Nonlinear Temporal Dynamics of Strongly Coupled Quantum Dot-Cavity System
Majumdar, Arka; Bajcsy, Michal; Vuckovic, Jelena
2011-01-01
We theoretically analyze and simulate the temporal dynamics of strongly coupled quantum dot-cavity system driven by a resonant laser pulse. We observe the signature of Rabi oscillation in the time resolved response of the system (i.e., in the numerically calculated cavity output), derive simplified linear and non-linear semi-classical models that approximate well the system's behavior in the limits of high and low power drive pulse, and describe the role of quantum coherence in the exact dynamics of the system. Finally, we also present experimental data showing the signature of the Rabi oscillation in time domain.
Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, Peter;
2010-01-01
treatments. A pronounced consequence is the emergence of a phonon induced spectral asymmetry when detuning the cavity from the quantum-dot resonance. The asymmetry can only be explained when considering the polaritonic quasiparticle nature of the quantum-dot-cavity system. Furthermore, a temperature induced......We investigate the influence of electron-phonon interactions on the dynamical properties of a quantum-dot-cavity QED system. We show that non-Markovian effects in the phonon reservoir lead to strong changes in the dynamics, arising from photon-assisted dephasing processes, not present in Markovian...
Quantum Interference Induced Photon Blockade in a Coupled Single Quantum Dot-Cavity System
Tang, Jing; Xu, Xiulai
2015-01-01
We propose an experimental scheme to implement a strong photon blockade with a single quantum dot coupled to a nanocavity. The photon blockade effect can be tremendously enhanced by driving the cavity and the quantum dot simultaneously with two classical laser fields. This enhancement of photon blockade is ascribed to the quantum interference effect to avoid two-photon excitation of the cavity field. Comparing with Jaynes-Cummings model, the second-order correlation function at zero time delay $g^{(2)}(0)$ in our scheme can be reduced by two orders of magnitude and the system sustains a large intracavity photon number. A red (blue) cavity-light detuning asymmetry for photon quantum statistics with bunching or antibunching characteristics is also observed. The photon blockade effect has a controllable flexibility by tuning the relative phase between the two pumping laser fields and the Rabi coupling strength between the quantum dot and the pumping field. Moreover, the photon blockade scheme based on quantum in...
Sub-Poissonian photon emission in coupled double quantum dots-cavity system
Ye, Han; Peng, Yi-Wei; Yu, Zhong-Yuan; Zhang, Wen; Liu, Yu-Min
2015-11-01
In this work, we theoretically analyze the few-photon emissions generated in a coupled double quantum dots (CDQDs)-single mode microcavity system, under continuous wave and pulse excitation. Compared with the uncoupled case, strong sub-Poissonian character is achieved in a CDQDs-cavity system at a certain laser frequency. Based on the proposed scheme, single photon generation can be obtained separately under QD-cavity resonant condition and off-resonant condition. For different cavity decay rates, we reveal that laser frequency detunings of minimum second-order autocorrelation function are discrete and can be divided into three regions. Moreover, the non-ideal situation where two QDs are not identical is discussed, indicating the robustness of the proposed scheme, which possesses sub-Poissonian character in a large QD difference variation range. Project supported by the National Natural Science Foundation of China (Grant Nos. 61372037 and 61401035), the Beijing Excellent Ph.D. Thesis Guidance Foundation, China (Grant No. 20131001301), and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (Grant No. IPOC2015ZC05).
Bright single photon source based on self-aligned quantum dot-cavity systems
Maier, Sebastian; Gold, Peter; Forchel, Alfred; Gregersen, Niels; Mørk, Jesper; Höfling, Sven; Schneider, Christian; Kamp, Martin
2014-01-01
We report on a quasi-planar quantum-dot-based single-photon source that shows an unprecedented high extraction efficiency of 42% without complex photonic resonator geometries or post-growth nanofabrication. This very high efficiency originates from the coupling of the photons emitted by a quantum dot to a Gaussian shaped nanohill defect that naturally arises during epitaxial growth in a self-aligned manner. We investigate the morphology of these defects and characterize the photonic operation...
