phonon induced spectral asymmetry when detuning the cavity from the quantum-dot resonance. The asymmetry can only be explained when considering the polaritonic quasiparticle nature of the quantum-dot-cavity system. Furthermore, a temperature induced reduction of the light-matter coupling strength is found to be relevant in interpreting experimental data, especially in the strong coupling regime.

  8. Origin of the emission within the cavity mode of coupled quantum dot-cavity systems

    OpenAIRE

    Suffczynski, J.; Dousse, A.; Gauthron, K.; Lemaitre, A.; Sagnes, I.; Lanco, L.; Voisin, P.; Bloch, J.; Senellart, P.

    2009-01-01

    The origin of the emission within the optical mode of a coupled quantum dot-micropillar system is investigated. Time-resolved photoluminescence is performed on a large number of deterministically coupled devices in a wide range of temperature and detuning. The emission within the cavity mode is found to exhibit the same dynamics as the spectrally closest quantum dot state. Our observations indicate that fast dephasing of the quantum dot state is responsible for the emission ...

  9. Green's functions technique for calculating the emission spectrum in a quantum dot-cavity system

    CERN Document Server

    Gomez, Edgar A; Vinck-Posada, Herbert

    2015-01-01

    We introduce the Green's functions technique as an alternative theory to the quantum regression theorem formalism for calculating the two-time correlation functions in open quantum systems. In particular, we investigate the potential of this theoretical approach by its application to compute the emission spectrum of a dissipative system composed by a single quantum dot inside of a semiconductor cavity. We also describe a simple algorithm based on the Green's functions technique for calculating the emission spectrum of the quantum dot as well as of the cavity which can easily be implemented in any numerical linear algebra package. We find that the Green's functions technique demonstrates a better accuracy and efficiency in the calculation of the emission spectrum and it allows to overcome the inherent theoretical difficulties associated to the direct application of the quantum regression theorem approach.

  10. Bright single photon source based on self-aligned quantum dot–cavity systems

    DEFF Research Database (Denmark)

    Maier, Sebastian; Gold, Peter

    2014-01-01

    We report on a quasi-planar quantum-dot-based single-photon source that shows an unprecedented high extraction efficiency of 42% without complex photonic resonator geometries or post-growth nanofabrication. This very high efficiency originates from the coupling of the photons emitted by a quantum dot to a Gaussian shaped nanohill defect that naturally arises during epitaxial growth in a self-aligned manner. We investigate the morphology of these defects and characterize the photonic operation mechanism. Our results show that these naturally arising coupled quantum dot-defects provide a new avenue for efficient (up to 42% demonstrated) and pure (g2(0) value of 0.023) single-photon emission.

  11. Non-resonant dot-cavity coupling and its applications in resonant quantum dot spectroscopy

    OpenAIRE

    Ates, S.; Ulrich, S. M.; Ulhaq, A.; Reitzenstein, S.; Loeffler, A.; Hoeffling, S.; Forchel, A.; Michler, P.

    2009-01-01

    We present experimental investigations on the non-resonant dot-cavity coupling of a single quantum dot inside a micro-pillar where the dot has been resonantly excited in the s-shell, thereby avoiding the generation of additional charges in the QD and its surrounding. As a direct proof of the pure single dot-cavity system, strong photon anti-bunching is consistently observed in the autocorrelation functions of the QD and the mode emission, as well as in the cross-correlation ...

  12. Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems

    Science.gov (United States)

    Ren, Bao-Cang; Wei, Hai-Rui; Hua, Ming; Li, Tao; Deng, Fu-Guo

    2013-02-01

    Recently, experiments showed that the spatial-mode states of entangled photons are more robust than their polarization-mode states in quantum communications. Here, we construct a complete and deterministic protocol for analyzing the spatial Bell states using the interaction between a photon and an electron spin in a charged quantum dot inside a one-side micropillar microcavity. A quantum nondemolition detector (QND) for checking the parity of a two-photon system can be constructed with the giant optical Faraday rotation in this solid state system. With this parity-check QND, we present a complete and deterministic proposal for the analysis of the four spatial-mode Bell states. Moreover, we present a robust two-step quantum secure direct communication protocol based on the spatial-mode Bell states and the photonic spatial Bell-state analysis. Our analysis shows that our BSA proposal works in both the strong and the weak coupling regimes if the side leakage and cavity loss rate is small.

  13. Phonon Mediated Off-Resonant Quantum Dot-Cavity Coupling

    OpenAIRE

    Majumdar, Arka; Gong, Yiyang; Kim, Erik D.; vuckovic, Jelena

    2010-01-01

    A theoretical model for the phonon-mediated off-resonant coupling between a quantum dot and a cavity, under resonant excitation of the quantum dot, is presented. We show that the coupling is caused by electron-phonon interaction in the quantum dot and is enhanced by the cavity. We analyze recently observed resonant quantum dot spectroscopic data by our theoretical model.

  14. Study of s-exciton and p-exciton pump on the lasing generation of biexciton quantum dot–cavity system

    Science.gov (United States)

    Guan, Huan; Yao, Peijun; Lu, Yonghua; Yu, Wenhai; Wang, Pei; Ming, Hai

    2015-01-01

    The quantum dot (QD)–cavity system with deep confinement potential is usually studied by either non-resonant or quasi-resonant p-exciton pump (PEP) with the s-exciton pump (SEP) ignored. In this paper, we investigate the effect of an SEP on the emission properties of a QD–cavity system with deep confinement potential by comparing the different incoherent excitation schemes, including pumping with both s- and p-exciton pump and with PEP only. The investigation reveals that the steady-state properties such as photon statistical properties and emission spectra of the QD–cavity system are significantly affected. More importantly, after taking SEP into consideration, the lasing and self-quenching regime of the entire system will be reached at a much lower pump rate than that of the only PEP scheme.

  15. Study of s-exciton and p-exciton pump on the lasing generation of biexciton quantum dot–cavity system

    International Nuclear Information System (INIS)

    The quantum dot (QD)–cavity system with deep confinement potential is usually studied by either non-resonant or quasi-resonant p-exciton pump (PEP) with the s-exciton pump (SEP) ignored. In this paper, we investigate the effect of an SEP on the emission properties of a QD–cavity system with deep confinement potential by comparing the different incoherent excitation schemes, including pumping with both s- and p-exciton pump and with PEP only. The investigation reveals that the steady-state properties such as photon statistical properties and emission spectra of the QD–cavity system are significantly affected. More importantly, after taking SEP into consideration, the lasing and self-quenching regime of the entire system will be reached at a much lower pump rate than that of the only PEP scheme. (paper)

  16. Resolution of the mystery of counter-intuitive photon correlations in far off-resonance emission from a quantum dot-cavity system

    OpenAIRE

    Winger, Martin; Volz, Thomas; Tarel, Guillaume; Portolan, Stefano; Badolato, Antonio; Hennessy, Kevin; Hu, Evelyn; Beveratos, Alexios; Finley, Jonathan; Savona, Vincenzo; Imamoglu, Atac

    2009-01-01

    Cavity quantum-electrodynamics experiments using an atom coupled to a single radiation-field mode have played a central role in testing foundations of quantum mechanics, thus motivating solid-state implementations using single quantum dots coupled to monolithic nano-cavities. In stark contrast to their atom based counterparts, the latter experiments revealed strong cavity emission, even when the quantum dot is far off resonance. Here we present experimental and theoretical r...

  17. Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar

    OpenAIRE

    Loo, Vivien; Lanco, Loic; Lemaitre, Aristide; Sagnes, Isabelle; Krebs, Olivier; Voisin, Paul; Senellart, Pascale

    2010-01-01

    We report on the coherent reflection spectroscopy of a high-quality factor micropillar, in the strong coupling regime with a single InGaAs annealed quantum dot. The absolute reflectivity measurement is used to study the characteristics of our device at low and high excitation power. The strong coupling is obtained with a g=16 \\mueV coupling strength in a 7.3\\mum diameter micropillar, with a cavity spectral width kappa=20.5 \\mueV (Q=65 000). The factor of merit of the strong-...

  18. Fundamental properties of devices for quantum information technology

    DEFF Research Database (Denmark)

    Nielsen, Per Kær

    2012-01-01

    This thesis reports a theoretical investigation of the influence of the electronphonon interaction on semiconductor cavity quantum electrodynamical systems, specifically a quantum dot coupled to an optical microcavity. We develop a theoretical description of the decay dynamics of the quantum dot interacting with the cavity and the phonons. It is shown that the presence of the phonon interaction, fundamentally changes the spontaneous emission decay behavior of the quantum dot. Especially in the regime where the quantum dotcavity spectral detuning is significantly larger than any linewidth of the system, the effect of the phonon interaction is very pronounced. A simple approximate analytical expression for the quantum dot decay rate is derived, which predicts a strong asymmetry with respect to the quantum dot-cavity detuning at low temperatures, and allows for a clear interpretation of the physics. Furthermore, a study of the indistinguishability of single photons emitted from the coupled quantum dot-cavity system is performed, with special emphasis on non-Markovian decoherence due to the phonon interaction. We show that common theoretical approaches fail to predict the degree of indistinguishability, on both a qualitative and quantitative level, for experimentally relevant parameters regimes. The important role of non-Markovian effects in the shorttime regime, where virtual processes dominate the decoherence of the quantum dot-cavity system, is emphasized. Importantly, our investigations lead to a maximum achievable degree of indistinguishability, a prediction which eludes common approaches.

  19. Nonlinear photon transport in a semiconductor waveguide-cavity system containing a single quantum dot

    CERN Document Server

    Hughes, S

    2011-01-01

    The input/output characteristics of coherent photon transport through a semiconductor cavity system containing a single quantum dot is presented. The nonlinear quantum optics formalism uses a master equation approach and focuses on a waveguide-cavity system containing a semiconductor quantum dot; our general technique also applies to studying coherent reflection from a micropillar cavity. We investigate the effects of light propagation and show the need for quantized multiphoton effects for various dot-cavity systems, including weakly-coupled, intermediately-coupled, and strongly-coupled regimes. We demonstrate that for mean photon numbers much less than 0.1, the commonly adopted weak excitation (single quantum) approximation breaks down---even in the weak coupling regime. As a measure of the photon correlations, we compute the Fano factor and the error associated with making a semiclassical approximation. We also investigate the role of electron--acoustic-phonon scattering and show that phonon-mediated scatt...

  20. Microscopic theory of indistinguishable single-photon emission from a quantum dot coupled to a cavity: The role of non-Markovian phonon-induced decoherence

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Lodahl, Peter

    2013-01-01

    We study the fundamental limit on single-photon indistinguishability imposed by decoherence due to phonon interactions in semiconductor quantum dot-cavity quantum electrodynamics systems. Employing an exact diagonalization approach we find large differences compared to standard methods. An important finding is that short-time non-Markovian effects limit the maximal attainable indistinguishability. The results are explained using a polariton picture that yields valuable insight into the phonon-induced dephasing dynamics.

  1. Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity

    CERN Document Server

    Miguel-Sanchez, J; Togan, E; Volz, T; Imamoglu, A; Besga, B; Reichel, J; Esteve, J

    2012-01-01

    We demonstrate non-perturbative coupling between a single self-assembled InGaAs quantum dot and an external fiber-mirror based microcavity. Our results extend the previous realizations of tunable microcavities while ensuring spatial and spectral overlap between the cavity-mode and the emitter by simultaneously allowing for deterministic charge control of the quantum dots. Using resonant spectroscopy, we show that the coupled quantum dot cavity system is at the onset of strong coupling, with a cooperativity parameter of 2. Our results constitute a milestone towards the realization of a high efficiency solid-state spin-photon interface.

  2. Two-photon interference from a quantum dot-microcavity: Persistent pure-dephasing and suppression of time-jitter

    DEFF Research Database (Denmark)

    Unsleber, Sebastian; McCutcheon, Dara

    2015-01-01

    We demonstrate the emission of highly indistinguishable photons from a quasi-resonantly pumped coupledquantum dot–microcavity system operating in the regime of cavity quantum electrodynamics. Changing thesample temperature allows us to vary the quantum dot–cavity detuning and, on spectral resonance, we observea threefold improvement in the Hong-Ou-Mandel interference visibility, reaching values in excess of 80%. Ourmeasurements off-resonance allow us to investigate varying Purcell enhancements, and to probe the dephasingenvironment at different temperatures and energy scales. By comparison with our microscopic model, we areable to identify pure dephasing and not time jitter as the dominating source of imperfections in our system.

  3. Microcavity enhanced single photon emission from an electrically driven site-controlled quantum dot

    Science.gov (United States)

    Schneider, C.; Heindel, T.; Huggenberger, A.; Niederstrasser, T. A.; Reitzenstein, S.; Forchel, A.; Höfling, S.; Kamp, M.

    2012-02-01

    In this work we report on the integration of single site-controlled quantum dots (SCQDs) into electrically driven micropillar cavities. The electroluminescence of these devices features emission of single SCQDs with inhomogeneous broadenings down to 170 µeV. The enhancement of electroluminescence by quantum dot-cavity coupling is demonstrated by temperature dependent investigations. Single photon emission from a spatially and spectrally coupled SCQD-resonator system is confirmed by photon autocorrelation measurements under electrical excitation yielding a g(2)(0) value of 0.42.

  4. Synthetic Quantum Systems

    OpenAIRE

    Cahill, Reginald T

    2002-01-01

    So far proposed quantum computers use fragile and environmentally sensitive natural quantum systems. Here we explore the new notion that synthetic quantum systems suitable for quantum computation may be fabricated from smart nanostructures using topological excitations of a stochastic neural-type network that can mimic natural quantum systems. These developments are a technological application of process physics which is an information theory of reality in which space and qu...

  5. Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities

    International Nuclear Information System (INIS)

    Exploiting the giant optical circular birefringence induced by the double-sided quantum-dot–cavity system, we construct a deterministic hybrid hyper-controlled-not (hyper-CNOT) gate, in which the spatial-mode and polarization states of a photon act as the two control qubits, whereas two stationary electron spins in quantum dots confined inside the optical microcavities serve as the two target qubits. In our scheme, the control qubits are easily manipulated with simple optical elements and the target qubits are suitable for storage and processing use. With our hybrid hyper-CNOT gates, we design a high-capacity direct transmission quantum communication network which requires neither the establishment of entanglement between remote locations nor the use of long-lived quantum memories. We discuss the feasibility and efficiency of our hybrid hyper-CNOT gate, concluding that it is feasible with current technology. (letter)

  6. Quantum electromechanical systems

    International Nuclear Information System (INIS)

    Quantum electromechanical systems are nano-to-micrometer (micron) scale mechanical resonators coupled to electronic devices of comparable dimensions, such that the mechanical resonator behaves in a manifestly quantum manner. We review progress towards realising quantum electromechanical systems, beginning with the phononic quantum of thermal conductance for suspended dielectric wires. We then describe efforts to reach the quantum zero-point displacement uncertainty detection limit for (sub)micron-scale mechanical resonators using the single electron transistor as displacement transducer. A scheme employing the Cooper-pair box as coherent control device to generate and detect quantum superpositions of distinct position states is then described. Finally, we outline several possible schemes to demonstrate various other quantum effects in (sub)micron mechanical resonators, including single phonon detection, quantum squeezed states and quantum tunnelling of mechanical degrees of freedom

  7. Dispersive quantum systems

    International Nuclear Information System (INIS)

    A dispersive quantum system is a quantum system which is both isolated and non-time reversal invariant. This article presents precise definitions for those concepts and also a characterization of dispersive quantum systems within the class of completely positive Markovian quantum systems in finite dimension (through a homogeneous linear equation for the non Hamiltonian part of the system's Liouvillian). To set the framework, the basic features of quantum mechanics are reviewed focusing on time evolution and also on the theory of completely positive Markovian quantum systems, including Kossakowski-Lindblad's standard form for Liouvillians. After those general considerations, a simple two-dimensional example is presented and then applied to describe the neutrino oscillation, with the introduction of a new-dispersive parameter. (author)

  8. Observing Quantum Systems

    OpenAIRE

    Groessing, Gerhard

    2004-01-01

    An introduction to some basic ideas of the author's "quantum cybernetics" is given, which depicts waves and "particles" as mutually dependent system components, thus defining "organizationally closed systems" characterized by a fundamental circular causality. According to this, a new derivation of quantum theory's most fundamental equation, the Schroedinger equation, is presented. Finally, it is shown that quantum systems can be described by what Heinz von Foerster has calle...

  9. Quantum Games and Programmable Quantum Systems

    OpenAIRE

    Piotrowski, Edward W.; Sladkowski, Jan

    2005-01-01

    Attention to the very physical aspects of information characterizes the current research in quantum computation, quantum cryptography and quantum communication. In most of the cases quantum description of the system provides advantages over the classical approach. Game theory, the study of decision making in conflict situation has already been extended to the quantum domain. We would like to review the latest development in quantum game theory that is relevant to information...

  10. Proposed Quenching of Phonon-Induced Processes in Photoexcited Quantum Dots due to Electron-Hole Asymmetries

    DEFF Research Database (Denmark)

    Nysteen, Anders; Nielsen, Per Kær

    2013-01-01

    Differences in the confinement of electrons and holes in quantum dots are shown to profoundly impact the magnitude of scattering with acoustic phonons. Using an extensive model that includes the non-Markovian nature of the phonon reservoir, we show how the effect may be addressed by photoluminescence excitation spectroscopy of a single quantum dot. We also investigate the implications for cavity QED, i.e., a coupled quantum dot-cavity system, and demonstrate that the phonon scattering may be strongly quenched. The quenching is explained by a balancing between the deformation potential interaction strengths and the carrier confinement and depends on the quantum dot shape. Numerical examples suggest a route towards engineering the phonon scattering.

  11. Quantum Games and Programmable Quantum Systems

    CERN Document Server

    Piotrowski, E W; Piotrowski, Edward W.; Sladkowski, Jan

    2005-01-01

    Attention to the very physical aspects of information characterizes the current research in quantum computation, quantum cryptography and quantum communication. In most of the cases quantum description of the system provides advantages over the classical approach. Game theory, the study of decision making in conflict situation has already been extended to the quantum domain. We would like to review the latest development in quantum game theory that is relevant to information processing. We will begin by illustrating the general idea of a quantum game and methods of gaining an advantage over "classical opponent". Then we review the most important game theoretical aspects of quantum information processing. On grounds of the discussed material, we reason about possible future development of quantum game theory and its impact on information processing and the emerging information society. The idea of quantum artificial intelligence is explained.

  12. Quantum Dissipative Systems

    CERN Document Server

    Weiss, Ulrich

    2008-01-01

    Major advances in the quantum theory of macroscopic systems, in combination with stunning experimental achievements, have brightened the field and brought it to the attention of the general community in natural sciences. Today, working knowledge of dissipative quantum mechanics is an essential tool for many physicists. This book - originally published in 1990 and republished in 1999 as an enlarged second edition - delves much deeper than ever before into the fundamental concepts, methods, and applications of quantum dissipative systems, including the most recent developments. In this third edi

  13. Quantum many body systems

    International Nuclear Information System (INIS)

    The book is based on the lectures given at the CIME school ''Quantum many body systems'' held in the summer of 2010. It provides a tutorial introduction to recent advances in the mathematics of interacting systems, written by four leading experts in the field: V. Rivasseau illustrates the applications of constructive Quantum Field Theory to 2D interacting electrons and their relation to quantum gravity; R. Seiringer describes a proof of Bose-Einstein condensation in the Gross-Pitaevski limit and explains the effects of rotating traps and the emergence of lattices of quantized vortices; J.-P. Solovej gives an introduction to the theory of quantum Coulomb systems and to the functional analytic methods used to prove their thermodynamic stability; finally, T. Spencer explains the supersymmetric approach to Anderson localization and its relation to the theory of random matrices. All the lectures are characterized by their mathematical rigor combined with physical insights.

  14. Quantum Zeno Effect in Quantum Chaotic Systems

    OpenAIRE

    Kim, Sang Wook; Chough, Young-Tak; An, Kyungwon

    2000-01-01

    We analyzed the effect of frequent measurements on the quantum systems that are chaotic in the classical limit. It is shown that the kicked rotator, a well-known example of quantum chaos, is too special to be used as a testing ground for the effects of the repeated measurements. The abrupt change of state vectors by the delta-kick singular interruptions causes a quantum anti-Zeno effect. However, in more realistic systems with interaction potentials of continuous time depend...

  15. Engineering quantum communication systems

    Science.gov (United States)

    Pinto, Armando N.; Almeida, Álvaro J.; Silva, Nuno A.; Muga, Nelson J.; Martins, Luis M.

    2012-06-01

    Quantum communications can provide almost perfect security through the use of quantum laws to detect any possible leak of information. We discuss critical issues in the implementation of quantum communication systems over installed optical fibers. We use stimulated four-wave mixing to generate single photons inside optical fibers, and by tuning the separation between the pump and the signal we adjust the average number of photons per pulse. We report measurements of the source statistics and show that it goes from a thermal to Poisson distribution with the increase of the pump power. We generate entangled photons pairs through spontaneous four-wave mixing. We report results for different type of fibers to approach the maximum value of the Bell inequality. We model the impact of polarization rotation, attenuation and Raman scattering and present optimum configurations to increase the degree of entanglement. We encode information in the photons polarization and assess the use of wavelength and time division multiplexing based control systems to compensate for the random rotation of the polarization during transmission. We show that time division multiplexing systems provide a more robust solution considering the values of PMD of nowadays installed fibers. We evaluate the impact on the quantum channel of co-propagating classical channels, and present guidelines for adding quantum channels to installed WDM optical communication systems without strongly penalizing the performance of the quantum channel. We discuss the process of retrieving information from the photons polarization. We identify the major impairments that limit the speed and distance of the quantum channel. Finally, we model theoretically the QBER and present results of an experimental performance assessment of the system quality through QBER measurements.

  16. Quantum Zeno Effect in Quantum Chaotic Systems

    CERN Document Server

    Kim, S W; An, K; Kim, Sang Wook; Chough, Young-Tak; An, Kyungwon

    2000-01-01

    We analyzed the effect of frequent measurements on the quantum systems that are chaotic in the classical limit. It is shown that the kicked rotator, a well-known example of quantum chaos, is too special to be used as a testing ground for the effects of the repeated measurements. The abrupt change of state vectors by the delta-kick singular interruptions causes a quantum anti-Zeno effect. However, in more realistic systems with interaction potentials of continuous time dependence the quantum Zeno effect prevails.

  17. Scheme of thinking quantum systems

    International Nuclear Information System (INIS)

    A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field

  18. Scheme of thinking quantum systems

    Science.gov (United States)

    Yukalov, V. I.; Sornette, D.

    2009-11-01

    A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field.

  19. Scheme of thinking quantum systems

    CERN Document Server

    Yukalov, V I

    2009-01-01

    A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field.

  20. Scheme of thinking quantum systems

    OpenAIRE

    V.I. Yukalov; Sornette, D.

    2009-01-01

    A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans...

  1. Quantum dissipative systems

    CERN Document Server

    Weiss, U

    1999-01-01

    Recent advances in the quantum theory of macroscopic systems have brightened up the field and brought it into the focus of a general community in natural sciences. The fundamental concepts, methods and applications including the most recent developments, previously covered for the most part only in the original literature, are presented here in a comprehensive treatment to an audience who is reasonably familiar with quantum-statistical mechanics and has had rudimentary contacts with the path integral formulation.This book deals with the phenomena and theory of decoherence and dissipation in qu

  2. Auger Processes Mediating the Nonresonant Optical Emission from a Semiconductor Quantum Dot Embedded Inside an Optical Cavity

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Nielsen, Per Kær

    2013-01-01

    We show that Auger processes involving wetting layer transitions mediate emission from a cavity that is detuned from a quantum dot by even tens of meV. The wetting layer thus acts as a reservoir, which by Coulomb scattering can supply or absorb the energy difference between emitter and cavity. We perform microscopic calculations of the effect treating the wetting layer as a non-Markovian reservoir interacting with the coupled quantum dot-cavity system through Coulomb interactions. Experimentally, cavity feeding has been observed in the asymmetric detuning range of -10 to +45 meV. We show that this asymmetry arises naturally from the quasiequilibrium properties of the wetting layer reservoir. Furthermore, we present numerical calculations of both photoluminescence spectra and photon correlations, demonstrating good qualitative agreement with experiments.

  3. Transitionless quantum driving in open quantum systems

    International Nuclear Information System (INIS)

    We extend the concept of superadiabatic dynamics, or transitionless quantum driving, to quantum open systems whose evolution is governed by a master equation in the Lindblad form. We provide the general framework needed to determine the control strategy required to achieve superadiabaticity. We apply our formalism to two examples consisting of a two-level system coupled to environments with time-dependent bath operators. (paper)

  4. Quantum Cybernetics and Complex Quantum Systems Science - A Quantum Connectionist Exploration

    OpenAIRE

    Gonçalves, Carlos Pedro

    2014-01-01

    Quantum cybernetics and its connections to complex quantum systems science is addressed from the perspective of complex quantum computing systems. In this way, the notion of an autonomous quantum computing system is introduced in regards to quantum artificial intelligence, and applied to quantum artificial neural networks, considered as autonomous quantum computing systems, which leads to a quantum connectionist framework within quantum cybernetics for complex quantum comput...

  5. Quantum information science as an approach to complex quantum systems

    OpenAIRE

    Nielsen, Michael A.

    2002-01-01

    What makes quantum information science a science? These notes explore the idea that quantum information science may offer a powerful approach to the study of complex quantum systems. We discuss how to quantify complexity in quantum systems, and argue that there are two qualitatively different types of complex quantum system. We also explore ways of understanding complex quantum dynamics by quantifying the strength of a quantum dynamical operation as a physical resource. This...

  6. Darwinism in Quantum Systems?

    CERN Document Server

    Iqbal, A

    2002-01-01

    We find quantum mechanics playing a role in evolutionary dynamics described by the notion of an Evolutionary Stable Strategy (ESS). An ESS being a refinement of Nash equilibrium concept is a stable strategy in an evolutionary game with replicator dynamic as the underlying process. We investigate ESSs in two and three player symmetric quantum games played by the proposed scheme of applying $^{\\prime}$identity$^{\\prime}$ and $^{\\prime}$Pauli spin-flip$^{\\prime}$ operators on an initial state with classical probabilities. The mixed Nash equilibrium (NE) we search for is not affected by a switchover between two forms of the game, one quantized and other classical, however it is an ESS when the game is played classically.We show no such mixed NE exists for two player games but there is a class of three player games where they do exist.Our results imply that an evolutionary approach originating with Darwin's idea of natural selection can be used even for quantum systems. It also indicates the possibility of genetic...

  7. Asymptotically open quantum systems

    International Nuclear Information System (INIS)

    In the present thesis we investigate the structure of time-dependent equations of motion in quantum mechanics.We start from two coupled systems with an autonomous equation of motion. A limit, in which the dynamics of one of the two systems has a decoupled evolution and imposes a non-autonomous evolution for the second system is identified. A result due to K. Hepp that provides a classical limit for dynamics turns out to be part and parcel for this limit and is generalized in our work. The method introduced by J.S. Howland for the solution of the time-dependent Schroedinger equation is interpreted as such a limit. Moreover, we associate our limit with the modern theory of quantization. (orig.)

  8. Decoherence in open quantum systems

    International Nuclear Information System (INIS)

    In the framework of the Lindblad theory for open quantum systems we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. In the present paper we have studied QD with the Markovian equation of Lindblad in order to understand the quantum to classical transition for a system consisting of an one-dimensional harmonic oscillator in interaction with a thermal bath in the framework of the theory of open quantum systems based on quantum dynamical semigroups. The role of QD became relevant in many interesting physical problems from field theory, atomic physics, quantum optics and quantum information processing, to which we can add material science, heavy ion collisions, quantum gravity and cosmology, condensed matter physics. Just to mention only a few of them: to understand the way in which QD enhances the quantum to classical transition of density fluctuations; to study systems of trapped and cold atoms (or ions) which may offer the possibility of engineering the environment, like trapped atoms inside cavities, relation between decoherence and other cavity QED effects (such as Casimir effect); on mesoscopic scale, decoherence in the context of Bose-Einstein condensation. In many cases physicists are interested in understanding the specific causes of QD just because they want to prevent decoherence from damaging quantum states and to protect the information stored in quantum states from the degrading effect of the interaction w the degrading effect of the interaction with the environment. Thus, decoherence is responsible for washing out the quantum interference effects which are desirable to be seen as signals in some experiments. QD has a negative influence on many areas relying upon quantum coherence effects, such as quantum computation and quantum control of atomic and molecular processes. The physics of information and computation is such a case, where decoherence is an obvious major obstacle in the implementation of information-processing hardware that takes advantage of the superposition principle. The study of classicality using QD leads to a deeper understanding of the quantum origins of the classical world. Much work has still to be done even to settle the interpretational questions, not to speak about answering them. Nevertheless, as a result of the progress made in the last two decades, the quantum to classical transition has become a subject of experimental investigations, while previously it was mostly a domain of philosophy. The issue of quantum to classical transition points to the necessity of a better understanding of open quantum systems. The Lindblad theory provides a selfconsistent treatment of damping as a general extension of quantum mechanics

  9. Three Terminal Quantum Dot System

    OpenAIRE

    Chandrasekar, N.; Narra Sunil Kumar; Pavan, G.

    2012-01-01

    In this study, the transmission rate for the three terminal quantum dot system is determined using Keldysh nonequilibrium Green’s function technique for interacting and non-interacting cases. The three terminal quantum dot systems consist of three leads and three quantum dots that are arranged in a triangular form. Each led is coupled with each dot. The lesser and retarded Green’s functions are used for the calculations of transmission rates and how the transmission rates vary for ...

  10. Open quantum systems recent developments

    CERN Document Server

    Joye, Alain; Pillet, Claude-Alain

    2006-01-01

    Understanding dissipative dynamics of open quantum systems remains a challenge in mathematical physics. This problem is relevant in various areas of fundamental and applied physics. From a mathematical point of view, it involves a large body of knowledge. Significant progress in the understanding of such systems has been made during the last decade. These books present in a self-contained way the mathematical theories involved in the modeling of such phenomena. They describe physically relevant models, develop their mathematical analysis and derive their physical implications. In Volume I the Hamiltonian description of quantum open systems is discussed. This includes an introduction to quantum statistical mechanics and its operator algebraic formulation, modular theory, spectral analysis and their applications to quantum dynamical systems. Volume II is dedicated to the Markovian formalism of classical and quantum open systems. A complete exposition of noise theory, Markov processes and stochastic differential...

  11. Quantum information science as an approach to complex quantum systems

    CERN Document Server

    Nielsen, M A

    2003-01-01

    What makes quantum information science a science? These notes explore the idea that quantum information science may offer a powerful approach to the study of complex quantum systems. We discuss how to quantify complexity in quantum systems, and argue that there are two qualitatively different types of complex quantum system. We also explore ways of understanding complex quantum dynamics by quantifying the strength of a quantum dynamical operation as a physical resource. This is the text for a talk at the ``Sixth International Conference on Quantum Communication, Measurement and Computing'', held at MIT, July 2002. Viewgraphs for the talk may be found at http://www.qinfo.org/talks/.

  12. Quantum technologies with hybrid systems.

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-31

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558

  13. Quantum Effects in Biological Systems

    Science.gov (United States)

    Roy, Sisir

    2014-07-01

    The debates about the trivial and non-trivial effects in biological systems have drawn much attention during the last decade or so. What might these non-trivial sorts of quantum effects be? There is no consensus so far among the physicists and biologists regarding the meaning of "non-trivial quantum effects". However, there is no doubt about the implications of the challenging research into quantum effects relevant to biology such as coherent excitations of biomolecules and photosynthesis, quantum tunneling of protons, van der Waals forces, ultrafast dynamics through conical intersections, and phonon-assisted electron tunneling as the basis for our sense of smell, environment assisted transport of ions and entanglement in ion channels, role of quantum vacuum in consciousness. Several authors have discussed the non-trivial quantum effects and classified them into four broad categories: (a) Quantum life principle; (b) Quantum computing in the brain; (c) Quantum computing in genetics; and (d) Quantum consciousness. First, I will review the above developments. I will then discuss in detail the ion transport in the ion channel and the relevance of quantum theory in brain function. The ion transport in the ion channel plays a key role in information processing by the brain.

  14. Subharmonic generation in quantum systems

    International Nuclear Information System (INIS)

    We show how the classical-quantum correspondence permits long-lived subharmonic motion in a quantum system driven by a periodic force. Exponentially small deviations from exact subharmonicity are due to coherent tunneling between quantized vortex tubes which surround classical elliptic periodic orbits. (orig.)

  15. Subharmonic Generation in Quantum Systems

    OpenAIRE

    Holthaus, Martin; Flatte, Michael E.

    1993-01-01

    We show how the classical-quantum correspondence permits long-lived subharmonic motion in a quantum system driven by a periodic force. Exponentially small deviations from exact subharmonicity are due to coherent tunneling between quantized vortex tubes which surround classical elliptic periodic orbits.

  16. Three Terminal Quantum Dot System

    Directory of Open Access Journals (Sweden)

    N. Chandrasekar

    2012-01-01

    Full Text Available In this study, the transmission rate for the three terminal quantum dot system is determined using Keldysh nonequilibrium Green’s function technique for interacting and non-interacting cases. The three terminal quantum dot systems consist of three leads and three quantum dots that are arranged in a triangular form. Each led is coupled with each dot. The lesser and retarded Green’s functions are used for the calculations of transmission rates and how the transmission rates vary for interacting and non-interacting system are studied is investigated.

  17. Chaotic quantum systems

    International Nuclear Information System (INIS)

    The overview of recent developments in the theory of quantum chaos is presented with the special emphasis on a number of unsolved problems and current apparent contradictions. The relation between dynamical quantum chaos and statistical random matrix theory is discussed. 97 refs

  18. Manipulation of single quantum systems

    International Nuclear Information System (INIS)

    Full text: The founders of quantum theory assumed in thought experiments that they were manipulating isolated quantum systems obeying the counterintuitive laws which they had just discovered. Technological advances have recently turned these virtual experiments into real ones by making possible the actual control of isolated quantum particles. Many laboratories are realizing such experiments, in a research field at the frontier between physics and information science. Fundamentally, these studies explore the transition between the microscopic world ruled by quantum laws and our macroscopic environment which appears classical. Practically, physicists hope that these experiments will result in new technologies exploiting the strange quantum logic to compute, communicate or measure physical quantities better than was previously conceivable. In Paris, we perform such experiments by juggling with photons trapped between superconducting mirrors. I will give a simple description of these studies, compare them to similar ones performed on other systems and guess about possible applications. (author)

  19. All-optical coherent control of energy transfer between a quantum dot and a cavity mode

    Science.gov (United States)

    Cai, Tao; Bose, Ranojoy; Choudhury, Kaushik; Solomon, Glenn; Waks, Edo

    2015-03-01

    Here we demonstrated all-optical coherent control of energy transfer in a quantum dot strongly coupled to a photonic crystal molecule at optical frequency. The photonic crystal molecule composes two photonic crystal cavities, supporting a pair of strongly coupled normal modes. One of the modes strongly couples with a quantum dot and the other induces a cavity enhanced a.c. stark shift to rapidly tune the quantum dot resonance on timescales much shorter than the vacuum Rabi period of the strongly coupled dot-cavity system. The quantum dot initially detunes from the cavity mode. By tuning the quantum dot onto resonance with the cavity mode on picosecond timescales, we achieved coherent transfer of energy between a quantum dot and the cavity mode through vacuum Rabi oscillation. We investigated the energy transfer as a function of stark laser power to confirm the coherence of the energy transfer process. We further demonstrated coherent control of light-matter states by implementing a Ramsey-type experiment. These results pave the path for achieving gigahertz controlled generation of quantum states of light and synthesis of photon wavefunctions using integrated semiconductor nano-photonics platform.

  20. Preconditioned quantum linear system algorithm.

    Science.gov (United States)

    Clader, B D; Jacobs, B C; Sprouse, C R

    2013-06-21

    We describe a quantum algorithm that generalizes the quantum linear system algorithm [Harrow et al., Phys. Rev. Lett. 103, 150502 (2009)] to arbitrary problem specifications. We develop a state preparation routine that can initialize generic states, show how simple ancilla measurements can be used to calculate many quantities of interest, and integrate a quantum-compatible preconditioner that greatly expands the number of problems that can achieve exponential speedup over classical linear systems solvers. To demonstrate the algorithm's applicability, we show how it can be used to compute the electromagnetic scattering cross section of an arbitrary target exponentially faster than the best classical algorithm. PMID:23829722

  1. Quantum Relativity: Physical Laws Must be Invariant Over Quantum Systems

    OpenAIRE

    Merriam, Paul

    2005-01-01

    Decoherence may not solve all of the measurement problems of quantum mechanics. It is proposed that a solution to these problems may be to allow that superpositions describe physically real systems in the following sense. Each quantum system "carries" around a local spacetime in whose terms other quantum systems may take on nonlocal states. Each quantum system forms a physically valid coordinate frame. The laws of physics should be formulated to be invariant under the group ...

  2. Entanglement of quantum dissipative systems

    CERN Document Server

    Stauber, T

    2005-01-01

    The von Neumann entropy of various quantum dissipative models is calculated in order to discuss the entanglement properties of these systems. First, integrable quantum dissipative models are discussed, i.e., the quantum Brownian motion and the quantum harmonic oscillator. In case of the free particle, the related entanglement of formation shows no non-analyticity. In case of the dissipative harmonic oscillator, there is a non-analyticity at the transition of underdamped to overdamped oscillations. We argue that this might be a general property of dissipative systems. We show that similar features arise in the dissipative two level system and study different regimes using sub-Ohmic, Ohmic and and super-Ohmic baths, within a scaling approach.

  3. Quantum retrodiction in open systems

    International Nuclear Information System (INIS)

    Quantum retrodiction involves finding the probabilities for various preparation events given a measurement event. This theory has been studied for some time but mainly as an interesting concept associated with time asymmetry in quantum mechanics. Recent interest in quantum communications and cryptography, however, has provided retrodiction with a potential practical application. For this purpose quantum retrodiction in open systems should be more relevant than in closed systems isolated from the environment. In this paper we study retrodiction in open systems and develop a general master equation for the backward time evolution of the measured state, which can be used for calculating preparation probabilities. We solve the master equation, by way of example, for the driven two-level atom coupled to the electromagnetic field

  4. Simulation of open quantum systems

    OpenAIRE

    Mintert, Florian; Heller, Eric J.

    2008-01-01

    We present an approach for the semiclassical treatment of open quantum systems. An expansion into localized states allows restriction of a simulation to a fraction of the environment that is located within a predefined vicinity of the system. Adding and dropping environmental particles during the simulation yields an effective reduction of the size of the system that is being treated.

  5. Wilson's approach to quantum systems

    International Nuclear Information System (INIS)

    We discuss the relevance that the Wilson Renormalization Group approach to Bose systems has for quantum systems for which a functional Bosonization exists. The role of Matsubara frequencies as concerning the phenomenon of dimensional crossover is pointed out. Furthermore we find that the unusual critical behaviour of Bose system at T=0 can be included to first order in epsilon = 2-d, in the Wilson universality class with n = -2, with n the number of order parameter components. Finally, some consierations about other quantum systems are made. (author)

  6. Software-defined Quantum Communication Systems

    OpenAIRE

    Humble, Travis S.; Sadlier, Ronald J.

    2014-01-01

    Quantum communication systems harness modern physics through state-of-the-art optical engineering to provide revolutionary capabilities. An important concern for quantum communication engineering is designing and prototyping these systems to evaluate proposed capabilities. We apply the paradigm of software-defined communication for engineering quantum communication systems to facilitate rapid prototyping and prototype comparisons. We detail how to decompose quantum communica...

  7. Contextual logic for quantum systems

    International Nuclear Information System (INIS)

    In this work we build a quantum logic that allows us to refer to physical magnitudes pertaining to different contexts from a fixed one without the contradictions with quantum mechanics expressed in no-go theorems. This logic arises from considering a sheaf over a topological space associated with the Boolean sublattices of the ortholattice of closed subspaces of the Hilbert space of the physical system. Different from standard quantum logics, the contextual logic maintains a distributive lattice structure and a good definition of implication as a residue of the conjunction

  8. Introduction to quantum spin systems

    Directory of Open Access Journals (Sweden)

    A. Langari

    2008-06-01

    Full Text Available This manuscript is the collection of lectures given in the summer school on strongly correlated electron systems held at Isfahan university of technology, June 2007. A short overview on quantum magnetism and spin systems is presented. The numerical exact diagonalization (Lanczos alghorithm is explained in a pedagogical ground. This is a method to get some ground state properties on finite cluster of lattice models. Two extensions of Lanczos method to get the excited states and also finite temperature properties of quantum models are also explained. The basic notions of quantum phase transition is discussed in term of Ising model in transverse field. Its phase diagram and critical properties are explained using the quantum renormalization group approach. Most of the topics are in tutorial level with hints to recent research activities.

  9. Asymptotic dynamics of quantum discord in open quantum systems

    International Nuclear Information System (INIS)

    It is well known that quantum entanglement makes certain tasks in quantum information theory possible. However, there are also quantum tasks that display a quantum advantage without entanglement. Distinguishing classical and quantum correlations in quantum systems is therefore of both practical and fundamental importance. Realistic quantum systems are not closed, and therefore it is important to study the various correlations when the system loses its coherence due to interactions with the environment. In this paper, we study in detail the dynamics of different kinds of correlations, classical correlation, quantum discord and entanglement in open quantum systems, in particular, a two-qubit system evolving under Kossakowski-type quantum dynamical semigroups of completely positive maps. In such an environment, classical and quantum correlations can even persist asymptotically. By analytic and numerical analysis, we find that the quantum discord is larger than the classical correlation for asymptotic states. Furthermore, we show that the quantum discord is more resistant to the action of the environment than quantum entanglement, and it can persist even in the asymptotic long-time regime.

  10. Quantum integrable Toda like systems

    CERN Document Server

    Bordemann, Martin; Bordemann, Martin; Walter, Martin

    1998-01-01

    Using deformation quantization and suitable 2 by 2 quantum $R$-matrices we show that a list of Toda like classical integrable systems given by Y.B.Suris is quantum integrable in the sense that the classical conserved quantities (which are already in involution with respect to the Poisson bracket) commute with respect to the standard star-product of Weyl type in flat $2n$-dimensional space.

  11. The stochastic limit of quantum spin systems

    OpenAIRE

    Accardi, L; Kozyrev, S.V.

    1999-01-01

    The stochastic limit for the system of spins interacting with a boson field is investigated. In the finite volume an application of the stochastic golden rule shows that in the limit the dynamics of a quantum system is described by a quantum white noise equation that after taking of normal order is equivalent to quantum stochastic differential equation (QSDE). For the quantum Langevin equation the dynamics is well defined and is a quantum flow on the infinite lattice system.

  12. Quantum Dot Systems: a versatile platform for quantum simulations

    International Nuclear Information System (INIS)

    Quantum mechanics often results in extremely complex phenomena, especially when the quantum system under consideration is composed of many interacting particles. The states of these many-body systems live in a space so large that classical numerical calculations cannot compute them. Quantum simulations can be used to overcome this problem: complex quantum problems can be solved by studying experimentally an artificial quantum system operated to simulate the desired hamiltonian. Quantum dot systems have shown to be widely tunable quantum systems, that can be efficiently controlled electrically. This tunability and the versatility of their design makes them very promising quantum simulators. This paper reviews the progress towards digital quantum simulations with individually controlled quantum dots, as well as the analog quantum simulations that have been performed with these systems. The possibility to use large arrays of quantum dots to simulate the low-temperature Hubbard model is also discussed. The main issues along that path are presented and new ideas to overcome them are proposed. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Dynamics of complex quantum systems

    CERN Document Server

    Akulin, Vladimir M

    2014-01-01

    This book gathers together a range of similar problems that can be encountered in different fields of modern quantum physics and that have common features with regard to multilevel quantum systems. The main motivation was to examine from a uniform standpoint various models and approaches that have been developed in atomic, molecular, condensed matter, chemical, laser and nuclear physics in various contexts. The book should help senior-level undergraduate, graduate students and researchers putting particular problems in these fields into a broader scientific context and thereby taking advantage of well-established techniques used in adjacent fields. This second edition has been expanded to include substantial new material (e.g. new sections on Dynamic Localization and on Euclidean Random Matrices and new chapters on Entanglement, Open Quantum Systems, and Coherence Protection). It is based on the author’s lectures at the Moscow Institute of Physics and Technology, at the CNRS Aimé Cotton Laboratory, and on ...

  14. Design of coherent quantum observers for linear quantum systems

    International Nuclear Information System (INIS)

    Quantum versions of control problems are often more difficult than their classical counterparts because of the additional constraints imposed by quantum dynamics. For example, the quantum LQG and quantum H? optimal control problems remain open. To make further progress, new, systematic and tractable methods need to be developed. This paper gives three algorithms for designing coherent quantum observers, i.e., quantum systems that are connected to a quantum plant and their outputs provide information about the internal state of the plant. Importantly, coherent quantum observers avoid measurements of the plant outputs. We compare our coherent quantum observers with a classical (measurement-based) observer by way of an example involving an optical cavity with thermal and vacuum noises as inputs. (paper)

  15. Quantum energy teleportation in a quantum Hall system

    Energy Technology Data Exchange (ETDEWEB)

    Yusa, Go; Izumida, Wataru; Hotta, Masahiro [Department of Physics, Tohoku University, Sendai 980-8578 (Japan)

    2011-09-15

    We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET), which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using reasonable experimental parameters.

  16. Entanglement within the Quantum Trajectory Description of Open Quantum Systems

    OpenAIRE

    Nha, Hyunchul; Carmichael, H. J.

    2004-01-01

    The degree of entanglement in an open quantum system varies according to how information in the environment is read. A measure of this contextual entanglement is introduced based on quantum trajectory unravelings of the open system dynamics. It is used to characterize the entanglement in a driven quantum system of dimension $2\\times\\infty$ where the entanglement is induced by the environmental interaction. A detailed mechanism for the environment-induced entanglement is given.

  17. Efficient Simulation of Quantum Systems by Quantum Computers

    OpenAIRE

    Zalka, Christof

    1996-01-01

    We show that the time evolution of the wave function of a quantum mechanical many particle system can be implemented very efficiently on a quantum computer. The computational cost of such a simulation is comparable to the cost of a conventional simulation of the corresponding classical system. We then sketch how results of interest, like the energy spectrum of a system, can be obtained. We also indicate that ultimately the simulation of quantum field theory might be possible...

  18. Entanglement within the Quantum Trajectory Description of Open Quantum Systems

    CERN Document Server

    Nha, H; Nha, Hyunchul

    2004-01-01

    The degree of entanglement in an open quantum system varies according to how information in the environment is read. A measure of this contextual entanglement is introduced based on quantum trajectory unravellings of the open system dynamics. It is used to characterize the entanglement in a driven quantum system of dimension $2\\times\\infty$ where the entanglement is induced by the environmental interaction. A detailed mechanism for the environment-induced entanglement is given.

  19. Quantum Indeterminacy of Cosmic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Craig J. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2013-12-30

    It is shown that quantum uncertainty of motion in systems controlled mainly by gravity generally grows with orbital timescale $H^{-1}$, and dominates classical motion for trajectories separated by distances less than $\\approx H^{-3/5}$ in Planck units. For example, the cosmological metric today becomes indeterminate at macroscopic separations, $H_0^{-3/5}\\approx 60$ meters. Estimates suggest that entangled non-localized quantum states of geometry and matter may significantly affect fluctuations during inflation, and connect the scale of dark energy to that of strong interactions.

  20. Quantum gate entangler for general multipartite systems

    OpenAIRE

    Heydari, Hoshang

    2007-01-01

    We construct quantum gate entangler for general multipartite states based on topological unitary operators. We show that these operators can entangle quantum states if they satisfy the separability condition that is given by the complex multi-projective Segre variety. We also in detail discuss the construction of quantum gate entangler for higher dimensional bipartite and three-partite quantum systems.

  1. Polygamy of Entanglement in Multipartite Quantum Systems

    OpenAIRE

    Kim, Jeong San

    2009-01-01

    We show that bipartite entanglement distribution (or entanglement of assistance) in multipartite quantum systems is by nature polygamous. We first provide an analytic upper bound for the concurrence of assistance in bipartite quantum systems, and derive a polygamy inequality of multipartite entanglement in arbitrary dimensional quantum systems.

  2. Random repeated interaction quantum systems

    OpenAIRE

    Bruneau, Laurent; Joye, Alain; Merkli, Marco

    2007-01-01

    We consider a quantum system S interacting sequentially with independent systems E_m, m=1,2,... Before interacting, each E_m is in a possibly random state, and each interaction is characterized by an interaction time and an interaction operator, both possibly random. We prove that any initial state converges to an asymptotic state almost surely in the ergodic mean, provided the couplings satisfy a mild effectiveness condition. We analyze the macroscopic properties of the asy...

  3. Quantum technologies with hybrid systems

    OpenAIRE

    G. Kurizki; Bertet, P.; Kubo, Y.; Mølmer, K.; Petrosyan, D.; Rabl, P; Schmiedmayer, J.

    2015-01-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for information processing, secure communication and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better...

  4. Dynamic systems with quantum behaviour

    CERN Document Server

    Alexandrov, A P

    2009-01-01

    It is argued that the world is a dissipative dynamic system, a phase flow of which is formed by conformally-symplectic mapping. The key assumption is that the concept of energy in microcosm makes sense only for the steady motions corresponding to quantum eigenstates. The constant, which determines the exponential phase volume contraction, is supposed to be a new universal constant, in addition to the speed of light and Planck constant. It is shown that statistical treatment of quantum objects as the ensembles concentrated on smooth connected attractors provides a simple explanation of stochastic behaviour of these objects as well as leads to a natural interpretation of the wave function, stationary Schrodinger equation, and scattering matrix. To validate the general hypotheses stated in the work, some physical models are presented. In particular, the models support the view that the inertial motion and quantum properties are basically determined by the vacuum as a dynamic subsystem. The matter-vacuum interact...

  5. Eigenfunctions in chaotic quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Baecker, Arnd

    2007-07-01

    The structure of wavefunctions of quantum systems strongly depends on the underlying classical dynamics. In this text a selection of articles on eigenfunctions in systems with fully chaotic dynamics and systems with a mixed phase space is summarized. Of particular interest are statistical properties like amplitude distribution and spatial autocorrelation function and the implication of eigenfunction structures on transport properties. For systems with a mixed phase space the separation into regular and chaotic states does not always hold away from the semiclassical limit, such that chaotic states may completely penetrate into the region of the regular island. The consequences of this flooding are discussed and universal aspects highlighted. (orig.)

  6. Eigenfunctions in chaotic quantum systems

    International Nuclear Information System (INIS)

    The structure of wavefunctions of quantum systems strongly depends on the underlying classical dynamics. In this text a selection of articles on eigenfunctions in systems with fully chaotic dynamics and systems with a mixed phase space is summarized. Of particular interest are statistical properties like amplitude distribution and spatial autocorrelation function and the implication of eigenfunction structures on transport properties. For systems with a mixed phase space the separation into regular and chaotic states does not always hold away from the semiclassical limit, such that chaotic states may completely penetrate into the region of the regular island. The consequences of this flooding are discussed and universal aspects highlighted. (orig.)

  7. Quantum tomography and classical propagator for quadratic quantum systems

    International Nuclear Information System (INIS)

    The classical propagator for tomographic probability (which describes the quantum state instead of wave function or density matrix) is presented for quadratic quantum systems and its relation to the quantum propagator is considered. The new formalism of quantum mechanics, based on the probability representation of the state, is applied to particular quadratic systems - the harmonic oscillator, particle's free motion, problems of an ion in a Paul trap and in asymmetric Penning trap, and to the process of stimulated Raman scattering. The classical propagator for these systems is written in an explicit form. (author)

  8. Perturbative approach to Markovian open quantum systems.

    Science.gov (United States)

    Li, Andy C Y; Petruccione, F; Koch, Jens

    2014-01-01

    The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical. PMID:24811607

  9. Stabilizing feedback controls for quantum systems

    OpenAIRE

    Mirrahimi, Mazyar; van Handel, Ramon

    2005-01-01

    No quantum measurement can give full information on the state of a quantum system; hence any quantum feedback control problem is neccessarily one with partial observations, and can generally be converted into a completely observed control problem for an appropriate quantum filter as in classical stochastic control theory. Here we study the properties of controlled quantum filtering equations as classical stochastic differential equations. We then develop methods, using a com...

  10. Quantum Computing in Solid State Systems

    CERN Document Server

    Ruggiero, B; Granata, C

    2006-01-01

    The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.

  11. Phonon-mediated coupling between quantum dots through an off-resonant microcavity

    CERN Document Server

    Majumdar, Arka; Rundquist, Armand; Kim, Erik; Vuckovic, Jelena

    2011-01-01

    We present experimental results showing phonon-mediated coupling between two quantum dots embedded inside a photonic crystal microcavity. With only one of the dots being spectrally close to the cavity, we observe both frequency up-conversion and down-conversion of the pump light via a $\\sim1.2$ THz phonon. We demonstrate this process for both weak and strong regimes of dot-cavity coupling, and provide a simple theoretical model explaining our observations.

  12. Entanglement in many-body quantum systems

    CERN Document Server

    Cirac, J Ignacio

    2012-01-01

    Short review on entanglement, as seen from a quantum information perspective, and some simple applications to many-body quantum systems. Special emphasis in area laws, cold atoms, and efficient descriptions using tensor network states.

  13. Distinctive signature of indium gallium nitride quantum dot lasing in microdisk cavities.

    Science.gov (United States)

    Woolf, Alexander; Puchtler, Tim; Aharonovich, Igor; Zhu, Tongtong; Niu, Nan; Wang, Danqing; Oliver, Rachel; Hu, Evelyn L

    2014-09-30

    Low-threshold lasers realized within compact, high-quality optical cavities enable a variety of nanophotonics applications. Gallium nitride materials containing indium gallium nitride (InGaN) quantum dots and quantum wells offer an outstanding platform to study light-matter interactions and realize practical devices such as efficient light-emitting diodes and nanolasers. Despite progress in the growth and characterization of InGaN quantum dots, their advantages as the gain medium in low-threshold lasers have not been clearly demonstrated. This work seeks to better understand the reasons for these limitations by focusing on the simpler, limited-mode microdisk cavities, and by carrying out comparisons of lasing dynamics in those cavities using varying gain media including InGaN quantum wells, fragmented quantum wells, and a combination of fragmented quantum wells with quantum dots. For each gain medium, we use the distinctive, high-quality (Q ? 5,500) modes of the cavities, and the change in the highest-intensity mode as a function of pump power to better understand the dominant radiative processes. The variations of threshold power and lasing wavelength as a function of gain medium help us identify the possible limitations to lower-threshold lasing with quantum dot active medium. In addition, we have identified a distinctive lasing signature for quantum dot materials, which consistently lase at wavelengths shorter than the peak of the room temperature gain emission. These findings not only provide better understanding of lasing in nitride-based quantum dot cavity systems but also shed insight into the more fundamental issues of light-matter coupling in such systems. PMID:25197073

  14. Repeated interactions in open quantum systems

    International Nuclear Information System (INIS)

    Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium

  15. Repeated interactions in open quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Bruneau, Laurent, E-mail: laurent.bruneau@u-cergy.fr [Laboratoire AGM, Université de Cergy-Pontoise, Site Saint-Martin, BP 222, 95302 Cergy-Pontoise (France); Joye, Alain, E-mail: Alain.Joye@ujf-grenoble.fr [Institut Fourier, UMR 5582, CNRS-Université Grenoble I, BP 74, 38402 Saint-Martin d’Hères (France); Merkli, Marco, E-mail: merkli@mun.ca [Department of Mathematics and Statistics Memorial University of Newfoundland, St. John' s, NL Canada A1C 5S7 (Canada)

    2014-07-15

    Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.

  16. Quantum systems, channels, information. A mathematical introduction

    International Nuclear Information System (INIS)

    The subject of this book is theory of quantum system presented from information science perspective. The central role is played by the concept of quantum channel and its entropic and information characteristics. Quantum information theory gives a key to understanding elusive phenomena of quantum world and provides a background for development of experimental techniques that enable measuring and manipulation of individual quantum systems. This is important for the new efficient applications such as quantum computing, communication and cryptography. Research in the field of quantum informatics, including quantum information theory, is in progress in leading scientific centers throughout the world. This book gives an accessible, albeit mathematically rigorous and self-contained introduction to quantum information theory, starting from primary structures and leading to fundamental results and to exiting open problems.

  17. QUANTUM AND CLASSICAL CORRELATIONS IN GAUSSIAN OPEN QUANTUM SYSTEMS

    Directory of Open Access Journals (Sweden)

    Aurelian ISAR

    2015-01-01

    Full Text Available In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum correlations (quantum entanglement and quantum discord for a system consisting of two noninteracting bosonic modes embedded in a thermal environment. We solve the Kossakowski-Lindblad master equation for the time evolution of the considered system and describe the entanglement and discord in terms of the covariance matrix for Gaussian input states. For all values of the temperature of the thermal reservoir, an initial separable Gaussian state remains separable for all times. We study the time evolution of logarithmic negativity, which characterizes the degree of entanglement, and show that in the case of an entangled initial squeezed thermal state, entanglement suppression takes place for all temperatures of the environment, including zero temperature. We analyze the time evolution of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and show that it decays asymptotically in time under the effect of the thermal bath. This is in contrast with the sudden death of entanglement. Before the suppression of the entanglement, the qualitative evolution of quantum discord is very similar to that of the entanglement. We describe also the time evolution of the degree of classical correlations and of quantum mutual information, which measures the total correlations of the quantum system.

  18. Enhanced Autocompensating Quantum Cryptography System

    CERN Document Server

    Bethune, D S; Risk, W P; Bethune, Donald S.; Navarro, Martha; Risk, William P.

    2002-01-01

    We have improved the hardware and software of our autocompensating system for quantum key distribution by replacing bulk optical components at the end stations with fiber-optic equivalents and implementing software that synchronizes end-station activities, communicates basis choices, corrects errors and performs privacy amplification over a local area network. The all fiber-optic arrangement provides stable, efficient and high-contrast routing of the photons. The low bit error rate leads to high error correction efficiency and minimizes data sacrifice during privacy amplification. Characterization measurements made on a number of commercial avalanche photodiodes are presented that highlight the need for improved devices tailored specifically for quantum information applications. A scheme for frequency shifting the photons returning from Alice's station to allow them to be distinguished from backscattered noise photons is also described.

  19. Quantum-information processing in disordered and complex quantum systems

    International Nuclear Information System (INIS)

    We study quantum information processing in complex disordered many body systems that can be implemented by using lattices of ultracold atomic gases and trapped ions. We demonstrate, first in the short range case, the generation of entanglement and the local realization of quantum gates in a disordered magnetic model describing a quantum spin glass. We show that in this case it is possible to achieve fidelities of quantum gates higher than in the classical case. Complex systems with long range interactions, such as ions chains or dipolar atomic gases, can be used to model neural network Hamiltonians. For such systems, where both long range interactions and disorder appear, it is possible to generate long range bipartite entanglement. We provide an efficient analytical method to calculate the time evolution of a given initial state, which in turn allows us to calculate its quantum correlations

  20. Could nanostructure be unspeakable quantum system?

    CERN Document Server

    Aristov, V V

    2010-01-01

    Heisenberg, Bohr and others were forced to renounce on the description of the objective reality as the aim of physics because of the paradoxical quantum phenomena observed on the atomic level. The contemporary quantum mechanics created on the base of their positivism point of view must divide the world into speakable apparatus which amplifies microscopic events to macroscopic consequences and unspeakable quantum system. Examination of the quantum phenomena corroborates the confidence expressed by creators of quantum theory that the renunciation of realism should not apply on our everyday macroscopic world. Nanostructures may be considered for the present as a boundary of realistic description for all phenomena including the quantum one.

  1. Could nanostructure be unspeakable quantum system?

    OpenAIRE

    Aristov, V. V.; Nikulov, A. V.

    2010-01-01

    Heisenberg, Bohr and others were forced to renounce on the description of the objective reality as the aim of physics because of the paradoxical quantum phenomena observed on the atomic level. The contemporary quantum mechanics created on the base of their positivism point of view must divide the world into speakable apparatus which amplifies microscopic events to macroscopic consequences and unspeakable quantum system. Examination of the quantum phenomena corroborates the c...

  2. Classical and quantum dissipative systems

    CERN Document Server

    Razavy, Mohsen

    2006-01-01

    This book discusses issues associated with the quantum mechanical formulation of dissipative systems. It begins with an introductory review of phenomenological damping forces, and the construction of the Lagrangian and Hamiltonian for the damped motion. It is shown, in addition to these methods, that classical dissipative forces can also be derived from solvable many-body problems. A detailed discussion of these derived forces and their dependence on dynamical variables is also presented. The second part of this book investigates the use of classical formulation in the quantization of dynamica

  3. Quantum Friction: Cooling Quantum Systems with Unitary Time Evolution

    CERN Document Server

    Bulgac, Aurel; Roche, Kenneth J; Wlaz?owski, Gabriel

    2013-01-01

    We introduce a type of quantum dissipation -- local quantum friction -- by adding to the Hamiltonian a local potential that breaks time-reversal invariance so as to cool the system. Unlike the Kossakowski-Lindblad master equation, local quantum friction directly effects unitary evolution of the wavefunctions rather than the density matrix: it may thus be used to cool fermionic many-body systems with thousands of wavefunctions that must remain orthogonal. In addition to providing an efficient way to simulate quantum dissipation and non-equilibrium dynamics, local quantum friction coupled with adiabatic state preparation significantly speeds up many-body simulations, making the solution of the time-dependent Schr\\"odinger equation significantly simpler than the solution of its stationary counterpart.

  4. Some Integrable Systems in Nonlinear Quantum Optics

    OpenAIRE

    Horowski, Maciej; Odzijewicz, Anatol; Tereszkiewicz, Agnieszka

    2002-01-01

    In the paper we investigate the theory of quantum optical systems. As an application we integrate and describe the quantum optical systems which are generically related to the classical orthogonal polynomials. The family of coherent states related to these systems is constructed and described. Some applications are also presented.

  5. Quantum fluctuations in quantum lattice systems with continuous symmetry

    International Nuclear Information System (INIS)

    We discuss conditions for the absence of spontaneous breakdown of continuous symmetries in quantum lattice systems at T = 0. Our analysis is based on Pitaevskii and Stringari's idea that the uncertainty relation can be employed to show quantum fluctuations. For one-dimensional systems, it is shown that the ground state is invariant under a continuous transformation if a certain uniform susceptibility is finite. For the two- and three-dimensional systems, it is shown that truncated correlation functions cannot decay any more rapidly than |r|-d+1 whenever the continuous symmetry is spontaneously broken. Both of these phenomena occur owing to quantum fluctuations. Our theorems cover a wide class of quantum lattice systems having not-too-long-range interactions

  6. Thermalization of isolated quantum systems

    CERN Document Server

    Khlebnikov, Sergei

    2013-01-01

    Understanding the evolution towards thermal equilibrium of an isolated quantum system is at the foundation of statistical mechanics and a subject of interest in such diverse areas as cold atom physics or the quantum mechanics of black hole formation. Since a pure state can never evolve into a thermal density matrix, the Eigenstate Thermalization Hypothesis (ETH) has been put forward by Deutsch and Srednicki as a way to explain this apparent thermalization, similarly to what the ergodic theorem does in classical mechanics. In this paper this hypothesis is tested numerically. First, it is observed that thermalization happens in a subspace of states (the Krylov subspace) with dimension much smaller than that of the total Hilbert space. We check numerically the validity of ETH in such a subspace, for a system of hard core bosons on a two-dimensional lattice. We then discuss how well the eigenstates of the Hamiltonian projected on the Krylov subspace represent the true eigenstates. This discussion is aided by brin...

  7. Zeno dynamics in quantum open systems.

    Science.gov (United States)

    Zhang, Yu-Ran; Fan, Heng

    2015-01-01

    Quantum Zeno effect shows that frequent observations can slow down or even stop the unitary time evolution of an unstable quantum system. This effect can also be regarded as a physical consequence of the statistical indistinguishability of neighboring quantum states. The accessibility of quantum Zeno dynamics under unitary time evolution can be quantitatively estimated by quantum Zeno time in terms of Fisher information. In this work, we investigate the accessibility of quantum Zeno dynamics in quantum open systems by calculating noisy Fisher information when a trace preserving and completely positive map is assumed. We firstly study the consequences of non-Markovian noise on quantum Zeno effect and give the exact forms of the dissipative Fisher information and the quantum Zeno time. Then, for the operator-sum representation, an achievable upper bound of the quantum Zeno time is given with the help of the results in noisy quantum metrology. It is of significance that the noise reducing the accuracy in the entanglement-enhanced parameter estimation can conversely be favorable for the accessibility of quantum Zeno dynamics of entangled states. PMID:26099840

  8. Past Quantum States of a Monitored System

    DEFF Research Database (Denmark)

    Gammelmark, SØren; Julsgaard, Brian

    2013-01-01

    A density matrix ?(t) yields probabilistic information about the outcome of measurements on a quantum system. We introduce here the past quantum state, which, at time T, accounts for the state of a quantum system at earlier times tquantum state ?(t) is composed of two objects, ?(t) and E(t), conditioned on the dynamics and the probing of the system until t and in the time interval [t, T], respectively. The past quantum state is characterized by its ability to make better predictions for the unknown outcome of any measurement at t than the conventional quantum state at that time. On the one hand, our formalism shows how smoothing procedures for estimation of past classical signals by a quantum probe [M. Tsang, Phys. Rev. Lett. 102 250403 (2009)] apply also to describe the past state of the quantum system itself. On the other hand, it generalizes theories of pre- and postselected quantum states [Y. Aharonov and L. Vaidman, J. Phys. A 24 2315 (1991)] to systems subject to any quantum measurementscenario, any coherent evolution, and any Markovian dissipation processes.

  9. Quantum Speed Limits in Open System Dynamics

    Science.gov (United States)

    del Campo, A.; Egusquiza, I. L.; Plenio, M. B.; Huelga, S. F.

    2013-02-01

    Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics, and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive, and trace preserving evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified in different scenarios, ranging from the estimation of the passage time to the determination of precision limits for quantum metrology in the presence of dephasing noise.

  10. Controlling quantum critical dynamics of isolated systems

    OpenAIRE

    Del Campo, A.; Sengupta, K

    2014-01-01

    Controlling the non adiabatic dynamics of isolated quantum systems driven through a critical point is of interest in a variety of fields ranging from quantum simulation to finite-time thermodynamics. We briefly review the different methods for designing protocols which minimize excitation (defect) production in a closed quantum critical system driven out of equilibrium. We chart out the role of specific driving schemes for this procedure, point out their experimental relevan...

  11. Repeated interactions in open quantum systems

    OpenAIRE

    Bruneau, Laurent; Joye, Alain; Merkli, Marco

    2013-01-01

    Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive t...

  12. Fluctuation theorems in driven open quantum systems

    OpenAIRE

    Talkner, Peter; Campisi, Michele; Hänggi, Peter

    2008-01-01

    The characteristic function for the joint measurement of the changes of two commuting observables upon an external forcing of a quantum system is derived. In particular, the statistics of the internal energy, the exchanged heat and the work of a quantum system that {\\it weakly} couples to its environment is determined in terms of the energy changes of the system and the environment due to the action of a classical, external force on the system. If the system and environment ...

  13. Linear response theory for quantum open systems

    OpenAIRE

    Wei, J H; Yan, YiJing

    2011-01-01

    Basing on the theory of Feynman's influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open system at its steady-state, which can be applied to various fields of non-equilibrium condensed matter physics.

  14. Energy balance for a dissipative quantum system

    International Nuclear Information System (INIS)

    The role of random force in maintaining equilibrium in a dissipative quantum system is studied here. We compute the instantaneous power supplied by the fluctuating (random) force, which provides information about the work done by the random force on the quantum subsystem of interest. The quantum Langevin equation formalism is used here to verify that, at equilibrium, the work done by the fluctuating force balances the energy lost by the quantum subsystem to the heat bath. The quantum subsystem we choose to couple to the heat bath is the charged oscillator in a magnetic field. We perform the calculations using the Drude regularized spectral density of bath oscillators instead of using a strict ohmic spectral density that gives memoryless damping. We also discuss the energy balance for our dissipative quantum system and in this regard it is to be understood that the physical system is the charged magneto-oscillator coupled to the heat bath, not the uncoupled charged magneto-oscillator. (paper)

  15. Manipulating Quantum Coherence in Solid State Systems

    CERN Document Server

    Flatté, Michael E

    2007-01-01

    The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems", in Cluj-Napoca, Romania, August 29-September 9, 2005, presented a fundamental introduction to solid-state approaches to achieving quantum computation. This proceedings volume describes the properties of quantum coherence in semiconductor spin-based systems and the behavior of quantum coherence in superconducting systems. Semiconductor spin-based approaches to quantum computation have made tremendous advances in the past several years. Coherent populations of spins can be oriented, manipulated and detected experimentally. Rapid progress has been made towards performing the same tasks on individual spins (nuclear, ionic, or electronic) with all-electrical means. Superconducting approaches to quantum computation have demonstrated single qubits based on charge eigenstates as well as flux eigenstates. These topics have been presented in a pedagogical fashion by leading researchers in the fields of semiconductor-spin-based qu...

  16. Quantum information theory with Gaussian systems

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, O.

    2006-04-06

    This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)

  17. Quantum information theory with Gaussian systems

    International Nuclear Information System (INIS)

    This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)

  18. Quantum Simulation for Open-System Dynamics

    Science.gov (United States)

    Wang, Dong-Sheng; de Oliveira, Marcos Cesar; Berry, Dominic; Sanders, Barry

    2013-03-01

    Simulations are essential for predicting and explaining properties of physical and mathematical systems yet so far have been restricted to classical and closed quantum systems. Although forays have been made into open-system quantum simulation, the strict algorithmic aspect has not been explored yet is necessary to account fully for resource consumption to deliver bounded-error answers to computational questions. An open-system quantum simulator would encompass classical and closed-system simulation and also solve outstanding problems concerning, e.g. dynamical phase transitions in non-equilibrium systems, establishing long-range order via dissipation, verifying the simulatability of open-system dynamics on a quantum Turing machine. We construct an efficient autonomous algorithm for designing an efficient quantum circuit to simulate many-body open-system dynamics described by a local Hamiltonian plus decoherence due to separate baths for each particle. The execution time and number of gates for the quantum simulator both scale polynomially with the system size. Simulations are essential for predicting and explaining properties of physical and mathematical systems yet so far have been restricted to classical and closed quantum systems. Although forays have been made into open-system quantum simulation, the strict algorithmic aspect has not been explored yet is necessary to account fully for resource consumption to deliver bounded-error answers to computational questions. An open-system quantum simulator would encompass classical and closed-system simulation and also solve outstanding problems concerning, e.g. dynamical phase transitions in non-equilibrium systems, establishing long-range order via dissipation, verifying the simulatability of open-system dynamics on a quantum Turing machine. We construct an efficient autonomous algorithm for designing an efficient quantum circuit to simulate many-body open-system dynamics described by a local Hamiltonian plus decoherence due to separate baths for each particle. The execution time and number of gates for the quantum simulator both scale polynomially with the system size. DSW funded by USARO. MCO funded by AITF and Brazilian agencies CNPq and FAPESP through Instituto Nacional de Ciencia e Tecnologia-Informacao Quantica (INCT-IQ). DWB funded by ARC Future Fellowship (FT100100761). BCS funded by AITF, CIFAR, NSERC and USARO.

  19. Non-perturbative description of quantum systems

    CERN Document Server

    Feranchuk, Ilya; Le, Van-Hoang; Ulyanenkov, Alexander

    2015-01-01

    This book introduces systematically the operator method for the solution of the Schrödinger equation. This method permits to describe the states of quantum systems in the entire range of parameters of Hamiltonian with a predefined accuracy. The operator method is unique compared with other non-perturbative methods due to its ability to deliver in zeroth approximation the uniformly suitable estimate for both ground and excited states of quantum system. The method has been generalized for the application to quantum statistics and quantum field theory.  In this book, the numerous applications of operator method for various physical systems are demonstrated. Simple models are used to illustrate the basic principles of the method which are further used for the solution of complex problems of quantum theory for many-particle systems. The results obtained are supplemented by numerical calculations, presented as tables and figures.

  20. Quantum Quenches in Topological Systems

    Science.gov (United States)

    Kells, Graham; Sen, Diptiman; Slingerland, J. K.; Vishveshwara, Smitha

    2014-03-01

    We study the non-equilibrium dynamics of quenching through a quantum critical point in topological systems, focusing on one of their characteristic features, namely, ground state degeneracies, and associated topological sectors. We present the notion of ``topological blocking,'' experienced by the dynamics due to the mismatch in degeneracies between two phases. We demonstrate the interplay between quenching and topology in two extensively studied systems, the transverse Ising chain and the Kitaev honeycomb model. Casting these systems in the language of fermionic spinless p-wave paired superconductors enables us to cleanly address degeneracies, subtle issues of fermion occupation and parity, and mismatches between topological sectors. We show that several features of the quench, which are related to Kibble-Zurek physics, are sensitive to the topological sector being probed. Supported by DST, India under Project No. SR/S2/JCB-44/2010, NSF under grant DMR 0644022-CAR, the Simons Foundation under Grant No.229047 and Science Foundation Ireland Awards 08/IN.1/I1961, 10/IN.1/I3013 and 12/IA/1697.

  1. Sliding mode control of quantum systems

    CERN Document Server

    Dong, Daoyi; 10.1088/1367-2630/11/10/105033

    2009-01-01

    This paper proposes a new robust control method for quantum systems with uncertainties involving sliding mode control (SMC). Sliding mode control is a widely used approach in classical control theory and industrial applications. We show that SMC is also a useful method for robust control of quantum systems. In this paper, we define two specific classes of sliding modes (i.e., eigenstates and state subspaces) and propose two novel methods combining unitary control and periodic projective measurements for the design of quantum sliding mode control systems. Two examples including a two-level system and a three-level system are presented to demonstrate the proposed SMC method. One of main features of the proposed method is that the designed control laws can guarantee desired control performance in the presence of uncertainties in the system Hamiltonian. This sliding mode control approach provides a useful control theoretic tool for robust quantum information processing with uncertainties.

  2. Sliding mode control of quantum systems

    International Nuclear Information System (INIS)

    This paper proposes a new robust control method for quantum systems with uncertainties involving sliding mode control (SMC). SMC is a widely used approach in classical control theory and industrial applications. We show that SMC is also a useful method for robust control of quantum systems. In this paper, we define two specific classes of sliding modes (i.e. eigenstates and state subspaces) and propose two novel methods combining unitary control and periodic projective measurements for the design of quantum SMC systems. Two examples including a two-level system and a three-level system are presented to demonstrate the proposed SMC method. One of the main features of the proposed method is that the designed control laws can guarantee the desired control performance in the presence of uncertainties in the system Hamiltonian. This SMC approach provides a useful control theoretic tool for robust quantum information processing with uncertainties.

  3. Random repeated interaction quantum systems

    CERN Document Server

    Bruneau, Laurent; Merkli, Marco

    2007-01-01

    We consider a quantum system S interacting sequentially with independent systems E_m, m=1,2,... Before interacting, each E_m is in a possibly random state, and each interaction is characterized by an interaction time and an interaction operator, both possibly random. We prove that any initial state converges to an asymptotic state almost surely in the ergodic mean, provided the couplings satisfy a mild effectiveness condition. We analyze the macroscopic properties of the asymptotic state and show that it satisfies a second law of thermodynamics. We solve exactly a model in which S and all the E_m are spins: we find the exact asymptotic state, in case the interaction time, the temperature, and the excitation energies of the E_m vary randomly. We analyze a model in which S is a spin and the E_m are thermal fermion baths and obtain the asymptotic state by rigorous perturbation theory, for random interaction times varying slightly around a fixed mean, and for small values of a coupling constant.

  4. Quantum equilibria for macroscopic systems

    International Nuclear Information System (INIS)

    Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered

  5. Quantum equilibria for macroscopic systems

    Science.gov (United States)

    Grib, A.; Khrennikov, A.; Parfionov, G.; Starkov, K.

    2006-06-01

    Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered.

  6. Protective Measurements: Probing Single Quantum Systems

    OpenAIRE

    Qureshi, Tabish; Dass, N. D. Hari

    2015-01-01

    Making measurements on single quantum systems is considered difficult, almost impossible if the state is a-priori unknown. Protective measurements suggest a possibility to measure single quantum systems and gain some new information in the process. Protective measurement is described, both in the original and generalized form. The degree to which the system and the apparatus remain entangled in a protective measurement, is assessed. A possible experimental test of protective...

  7. Level shift operators for open quantum systems

    OpenAIRE

    Merkli, Marco

    2006-01-01

    Level shift operators describe the second order displacement of eigenvalues under perturbation. They play a central role in resonance theory and ergodic theory of open quantum systems at positive temperatures. We exhibit intrinsic properties of level shift operators, properties which stem from the structure of open quantum systems at positive temperatures and which are common to all such systems. They determine the geometry of resonances bifurcating from eigenvalues of pos...

  8. Control of open quantum systems dynamics

    OpenAIRE

    Lloyd, Seth; Viola, Lorenza

    2000-01-01

    We investigate the control resources needed to effect arbitrary quantum dynamics. We show that the ability to perform measurements on a quantum system, combined with the ability to feed back the measurement results via coherent control, allows one to control the system to follow any desired open-system evolution. Such universal control can be achieved, in principle, through the repeated application of only two coherent control operations and a simple ``Yes-No'' measurement.

  9. Quantum Dynamical Entropy of Spin Systems

    OpenAIRE

    Miyadera, Takayuki; Ohya, Masanori

    2003-01-01

    We investigate a quantum dynamical entropy of one-dimesional quantum spin systems. We show that the dynamical entropy is bounded from above by a quantity which is related with group velocity determined by the interaction and mean entropy of the state.

  10. Entanglement in quantum dissipative Ising spin systems

    International Nuclear Information System (INIS)

    We study the behavior of entanglement estimators on chains of few quantum Ising spins coupled to an environment by means of Monte Carlo simulations. We analyze the ground state value of the von Neumann entropy and the concurrence of our spins system for different couplings with the quantum bath

  11. Spin in fractional quantum Hall system.

    Czech Academy of Sciences Publication Activity Database

    Výborný, Karel

    2007-01-01

    Ro?. 16, ?. 2 (2007), s. 87-165. ISSN 0003-3804 Institutional research plan: CEZ:AV0Z10100521 Keywords : fractional quantum Hall systems * quantum Hall ferromagnets * magnetic inhomegeneities Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.485, year: 2007

  12. Local Unitary Invariants for Multipartite Quantum Systems

    International Nuclear Information System (INIS)

    We present an approach of constructing invariants under local unitary transformations for multipartite quantum systems. The invariants constructed in this way can be complement to that in [Science 340 (2013) 1205–1208]. Detailed examples are given to compute such invariant in detail. It is shown that these invariants can be used to detect the local unitary equivalence of degenerated quantum states. (general)

  13. Macroscopic quantum effects in nanomechanical systems

    CERN Document Server

    Werner, P

    2003-01-01

    We investigate quantum effects in the mechanical properties of elastic beams on the nanoscale. Transverse quantum and thermal fluctuations and the nonlinear excitation energies are calculated for beams compressed in longitudinal direction. Near the Euler instability, the system is described by a one dimensional Ginzburg-Landau model where the order parameter is the amplitude of the buckling mode. We show that in single wall carbon nanotubes the crossover from thermal activation to quantum tunnelling is accessible and discuss the possibility of observing macroscopic quantum coherence in nanobeams near the critical strain.

  14. Equilibration and thermalization in finite quantum systems

    International Nuclear Information System (INIS)

    Experiments with trapped atomic gases have opened novel possibilities for studying the evolution of nonequilibrium finite quantum systems, which revived the necessity of reconsidering and developing the theory of such processes. This review analyzes the basic approaches to describing the phenomena of equilibration, thermalization, and decoherence in finite quantum systems. Isolated, nonisolated, and quasi-isolated quantum systems are considered. The relations between equilibration, decoherence, and the existence of time arrow are emphasized. The possibility for the occurrence of rare events, preventing complete equilibration, are mentioned

  15. Quantum discord from system–environment correlations

    International Nuclear Information System (INIS)

    In an initially uncorrelated mixed separable bi-partite system, quantum correlations can emerge under the action of a local measurement or local noise [1]. We analyse this counter-intuitive phenomenon using quantum discord as a quantifier. We then relate changes in quantum discord to system–environment correlations between the system in a mixed state and some purifying environmental mode using the Koashi–Winter inequality. On this basis, we suggest an interpretation of discord as a byproduct of transferring entanglement and correlations around the different subsystems of a global pure state. (paper)

  16. Controlling quantum critical dynamics of isolated systems

    Science.gov (United States)

    del Campo, A.; Sengupta, K.

    2015-02-01

    Controlling the non adiabatic dynamics of isolated quantum systems driven through a critical point is of interest in a variety of fields ranging from quantum simulation to finite-time thermodynamics. We briefly review the different methods for designing protocols which minimize excitation (defect) production in a closed quantum critical system driven out of equilibrium. We chart out the role of specific driving schemes for this procedure, point out their experimental relevance, and discuss their implementation in the context of ultracold atom and spin systems.

  17. Macroscopic quantum tunneling in nanoelectromechanical systems

    CERN Document Server

    Sillanpaa, Mika A; Heikkila, Tero T; Hakonen, Pertti J

    2011-01-01

    The experimental observation of quantum phenomena in mechanical degrees of freedom is difficult, as the systems become linear towards low energies and the quantum limit, and thus reside in the correspondence limit. Here we investigate how to access quantum phenomena in flexural nanomechanical systems which are strongly deflected by a voltage. Near a metastable point, one can achieve a significant nonlinearity in the electromechanical potential at the scale of zero point energy. The system could then escape from the metastable state via macroscopic quantum tunneling (MQT). We consider two model systems suspended atop a voltage gate, namely, a graphene sheet, and a carbon nanotube. We find that the experimental demonstration of the phenomenon is currently possible but demanding, since the MQT crossover temperatures fall in the milli-Kelvin range. A carbon nanotube is suggested as the most promising system.

  18. Quantum entanglement in photoactive prebiotic systems.

    Science.gov (United States)

    Tamulis, Arvydas; Grigalavicius, Mantas

    2014-06-01

    This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modelled photoactive prebiotic kernel systems. We define our modelled self-assembled supramolecular photoactive centres, composed of one or more sensitizer molecules, precursors of fatty acids and a number of water molecules, as a photoactive prebiotic kernel systems. We propose that life first emerged in the form of such minimal photoactive prebiotic kernel systems and later in the process of evolution these photoactive prebiotic kernel systems would have produced fatty acids and covered themselves with fatty acid envelopes to become the minimal cells of the Fatty Acid World. Specifically, we model self-assembling of photoactive prebiotic systems with observed quantum entanglement phenomena. We address the idea that quantum entanglement was important in the first stages of origins of life and evolution of the biospheres because simultaneously excite two prebiotic kernels in the system by appearance of two additional quantum entangled excited states, leading to faster growth and self-replication of minimal living cells. The quantum mechanically modelled possibility of synthesizing artificial self-reproducing quantum entangled prebiotic kernel systems and minimal cells also impacts the possibility of the most probable path of emergence of protocells on the Earth or elsewhere. We also examine the quantum entangled logic gates discovered in the modelled systems composed of two prebiotic kernels. Such logic gates may have application in the destruction of cancer cells or becoming building blocks of new forms of artificial cells including magnetically active ones. PMID:24799958

  19. Correlation Function Bootstrapping in Quantum Chaotic Systems

    OpenAIRE

    Kaplan, L.

    2005-01-01

    We discuss a general and efficient approach for "bootstrapping" short-time correlation data in chaotic or complex quantum systems to obtain information about long-time dynamics and stationary properties, such as the local density of states. When the short-time data is sufficient to identify an individual quantum system, we obtain a systematic approximation for the spectrum and wave functions. Otherwise, we obtain statistical properties, including wave function intensity dist...

  20. Asymptotics of repeated interaction quantum systems

    OpenAIRE

    Bruneau, Laurent; Joye, Alain; Merkli, Marco

    2005-01-01

    A quantum system $\\s$ interacts in a successive way with elements $\\ee$ of a chain of identical independent quantum subsystems. Each interaction lasts for a duration $\\tau$ and is governed by a fixed coupling between $\\s$ and $\\ee$. We show that the system, initially in any state close to a reference state, approaches a {\\it repeated interaction asymptotic state} in the limit of large times. This state is $\\tau$--periodic in time and does not depend on the initial state. If ...

  1. Transmission and System Control in Quantum Cryptography

    Directory of Open Access Journals (Sweden)

    Anand Sharma

    2011-05-01

    Full Text Available Quantum cryptography provides security using thelaws of quantum mechanics. Currently, several typesof protocols of quantum key distribution (QKD havebeen established. Some QKD protocols have beencertified by proofs of unconditional security. QKDprotocols have been confirmed to be resistant to anypossible attack. Along with the progress in keytransmission and post processing, the system controlneeds to be integrated with some steps for the QKD.No future technology can break such security. There isa sequence of process for implementing a QKDprotocol. Starting from clock synchronization function,real-time frame synchronization, transmission, postprocessingprotocols to system control and security. Inthis paper we are considering only transmission andsystem control for QKD.

  2. Extended objects in quantum systems

    International Nuclear Information System (INIS)

    A quantum field theoretical study of the properties of extended objects appearing in the quantum ordered state is carried out in the framework of boson theory. First the process of creation of the ordered state is studied, and then the creation of extended objects in quantum ordered states. It is found that the spontaneous creation of an ordered state is always caused by a symmetry rearrangement when the symmetry of the Heisenberg fields is global, and that in quantum electrodynamics the dynamic rearrangement of symmetry takes place even when no ordered state is created. The c-number field phi sup(f)(chi) constructed by the boson method becomes the soliton solution of the Euler equations when the Planck constant is ignored, implying that the soliton solution can be regarded as an extended object with quantum origin. Finally the relations between the basic symmetry of the theory and topological charge is analyzed. Although basic symmetry does not restrict the shape of extended objects appearing in the ordered state, it influences which object can be classified by topological quantum number. The condition for topological quantization of an extended object is expressed in terms of the asymptotic behaviour of the boson function

  3. Software-defined Quantum Communication Systems

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S [ORNL; Sadlier, Ronald J [ORNL

    2014-01-01

    Quantum communication systems harness modern physics through state-of-the-art optical engineering to provide revolutionary capabilities. An important concern for quantum communication engineering is designing and prototyping these systems to prototype proposed capabilities. We apply the paradigm of software-defined communica- tion for engineering quantum communication systems to facilitate rapid prototyping and prototype comparisons. We detail how to decompose quantum communication terminals into functional layers defining hardware, software, and middleware concerns, and we describe how each layer behaves. Using the super-dense coding protocol as a test case, we describe implementations of both the transmitter and receiver, and we present results from numerical simulations of the behavior. We find that while the theoretical benefits of super dense coding are maintained, there is a classical overhead associated with the full implementation.

  4. CIME School on Quantum Many Body Systems

    CERN Document Server

    Rivasseau, Vincent; Solovej, Jan Philip; Spencer, Thomas

    2012-01-01

    The book is based on the lectures given at the CIME school "Quantum many body systems" held in the summer of 2010. It provides a tutorial introduction to recent advances in the mathematics of interacting systems, written by four leading experts in the field: V. Rivasseau illustrates the applications of constructive Quantum Field Theory to 2D interacting electrons and their relation to quantum gravity; R. Seiringer describes a proof of Bose-Einstein condensation in the Gross-Pitaevski limit and explains the effects of rotating traps and the emergence of lattices of quantized vortices; J.-P. Solovej gives an introduction to the theory of quantum Coulomb systems and to the functional analytic methods used to prove their thermodynamic stability; finally, T. Spencer explains the supersymmetric approach to Anderson localization and its relation to the theory of random matrices. All the lectures are characterized by their mathematical rigor combined with physical insights.