Bright single photon source based on self-aligned quantum dot-cavity systems.
Maier, Sebastian; Gold, Peter; Forchel, Alfred; Gregersen, Niels; Mørk, Jesper; Höfling, Sven; Schneider, Christian; Kamp, Martin
2014-04-01
We report on a quasi-planar quantum-dot-based single-photon source that shows an unprecedented high extraction efficiency of 42% without complex photonic resonator geometries or post-growth nanofabrication. This very high efficiency originates from the coupling of the photons emitted by a quantum dot to a Gaussian shaped nanohill defect that naturally arises during epitaxial growth in a self-aligned manner. We investigate the morphology of these defects and characterize the photonic operation mechanism. Our results show that these naturally arising coupled quantum dot-defects provide a new avenue for efficient (up to 42% demonstrated) and pure (g(2)(0) value of 0.023) single-photon emission. PMID:24718190
Rabi oscillations in a quantum dot-cavity system coupled to a nonzero temperature phonon bath
Larson, Jonas [ICFO-Institut de Ciencies Fotoniques, E-08860 Castelldefels, Barcelona (Spain); Moya-Cessa, Hector [INAOE, Coordinacion de Optica, Apdo. Postal 51 y 216, 72000 Puebla, Pue (Mexico)], E-mail: jolarson@kth.se
2008-06-15
We study a quantum dot strongly coupled to a single high-finesse optical microcavity mode. We use a rotating wave approximation (RWA) method, commonly used in ion-laser interactions, together with the Lamb-Dicke approximation to obtain an analytic solution of this problem. The decay of Rabi oscillations because of the electron-phonon coupling is studied at arbitrary temperature and analytical expressions for the collapse and revival times are presented. Analyses without the RWA are presented as means of investigating the energy spectrum.
Transport Spectroscopy of a Spin-Coherent Dot-Cavity System.
Rössler, C; Oehri, D; Zilberberg, O; Blatter, G; Karalic, M; Pijnenburg, J; Hofmann, A; Ihn, T; Ensslin, K; Reichl, C; Wegscheider, W
2015-10-16
Quantum engineering requires controllable artificial systems with quantum coherence exceeding the device size and operation time. This can be achieved with geometrically confined low-dimensional electronic structures embedded within ultraclean materials, with prominent examples being artificial atoms (quantum dots) and quantum corrals (electronic cavities). Combining the two structures, we implement a mesoscopic coupled dot-cavity system in a high-mobility two-dimensional electron gas, and obtain an extended spin-singlet state in the regime of strong dot-cavity coupling. Engineering such extended quantum states presents a viable route for nonlocal spin coupling that is applicable for quantum information processing. PMID:26550890
Quantum Dot Cavity-QED in the Presence of Strong Electron-Phonon Interactions
Wilson-Rae, I
2001-01-01
A quantum dot strongly coupled to a single high finesse optical microcavity mode constitutes a new fundamental system for quantum optics. Here, the effect of exciton-phonon interactions on reversible quantum-dot cavity coupling is analysed without making Born-Markov approximation. The analysis is based on techniques that have been used to study the ``spin boson'' Hamiltonian. Observability of vacuum-Rabi splitting depends on the strength and the frequency dependence of the spectral density function characterizing the interactions with phonons, both of which can be influenced by phonon confinement.
Coupling and single-photon purity of a quantum dot-cavity system studied using hydrostatic pressure
Zhou, P. Y.; Wu, X. F.; Ding, K.; Dou, X. M.; Zha, G. W.; Ni, H. Q.; Niu, Z. C.; Zhu, H. J.; Jiang, D. S. [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Zhao, C. L. [College of Physics and Electronic Information, Inner Mongolia University for Nationalities, Tongliao 028043 (China); Sun, B. Q., E-mail: bqsun@semi.ac.cn [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); College of Physics and Electronic Information, Inner Mongolia University for Nationalities, Tongliao 028043 (China)
2015-01-07
We propose an approach to tune the emission of a single semiconductor quantum dot (QD) to couple with a planar cavity using hydrostatic pressure without inducing temperature variation during the process of measurement. Based on this approach, we studied the influence of cavity mode on the single-photon purity of an InAs/GaAs QD. Our measurement demonstrates that the single-photon purity degrades when the QD emission resonates with the cavity mode. This negative influence of the planar cavity is mainly caused by the cavity feeding effect.
Nielsen, Per Kær; Lodahl, Peter; Jauho, Antti-Pekka;
2013-01-01
We study the fundamental limit on single-photon indistinguishability imposed by decoherence due to phonon interactions in semiconductor quantum dot-cavity quantum electrodynamics systems. Employing an exact diagonalization approach we find large differences compared to standard methods. An...
All-optical tailoring of single-photon spectra in a quantum-dot microcavity system
Breddermann, Dominik; Heinze, Dirk; Binder, Rolf; Zrenner, Artur; Schumacher, Stefan
2016-01-01
Semiconductor quantum-dot cavity systems are promising sources for solid-state based on-demand generation of single photons for quantum communication. Commonly, the spectral characteristics of the emitted single photon are fixed by system properties such as electronic transition energies and spectral properties of the cavity. In the present work we study single-photon generation from the quantum-dot biexciton through a partly stimulated non-degenerate two-photon emission. We show that frequen...
All-optical tailoring of single-photon spectra in a quantum-dot microcavity system
Breddermann, Dominik; Binder, Rolf; Zrenner, Artur; Schumacher, Stefan
2016-01-01
Semiconductor quantum-dot cavity systems are promising sources for solid-state based on-demand generation of single photons for quantum communication. Commonly, the spectral characteristics of the emitted single photon are fixed by system properties such as electronic transition energies and spectral properties of the cavity. In the present work we study single-photon generation from the quantum-dot biexciton through a partly stimulated non-degenerate two-photon emission. We show that frequency and linewidth of the single photon can be fully controlled by the stimulating laser pulse, ultimately allowing for efficient all-optical spectral shaping of the single photon.
Fundamental properties of devices for quantum information technology
Nielsen, Per Kær
system, the effect of the phonon interaction is very pronounced. A simple approximate analytical expression for the quantum dot decay rate is derived, which predicts a strong asymmetry with respect to the quantum dot-cavity detuning at low temperatures, and allows for a clear interpretation of the...
Hughes, S
2011-01-01
The input/output characteristics of coherent photon transport through a semiconductor cavity system containing a single quantum dot is presented. The nonlinear quantum optics formalism uses a master equation approach and focuses on a waveguide-cavity system containing a semiconductor quantum dot; our general technique also applies to studying coherent reflection from a micropillar cavity. We investigate the effects of light propagation and show the need for quantized multiphoton effects for various dot-cavity systems, including weakly-coupled, intermediately-coupled, and strongly-coupled regimes. We demonstrate that for mean photon numbers much less than 0.1, the commonly adopted weak excitation (single quantum) approximation breaks down---even in the weak coupling regime. As a measure of the photon correlations, we compute the Fano factor and the error associated with making a semiclassical approximation. We also investigate the role of electron--acoustic-phonon scattering and show that phonon-mediated scatt...
Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity
Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Vučković, Jelena
2016-04-01
Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.
Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity
Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Vučković, Jelena
2016-01-01
Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms. PMID:27112420
Ren, Bao-Cang; Wei, Hai-Rui; Hua, Ming; Li, Tao; Deng, Fu-Guo
2012-10-22
Bell-state analysis (BSA) is essential in quantum communication, but it is impossible to distinguish unambiguously the four Bell states in the polarization degree of freedom (DOF) of two-photon systems with only linear optical elements, except for the case in which the BSA is assisted with hyperentangled states, the simultaneous entanglement in more than one DOF. Here, we propose a scheme to distinguish completely the 16 hyperentangled Bell states in both the polarization and the spatial-mode DOFs of two-photon systems, by using the giant nonlinear optics in quantum dot-cavity systems. This scheme can be applied to increase the channel capacity of long-distance quantum communication based on hyperentanglement, such as entanglement swapping, teleportation, and superdense coding. We use hyperentanglement swapping as an example to show the application of this HBSA. PMID:23187229
Nielsen, Per Kær; Lodahl, Peter; Jauho, Antti-Pekka; Mørk, Jesper
2013-01-01
We study the fundamental limit on single-photon indistinguishability imposed by decoherence due to phonon interactions in semiconductor quantum dot-cavity quantum electrodynamics systems. Employing an exact diagonalization approach we find large differences compared to standard methods. An important finding is that short-time non-Markovian effects limit the maximal attainable indistinguishability. The results are explained using a polariton picture that yields valuable insight into the phonon...