  5. Universal simulation of Markovian open quantum systems

    Science.gov (United States)

    Sweke, Ryan; Sinayskiy, Ilya; Bernard, Denis; Petruccione, Francesco

    2015-06-01

    We consider the problem of constructing a "universal set" of Markovian processes, such that any Markovian open quantum system, described by a one-parameter semigroup of quantum channels, can be simulated through sequential simulations of processes from the universal set. In particular, for quantum systems of dimension d , we explicitly construct a universal set of semigroup generators, parametrized by d2-3 continuous parameters, and prove that a necessary and sufficient condition for the dynamical simulation of a d -dimensional Markovian quantum system is the ability to implement (a) quantum channels from the semigroups generated by elements of the universal set of generators, and (b) unitary operations on the system. Furthermore, we provide an explicit algorithm for simulating the dynamics of a Markovian open quantum system using this universal set of generators, and show that it is efficient, with respect to this universal set, when the number of distinct Lindblad operators (representing physical dissipation processes) scales polynomially with respect to the number of subsystems.

  6. Engineering coherent quantum states in superconducting systems

    International Nuclear Information System (INIS)

    Recently, we have taken the first step towards creating and controlling quantum information using superconducting circuits. We have observed for the first time a coherent interaction between two superconducting atoms (quantum bits or qubits) and an LC cavity formed by a 7 mm long coplanar waveguide resonant at approximately 9 GHz. When either qubit is resonant with the cavity, we observe the vacuum Rabi mode splitting of the qubit's spectral line. In a time-domain measurement, we observe coherent vacuum Rabi oscillations between either qubit and the resonator. Using controllable shift pulses, we have shown coherent transfer of a arbitrary quantum state. We prepare the first qubit in a superposition state, then this state is transferred to the resonant cavity and then after a short time, we transfer this state into the second qubit. These experiments show that developing custom designed quantum systems on chip is possible, opening up new possibilities for studying quantum mechanics and information science

  7. Relativistic Quantum Metrology in Open System Dynamics

    CERN Document Server

    Tian, Zehua; Fan, Heng; Jing, Jiliang

    2015-01-01

    Quantum metrology studies the ultimate limit of precision in estimating a physical quantity if quantum strategies are exploited. Here we investigate the evolution of a two-level atom as a detector which interacts with a massless scalar field using the master equation approach for open quantum system. We employ local quantum estimation theory to estimate the Unruh temperature when probed by a uniformly accelerated detector in the Minkowski vacuum. In particular, we evaluate the Fisher information (FI) for population measurement, maximize its value over all possible detector preparations and evolution times, and compare its behavior with that of the quantum Fisher information (QFI). We find that the optimal precision of estimation is achieved when the detector evolves for a long enough time. Furthermore, we find that in this case the FI for population measurement is independent of initial preparations of the detector and is exactly equal to the QFI, which means that population measurement is optimal. This resul...

  8. Transitivity and ergodicity of quantum systems

    International Nuclear Information System (INIS)

    First we try to generalize the notion of a topological transitive or a topologically mixing system for quantum mechanical systems in a consistent way. Furthermore we compare these ergodic properties with the classical results. Finaly we deal with some aspects of nearly abelian systems and investigate some relations between these notions. 11 refs. (Author)

  9. Measurement, Filtering and Control in Quantum Open Dynamical Systems

    OpenAIRE

    Belavkin, V P

    2002-01-01

    A Markovian model for a quantum automata, i.e. an open quantum dynamical discrete-time system with input and output channels and a feedback, is described. A dynamical theory of quantum discrete-time adaptive measurements and multi-stage quantum statistical decisions is developed and applied to the optimal feedback control problem for the quantum dynamical objects. Quantum analogies of Stratonovich non-stationary filtering, and Bellman quantum dynamical programming in the dis...

  10. Guaranteed Cost LQG Control of Uncertain Linear Quantum Stochastic Systems

    OpenAIRE

    Shaiju, A. J.; Petersen, I. R.; James, M. R.

    2008-01-01

    In this paper, we formulate and solve a guaranteed cost control problem for a class of uncertain linear stochastic quantum systems. For these quantum systems, a connection with an associated classical (non-quantum) system is first established. Using this connection, the desired guaranteed cost results are established. The theory presented is illustrated using an example from quantum optics.

  11. Open quantum systems far from equilibrium

    CERN Document Server

    Schaller, Gernot

    2014-01-01

    This monograph provides graduate students and also professional researchers aiming to understand the dynamics of open quantum systems with a valuable and self-contained toolbox. Special focus is laid on the link between microscopic models and the resulting open-system dynamics. This includes how to derive the celebrated Lindblad master equation without applying the rotating wave approximation. As typical representatives for non-equilibrium configurations it treats systems coupled to multiple reservoirs (including the description of quantum transport), driven systems, and feedback-controlled quantum systems. Each method is illustrated with easy-to-follow examples from recent research. Exercises and short summaries at the end of every chapter enable the reader to approach the frontiers of current research quickly and make the book useful for quick reference.

  12. Quantum chaos using delta kicked systems

    Science.gov (United States)

    Ramareddy, Vijayashankar

    Scope and Method of Study. The purpose of this research was to experimentally study quantum dynamics of systems whose classical dynamics are chaotic. Quantum delta-kicked systems such as kicked rotor and kicked accelerator were used. The cold non condensed atoms were kicked first to realize the kicked accelerator. Among the objectives were the realization of resonances of the kicked accelerator and associated phenomena of quantum accelerator modes using a Bose-Einstein Condensation (BEC). One of the major achievements of the work in this thesis was the creation of the quantum delta-kicked rotor and its associated resonances to realize a quantum ratchet. The properties of the ratchet were studied in detail. Findings and Conclusions. The Quantum Accelerator Modes (QAM) were realized using both thermal samples of atoms and a BEC. Multiple micro optical traps were accidentally observed and in order to understand their behavior a theory was developed using spherical aberration of a lens. The maps produced by an effective classical theory were studied using the QAM. The resonances of the delta-kicked accelerator were observed for the first time and the theory was developed. One of the models that describes the QAM using rephasing of momentum states was observed in the experiments. The ratchet was realized using the resonances of the kicked rotor and accelerator where the diffusion in the case of classical ratchets was replaced by chaos in the quantum ratchet mechanism.

  13. Molecular controlled of quantum nano systems

    Science.gov (United States)

    Paltiel, Yossi

    2014-03-01

    A century ago quantum mechanics created a conceptual revolution whose fruits are now seen in almost any aspect of our day-to-day life. Lasers, transistors and other solid state and optical devices represent the core technology of current computers, memory devices and communication systems. However, all these examples do not exploit fully the quantum revolution as they do not take advantage of the coherent wave-like properties of the quantum wave function. Controlled coherent system and devices at ambient temperatures are challenging to realize. We are developing a novel nano tool box with control coupling between the quantum states and the environment. This tool box that combines nano particles with organic molecules enables the integration of quantum properties with classical existing devices at ambient temperatures. The nano particles generate the quantum states while the organic molecules control the coupling and therefore the energy, charge, spin, or quasi particle transfer between the layers. Coherent effects at ambient temperatures can be measured in the strong coupling regime. In the talk I will present our nano tool box and show studies of charge transfer, spin transfer and energy transfer in the hybrid layers as well as collective transfer phenomena. These enable the realization of room temperature operating quantum electro optical devices. For example I will present in details, our recent development of a new type of chiral molecules based magnetless universal memory exploiting selective spin transfer.

  14. Overlapping Resonances in Open Quantum Systems

    OpenAIRE

    Merkli, Marco; Song, Haifeng

    2014-01-01

    An $N$-level quantum system is coupled to a bosonic heat reservoir at positive temperature. We analyze the system-reservoir dynamics in the following regime: The strength $\\lambda$ of the system-reservoir coupling is fixed and small, but larger than the spacing $\\sigma$ of system energy levels. For vanishing $\\sigma$ there is a manifold of invariant system-reservoir states and for $\\sigma>0$ the only invariant state is the joint equilibrium. The manifold is invariant for $\\s...

  15. Quantum system lifetimes and measurement perturbations

    International Nuclear Information System (INIS)

    The recently proposed description of quantum system decay in terms of repeated measurement perturbations is modified. The possibility of retarded reductions to a unique quantum state, due to ineffective localization of the decay products at initial time measurements, is simply taken into account. The exponential decay law is verified again. A modified equation giving the observed lifetime in terms of unperturbed quantum decay law, measurement frequency and reduction law is derived. It predicts deviations of the observed lifetime from the umperturbed one, together with a dependence on experimental procedures. The influence of different model unperturbed decay laws and reduction laws on this effect is studied

  16. Cavity-Enhanced Two-Photon Interference using Remote Quantum Dot Sources

    CERN Document Server

    Giesz, V; Grange, T; Antón, C; De Santis, L; Demory, J; Somaschi, N; Sagnes, I; Lemaître, A; Lanco, L; Auffeves, A; Senellart, P

    2015-01-01

    The generation of indistinguishable photons from a solid-state emitter like a semiconductor quantum dot is often limited by dephasing processes. It is known that accelerating the spontaneous emission of the quantum dot can greatly improve the indistinguishability of successively emitted photons. Here we show that cavity quantum electrodynamics can also efficiently improve the quantum interference between remote quantum dot sources. The quantum interference of photons emitted by two separate quantum dot-cavity devices is investigated both experimentally and theoretically. Controlling the spontaneous emission on one source is shown to efficiently overcome the detrimental effect of pure dephasing on the other one. Our experimental observations and calculations demonstrate that cavity quantum electrodynamics is a powerful tool for the scalability of a quantum dot-based quantum network.

  17. Approximation, Proof Systems, and Correlations in a Quantum World

    OpenAIRE

    Gharibian, Sevag

    2013-01-01

    This thesis studies three topics in quantum computation and information: The approximability of quantum problems, quantum proof systems, and non-classical correlations in quantum systems. In the first area, we demonstrate a polynomial-time (classical) approximation algorithm for dense instances of the canonical QMA-complete quantum constraint satisfaction problem, the local Hamiltonian problem. In the opposite direction, we next introduce a quantum generalization of the po...

  18. Pairing in the quantum Hall system

    OpenAIRE

    Ahn, Kang-Hun; Chang, K. J.

    1997-01-01

    We find an analogy between the single skyrmion state in the quantum Hall system and the BCS superconducting state and address that the quantum mechanical origin of the skyrmion is electronic pairing. The skyrmion phase is found to be unstable for magnetic fields above the critical field $B_{c}(T)$ at temperature $T$, which is well represented by the relation $B_c(T)/B_{c}(0) \\approx {[1-(T/T_c)^3]}^{1/2}$.

  19. Superconducting Circuitry for Quantum Electromechanical Systems

    OpenAIRE

    Lahaye, Matthew D.; Rouxinol, Francisco; Hao, Yu; Shim, Seung-bo; Irish, Elinor K.

    2015-01-01

    Superconducting systems have a long history of use in experiments that push the frontiers of mechanical sensing. This includes both applied and fundamental research, which at present day ranges from quantum computing research and efforts to explore Planck-scale physics to fundamental studies on the nature of motion and the quantum limits on our ability to measure it. In this paper, we first provide a short history of the role of superconducting circuitry and devices in mecha...

  20. The Moyal equation for open quantum systems

    Science.gov (United States)

    Marzlin, Karl-Peter; Deering, Stephen

    2015-05-01

    We generalize the Moyal equation, which describes the dynamics of quantum observables in phase space, to quantum systems coupled to a reservoir. It is shown that phase space observables become functionals of fluctuating noise forces introduced by the coupling to the reservoir. For Markovian reservoirs, the Moyal equation turns into a functional differential equation in which the reservoir’s effect can be described by a single parameter.

  1. Scattering theory for open quantum systems

    International Nuclear Information System (INIS)

    Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator AD in a Hilbert space H is used to describe an open quantum system. In this case the minimal self-adjoint dilation K of AD can be regarded as the Hamiltonian of a closed system which contains the open system {AD,h}, but since K is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family {A(?)} of maximal dissipative operators depending on energy ?, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single Pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schroedinger-Poisson systems. (orig.)

  2. Reducing the Quantumness of Composite Quantum Systems to Two Classical Compositions

    OpenAIRE

    Rosinger, Elemer Elad

    2011-01-01

    A family of {\\it quantumness spaces} is identified and precisely defined. They are spaces which characterize the difference between states given by classical compositions of systems, and on the other hand, states corresponding to their quantum compositions. Consequently, the quantum composition of systems is {\\it reduced} to two classical compositions. A family of rankings is also defined for the respective family of quantumness.

  3. Recent advances in quantum integrable systems

    International Nuclear Information System (INIS)

    This meeting was dedicated to different aspects of the theory of quantum integrable systems. The organizers have intended to concentrate on topics related to the study of correlation functions, to systems with boundaries and to models at roots of unity. This document gathers the abstracts of 32 contributions, most of the contributions are accompanied by the set of transparencies

  4. Witnessing Quantum Coherence: from solid-state to biological systems

    CERN Document Server

    Li, Che-Ming; Chen, Yueh-Nan; Chen, Guang-Yin; Nori, Franco; 10.1038/srep00885

    2012-01-01

    Quantum coherence is one of the primary non-classical features of quantum systems. While protocols such as the Leggett-Garg inequality (LGI) and quantum tomography can be used to test for the existence of quantum coherence and dynamics in a given system, unambiguously detecting inherent "quantumness" still faces serious obstacles in terms of experimental feasibility and efficiency, particularly in complex systems. Here we introduce two "quantum witnesses" to efficiently verify quantum coherence and dynamics in the time domain, without the expense and burden of non-invasive measurements or full tomographic processes. Using several physical examples, including quantum transport in solid-state nanostructures and in biological organisms, we show that these quantum witnesses are robust and have a much finer resolution in their detection window than the LGI has. These robust quantum indicators may assist in reducing the experimental overhead in unambiguously verifying quantum coherence in complex systems.

  5. Comparison and control of the robustness between quantum entanglement and quantum correlation in an open quantum system

    International Nuclear Information System (INIS)

    We investigate the influence of environmental decoherence on the dynamics of a coupled qubit system and quantum correlation. We analyse the relationship between concurrence and the degree of initial entanglement or the purity of initial quantum state, and also their relationship with quantum discord. The results show that the decrease of the purity of an initial quantum state can induce the attenuation of concurrence or quantum discord, but the attenuation of quantum discord is obviously slower than the concurrence's, correspondingly the survival time of quantum discord is longer. Further investigation reveals that the robustness of quantum discord and concurrence relies on the entanglement degree of the initial quantum state. The higher the degree of entanglement, the more robust the quantum discord is than concurrence. And the reverse is equally true. Birth and death happen to quantum discord periodically and a newborn quantum discord comes into being under a certain condition, so does the concurrence

  6. Quantum Dynamics of Nonlinear Cavity Systems

    CERN Document Server

    Nation, Paul D

    2010-01-01

    We investigate the quantum dynamics of three different configurations of nonlinear cavity systems. To begin, we carry out a quantum analysis of a dc superconducting quantum interference device (SQUID) mechanical displacement detector comprised of a SQUID with a mechanically compliant loop segment. The SQUID is approximated by a nonlinear current-dependent inductor, inducing a flux tunable nonlinear Duffing term in the cavity equation of motion. Expressions are derived for the detector signal and noise response where it is found that a soft-spring Duffing self-interaction enables a closer approach to the displacement detection standard quantum limit, as well as cooling closer to the ground state. Next, we make use of a superconducting transmission line formed from an array of dc-SQUIDs for investigating analogue Hawking radiation. Biasing the array with a space-time varying flux modifies the propagation velocity of the transmission line, leading to an effective metric with a horizon. This setup allows for quan...

  7. Quantum Simulation of Tunneling in Small Systems

    CERN Document Server

    Sornborger, Andrew T

    2012-01-01

    A number of quantum algorithms have been performed on small quantum computers; these include Shor's prime factorization algorithm, error correction, Grover's search algorithm and a number of analog and digital quantum simulations. Because of the number of gates and qubits necessary, however, digital quantum particle simulations remain untested. A contributing factor to the system size required is the number of ancillary qubits needed to implement matrix exponentials of the potential operator. Here, we show that a set of tunneling problems may be investigated with no ancillary qubits and a cost of one single-qubit operator per time step for the potential evolution. We show that physically interesting simulations of tunneling using 2 qubits (i.e. on 4 lattice point grids) may be performed with 40 single and two-qubit gates. Approximately 70 to 140 gates are needed to see interesting tunneling dynamics in three-qubit (8 lattice point) simulations.

  8. On dynamical stochasticity in nonlinear quantum systems

    International Nuclear Information System (INIS)

    The properties of nonlinear quantum systems which are stochastic in the classical limit are investigated. By a concrete model example it is shown that for a quantum system in contrast to the corresponding classical one the Kolmogorov-Sinai (KS) entropy is equal to zero and correlations are damping not by exponential but only but power-type law. It is pointed out in conclusion that the cause of power-type correlation decrease is power-type increase of THETA harmonics number in U with time (U is evolution operator) or in other words of a number of populated levels of the unperturbed system (one impact captures approximately 2 K levels of unperturbed system ). In view of this fact the THETA number of harmonics also grows by power-type law which leads to h=C and nonexponential correlation damping. As the indicated U property occurs prractically for all perturbations it is quite natural to expect that the other quantum systems, which are stochastical in the classical limit are to possess KS entropy equal to zero and power-type correlation decrease. This result indicates that direct generalization of Kolmogorov entropy notion for quantum systems seems to be not so important as in classical systems

  9. Heisenberg picture approach to the stability of quantum Markov systems

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yu, E-mail: yu.pan@anu.edu.au, E-mail: zibo.miao@anu.edu.au; Miao, Zibo, E-mail: yu.pan@anu.edu.au, E-mail: zibo.miao@anu.edu.au [Research School of Engineering, Australian National University, Canberra, ACT 0200 (Australia); Amini, Hadis, E-mail: nhamini@stanford.edu [Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305 (United States); Gough, John, E-mail: jug@aber.ac.uk [Institute of Mathematics and Physics, Aberystwyth University, SY23 3BZ Wales (United Kingdom); Ugrinovskii, Valery, E-mail: v.ugrinovskii@gmail.com [School of Engineering and Information Technology, University of New South Wales at ADFA, Canberra, ACT 2600 (Australia); James, Matthew R., E-mail: matthew.james@anu.edu.au [ARC Centre for Quantum Computation and Communication Technology, Research School of Engineering, Australian National University, Canberra, ACT 0200 (Australia)

    2014-06-15

    Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.

  10. Heisenberg picture approach to the stability of quantum Markov systems

    International Nuclear Information System (INIS)

    Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks

  11. Quantum Localization in Open Chaotic Systems

    CERN Document Server

    Ryu, Jung-Wan; Kim, Sang Wook

    2008-01-01

    We study a quasi-Floquet state of a $\\delta$-kicked rotor with absorbing boundaries focusing on the nature of the dynamical localization in open quantum systems. The localization lengths $\\xi$ of lossy quasi-Floquet states located near the absorbing boundaries decrease as they approach the boundary while the corresponding decay rates $\\Gamma$ are dramatically enhanced. We find the relation $\\xi \\sim \\Gamma^{-1/2}$ and explain it based upon the finite time diffusion, which can also be applied to a random unitary operator model. We conjecture that this idea is valid for the system exhibiting both the diffusion in classical dynamics and the exponential localization in quantum mechanics.

  12. Specific heat anomalies of open quantum systems

    OpenAIRE

    Ingold, Gert-ludwig; Ha?nggi, Peter; Talkner, Peter

    2008-01-01

    The evaluation of the specific heat of an open, damped quantum system is a subtle issue. One possible route is based on the thermodynamic partition function which is the ratio of the partition functions of system plus bath and of the bath alone. For the free damped particle it has been shown, however, that the ensuing specific heat may become negative for appropriately chosen environments. Being an open system this quantity then naturally must be interpreted as the change of...

  13. Control Protocol of Finite Dimensional Quantum Systems

    International Nuclear Information System (INIS)

    An analytic control protocol of two types of finite dimensional quantum systems is proposed. The system can be driven to an arbitrary target state using cosine classical fields in finite cycles. The control parameters which are time periods of interaction between systems and control fields in each cycle are connected with the probability amplitudes of target states via trigonometrical functions and can be determined analytically. (atomic and molecular physics)

  14. Josephson tunneling in bilayer quantum Hall system

    International Nuclear Information System (INIS)

    A Bose–Einstein condensation is formed by composite bosons in the quantum Hall state. A composite boson carries the fundamental charge (?e). We investigate Josephson tunneling of such charges in the bilayer quantum Hall system at the total filling ?=1. We show the existence of the critical current for the tunneling current to be coherent and dissipationless. Our results explain recent experiments due to [L. Tiemann, Y. Yoon, W. Dietsche, K. von Klitzing, W. Wegscheider, Phys. Rev. B 80 (2009) 165120] and due to [Y. Yoon, L. Tiemann, S. Schmult, W. Dietsche, K. von Klitzing, Phys. Rev. Lett. 104 (2010) 116802]. We predict also how the critical current changes as the sample is tilted in the magnetic field. -- Highlights: ? Composite bosons undergo Bose–Einstein condensation to form the bilayer quantum Hall state. ? A composite boson is a single electron bound to a flux quantum and carries one unit charge. ? Quantum coherence develops due to the condensation. ? Quantum coherence drives the supercurrent in each layer and the tunneling current. ? There exists the critical input current so that the tunneling current is coherent and dissipationless.

  15. Long-range quantum discord in critical spin systems

    International Nuclear Information System (INIS)

    We show that quantum correlations as quantified by quantum discord can characterize quantum phase transitions by exhibiting nontrivial long-range decay as a function of distance in spin systems. This is rather different from the behavior of pairwise entanglement, which is typically short-ranged even in critical systems. In particular, we find a clear change in the decay rate of quantum discord as the system crosses a quantum critical point. We illustrate this phenomenon for first-order, second-order, and infinite-order quantum phase transitions, indicating that pairwise quantum discord is an appealing quantum correlation function for condensed matter systems. -- Highlights: ? Quantum discord may exhibit long-range decay in spin systems. ? Long-range behavior of discord occurs as the system crosses a critical point. ? Long-range behavior of discord is found for phase transitions of different orders. ? Discussion of discord as a function of distance is shown for several spin chains.

  16. Quantum temporal probabilities in tunneling systems

    International Nuclear Information System (INIS)

    We study the temporal aspects of quantum tunneling as manifested in time-of-arrival experiments in which the detected particle tunnels through a potential barrier. In particular, we present a general method for constructing temporal probabilities in tunneling systems that (i) defines ‘classical’ time observables for quantum systems and (ii) applies to relativistic particles interacting through quantum fields. We show that the relevant probabilities are defined in terms of specific correlation functions of the quantum field associated with tunneling particles. We construct a probability distribution with respect to the time of particle detection that contains all information about the temporal aspects of the tunneling process. In specific cases, this probability distribution leads to the definition of a delay time that, for parity-symmetric potentials, reduces to the phase time of Bohm and Wigner. We apply our results to piecewise constant potentials, by deriving the appropriate junction conditions on the points of discontinuity. For the double square potential, in particular, we demonstrate the existence of (at least) two physically relevant time parameters, the delay time and a decay rate that describes the escape of particles trapped in the inter-barrier region. Finally, we propose a resolution to the paradox of apparent superluminal velocities for tunneling particles. We demonstrate that the idea of faster-than-light speeds in tunneling follows from an inadmissible use of classical reasoning in the description of quantum systems. -- Highlights: •Present a general methodology for deriving temporal probabilities in tunneling systems. •Treatment applies to relativistic particles interacting through quantum fields. •Derive a new expression for tunneling time. •Identify new time parameters relevant to tunneling. •Propose a resolution of the superluminality paradox in tunneling

  17. On the notion of a macroscopic quantum system

    OpenAIRE

    Khrennikov, Andrei

    2004-01-01

    It is proposed to define "quantumness" of a system (micro or macroscopic, physical, biological, social, political) by starting with understanding that quantum mechanics is a statistical theory. It says us only about probability distributions. The only possible criteria of quantum behaviour are statistical ones. Therefore I propose to consider any system which produces quantum statistics as quantum ("quantumlike"). A possible test is based on the interference of probabilities...

  18. Gibbs state for one-dimensional quantum lattice boson systems

    International Nuclear Information System (INIS)

    One-dimensional lattice quantum boson system (a system of quantum oscillators) with finite interaction is considered. Limiting Gibbs state is constructed and its regularity (decay of correlations) is proved

  19. On Evolution Equations of Quantum-Classical Systems

    OpenAIRE

    Gerasimenko, V. I.

    2009-01-01

    We consider the links between consistent and approximate descriptions of the quantum-classical systems, i.e. systems are composed of two interacting subsystems, one of which behaves almost classically while the other requires a quantum description.

  20. Effective Hamiltonian approach to periodically perturbed quantum optical systems

    International Nuclear Information System (INIS)

    We apply the method of Lie-type transformations to Floquet Hamiltonians for periodically perturbed quantum systems. Some typical examples of driven quantum systems are considered in the framework of this approach and corresponding effective time dependent Hamiltonians are found

  1. Lithography system using quantum entangled photons

    Science.gov (United States)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)

    2002-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  2. Quantum mechanics of a system with confinement

    International Nuclear Information System (INIS)

    A study is made of the quantum mechanical model of confinement. The spectrum of a system with permanently confined channel is investiogated. A closed analytical expression is obtained for the S-matrix describing the scattering on N levels in the confined channel. The influence of the confined channel on the resonant and Coulomb states in the scattering channel is considered

  3. Hidden supersymmetry in quantum bosonic systems

    International Nuclear Information System (INIS)

    We show that some simple well-studied quantum mechanical systems without fermion (spin) degrees of freedom display, surprisingly, a hidden supersymmetry. The list includes the bound state Aharonov-Bohm, the Dirac delta and the Poeschl-Teller potential problems, in which the unbroken and broken N = 2 supersymmetry of linear and nonlinear (polynomial) forms is revealed

  4. Quantum field theory and multiparticle systems

    International Nuclear Information System (INIS)

    The use of quantum field theory methods for the investigation of the physical characteristics of the MANY-BODY SYSTEMS is discussed. Mainly discussed is the method of second quantization and the method of the Green functions. Briefly discussed is the method of calculating the Green functions at finite temperatures. (Z.J.)

  5. Quantum coherence of biophotons and living systems.

    Science.gov (United States)

    Bajpai, R P

    2003-05-01

    Coherence is a property of the description of the system in the classical framework in which the subunits of a system act in a cooperative manner. Coherence becomes classical if the agent causing cooperation is discernible otherwise it is quantum coherence. Both stimulated and spontaneous biophoton signals show properties that can be attributed to the cooperative actions of many photon-emitting units. But the agents responsible for the cooperative actions of units have not been discovered so far. The stimulated signal decays with non-exponential character. It is system and situation specific and sensitive to many physiological and environmental factors. Its measurable holistic parameters are strength, shape, relative strengths of spectral components, and excitation curve. The spontaneous signal is non-decaying with the probabilities of detecting various number of photons to be neither normal nor Poisson. The detected probabilities in a signal of Parmelia tinctorum match with probabilities expected in a squeezed state of photons. It is speculated that an in vivo nucleic acid molecule is an assembly of intermittent quantum patches that emit biophoton in quantum transitions. The distributions of quantum patches and their lifetimes determine the holistic features of biophoton signals, so that the coherence of biophotons is merely a manifestation of the coherence of living systems. PMID:15244274

  6. Quantum mechanics classical results, modern systems, and visualized examples

    CERN Document Server

    Robinett, Richard W

    2006-01-01

    `Quantum Mechanics'' is a comprehensive introduction to quantum mechanics for advanced undergraduate students in physics. It provides the reader with a strong conceptual background in the subject, extensive experience with the necessary mathematical background, as well as numerous visualizations of quantum concepts and phenomena. - ;Quantum Mechanics: Classical Results, Modern Systems, and Visualized Examples is a comprehensive introduction to non-relativistic quantum mechanics for advanced undergraduate students in physics and related fields. It provides students with a strong conceptual background in the most important theoretical aspects of quantum mechanics, extensive experience with the mathematical tools required to solve problems, the opportunity to use quantum ideas to confront modern experimental. realizations of quantum systems, and numerous visualizations of quantum concepts and phenomena. Changes from the First Edition include many new discussions of modern quantum systems (such as Bose-Einstein c...

  7. Dissipative effects on quantum glassy systems

    International Nuclear Information System (INIS)

    We discuss the behavior of a quantum glassy system coupled to a bath of quantum oscillators. We show that the system localizes in the absence of interactions when coupled to a subOhmic bath. When interactions are switched on localization disappears and the system undergoes a phase transition towards a glassy phase. We show that the position of the critical line separating the disordered and the ordered phases strongly depends on the coupling to the bath. For a given type of bath, the ordered glassy phase is favored by a stronger coupling. Ohmic, subOhmic and superOhmic baths lead to different transition lines. We draw our conclusions from the analysis of the partition function using the replicated imaginary-time formalism and from the study of the real-time dynamics of the coupled system using the Schwinger-Keldysh closed time-path formalism. (author)

  8. Open systems dynamics for propagating quantum fields

    Science.gov (United States)

    Baragiola, Ben Quinn

    In this dissertation, I explore interactions between matter and propagating light. The electromagnetic field is modeled as a Markovian reservoir of quantum harmonic oscillators successively streaming past a quantum system. Each weak and fleeting interaction entangles the light and the system, and the light continues its course. In the context of quantum tomography or metrology one attempts, using measure- ments of the light, to extract information about the quantum state of the system. An inevitable consequence of these measurements is a disturbance of the system's quantum state. These ideas focus on the system and regard the light as ancillary. It serves its purpose as a probe or as a mechanism to generate interesting dynamics or system states but is eventually traced out, leaving the reduced quantum state of the system as the primary mathematical subject. What, then, when the state of light itself harbors intrinsic self-entanglement? One such set of states, those where a traveling wave packet is prepared with a defi- nite number of photons, is a focal point of this dissertation. These N-photon states are ideal candidates as couriers in quantum information processing device. In con- trast to quasi-classical states, such as coherent or thermal fields, N-photon states possess temporal mode entanglement, and local interactions in time have nonlocal consequences. The reduced state of a system probed by an N-photon state evolves in a non-Markovian way, and to describe its dynamics one is obliged to keep track of the field's evolution. I present a method to do this for an arbitrary quantum system using a set of coupled master equations. Many models set aside spatial degrees of freedom as an unnecessary complicating factor. By doing so the precision of predictions is limited. Consider a ensemble of cold, trapped atomic spins dispersively probed by a paraxial laser beam. Atom-light coupling across the ensemble is spatially inhomogeneous as is the radiation pattern of scattered light. To achieve strong entanglement between the atoms and photons, one must match the spatial mode of the collective radiation from the ensemble to the mode of the laser beam while minimizing the effects of decoherence due to optical pumping. In this dissertation, I present a three-dimensional model for a quantum light-matter interface for propagating quantum fields specifically equipped to address these issues. The reduced collective atomic state is described by a stochastic master equation that includes coherent collective scattering into paraxial modes, decoher- ence by local inhomogeneous diffuse scattering, and measurement backaction due to continuous observation of the light. As the light is measured, backaction transmutes atom-light entanglement into entanglement between the atoms of the ensemble. This formalism is used to study the impact of spatial modes in the squeezing of a collec- tive atomic spin wave via continuous measurement. The largest squeezing occurs precisely in parameter regimes with significant spatial inhomogeneities, far from the limit in which the interface is well approximated by a one-dimensional, homogeneous model.

  9. Chiral quantum mechanics (CQM) for antihydrogen systems

    CERN Document Server

    Van Hooydonk, G

    2005-01-01

    A first deception of QM on antiH already appears in one-center integrals for two-center systems (G. Van Hooydonk, physics/0511115). In reality, full QM is a theory for chiral systems but the QM establishment was wrong footed with a permutation of reference frames. With chiral quantum mechanics (CQM), the theoretical ban on natural antiH must be lifted as soon as possible.

  10. The quantum human central neural system.

    Science.gov (United States)

    Alexiou, Athanasios; Rekkas, John

    2015-01-01

    In this chapter we present Excess Entropy Production for human aging system as the sum of their respective subsystems and electrophysiological status. Additionally, we support the hypothesis of human brain and central neural system quantumness and we strongly suggest the theoretical and philosophical status of human brain as one of the unknown natural Dirac magnetic monopoles placed in the center of a Riemann sphere. PMID:25416114

  11. Control landscapes for open system quantum operations

    International Nuclear Information System (INIS)

    The reliable realization of control operations is a key component of quantum information applications. In practice, meeting this goal is very demanding for open quantum systems. This paper investigates the landscape defined as the fidelity J between the desired and achieved quantum operations with an open system. The goal is to maximize J as a functional of the control variables. We specify the complete set of critical points of the landscape function in the so-called kinematic picture. An associated Hessian analysis of the landscape reveals that, upon the satisfaction of a particular controllability criterion, the critical topology is dependent on the particular environment, but no false traps (i.e. suboptimal solutions) exist. Thus, a gradient-type search algorithm should not be hindered in searching for the ultimate optimal solution with such controllable systems. Moreover, the maximal fidelity is proven to coincide with Uhlmann’s fidelity between the environmental initial states associated with the achieved and desired quantum operations, which provides a generalization of Uhlmann’s theorem in terms of Kraus maps. (paper)

  12. Heat exchange mediated by a quantum system.

    Science.gov (United States)

    Panasyuk, George Y; Levin, George A; Yerkes, Kirk L

    2012-08-01

    We consider heat transfer between two thermal reservoirs mediated by a quantum system using the generalized quantum Langevin equation. The thermal reservoirs are treated as ensembles of oscillators within the framework of the Drude-Ullersma model. General expressions for the heat current and thermal conductance are obtained for arbitrary coupling strength between the reservoirs and the mediator and for different temperature regimes. As an application of these results we discuss the origin of Fourier's law in a chain of large but finite subsystems coupled to each other by the quantum mediators. We also address a question of anomalously large heat current between the scanning tunneling microscope (STM) tip and substrate found in a recent experiment. The question of minimum thermal conductivity is revisited in the framework of scaling theory as a potential application of the developed approach. PMID:23005731

  13. An E-payment system based on quantum group signature

    Science.gov (United States)

    Xiaojun, Wen

    2010-12-01

    Security and anonymity are essential to E-payment systems. However, existing E-payment systems will easily be broken into soon with the emergence of quantum computers. In this paper, we propose an E-payment system based on quantum group signature. In contrast to classical E-payment systems, our quantum E-payment system can protect not only the users' anonymity but also the inner structure of customer groups. Because of adopting the two techniques of quantum key distribution, a one-time pad and quantum group signature, unconditional security of our E-payment system is guaranteed.

  14. Symmetry and stability of open quantum systems

    International Nuclear Information System (INIS)

    The presentation of the thesis involves an introduction and six chapters. Chapter 1 presents notions and results used in the other chpaters. Chapters 2-6 present our results which are focused on two notions: generalized observable and dynamic semigroup. These notions characterize a specific research domain (set up during the last 10 years) which is currently called quantum mechanics of open systems. The two notions (generalized observable and dynamic semigroup) are mathematically correlated. They belong to the set of completely positive linear applications among observable algebras. This fact, associated with that formulation of quantum mechanics according to which it is a special case of quantum mechanics namely, that for which the observable algebra is commutative, help to understand the similar essence of the results presented in chapter 2-6. Thus, the natural mathematical background has been achieved for our results; it is represented by that category whose objects are the observable algebras and whose morphisms are completely positive linear contractions generating unity within unity. These ideas are extensively presented in the introduction. The fact that the relations between classical mechanics and quantum mechanics can be rigorously treated as positive linear applications between classical observable algebras commutative and quantum observable algebras non-commutative, which are automatically fully positive, has been initially shown in our paper. (author)

  15. EMERGENCE PARAMETER OF CLASSICAL AND QUANTUM STATISTICAL SYSTEMS ??????????? ?????????????? ???????????? ? ????????? ?????????????? ??????

    Directory of Open Access Journals (Sweden)

    Lutsenko Y. V.

    2013-06-01

    Full Text Available In this article we give a generalization of Hartley's model for the measure of information. We propose a rate of emergence, which is applicable to systems obeying classical or quantum statistics. Quantum sys-tems that obey Fermi-Dirac statistics and Bose-Einstein condensate, as well as classical systems obey-ing the Maxwell-Boltzmann statistics have been con-sidered. We found that the emergence parameter of quantum and classical systems differ as well as the emergence parameter of quantum systems of fermions and bosons. Consequently, the emergence parameter might be used to distinguish the classical system and quantum system, as well as quantum system of fermions and the quantum system of bosons

  16. An exactly solvable system from quantum optics

    Science.gov (United States)

    Maciejewski, Andrzej J.; Przybylska, Maria; Stachowiak, Tomasz

    2015-07-01

    We investigate a generalisation of the Rabi system in the Bargmann-Fock representation. In this representation the eigenproblem of the considered quantum model is described by a system of two linear differential equations with one independent variable. The system has only one irregular singular point at infinity. We show how the quantisation of the model is related to asymptotic behaviour of solutions in a vicinity of this point. The explicit formulae for the spectrum and eigenfunctions of the model follow from an analysis of the Stokes phenomenon. An interpretation of the obtained results in terms of differential Galois group of the system is also given.

  17. Quantum Correlations in Qutrit-Qutrit Systems under Local Quantum Noise Channels

    Science.gov (United States)

    Doustimotlagh, Nasibollah; Guo, Jin-Liang; Wang, Shuhao

    2015-06-01

    Due to decoherence, realistic quantum systems inevitably interact with the environment when quantum information is processed, which causes the loss of quantum properties. As a fundamental issue of quantum properties, quantum correlations have attracted a lot of interests in recent years. Because of the importance of high dimensional systems in quantum information, in this work, we study the quantum correlations affected by the Markovian environment by considering the quantum correlations of qutrit-qutrit quantum systems measured by the negativity and the geometric discord. The local noise channels covered in this work include dephasing, trit-flip, trit-phase-flip, and depolarising channels. We have also investigated the cases where the local decoherence channels of two sides are identical and non-identical.

  18. Aberration-corrected quantum temporal imaging system

    CERN Document Server

    Zhu, Yunhui; Gauthier, Daniel J

    2013-01-01

    We describe the design of a temporal imaging system that simultaneously reshapes the temporal profile and converts the frequency of a photonic wavepacket, while preserving its quantum state. A field lens, which imparts a temporal quadratic phase modulation, is used to correct for the residual phase caused by field curvature in the image, thus enabling temporal imaging for phase-sensitive quantum applications. We show how this system can be used for temporal imaging of time-bin entangled photonic wavepackets and compare the field lens correction technique to systems based on a temporal telescope and far-field imaging. The field-lens approach removes the residual phase using four dispersive elements. The group delay dispersion (GDD) $D$ is constrained by the available bandwidth $\\Delta\

  19. Quantum phase transitions in finite systems

    CERN Document Server

    Dunning, C; Links, J; Dunning, Clare; Hibberd, Katrina E.; Links, Jon

    2006-01-01

    The aim of this work is to develop a technique for identifying quantum phase transitions which does not rely on the existence of a thermodynamic limit, for studies in finite systems. The approach we adopt exploits an exact mapping of the spectrum of a many-body integrable system, which admits an exact Bethe ansatz solution, into the quasi-exactly solvable spectrum of a one-particle Schrodinger operator. Bifurcations of the minima for the potential of the Schrodinger operator determine critical ground-state couplings. By considering the behaviour of certain ground-state correlation functions, these may be identified as quantum phase transitions in the many-body integrable system with finite particle number. We study two particular examples of bosonic Hamiltonians which admit second-order transitions, and discuss further applications.

  20. Irreversible processes in quantum mechanical systems

    International Nuclear Information System (INIS)

    Although the information provided by the evolution of the density matrix of a quantum system is equivalent with the knowledge of all observables at a given time, it turns out ot be insufficient to answer certain questions in quantum optics or linear response theory where the commutator of certain observables at different space-time points is needed. In this doctoral thesis we prove the existence of density matrices for common probabilities at multiple times and discuss their properties and their characterization independent of a special representation. We start with a compilation of definitions and properties of classical common probabilities and correlation functions. In the second chapter we give the definition of a quantum mechanical Markov process and derive the properties of propagators, generators and conditional probabilities as well as their mutual relations. The third chapter is devoted to a treatment of quantum mechanical systems in thermal equilibrium for which the principle of detailed balance holds as a consequence of microreversibility. We work out the symmetry properties of the two-sided correlation functions which turn out to be analogous to those in classical processes. In the final chapter we use the Gaussian behavior of the stationary correlation function of an oscillator and determine a class of Markov processes which are characterized by dissipative Lionville operators. We succeed in obtaining the canonical representation in a purely algebraic way by means of similarity transformations. Starting from this representation it is particularly easy to calculate the propagator and the correlation function. (HJ) 891 HJ/HJ 892 MKO

  1. Towards the theory of control in observable quantum systems

    OpenAIRE

    Belavkin, V. P.

    2004-01-01

    An operational description of the controlled Markov dynamics of quantum-mechanical system is introduced. The feedback control strategies with regard to the dynamical reduction of quantum states in the course of quantum real-time measurements are discribed in terms of quantum filtering of these states. The concept of sufficient coordinates for the description of the a posteriori quantum states from a given class is introduced, and it is proved that they form a classical Marko...

  2. Quantum filter for a class of non-Markovian quantum systems

    OpenAIRE

    Xue, Shibei; James, Matthew R.; Shabani, Alireza; Ugrinovskii, Valery; Petersen, Ian R

    2015-01-01

    In this paper we present a Markovian representation approach to constructing quantum filters for a class of non-Markovian quantum systems disturbed by Lorenztian noise. An ancillary system is introduced to convert white noise into Lorentzian noise which is injected into a principal system via a direct interaction. The resulting dynamics of the principal system are non-Markovian, which are driven by the Lorentzian noise. By probing the principal system, a quantum filter for t...

  3. Theory of classical and quantum frustration in quantum many-body systems

    CERN Document Server

    Giampaolo, S M; Monras, A; Illuminati, F

    2011-01-01

    We present a general scheme for the study of frustration in quantum systems. After introducing a universal measure of frustration for arbitrary quantum systems, we derive for it an exact inequality in terms of a class of entanglement monotones. We then state sufficient conditions for the ground states of quantum spin systems to saturate the inequality and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems and establish a unified framework for studying the intertwining of geometric and quantum contributions to frustration.

  4. Electron Dynamics in Finite Quantum Systems

    Science.gov (United States)

    McDonald, Christopher R.

    The multiconfiguration time-dependent Hartree-Fock (MCTDHF) and multiconfiguration time-dependent Hartree (MCTDH) methods are employed to investigate nonperturbative multielectron dynamics in finite quantum systems. MCTDHF is a powerful tool that allows for the investigation of multielectron dynamics in strongly perturbed quantum systems. We have developed an MCTDHF code that is capable of treating problems involving three dimensional (3D) atoms and molecules exposed to strong laser fields. This code will allow for the theoretical treatment of multielectron phenomena in attosecond science that were previously inaccessible. These problems include complex ionization processes in pump-probe experiments on noble gas atoms, the nonlinear effects that have been observed in Ne atoms in the presence of an x-ray free-electron laser (XFEL) and the molecular rearrangement of cations after ionization. An implementation of MCTDH that is optimized for two electrons, each moving in two dimensions (2D), is also presented. This implementation of MCTDH allows for the efficient treatment of 2D spin-free systems involving two electrons; however, it does not scale well to 3D or to systems containing more that two electrons. Both MCTDHF and MCTDH were used to treat 2D problems in nanophysics and attosecond science. MCTDHF is used to investigate plasmon dynamics and the quantum breathing mode for several electrons in finite lateral quantum dots. MCTDHF is also used to study the effects of manipulating the potential of a double lateral quantum dot containing two electrons; applications to quantum computing are discussed. MCTDH is used to examine a diatomic model molecular system exposed to a strong laser field; nonsequential double ionization and high harmonic generation are studied and new processes identified and explained. An implementation of MCTDHF is developed for nonuniform tensor product grids; this will allow for the full 3D implementation of MCTDHF and will provide a means to investigate a wide variety of problems that cannot be currently treated by any other method. Finally, the time it takes for an electron to tunnel from a bound state is investigated; a definition of the tunnel time is established and the Keldysh time is connected to the wavefunction dynamics.