Controlled Quantum Open Systems
Alicki, R
2003-01-01
The theory of controlled quantum open systems describes quantum systems interacting with quantum environments and influenced by external forces varying according to given algorithms. It is aimed, for instance, to model quantum devices which can find applications in the future technology based on quantum information processing. One of the main problems making difficult the practical implementations of quantum information theory is the fragility of quantum states under external perturbations. The aim of this note is to present the relevant results concerning ergodic properties of open quantum systems which are useful for the optimization of quantum devices and noise (errors) reduction. In particular we present mathematical characterization of the so-called "decoherence-free subspaces" for discrete and continuous-time quantum dynamical semigroups in terms of $C^*$-algebras and group representations. We analyze the non-Markovian models also, presenting the formulas for errors in the Born approximation. The obtain...
Characterization of strong light-matter coupling in semiconductor quantum-dot microcavities
Schneebeli, L.; Kira, M.; Koch, S.W. [Department of Physics and Material Sciences Center, Philipps-University, Marburg (Germany)
2009-02-15
Maxwell-Bloch and luminescence equations are presented which describe vacuum Rabi splitting and the quantum rungs on the Jaynes-Cummings ladder for strongly-coupled dot-cavity systems. Resonance fluorescence conditions are considered where an optical pump is exciting the dot-cavity system while the re-emitted light is detected. An analytical formula for the vacuum Rabi splitting is derived and a pumping mechanism for the direct generation of the second rung is presented and analyzed. An optimum pumping frequency and optimum pumping intensity are identified for the generation of the second rung. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Pillet, Claude-Alain
2006-01-01
This notes are an expanded version of the lectures given by the author at the Grenoble "Open Quantum Systems" summer school in 2003. They provide a short introduction to quantum dynamical systems and their ergodic properties with particular emphasis on the quantum Koopman–von Neumann spectral theory.
Sorting quantum systems efficiently
Ionicioiu, Radu
2016-01-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation. PMID:27142705
Sorting quantum systems efficiently.
Ionicioiu, Radu
2016-01-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) - which direct photons according to their polarization - and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation. PMID:27142705
Quantum Games and Programmable Quantum Systems
Piotrowski, E W; Piotrowski, Edward W.; Sladkowski, Jan
2005-01-01
Attention to the very physical aspects of information characterizes the current research in quantum computation, quantum cryptography and quantum communication. In most of the cases quantum description of the system provides advantages over the classical approach. Game theory, the study of decision making in conflict situation has already been extended to the quantum domain. We would like to review the latest development in quantum game theory that is relevant to information processing. We will begin by illustrating the general idea of a quantum game and methods of gaining an advantage over "classical opponent". Then we review the most important game theoretical aspects of quantum information processing. On grounds of the discussed material, we reason about possible future development of quantum game theory and its impact on information processing and the emerging information society. The idea of quantum artificial intelligence is explained.
Solenov, Dmitry; Economou, Sophia E.; Reinecke, T. L.
2013-01-01
Implementations for quantum computing require fast single- and multiqubit quantum gate operations. In the case of optically controlled quantum dot qubits, theoretical designs for long-range two- or multiqubit operations satisfying all the requirements in quantum computing are not yet available. We have developed a design for a fast, long-range two-qubit gate mediated by a photonic microcavity mode using excited states of the quantum-dot-cavity system that addresses these needs. This design does not require identical qubits, it is compatible with available optically induced single-qubit operations, and it advances opportunities for scalable architectures. We show that the gate fidelity can exceed 90% in experimentally accessible systems.
Weiss, Ulrich
2008-01-01
Major advances in the quantum theory of macroscopic systems, in combination with stunning experimental achievements, have brightened the field and brought it to the attention of the general community in natural sciences. Today, working knowledge of dissipative quantum mechanics is an essential tool for many physicists. This book - originally published in 1990 and republished in 1999 as an enlarged second edition - delves much deeper than ever before into the fundamental concepts, methods, and applications of quantum dissipative systems, including the most recent developments. In this third edi
Rivasseau, Vincent [Paris-Sud Univ. Orsay (France). Laboratoire de Physique Theorique; Seiringer, Robert [McGill Univ., Montreal, QC (Canada). Dept. of Mathematics and Statistics; Solovej, Jan Philip [Copenhagen Univ. (Denmark). Dept. of Mathematics; Spencer, Thomas [Institute for Advanced Study, Princeton, NJ (United States). School of Mathematics
2012-11-01
The book is based on the lectures given at the CIME school ''Quantum many body systems'' held in the summer of 2010. It provides a tutorial introduction to recent advances in the mathematics of interacting systems, written by four leading experts in the field: V. Rivasseau illustrates the applications of constructive Quantum Field Theory to 2D interacting electrons and their relation to quantum gravity; R. Seiringer describes a proof of Bose-Einstein condensation in the Gross-Pitaevski limit and explains the effects of rotating traps and the emergence of lattices of quantized vortices; J.-P. Solovej gives an introduction to the theory of quantum Coulomb systems and to the functional analytic methods used to prove their thermodynamic stability; finally, T. Spencer explains the supersymmetric approach to Anderson localization and its relation to the theory of random matrices. All the lectures are characterized by their mathematical rigor combined with physical insights.
Danilov, Viatcheslav; /Oak Ridge; Nagaitsev, Sergei; /Fermilab
2011-11-01
Many quantum integrable systems are obtained using an accelerator physics technique known as Ermakov (or normalized variables) transformation. This technique was used to create classical nonlinear integrable lattices for accelerators and nonlinear integrable plasma traps. Now, all classical results are carried over to a nonrelativistic quantum case. In this paper we have described an extension of the Ermakov-like transformation to the Schroedinger and Pauli equations. It is shown that these newly found transformations create a vast variety of time dependent quantum equations that can be solved in analytic functions, or, at least, can be reduced to time-independent ones.
Magmatic "Quantum-Like" Systems
Rosinger, Elemer E
2008-01-01
Quantum computation has suggested, among others, the consideration of "non-quantum" systems which in certain respects may behave "quantum-like". Here, what algebraically appears to be the most general possible known setup, namely, of {\\it magmas} is used in order to construct "quantum-like" systems. The resulting magmatic composition of systems has as a well known particular case the tensor products.
We generalize the classical notion of a K-system to a non-commutative dynamical system by requiring that an invariantly defined memory loss be 100%. We give some examples of quantum K-systems and show that they cannot contain any quasi-periodic subsystem. 13 refs. (Author)
Micheli, Fiorenza de [Centro de Estudios Cientificos, Arturo Prat 514, Valdivia (Chile); Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Zanelli, Jorge [Centro de Estudios Cientificos, Arturo Prat 514, Valdivia (Chile); Universidad Andres Bello, Av. Republica 440, Santiago (Chile)
2012-10-15
A degenerate dynamical system is characterized by a symplectic structure whose rank is not constant throughout phase space. Its phase space is divided into causally disconnected, nonoverlapping regions in each of which the rank of the symplectic matrix is constant, and there are no classical orbits connecting two different regions. Here the question of whether this classical disconnectedness survives quantization is addressed. Our conclusion is that in irreducible degenerate systems-in which the degeneracy cannot be eliminated by redefining variables in the action-the disconnectedness is maintained in the quantum theory: there is no quantum tunnelling across degeneracy surfaces. This shows that the degeneracy surfaces are boundaries separating distinct physical systems, not only classically, but in the quantum realm as well. The relevance of this feature for gravitation and Chern-Simons theories in higher dimensions cannot be overstated.
Scheme of thinking quantum systems
V. I. YUKALOV; Sornette, D.
2009-01-01
A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of p...