  5. Multiphoton spectroscopy of a hybrid quantum system

    Science.gov (United States)

    Bushev, P.; Müller, C.; Lisenfeld, J.; Cole, J. H.; Lukashenko, A.; Shnirman, A.; Ustinov, A. V.

    2010-10-01

    We report on experimental multiphoton spectroscopy of a hybrid quantum system consisting of a superconducting phase qubit coherently coupled to an intrinsic two-level system (TLS). We directly probe hybridized states of the combined qubit-TLS system in the strongly interacting regime, where both the qubit-TLS coupling and the driving cannot be considered as weak perturbations. This regime is described by a theoretical model which incorporates anharmonic corrections, multiphoton processes and decoherence. We present a detailed comparison between experiment and theory and find excellent agreement over a wide range of parameters.

  6. Decoherence in infinite quantum systems

    OpenAIRE

    Hellmich, Mario

    2009-01-01

    Die Quantenmechanik gilt heute als unsere grundlegendste physikalische Theorie. Als solche beschränkt sie sich nicht nur auf ihre ursprünglichen Anwendungsbereiche wie die Atomphysik, Elementarteilchenphysik und die Quantenfeldtheorie, sondern ihr Gegenstandsbereich sollte auch makroskopische Systeme einschließen, die den Gesetzen der klassischen Physik gehorchen. Hier stößt man jedoch auf ein fundamentales Problem: Wendet man die Gesetze der Quantenmechanik direkt auf die Objekte unsere...

  7. Orbits of hybrid systems as qualitative indicators of quantum dynamics

    International Nuclear Information System (INIS)

    Hamiltonian theory of hybrid quantum–classical systems is used to study dynamics of the classical subsystem coupled to different types of quantum systems. It is shown that the qualitative properties of orbits of the classical subsystem clearly indicate if the quantum subsystem does or does not have additional conserved observables.

  8. Non-Equilibrium Quantum Entanglement in Biological Systems

    International Nuclear Information System (INIS)

    A non-equilibrium model of a classically driven quantum harmonic oscillator is proposed to explain persistent quantum entanglement in biological systems at ambient temperature. The conditions for periodic entanglement generation are derived. Our results support the evidence that biological systems may have quantum entanglement at biological temperatures. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. The Quantum as an Emergent System

    CERN Document Server

    Groessing, Gerhard; Pascasio, Johannes Mesa; Schwabl, Herbert; 10.1088/1742-6596/361/1/012008

    2012-01-01

    Double slit interference is explained with the aid of what we call "21stcentury classical physics". We model a particle as an oscillator ("bouncer") in a thermal context, which is given by some assumed "zero-point" field of the vacuum. In this way, the quantum is understood as an emergent system, i.e., a steady-state system maintained by a constant throughput of (vacuum) energy. To account for the particle's thermal environment, we introduce a "path excitation field", which derives from the thermodynamics of the zero-point vacuum and which represents all possible paths a particle can take via thermal path fluctuations. The intensity distribution on a screen behind a double slit is calculated, as well as the corresponding trajectories and the probability density current. Further, particular features of the relative phase are shown to be responsible for nonlocal effects not only in ordinary quantum theory, but also in our classical approach.

  10. Quantum spin Hall systems and topological insulators

    International Nuclear Information System (INIS)

    Topological insulators (quantum spin Hall systems) are insulating in the bulk but have gapless edge/surface states, which remain gapless even when nonmagnetic disorder or interaction is present. This robustness stems from the topological nature characterized by the Z2 topological number, and this offers us various kinds of new novel properties. We review prominent advances in theories and in experiments on topological insulators since their theoretical proposal in 2005. (paper)

  11. Unifying structures in quantum integrable systems

    OpenAIRE

    Kundu, Anjan

    1997-01-01

    Basic concepts of quantum integrable systems (QIS) are presented stressing on the unifying structures underlying such diverse models. Variety of ultralocal and nonultralocal models is shown to be described by a few basic relations defining novel algebraic entries. Such properties can generate and classify integrable models systematically and also help to solve exactly their eigenvalue problem in an almost model-independent way. The unifying thread stretches also beyond the Q...

  12. Quantum chromodynamic evolution of multiquark systems

    International Nuclear Information System (INIS)

    We present a new technique which extends the quantum chromodynamic evolution formalism in order to predict the short distance behavior of multiquark wavefunctions. In particular, predictions are given for the deuteron reduced form factor in the high momentum transfer region, and rigorous constraints on the short distance effective force between two baryons are predicted. These new techniques can be generalized in order to analyze the short distance behavior of multibaryon systems

  13. Notes on Infinite Layer Quantum Hall Systems

    OpenAIRE

    Naud, J. D.; Pryadko, Leonid P.; Sondhi, S. L.

    2000-01-01

    We study the fractional quantum Hall effect in three dimensional systems consisting of infinitely many stacked two dimensional electron gases placed in transverse magnetic fields. This limit introduces new features into the bulk physics such as quasiparticles with non-trivial internal structure, irrational braiding phases, and the necessity of a boundary hierarchy construction for interlayer correlated states. The bulk states host a family of surface phases obtained by hybri...

  14. Quantum system characterization with limited resources

    OpenAIRE

    Oi, Daniel; Schirmer, Sophie

    2012-01-01

    The construction and operation of large scale quantum information devices presents a grand challenge. A major issue is the effective control of coherent evolution, which requires accurate knowledge of the system dynamics that may vary from device to device. We review strategies for obtaining such knowledge from minimal initial resources and in an efficient manner, and apply these to the problem of characterization of a qubit embedded into a larger state manifold, made tracta...

  15. Fractionalization in spontaneous integer quantum Hall systems

    CERN Document Server

    Muniz, Rodrigo A; Martin, Ivar

    2011-01-01

    Using Kondo lattice model as an example, we show that systems that exhibit spontaneous integer quantum Hall effect can have fractionalized electronic excitations with anyonic exchange statistics. The fractionalized excitations are bound to the cores of topologically stable vortices in the magnetic order parameter. For highly symmetric states, the vortex charge is half-odd integer, although other, generally irrational, charges are possible for less symmetric states.

  16. q-Boson in Quantum Integrable Systems

    Directory of Open Access Journals (Sweden)

    Anjan Kundu

    2007-03-01

    Full Text Available q-bosonic realization of the underlying Yang-Baxter algebra is identified for a series of quantum integrable systems, including some new models like two-mode q-bosonic model leading to a coupled two-component derivative NLS model, wide range of q-deformed matter-radiation models, q-anyon model etc. Result on a new exactly solvable interacting anyon gas, linked to q-anyons on the lattice is reported.

  17. Randomized control of open quantum systems

    OpenAIRE

    Viola, Lorenza

    2006-01-01

    The problem of open-loop dynamical control of generic open quantum systems is addressed. In particular, I focus on the task of effectively switching off environmental couplings responsible for unwanted decoherence and dissipation effects. After revisiting the standard framework for dynamical decoupling via deterministic controls, I describe a different approach whereby the controller intentionally acquires a random component. An explicit error bound on worst-case performance...

  18. Thermohydrodynamics in Quantum Hall Systems

    OpenAIRE

    Akera, Hiroshi; Suzuura, Hidekatsu

    2004-01-01

    A theory of thermohydrodynamics in two-dimensional electron systems in quantizing magnetic fields is developed including a nonlinear transport regime. Spatio-temporal variations of the electron temperature and the chemical potential in the local equilibrium are described by the equations of conservation with the number and thermal-energy flux densities. A model of these flux densities due to hopping and drift processes is introduced for a random potential varying slowly comp...

  19. On Mathematical Modeling Of Quantum Systems

    International Nuclear Information System (INIS)

    The world of physical systems at the most fundamental levels is replete with efficient, interesting models possessing sufficient ability to represent the reality to a considerable extent. So far, quantum mechanics (QM) forming the basis of almost all natural phenomena, has found beyond doubt its intrinsic ingenuity, capacity and robustness to stand the rigorous tests of validity from and through appropriate calculations and experiments. No serious failures of quantum mechanical predictions have been reported, yet. However, Albert Einstein, the greatest theoretical physicist of the twentieth century and some other eminent men of science have stated firmly and categorically that QM, though successful by and large, is incomplete. There are classical and quantum reality models including those based on consciousness. Relativistic quantum theoretical approaches to clearly understand the ultimate nature of matter as well as radiation have still much to accomplish in order to qualify for a final theory of everything (TOE). Mathematical models of better, suitable character as also strength are needed to achieve satisfactory explanation of natural processes and phenomena. We, in this paper, discuss some of these matters with certain apt illustrations as well.

  20. On Mathematical Modeling Of Quantum Systems

    Science.gov (United States)

    Achuthan, P.; Narayanankutty, Karuppath

    2009-07-01

    The world of physical systems at the most fundamental levels is replete with efficient, interesting models possessing sufficient ability to represent the reality to a considerable extent. So far, quantum mechanics (QM) forming the basis of almost all natural phenomena, has found beyond doubt its intrinsic ingenuity, capacity and robustness to stand the rigorous tests of validity from and through appropriate calculations and experiments. No serious failures of quantum mechanical predictions have been reported, yet. However, Albert Einstein, the greatest theoretical physicist of the twentieth century and some other eminent men of science have stated firmly and categorically that QM, though successful by and large, is incomplete. There are classical and quantum reality models including those based on consciousness. Relativistic quantum theoretical approaches to clearly understand the ultimate nature of matter as well as radiation have still much to accomplish in order to qualify for a final theory of everything (TOE). Mathematical models of better, suitable character as also strength are needed to achieve satisfactory explanation of natural processes and phenomena. We, in this paper, discuss some of these matters with certain apt illustrations as well.

  1. Time fractional development of quantum systems

    International Nuclear Information System (INIS)

    In this study, the effect of time fractionalization on the development of quantum systems is taken under consideration by making use of fractional calculus. In this context, a Mittag-Leffler function is introduced as an important mathematical tool in the generalization of the evolution operator. In order to investigate the time fractional evolution of the quantum (nano) systems, time fractional forms of motion are obtained for a Schroedinger equation and a Heisenberg equation. As an application of the concomitant formalism, the wave functions, energy eigenvalues, and probability densities of the potential well and harmonic oscillator are time fractionally obtained via the fractional derivative order ?, which is a measure of the fractality of time. In the case ?=1, where time becomes homogenous and continuous, traditional physical conclusions are recovered. Since energy and time are conjugate to each other, the fractional derivative order ? is relevant to time. It is understood that the fractionalization of time gives rise to energy fluctuations of the quantum (nano) systems.

  2. Construction of a quantum repeater based on a quantum dot in an optical microcavity system

    International Nuclear Information System (INIS)

    We investigate an efficient quantum repeater protocol based on quantum dots (QDs) and optical microcavity coupled systems. The proposed system can be used for long-distance quantum entanglement distribution, exploiting the interaction between single photons and QDs embedded in optical microcavities. We present the entanglement generation and entanglement swapping modules with QDs in microcavity systems and generalize it to quantum repeaters. The utilization of QDs and coupled cavities leads to a high success probability for the generation of entanglement. By using current and near future technology, entanglement with a high fidelity can be achieved and robust quantum communication over long-distance channels is feasible. (letters)

  3. Solving systems of linear equations on a quantum computer

    OpenAIRE

    Barz, Stefanie; Kassal, Ivan; Ringbauer, Martin; Lipp, Yannick Ole; Dakic, Borivoje; Aspuru-guzik, Ala?n; Walther, Philip

    2013-01-01

    Systems of linear equations are used to model a wide array of problems in all fields of science and engineering. Recently, it has been shown that quantum computers could solve linear systems exponentially faster than classical computers, making for one of the most promising applications of quantum computation. Here, we demonstrate this quantum algorithm by implementing various instances on a photonic quantum computing architecture. Our implementation involves the application...

  4. Models and Feedback Stabilization of Open Quantum Systems

    OpenAIRE

    Rouchon, Pierre

    2014-01-01

    At the quantum level, feedback-loops have to take into account measurement back-action. We present here the structure of the Markovian models including such back-action and sketch two stabilization methods: measurement-based feedback where an open quantum system is stabilized by a classical controller; coherent or autonomous feedback where a quantum system is stabilized by a quantum controller with decoherence (reservoir engineering). We begin to explain these models and met...

  5. Phase transitions in quantum Hall multiple layer systems

    Energy Technology Data Exchange (ETDEWEB)

    Pusep, Yu A.; Fernandes dos Santos, L. [Instituto de Fisica de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP (Brazil); Smirnov, D. [National High Magnetic Field Laboratory, Tallahassee, FL 32312 (United States); Bakarov, A. K.; Toropov, A. I. [Institute of Semiconductor Physics, Novosibirsk 630090 (Russian Federation)

    2013-12-04

    Polarized photoluminescence from multiple well electron systems was studied in the regime of the integer quantum Hall effect. Two quantum Hall ferromagnetic ground states assigned to the uncorrelated miniband quantum Hall state and to the spontaneous interwell phase coherent dimer quantum Hall state were observed. The photoluminescence associated with these states exhibits features caused by finite-size skyrmions. The depolarization of the ferromagnetic ground state was observed in bilayer system.

  6. Electrical control of spontaneous emission and strong coupling for a single quantum dot

    DEFF Research Database (Denmark)

    Laucht, A.; Hofbauer, F.

    2009-01-01

    We report the design, fabrication and optical investigation of electrically tunable single quantum dots—photonic crystal defect nanocavities operating in both the weak and strong coupling regimes of the light–matter interaction. Unlike previous studies where the dot–cavity spectral detuning was varied by changing the lattice temperature, or by the adsorption of inert gases at low temperatures, we demonstrate that the quantum-confined Stark effect can be employed to quickly and reversibly switch the dot–cavity coupling simply by varying a gate voltage. Our results show that exciton transitions from individual dots can be tuned by4 meV relative to the nanocavity mode before the emission quenches due to carrier tunneling escape. This range is much larger than the typical linewidth of the high-Q cavity modes (100?eV) allowing us to explore and contrast regimes where the dots couple to the cavity or decay by spontaneous emission into the two-dimensional photonic bandgap. In the weak-coupling regime, we show that the dot spontaneous emission rate can be tuned using a gate voltage, with Purcell factors>7. New information is obtained on the nature of the dot–cavity coupling in the weak coupling regime, and electrical control of zerodimensional polaritons is demonstrated for the highest-Q cavities (Q > 12 000). Vacuum Rabi splittings up to 120?eV are observed, larger than the linewidths of either the decoupled exciton ( 6 40?eV) or cavity mode. These observations represent a voltage switchable optical nonlinearity at the single photon level, paving the way towards on-chip dot-based nano-photonic devices that can be integrated with passive optical components.

  7. Seniority in quantum many-body systems

    International Nuclear Information System (INIS)

    The use of the seniority quantum number in many-body systems is reviewed. A brief summary is given of its introduction by Racah in the context of atomic spectroscopy. Several extensions of Racah's original idea are discussed: seniority for identical nucleons in a single-j shell, its extension to the case of many, non-degenerate j shells and to systems with neutrons and protons. To illustrate its usefulness to this day, a recent application of seniority is presented in Bose-Einstein condensates of atoms with spin.

  8. Many-body Wigner quantum systems

    International Nuclear Information System (INIS)

    We present examples of many-body Wigner quantum systems. The position and the momentum operators RA and PA, A = 1, ..., n + 1, of the particles are noncanonical and are chosen so that Heisenberg and the Hamiltonian equations are identical. The spectrum of the energy with respect to the centre of mass is equidistant and has finite number of energy levels. The composite system is spread in a small volume around the centre of mass and within it the geometry is noncommutative. The underlying statistics is an exclusion statistics. (author). 23 refs

  9. A kicked quantum system including the continuum

    International Nuclear Information System (INIS)

    The behaviour of a quantum particle in a separable one-term potential with three-dimensional form factor is investigated under the influence of an external force which alters the potential strength periodically or quasiperiodically. The unperturbed system possesses one bound state and a continuum of scattering states which has treated almost analytically. First numerical results, fully including the emission channel, indicate, for certain parameter combinations with commensurate or incommensurate frequency ratios, either a regular or an irregular dynamical behaviour of the system. 17 refs.; 3 figs

  10. Twisted CFT and bilayer Quantum Hall systems

    CERN Document Server

    Cristofano, G; Naddeo, A

    2003-01-01

    We identify the impurity interactions of the recently proposed CFT description of a bilayer Quantum Hall system at filling nu =m/(pm+2) in Mod. Phys. Lett. A 15 (2000) 1679. Such a CFT is obtained by m-reduction on the one layer system, with a resulting pairing symmetry and presence of quasi-holes. For the m=2 case boundary terms are shown to describe an impurity interaction which allows for a localized tunnel of the Kondo problem type. The presence of an anomalous fixed point is evidenced at finite coupling which is unstable with respect to unbalance and flows to a vacuum state with no quasi-holes.

  11. Teaching the environment to control quantum systems

    International Nuclear Information System (INIS)

    A nonequilibrium, generally time-dependent, environment whose form is deduced by optimal learning control is shown to provide a means for incoherent manipulation of quantum systems. Incoherent control by the environment (ICE) can serve to steer a system from an initial state to a target state, either mixed or in some cases pure, by exploiting dissipative dynamics. Implementing ICE with either incoherent radiation or a gas as the control is explicitly considered, and the environmental control is characterized by its distribution function. Simulated learning control experiments are performed with simple illustrations to find the shape of the optimal nonequilibrium distribution function that best affects the posed dynamical objectives

  12. EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems

    Science.gov (United States)

    Dodonov, Victor V.; Man'ko, Margarita A.

    2010-09-01

    Although time-dependent quantum systems have been studied since the very beginning of quantum mechanics, they continue to attract the attention of many researchers, and almost every decade new important discoveries or new fields of application are made. Among the impressive results or by-products of these studies, one should note the discovery of the path integral method in the 1940s, coherent and squeezed states in the 1960-70s, quantum tunneling in Josephson contacts and SQUIDs in the 1960s, the theory of time-dependent quantum invariants in the 1960-70s, different forms of quantum master equations in the 1960-70s, the Zeno effect in the 1970s, the concept of geometric phase in the 1980s, decoherence of macroscopic superpositions in the 1980s, quantum non-demolition measurements in the 1980s, dynamics of particles in quantum traps and cavity QED in the 1980-90s, and time-dependent processes in mesoscopic quantum devices in the 1990s. All these topics continue to be the subject of many publications. Now we are witnessing a new wave of interest in quantum non-stationary systems in different areas, from cosmology (the very first moments of the Universe) and quantum field theory (particle pair creation in ultra-strong fields) to elementary particle physics (neutrino oscillations). A rapid increase in the number of theoretical and experimental works on time-dependent phenomena is also observed in quantum optics, quantum information theory and condensed matter physics. Time-dependent tunneling and time-dependent transport in nano-structures are examples of such phenomena. Another emerging direction of study, stimulated by impressive progress in experimental techniques, is related to attempts to observe the quantum behavior of macroscopic objects, such as mirrors interacting with quantum fields in nano-resonators. Quantum effects manifest themselves in the dynamics of nano-electromechanical systems; they are dominant in the quite new and very promising field of circuit QED. Another rapidly growing research field (although its origin can be traced to the beginning of the 1980s) is the quantum control of evolution at the microscopic level. These examples show that quantum non-stationary systems continue to be a living and very interesting part of quantum physics, uniting researchers from many different areas. Thus it is no mere chance that several special scientific meetings devoted to these topics have been organized recently. One was the international seminar 'Time-Dependent Phenomena in Quantum Mechanics' organized by Manfred Kleber and Tobias Kramer in 2007 at Blaubeuren, Germany. The proceedings of that event were published in 2008 as volume 99 of Journal of Physics: Conference Series. Another recent meeting was the International Workshop on Quantum Non-Stationary Systems, held on 19-23 October 2009 at the International Center for Condensed Matter Physics (ICCMP) in Brasilia, Brazil. It was organized and directed by Victor Dodonov (Institute of Physics, University of Brasilia, Brazil), Vladimir Man'ko (P N Lebedev Physical Institute, Moscow, Russia) and Salomon Mizrahi (Physics Department, Federal University of Sao Carlos, Brazil). This event was accompanied by a satellite workshop 'Quantum Dynamics in Optics and Matter', organized by Salomon Mizrahi and Victor Dodonov on 25-26 October 2009 at the Physics Department of the Federal University of Sao Carlos, Brazil. These two workshops, supported by the Brazilian federal agencies CAPES and CNPq and the local agencies FAP-DF and FAPESP, were attended by more than 120 participants from 16 countries. Almost 50 invited talks and 20 poster presentations covered a wide area of research in quantum mechanics, quantum optics and quantum information. This special issue of CAMOP/Physica Scripta contains contributions presented by some invited speakers and participants of the workshop in Brasilia. Although they do not cover all of the wide spectrum of problems related to quantum non-stationary systems, they nonetheless show some general trends. However, readers should remember that thes

  13. Controllability of multi-partite quantum systems and selective excitation of quantum dots

    International Nuclear Information System (INIS)

    We consider the degrees of controllability of multi-partite quantum systems, as well as necessary and sufficient criteria for each case. The results are applied to the problem of simultaneous control of an ensemble of quantum dots with a single laser pulse. Finally, we apply optimal control techniques to demonstrate selective excitation of individual dots for a simultaneously controllable ensemble of quantum dots

  14. Formulation and Application of Quantum Monte Carlo Method to Fractional Quantum Hall Systems

    OpenAIRE

    Suzuki, Sei; Nakajima, Tatsuya

    2003-01-01

    Quantum Monte Carlo method is applied to fractional quantum Hall systems. The use of the linear programming method enables us to avoid the negative-sign problem in the Quantum Monte Carlo calculations. The formulation of this method and the technique for avoiding the sign problem are described. Some numerical results on static physical quantities are also reported.

  15. Algebraic Approach to Interacting Quantum Systems

    CERN Document Server

    Batista, C D

    2002-01-01

    We present an algebraic framework for interacting extended quantum systems that enable us to study complex phenomena characterized by the coexistence and competition of various broken symmetry states. We show how to connect different (spin-particle-gauge) {\\it languages} by means of exact mappings (isomorphisms) that we name {\\it dictionaries}, and prove a fundamental theorem that establishes when two arbitrary languages can be connected. These mappings serve to unravel symmetries which are hidden in one representation and are manifest in another. In addition, we show that by changing the language of a given model, it is possible to link seemingly unrelated physical phenomena, leading to a notion of {\\it universality} or equivalence. By introducing the concept of {\\it hierarchical languages}, we determine the quantum phase diagram of lattice models (previously unsolved), and unveil hidden order parameters to explore new states of matter. Hierarchical languages constitute also an essential tool to provide a un...

  16. Propagation of Disturbances in Degenerate Quantum Systems

    CERN Document Server

    Chancellor, Nicholas

    2011-01-01

    Disturbances in gapless quantum many-body models are known to travel an unlimited distance throughout the system. Here, we explore this phenomenon in finite clusters with degenerate ground states. The specific model studied here is the one-dimensional J1-J2 Heisenberg Hamiltonian at and close to the Majumdar-Ghosh point. Both open and periodic boundary conditions are considered. Quenches are performed using a local magnetic field. The degenerate Majumdar-Ghosh ground state allows disturbances which carry quantum entanglement to propagate throughout the system, and thus dephase the entire system within the degenerate subspace. These disturbances can also carry polarization, but not energy, as all energy is stored locally. The local evolution of the part of the system where energy is stored drives the rest of the system through long-range entanglement. We also examine approximations for the ground state of this Hamiltonian in the strong field limit, and study how couplings away from the Majumdar-Ghosh point aff...

  17. Description of an open quantum mechanical system

    International Nuclear Information System (INIS)

    A model for the description of an open quantum mechanical many-particle system is formulated. It starts from the shell model and treats the continuous states by a coupled channels method. The mixing of the discrete shell model states via the continuum of decay channels results in the genuine decaying states of the system. These states are eigenstates of a non-Hermitean Hamilton operator the eigenvalues of which give both the energies and the widths of the states. All correlations between two particles which are caused by the two-particle residual interaction, are taken into account including those via the continuum. In the formalism describing the open quantum mechanical system, the coupling between the system and its environment appears nonlinearly. If the resonance states start to overlap, a redistribution of the spectroscopic values ('trapping effect') takes place. As a result, the complexity of the system is reduced at high level density, structures in space and time are formed. This redistribution describes, on the one hand, the transition from the well-known nuclear properties at low level density to those at high level density and fits, on the other hand, into the concept of selforganization. (orig.)

  18. Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems

    OpenAIRE

    Ma X.-S.; Dakic B.; Naylor W.; Zeilinger A.; Walther P.

    2010-01-01

    Quantum simulators are controllable quantum systems that can reproduce the dynamics of the system of interest, which are unfeasible for classical computers. Recent developments in quantum technology enable the precise control of individual quantum particles as required for studying complex quantum systems. Particularly, quantum simulators capable of simulating frustrated Heisenberg spin systems provide platforms for understanding exotic matter such as high-temperature superc...

  19. Some aspects of quantum entanglement for CAR systems

    OpenAIRE

    Moriya, Hajime

    2001-01-01

    We study quantum entanglement for CAR systems. Since the subsystems of disjoint regions are not independent for CAR systems, there are some distinct features of quantum entanglement which cannot be observed in tensor product systems. We show the failure of triangle inequality of von Neumann and the possible increase of entanglement degree under operations done in a local region for a bipartite CAR system.

  20. The transition to chaos conservative classical systems and quantum manifestations

    CERN Document Server

    Reichl, Linda E

    2004-01-01

    This book provides a thorough and comprehensive discussion of classical and quantum chaos theory for bounded systems and for scattering processes Specific discussions include • Noether’s theorem, integrability, KAM theory, and a definition of chaotic behavior • Area-preserving maps, quantum billiards, semiclassical quantization, chaotic scattering, scaling in classical and quantum dynamics, dynamic localization, dynamic tunneling, effects of chaos in periodically driven systems and stochastic systems • Random matrix theory and supersymmetry The book is divided into several parts Chapters 2 through 4 deal with the dynamics of nonlinear conservative classical systems Chapter 5 and several appendices give a thorough grounding in random matrix theory and supersymmetry techniques Chapters 6 and 7 discuss the manifestations of chaos in bounded quantum systems and open quantum systems respectively Chapter 8 focuses on the semiclassical description of quantum systems with underlying classical chaos, and Chapt...

  1. A dynamical relation between dual finite temperature classical and zero temperature quantum systems: quantum critical jamming and quantum dynamical heterogeneities

    CERN Document Server

    Nussinov, Zohar; Graf, Matthias J; Balatsky, Alexander V

    2013-01-01

    Many electronic systems exhibit striking features in their dynamical response over a prominent range of experimental parameters. While there are empirical suggestions of particular increasing length scales that accompany such transitions, this identification is not universal. To better understand such behavior in quantum systems, we extend a known mapping (earlier studied in stochastic, or supersymmetric, quantum mechanics) between finite temperature classical Fokker-Planck systems and related quantum systems at zero temperature to include general non-equilibrium dynamics. Unlike Feynman mappings or stochastic quantization methods (or holographic type dualities), the classical systems that we consider and their quantum duals reside in the same number of space-time dimensions. The upshot of our exact result is that a Wick rotation relates (i) dynamics in general finite temperature classical dissipative systems to (ii) zero temperature dynamics in the corresponding dual many-body quantum systems. Using this cor...

  2. Using a quantum dot system to realize perfect state transfer

    International Nuclear Information System (INIS)

    There are some disadvantages to Nikolopoulos et al.'s protocol [Nikolopoulos G M, Petrosyan D and Lambropoulos P 2004 Europhys. Lett. 65 297] where a quantum dot system is used to realize quantum communication. To overcome these disadvantages, we propose a protocol that uses a quantum dot array to construct a four-qubit spin chain to realize perfect quantum state transfer (PQST). First, we calculate the interaction relation for PQST in the spin chain. Second, we review the interaction between the quantum dots in the Heitler—London approach. Third, we present a detailed program for designing the proper parameters of a quantum dot array to realize PQST. (general)

  3. Quantum Rotational Effects in Nanomagnetic Systems

    Science.gov (United States)

    O'Keeffe, Michael F.

    Quantum tunneling of the magnetic moment in a nanomagnet must conserve the total angular momentum. For a nanomagnet embedded in a rigid body, reversal of the magnetic moment will cause the body to rotate as a whole. When embedded in an elastic environment, tunneling of the magnetic moment will cause local elastic twists of the crystal structure. In this thesis, I will present a theoretical study of the interplay between magnetization and rotations in a variety of nanomagnetic systems which have some degree of rotational freedom. We investigate the effect of rotational freedom on the tunnel splitting of a nanomagnet which is free to rotate about its easy axis. Calculating the exact instanton of the coupled equations of motion shows that mechanical freedom of the particle renormalizes the easy axis anisotropy, increasing the tunnel splitting. To understand magnetization dynamics in free particles, we study a quantum mechanical model of a tunneling spin embedded in a rigid rotor. The exact energy levels for a symmetric rotor exhibit first and second order quantum phase transitions between states with different values the magnetic moment. A quantum phase diagram is obtained in which the magnetic moment depends strongly on the moments of inertia. An intrinsic contribution to decoherence of current oscillations of a flux qubit must come from the angular momentum it transfers to the surrounding body. Within exactly solvable models of a qubit embedded in a rigid body and an elastic medium, we show that slow decoherence is permitted if the solid is macroscopically large. The spin-boson model is one of the simplest representations of a two-level system interacting with a quantum harmonic oscillator, yet has eluded a closed-form solution. I investigate some possible approaches to understanding its spectrum. The Landau-Zener dynamics of a tunneling spin coupled to a torsional resonator show that for certain parameter ranges the system exhibits multiple Landau-Zener transitions. These transitions coincide in time with changes in the oscillator dynamics. A large number of spins on a single oscillator coupled only through the in-phase oscillations behaves as a single large spin, greatly enhancing the spin-phonon coupling.

  4. Extending scientific computing system with structural quantum programming capabilities

    CERN Document Server

    Gawron, P; Miszczak, J A; Winiarczyk, R

    2010-01-01

    We present a basic high-level structures used for developing quantum programming languages. The presented structures are commonly used in many existing quantum programming languages and we use quantum pseudo-code based on QCL quantum programming language to describe them. We also present the implementation of introduced structures in GNU Octave language for scientific computing. Procedures used in the implementation are available as a package quantum-octave, providing a library of functions, which facilitates the simulation of quantum computing. This package allows also to incorporate high-level programming concepts into the simulation in GNU Octave and Matlab. As such it connects features unique for high-level quantum programming languages, with the full palette of efficient computational routines commonly available in modern scientific computing systems. To present the major features of the described package we provide the implementation of selected quantum algorithms. We also show how quantum errors can be...

  5. Quantum MIMO n-Systems and Conditions for Stability

    CERN Document Server

    Mansourbeigi, Seyed M H

    2009-01-01

    In this paper we present some conditions for the (strong) stabilizability of an n-D Quantum MIMO system P(X). It contains two parts. The first part is to introduce the n-D Quantum MIMO systems where the coefficients vary in the algebra of Q-meromorphic functions. Then we introduce some conditions for the stabilizability of these systems. The second part is to show that this Quantum system has the n-D system as its quantum limit and the results for the SISO,SIMO,MISO,MIMO are obtained again as special cases.

  6. Topological entanglement entropy in bilayer quantum Hall systems

    OpenAIRE

    Chung, Myung-Hoon

    2013-01-01

    We calculate the topological entanglement entropy in bilayer quantum Hall systems, dividing the set of quantum numbers into four parts. This topological entanglement entropy allows us to draw a phase diagram in the parameter space of layer separation and tunneling amplitude. We perform the finite size scaling analysis of the topological entanglement entropy in order to see the quantum phase transition clearly.

  7. Separable and entangled states of composite quantum systems Rigorous description

    CERN Document Server

    Majewski, A W

    1997-01-01

    We present a general description of separable states in Quantum Mechanics. In particular, our result gives an easy proof that inseparabitity (or entanglement) is a pure quantum (noncommutative) notion. This implies that distinction between separability and inseparabitity has sense only for composite systems consisting of pure quantum subsystems. Moreover, we provide the unified characterization of pure-state entanglement and mixed-state entanglement.

  8. Quantum-Classical Connection for Hydrogen Atom-Like Systems

    Science.gov (United States)

    Syam, Debapriyo; Roy, Arup

    2011-01-01

    The Bohr-Sommerfeld quantum theory specifies the rules of quantization for circular and elliptical orbits for a one-electron hydrogen atom-like system. This article illustrates how a formula connecting the principal quantum number "n" and the length of the major axis of an elliptical orbit may be arrived at starting from the quantum

  9. Superconvergent perturbation method for weak nonintegrable quantum systems

    International Nuclear Information System (INIS)

    Quantum canonical transformation is defined in comparison with classical case. The superconvergent perturbation method in quantum systems established by Scherer is briefly introduced in contrast with classical KAM theorem, and the relationship between this method and quantum canonical transformation is discussed. The physical implication of success and failure of this perturbation is studied with a simple example as an illustration

  10. Dissipative quantum systems and the heat capacity.

    Science.gov (United States)

    Dattagupta, S; Kumar, Jishad; Sinha, S; Sreeram, P A

    2010-03-01

    We present a detailed study of the quantum dissipative dynamics of a charged particle in a magnetic field. Our focus of attention is the effect of dissipation on the low- and high-temperature behaviors of the specific heat at constant volume. After providing a brief overview of two distinct approaches to the statistical mechanics of dissipative quantum systems, viz., the ensemble approach of Gibbs and the quantum Brownian motion approach due to Einstein, we present exact analyses of the specific heat. While the low-temperature expressions for the specific heat, based on the two approaches, are in conformity with power-law temperature dependence, predicted by the third law of thermodynamics, and the high-temperature expressions are in agreement with the classical equipartition theorem, there are surprising differences between the dependencies of the specific heat on different parameters in the theory, when calculations are done from these two distinct methods. In particular, we find puzzling influences of boundary confinement and the bath-induced spectral cutoff frequency. Further, when it comes to the issue of approach to equilibrium, based on the Einstein method, the way the asymptotic limit (t-->infinity) is taken seems to assume significance. PMID:20365726

  11. A neural-network-like quantum information processing system

    OpenAIRE

    Perus, Mitja; Bischof, Horst

    2003-01-01

    The Hopfield neural networks and the holographic neural networks are models which were successfully simulated on conventional computers. Starting with these models, an analogous fundamental quantum information processing system is developed in this article. Neuro-quantum interaction can regulate the "collapse"-readout of quantum computation results. This paper is a comprehensive introduction into associative processing and memory-storage in quantum-physical framework.

  12. Factorization of Dephasing Process in Quantum Open System

    OpenAIRE

    Gao, Y. B.; Sun, C. P

    2006-01-01

    The fluctuation-dissipation relation is well known for the quantum open system with energy dissipation. In this paper a similar underlying relation is found between the bath fluctuation and the dephasing of the quantum open system, of which energy is conserved, but the information is leaking into the bath. To obtain this relation we revisit the universal, but simple dephasing model with quantum non-demolition interaction between the bath and the open system. Then we show tha...

  13. Distinguishing Quantum and Classical Many-Body Systems

    OpenAIRE

    Kafri, Dvir; Taylor, Jacob

    2015-01-01

    Controllable systems relying on quantum behavior to simulate distinctly quantum models so far rely on increasingly challenging classical computing to verify their results. We develop a general protocol for confirming that an arbitrary many-body system, such as a quantum simulator, can entangle distant objects. The protocol verifies that distant qubits interacting separately with the system can become mutually entangled, and therefore serves as a local test that excitations o...

  14. Wigner Distribution Function for Open Quantum Systems

    Science.gov (United States)

    Baskoutas, S.

    Using the modified biorthonormal Heisenberg equations of motion for non-Hermitian (NH) Hamilton operators, in order to imply a consistent Lie-algebraic structure and also the equivalence between the Heisenberg and Schrödinger pictures, we have obtained the analytical form of the Wigner distribution function which is unavoidable complex. Its imaginary part accounts for the influence of additional degrees of freedom, which are always present in the phenomenological representation of dissipative systems through (NH) Hamiltonians. Applications of the above formalism can be found, for instance, in dissipative macroscopic quantum tunneling (MQT) effect for Josephson junctions, and in the dissipative tunneling of trapped atoms in optical crystals.

  15. Superconducting system for adiabatic quantum computing

    International Nuclear Information System (INIS)

    We study the Hamiltonian of a system of inductively coupled flux qubits, which has been theoretically proposed for adiabatic quantum computation to handle NP problems. We study the evolution of a basic structure consisting of three coupled rf-SQUIDs upon tuning the external flux bias, and we show that the adiabatic nature of the evolution is guaranteed by the presence of the single-SQUID gap. We further propose a scheme and the first realization of an experimental device suitable for verifying the theoretical results

  16. Superconducting system for adiabatic quantum computing

    Energy Technology Data Exchange (ETDEWEB)

    Corato, V [Dipartimento di Ingegneria dell' Informazione, Second University of Naples, 81031 Aversa (Italy); Roscilde, T [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (Canada); Ruggiero, B [Istituto di Cibernetica ' E.Caianiello' del CNR, I-80078, Pozzuoli (Italy); Granata, C [Istituto di Cibernetica ' E.Caianiello' del CNR, I-80078, Pozzuoli (Italy); Silvestrini, P [Dipartimento di Ingegneria dell' Informazione, Second University of Naples, 81031 Aversa (Italy)

    2006-06-01

    We study the Hamiltonian of a system of inductively coupled flux qubits, which has been theoretically proposed for adiabatic quantum computation to handle NP problems. We study the evolution of a basic structure consisting of three coupled rf-SQUIDs upon tuning the external flux bias, and we show that the adiabatic nature of the evolution is guaranteed by the presence of the single-SQUID gap. We further propose a scheme and the first realization of an experimental device suitable for verifying the theoretical results.

  17. Spectra of nonlocally bound quantum systems

    Science.gov (United States)

    Sowa, A.

    2011-06-01

    We discuss a class of nonlinear and nonlocal models for the dynamics of a composite quantum system. The models in question depend on the following constituents: on two subsystem Hamiltonians (denoted by H and ?), an analytic function ( f), and a real parameter ( s). As demonstrated elsewhere before, the stationary states can be described in these models fairly explicitly. In this article, we build upon that result, and discuss the topological as well as statistical characteristics of the spectra. Here, we concentrate on the special case f = log. It turns out that an energy spectrum of the nonlocally bound system substantially differs from that of its components. Indeed, we show rigorously that, if H is the harmonic oscillator and ? is completely degenerate with one energy level, then the energy spectrum of the composite system has the topology of the Cantor set (for s > 2). In addition, we show that, if H is replaced by the logarithm of the harmonic oscillator, then the spectrum consists of finitely many intervals separated by gaps (for s sufficiently large). In the last case, the key analytic object is the series ? n - s . In particular, as an interesting offshoot, this structure furnishes a nontautological immersion of fundamental number-theoretic functions into the quantum formalism.

  18. Quantum Systems based upon Galois Fields: from Sub-quantum to Super-quantum Correlations

    OpenAIRE

    Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; Takeuchi, Tatsu

    2013-01-01

    In this talk we describe our recent work on discrete quantum theory based on Galois fields. In particular, we discuss how discrete quantum theory sheds new light on the foundations of quantum theory and we review an explicit model of super-quantum correlations we have constructed in this context. We also discuss the larger questions of the origins and foundations of quantum theory, as well as the relevance of super-quantum theory for the quantum theory of gravity.

  19. Software-defined quantum communication systems

    Science.gov (United States)

    Humble, Travis S.; Sadlier, Ronald J.

    2014-08-01

    Quantum communication (QC) systems harness modern physics through state-of-the-art optical engineering to provide revolutionary capabilities. An important concern for QC engineering is designing and prototyping these systems to evaluate the proposed capabilities. We apply the paradigm of software-defined communication for engineering QC systems to facilitate rapid prototyping and prototype comparisons. We detail how to decompose QC terminals into functional layers defining hardware, software, and middleware concerns, and we describe how each layer behaves. Using the superdense coding protocol as an example, we describe implementations of both the transmitter and receiver, and we present results from numerical simulations of the behavior. We conclude that the software-defined QC provides a robust framework in which to explore the large design space offered by this new regime of communication.

  20. Asymptotically open quantum systems; Asymptotisch offene Quantensysteme

    Energy Technology Data Exchange (ETDEWEB)

    Westrich, M.

    2008-04-15

    In the present thesis we investigate the structure of time-dependent equations of motion in quantum mechanics.We start from two coupled systems with an autonomous equation of motion. A limit, in which the dynamics of one of the two systems has a decoupled evolution and imposes a non-autonomous evolution for the second system is identified. A result due to K. Hepp that provides a classical limit for dynamics turns out to be part and parcel for this limit and is generalized in our work. The method introduced by J.S. Howland for the solution of the time-dependent Schroedinger equation is interpreted as such a limit. Moreover, we associate our limit with the modern theory of quantization. (orig.)

  1. Statistical analysis of finite equilibrium quantum systems

    Science.gov (United States)

    Lukkarinen, Jani Markus

    Finite systems are composed of so few particles that the thermodynamical limit cannot be applied accurately to their analysis and such systems play a crucial role in biological life and possibly soon as well in electronics. We consider here generalizations for finite quantum systems of the statistical methods leading to the standard thermodynamics and possible practical implementations of these methods in numerical analysis. The emphasis is on mathematical rigor and on an estimation of the errors induced by the approximation schemes we use. Two statistical approaches have been considered here. One is the use of more general ensembles than the standard canonical Gibbs ensemble, and we discuss methods for a practical evaluation of expectation values in these ensembles. We derive a saddle point approximation which simplifies the evaluation process and we present methods for an estimation of the accuracy of the saddle point approximation. The saddle point approximation leads also naturally to the so called canonical Tsallis statistics which have been developed recently. We discuss briefly how this approximation might be used in practical applications. The second approach involves a lattice approximation of quantum mechanical systems. We prove rigorously that the lattice approximation developed by Feynman converges for a system composed of non-relativistic bosons and fermions when there is a potential which prevents the particles from escaping to infinity. The proof contains a generalization of the Golden-Thompson-Symanzik inequality and this generalization can be used for inspection of the correlation effects induced by the indistinguishability of the particles. We derive two sets of lattice operators which can be used for measuring the energy moments of these systems and we discuss a numerical algorithm which enables an estimation of these moments and of the density of energy states.

  2. Characterizing and quantifying frustration in quantum many-body systems.

    Science.gov (United States)

    Giampaolo, S M; Gualdi, G; Monras, A; Illuminati, F

    2011-12-23

    We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identified as geometrically unfrustrated and subject to frustration of purely quantum origin. Our results therefore establish a unified framework for studying the intertwining of geometric and quantum contributions to frustration. PMID:22243147

  3. Observation of macroscopic quantum tunnelling in a rf superconducting quantum interference device system

    Energy Technology Data Exchange (ETDEWEB)

    Corato, V [Seconda Universita di Napoli, Dipartimento di Ingegneria dell' Informazione and INFM, I-81031 Aversa (Italy); Rombetto, S [Seconda Universita di Napoli, Dipartimento di Ingegneria dell' Informazione and INFM, I-81031 Aversa (Italy); Silvestrini, P [Seconda Universita di Napoli, Dipartimento di Ingegneria dell' Informazione and INFM, I-81031 Aversa (Italy); Granata, C [Istituto di Cibernetica ' E. Caianiello' CNR, I-80078 Pozzuoli (Italy); Russo, R [Istituto di Cibernetica ' E. Caianiello' CNR, I-80078 Pozzuoli (Italy); Ruggiero, B [Istituto di Cibernetica ' E. Caianiello' CNR, I-80078 Pozzuoli (Italy)

    2004-05-01

    We present the experimental observation of the effects of macroscopic quantum tunnelling in a SQUID device, consisting of a rf SQUID coupled to a readout system based on a dc SQUID sensor. Data on the decay rate from the metastable flux states of a rf SQUID are reported, both in the classical and quantum regimes. The low dissipation level and the good insulation of the probe from external noise are encouraging in view of building a macroscopic quantum coherent system.

  4. Observation of macroscopic quantum tunnelling in a rf superconducting quantum interference device system

    International Nuclear Information System (INIS)

    We present the experimental observation of the effects of macroscopic quantum tunnelling in a SQUID device, consisting of a rf SQUID coupled to a readout system based on a dc SQUID sensor. Data on the decay rate from the metastable flux states of a rf SQUID are reported, both in the classical and quantum regimes. The low dissipation level and the good insulation of the probe from external noise are encouraging in view of building a macroscopic quantum coherent system

  5. Sistemas cuánticos individuales / Individual Quantum Systems

    Scientific Electronic Library Online (English)

    Jorge A., Campos.

    2013-01-01

    Full Text Available El Premio Nobel de Física 2012 fue otorgado a Serge Haroche y David J.Wineland por métodos experimentales innovadores que permiten la medición y manipulación de sistemas cuánticos individuales. La primera estudia fotones midiéndolos con átomos, y la segunda estudia iones que manipula con fotones. La [...] s aplicaciones tanto potenciales como ya materializadas para el manejo de sistemas cuánticos están en la vía de revolucionar no solamente la tecnología sino la forma en la que comprendemos el mundo microscópico. Abstract in english The Nobel Prize in Physics for 2012 was awarded to Serge Haroche and David J. Wineland "for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems". The former deals with photons and measures them with atoms and the latter deals with ions and manipu [...] lates them with photons. The potential and actual applications of handling quantum systems are on their way to revolutionize not only technology but the way we understand the microscopic world.

  6. Quantum groups and nonabelian braiding in quantum Hall systems

    CERN Document Server

    Slingerland, J K

    2001-01-01

    Wave functions describing quasiholes and electrons in nonabelian quantum Hall states are well known to correspond to conformal blocks of certain coset conformal field theories. In this paper we explicitly analyse the algebraic structure underlying the braiding properties of these conformal blocks. We treat the electrons and the quasihole excitations as localised particles carrying charges related to a quantum group that is determined explicitly for the cases of interest. The quantum group description naturally allows one to analyse the braid group representations carried by the multi-particle wave functions. As an application, we construct the nonabelian braid group representations which govern the exchange of quasiholes in the fractional quantum Hall effect states that have been proposed by N. Read and E. Rezayi, recovering the results of C. Nayak and F. Wilczek for the Pfaffian state as a special case.

  7. Capacities of linear quantum optical systems

    CERN Document Server

    Lupo, Cosmo; Pirandola, Stefano; Mancini, Stefano; Lloyd, Seth

    2012-01-01

    A wide variety of communication channels employ the quantized electromagnetic field to convey information. Their communication capacity crucially depends on losses associated to spatial characteristics of the channel such as diffraction and antenna design. Here we focus on the communication via a finite pupil, showing that diffraction is formally described as a memory channel. By exploiting this equivalence we then compute the communication capacity of an optical refocusing system, modeled as a converging lens. Even though loss of information originates from the finite pupil of the lens, we show that the presence of the refocusing system can substantially enhance the communication capacity. We mainly concentrate on communication of classical information, the extension to quantum information being straightforward.

  8. On the kinetic theory of quantum systems

    International Nuclear Information System (INIS)

    The contents of this thesis which deals with transport phenomena of specific gases, plasmas and fluids, can be separated into two distinct parts. In the first part a statistical way is suggested to estimate the neutrino mass. Herefore use is made of the fact that massive neutrinos possess a non-zero volume viscosity in contrast with massless neutrinos. The second part deals with kinetic theory of strongly condensed quantum systems of which examples in nature are: liquid Helium, heavy nuclei, electrons in a metal and the interior of stars. In degenerate systems fermions in general interact strongly so that ordinary kinetic theory is not directly applicable. For such cases Landau-Fermi-liquid theory, in which the strongly interacting particles are replaced by much weaker interacting quasiparticles, proved to be very useful. A method is developed in this theory to calculate transport coefficients. Applications of this method on liquid 3Helium yield surprisingly good agreement with experimental results for thermal conductivities. (Auth.)

  9. Quantum simulation. Coherent imaging spectroscopy of a quantum many-body spin system.

    Science.gov (United States)

    Senko, C; Smith, J; Richerme, P; Lee, A; Campbell, W C; Monroe, C

    2014-07-25

    Quantum simulators, in which well-controlled quantum systems are used to reproduce the dynamics of less understood ones, have the potential to explore physics inaccessible to modeling with classical computers. However, checking the results of such simulations also becomes classically intractable as system sizes increase. Here, we introduce and implement a coherent imaging spectroscopic technique, akin to magnetic resonance imaging, to validate a quantum simulation. We use this method to determine the energy levels and interaction strengths of a fully connected quantum many-body system. Additionally, we directly measure the critical energy gap near a quantum phase transition. We expect this general technique to become a verification tool for quantum simulators once experiments advance beyond proof-of-principle demonstrations and exceed the resources of conventional computers. PMID:25061207

  10. Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems

    International Nuclear Information System (INIS)

    The capability of faithfully transmit quantum states and entanglement through quantum channels is one of the key requirements for the development of quantum devices. Different solutions have been proposed to accomplish such a challenging task, which, however, require either an ad hoc engineering of the internal interactions of the physical system acting as the channel or specific initialization procedures. Here we show that optimal dynamics for efficient quantum-state and entanglement transfer can be attained in generic quantum systems with homogeneous interactions by tuning the coupling between the system and the two attached qubits. We devise a general procedure to determine the optimal coupling, and we explicitly implement it in the case of a channel consisting of a spin-(1/2)XY chain. The quality of quantum-state and entanglement transfer is found to be very good and, remarkably, almost independent of the channel length.

  11. Correlations, quantum entanglement and interference in nanoscopic systems

    International Nuclear Information System (INIS)

    Several of the most interesting quantum effects can or could be observed in nanoscopic systems. For example, the effect of strong correlations between electrons and of quantum interference can be measured in transport experiments through quantum dots, wires, individual molecules and rings formed by large molecules or arrays of quantum dots. In addition, quantum coherence and entanglement can be clearly observed in quantum corrals. In this paper we present calculations of transport properties through Aharonov–Bohm strongly correlated rings where the characteristic phenomenon of charge–spin separation is clearly observed. Additionally quantum interference effects show up in transport through ?-conjugated annulene molecules producing important effects on the conductance for different source–drain configurations, leading to the possibility of an interesting switching effect. Finally, elliptic quantum corrals offer an ideal system to study quantum entanglement due to their focalizing properties. Because of an enhanced interaction between impurities localized at the foci, these systems also show interesting quantum dynamical behaviour and offer a challenging scenario for quantum information experiments

  12. Constructing quantum games from a system of Bell's inequalities

    International Nuclear Information System (INIS)

    We report constructing quantum games directly from a system of Bell's inequalities using Arthur Fine's analysis published in early 1980s. This analysis showed that such a system of inequalities forms a set of both necessary and sufficient conditions required to find a joint distribution function compatible with a given set of joint probabilities, in terms of which the system of Bell's inequalities is usually expressed. Using the setting of a quantum correlation experiment for playing a quantum game, and considering the examples of Prisoners' Dilemma and Matching Pennies, we argue that this approach towards constructing quantum games addresses some of their well-known criticisms.

  13. Quantum discord in nuclear magnetic resonance systems at room temperature

    OpenAIRE

    Maziero, J.; Auccaise, R.; Celeri, L. C.; Soares-pinto, D. O.; Deazevedo, E. R.; Bonagamba, T. J.; Sarthour, R. S.; Oliveira, I. S.; Serra, R. M.

    2012-01-01

    We review the theoretical and the experimental aspects regarding the quantification and identification of quantum correlations in liquid-state nuclear magnetic resonance (NMR) systems at room temperature. We start by introducing a formal method to obtain the quantum discord and its classical counterpart in systems described by a deviation matrix. Next, we apply such a method to experimentally demonstrate that the peculiar dynamics, with a sudden change behaviour, of quantum ...

  14. Optimal control of population transfer in Markovian open quantum systems

    OpenAIRE

    Wei CUI; Xi, Zairong; Pan, Yu

    2010-01-01

    There has long been interest to control the transfer of population between specified quantum states. Recent work has optimized the control law for closed system population transfer by using a gradient ascent pulse engineer- ing algorithm [1]. Here, a spin-boson model consisting of two-level atoms which interact with the dissipative environment, is investigated. With opti- mal control, the quantum system can invert the populations of the quantum logic states. The temperature ...

  15. Generalized topological covering systems on quantum events' structures

    Energy Technology Data Exchange (ETDEWEB)

    Zafiris, Elias [Department of Mathematics, University of Athens, Panepistimiopolis, 15784 Athens (Greece)

    2006-02-10

    Homologous operational localization processes are effectuated in terms of generalized topological covering systems on structures of physical events. We study localization systems of quantum events' structures by means of Gtothendieck topologies on the base category of Boolean events' algebras. We show that a quantum events algebra is represented by means of a Grothendieck sheaf-theoretic fibred structure, with respect to the global partial order of quantum events' fibres over the base category of local Boolean frames.

  16. Generalized topological covering systems on quantum events' structures

    International Nuclear Information System (INIS)

    Homologous operational localization processes are effectuated in terms of generalized topological covering systems on structures of physical events. We study localization systems of quantum events' structures by means of Gtothendieck topologies on the base category of Boolean events' algebras. We show that a quantum events algebra is represented by means of a Grothendieck sheaf-theoretic fibred structure, with respect to the global partial order of quantum events' fibres over the base category of local Boolean frames

  17. The dynamical-quantization approach to open quantum systems

    OpenAIRE

    Bolivar, A. O.

    2010-01-01

    On the basis of the dynamical-quantization approach to open quantum systems, we can derive a non-Markovian Caldeira-Leggett quantum master equation as well as a non-Markovian quantum Smoluchowski equation in phase space. On the one hand, we solve our Caldeira-Leggett equation for the case of a quantum Brownian particle in a gravitational field. On the other hand, we solve our quantum Smoluchowski equation for a harmonic oscillator. In both physical situations we come up with...

  18. Quantum-based electronic devices and systems selected topics in electronics and systems, v.14

    CERN Document Server

    Dutta, Mitra

    1998-01-01

    This volume includes highlights of the theories and experimental findings that underlie essential phenomena occurring in quantum-based devices and systems as well as the principles of operation of selected novel quantum-based electronic devices and systems. A number of the emerging approaches to creating new types of quantum-based electronic devices and systems are also discussed.

  19. Exploiting Quantum Parallelism to Simulate Quantum Random Many-Body Systems

    International Nuclear Information System (INIS)

    We present an algorithm that exploits quantum parallelism to simulate randomness in a quantum system. In our scheme, all possible realizations of the random parameters are encoded quantum mechanically in a superposition state of an auxiliary system. We show how our algorithm allows for the efficient simulation of dynamics of quantum random spin chains with known numerical methods. We propose an experimental realization based on atoms in optical lattices in which disorder could be simulated in parallel and in a controlled way through the interaction with another atomic species

  20. Generalized conditional entropy in bipartite quantum systems

    International Nuclear Information System (INIS)

    We analyze, for a general concave entropic form, the associated conditional entropy of a quantum system A + B, obtained as a result of a local measurement on one of the systems (B). This quantity is a measure of the average mixedness of A after such measurement, and its minimum over all local measurements is shown to be the associated entanglement of formation between A and a purifying third system C. In the case of the von Neumann entropy, this minimum determines also the quantum discord. For classically correlated states and mixtures of a pure state with the maximally mixed state, we show that the minimizing measurement can be determined analytically and is universal, i.e., the same for all concave forms. While these properties no longer hold for general states, we also show that in the special case of the linear entropy, an explicit expression for the associated conditional entropy can be obtained, whose minimum among projective measurements in a general qudit–qubit state can be determined analytically, in terms of the largest eigenvalue of a simple 3 × 3 correlation matrix. Such minimum determines the maximum conditional purity of A, and the associated minimizing measurement is shown to be also universal in the vicinity of maximal mixedness. Results for X states, including typical reduced states of spin pairs in XY chains at weak and strong transverse fields, are also provided and indicate that the measurements minimizing the von Neumann and linear conditional entropies are typically coincident in these states, being determined essentially by the main correlation. They can differ, however, substantially from that minimizing the geometric discord. (paper)

  1. Transition from group to virial expansion for quantum systems

    International Nuclear Information System (INIS)

    The use of the method of generating functional for considering quantum systems has permitted to determine group expansion of thermodynamic potential and unitary density matrix in cases of Bose- and Fermi statistics. Transition from group to virial expansion in densities is realized using Mazwell-Boltzmann statistics equally valid for classical and quantum systems

  2. Quantum Liquid Crystal Phases in Strongly Correlated Fermionic Systems

    Science.gov (United States)

    Sun, Kai

    2009-01-01

    This thesis is devoted to the investigation of the quantum liquid crystal phases in strongly correlated electronic systems. Such phases are characterized by their partially broken spatial symmetries and are observed in various strongly correlated systems as being summarized in Chapter 1. Although quantum liquid crystal phases often involve…

  3. Quantum key distribution system clocked at 2 GHz

    CERN Document Server

    Gordon, K J; Buller, G S; Rech, I; Cova, S D; Townsend, P D

    2005-01-01

    An improved quantum key distribution test system operating at clock rates of up to 2GHz using a specially adapted commercially available silicon single photon avalanche diode is presented. The use of improved detectors has improved the fibre-based test system performance in terms of transmission distance and quantum bit error rate.

  4. Quantum key distribution system clocked at 2 GHz

    OpenAIRE

    Gordon, K. J.; Fernandez, V; Buller, G. S.; Rech, I.; Cova, S. D.; Townsend, P. D.

    2006-01-01

    An improved quantum key distribution test system operating at clock rates of up to 2GHz using a specially adapted commercially available silicon single photon avalanche diode is presented. The use of improved detectors has improved the fibre-based test system performance in terms of transmission distance and quantum bit error rate.

  5. The dynamical-quantization approach to open quantum systems

    International Nuclear Information System (INIS)

    The dynamical-quantization approach to open quantum systems does consist in quantizing the Brownian motion starting directly from its stochastic dynamics under the framework of both Langevin and Fokker–Planck equations, without alluding to any model Hamiltonian. On the ground of this non-Hamiltonian quantization method, we can derive a non-Markovian Caldeira–Leggett quantum master equation as well as a non-Markovian quantum Smoluchowski equation. The former is solved for the case of a quantum Brownian particle in a gravitational field whilst the latter for a harmonic oscillator. In both physical situations, we come up with the existence of a non-equilibrium thermal quantum force and investigate its classical limit at high temperatures as well as its quantum limit at zero temperature. Further, as a physical application of our quantum Smoluchowski equation, we take up the tunneling phenomenon of a non-inertial quantum Brownian particle over a potential barrier. Lastly, we wish to point out, corroborating conclusions reached in our previous paper [A. O. Bolivar, Ann. Phys. 326 (2011) 1354], that the theoretical predictions in the present article uphold the view that our non-Hamiltonian quantum mechanics is able to capture novel features inherent in quantum Brownian motion, thereby overcoming shortcomings underlying the Caldeira–Leggett Hamiltonian model. - Highlights: ? Non-Markovian classical Brownian motion. ? Dynamical quantization. ? Non-Markovian quantumation. ? Non-Markovian quantum Brownian motion. ? Classical limit.

  6. Quantum discord under system-environment coupling: the two-qubit case

    OpenAIRE

    Xu, Jin-Shi; Li, Chuan-Feng

    2012-01-01

    Open quantum systems have attracted great attention, since inevitable coupling between quantum systems and their environment greatly affects the features of interest of these systems. Quantum discord, is a measure of the total nonclassical correlation in a quantum system that includes, but is not exclusive to, the distinct property of quantum entanglement. Quantum discord can exist in separated quantum states and plays an important role in many fundamental physics problems a...

  7. Quantum Heat Engines; Multiple-State 1D Box System

    Directory of Open Access Journals (Sweden)

    Eny Latifah

    2013-08-01

    Full Text Available We evaluate quantum Otto, Diesel and Brayton cycles employing multiple-state 1D box system instead of ideal gas filled cylinder. The work and heat are extracted using the change in the expectation of Hamiltonian of the system which leads to the first law of thermodynamics to quantum system. The first law makes available to redefine the force which is in fact not well defined in a quantum mechanical system and then it is applied to define the quantum version of thermodynamic processes, i.e. isobaric, isovolume and adiabatic. As the results, the efficiency of quantum Otto engine depends only on the compression ratio and will be higher than the efficiency of quantum Diesel which can decrease by the widening of expansion under isobaric process. The efficiency of quantum Brayton engine may reach maximum on certain combination between the wide of box under isobaric expansion and compression, under certain conditions. The amount of levels participated in the quantum heat engine system will potentially reduce the performance of the quantum heat cycles consisting isobaric process, but it can be resisted using isobaric process controller.

  8. Uncertainty relations, quantum and thermal fluctuations in Lindblad theory of open quantum systems

    International Nuclear Information System (INIS)

    In the framework of the Lindblad theory for open quantum systems we derive closed analytical expressions of the uncertainty relation for a particle moving in a harmonic oscillator potential. The particle is in arbitrarily squeezed initial state and interacts with an environment at finite temperature. We examine how the quantum and thermal fluctuations of the environment contribute to the uncertainty in the canonical variables of the systems and study their relative importance in the evolution of the system towards equilibrium with be aim of clarifying the meaning of quantum, classical and thermal dissipation of energy. We show that upon contact with the bath the system evolves from a quantum-dominated state to a thermal-dominated state in a time which is of the same order as the decoherence time calculated before in similar models in the context of a transition from quantum mechanics to classical mechanics. (authors)

  9. Correlation Functions in Open Quantum-Classical Systems

    Directory of Open Access Journals (Sweden)

    Chang-Yu Hsieh

    2013-12-01

    Full Text Available Quantum time correlation functions are often the principal objects of interest in experimental investigations of the dynamics of quantum systems. For instance, transport properties, such as diffusion and reaction rate coefficients, can be obtained by integrating these functions. The evaluation of such correlation functions entails sampling from quantum equilibrium density operators and quantum time evolution of operators. For condensed phase and complex systems, where quantum dynamics is difficult to carry out, approximations must often be made to compute these functions. We present a general scheme for the computation of correlation functions, which preserves the full quantum equilibrium structure of the system and approximates the time evolution with quantum-classical Liouville dynamics. Several aspects of the scheme are discussed, including a practical and general approach to sample the quantum equilibrium density, the properties of the quantum-classical Liouville equation in the context of correlation function computations, simulation schemes for the approximate dynamics and their interpretation and connections to other approximate quantum dynamical methods.

  10. Effects of symmetry breaking in finite quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Birman, J.L. [Department of Physics, City College, City University of New York, New York, NY 10031 (United States); Nazmitdinov, R.G. [Departament de Fisica, Universitat de les Illes Balears, Palma de Mallorca 07122 (Spain); Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Yukalov, V.I., E-mail: yukalov@theor.jinr.ru [Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation)

    2013-05-15

    The review considers the peculiarities of symmetry breaking and symmetry transformations and the related physical effects in finite quantum systems. Some types of symmetry in finite systems can be broken only asymptotically. However, with a sufficiently large number of particles, crossover transitions become sharp, so that symmetry breaking happens similarly to that in macroscopic systems. This concerns, in particular, global gauge symmetry breaking, related to Bose–Einstein condensation and superconductivity, or isotropy breaking, related to the generation of quantum vortices, and the stratification in multicomponent mixtures. A special type of symmetry transformation, characteristic only for finite systems, is the change of shape symmetry. These phenomena are illustrated by the examples of several typical mesoscopic systems, such as trapped atoms, quantum dots, atomic nuclei, and metallic grains. The specific features of the review are: (i) the emphasis on the peculiarities of the symmetry breaking in finite mesoscopic systems; (ii) the analysis of common properties of physically different finite quantum systems; (iii) the manifestations of symmetry breaking in the spectra of collective excitations in finite quantum systems. The analysis of these features allows for the better understanding of the intimate relation between the type of symmetry and other physical properties of quantum systems. This also makes it possible to predict new effects by employing the analogies between finite quantum systems of different physical nature.

  11. 3.3 Gigahertz Clocked Quantum Key Distribution System

    CERN Document Server

    Gordon, K J; Collins, R J; Rech, I; Cova, S D; Townsend, P D; Buller, G S; Gordon, Karen J.; Fernandez, Veronica; Collins, Robert J.; Rech, Ivan; Cova, Sergio D.; Townsend, Paul D.; Buller, Gerald S.

    2006-01-01

    A fibre-based quantum key distribution system operating up to a clock frequency of 3.3GHz is presented. The system demonstrates significantly increased key exchange rate potential and operates at a wavelength of 850nm.

  12. The study of classical dynamical systems using quantum theory

    Science.gov (United States)

    Bogdanov, Yu. I.; Bogdanova, N. A.

    2014-12-01

    We have developed a method for complementing an arbitrary classical dynamical system to a quantum system using the Lorenz and Rössler systems as examples. The Schrödinger equation for the corresponding quantum statistical ensemble is described in terms of the Hamilton-Jacobi formalism. We consider both the original dynamical system in the coordinate space and the conjugate dynamical system corresponding to the momentum space. Such simultaneous consideration of mutually complementary coordinate and momentum frameworks provides a deeper understanding of the nature of chaotic behavior in dynamical systems. We have shown that the new formalism provides a significant simplification of the Lyapunov exponents calculations. From the point of view of quantum optics, the Lorenz and Rössler systems correspond to three modes of a quantized electromagnetic field in a medium with cubic nonlinearity. From the computational point of view, the new formalism provides a basis for the analysis of complex dynamical systems using quantum computers.

  13. Anions, quantum particles in planar systems

    International Nuclear Information System (INIS)

    Our purpose here is to present a general review of the non-relativistic quantum-mechanical description of excitations that do not obey neither the Fermi-Dirac nor the Bose-Einstein statistics; they rather fulfill an intermediate statistics, the we called 'any-statistics'. As we shall see, this is a peculiarity of (1+1) and (1+2) dimensions, due to the fact that, in two space dimensions, the spin is not quantised, once the rotation group is Abelian. The relevance of studying theories in (1+2) dimensions is justified by the evidence that, in condensed matter physics, there are examples of planar systems, for which everything goes as if the third spatial dimension is frozen. (author)

  14. Quantum integrable systems. Quantitative methods in biology

    CERN Document Server

    Feverati, Giovanni

    2011-01-01

    Quantum integrable systems have very strong mathematical properties that allow an exact description of their energetic spectrum. From the Bethe equations, I formulate the Baxter "T-Q" relation, that is the starting point of two complementary approaches based on nonlinear integral equations. The first one is known as thermodynamic Bethe ansatz, the second one as Kl\\"umper-Batchelor-Pearce-Destri- de Vega. I show the steps toward the derivation of the equations for some of the models concerned. I study the infrared and ultraviolet limits and discuss the numerical approach. Higher rank integrals of motion can be obtained, so gaining some control on the eigenvectors. After, I discuss the Hubbard model in relation to the N = 4 supersymmetric gauge theory. The Hubbard model describes hopping electrons on a lattice. In the second part, I present an evolutionary model based on Turing machines. The goal is to describe aspects of the real biological evolution, or Darwinism, by letting evolve populations of algorithms. ...

  15. Density functional approach to quantum lattice systems

    Science.gov (United States)

    Chayes, J. T.; Chayes, L.; Ruskai, Mary Beth

    1985-02-01

    For quantum lattice systems, we consider the problem of characterizing the set of single-particle densities, ?, which come from the ground-state eigenspace of some N-particle Hamiltonian of the formH_0 + sumnolimits_{i = 1}^N {v(x_i )} where H 0 is a fixed, bounded operator representing the kinetic and interaction energies. We show that the conditions on ? are that it be strictly positive, properly normalized, and consistent with the Pauli principle. Our results are valid for both finite and infinite lattices and for either bosons or fermions. The Coulomb interaction may be included in H 0 if the lattice dimension is ?2. We also characterize those single-particle densities which come from the Gibbs states of such Hamiltonians at finite temperature. In addition to the conditions stated above, ? must satisfy a finite entropy condition.

  16. The problems of mapping in quantum systems

    International Nuclear Information System (INIS)

    The mapping from the state of Hamiltonian H(0) to that of H(?) = H(0) + ?(H-H(0)) is established by means of Wigner-Brillion perturbation formula. An iterative perturbation calculation can be carried out to find the stable points set and to show that under what condition the iterative calculation is divergent(non convergent). Avoided crossing point is really a singularity-point showed clearly in such procedure. The topological invariant subspace endowed by corresponding Hamiltonian H(0) is destroyed after such avoided crossing point. It is similar to the classical invariant tori destruction. A quantum KAM theorem can be established in this manner. Numerical results of certain schematic systems are given as illustration

  17. Optimal signal detection in entanglement-assisted quantum communication systems

    International Nuclear Information System (INIS)

    Minimization of error probability is considered in entanglement-assisted quantum communication systems. It is shown that although quantum state signals being sent are not symmetric at a sender side, the square root measurement becomes optimum when they are made symmetric at the receiver side. For communication systems of coherent signals, where a two-mode squeezed-vacuum state is used as an entanglement resource, the quantum entanglement greatly reduces the average probability of error. The relation to the quantum dense coding of continuous variables is also discussed

  18. Quantum uncertainty in critical systems with three spins interaction

    Science.gov (United States)

    Carrijo, Thiago M.; Avelar, Ardiley T.; Céleri, Lucas C.

    2015-06-01

    In this article we consider two spin-1/2 chains described, respectively, by the thermodynamic limit of the XY model with the usual two site interaction, and an extension of this model (without taking the thermodynamics limit), called XYT, were a three site interaction term is presented. To investigate the critical behaviour of such systems we employ tools from quantum information theory. Specifically, we show that the local quantum uncertainty, a quantity introduced in order to quantify the minimum quantum share of the variance of a local measurement, can be used to indicate quantum phase transitions presented by these models at zero temperature. Due to the connection of this quantity with the quantum Fisher information, the results presented here may be relevant for quantum metrology and quantum thermodynamics.

  19. Sliding Mode Control of Two-Level Quantum Systems

    OpenAIRE

    Dong, Daoyi; Petersen, Ian R

    2010-01-01

    This paper proposes a robust control method based on sliding mode design for two-level quantum systems with bounded uncertainties. An eigenstate of the two-level quantum system is identified as a sliding mode. The objective is to design a control law to steer the system's state into the sliding mode domain and then maintain it in that domain when bounded uncertainties exist in the system Hamiltonian. We propose a controller design method using the Lyapunov methodology and pe...

  20. Hacking commercial quantum cryptography systems by tailored bright illumination

    CERN Document Server

    Lydersen, Lars; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim; 10.1038/NPHOTON.2010.214

    2010-01-01

    The peculiar properties of quantum mechanics allow two remote parties to grow a private, secret key, even if the eavesdropper can do anything permitted by the laws of nature. In quantum key distribution (QKD) the parties exchange non-orthogonal or entangled quantum states to generate quantum correlated classical data. Consequently, QKD implementations always rely on detectors to measure the relevant quantum property of the signal states. However, practical detectors are not only sensitive to quantum states. Here we show how an eavesdropper can exploit such deviations from the ideal behaviour: We demonstrate experimentally how the detectors in two commercially available QKD systems can be fully remote controlled using specially tailored bright illumination. This makes it possible to acquire the full secret key without leaving any trace; we propose an eavesdropping apparatus built of off-the-shelf components. The loophole is likely to be present in most QKD systems using avalanche photo diodes (APDs) to detect ...

  1. Experimental feedback control of quantum systems using weak measurements

    CERN Document Server

    Gillett, G G; Lanyon, B P; Almeida, M P; Barbieri, M; Pryde, G J; O'Brien, J L; Resch, K J; Bartlett, S D; White, A G

    2009-01-01

    A goal of the emerging field of quantum control is to develop methods for quantum technologies to function robustly in the presence of noise. Central issues are the fundamental limitations on the available information about quantum systems and the disturbance they suffer in the process of measurement. In the context of a simple quantum control scenario--the stabilization of non-orthogonal states of a qubit against dephasing--we experimentally explore the use of weak measurements in feedback control. We find that, despite the intrinsic difficultly of implementing them, weak measurements allow us to control the qubit better in practice than is even theoretically possible without them. Our work shows that these more general quantum measurements can play an important role for feedback control of quantum systems.

  2. Experimental feedback control of quantum systems using weak measurements.

    Science.gov (United States)

    Gillett, G G; Dalton, R B; Lanyon, B P; Almeida, M P; Barbieri, M; Pryde, G J; O'Brien, J L; Resch, K J; Bartlett, S D; White, A G

    2010-02-26

    A goal of the emerging field of quantum control is to develop methods for quantum technologies to function robustly in the presence of noise. Central issues are the fundamental limitations on the available information about quantum systems and the disturbance they suffer in the process of measurement. In the context of a simple quantum control scenario-the stabilization of nonorthogonal states of a qubit against dephasing-we experimentally explore the use of weak measurements in feedback control. We find that, despite the intrinsic difficultly of implementing them, weak measurements allow us to control the qubit better in practice than is even theoretically possible without them. Our work shows that these more general quantum measurements can play an important role for feedback control of quantum systems. PMID:20366921

  3. Quantum Dots

    Science.gov (United States)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by Lithographic Techniques: III-V Semiconductors and Carbon: 15. Electrically controlling single spin coherence in semiconductor nanostructures Y. Dovzhenko, K. Wang, M. D. Schroer and J. R. Petta; 16. Theory of electron and nuclear spins in III-V semiconductor and carbon-based dots H. Ribeiro and G. Burkard; 17. Graphene quantum dots: transport experiments and local imaging S. Schnez, J. Guettinger, F. Molitor, C. Stampfer, M. Huefner, T. Ihn and K. Ensslin; Part VI. Single Dots for Future Telecommunications Applications: 18. Electrically operated entangled light sources based on quantum dots R. M. Stevenson, A. J. Bennett and A. J. Shields; 19. Deterministic single quantum dot cavities at telecommunication wavelengths D. Dalacu, K. Mnaymneh, J. Lapointe, G. C. Aers, P. J. Poole, R. L. Williams and S. Hughes; Index.

  4. Classical and quantum simulations of many-body systems

    International Nuclear Information System (INIS)

    This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new ''analog'' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)

  5. Classical and quantum simulations of many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Murg, Valentin

    2008-04-07

    This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new 'analog' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)

  6. Quantum correlations in B and K meson systems

    CERN Document Server

    Banerjee, Subhashish; MacKenzie, Richard

    2014-01-01

    We study quantum correlations in meson-antimeson systems, as provided for example in meson factories used mainly to probe physics beyond the Standard Model of particle physics. We use a semigroup formalism to compute a trace-preserving density matrix for these systems, in spite of the fact that the particles are unstable. This is used to compute the time evolution of several measures of quantum correlations for three meson systems (KKbar, BdBdbar and BsBsbar). We find that the quantum correlations for these systems can be non-trivially different from their stable counterparts.

  7. Quantum Cost Efficient Reversible BCD Adder for Nanotechnology Based Systems

    CERN Document Server

    Islam, Md Saiful; Begum, Zerina

    2011-01-01

    Reversible logic allows low power dissipating circuit design and founds its application in cryptography, digital signal processing, quantum and optical information processing. This paper presents a novel quantum cost efficient reversible BCD adder for nanotechnology based systems using PFAG gate. It has been demonstrated that the proposed design offers less hardware complexity and requires minimum number of garbage outputs than the existing counterparts. The remarkable property of the proposed designs is that its quantum realization is given in NMR technology.

  8. Terahertz spectroscopy of quantum 2D electron systems

    International Nuclear Information System (INIS)

    Terahertz time-domain spectroscopy permits the coherent motion of charges to be examined in a diverse range of two-dimensional semiconductor heterostructures. Studies of the THz conductivity and magnetoconductivity of two-dimensional quantum systems are reviewed, including cyclotron resonance spectroscopy and the transverse conductivity in the Hall and quantum Hall regimes. Experiments are described that demonstrate quantum phenomena at THz frequencies, principally coherent control and enhanced light–matter coupling in electromagnetic cavities. (paper)

  9. Correlation approach to work extraction from finite quantum systems

    OpenAIRE

    Giorgi, Gian Luca; Campbell, Steve

    2014-01-01

    Reversible work extraction from identical quantum systems via collective operations was shown to be possible even without producing entanglement among the sub-parts. Here, we show that implementing such global operations necessarily imply the creation of quantum correlations, as measured by quantum discord. We also reanalyze the conditions under which global transformations outperform local gates as far as maximal work extraction is considered by deriving a necessary and suf...

  10. Dissipative Quantum Systems and the Heat Capacity Enigma

    OpenAIRE

    Dattagupta, 4. S.; Kumar, Jishad; Sinha, S.; Sreeram, P. A.

    2009-01-01

    We present a detailed study of the quantum dissipative dynamics of a charged particle in a magnetic field. Our focus of attention is the effect of dissipation on the low- and high-temperature behavior of the specific heat at constant volume. After providing a brief overview of two distinct approaches to the statistical mechanics of dissipative quantum systems, viz., the ensemble approach of Gibbs and the quantum Brownian motion approach due to Einstein, we present exact anal...

  11. Correlation approach to work extraction from finite quantum systems

    International Nuclear Information System (INIS)

    Reversible work extraction from identical quantum systems via collective operations was shown to be possible even without producing entanglement among the sub-parts. Here, we show that implementing such global operations necessarily imply the creation of quantum correlations, as measured by quantum discord. We also reanalyze the conditions under which global transformations outperform local gates as far as maximal work extraction is considered by deriving a necessary and sufficient condition that is based on classical correlations. (paper)

  12. Fractional quantum Hall states in charge-imbalanced bilayer systems

    OpenAIRE

    Thiebaut, N.; Regnault, N.; Goerbig, M. O.

    2013-01-01

    We study the fractional quantum Hall effect in a bilayer with charge-distribution imbalance induced, for instance, by a bias gate voltage. The bilayer can either be intrinsic or it can be formed spontaneously in wide quantum wells, due to the Coulomb repulsion between electrons. We focus on fractional quantum Hall effect in asymmetric bilayer systems at filling factor nu=4/11 and show that an asymmetric Halperin-like trial wavefunction gives a valid description of the ground...

  13. Asymptotic Stochastic Transformations for Nonlinear Quantum Dynamical Systems

    OpenAIRE

    Gough, John

    2012-01-01

    The Ito and Stratonovich approaches are carried over to quantum stochastic systems. Here the white noise representation is shown to be the most appropriate as here the two approaches appear as Wick and Weyl orderings, respectively. This introduces for the first time the Stratonovich form for SDEs driven by Poisson processes or quantum SDEs including the conservation process. The relation of the nonlinear Heisenberg ODES to asymptotic quantum SDEs is established extending pre...

  14. Quantum interference in an electron-hole graphene ring system

    Science.gov (United States)

    Smirnov, D.; Schmidt, H.; Haug, R. J.

    2013-12-01

    Quantum interference is observed in a graphene ring system via the Aharonov Bohm effect. As graphene is a gapless semiconductor, this geometry allows to study the unique situation of quantum interference between electrons and holes in addition to the unipolar quantum interference. The period and amplitude of the observed Aharonov-Bohm oscillations are independent of the sign of the applied gate voltage showing the equivalence between unipolar and dipolar interference.

  15. Quantum interference in an electron-hole graphene ring system

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, D.; Schmidt, H.; Haug, R. J. [Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstr. 2 30167 Hannover (Germany)

    2013-12-04

    Quantum interference is observed in a graphene ring system via the Aharonov Bohm effect. As graphene is a gapless semiconductor, this geometry allows to study the unique situation of quantum interference between electrons and holes in addition to the unipolar quantum interference. The period and amplitude of the observed Aharonov-Bohm oscillations are independent of the sign of the applied gate voltage showing the equivalence between unipolar and dipolar interference.

  16. Realization of quantum state privacy amplification in a nuclear magnetic resonance quantum system

    International Nuclear Information System (INIS)

    Quantum state privacy amplification (QSPA) is the quantum analogue of classical privacy amplification. If the state information of a series of single-particle states has some leakage, QSPA reduces this leakage by condensing the state information of two particles into the state of one particle. Recursive applications of the operations will eliminate the quantum state information leakage to a required minimum level. In this paper, we report the experimental implementation of a quantum state privacy amplification protocol in a nuclear magnetic resonance system. The density matrices of the states are constructed in the experiment, and the experimental results agree well with theory.

  17. Efficient Quantum Signature and Its Application in On-line Quantum Payment System

    CERN Document Server

    Li, Qin; Wang, Chang-ji

    2008-01-01

    Two arbitrated quantum signature schemes, one with message recovery and the other with appendix, are proposed. The most significant property of the proposed schemes is that both the signatory and the receiver can share and use a long-term secret key with the arbitrator by utilizing the key together with a random number. While in previous quantum signature schemes, the shared key could be used only once, and thus each time when a signatory needs to sign, the signatory and the receiver have to obtain a new key shared with the arbitrator through quantum key distribution protocol. Results show that the presented schemes could be provably secure under the Unbiased-Chosen Basis (UCB) assumption. Moreover, we applies the quantum signature to quantum payment and propose an on-line quantum payment system.

  18. Quantum fluctuations in nonlinear optical systems

    OpenAIRE

    Zambrini, Roberta

    2003-01-01

    The subject of quantum structures in nonlinear optics is a quite recent interdisciplinary field. It deals with the quantum properties of electromagnetic radiation in self-organized spatial structures. Until the decade of 1980 the areas of quantum optics and self-organized patterns were investigated by two different communities: • Most of the literature about pattern formation was concerned with classical features of the phenomenon [Haken, Cross & Hohenberg]. The effects of fl...

  19. Optimal control of population transfer in Markovian open quantum systems

    CERN Document Server

    Cuia, Wei; Pan, Yu

    2010-01-01

    There has long been interest to control the transfer of population between specified quantum states. Recent work has optimized the control law for closed system population transfer by using a gradient ascent pulse engineer- ing algorithm [1]. Here, a spin-boson model consisting of two-level atoms which interact with the dissipative environment, is investigated. With opti- mal control, the quantum system can invert the populations of the quantum logic states. The temperature plays an important role in controlling popula- tion transfer. At low temperatures the control has active performance, while at high temperatures it has less erect. We also analyze the decoherence be- havior of open quantum systems with optimal population transfer control, and we find that these controls can prolong the coherence time. We hope that active optimal control can help quantum solid-state-based engineering.

  20. Quantum Signatures of Solar System Dynamics

    CERN Document Server

    Kholodenko, Arkady L

    2007-01-01

    Let w(i) be a period of rotation of the i-th planet around the Sun (or w(j;i) be a period of rotation of j-th satellite around the i-th planet). From empirical observations it is known that the sum of n(i)w(i)=0 (or the sum of n(j)w(j;i)=0) for some integers n(i)(or n(j)) (some of which allowed to be zero), different for different satellite systems. These conditions, known as ressonance conditions, make uses of theories such as KAM difficult to implement. To a high degree of accuracy these periods can be described in terms of the power law dependencies of the type w(i)=Ac^i (or w(j;i)= A(i)m^i) with A,c (respectively, A(i),m) being some known empirical constants. Such power law dependencies are known in literature as the Titius-Bode law of planetary/satellite motion. The resonances in Solar system are similar to those encountered in old quantum mechanics. Although not widely known nowadays, applications of methods of celestial mechanics to atomic physics were, in fact, highly successful. With such a success, ...

  1. Decoherence as irreversible dynamical process in open quantum systems

    International Nuclear Information System (INIS)

    Full text: A framework for a general discussion in Heisenberg's representation of environmentally induced decoherence will be proposed. Example showing that classical properties do not have to be postulated as an independent ingredient will be given. It will be also shown that infinite open quantum systems in some case after decoherence behave like - simple classical dynamical systems; simples quantum mechanical systems representing one particle. (author)

  2. Quantum materials, lateral semiconductor nanostructures, hybrid systems and nanocrystals

    CERN Document Server

    Heitmann, Detlef

    2010-01-01

    Semiconductor nanostructures are ideal systems to tailor the physical properties via quantum effects, utilizing special growth techniques, self-assembling, wet chemical processes or lithographic tools in combination with tuneable external electric and magnetic fields. Such systems are called 'Quantum Materials'. The electronic, photonic, and phononic properties of these systems are governed by size quantization and discrete energy levels. The charging is controlled by the Coulomb blockade. The spin can be manipulated by the geometrical structure, external gates and by integrating hybrid ferrom

  3. Quantum Measurement Problem and Systems Selfdescription in Operators Algebras Formalism

    OpenAIRE

    Mayburov, S.

    2002-01-01

    Quantum Measurement problem studied in Information Theory approach of systems selfdescription which exploits the information acquisition incompleteness for the arbitrary information system. The studied model of measuring system (MS) consist of measured state S environment E and observer $O$ processing input S signal. $O$ considered as the quantum object which interaction with S,E obeys to Schrodinger equation (SE). MS incomplete or restricted states for $O$ derived by t...

  4. Repeated and continuous interactions in open quantum systems

    OpenAIRE

    Bruneau, Laurent; Joye, Alain; Merkli, Marco

    2009-01-01

    We consider a finite quantum system S coupled to two environments of different nature. One is a heat reservoir R (continuous interaction) and the other one is a chain C of independent quantum systems E (repeated interaction). The interactions of S with R and C lead to two simultaneous dynamical processes. We show that for generic such systems, any initial state approaches an asymptotic state in the limit of large times. We express the latter in terms of the resonance data of...

  5. Separability of sequential isomorphisms on quantum effects in multipartite systems

    International Nuclear Information System (INIS)

    In the paper, we study separability of sequential isomorphisms on quantum effects in multipartite systems. First we obtain necessary and sufficient conditions for separable sequential isomorphisms in bipartite systems. Secondly, in finite-dimensional bipartite systems, separability of sequential endomorphisms on quantum effects is discussed. Furthermore, we extend these conclusions to the multipartite case. Finally, applying our results, an equivalent characterization of local unitary operations is given. (paper)

  6. Quantum Knots and Lattices, or a Blueprint for Quantum Systems that Do Rope Tricks

    CERN Document Server

    Lomonaco, Samuel J

    2009-01-01

    Using the cubic honeycomb (cubic tessellation) of Euclidean 3-space, we define a quantum system whose states, called quantum knots, represent a closed knotted piece of rope, i.e., represent the particular spatial configuration of a knot tied in a rope in 3-space. This quantum system, called a quantum knot system, is physically implementable in the same sense as Shor's quantum factoring algorithm is implementable. To define a quantum knot system, we replace the standard three Reidemeister knot moves with an equivalent set of three moves, called respectively wiggle, wag, and tug, so named because they mimic how a dog might wag its tail. We argue that these moves are in fact more "physics friendly" because, unlike the Reidemeister moves, they respect the differential geometry of 3-space, and moreover they can be transformed into infinitesimal moves. These three moves wiggle, wag, and tug generate a unitary group, called the lattice ambient group, which acts on the state space of the quantum system. The lattice a...

  7. Quantum entanglement of unitary operators on bi-partite systems

    OpenAIRE

    Wang, X.; Zanardi, P

    2002-01-01

    We study the entanglement of unitary operators on $d_1\\times d_2$ quantum systems. This quantity is closely related to the entangling power of the associated quantum evolutions. The entanglement of a class of unitary operators is quantified by the concept of concurrence.

  8. Special integrals of motion in quantum integrable systems

    OpenAIRE

    Kryukov, S. V.

    2001-01-01

    We investigate quantum integrals of motion in the sine-Gordon, Zhiber-Shabat and similar systems. When the coupling constants in these models take special values a new quantum symmetry appears. In those cases, correlation functions can be obtained, and they have a power law behavior.

  9. Josephson inplane and tunneling currents in bilayer quantum Hall system

    International Nuclear Information System (INIS)

    A Bose-Einstein condensation is formed by composite bosons in the quantum Hall state. A composite boson carries the fundamental charge (–e). We investigate Josephson tunneling of such charges in the bilayer quantum Hall system at the total filling ? = 1. We show the existence of the critical current for the tunneling current to be coherent and dissipationless in tunneling experiments with various geometries

  10. Josephson inplane and tunneling currents in bilayer quantum Hall system

    Energy Technology Data Exchange (ETDEWEB)

    Ezawa, Z. F. [Nishina Center, RIKEN, Saitama 351-0198 (Japan); Tsitsishvili, G. [Georgia Department of Physics, Tbilisi State University, Tbilisi 0179 (Georgia); Sawada, A. [Research Center for Low Temperature and Materials Sciences, Kyoto University, Kyoto 606-8501 (Japan)

    2013-12-04

    A Bose-Einstein condensation is formed by composite bosons in the quantum Hall state. A composite boson carries the fundamental charge (–e). We investigate Josephson tunneling of such charges in the bilayer quantum Hall system at the total filling ? = 1. We show the existence of the critical current for the tunneling current to be coherent and dissipationless in tunneling experiments with various geometries.

  11. Enhanced Fault-Tolerant Quantum Computing in d -Level Systems

    Science.gov (United States)

    Campbell, Earl T.

    2014-12-01

    Error-correcting codes protect quantum information and form the basis of fault-tolerant quantum computing. Leading proposals for fault-tolerant quantum computation require codes with an exceedingly rare property, a transversal non-Clifford gate. Codes with the desired property are presented for d -level qudit systems with prime d . The codes use n =d -1 qudits and can detect up to ˜d /3 errors. We quantify the performance of these codes for one approach to quantum computation known as magic-state distillation. Unlike prior work, we find performance is always enhanced by increasing d .

  12. Inequalities detecting quantum entanglement for 2 x d systems

    International Nuclear Information System (INIS)

    We present a set of inequalities for detecting quantum entanglement of 2 x d quantum states. For 2 x 2 and 2 x 3 systems, the inequalities give rise to sufficient and necessary separability conditions for both pure and mixed states. For the case of d>3, these inequalities are necessary conditions for separability, which detect all entangled states that are not positive under partial transposition and even some entangled states with positive partial transposition. These inequalities are given by mean values of local observables and present an experimental way of detecting the quantum entanglement of 2 x d quantum states and even multiqubit pure states.

  13. Strong polygamy of quantum correlations in multi-party quantum systems

    Science.gov (United States)

    San Kim, Jeong

    2014-10-01

    We propose a new type of polygamy inequality for multi-party quantum entanglement. We first consider the possible amount of bipartite entanglement distributed between a fixed party and any subset of the rest parties in a multi-party quantum system. By using the summation of these distributed entanglements, we provide an upper bound of the distributed entanglement between a party and the rest in multi-party quantum systems. We then show that this upper bound also plays as a lower bound of the usual polygamy inequality, therefore the strong polygamy of multi-party quantum entanglement. For the case of multi-party pure states, we further show that the strong polygamy of entanglement implies the strong polygamy of quantum discord.

  14. Multi-particle correlations in quaternionic quantum systems

    International Nuclear Information System (INIS)

    The authors investigated the outcomes of measurements on correlated, few-body quantum systems described by a quaternionic quantum mechanics that allows for regions of quaternionic curvature. It was found that a multi particles interferometry experiment using a correlated system of four nonrelativistic, spin-half particles has the potential to detect the presence of quaternionic curvature. Two-body systems, however, are shown to give predictions identical to those of standard quantum mechanics when relative angles are used in the construction of the operators corresponding to measurements of particle spin components. 15 refs

  15. Adiabatic theorem for bipartite quantum systems in weak coupling limit

    International Nuclear Information System (INIS)

    We study the adiabatic approximation of the dynamics of a bipartite quantum system with respect to one of its components, when the coupling between the two components is perturbative. We show that the density matrix of the considered component is described by adiabatic transport formulae exhibiting operator-valued geometric and dynamical phases. The present results can be used to study the quantum control of the dynamics of qubits and of open quantum systems where the two components are the system and its environment. We treat two examples, the control of an atomic qubit interacting with another one and the control of a spin in the middle of a Heisenberg spin chain. (paper)

  16. Decoherence control in open quantum systems via classical feedback

    International Nuclear Information System (INIS)

    In this work we propose a strategy using techniques from systems theory to completely eliminate decoherence and also provide conditions under which it can be done. A construction employing an auxiliary system, the bait, which is instrumental to decoupling the system from the environment is presented. Our approach to decoherence control in contrast to other approaches in the literature involves the bilinear input affine model of quantum control system which lends itself to various techniques from classical control theory, but with nontrivial modifications to the quantum regime. The elegance of this approach yields interesting results on open loop decouplability and decoherence free subspaces. Additionally, the feedback control of decoherence may be related to disturbance decoupling for classical input affine systems, which entails careful application of the methods by avoiding all the quantum mechanical pitfalls. In the process of calculating a suitable feedback the system must be restructured due to its tensorial nature of interaction with the environment, which is unique to quantum systems. In the subsequent section we discuss a general information extraction scheme to gain knowledge of the state and the amount of decoherence based on indirect continuous measurement. The analysis of continuous measurement on a decohering quantum system has not been extensively studied before. Finally, a methodology to synthesize feedback parameters itself is given, that technology pemeters itself is given, that technology permitting, could be implemented for practical 2-qubit systems to perform decoherence free quantum computing. The results obtained are qualitatively different and superior to the ones obtained via master equations

  17. The transfer dynamics of quantum correlation between systems and reservoirs

    Science.gov (United States)

    Man, Zhong-Xiao; Xia, Yun-Jie; An, Nguyen Ba

    2011-05-01

    In this work, we study the dynamics of quantum correlation (QC) in terms of quantum discord and its transfer for multiqubit systems in dissipative environments. At first, we investigate the dynamics of bipartite QC contained in a three-qubit system that are initially prepared in an extended W-like state with each qubit coupled to an independent reservoir. Subsequently, we study a realistic quantum network of several remote nodes each of which contains two qubits in contact with a common reservoir. For the simplest case of two nodes, we study the dynamics of QC and its transfer from the initially correlated system to the reservoirs and other degrees of freedom. In both models, we pay particular attention to the independent evolution and transfer of QC without the participation of entanglement when the systems of interest are initially prepared in unentangled states. We also observe the occurrence of sudden changes of quantum discord when the systems are initially in mixed states.

  18. The transfer dynamics of quantum correlation between systems and reservoirs

    International Nuclear Information System (INIS)

    In this work, we study the dynamics of quantum correlation (QC) in terms of quantum discord and its transfer for multiqubit systems in dissipative environments. At first, we investigate the dynamics of bipartite QC contained in a three-qubit system that are initially prepared in an extended W-like state with each qubit coupled to an independent reservoir. Subsequently, we study a realistic quantum network of several remote nodes each of which contains two qubits in contact with a common reservoir. For the simplest case of two nodes, we study the dynamics of QC and its transfer from the initially correlated system to the reservoirs and other degrees of freedom. In both models, we pay particular attention to the independent evolution and transfer of QC without the participation of entanglement when the systems of interest are initially prepared in unentangled states. We also observe the occurrence of sudden changes of quantum discord when the systems are initially in mixed states.

  19. Towards photonic quantum simulation of ground states of frustrated Heisenberg spin systems

    OpenAIRE

    Xiao-song Ma; Borivoje Daki\\u0107; Sebastian Kropatschek; William Naylor; Yang-hao Chan; Zhe-xuan Gong; Lu-ming Duan; Anton Zeilinger; Philip Walther

    2014-01-01

    Photonic quantum simulators are promising candidates for providing insight into other small- to medium-sized quantum systems. Recent experiments have shown that photonic quantum systems have the advantage to exploit quantum interference for the quantum simulation of the ground state of Heisenberg spin systems. Here we experimentally characterize this quantum interference at a tuneable beam splitter and further investigate the measurement-induced interactions of a simulated four-spin system by...

  20. Does an onlooker stop an evolving quantum system?

    International Nuclear Information System (INIS)

    The evolution of quantum mechanics has followed the critical analysis of 'gedanken' experiments. Many of these concrete speculations can become implemented today in the laboratory - thanks to now available techniques. A key experiment is concerned with the time evolution of a quantum system under repeated or continuing observation. Here, three problems overlap: 1. The microphysical measurement by a macroscopic device, 2. the system's temporal evolution, and 3. the emergence of macroscopic reality out of the microcosmos. A well-known calculation shows the evolution of a quantum system being slowed down, or even obstructed, when the system is merely observed.An experiment designed to demonstrate this 'quantum Zeno effect' and performed in the late eighties on an ensemble of identical atomic ions confirmed its quantum description, but turned out inconclusive with respect to the very origin of the impediment of evolution. During the past years, experiments on individualelectrodynamically stored and laser-cooled ions have been performed that unequivocally demonstrate the observed system's quantum evolution being impeded. Strategy and results exclude any physical reaction on the measured object, but reveal the effect of the gain of information as put forward by the particular correlation of the ion state with the detected signal. They shed light on the process of measurement as well as on the quantum evolution and allow an epistemological interpretationogical interpretation

  1. The Dalton quantum chemistry program system

    DEFF Research Database (Denmark)

    Aidas, Kestutis; Angeli, Celestino

    2014-01-01

    Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self-consistent-field, Møller–Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, while magnetic resonance and optical activity can be studied in a gauge-origininvariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms.

  2. Dynamical Phase Transitions in Quantum Systems

    Directory of Open Access Journals (Sweden)

    Ingrid Rotter

    2010-11-01

    Full Text Available Many years ago Bohr characterized the fundamental differences between the two extreme cases of quantum mechanical many-body problems known at that time: between the compound states in nuclei at extremely high level density and the shell-model states in atoms at low level density. It is shown in the present paper that the compound nucleus states at high level density are the result of a dynamical phase transition due to which they have lost any spectroscopic relation to the individual states of the nucleus. The last ones are shell-model states which are of the same type as the shell-model states in atoms. Mathematically, dynamical phase transitions are caused by singular (exceptional points at which the trajectories of the eigenvalues of the non-Hermitian Hamilton operator cross. In the neighborhood of these singular points, the phases of the eigenfunctions are not rigid. It is possible therefore that some eigenfunctions of the system align to the scattering wavefunctions of the environment by decoupling (trapping the remaining ones from the environment. In the Schrödinger equation, nonlinear terms appear in the neighborhood of the singular points.

  3. The Dalton quantum chemistry program system.

    Science.gov (United States)

    Aidas, Kestutis; Angeli, Celestino; Bak, Keld L; Bakken, Vebjørn; Bast, Radovan; Boman, Linus; Christiansen, Ove; Cimiraglia, Renzo; Coriani, Sonia; Dahle, Pål; Dalskov, Erik K; Ekström, Ulf; Enevoldsen, Thomas; Eriksen, Janus J; Ettenhuber, Patrick; Fernández, Berta; Ferrighi, Lara; Fliegl, Heike; Frediani, Luca; Hald, Kasper; Halkier, Asger; Hättig, Christof; Heiberg, Hanne; Helgaker, Trygve; Hennum, Alf Christian; Hettema, Hinne; Hjertenæs, Eirik; Høst, Stinne; Høyvik, Ida-Marie; Iozzi, Maria Francesca; Jansík, Branislav; Jensen, Hans Jørgen Aa; Jonsson, Dan; Jørgensen, Poul; Kauczor, Joanna; Kirpekar, Sheela; Kjærgaard, Thomas; Klopper, Wim; Knecht, Stefan; Kobayashi, Rika; Koch, Henrik; Kongsted, Jacob; Krapp, Andreas; Kristensen, Kasper; Ligabue, Andrea; Lutnæs, Ola B; Melo, Juan I; Mikkelsen, Kurt V; Myhre, Rolf H; Neiss, Christian; Nielsen, Christian B; Norman, Patrick; Olsen, Jeppe; Olsen, Jógvan Magnus H; Osted, Anders; Packer, Martin J; Pawlowski, Filip; Pedersen, Thomas B; Provasi, Patricio F; Reine, Simen; Rinkevicius, Zilvinas; Ruden, Torgeir A; Ruud, Kenneth; Rybkin, Vladimir V; Sa?ek, Pawel; Samson, Claire C M; de Merás, Alfredo Sánchez; Saue, Trond; Sauer, Stephan P A; Schimmelpfennig, Bernd; Sneskov, Kristian; Steindal, Arnfinn H; Sylvester-Hvid, Kristian O; Taylor, Peter R; Teale, Andrew M; Tellgren, Erik I; Tew, David P; Thorvaldsen, Andreas J; Thøgersen, Lea; Vahtras, Olav; Watson, Mark A; Wilson, David J D; Ziolkowski, Marcin; Agren, Hans

    2014-05-01

    Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, Møller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms. PMID:25309629

  4. Adiabatic Elimination in Compound Quantum Systems with Feedback

    OpenAIRE

    Warszawski, P.; Wiseman, H. M.

    2000-01-01

    Feedback in compound quantum systems is effected by using the output from one sub-system (``the system'') to control the evolution of a second sub-system (``the ancilla'') which is reversibly coupled to the system. In the limit where the ancilla responds to fluctuations on a much shorter time scale than does the system, we show that it can be adiabatically eliminated, yielding a master equation for the system alone. This is very significant as it decreases the necessary basi...

  5. Quantum Brayton cycle with coupled systems as working substance

    Science.gov (United States)

    Huang, X. L.; Wang, L. C.; Yi, X. X.

    2013-01-01

    We explore the quantum version of the Brayton cycle with a composite system as the working substance. The actual Brayton cycle consists of two adiabatic and two isobaric processes. Two pressures can be defined in our isobaric process; one corresponds to the external magnetic field (characterized by Fx) exerted on the system, while the other corresponds to the coupling constant between the subsystems (characterized by Fy). As a consequence, we can define two types of quantum Brayton cycle for the composite system. We find that the subsystem experiences a quantum Brayton cycle in one quantum Brayton cycle (characterized by Fx), whereas the subsystem's cycle is quantum Otto cycle in another Brayton cycle (characterized by Fy). The efficiency for the composite system equals to that for the subsystem in both cases, but the work done by the total system is usually larger than the sum of the work done by the two subsystems. The other interesting finding is that for the cycle characterized by Fy, the subsystem can be a refrigerator, while the total system is a heat engine. The result in this paper can be generalized to a quantum Brayton cycle with a general coupled system as the working substance.

  6. A quantum key distribution system operating at gigahertz clock rates

    OpenAIRE

    Gordon, Karen J.; Fernández Mármol, Verónica; Buller, Gerald S.; Townsend, Paul D.; Cova, Segio D.; Tisa, Simone

    2004-01-01

    A fiber-optic based quantum key distribution system, operating at a wavelength of 850 nm, has been developed capable of operating up to a clock frequency of 1 GHz, creating significantly increased key exchange rates.

  7. Quantum action-angle-variable analysis of basic systems

    International Nuclear Information System (INIS)

    Quantum action-angle variables are used to describe and analyze a number of familiar systems. For a given system, the quantum canonical transformation from the old coordinates, e.g., linear or polar, to the new coordinates, action-angle variables, is found by generalizing the corresponding classical transformation using a method based upon the correspondence principle, the Hermiticity and canonical nature of the old coordinates, and the requirement that the Hamiltonian be independent of the quantum angle variable. The bound-state energy levels and other important system properties follow immediately from the canonical transformation. Harmonic oscillators of various dimensions and the three-dimensional angular momentum system are used as illustrations; these illustrations provide interesting alternatives to the usual quantum treatments

  8. The Geometric Phase in Quantum Systems

    International Nuclear Information System (INIS)

    The discovery of the geometric phase is one of the most interesting and intriguing findings of the last few decades. It led to a deeper understanding of the concept of phase in quantum mechanics and motivated a surge of interest in fundamental quantum mechanical issues, disclosing unexpected applications in very diverse fields of physics. Although the key ideas underlying the existence of a purely geometrical phase had already been proposed in 1956 by Pancharatnam, it was Michael Berry who revived this issue 30 years later. The clarity of Berry's seminal paper, in 1984, was extraordinary. Research on the topic flourished at such a pace that it became difficult for non-experts to follow the many different theoretical ideas and experimental proposals which ensued. Diverse concepts in independent areas of mathematics, physics and chemistry were being applied, for what was (and can still be considered) a nascent arena for theory, experiments and technology. Although collections of papers by different authors appeared in the literature, sometimes with ample introductions, surprisingly, to the best of my knowledge, no specific and exhaustive book has ever been written on this subject. The Geometric Phase in Quantum Systems is the first thorough book on geometric phases and fills an important gap in the physical literature. Other books on the subject will undoubtedly follow. But it will take a fairly long time before other authors can cover that same variety of concepts in sn cover that same variety of concepts in such a comprehensive manner. The book is enjoyable. The choice of topics presented is well balanced and appropriate. The appendices are well written, understandable and exhaustive - three rare qualities. I also find it praiseworthy that the authors decided to explicitly carry out most of the calculations, avoiding, as much as possible, the use of the joke 'after a straightforward calculation, one finds...' This was one of the sentences I used to dislike most during my undergraduate studies. A student is inexperienced in such matters and needs to look at details. This book is addressed to graduate physics and chemistry students and was written thinking of students. However, I would recommend it also to young and mature physicists, even those who are already 'into' the subject. It is a comprehensive work, jointly written by five researchers. After a simple introduction to the subject, the book gradually provides deeper concepts, more advanced theory and finally an interesting introduction and explanation of recent experiments. For its multidisciplinary features, this work could not have been written by one single author. The collaborative effort is undoubtedly one of its most interesting qualities. I would definitely recommend it to anyone who wants to learn more on the geometric phase, a topic that is both beautiful and intriguing. (book review)

  9. Closed-loop and robust control of quantum systems.

    Science.gov (United States)

    Chen, Chunlin; Wang, Lin-Cheng; Wang, Yuanlong

    2013-01-01

    For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H(?) control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention. PMID:23997680

  10. Relativistic Quantum Dynamics of Many-Body Systems

    OpenAIRE

    Coester, F.; Polyzou, W. N.

    2001-01-01

    Relativistic quantum dynamics requires a unitary representation of the Poincare group on the Hilbert space of states. The dynamics of many-body systems must satisfy cluster separability requirements. In this paper we formulate an abstract framework of four dimensional Euclidean Green functions that can be used to construct relativistic quantum dynamics of N-particle systems consistent with these requirements. This approach should be useful in bridging the gap between few-bod...

  11. Bayesian parameter inference from continuously monitored quantum systems

    OpenAIRE

    Gammelmark S.; Molmer K.

    2012-01-01

    We review the introduction of likelihood functions and Fisher information in classical estimation theory, and we show how they can be defined in a very similar manner within quantum measurement theory. We show that the stochastic master equations describing the dynamics of a quantum system subject to a definite set of measurements provides likelihood functions for unknown parameters in the system dynamics, and we show that the estimation error, given by the Fisher informatio...

  12. Lepton and quark families as quantum-dynamical systems

    International Nuclear Information System (INIS)

    We conjecture that the observed four lepton and quark families (#betta#sub(N)), (esub(N)) and (usub(N)), (dsub(N)), if considered in the space of generations N = 1,2,3..., are quantum-dynamical systems, much like particles of the first quantization are quantum-dynamical systems in the position space. We call this far-going conjecture the ''zeroth quantization'' and discuss its consequences for lepton and quark mass spectra. (author)

  13. Preparing thermal states of quantum systems by dimension reduction

    OpenAIRE

    Bilgin, Ersen; Boixo, Sergio

    2010-01-01

    We present an algorithm that prepares thermal Gibbs states of one dimensional quantum systems on a quantum computer without any memory overhead, and in a time significantly shorter than other known alternatives. Specifically, the time complexity is dominated by the quantity $N^{\\|h\\|/ T}$, where $N$ is the size of the system, $\\|h\\|$ is a bound on the operator norm of the local terms of the Hamiltonian (coupling energy), and $T$ is the temperature. Given other results on the...

  14. Genuine quantum and classical correlations in multipartite systems.

    Science.gov (United States)

    Giorgi, Gian Luca; Bellomo, Bruno; Galve, Fernando; Zambrini, Roberta

    2011-11-01

    Generalizing the quantifiers used to classify correlations in bipartite systems, we define genuine total, quantum, and classical correlations in multipartite systems. The measure we give is based on the use of relative entropy to quantify the distance between two density matrices. Moreover, we show that, for pure states of three qubits, both quantum and classical bipartite correlations obey a ladder ordering law fixed by two-body mutual informations, or, equivalently, by one-qubit entropies. PMID:22181588

  15. Invisibility of quantum systems to tunneling of matter waves

    OpenAIRE

    Cordero, Sergio; Garcia-Calderon, Gaston

    2009-01-01

    We show that an appropriate choice of the potential parameters in one-dimensional quantum systems allows for unity transmission of the tunneling particle at all incident tunneling energies, except at controllable exceedingly small incident energies. The corresponding dwell time and the transmission amplitude are indistinguishable from those of a free particle in the unity-transmission regime. This implies the possibility of designing quantum systems that are invisible to tun...

  16. Information theory of quantum systems with some hydrogenic applications

    OpenAIRE

    Dehesa, J. S.; Manzano, D.; Sánchez-Moreno, P. S.; Yáñez, R. J.

    2010-01-01

    The information-theoretic representation of quantum systems, which complements the familiar energy description of the density-functional and wave-function-based theories, is here discussed. According to it, the internal disorder of the quantum-mechanical non-relativistic systems can be quantified by various single (Fisher information, Shannon entropy) and composite (e.g. Cramer-Rao, LMC shape and Fisher-Shannon complexity) functionals of the Schr\\"odinger probability density...

  17. Electron-vibron effects in interacting quantum dot systems

    OpenAIRE

    Yar, Abdullah

    2012-01-01

    In this thesis we consider the vibrational effects on the electric transport properties of a quantum dot system. We thereby address three different problems. In the first part, we develope a theoretical model of a single level quantum dot system which is coupled to many vibronic modes. According to this model, many vibronic degenerate state can contribute to transport at finite bias. However, the coherences between the degenerate states do not play any significant role. In the differentia...

  18. Frustration, Entanglement, and Correlations in Quantum Many Body Systems

    OpenAIRE

    Marzolino U.; Giampaolo S.M.; Illuminati F.

    2013-01-01

    We derive an exact lower bound to a universal measure of frustration in degenerate ground states of quantum many-body systems. The bound results in the sum of two contributions: entanglement and classical correlations arising from local measurements. We show that average frustration properties are completely determined by the behavior of the maximally mixed ground state. We identify sufficient conditions for a quantum spin system to saturate the bound, and for models with tw...

  19. Plausibility of Quantum Coherent States in Biological Systems

    CERN Document Server

    Salari, V; Rahnama, M; Bernroider, G

    2010-01-01

    In this paper we briefly discuss the necessity of using quantum mechanics as a fundamental theory applicable to some key functional aspects of biological systems. This is especially relevant to three important parts of a neuron in the human brain, namely the cell membrane, microtubules (MT) and ion channels. We argue that the recently published papers criticizing the use of quantum theory in these systems are not convincing.

  20. Plausibility of quantum coherent states in biological systems

    Science.gov (United States)

    Salari, V.; Tuszynski, J.; Rahnama, M.; Bernroider, G.

    2011-07-01

    In this paper we briefly discuss the necessity of using quantum mechanics as a fundamental theory applicable to some key functional aspects of biological systems. This is especially relevant to three important parts of a neuron in the human brain, namely the cell membrane, microtubules (MT) and ion channels. We argue that the recently published papers criticizing the use of quantum theory in these systems are not convincing.

  1. Plausibility of quantum coherent states in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Salari, V [Institut de Mineralogie et de Physique des Milieux Condenses, Universite Pierre et Marie Curie-Paris 6, CNRS UMR7590 (France); Tuszynski, J [Department of Experimental Oncology, Cross Cancer Institute, 11560 University Avenue Edmonton, AB T6G 1Z2 (Canada); Rahnama, M [Department of Physics, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Bernroider, G, E-mail: vahid.salari@impmc.upmc.fr [Department of Organismic Biology, University of Salzburg, Hellbrunnerstrasse 34, Salzburg (Austria)

    2011-07-08

    In this paper we briefly discuss the necessity of using quantum mechanics as a fundamental theory applicable to some key functional aspects of biological systems. This is especially relevant to three important parts of a neuron in the human brain, namely the cell membrane, microtubules (MT) and ion channels. We argue that the recently published papers criticizing the use of quantum theory in these systems are not convincing.

  2. Periodically Driven Quantum Systems: Effective Hamiltonians and Engineered Gauge Fields

    Science.gov (United States)

    Goldman, N.; Dalibard, J.

    2014-07-01

    Driving a quantum system periodically in time can profoundly alter its long-time dynamics and trigger topological order. Such schemes are particularly promising for generating nontrivial energy bands and gauge structures in quantum-matter systems. Here, we develop a general formalism that captures the essential features ruling the dynamics: the effective Hamiltonian, but also the effects related to the initial phase of the modulation and the micromotion. This framework allows for the identification of driving schemes, based on general N-step modulations, which lead to configurations relevant for quantum simulation. In particular, we explore methods to generate synthetic spin-orbit couplings and magnetic fields in cold-atom setups.

  3. Fractional quantum Hall states in charge-imbalanced bilayer systems

    International Nuclear Information System (INIS)

    We study the fractional quantum Hall effect in a bilayer with charge-distribution imbalance induced, for instance, by a bias gate voltage. The bilayer can either be intrinsic or it can be formed spontaneously in wide quantum wells, due to the Coulomb repulsion between electrons. We focus on fractional quantum Hall effect in asymmetric bilayer systems at filling factor ? = 4/11 and show that an asymmetric Halperin-like trial wavefunction gives a valid description of the ground state of the system

  4. Fidelity and entanglement fidelity for infinite-dimensional quantum systems

    International Nuclear Information System (INIS)

    Instead of unitary freedom for finite-dimensional cases, bi-contractive freedom in the operator-sum representation for quantum channels of infinite-dimensional systems is established. Specifically, if the channel sends every pure state to a finite rank state, then the isometric freedom feature holds. Then, a method of computing entanglement fidelity and a relation between quantum fidelity and entanglement fidelity for infinite-dimensional systems are obtained. In addition, upper and lower bounds of the quantum fidelity, and their connection to the trace distance, are also provided. (paper)

  5. Quantum anti-Zeno effect in artificial quantum systems

    CERN Document Server

    Ai, Qing; Sun, C P

    2010-01-01

    In this paper, we study a quantum anti-Zeno effect (QAZE) purely induced by repetitive measurements for an artificial atom interacting with a structured bath. This bath can be artificially realized with coupled resonators in one dimension and possesses photonic band structure like Bloch electron in a periodic potential. In the presence of repetitive measurements, the pure QAZE is discovered as the observable decay is not negligible even for the atomic energy level spacing outside of the energy band of the artificial bath. If there were no measurements, the decay would not happen outside of the band. In this sense, the enhanced decay is completely induced by measurements through the relaxation channels provided by the bath. Besides, we also discuss the controversial golden rule decay rates originated from the van Hove's singularities and the effects of the counter-rotating terms.

  6. Tampering detection system using quantum-mechanical systems

    Science.gov (United States)

    Humble, Travis S. (Knoxville, TN); Bennink, Ryan S. (Knoxville, TN); Grice, Warren P. (Oak Ridge, TN)

    2011-12-13

    The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.

  7. Open quantum spin systems in semiconductor quantum dots and atoms in optical lattices

    International Nuclear Information System (INIS)

    In this Thesis, we study open quantum spin systems from different perspectives. The first part is motivated by technological challenges of quantum computation. An important building block for quantum computation and quantum communication networks is an interface between material qubits for storage and data processing and travelling photonic qubits for communication. We propose the realisation of a quantum interface between a travelling-wave light field and the nuclear spins in a quantum dot strongly coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of the cavity to achieve the coupling between nuclear spins and the travelling-wave light fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nuclear spins. High polarization of the nuclear spin ensemble is moreover highly desirable as it protects the potential electron spin qubit from decoherence. Here we present the theoretical description of an experiment in which highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum dot. The second part of this Thesis is devoted to fundamental studies of dissipative spin systems. We study general one-dimensional spin chains under dissipation and propose a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in which both coherent interaction and dissipation can be engineered and controlled. This system enables the study of non-equilibrium and steady state physics of open and driven spin systems. We find, that the steady state expectation values of different spin models exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit of weak dissipation. This effect can be used to dissipatively probe the spectrum of the Hamiltonian. We moreover study spin models under the aspect of state preparation and show that dissipation drives certain spin models into highly entangled state. Finally, we study a spin chain with subwavelength interatomic distances that exhibits long rage interactions. What lies at the heart of all these approaches is the endeavour to include the coupling to the environment into the description of the physical system with the aim of harnessing dissipative processes. While decoherence masks or destroys quantum effects and is considered as the main adversary of any quantum information application, we turn the existence of the dissipative coupling of spin systems to the environment into a fruitful resource.

  8. Open quantum spin systems in semiconductor quantum dots and atoms in optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Schwager, Heike

    2012-07-04

    In this Thesis, we study open quantum spin systems from different perspectives. The first part is motivated by technological challenges of quantum computation. An important building block for quantum computation and quantum communication networks is an interface between material qubits for storage and data processing and travelling photonic qubits for communication. We propose the realisation of a quantum interface between a travelling-wave light field and the nuclear spins in a quantum dot strongly coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of the cavity to achieve the coupling between nuclear spins and the travelling-wave light fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nuclear spins. High polarization of the nuclear spin ensemble is moreover highly desirable as it protects the potential electron spin qubit from decoherence. Here we present the theoretical description of an experiment in which highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum dot. The second part of this Thesis is devoted to fundamental studies of dissipative spin systems. We study general one-dimensional spin chains under dissipation and propose a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in which both coherent interaction and dissipation can be engineered and controlled. This system enables the study of non-equilibrium and steady state physics of open and driven spin systems. We find, that the steady state expectation values of different spin models exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit of weak dissipation. This effect can be used to dissipatively probe the spectrum of the Hamiltonian. We moreover study spin models under the aspect of state preparation and show that dissipation drives certain spin models into highly entangled state. Finally, we study a spin chain with subwavelength interatomic distances that exhibits long rage interactions. What lies at the heart of all these approaches is the endeavour to include the coupling to the environment into the description of the physical system with the aim of harnessing dissipative processes. While decoherence masks or destroys quantum effects and is considered as the main adversary of any quantum information application, we turn the existence of the dissipative coupling of spin systems to the environment into a fruitful resource.

  9. Classically and Quantum Integrable Systems with Boundary

    OpenAIRE

    Chen, Yi-Xin(Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou, 310027, P. R. China); Luo, Xu-Dong; Wu, Ke

    1998-01-01

    We study two-dimensional classically integrable field theory with independent boundary condition on each end, and obtain three possible generating functions for integrals of motion when this model is an ultralocal one. Classically integrable boundary condition can be found in solving boundary $K_{\\pm}$ equations. In quantum case, we also find that unitarity condition of quantum $R$- matrix is sufficient to construct commutative quantities with boundary, and its reflection eq...

  10. Perfect Entanglement Transport in Quantum Spin Chain Systems

    Directory of Open Access Journals (Sweden)

    Sujit Sarkar

    2011-12-01

    Full Text Available We propose a mechanism for perfect entanglement transport in anti-ferromagnetic (AFM quantum spin chain systems with modulated exchange coupling and also for the modulation of on-site magnetic field. We use the principle of adiabatic quantum pumping process for entanglement transfer in the spin chain systems. We achieve the perfect entanglement transfer over an arbitrarily long distance and a better entanglement transport for longer AFM spin chain system than for the ferromagnetic one. We explain analytically and physically—why the entanglement hops in alternate sites. We find the condition for blocking of entanglement transport even in the perfect pumping situation. Our analytical solution interconnects quantum many body physics and quantum information science.

  11. Applying quantum mechanics to macroscopic and mesoscopic systems

    CERN Document Server

    T., N Poveda

    2012-01-01

    There exists a paradigm in which Quantum Mechanics is an exclusively developed theory to explain phenomena on a microscopic scale. As the Planck's constant is extremely small, $h\\sim10^{-34}{J.s}$, and as in the relation of de Broglie the wavelength is inversely proportional to the momentum; for a mesoscopic or macroscopic object the Broglie wavelength is very small, and consequently the undulatory behavior of this object is undetectable. In this paper we show that with a particle oscillating around its classical trajectory, the action is an integer multiple of a quantum of action, $S = nh_{o}$. The quantum of action, $h_{o}$, which plays a role equivalent to Planck's constant, is a free parameter that must be determined and depends on the physical system considered. For a mesoscopic and macroscopic system: $h_{o}\\gg h$, this allows us to describe these systems with the formalism of quantum mechanics.

  12. Quantum encodings in spin systems and harmonic oscillators

    International Nuclear Information System (INIS)

    We show that higher-dimensional versions of qubits, or qudits, can be encoded into spin systems and into harmonic oscillators, yielding important advantages for quantum computation. Whereas qubit-based quantum computation is adequate for analyses of quantum vs classical computation, in practice qubits are often realized in higher-dimensional systems by truncating all but two levels, thereby reducing the size of the precious Hilbert space. We develop natural qudit gates for universal quantum computation, and exploit the entire accessible Hilbert space. Mathematically, we give representations of the generalized Pauli group for qudits in coupled spin systems and harmonic oscillators, and include analyses of the qubit and the infinite-dimensional limits

  13. A tunable macroscopic quantum system based on two fractional vortices

    International Nuclear Information System (INIS)

    We propose a tunable macroscopic quantum system based on two fractional vortices. Our analysis shows that two coupled fractional vortices pinned at two artificially created ? discontinuities of the Josephson phase in a long Josephson junction can reach the quantum regime where coherent quantum oscillations arise. For this purpose we map the dynamics of this system to that of a single particle in a double-well potential. By tuning the ? discontinuities with injector currents, we are able to control the parameters of the effective double-well potential as well as to prepare a desired state of the fractional vortex molecule. The values of the parameters derived from this model suggest that an experimental realization of this tunable macroscopic quantum system is possible with today's technology. (paper)

  14. How Quantum Computers Fail: Quantum Codes, Correlations in Physical Systems, and Noise Accumulation

    CERN Document Server

    Kalai, Gil

    2011-01-01

    The feasibility of computationally superior quantum computers is one of the most exciting and clear-cut scientific questions of our time. The question touches on fundamental issues regarding probability, physics, and computability, as well as on exciting problems in experimental physics, engineering, computer science, and mathematics. We propose three related directions towards a negative answer. The first is a conjecture about physical realizations of quantum codes, the second has to do with correlations in stochastic physical systems, and the third proposes a model for quantum evolutions when noise accumulates. The paper is dedicated to the memory of Itamar Pitowsky.

  15. Ferroelectricity and new quantum magnetic states of frustrated one-dimensional quantum spin systems

    International Nuclear Information System (INIS)

    Neutron scattering study and measurements of magnetic and dielectric properties have been studied for quasi one-dimensional spin 1/2 systems which are formed of edge-sharing CuO4 square planes called CuO2 ribbon chains. Due to the geometrical characteristic of the crystal structure of these systems, the nearest-neighbor exchange interaction between spins is ferromagnetic, and the second neighbor interaction is antiferromagnetic. The CuO2 ribbon chain systems are typical examples for the frustrated quantum spin systems driven by the competing interactions. We found that LiVCuO4 and PbCuSO4(OH)2 with CuO2 ribbon chains have helical magnetic order and exhibit a ferroelectric transition with the magnetic transition, simultaneously (called multiferroic). For the CuO2 ribbon chain systems, exotic quantum phases are theoretically predicted such as Haldane-dimer, spin-nematic, quadrupolar-order, and chiral-order phases. Rb2Cu2Mo3-O12 with CuO2 ribbon chains does not exhibit the long range ordering due to the quantum spin fluctuation and low dimensionality. For Rb2Cu2Mo3O12, the ferroelectric transition is found to be induced by applying field without magnetic transition, which is a new type ferroelectric transition triggered by the magnetism of frustrated quantum spin systems. The obtained results strongly suggest that Rb2Cu2Mo3O12 exhibits some exotic quantum states. (author)

  16. Theory and simulation of cavity quantum electro-dynamics in multi-partite quantum complex systems

    International Nuclear Information System (INIS)

    The cavity quantum electrodynamics of various complex systems is here analyzed using a general versatile code developed in this research. Such quantum multi-partite systems normally consist of an arbitrary number of quantum dots in interaction with an arbitrary number of cavity modes. As an example, a nine-partition system is simulated under different coupling regimes, consisting of eight emitters interacting with one cavity mode. Two-level emitters (e.g. quantum dots) are assumed to have an arrangement in the form of a linear chain, defining the mutual dipole-dipole interactions. It was observed that plotting the system trajectory in the phase space reveals a chaotic behavior in the so-called ultrastrong-coupling regime. This result is mathematically confirmed by detailed calculation of the Kolmogorov entropy, as a measure of chaotic behavior. In order to study the computational complexity of our code, various multi-partite systems consisting of one to eight quantum dots in interaction with one cavity mode were solved individually. Computation run times and the allocated memory for each system were measured. (orig.)

  17. Theory and simulation of cavity quantum electro-dynamics in multi-partite quantum complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Alidoosty Shahraki, Moslem; Khorasani, Sina; Aram, Mohammad Hasan [Sharif University of Technology, School of Electrical Engineering, Tehran (Iran, Islamic Republic of)

    2014-05-15

    The cavity quantum electrodynamics of various complex systems is here analyzed using a general versatile code developed in this research. Such quantum multi-partite systems normally consist of an arbitrary number of quantum dots in interaction with an arbitrary number of cavity modes. As an example, a nine-partition system is simulated under different coupling regimes, consisting of eight emitters interacting with one cavity mode. Two-level emitters (e.g. quantum dots) are assumed to have an arrangement in the form of a linear chain, defining the mutual dipole-dipole interactions. It was observed that plotting the system trajectory in the phase space reveals a chaotic behavior in the so-called ultrastrong-coupling regime. This result is mathematically confirmed by detailed calculation of the Kolmogorov entropy, as a measure of chaotic behavior. In order to study the computational complexity of our code, various multi-partite systems consisting of one to eight quantum dots in interaction with one cavity mode were solved individually. Computation run times and the allocated memory for each system were measured. (orig.)

  18. A new perspectives in nonrelativistic quantum mechanics. Quantum-field properties of many-partic systems

    International Nuclear Information System (INIS)

    Full text: (author)The developed approach allows one to construct a more realistic nonrelativistic quantum theory which includes 'fundamental environment' (FE) (physical vacuum's fluctuations) as a constituent part of a quantum system (QS). As a result of this, the problems of spontaneous transitions (including decay of the ground state) between energy levels of quantum system, the Lamb shift of energy levels, erp paradox and many other difficulties of standard quantum theory are solved more naturally. In this approach, we find a new feature of quantum systems. Unlike de-Broglie wave this peculiarity does not disappear with increase in mass of the system. In other words, a macroscopic system which till now has been considered exclusively classical has some quantum-field properties which at definite conditions can be quite observable and measurable. Moreover, it is proved that after the disintegration of macrosystem into parts its fragments are in the entanglement states, which is specified by nonpotential interaction and all this takes place due to fundamental environment. It especially concerns nonstationary systems, for example, biological systems in which elementary atom-molecular processes proceed continuously. Note that such conclusion becomes even more obvious, if to take into account the well known work of [1], where the idea of universal description for unified dynamics of micro and macroscopic systems in the form of the Fokker-Planck equation was for the firshe Fokker-Planck equation was for the first time suggested. Finally, in the limits of the developed approach the closed system 'QS + FE' in equilibrium is being described on extended space R3 x En , where En is compactified subspace

  19. Quantum phase transitions and quantum communication in a spin star system

    International Nuclear Information System (INIS)

    We consider a generalized spin star system which can be solved exactly, with the central spin-1/2 system embedded in a bath of N spin-1/2 particles. In this system, in addition to the central-outer couplings, each pair of nearest neighbours of the bath spins interacts within themselves. The general expressions of the eigenstates as well as the eigenvalues of the model are derived with the use of symmetries of the system. We then investigate the quantum phase transitions in some limiting cases and show that the occurrence of the quantum phase transitions can be obtained by varying the external control parameters. We further analyse the properties of quantum communication in this model. In the time evolution, some simple and interesting results are discovered concerning transfer fidelity, cloning fidelity, as well as entanglements created

  20. Method for adding nodes to a quantum key distribution system

    Energy Technology Data Exchange (ETDEWEB)

    Grice, Warren P

    2015-02-24

    An improved quantum key distribution (QKD) system and method are provided. The system and method introduce new clients at intermediate points along a quantum channel, where any two clients can establish a secret key without the need for a secret meeting between the clients. The new clients perform operations on photons as they pass through nodes in the quantum channel, and participate in a non-secret protocol that is amended to include the new clients. The system and method significantly increase the number of clients that can be supported by a conventional QKD system, with only a modest increase in cost. The system and method are compatible with a variety of QKD schemes, including polarization, time-bin, continuous variable and entanglement QKD.

  1. Heat-exchange statistics in driven open quantum systems

    International Nuclear Information System (INIS)

    As the dimensions of physical systems approach the nanoscale, the laws of thermodynamics must be reconsidered due to the increased importance of fluctuations and quantum effects. While the statistical mechanics of small classical systems is relatively well understood, the quantum case still poses challenges. Here, we set up a formalism that allows us to calculate the full probability distribution of energy exchanges between a periodically driven quantum system and a thermalized heat reservoir. The formalism combines Floquet theory with a generalized master equation approach. For a driven two-level system and in the long-time limit, we obtain a universal expression for the distribution, providing clear physical insight into the exchanged energy quanta. We illustrate our approach in two analytically solvable cases and discuss the differences in the corresponding distributions. Our predictions could be directly tested in a variety of systems, including optical cavities and solid-state devices. (paper)

  2. Quantum Magnets and Matrix Lorenz Systems

    Science.gov (United States)

    Tranchida, J.; Thibaudeau, P.; Nicolis, S.

    2015-01-01

    The Landau-Lifshitz-Gilbert equations for the evolution of the magnetization, in presence of an external torque, can be cast in the form of the Lorenz equations and, thus, can describe chaotic fluctuations. To study quantum effects, we describe the magnetization by matrices, that take values in a Lie algebra. The finite dimensionality of the representation encodes the quantum fluctuations, while the non-linear nature of the equations can describe chaotic fluctuations. We identify a criterion, for the appearance of such non-linear terms. This depends on whether an invariant, symmetric tensor of the algebra can vanish or not. This proposal is studied in detail for the fundamental representation of u(2) = u(1) × su(2). We find a knotted structure for the attractor, a bimodal distribution for the largest Lyapunov exponent and that the dynamics takes place within the Cartan subalgebra, that does not contain only the identity matrix, thereby can describe the quantum fluctuations.

  3. Work and its fluctuations in a driven quantum system

    OpenAIRE

    Solinas, Paolo; Averin, Dmitri V.; Pekola, Jukka P.

    2012-01-01

    We analyze work done on a quantum system driven by a control field. The average work depends on the whole dynamics of the system, and is obtained as the integral of the average power operator. As a specific example we focus on a superconducting Cooper-pair box forming a two-level system. We obtain expressions for the average work and work distribution in a closed system, and discuss control field and environment contributions to the average work for an open system.

  4. Time-resolved electron transport in quantum-dot systems

    International Nuclear Information System (INIS)

    In this thesis the time-resolved electron transport in quantum dot systems was studied. For this two different formalisms were presented: The nonequilibrium Green functions and the generalized quantum master equations. For both formalisms a propagation method for the numerical calculation of time-resolved expectation values, like the occupation and the electron current, was developed. For the demonstration of the propagation method two different question formulations were considered. On the one hand the stochastically driven resonant-level model was studied. On the other hand the pulse-induced transport through a double quantum dot was considered.

  5. Experimental quantum computing to solve systems of linear equations.

    Science.gov (United States)

    Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2013-06-01

    Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm. PMID:25167475

  6. Universal behavior beyond multifractality in quantum many-body systems.

    Science.gov (United States)

    Luitz, David J; Alet, Fabien; Laflorencie, Nicolas

    2014-02-01

    How many states of a configuration space contribute to a wave function? Attempts to answer this ubiquitous question have a long history in physics and are keys to understanding, e.g., localization phenomena. Beyond single-particle physics, a quantitative study of the ground state complexity for interacting many-body quantum systems is notoriously difficult, mainly due to the exponential growth of the configuration (Hilbert) space with the number of particles. Here we develop quantum Monte Carlo schemes to overcome this issue, focusing on Shannon-Rényi entropies of ground states of large quantum many-body systems. Our simulations reveal a generic multifractal behavior while the very nature of quantum phases of matter and associated transitions is captured by universal subleading terms in these entropies. PMID:24580627

  7. Quantum cavity modes in spatially extended Josephson systems

    International Nuclear Information System (INIS)

    We report a theoretical study of the macroscopic quantum dynamics in spatially extended Josephson systems. We focus on a Josephson tunnel junction of finite length placed in an externally applied magnetic field. In such a system, electromagnetic waves in the junction are excited in the form of cavity modes manifested by Fiske resonances, which are easily observed experimentally. We show that in the quantum regime, various characteristics of the junction such as its critical current Ic, width of the critical current distribution ?, escape rate ? from the superconducting state to a resistive one, and the time-dependent probability P(t) of the escape are influenced by the number of photons excited in the junction cavity. Therefore, these characteristics can be used as a tool to measure the quantum states of photons in the junction, e.g., quantum fluctuations, coherent and squeezed states, entangled Fock states, etc

  8. Quantum cavity modes in spatially extended Josephson systems

    CERN Document Server

    Fistul, M V

    2006-01-01

    We report a theoretical study of the macroscopic quantum dynamics in spatially extended Josephson systems. We focus on a Josephson tunnel junction of finite length placed in an externally applied magnetic field. In such a system, electromagnetic waves in the junction are excited in the form of cavity modes manifested by Fiske resonances, which are easily observed experimentally. We show that in the quantum regime various characteristics of the junction as its critical current $I_c$, width of the critical current distribution $\\sigma$, escape rate $\\Gamma$ from the superconducting state to a resistive one, and the time-dependent probability $P(t)$ of the escape are influenced by the number of photons excited in the junction cavity. Therefore, these characteristics can be used as a tool to measure the quantum states of photons in the junction, e.g. quantum fluctuations, coherent and squeezed states, entangled Fock states, etc.

  9. GRAVITATIONAL WAVES AND STATIONARY STATES OF QUANTUM AND CLASSICAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2014-03-01

    Full Text Available In this paper, we consider gravitation theory in multidimensional space. The model of the metric satisfying the basic requirements of quantum theory is proposed. It is shown that gravitational waves are described by the Liouville equation and the Schrodinger equation as well. The solutions of the Einstein equations describing the stationary states of arbitrary quantum and classical systems with central symmetry have been obtained. Thus, it is proved that atoms and atomic nuclei can be represented as standing gravitational waves

  10. A short review on entanglement in quantum spin systems

    OpenAIRE

    Latorre, J. I.; Riera, A.

    2009-01-01

    We review some of the recent progress on the study of entropy of entanglement in many-body quantum systems. Emphasis is placed on the scaling properties of entropy for one-dimensional multi-partite models at quantum phase transitions and, more generally, on the concept of area law. We also briefly describe the relation between entanglement and the presence of impurities, the idea of particle entanglement, the evolution of entanglement along renormalization group trajectories...

  11. Computer simulation of mixed classical-quantum systems

    International Nuclear Information System (INIS)

    We briefly review three important methods that are currently used in the simulation of mixed systems. Two of these techniques, path integral Monte Carlo or molecular dynamics and dynamical simulated annealing, have the limitation that they can only describe the structural properties in the ground state. The third so-called quantum molecular dynamics (QMD) method can provide not only the static properties but also the real-time dynamics of a quantum particle at finite temperatures. 10 refs

  12. Spin Selective Purcell Effect in a Quantum Dot Microcavity System

    OpenAIRE

    Ren, Qijun; Lu, Jian; Tan, H. H.; Wu, Shan; Sun, Liaoxin; Zhou, Weihang; Xie, Wei; Sun, Zheng; Zhu, Yongyuan; Jagadish, C.; Shen, S. C.; Chen, Zhanghai

    2010-01-01

    We demonstrate the selective coupling of a single quantum dot exciton spin state with the cavity mode in a quantum dot-micropillar cavity system. By tuning an external magnetic field, the Zeeman splitted exciton spin states coupled differently with the cavity due to field manipulated energy detuning. We found a 26 times increase in the emission intensity of spin-up exciton state with respect to spin-down exciton state at resonance due to Purcell effect, which gives rise to t...

  13. Hall Drag in Correlated Double Layer Quantum Hall Systems

    OpenAIRE

    Yang, Kun

    1998-01-01

    We show that in the limit of zero temperature, double layer quantum Hall systems exhibit a novel phenomena called Hall drag, namely a current driven in one layer induces a voltage drop in the other layer, in the direction perpendicular to the driving current. The two-by-two Hall resistivity tensor is quantized and proportional to the ${\\bf K}$ matrix that describes the topological order of the quantum Hall state, even when the ${\\bf K}$ matrix contains a zero eigenvalue, in ...

  14. Far from equilibrium energy flow in quantum critical systems

    CERN Document Server

    Bhaseen, M J; Lucas, Andrew; Schalm, Koenraad

    2013-01-01

    We investigate far from equilibrium energy transport in strongly coupled quantum critical systems. Combining results from gauge-gravity duality, relativistic hydrodynamics, and quantum field theory, we argue that long-time energy transport occurs via a universal steady-state for any spatial dimensionality. This is described by a boosted thermal state. We determine the transport properties of this emergent steady state, including the average energy flow and its long-time fluctuations.

  15. Strong exciton–photon coupling in semiconductor quantum dot systems

    International Nuclear Information System (INIS)

    An overview is given on strong coupling phenomena in semiconductor quantum dot systems by utilizing cavity-enhanced light–matter interaction. The basic theory on strong coupling, the quantum dot and cavity fabrication technologies are reviewed while mainly three approaches are highlighted, i.e., micropillar, photonic crystal and microdisc cavities. The first and recent strong coupling experiments and the impact for future work are discussed. (topical review)

  16. Quantum phase transition in a dissipative two-qubit system

    OpenAIRE

    Zheng, Hang; Lu?, Zhiguo; Zhao, Yang

    2014-01-01

    By means of a unitary transformation, we study quantum phase transitions in the ground state of a two-qubit system interacting with a dissipative reservoir. First, the ground state phase diagram is analyzed in the presence of the Ohmic and sub-Ohmic bath using an analytic ground state wave function which takes into account the competition between intrasite tunneling and intersite correlation. The quantum critical point is determined as the transition point from non-degenerat...

  17. Risk-Sensitive Optimal Control of Quantum Systems

    OpenAIRE

    James, M. R.

    2003-01-01

    The importance of feedback control is being increasingly appreciated in quantum physics and applications. This paper describes the use of optimal control methods in the design of quantum feedback control systems, and in particular the paper formulates and solves a risk-sensitive optimal control problem. The resulting risk-sensitive optimal control is given in terms of a new unnormalized conditional state, whose dynamics include the cost function used to specify the performan...

  18. Sensitivity of Quantum Motion for Classically Chaotic Systems

    OpenAIRE

    Benenti, Giuliano; Casati, Giulio

    2001-01-01

    We discuss the behavior of fidelity for a classically chaotic quantum system in the metallic regime. We show the existence of a critical value of the perturbation below which the exponential decay of fidelity is determined by the width of the Breit-Wigner distribution and above which the quantum decay follows the classical one which is ruled by the Lyapunov exponent. The independence of the decay {\\it rate} from the perturbation strength derives from the similarity of the qu...

  19. Thermodynamics of quantum dissipative many-body systems

    OpenAIRE

    Cuccoli, A.; Fubini, A; Tognetti, V.; Vaia, R.

    1999-01-01

    We consider quantum nonlinear many-body systems with dissipation described within the Caldeira-Leggett model, i.e., by a nonlocal action in the path integral for the density matrix. Approximate classical-like formulas for thermodynamic quantities are derived for the case of many degrees of freedom, with general kinetic and dissipative quadratic forms. The underlying scheme is the pure-quantum self-consistent harmonic approximation (PQSCHA), equivalent to the variational appr...

  20. Thermodynamics of dissipative quantum systems by effective potential

    OpenAIRE

    Cuccoli, Alessandro; Rossi, Andrea; Tognetti, Valerio; Vaia, Ruggero

    1997-01-01

    Classical-like formulas are given in order to evaluate thermal averages of observables belonging to a quantum nonlinear system with dissipation described by the Caldeira-Leggett model [Phys. Rev. Lett. 46, 211 (1981); Ann. Phys. (N.Y.) 149, 374 (1983)]. The underlying scheme is the pure-quantum self-consistent harmonic approximation, which leads to expressions with a Boltzmann factor involving an effective potential and with a Gaussian average. The latter describes the effec...

  1. Scattering Theory for Open Quantum Systems with Finite Rank Coupling

    International Nuclear Information System (INIS)

    Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator AD in a Hilbert space is used to describe an open quantum system. In this case the minimal self-adjoint dilation of AD can be regarded as the Hamiltonian of a closed system which contains the open system, but since K-tilde is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family {A(?)} of maximal dissipative operators depending on energy ?, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schroedinger-Poisson systems

  2. Quantum demolition filtering and optimal control of unstable systems.

    Science.gov (United States)

    Belavkin, V P

    2012-11-28

    A brief account of the quantum information dynamics and dynamical programming methods for optimal control of quantum unstable systems is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme, we exploit the separation theorem of filtering and control aspects as in the usual case of quantum stable systems with non-demolition observation. This allows us to start with the Belavkin quantum filtering equation generalized to demolition observations and derive the generalized Hamilton-Jacobi-Bellman equation using standard arguments of classical control theory. This is equivalent to a Hamilton-Jacobi equation with an extra linear dissipative term if the control is restricted to Hamiltonian terms in the filtering equation. An unstable controlled qubit is considered as an example throughout the development of the formalism. Finally, we discuss optimum observation strategies to obtain a pure quantum qubit state from a mixed one. PMID:23091216

  3. Symmetry in quantum system theory: Rules for quantum architecture design

    International Nuclear Information System (INIS)

    We investigate universality in the sense of controllability and observability, of multi-qubit systems in architectures of various symmetries of coupling type and topology. By determining the respective dynamic system Lie algebras, explicit reachability sets under symmetry constraints are provided. Thus for a given (possibly symmetric) experimental coupling architecture several decision problems can be solved in a unified way: (i) can a target Hamiltonian be simulated? (ii) can a target gate be synthesised? (iii) to which extent is the system observable by a given set of detection operators? and, as a special case of the latter, (iv) can an underlying system Hamiltonian be identified with a given set of detection operators? Finally, in turn, the absence of symmetry provides a convenient necessary condition for full controllability. Though often easier to assess than the well-established Lie-algebra rank condition, this is not sufficient unless the candidate dynamic simple Lie algebra can be pre-identified uniquely. Thus for architectures with various Ising and Heisenberg coupling types we give design rules sufficient to ensure full controllability. In view of follow-up studies, we relate the unification of necessary and sufficient conditions for universality to filtering simple Lie subalgebras of su(N) comprising classical and exceptional types.

  4. Moving Quantum Systems: Particles Versus Vacuum

    OpenAIRE

    Kuckert, Bernd

    2002-01-01

    We give an overview on a couple of recent results concerning the KMS-condition and the characterization of thermodynamic equilibrium states from a moving observer's point of view. These results include a characterization of vacuum states in relativistic quantum field theory and a general derivation of the Unruh effect.

  5. Stochastic differential equations for open quantum systems

    International Nuclear Information System (INIS)

    The Lindblad master equation for the damped quantum harmonic oscillator is transformed into Fokker-Planck equations for quasiprobability distributions. Stochastic differential equations are derived from these equations. The solution of the corresponding Ornstein-Uhlenbeck process and the correlation functions are calculated. (Author)

  6. Work extraction and thermodynamics for individual quantum systems.

    Science.gov (United States)

    Skrzypczyk, Paul; Short, Anthony J; Popescu, Sandu

    2014-01-01

    Thermodynamics is traditionally concerned with systems comprised of a large number of particles. Here we present a framework for extending thermodynamics to individual quantum systems, including explicitly a thermal bath and work-storage device (essentially a 'weight' that can be raised or lowered). We prove that the second law of thermodynamics holds in our framework, and gives a simple protocol to extract the optimal amount of work from the system, equal to its change in free energy. Our results apply to any quantum system in an arbitrary initial state, in particular including non-equilibrium situations. The optimal protocol is essentially reversible, similar to classical Carnot cycles, and indeed, we show that it can be used to construct a quantum Carnot engine. PMID:24969511

  7. Sliding Mode Control of Two-Level Quantum Systems

    CERN Document Server

    Dong, Daoyi

    2010-01-01

    This paper proposes a robust control method based on sliding mode design for two-level quantum systems with bounded uncertainties. An eigenstate of the two-level quantum system is identified as a sliding mode. The objective is to design a control law to steer the system's state into the sliding mode domain and then maintain it in that domain when bounded uncertainties exist in the system Hamiltonian. We propose a controller design method using the Lyapunov methodology and periodic projective measurements. In particular, we give conditions for designing such a control law, which can guarantee the desired robustness in the presence of the uncertainties. The sliding mode control method has potential applications to quantum information processing with uncertainties.

  8. Multi-scale analysis for random quantum systems with interaction

    CERN Document Server

    Chulaevsky, Victor

    2014-01-01

    The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems with positive spatial particle density. Creating a consistent theory of disorder in multi-particle quantum systems is an important and challenging problem that largely remains open. Multi-scale Analysis for Random Quantum Systems with Interaction  presents the progress that had been recently achieved in this area.   The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd.   This book includes the following cutting-edge features: * an introduction to the state-of-the-art single-...

  9. Quantum dynamics of bio-molecular systems in noisy environments

    CERN Document Server

    Plenio, M B

    2012-01-01

    We discuss three different aspects of the quantum dynamics of bio-molecular systems and more generally complex networks in the presence of strongly coupled environments. Firstly, we make a case for the systematic study of fundamental structural elements underlying the quantum dynamics of these systems, identify such elements and explore the resulting interplay of quantum dynamics and environmental decoherence. Secondly, we critically examine some existing approaches to the numerical description of system-environment interaction in the non-perturbative regime and present a promising new method that can overcome some limitations of existing methods. Thirdly, we present an approach towards deciding and quantifying the non-classicality of the action of the environment and the observed system-dynamics. We stress the relevance of these tools for strengthening the interplay between theoretical and experimental research in this field.

  10. Equivalence of the Symbol Grounding and Quantum System Identification Problems

    Directory of Open Access Journals (Sweden)

    Chris Fields

    2014-02-01

    Full Text Available The symbol grounding problem is the problem of specifying a semantics for the representations employed by a physical symbol system in a way that is neither circular nor regressive. The quantum system identification problem is the problem of relating observational outcomes to specific collections of physical degrees of freedom, i.e., to specific Hilbert spaces. It is shown that with reasonable physical assumptions these problems are equivalent. As the quantum system identification problem is demonstrably unsolvable by finite means, the symbol grounding problem is similarly unsolvable.

  11. Preparing thermal states of quantum systems by dimension reduction.

    Science.gov (United States)

    Bilgin, Ersen; Boixo, Sergio

    2010-10-22

    We present an algorithm that prepares thermal Gibbs states of one dimensional quantum systems on a quantum computer without any memory overhead, and in a time significantly shorter than other known alternatives. Specifically, the time complexity is dominated by the quantity N(?h?/T), where N is the size of the system, ?h? is a bound on the operator norm of the local terms of the Hamiltonian (coupling energy), and T is the temperature. Given other results on the complexity of thermalization, this overall scaling is likely optimal. For higher dimensions, our algorithm lowers the known scaling of the time complexity with the dimension of the system by one. PMID:21231028

  12. Preparing thermal states of quantum systems by dimension reduction

    CERN Document Server

    Bilgin, Ersen

    2010-01-01

    We present an algorithm that prepares thermal Gibbs states of one dimensional quantum systems on a quantum computer without any memory overhead, and in a time significantly shorter than other known alternatives. Specifically, the time complexity is dominated by the quantity $N^{\\|h\\|/ T}$, where $N$ is the size of the system, $\\|h\\|$ is a bound on the operator norm of the local terms of the Hamiltonian (coupling energy), and $T$ is the temperature. Given other results on the complexity of thermalization, this overall scaling is likely optimal. For higher dimensions, our algorithm lowers the known scaling of the time complexity with the dimension of the system by one.

  13. Unifying relation for quantum systems driven out of equilibrium

    CERN Document Server

    Matsuoka, Hiroshi

    2011-01-01

    We extend a classical relation derived by Crooks to quantum systems driven out of equilibrium and show that it provides a unified way of deriving both known and new results for these systems. For a fluid driven to a steady state with a shear flow, we use it to prove the fluctuation theorem for shear stress to obtain the Green-Kubo formula for shear viscosity in terms of the symmetrized correlation function of the shear stress operator. We also show that a generalized entropy for a quantum system in a steady heat conduction state satisfies extensions of the Clausius and the Gibbs relations.

  14. Calorimetric measurement of work in a quantum system

    International Nuclear Information System (INIS)

    We propose a calorimetric measurement of work in a quantum system. As a physical realization, we consider a superconducting two-level system, a Cooper-pair box, driven by a gate voltage past an avoided level crossing at charge degeneracy. We demonstrate that, with realistic experimental parameters, the temperature measurement of a resistor (environment) can detect single microwave photons emitted or absorbed by the two-level system. This method would thus be a way to measure the full distribution of work in repeated measurements, and to assess the quantum fluctuation relations. (paper)

  15. Shortcuts to adiabaticity in quantum many-body systems: a quantum dynamical microscope

    Science.gov (United States)

    Del Campo, Adolfo

    2014-03-01

    The evolution of a quantum system induced by a shortcut to adiabaticity mimics the adiabatic dynamics without the requirement of slow driving. Engineering it involves diagonalizing the instantaneous Hamiltonian of the system and results in the need of auxiliary non-local interactions for matter-waves. Here experimentally realizable driving protocols are found for a large class of single-particle, many-body, and non-linear systems without demanding the spectral properties as an input. The method is applied to the expansion of a trapped ultracold gas which spatially scales up the size of the cloud while conserving the quantum correlations of the initial many-body state. This shortcut to adiabatic expansions acts as a quantum dynamical microscope.

  16. Symmetry of quantum phase space in a degenerate Hamiltonian system

    International Nuclear Information System (INIS)

    The structure of the global ''quantum phase space'' is analyzed for the harmonic oscillator perturbed by a monochromatic wave in the limit when the perturbation amplitude is small. Usually, the phenomenon of quantum resonance was studied in nondegenerate [G. M. Zaslavsky, Chaos in Dynamic Systems (Harwood Academic, Chur, 1985)] and degenerate [Demikhovskii, Kamenev, and Luna-Acosta, Phys. Rev. E 52, 3351 (1995)] classically chaotic systems only in the particular regions of the classical phase space, such as the center of the resonance or near the separatrix. The system under consideration is degenerate, and even an infinitely small perturbation generates in the classical phase space an infinite number of the resonant cells which are arranged in the pattern with the axial symmetry of the order 2? (where ? is the resonance number). We show analytically that the Husimi functions of all Floquet states (the quantum phase space) have the same symmetry as the classical phase space. This correspondence is demonstrated numerically for the Husimi functions of the Floquet states corresponding to the motion near the elliptic stable points (centers of the classical resonance cells). The derived results are valid in the resonance approximation when the perturbation amplitude is small enough, and the stochastic layers in the classical phase space are exponentially thin. The developed approach can be used for studying a global symmetry of more complicated quantum systems with chaote complicated quantum systems with chaotic behavior. (c) 2000 American Institute of Physics

  17. Numerical approaches to complex quantum, semiclassical and classical systems

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Gerald

    2008-11-03

    In this work we analyse the capabilities of several numerical techniques for the description of different physical systems. Thereby, the considered systems range from quantum over semiclassical to classical and from few- to many-particle systems. In chapter 1 we investigate the behaviour of a single quantum particle in the presence of an external disordered background (static potentials). Starting from the quantum percolation problem, we address the fundamental question of a disorder induced (Anderson-) transition from extended to localised single-particle eigenstates. Distinguishing isolating from conducting states by applying a local distribution approach for the local density of states (LDOS), we detect the quantum percolation threshold in two- and three-dimensions. Extending the quantum percolation model to a quantum random resistor model, we comment on the possible relevance of our results to the influence of disorder on the conductivity in graphene sheets. For the calculation of the LDOS as well as for the Chebyshev expansion of the time evolution operator, the kernel polynomial method (KPM) is the key numerical technique. In chapter 2 we examine how a single quantum particle is influenced by retarded bosonic fields that are inherent to the system. Within the Holstein model, these bosonic degrees of freedom (phonons) give rise to an infinite dimensional Hilbert space, posing a true many-particle problem. Constituting a minimal model for polaron formation, the Holstein model allows us to study the optical absorption and activated transport in polaronic systems. Using a two-dimensional variant of the KPM, we calculate for the first time quasi-exactly the optical absorption and dc-conductivity as a function of temperature. In chapter 3 we come back to the time evolution of a quantum particle in an external, static potential and investigate the capability of semiclassical approximations to it. We address basic quantum effects as tunneling, interference and anharmonicity. To this end we consider the linearised semiclassical propagator method, the Wigner-Moyal approach and the recently proposed quantum tomography. Finally, in chapter 4 we calculate the dynamics of a classical many-particle system under the influence of external fields. Considering a low-temperature rf-plasma, we investigate the interplay of the plasma dynamics and the motion of dust particles, immersed into the plasma for diagnostic reasons. (orig.)

  18. Numerical approaches to complex quantum, semiclassical and classical systems

    International Nuclear Information System (INIS)

    In this work we analyse the capabilities of several numerical techniques for the description of different physical systems. Thereby, the considered systems range from quantum over semiclassical to classical and from few- to many-particle systems. In chapter 1 we investigate the behaviour of a single quantum particle in the presence of an external disordered background (static potentials). Starting from the quantum percolation problem, we address the fundamental question of a disorder induced (Anderson-) transition from extended to localised single-particle eigenstates. Distinguishing isolating from conducting states by applying a local distribution approach for the local density of states (LDOS), we detect the quantum percolation threshold in two- and three-dimensions. Extending the quantum percolation model to a quantum random resistor model, we comment on the possible relevance of our results to the influence of disorder on the conductivity in graphene sheets. For the calculation of the LDOS as well as for the Chebyshev expansion of the time evolution operator, the kernel polynomial method (KPM) is the key numerical technique. In chapter 2 we examine how a single quantum particle is influenced by retarded bosonic fields that are inherent to the system. Within the Holstein model, these bosonic degrees of freedom (phonons) give rise to an infinite dimensional Hilbert space, posing a true many-particle problem. Constituting a minimal model for polaron formation, the Holstein model allows us to study the optical absorption and activated transport in polaronic systems. Using a two-dimensional variant of the KPM, we calculate for the first time quasi-exactly the optical absorption and dc-conductivity as a function of temperature. In chapter 3 we come back to the time evolution of a quantum particle in an external, static potential and investigate the capability of semiclassical approximations to it. We address basic quantum effects as tunneling, interference and anharmonicity. To this end we consider the linearised semiclassical propagator method, the Wigner-Moyal approach and the recently proposed quantum tomography. Finally, in chapter 4 we calculate the dynamics of a classical many-particle system under the influence of external fields. Considering a low-temperature rf-plasma, we investigate the interplay of the plasma dynamics and the motion of dust particles, immersed into the plasma for diagnostic reasons. (orig.)

  19. GRAVITATIONAL WAVES AND EMERGENCE PARAMETER OF CLASSICAL AND QUANTUM SYSTEMS

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2014-03-01

    Full Text Available It was established that the Fermi-Dirac statistics, Bose-Einstein and Maxwell-Boltzmann distribution can be described by a single equation, which follows from Einstein's equations for systems with central symmetry. Emergence parameter of classical and quantum systems composed by the rays of gravitational waves interacting with gravitational field of the universe has been computed

  20. Dissipation and entropy production in open quantum systems

    Science.gov (United States)

    Majima, H.; Suzuki, A.

    2010-11-01

    A microscopic description of an open system is generally expressed by the Hamiltonian of the form: Htot = Hsys + Henviron + Hsys-environ. We developed a microscopic theory of entropy and derived a general formula, so-called "entropy-Hamiltonian relation" (EHR), that connects the entropy of the system to the interaction Hamiltonian represented by Hsys-environ for a nonequilibrium open quantum system. To derive the EHR formula, we mapped the open quantum system to the representation space of the Liouville-space formulation or thermo field dynamics (TFD), and thus worked on the representation space Script L := Script H otimes , where Script H denotes the ordinary Hilbert space while the tilde Hilbert space conjugates to Script H. We show that the natural transformation (mapping) of nonequilibrium open quantum systems is accomplished within the theoretical structure of TFD. By using the obtained EHR formula, we also derived the equation of motion for the distribution function of the system. We demonstrated that by knowing the microscopic description of the interaction, namely, the specific form of Hsys-environ on the representation space Script L, the EHR formulas enable us to evaluate the entropy of the system and to gain some information about entropy for nonequilibrium open quantum systems.

  1. Formally exact quantization condition for nonrelativistic quantum systems

    OpenAIRE

    Ou, Yong-Cheng; Cao, Zhuang-Qi; Shen, Qi-Shun

    2006-01-01

    Based on the standard transfer matrix, a formally exact quantization condition for arbitrary potentials, which outflanks and unifies the historical approaches, is derived. It can be used to find the exact bound-state energy eigenvalues of the quantum system without solving an equation of motion for the system wave functions.

  2. Stochastic resonance in a double quantum dot system.

    Science.gov (United States)

    Joshi, Amitabh

    2008-02-01

    Stochastic resonance (SR) is theoretically investigated for a double quantum dot system represented by two discrete levels in respective wells. The system is driven by a periodic signal and a white noise source with variable amplitude, and thus displays an improved output signal-to-noise ratio, a characteristic signature of SR. PMID:18351970

  3. Construction of the dynamics of quantum lattice systems

    International Nuclear Information System (INIS)

    A way to study dynamics of quantum lattice systems based on construction of ''renormalized'' time evolution of the observables is suggested. Considerations are related to the systems of interacting oscillators at the integral lattice, in which each oscillator possesses one internal degree of freedom

  4. Quantum state tomography and quantum logical operations in a three qubits NMR quadrupolar system

    CERN Document Server

    Araujo-Ferreira, A G; Soares-Pinto, D O; deAzevedo, E R; Bonagamba, T J; Teles, J

    2011-01-01

    In this work, we present an implementation of quantum logic gates and algorithms in a three effective qubits system, represented by a (I = 7/2) NMR quadrupolar nuclei. To implement these protocols we have used the strong modulating pulses (SMP). The various stages of each implementation were verified by quantum state tomography (QST). It is presented here the results for the computational base states, Toffolli logic gates, and Deutsch-Jozsa and Grover algorithms. Also, we discuss the di?culties and advantages of implementing such protocols using the SMP technique in quadrupolar systems.

  5. Fluorescence from a quantum dot and metallic nanosphere hybrid system

    International Nuclear Information System (INIS)

    We present energy absorption and interference in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. A control field is applied to induce dipole moments in the nanosphere and the quantum dot, and a probe field is applied to monitor absorption. Dipole moments in the quantum dot or the metal nanosphere are induced, both by the external fields and by each other's dipole fields. Thus, in addition to direct polarization, the metal nanosphere and the quantum dot will sense one another via the dipole-dipole interaction. The density matrix method was used to show that the absorption spectrum can be split from one peak to two peaks by the control field, and this can also be done by placing the metal sphere close to the quantum dot. When the two are extremely close together, a self-interaction in the quantum dot produces an asymmetry in the absorption peaks. In addition, the fluorescence efficiency can be quenched by the addition of a metal nanosphere. This hybrid system could be used to create ultra-fast switching and sensing nanodevices

  6. Communication theory of quantum systems. Ph.D. Thesis, 1970

    Science.gov (United States)

    Yuen, H. P. H.

    1971-01-01

    Communication theory problems incorporating quantum effects for optical-frequency applications are discussed. Under suitable conditions, a unique quantum channel model corresponding to a given classical space-time varying linear random channel is established. A procedure is described by which a proper density-operator representation applicable to any receiver configuration can be constructed directly from the channel output field. Some examples illustrating the application of our methods to the development of optical quantum channel representations are given. Optimizations of communication system performance under different criteria are considered. In particular, certain necessary and sufficient conditions on the optimal detector in M-ary quantum signal detection are derived. Some examples are presented. Parameter estimation and channel capacity are discussed briefly.

  7. RKKY interaction in a chirally coupled double quantum dot system

    International Nuclear Information System (INIS)

    The competition between the Kondo effect and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction is investigated in a double quantum dots system, coupled via a central open conducting region. A perpendicular magnetic field induces the formation of Landau Levels which in turn give rise to the so-called Kondo chessboard pattern in the transport through the quantum dots. The two quantum dots become therefore chirally coupled via the edge channels formed in the open conducting area. In regions where both quantum dots exhibit Kondo transport the presence of the RKKY exchange interaction is probed by an analysis of the temperature dependence. The thus obtained Kondo temperature of one dot shows an abrupt increase at the onset of Kondo transport in the other, independent of the magnetic field polarity, i.e. edge state chirality in the central region

  8. Nonlinear dynamics and quantum entanglement in optomechanical systems.

    Science.gov (United States)

    Wang, Guanglei; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso

    2014-03-21

    To search for and exploit quantum manifestations of classical nonlinear dynamics is one of the most fundamental problems in physics. Using optomechanical systems as a paradigm, we address this problem from the perspective of quantum entanglement. We uncover strong fingerprints in the quantum entanglement of two common types of classical nonlinear dynamical behaviors: periodic oscillations and quasiperiodic motion. There is a transition from the former to the latter as an experimentally adjustable parameter is changed through a critical value. Accompanying this process, except for a small region about the critical value, the degree of quantum entanglement shows a trend of continuous increase. The time evolution of the entanglement measure, e.g., logarithmic negativity, exhibits a strong dependence on the nature of classical nonlinear dynamics, constituting its signature. PMID:24702337

  9. Hidden symmetries enhance quantum transport in Light Harvesting systems

    CERN Document Server

    Zech, Tobias; Wellens, Thomas; Buchleitner, Andreas

    2012-01-01

    For more than 50 years we have known that photosynthetic systems harvest solar energy with almost unit {\\it quantum efficiency}. However, recent experimental evidence of {\\it quantum coherence} during the excitonic energy transport in photosynthetic organisms challenges our understanding of this fundamental biological function. Currently, and despite numerous efforts, the causal connection between coherence and efficiency is still a matter of debate. We show, through the study of extensive simulations of quantum coherent transport on networks, that three dimensional structures characterized by centro-symmetric Hamiltonians are statistically more efficient than random arrangements. Moreover, we demonstrate that the experimental data available for the electronic Hamiltonians of the Fenna-Mathew-Olson (FMO) complex of sulfur bacteria and of the crypophyte PC645 complex of marine algae are consistent with this strong correlation of centro-symmetry with quantum efficiency. These results show that what appears to b...

  10. Planetary systems based on a quantum-like model

    CERN Document Server

    T., N Poveda; C, N Y Buitrago

    2015-01-01

    Planetary systems have their origin in the gravitational collapse of a cloud of gas and dust. Through a process of accretion, is formed a massive star and a disk of planetesimals orbiting the star. Using a formalism analogous to quantum mechanics (quantum-like model), the star-planetesimal system is described and the flow quantizing the gravitational field theoretical model parameters are obtained. Goodness of fit (chi-square) of the observed data with model quantum-like, to the solar system, satellites, exoplanets and protoplanetary disk around HL Tauri is determined. Shows that the radius, eccentricity, energy, angular momentum and orbital inclination of planetary objects formed take discrete values depending only on the mass star.

  11. Controllable quantum information network with a superconducting system

    International Nuclear Information System (INIS)

    We propose a controllable and scalable architecture for quantum information processing using a superconducting system network, which is composed of current-biased Josephson junctions (CBJJs) as tunable couplers between the two superconducting transmission line resonators (TLRs), each coupling to multiple superconducting qubits (SQs). We explicitly demonstrate that the entangled state, the phase gate, and the information transfer between any two selected SQs can be implemented, respectively. Lastly, numerical simulation shows that our scheme is robust against the decoherence of the system. -- Highlights: •An architecture for quantum information processing is proposed. •The quantum information transfer between any two selected SQs is implemented. •This proposal is robust against the decoherence of the system. •This architecture can be fabricated on a chip down to the micrometer scale

  12. Controllable quantum information network with a superconducting system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng-yang, E-mail: zhangfy@mail.dlut.edu.cn [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Liu, Bao [Beijing Computational Science Research Center (CSRC), Beijing 100084 (China); Chen, Zi-hong [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Wu, Song-lin [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Song, He-shan [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2014-07-15

    We propose a controllable and scalable architecture for quantum information processing using a superconducting system network, which is composed of current-biased Josephson junctions (CBJJs) as tunable couplers between the two superconducting transmission line resonators (TLRs), each coupling to multiple superconducting qubits (SQs). We explicitly demonstrate that the entangled state, the phase gate, and the information transfer between any two selected SQs can be implemented, respectively. Lastly, numerical simulation shows that our scheme is robust against the decoherence of the system. -- Highlights: •An architecture for quantum information processing is proposed. •The quantum information transfer between any two selected SQs is implemented. •This proposal is robust against the decoherence of the system. •This architecture can be fabricated on a chip down to the micrometer scale.

  13. The Kitaev–Feynman clock for open quantum systems

    Science.gov (United States)

    Tempel, David G.; Aspuru-Guzik, Alán

    2014-11-01

    We show that Kitaev?s construction of Feynman?s clock, in which the time-evolution of a closed quantum system is encoded as a ground state problem, can be extended to open quantum systems. In our formalism, the ground states of an ensemble of non-Hermitian Kitaev–Feynman clock Hamiltonians yield stochastic trajectories, which unravel the evolution of a Lindblad master equation. In this way, one can use the Kitaev–Feynman clock not only to simulate the evolution of a quantum system, but also its interaction with an environment such as a heat bath or measuring apparatus. A simple numerical example of a two-level atom undergoing spontaneous emission is presented and analyzed.

  14. Coulomb drag in graphene quantum Hall bilayer systems

    Science.gov (United States)

    Liu, Xiaomeng; Wang, Lei; Fong, Kin Chung; Gao, Yuanda; Maher, Patrick; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Dean, Cory; Kim, Philip

    2015-03-01

    Coulomb drag between electrons in closely spaced two-dimensional electron systems has provided an exciting avenue for research on quantum Hall bilayer systems. Employing dual-gated, encapsulated graphene double layers separated by a thin hBN dielectric, we investigate density tunable magneto and Hall drag in quantum Hall bilayer systems. Large variations of magneto-drag and Hall-drag are observed, which can be related to the Landau level (LL) filling status of both driving and drag layers. The measured drag resistivity tensor can be associated with the tensor product of the differential magneto-resistivity tensors of the drive and drag layers. The temperature and field dependence of magneto-drag can be described in terms of the phase space for Coulomb scattering between LLs in the drag and drive layers. In the strong interaction regime and ultra-low temperature, we observe the effect of symmetry broken integer quantum Hall States in magneto and Hall drag signals.

  15. A quantum information perspective of fermionic quantum many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Christina V.

    2009-11-02

    In this Thesis fermionic quantum many-body system are theoretically investigated from a quantum information perspective. Quantum correlations in fermionic many-body systems, though central to many of the most fascinating effects of condensed matter physics, are poorly understood from a theoretical perspective. Even the notion of ''paired'' fermions which is widely used in the theory of superconductivity and has a clear physical meaning there, is not a concept of a systematic and mathematical theory so far. Applying concepts and tools from entanglement theory, we close this gap, developing a pairing theory allowing to unambiguously characterize paired states. We develop methods for the detection and quantification of pairing according to our definition which are applicable to current experimental setups. Pairing is shown to be a quantum correlation distinct from any notion of entanglement proposed for fermionic systems, giving further understanding of the structure of highly correlated quantum states. In addition, we show the resource character of paired states for precision metrology, proving that BCS-states allow phase measurements at the Heisenberg limit. Next, the power of fermionic systems is considered in the context of quantum simulations, where we study the possibility to simulate Hamiltonian time evolutions on a cubic lattice under the constraint of translational invariance. Given a set of translationally invariant local Hamiltonians and short range interactions we determine time evolutions which can and those which can not be simulated. Bosonic and finite-dimensional quantum systems (''spins'') are included in our investigations. Furthermore, we develop new techniques for the classical simulation of fermionic many-body systems. First, we introduce a new family of states, the fermionic Projected Entangled Pair States (fPEPS) on lattices in arbitrary spatial dimension. These are the natural generalization of the PEPS known for spin systems, and they approximate efficiently ground and thermal states of systems with short-range interaction. We give an explicit mapping between fPEPS and PEPS, allowing to extend previous simulation methods to fermions. In addition, we show that fPEPS naturally arise as exact ground states of certain fermionic Hamiltonians, and give an example that exhibits criticality while fulfilling the area law. Finally, we derive methods for the determination of ground and thermal states, as well as the time evolution, of interacting fermionic systems using generalized Hartree-Fock theory (gHFT). With the computational complexity scaling polynomially with the number of particles, this method can deal with large systems. As a benchmark we apply our methods to the translationally invariant Hubbard model with attractive interaction and find excellent agreement with known results. (orig.)

  16. A quantum information perspective of fermionic quantum many-body systems

    International Nuclear Information System (INIS)

    In this Thesis fermionic quantum many-body system are theoretically investigated from a quantum information perspective. Quantum correlations in fermionic many-body systems, though central to many of the most fascinating effects of condensed matter physics, are poorly understood from a theoretical perspective. Even the notion of ''paired'' fermions which is widely used in the theory of superconductivity and has a clear physical meaning there, is not a concept of a systematic and mathematical theory so far. Applying concepts and tools from entanglement theory, we close this gap, developing a pairing theory allowing to unambiguously characterize paired states. We develop methods for the detection and quantification of pairing according to our definition which are applicable to current experimental setups. Pairing is shown to be a quantum correlation distinct from any notion of entanglement proposed for fermionic systems, giving further understanding of the structure of highly correlated quantum states. In addition, we show the resource character of paired states for precision metrology, proving that BCS-states allow phase measurements at the Heisenberg limit. Next, the power of fermionic systems is considered in the context of quantum simulations, where we study the possibility to simulate Hamiltonian time evolutions on a cubic lattice under the constraint of translational invariance. Given a set of translationally invariant local Hamiltonians and short range interactions we determine time evolutions which can and those which can not be simulated. Bosonic and finite-dimensional quantum systems (''spins'') are included in our investigations. Furthermore, we develop new techniques for the classical simulation of fermionic many-body systems. First, we introduce a new family of states, the fermionic Projected Entangled Pair States (fPEPS) on lattices in arbitrary spatial dimension. These are the natural generalization of the PEPS known for spin systems, and they approximate efficiently ground and thermal states of systems with short-range interaction. We give an explicit mapping between fPEPS and PEPS, allowing to extend previous simulation methods to fermions. In addition, we show that fPEPS naturally arise as exact ground states of certain fermionic Hamiltonians, and give an example that exhibits criticality while fulfilling the area law. Finally, we derive methods for the determination of ground and thermal states, as well as the time evolution, of interacting fermionic systems using generalized Hartree-Fock theory (gHFT). With the computational complexity scaling polynomially with the number of particles, this method can deal with large systems. As a benchmark we apply our methods to the translationally invariant Hubbard model with attractive interaction and find excellent agreement with known results. (orig.)

  17. Use of Quantum Sampling to Calculate Mean Values of Observables and Partition Function of a Quantum System

    OpenAIRE

    Tucci, Robert R.

    2009-01-01

    We describe an algorithm for using a quantum computer to calculate mean values of observables and the partition function of a quantum system. Our algorithm includes two sub-algorithms. The first sub-algorithm is for calculating, with polynomial efficiency, certain diagonal matrix elements of an observable. This sub-algorithm is performed on a quantum computer, using quantum phase estimation and tomography. The second sub-algorithm is for sampling a probability distribution. ...

  18. Explorations with a new qubit system: Exchange Interactions between Quantum Dot Spin Qubits and Quantum Well Excitons

    Science.gov (United States)

    McMahon, Peter

    2015-03-01

    In this talk I will present some of our recent work on constructing and optically investigating nanostructures consisting of quantum dots coupled to a nearby quantum well, all embedded in a planar microcavity. The overall goal of this line of work is to develop a platform in which long-range (~ 1 micron) two-qubit interactions between quantum dots are possible, following the pioneering proposal of Piermarocchi, Chen, Sham, and Steel. We have succeeded in demonstrating several fundamental aspects of this platform. We have realized a coupled quantum-dot-quantum-well system in a microcavity, and show that quantum dots in this system can be charged (allowing the storage of a spin qubit), and show that both the quantum dots and the quantum well retain favourable optical properties. Most importantly, we have fairly strong evidence suggesting that the operative mechanism of the theoretical proposals, the spin-dependent exchange interaction between a trapped electron in a quantum dot, and an exciton in the quantum well, is observable, and can be engineered to be of the magnitude required for the implementation of universal quantum gates and measurement operations. I will discuss these results, and highlight other recent (unrelated) work on site-controlled quantum dots, including with quantum dots in positioned nanowires. This work was primarily supported by the JSPS through its FIRST program.

  19. Experimental detection of quantum information sharing and its quantification in quantum spin systems

    International Nuclear Information System (INIS)

    We study the macroscopic entanglement properties of a low-dimensional quantum spin system by investigating its magnetic properties at low temperatures and high magnetic fields. The spin system chosen for this is copper nitrate (Cu(NO3)2 × 2.5H2O), which is a spin chain that exhibits dimerization. The temperature and magnetic field dependence of entanglement from the susceptibility and magnetization data are given, by comparing the experimental results with the theoretical estimates. Extraction of entanglement has been made possible through the macroscopic witness operator, magnetic susceptibility. An explicit comparison of the experimental extraction of entanglement with theoretical estimates is provided. It was found that theory and experiments match over a wide range of temperatures and fields. The spin system studied exhibits quantum phase transition (QPT) at low temperatures when the magnetic field is swept through a critical value. We show explicitly for the first time, using tools used in quantum information processing, that QPT can be captured experimentally using quantum complementary observables, which clearly delineate entangled states from separable ones across the QPT. We have also estimated the partial information sharing in this system from our magnetization and susceptibility data. The complementarity relation has been experimentally verified to hold in this system. (paper)

  20. Bayesian parameter inference from continuously monitored quantum systems

    DEFF Research Database (Denmark)

    Gammelmark, SØren; MØlmer, Klaus

    2013-01-01

    We review the introduction of likelihood functions and Fisher information in classical estimation theory, and we show how they can be defined in a very similar manner within quantum measurement theory. We show that the stochastic master equations describing the dynamics of a quantum system subject to a definite set of measurements provides likelihood functions for unknown parameters in the system dynamics, and we show that the estimation error, given by the Fisher information, can be identified by stochastic master equation simulations. For large parameter spaces we describe and illustrate the efficient use of Markov chain Monte Carlo sampling of the likelihood function.

  1. The detective quantum efficiency of screen-film systems

    International Nuclear Information System (INIS)

    The technical and intuitive origins of the detective quantum efficiency (DQE) of radiation detectors is presented in some detail, including its generalization to include spatial frequency dependence as proposed by Shaw. Additionally, the basic components of DQE for radiographic imaging systems, sensitometry, modulation transfer function, and noise power spectrum are discussed in simple terms. Finally, an analysis of the DQE and sources of noise of screen-film combinations is presented in terms of the characteristics of a specific imaging system, including X-ray quantum noise, film noise, a residual screen noise term, and the noise associated with the conversion of x-rays to light

  2. Shot noise in chaotic systems: "classical" to quantum crossover

    OpenAIRE

    Agam, Oded; Aleiner, Igor; Larkin, Anatoly

    1999-01-01

    This paper is devoted to study of the classical-to-quantum crossover of the shot noise value in chaotic systems. This crossover is determined by the ratio of the particle dwell time in the system, $\\tau_d$, to the characteristic time for diffraction $t_E \\simeq \\lambda^{-1} |\\ln \\hbar|$, where $\\lambda$ is the Lyapunov exponent. The shot noise vanishes in the limit $t_E \\gg \\tau_d $, while reaches its universal quantum value in the opposite limit. Thus, the Lyapunov exponent...

  3. Quantum.Ligand.Dock: protein-ligand docking with quantum entanglement refinement on a GPU system.

    Science.gov (United States)

    Kantardjiev, Alexander A

    2012-07-01

    Quantum.Ligand.Dock (protein-ligand docking with graphic processing unit (GPU) quantum entanglement refinement on a GPU system) is an original modern method for in silico prediction of protein-ligand interactions via high-performance docking code. The main flavour of our approach is a combination of fast search with a special account for overlooked physical interactions. On the one hand, we take care of self-consistency and proton equilibria mutual effects of docking partners. On the other hand, Quantum.Ligand.Dock is the the only docking server offering such a subtle supplement to protein docking algorithms as quantum entanglement contributions. The motivation for development and proposition of the method to the community hinges upon two arguments-the fundamental importance of quantum entanglement contribution in molecular interaction and the realistic possibility to implement it by the availability of supercomputing power. The implementation of sophisticated quantum methods is made possible by parallelization at several bottlenecks on a GPU supercomputer. The high-performance implementation will be of use for large-scale virtual screening projects, structural bioinformatics, systems biology and fundamental research in understanding protein-ligand recognition. The design of the interface is focused on feasibility and ease of use. Protein and ligand molecule structures are supposed to be submitted as atomic coordinate files in PDB format. A customization section is offered for addition of user-specified charges, extra ionogenic groups with intrinsic pK(a) values or fixed ions. Final predicted complexes are ranked according to obtained scores and provided in PDB format as well as interactive visualization in a molecular viewer. Quantum.Ligand.Dock server can be accessed at http://87.116.85.141/LigandDock.html. PMID:22669908

  4. Functional methods and mappings of dissipative quantum systems

    International Nuclear Information System (INIS)

    In the first part of this work we extract the algebraic structure behind the method of the influence functional in the context of dissipative quantum mechanics. Special emphasis was put on the transition from a quantum mechanical description to a classical one, since it allows a deeper understanding of the measurement-process. This is tightly connected with the transition from a microscopic to a macroscopic world where the former one is described by the rules of quantum mechanics whereas the latter follows the rules of classical mechanics. In addition we show how the results of the influence functional method can be interpreted as a stochastical process, which in turn allows an easy comparison with the well known time development of a quantum mechanical system by use of the Schroedinger equation. In the following we examine the tight-binding approximation of models of which their hamiltionian shows discrete eigenstates in position space and where transitions between those states are suppressed so that propagation either is described by tunneling or by thermal activation. In the framework of dissipative quantum mechanics this leads to a tremendous simplification of the effective description of the system since instead of looking at the full history of all paths in the path integral description, we only have to look at all possible jump times and the possible corresponding set of weights for the jump direction, which is much easier to handle both analytically and numerically. In addition we deal with the mapping and the connection of dissipative quantum mechanical models with ones in quantum field theory and in particular models in statistical field theory. As an example we mention conformal invariance in two dimensions which always becomes relevant if a statistical system only has local interaction and is invariant under scaling. (orig.)

  5. Strongly coupled coulomb systems in graphene quantum dots

    International Nuclear Information System (INIS)

    Complete text of publication follows. We review here our recent work on strongly coupled Coulomb systems in gated graphene quantum dots. The effect of Coulomb interactions, size, shape, edge and carrier density on the electronic, magnetic and optical properties of graphene quantum dots will be described. We will focus on a special class of triangular quantum dots (GTQD) with zig-zag edges. Such structures lead to a shell of degenerate zero-energy states at the Fermi level (Dirac point). The degeneracy is proportional to the edge size and can be made macroscopic. Using a combination of tight-binding, density functional, Hartree-Fock and configuration interaction methods we will describe the strongly coupled Coulomb system, a degenerate shell, as a function of the fractional filling, drawing on analogy with the FQHE. In particular, we will show that at half-filling the shell is fully spin polarised but polarization can be modulated by controlling the filling of the shell with the external gate. In particular, addition of a single electron leads to spin depolarisation due to electronic correlations and strong Coulomb interaction with the gate. The effect of shell filling and magnetic moment on transport and optical properties of a single quantum dot will be described. We will show that the magnetic moments of triangular quantum dots interact ferromagnetically in bi-layer quantum dots. The tunability of this magnetic moment with vertical electric field and the possibilityertical electric field and the possibility of isolating a single electron spin will be demonstrated. These results show that it is possible to combine electronic, photonic and magnetic functionalities in a single material system by engineering graphene quantum dot size, shape and character of the edge.

  6. Introduction to quantum phase transitions in spin systems

    International Nuclear Information System (INIS)

    The exciting collective magnetic properties of low-dimensional quantum spin systems have attracted much attention over the last decade. The recent experimental results on spin-half Heisenberg antiferromagnets like CaV4O9 and SrCu2(BO3)2 have stimulated the search for systems with disordered liquid-like magnetic ground states. While quantum fluctuations are strong enough to destroy antiferromagnetic long-range order in one-dimensional systems the situation is changed for the quantum antiferromagnets in two dimensions, where in general Neel-like ordering is favoured. However, this long-range order in 2D is quite sensitive to competing interactions and a quantum transition to a spin liquid can take place. Based on numerical as well as analytical techniques we study several two-dimensional spin-half antiferromagnets. We discuss two mechanisms to drive a quantum phase transition from conventional Neel order to a disordered liquid-like ground state, namely geometrical frustration and local singlet formation due to the competition of antiferromagnetic bonds of different strength. We find the possibility of second order as well as first-order transitions. (author)

  7. From Quantum Spectra to Classical Orbits: the Circular Billiards Systems

    Directory of Open Access Journals (Sweden)

    ZHANG Ye-bing

    2011-01-01

    Full Text Available The semi-classical method has become a necessary instrument to study the classical movement of the particle. Periodic orbit theory is repidly becoming one of most useful semi-classical tools which can be used to make direct connections between the quantized energy eigenvalues of a bound state and the classical motions for the corresponding point particle. We use a quantum spectral function which contain rich information of classical orbits in well. We study the correspondence between quantum spectra and classical orbits in the circular Two-dimensional billiard systems have provided easily visualization examples relevant for both types of analyses. As a simple example of the application to a billiard or infinite well system of Periodic orbit theory, we compute the Fourier transform (p(L of the quantum mechanical energy level density of two-dimensional circular billiard system The resulting peaks in plots of |p(L|2 versus L are compared to lengths of the classical trajectories in these geometries. The locations of peaks in p(L agree with the lengths of classical orbits perfectly, which testifies the correspondence of quantum mechanics and classical mechanics. This examples show evidently that semi-classical methods provides a brdge between quantum and classical mechanics.

  8. Environment-invariant measure of distance between evolutions of an open quantum system

    OpenAIRE

    Grace, Matthew D.; Dominy, Jason; Kosut, Robert L.; Brif, Constantin; Rabitz, Herschel

    2009-01-01

    The problem of quantifying the difference between evolutions of an open quantum system (in particular, between the actual evolution of an open system and the ideal target operation on the corresponding closed system) is important in quantum control, especially in control of quantum information processing. Motivated by this problem, we develop a measure for evaluating the distance between unitary evolution operators of a composite quantum system that consists of a sub-system ...

  9. Thermodynamic Phase Diagram of the Quantum Hall Skyrmion System

    OpenAIRE

    Moon, K.; MULLEN, K

    1999-01-01

    We numerically study the interacting quantum Hall skyrmion system based on the Chern-Simons action. By noticing that the action is invariant under global spin rotations in the spin space with respect to the magnetic field direction, we obtain the low-energy effective action for a many skyrmion system. Performing extensive molecular dynamics simulations, we establish the thermodynamic phase diagram for a many skyrmion system.

  10. Work extraction and thermodynamics for individual quantum systems

    OpenAIRE

    Paul Skrzypczyk; Short, Anthony J; Sandu Popescu

    2014-01-01

    Thermodynamics is traditionally concerned with systems comprised of a large number of particles. Here we present a framework for extending thermodynamics to individual quantum systems, including explicitly a thermal bath and work-storage device (essentially a `weight' that can be raised or lowered). We prove that the second law of thermodynamics holds in our framework, and give a simple protocol to extract the optimal amount of work from the system, equal to its change in fr...

  11. Localization in the non-analytic quantum kicked systems

    OpenAIRE

    Liu, J.; Cheng, W. T.; Cheng, C. G.

    2004-01-01

    Numerical investigations on non-analytic quantum kicked systems are presented. A new type of localization - power-law localization is found to be universal in the nonanalytic systems. With increasing the perturbation strength, a transition from perturbative localization to pseudo-integrable system, to dynamical localization and to complete extension is clearly demonstrated. The dependence of the localization length on perturbation is given in different parameter regimes.

  12. Sequential Bethe vectors and the quantum Ernst system

    OpenAIRE

    Niedermaier, M.; Samtleben, H.(Université de Lyon, Laboratoire de Physique, UMR 5672, CNRS et ENS de Lyon, 46 allée d'Italie, Lyon CEDEX 07, F-69364, France)

    2000-01-01

    We give a brief review on the use of Bethe ansatz techniques to construct solutions of recursive functional equations which emerged in a bootstrap approach to the quantum Ernst system. The construction involves two particular limits of a rational Bethe ansatz system with complex inhomogeneities. First, we pinch two insertions to the critical value. This links Bethe systems with different number of insertions and leads to the concept of sequential Bethe vectors. Second, we st...

  13. Open quantum system of two coupled harmonic oscillators

    International Nuclear Information System (INIS)

    On the basis of the Lindblad theory for open quantum systems are derived master equations for a system consisting of two harmonic oscillators. The time-dependence of expectation values, Wigner-function and Weyl operator are obtained and discussed. The chosen system can be applied for the description of the charge and mass asymmetry degrees of freedom in deep inelastic collisions in nuclear physics

  14. Quantum random processes and kinetic equations of multi-quantum systems

    International Nuclear Information System (INIS)

    The report deals with Markovian semi-group dynamics of an open system of a large number of quantum particles of different types which interact between each other and with thermostat. It is shown how to obtain nonlinear one-particle kinetic equations under assumption of weak interaction and a large number of particles in mean field approximation

  15. Quantum transport through the system of parallel quantum dots with Majorana bound states

    International Nuclear Information System (INIS)

    We study the tunneling transport properties through a system of parallel quantum dots which are coupled to Majorana bound states (MBSs). The conductance and spectral function are computed using the retarded Green's function method based on the equation of motion. The conductance of the system is 2e2/h at zero Fermi energy and is robust against the coupling between the MBSs and the quantum dots. The dependence of the Fermi energy on the spectral function is different for the first dot (dot1) than for the second dot (dot2) with fixed dot2-MBSs coupling. The influence of the Majorana bound states on the spectral function was studied for the series and parallel configurations of the system. It was found that when the configuration is in series, the Majorana bound states play an important role, resulting in a spectral function with three peaks. However, the spectral function shows two peaks when the system is in a parallel configuration. The zero Fermi energy spectral function is always 1/2 not only in series but also in the parallel configuration and robust against the coupling between the MBSs and the quantum dots. The phase diagram of the Fermi energy versus the quantum dot energy levels was also investigated

  16. Time dependent quantum thermodynamics of a coupled quantum oscillator system in a small thermal environment

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, George L. [Department of Chemistry and Biochemistry, Siena College, Loudonville, New York 12211 (United States); Kellman, Michael E. [Department of Chemistry and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403 (United States)

    2013-12-07

    Simulations are performed of a small quantum system interacting with a quantum environment. The system consists of various initial states of two harmonic oscillators coupled to give normal modes. The environment is “designed” by its level pattern to have a thermodynamic temperature. A random coupling causes the system and environment to become entangled in the course of time evolution. The approach to a Boltzmann distribution is observed, and effective fitted temperatures close to the designed temperature are obtained. All initial pure states of the system are driven to equilibrium at very similar rates, with quick loss of memory of the initial state. The time evolution of the von Neumann entropy is calculated as a measure of equilibration and of quantum coherence. It is pointed out using spatial density distribution plots that quantum interference is eliminated only with maximal entropy, which corresponds thermally to infinite temperature. Implications of our results for the notion of “classicalizing” behavior in the approach to thermal equilibrium are briefly considered.

  17. New melting transition in Quantum Hall systems

    Science.gov (United States)

    Simion, George; Lin, Tsuging; Watson, John D.; Manfra, Michael J.; Csathy, Gabor; Rokhinson, Leonid; Lyanda-Geller, Yuli

    2014-03-01

    We discover a new melting transition caused by topological excitations of two dimensional electrons in the quantum Hall regime. Experimentally, strain dependence of resistivity changes sign upon crossing filling-factor-specified boundaries of reentrant integer quantum Hall effect (RIQHE) states. This observation violates the symmetry of electron bubble crystal, whose melting was thought to be responsible for insulator to metal transition in the range of RIQHE filling factors. We demonstrate theoretically that electron bubbles become elongated in the vicinity of charge defects and form textures of finite size. Textures lower the energy of excitations. In the two-electron bubble crystal these textures form hedgehogs (vortices) around defects having (lacking) one extra electron. At low density these textures form an insulating Abrikosov lattice. At densities sufficient to cause the textures to overlap, their interactions are described by the XY-model and the defect lattice melts. This explains the sharp metal-insulator transition observed in finite temperature conductivity measurements. In this regime, melting is a function of several variables and forms a continuous phase boundary in the field-temperature (B - T) plane. We discover a new melting transition caused by topological excitations of two dimensional electrons in the quantum Hall regime. Experimentally, strain dependence of resistivity changes sign upon crossing filling-factor-specified boundaries of reentrant integer quantum Hall effect (RIQHE) states. This observation violates the symmetry of electron bubble crystal, whose melting was thought to be responsible for insulator to metal transition in the range of RIQHE filling factors. We demonstrate theoretically that electron bubbles become elongated in the vicinity of charge defects and form textures of finite size. Textures lower the energy of excitations. In the two-electron bubble crystal these textures form hedgehogs (vortices) around defects having (lacking) one extra electron. At low density these textures form an insulating Abrikosov lattice. At densities sufficient to cause the textures to overlap, their interactions are described by the XY-model and the defect lattice melts. This explains the sharp metal-insulator transition observed in finite temperature conductivity measurements. In this regime, melting is a function of several variables and forms a continuous phase boundary in the field-temperature (B - T) plane. Research was partially supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Awards DE-SC0010544 (Y.L-G), DE-SC0008630 (L.P.R.), DE-SC0006671 (G.S. and M.M.).

  18. New topological excitations in quantum Hall systems

    Science.gov (United States)

    Lyanda-Geller, Yuli; Lin, Tsuging; Simion, George; Watson, John D.; Manfra, Michael J.; Csathy, Gabor; Rokhinson, Leonid

    2014-03-01

    We discover new topological excitations of two dimensional electrons in the quantum Hall regime. The strain dependence of resistivity observed experimentally is shown to change sign upon crossing filling-factor-specified boundaries of reentrant integer quantum Hall effect (RIQHE) states. This observation violates the known symmetry of electron bubbles thought to be responsible for the RIQHE. We demonstrate theoretically that electron bubbles become elongated in the vicinity of charge defects and form textures of finite size. Calculations confirm that textures lower the energy of excitations. In the two-electron bubble crystal these textures form two-dimensional hedgehogs around defects having one extra electron, and vortices around defects lacking one electron. Strain affects vortices and hedgehogs differently, explaining striking strain-dependent resistivity. The sharp transition from insulating RIQHE state to conducting state is caused by melting of Abrikosov crystal comprised of the defects. The proposed physical mechanism of conductivity due to topological defects is shown to lead to an unusually large magnitude of the strain effect on resistivity in the range of RIQHE filling factors, in agreement with experiment. We discover new topological excitations of two dimensional electrons in the quantum Hall regime. The strain dependence of resistivity observed experimentally is shown to change sign upon crossing filling-factor-specified boundaries of reentrant integer quantum Hall effect (RIQHE) states. This observation violates the known symmetry of electron bubbles thought to be responsible for the RIQHE. We demonstrate theoretically that electron bubbles become elongated in the vicinity of charge defects and form textures of finite size. Calculations confirm that textures lower the energy of excitations. In the two-electron bubble crystal these textures form two-dimensional hedgehogs around defects having one extra electron, and vortices around defects lacking one electron. Strain affects vortices and hedgehogs differently, explaining striking strain-dependent resistivity. The sharp transition from insulating RIQHE state to conducting state is caused by melting of Abrikosov crystal comprised of the defects. The proposed physical mechanism of conductivity due to topological defects is shown to lead to an unusually large magnitude of the strain effect on resistivity in the range of RIQHE filling factors, in agreement with experiment. Research was partially supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Awards DE-SC0010544 (Y.L-G), DE-SC0008630 (L.P.R.), DE-SC0006671 (G.S. and M.M.).

  19. Arithmetical degeneracies in simple quantum systems

    International Nuclear Information System (INIS)

    The authors examine the 'accidental' level degeneracies occurring in the quantum mechanical problem of a free particle moving in a polyhedral box, when the problem is integrable. Some remarkable properties of the distribution of degeneracies are studied in several two-, three- and four-dimensional examples and are related to well known problems of number theory. The numerical results of exact enumerations are compared with analytical predictions, or with conjectured expression in some cases. The authors consider in particular the asymptotic scaling form of the degeneracy distribution up to some maximal energy E, and the maximal degeneracy occurring for energies less than some given E. (author)

  20. Factorization and Entanglement in Quantum Systems

    OpenAIRE

    Eakins, Jon; Jaroszkiewicz, George

    2002-01-01

    We discuss the question of entanglement versus separability of pure quantum states in direct product Hilbert spaces and the relevance of this issue to physics. Different types of separability may be possible, depending on the particular factorization or split of the Hilbert space. A given orthonormal basis set for a Hilbert space is defined to be of type (p,q) if p elements of the basis are entangled and q are separable, relative to a given bi-partite factorization of that s...

  1. Liquid Crystal Phases of Quantum Hall Systems

    OpenAIRE

    Fradkin, Eduardo; Kivelson, Steven A.

    1998-01-01

    Mean-field calculations for the two dimensional electron gas (2DEG) in a large magnetic field with a partially filled Landau level with index $N\\geq 2$ consistently yield ``stripe-ordered'' charge-density wave ground-states, for much the same reason that frustrated phase separation leads to stripe ordered states in doped Mott insulators. We have studied the effects of quantum and thermal fluctuations about such a state and show that they can lead to a set of electronic liqui...

  2. Large quantum systems: a mathematical and numerical perspective

    International Nuclear Information System (INIS)

    This thesis is devoted to the mathematical study of variational models for large quantum systems. The mathematical methods are that of nonlinear analysis, calculus of variations, partial differential equations, spectral theory, and numerical analysis. The first part contains some results on finite systems. We study several approximations of the N-body Schroedinger equation for electrons in an atom or a molecule, and then the so-called Hartree-Fock- Bogoliubov model for a system of fermions interacting via the gravitational force. In a second part, we propose a new method allowing to prove the existence of the thermodynamic limit of Coulomb quantum systems. Then, we construct two Hartree-Fock-type models for infinite systems. The first is a relativistic theory deduced from Quantum Electrodynamics, allowing to describe the behavior of electrons, coupled to that of Dirac's vacuum which can become polarized. The second model describes a nonrelativistic quantum crystal in the presence of a charged defect. A new numerical method is also proposed. The last part of the thesis is devoted to spectral pollution, a phenomenon which is observed when trying to approximate eigenvalues in a gap of the essential spectrum of a self-adjoint operator, for instance for periodic Schroedinger operators or Dirac operators. (author)

  3. Natural Light Harvesting Systems: Unraveling the quantum puzzles

    CERN Document Server

    Thilagam, A

    2013-01-01

    In natural light harvesting systems, the sequential quantum events of photon absorption by specialized biological antenna complexes, charge separation, exciton formation and energy transfer to localized reaction centers culminates in the conversion of solar to chemical energy. A notable feature in these processes is the exceptionally high efficiencies (> 95 %) at which excitation is transferred from the illuminated protein complex site to the reaction centers. Such high exciton propagation rates within a system of interwoven biomolecular network structures, is yet to be replicated in artificial light harvesting complexes. A clue to unraveling the quantum puzzles of nature may lie in the observation of long lived coherences lasting several picoseconds in the electronic spectra of photosynthetic complexes, even in noisy environmental baths. A number of experimental and theoretical studies have been devoted to unlocking the links between quantum processes and information protocols, in the hope of finding answers...

  4. Speed limits for quantum gates in multi-qubit systems

    CERN Document Server

    Ashhab, S; Nori, Franco

    2012-01-01

    We use analytical and numerical calculations in order to obtain speed limits for various unitary quantum operations in multi-qubit systems. The operations that we consider include single-, two- and three-qubit gates, as well as quantum state transfer in a chain of qubits. We find in particular that simple methods for implementing two-qubit gates generally provide the fastest possible implementations of these gates. We also find that the three-qubit Toffoli gate time varies greatly depending on the system's geometry, taking only slightly longer than a two-qubit CNOT gate for a triangle geometry. The speed limit for quantum state transfer across a qubit chain is set by the maximum spin wave speed in the chain.

  5. Hacking commercial quantum cryptography systems by tailored bright illumination

    Science.gov (United States)

    Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim

    2010-10-01

    The peculiar properties of quantum mechanics allow two remote parties to communicate a private, secret key, which is protected from eavesdropping by the laws of physics. So-called quantum key distribution (QKD) implementations always rely on detectors to measure the relevant quantum property of single photons. Here we demonstrate experimentally that the detectors in two commercially available QKD systems can be fully remote-controlled using specially tailored bright illumination. This makes it possible to tracelessly acquire the full secret key; we propose an eavesdropping apparatus built from off-the-shelf components. The loophole is likely to be present in most QKD systems using avalanche photodiodes to detect single photons. We believe that our findings are crucial for strengthening the security of practical QKD, by identifying and patching technological deficiencies.

  6. Theoretical discussion for quantum computation in biological systems

    Science.gov (United States)

    Baer, Wolfgang

    2010-04-01

    Analysis of the brain as a physical system, that has the capacity of generating a display of every day observed experiences and contains some knowledge of the physical reality which stimulates those experiences, suggests the brain executes a self-measurement process described by quantum theory. Assuming physical reality is a universe of interacting self-measurement loops, we present a model of space as a field of cells executing such self-measurement activities. Empty space is the observable associated with the measurement of this field when the mass and charge density defining the material aspect of the cells satisfy the least action principle. Content is the observable associated with the measurement of the quantum wave function ? interpreted as mass-charge displacements. The illusion of space and its content incorporated into cognitive biological systems is evidence of self-measurement activity that can be associated with quantum operations.

  7. TRIQS: A Toolbox for Research on Interacting Quantum Systems

    CERN Document Server

    Parcollet, Olivier; Ayral, Thomas; Hafermann, Hartmut; Krivenko, Igor; Messio, Laura; Seth, Priyanka

    2015-01-01

    We present the TRIQS library, a Toolbox for Research on Interacting Quantum Systems. It is an open-source, computational physics library providing a framework for the quick development of applications in the field of many-body quantum physics, and in particular, strongly-correlated electronic systems. It supplies components to develop codes in a modern, concise and efficient way: e.g. Green's function containers, a generic Monte Carlo class, and simple interfaces to HDF5. TRIQS is a C++/Python library that can be used from either language. It is distributed under the GNU General Public License (GPLv3). State-of-the-art applications based on the library, such as modern quantum many-body solvers and interfaces between density-functional-theory codes and dynamical mean-field theory (DMFT) codes are distributed along with it.

  8. Renormalization of concurrence: The application of the quantum renormalization group to quantum-information systems

    International Nuclear Information System (INIS)

    We have combined the idea of renormalization group and quantum-information theory. We have shown how the entanglement or concurrence evolve as the size of the system becomes large, i.e., the finite size scaling is obtained. Moreover, we introduce how the renormalization-group approach can be implemented to obtain the quantum-information properties of a many-body system. We have obtained the concurrence as a measure of entanglement, its derivatives and their scaling behavior versus the size of system for the one-dimensional Ising model in transverse field. We have found that the derivative of concurrence between two blocks each containing half of the system size diverges at the critical point with the exponent, which is directly associated with the divergence of the correlation length

  9. Topos-Based Logic for Quantum Systems and Bi-Heyting Algebras

    CERN Document Server

    Doering, Andreas

    2012-01-01

    To each quantum system, described by a von Neumann algebra of physical quantities, we associate a complete bi-Heyting algebra. The elements of this algebra represent contextualised propositions about the values of the physical quantities of the quantum system.

  10. Characterizing Quantum Correlations in Arbitrary-Dimensional Bipartite Systems Using Hurwitz's Theory

    International Nuclear Information System (INIS)

    Quantum correlations play vital roles in the quantum features in quantum information processing tasks. Among the measures of quantum correlations, quantum discord (QD) and entanglement of formation (EOF) are two significant ones. Recent research has shown that there exists a relation between QD and EOF, which makes QD more significant in quantum information theory. However, until now, there exists no general method of characterizing quantum discord in high-dimensional quantum systems. In this paper, we have proposed a general method for calculating quantum discord in arbitrary-dimensional bipartite quantum systems in terms of Hurwitz's theory. Applications including the Werner state, the spin-1 XXZ model thermal equilibrium state, the Horodecki state, and the separable-bound-free entanglement state are investigated. We present the method of obtaining the EOF of arbitrary-dimensional bipartite quantum states via purification, and the relationship between QD and EOF. (general)

  11. Chaotic Dynamics and Transport in Classical and Quantum Systems

    International Nuclear Information System (INIS)

    The aim of this summer school is to provide a set of extended and pedagogical lectures, on the major present-day topics in dynamical systems and statistical mechanics including applications. Some articles are dedicated to chaotic transport in plasma turbulence and to quantum chaos. This document gathers the summaries of some presentations

  12. Symmetry-breaking skyrmion states in fractional quantum Hall systems

    OpenAIRE

    Ahn, Kang-Hun; Chang, K. J.

    1996-01-01

    We calculate in an analyical fashion the energies and net spins of skyrmions in fractional quantum Hall systems, based on the suggestion that skyrmion states are spontaneously $L_Z$ and $S_Z$ symmetry-breaking states. The quasihole-skyrmion state with a charge $-e/3$ around $\

  13. Chaotic Dynamics and Transport in Classical and Quantum Systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this summer school is to provide a set of extended and pedagogical lectures, on the major present-day topics in dynamical systems and statistical mechanics including applications. Some articles are dedicated to chaotic transport in plasma turbulence and to quantum chaos. This document gathers the summaries of some presentations.

  14. Macroscopic quantum tunneling in a system with dissipation

    International Nuclear Information System (INIS)

    A study of the fine structure of the high-frequency current-voltage characteristics of a squId in the temperature range from 4.2--0.5 0K has been carried out. The dependence found cannot be explained within the framework of existing ideas. It is concluded that dissipation increases the probability of macroscopic quantum tunneling in the system

  15. Induced gauge fields in a nongauged quantum system

    International Nuclear Information System (INIS)

    We show that non-Abelian gauge fields arise in a nongauged quantum system in the adiabatic approximation by working out a model of N-dimensional rotational symmetry. The induced gauge fields are symmetric under N-dimensional rotations accompanied by compensating gauge transformations of the group SO(N)

  16. Optimal control of quantum systems: a projection approach

    International Nuclear Information System (INIS)

    This paper considers the optimal control of quantum systems. The controlled quantum systems are described by the probability-density-matrix-based Liouville-von Neumann equation. Using projection operators, the states of the quantum system are decomposed into two sub-spaces, namely the 'main state' space and the 'remaining state' space. Since the control energy is limited, a solution for optimizing the external control force is proposed in which the main state is brought to the desired main state at a certain target time, while the population of the remaining state is simultaneously suppressed in order to diminish its effects on the final population of the main state. The optimization problem is formulated by maximizing a general cost functional of states and control force. An efficient algorithm is developed to solve the optimization problem. Finally, using the hydrogen fluoride (HF) molecular population transfer problem as an illustrative example, the effectiveness of the proposed scheme for a quantum system initially in a mixed state or in a pure state is investigated through numerical simulations

  17. Investigation of quantum and classical correlations in a quantum dot system under decoherence

    International Nuclear Information System (INIS)

    In this paper, we investigate quantitatively the thermal classical and quantum correlations in an isolated quantum dot system (QDS) including the effects of different parameters. We show that the quantum discord (QD) is more resistant against the temperature effect and might be finite even for higher temperatures in the asymptotic limit. Decoherence in a QDS caused by interaction with its environment is another interesting issue in the quantum information field. Assuming Markovian dynamics for the time evolution, we present noise models for the QDS by using Kraus operators for several noisy channels; in particular bit flip, bit-phase flip, phase flip, and depolarizing channels. By analytical and numerical analyses, we investigate the dynamics of different kinds of correlations, namely, the mutual information, the classical correlation, the entanglement of formation (EOF), and the QD in different channels. The sudden change in behavior in the decay rates of correlations and their immunity against certain decoherences are shown. We explore a symmetry among these channels and provide the decoherence areas for which both classical and quantum correlations remain affected in the QDS. (paper)

  18. Generation of Entanglement, Measure of Multipartite Entanglement in Fermionic Systems and Quantum Discord in Bipartite Systems and Heisenberg Chains

    CERN Document Server

    Lari, Behzad

    2011-01-01

    This is a thesis submitted to university of Pune, India, for the Ph.D. degree. This work deals with entanglement production in two qubit, two qutrit and three qubit systems, entanglement in indistinguishable fermionic systems, quantum discord in a Heisenberg chain and geometric measure of quantum discord in an arbitrary state of a bipartite quantum system.

  19. Dual families of noncommutative quantum systems

    International Nuclear Information System (INIS)

    We demonstrate how a one parameter family of interacting noncommuting Hamiltonians, which are physically equivalent, can be constructed in noncommutative quantum mechanics. This construction is carried out exactly (to all orders in the noncommutative parameter) and analytically in two dimensions for a free particle and a harmonic oscillator moving in a constant magnetic field. We discuss the significance of the Seiberg-Witten map in this context. It is shown for the harmonic oscillator potential that an approximate duality, valid in the low-energy sector, can be constructed between the interacting commutative and a noninteracting noncommutative Hamiltonian. This approximation holds to order 1/B and is therefore valid in the case of strong magnetic fields and weak Landau-level mixing

  20. Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems

    CERN Document Server

    Ohya, Masanori

    2011-01-01

    This monograph provides a mathematical foundation  to  the theory of quantum information and computation, with applications to various open systems including nano and bio systems. It includes introductory material on algorithm, functional analysis, probability theory, information theory, quantum mechanics and quantum field theory. Apart from standard material on quantum information like quantum algorithm and teleportation, the authors discuss findings on the theory of entropy in C*-dynamical systems, space-time dependence of quantum entangled states, entangling operators, adaptive dynamics, relativistic quantum information, and a new paradigm for quantum computation beyond the usual quantum Turing machine. Also, some important applications of information theory to genetics and life sciences, as well as recent experimental and theoretical discoveries in quantum photosynthesis are described.

  1. Locality and the classical limit of quantum systems

    CERN Document Server

    Banks, T

    2009-01-01

    I argue that conventional estimates of the criterion for classical behavior of a macroscopic body are incorrect in most circumstances,because they do not take into account the locality of interactions, which characterizes the behavior of all systems described approximately by local quantum field theory. The deviations from classical behavior of a macroscopic body, except for those that can be described as classical uncertainties in the initial values of macroscopic variables,are {\\it exponentially} small as a function of the volume of the macro-system in microscopic units. Conventional estimates are correct only when the internal degrees of freedom of the macrosystem are in their ground state, and the classical motion of collective coordinates is adiabatic. Otherwise, the system acts as its own environment and washes out quantum phase correlations between different classical states of its collective coordinates. I suggest that it is likely that we can only achieve meso-scopic superpositions, for systems which...

  2. On the quantum dynamics of non-commutative systems

    Scientific Electronic Library Online (English)

    F. S., Bemfica; H. O., Girotti.

    2008-06-01

    Full Text Available This is a review paper concerned with the global consistency of the quantum dynamics of non-commutative systems. Our point of departure is the theory of constrained systems, since it provides a unified description of the classical and quantum dynamics for the models under investigation. We then elab [...] orate on recently reported results concerned with the sufficient conditions for the existence of the Born series and unitarity and turn, afterwards, into analyzing the functional quantization of non-commutative systems. The compatibility between the operator and the functional approaches is established in full generality. The intricacies arising in connection with the explicit computation of path integrals, for the systems under scrutiny, is illustrated by presenting the detailed calculation of the Feynman kernel for the non-commutative two dimensional harmonic oscillator.

  3. Frustration, entanglement, and factorization in quantum spin systems

    CERN Document Server

    Giampaolo, Salvatore M; Illuminati, Fabrizio

    2009-01-01

    We investigate the separability properties of quantum ground states in frustrated spin systems. We prove that the existence of fully factorized ground states is compatible with increasing degrees of frustration up to a critical threshold above which only entangled ground states are permitted. The separability threshold identifies a frustration-driven transition between classical-like and entanglement-dominated regimes. We determine the critical degree of frustration and the form of the exact factorized ground-state solutions in various classes of non exactly solvable frustrated quantum spin models with finite-range as well as infinite-range interactions.

  4. Persistent current magnification in a double quantum-ring system

    OpenAIRE

    Orellana, P. A.; Pacheco, M.

    2005-01-01

    The electronic transport in a system of two quantum rings side-coupled to a quantum wire is studied via a single-band tunneling tight-binding Hamiltonian. We derived analytical expressions for the conductance, density of states and the persistent current when the rings are threaded by magnetic fluxes. We found a clear manifestation of the presence of bound states in each one of those physical quantities when either the flux difference or the sum of the fluxes are zero or int...

  5. Computational Physics Simulation of Classical and Quantum Systems

    CERN Document Server

    Scherer, Philipp O. J

    2010-01-01

    This book encapsulates the coverage for a two-semester course in computational physics. The first part introduces the basic numerical methods while omitting mathematical proofs but demonstrating the algorithms by way of numerous computer experiments. The second part specializes in simulation of classical and quantum systems with instructive examples spanning many fields in physics, from a classical rotor to a quantum bit. All program examples are realized as Java applets ready to run in your browser and do not require any programming skills.

  6. Quantum entanglement in the mode-mode competition system

    International Nuclear Information System (INIS)

    Considering a two-level atom interacting with the competing two-mode field, this paper investigates the entanglement between the two-level atom and the two-mode field by using the quantum reduced entropy, and that between the two-mode field by using the quantum relative entropy of entanglement. It shows that the two kinds of entanglement are dependent on the relative coupling strength of atom-field and the atomic distribution, and exhibit the periodical evolution. The maximal atom–field entanglement state can be prepared via the appropriate selection of system parameters and interaction time. (classical areas of phenomenology)

  7. Performance of Quantum Entanglement, Quantum Correlation and Bell Non-locality of Atom-cavity System

    Science.gov (United States)

    Ding, Zhi-yong; He, Juan

    2015-05-01

    Based on the description of ameliorated measurement-induced disturbance (AMID) and negativity, the behaviors of quantum correlation (QC) and quantum entanglement (QE) are discussed for a model of two atoms resonantly interact with a single-mode cavity simultaneously. The result shows that the QC and QE of two atoms can be transferred to those of atom-cavity subsystems during the evolution, and vice versa. Meanwhile, the AMID can reveal more properties of QC than negativity in the presented physical system. It is worth noting that the AMID can be increased evidently for the certain special chosen system parameters. In addition, Bell non-locality for this given system is analyzed and it is shown that Bell non-locality can also be transferred regularly between all bipartite states.

  8. Integrability of Quadratic Non-autonomous Quantum Linear Systems

    Science.gov (United States)

    Lopez, Raquel

    The Quantum Harmonic Oscillator is one of the most important models in Quantum Mechanics. Analogous to the classical mass vibrating back and forth on a spring, the quantum oscillator system has attracted substantial attention over the years because of its importance in many advanced and difficult quantum problems. This dissertation deals with solving generalized models of the time-dependent Schrodinger equation which are called generalized quantum harmonic oscillators, and these are characterized by an arbitrary quadratic Hamiltonian of linear momentum and position operators. The primary challenge in this work is that most quantum models with timedependence are not solvable explicitly, yet this challenge became the driving motivation for this work. In this dissertation, the methods used to solve the time-dependent Schrodinger equation are the fundamental singularity (or Green's function) and the Fourier (eigenfunction expansion) methods. Certain Riccati- and Ermakov-type systems arise, and these systems are highlighted and investigated. The overall aims of this dissertation are to show that quadratic Hamiltonian systems are completely integrable systems, and to provide explicit approaches to solving the time-dependent Schr¨odinger equation governed by an arbitrary quadratic Hamiltonian operator. The methods and results established in the dissertation are not yet well recognized in the literature, yet hold for high promise for further future research. Finally, the most recent results in the dissertation correspond to the harmonic oscillator group and its symmetries. A simple derivation of the maximum kinematical invariance groups of the free particle and quantum harmonic oscillator is constructed from the view point of the Riccati- and Ermakov-type systems, which shows an alternative to the traditional Lie Algebra approach. To conclude, a missing class of solutions of the time-dependent Schrodinger equation for the simple harmonic oscillator in one dimension is constructed. Probability distributions of the particle linear position and momentum, are emphasized with Mathematica animations. The eigenfunctions qualitatively differ from the traditional standing waves of the one-dimensional Schrodinger equation. The physical relevance of these dynamic states is still questionable, and in order to investigate their physical meaning, animations could also be created for the squeezed coherent states. This will be addressed in future work.

  9. Security evaluation of a commercial quantum key distribution system

    International Nuclear Information System (INIS)

    Quantum Key Distribution (QKD) systems theoretically guarantee secure communication based on fundamental physical laws. First commercial products have become available during the last years. Practical implementations often deviate from their theoretical models which potentially opens security loopholes. We experimentally tested security aspects of a commercial QKD system. Here we present measurements of the mean photon number and parasitic modulations. Within the measurement error we find no discrepancy from the theoretically expected values

  10. Out-of-equilibrium Thermodynamics of Quantum Optomechanical Systems

    OpenAIRE

    Brunelli, M.; Xuereb, A.; Ferraro, A.; Chiara, G.; Kiesel, N.; Paternostro, M.

    2014-01-01

    We address the out-of-equilibrium thermodynamics of an isolated quantum system consisting of a cavity optomechanical device. We explore the dynamical response of the system when driven out of equilibrium by a sudden quench of the coupling parameter and compute analytically the full distribution of the work generated by the process. We consider linear and quadratic optomechanical coupling, where the cavity field is parametrically coupled to either the position or the square o...

  11. Phonon-assisted tunneling through a double quantum dot system

    OpenAIRE

    Tagani, M. Bagheri; Soleimani, H. Rahimpour

    2012-01-01

    Electron transport through a double quantum dot system is studied with taking into account electron-phonon interaction. The Keldysh nonequilibrium Green function formalism is used to compute the current and transmission coefficient of the system. The influence of the electron-phonon interaction, interdot tunneling, and temperature on the density of states and current is analyzed. Results show that although the electron-phonon interaction results in the appearance of side pea...

  12. Quantum Brayton cycle with coupled systems as working substance

    OpenAIRE

    Huang, X L; Wang, L. C.; Yi, X X

    2012-01-01

    We explore the quantum version of Brayton cycle with a composite system as the working substance. The actual Brayton cycle consists of two adiabatic and two isobaric processes. Two pressures can be defined in our isobaric process, one corresponds to the external magnetic field (characterized by $F_x$) exerted on the system, while the other corresponds to the coupling constant between the subsystems (characterized by $F_y$). As a consequence, we can define two types of quantu...

  13. The pointer basis and the feedback stabilization of quantum systems

    International Nuclear Information System (INIS)

    The dynamics for an open quantum system can be ‘unravelled’ in infinitely many ways, depending on how the environment is monitored, yielding different sorts of conditioned states, evolving stochastically. In the case of ideal monitoring these states are pure, and the set of states for a given monitoring forms a basis (which is overcomplete in general) for the system. It has been argued elsewhere (Atkins et al 2005 Europhys. Lett. 69 163) that the ‘pointer basis’ as introduced by Zurek et al (1993 Phys. Rev. Lett. 70 1187), should be identified with the unravelling-induced basis which decoheres most slowly. Here we show the applicability of this concept of pointer basis to the problem of state stabilization for quantum systems. In particular we prove that for linear Gaussian quantum systems, if the feedback control is assumed to be strong compared to the decoherence of the pointer basis, then the system can be stabilized in one of the pointer basis states with a fidelity close to one (the infidelity varies inversely with the control strength). Moreover, if the aim of the feedback is to maximize the fidelity of the unconditioned system state with a pure state that is one of its conditioned states, then the optimal unravelling for stabilizing the system in this way is that which induces the pointer basis for the conditioned states. We illustrate these results with a model system: quantum Brownian motion. We show that even if the feedback control strength is comparable to the decoherence, the optimal unravelling still induces a basis very close to the pointer basis. However if the feedback control is weak compared to the decoherence, this is not the case. (paper)

  14. Geometry of adiabatic Hamiltonians for two-level quantum systems

    Science.gov (United States)

    Lehto, J. M. S.; Suominen, K.-A.

    2015-06-01

    We present the formulation of the problem of the coherent dynamics of quantum mechanical two-level systems in the adiabatic region in terms of the differential geometry of plane curves. We show that there is a natural plane curve corresponding to the Hamiltonian of the system for which the geometrical quantities have a simple physical interpretation. In particular, the curvature of the curve has the role of the nonadiabatic coupling.

  15. Field Theoretic Studies of Quantum Spin Systems in One Dimension

    OpenAIRE

    Sen, Diptiman

    2001-01-01

    We describe some field theoretic methods for studying quantum spin systems in one dimension. These include the nonlinear sigma-model approach which is particularly useful for large values of the spin, the idea of Luttinger liquids and bosonization which are more useful for small values of spin such as spin-1/2, and the technique of low-energy effective Hamiltonians which can be useful if the system under consideration is perturbatively close to an exactly solvable model. We ...

  16. Optimal discrimination of multiple quantum systems: controllability analysis

    International Nuclear Information System (INIS)

    A theoretical study is presented concerning the ability to dynamically discriminate between members of a set of different (but possibly similar) quantum systems. This discrimination is analysed in terms of independently and simultaneously steering about the wavefunction of each component system to a target state of interest using a tailored control (i.e. laser) field. Controllability criteria are revealed and their applicability is demonstrated in simple cases. Discussion is also presented in some uncontrollable cases

  17. Numerical studies of entangled PPT states in composite quantum systems

    CERN Document Server

    Leinaas, Jon Magne; Sollid, Per Oyvind

    2010-01-01

    We report here on the results of numerical searches for PPT states with specified ranks for density matrices and their partial transpose. The study includes several bipartite quantum systems of low dimensions. For a series of ranks extremal PPT states are found. The results are listed in tables and charted in diagrams. Comparison of the results for systems of different dimensions reveal several regularities. We discuss lower and upper bounds on the ranks of extremal PPT states.

  18. Quantum Wells in Polar-Nonpolar Oxide Heterojunction Systems

    OpenAIRE

    Wang, C. -c Joseph; Sahu, Bhagawan; Min, Hongki; Lee, Wei-cheng; Macdonald, Allan H.

    2008-01-01

    We address the electronic structure of quantum wells in polar-nonpolar oxide heterojunction systems focusing on the case of non-polar BaVO$_3$ wells surrounded by polar LaTiO$_3$ barriers. Our discussion is based on a density functional description using the local spin density approximation with local correlation corrections (LSDA+U). We conclude that a variety of quite different two-dimensional electron systems can occur at interfaces between insulating materials depending ...

  19. Novel Finite Temperature Conductivity in Quantum Hall Systems

    OpenAIRE

    Mandal, Sudhansu S; Ramaswamy, S.; Ravishankar, V.

    1995-01-01

    We study quantum Hall systems (mainly the integer case) at finite temperatures and show that there is a novel temperature dependence even for a pure system, thanks to the `anomalous' nature of generators of translation. The deviation of Hall conductivity from its zero temperature value is controlled by a parameter $T_0 =\\pi \\rho /m^\\ast N$ which is sample specific and hence the universality of quantization is lost at finite temperatures.

  20. Novel finite temperature conductivity in quantum Hall systems

    CERN Document Server

    Mandal, S S; Ravishankar, V; Mandal, Sudhansu S

    1995-01-01

    We study quantum Hall systems (mainly the integer case) at finite temperatures and show that there is a novel temperature dependence even for a pure system, thanks to the `anomalous' nature of generators of translation. The deviation of Hall conductivity from its zero temperature value is controlled by a parameter T_0 =\\pi \\rho /m^\\ast N which is sample specific and hence the universality of quantization is lost at finite temperatures.