Scheme of thinking quantum systems
A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field
Scheme of thinking quantum systems
Yukalov, V I
2009-01-01
A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field.
Scheme of thinking quantum systems
Yukalov, V. I.; Sornette, D.
2009-11-01
A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field.
Quantum Cybernetics and Complex Quantum Systems Science - A Quantum Connectionist Exploration
Gonçalves, Carlos Pedro
2014-01-01
Quantum cybernetics and its connections to complex quantum systems science is addressed from the perspective of complex quantum computing systems. In this way, the notion of an autonomous quantum computing system is introduced in regards to quantum artificial intelligence, and applied to quantum artificial neural networks, considered as autonomous quantum computing systems, which leads to a quantum connectionist framework within quantum cybernetics for complex quantum computing systems. Sever...
Quantum systems as classical systems
Cassa, A
2001-01-01
A characteristical property of a classical physical theory is that the observables are real functions taking an exact outcome on every (pure) state; in a quantum theory, at the contrary, a given observable on a given state can take several values with only a predictable probability. However, even in the classical case, when an observer is intrinsically unable to distinguish between some distinct states he can convince himself that the measure of its ''observables'' can have several values in a random way with a statistical character. What kind of statistical theory is obtainable in this way? It is possible, for example, to obtain exactly the statistical previsions of quantum mechanics? Or, in other words, can a physical system showing a classical behaviour appear to be a quantum system to a confusing observer? We show that from a mathematical viewpoint it is not difficult to produce a theory with hidden variables having this property. We don't even try to justify in physical terms the artificial construction ...
Asymptotically open quantum systems
In the present thesis we investigate the structure of time-dependent equations of motion in quantum mechanics.We start from two coupled systems with an autonomous equation of motion. A limit, in which the dynamics of one of the two systems has a decoupled evolution and imposes a non-autonomous evolution for the second system is identified. A result due to K. Hepp that provides a classical limit for dynamics turns out to be part and parcel for this limit and is generalized in our work. The method introduced by J.S. Howland for the solution of the time-dependent Schroedinger equation is interpreted as such a limit. Moreover, we associate our limit with the modern theory of quantization. (orig.)
Quantum Effects in Biological Systems
2016-01-01
Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...
Quantum trajectories and open many-body quantum systems
Daley, Andrew J.
2014-01-01
The study of open quantum systems has become increasingly important in the past years, as the ability to control quantum coherence on a single particle level has been developed in a wide variety of physical systems. In quantum optics, the study of open systems goes well beyond understanding the breakdown of quantum coherence. There, the coupling to the environment is sufficiently well understood that it can be manipulated to drive the system into desired quantum states, or to project the syst...
Feedback control of quantum system
DONG Dao-yi; CHEN Zong-hai; ZHANG Chen-bin; CHEN Chun-lin
2006-01-01
Feedback is a significant strategy for the control of quantum system.Information acquisition is the greatest difficulty in quantum feedback applications.After discussing several basic methods for information acquisition,we review three kinds of quantum feedback control strategies:quantum feedback control with measurement,coherent quantum feedback,and quantum feedback control based on cloning and recognition.The first feedback strategy can effectively acquire information,but it destroys the coherence in feedback loop.On the contrary,coherent quantum feedback does not destroy the coherence,but the capability of information acquisition is limited.However,the third feedback scheme gives a compromise between information acquisition and measurement disturbance.
Quantum Effects in Biological Systems
Roy, Sisir
2014-07-01
The debates about the trivial and non-trivial effects in biological systems have drawn much attention during the last decade or so. What might these non-trivial sorts of quantum effects be? There is no consensus so far among the physicists and biologists regarding the meaning of "non-trivial quantum effects". However, there is no doubt about the implications of the challenging research into quantum effects relevant to biology such as coherent excitations of biomolecules and photosynthesis, quantum tunneling of protons, van der Waals forces, ultrafast dynamics through conical intersections, and phonon-assisted electron tunneling as the basis for our sense of smell, environment assisted transport of ions and entanglement in ion channels, role of quantum vacuum in consciousness. Several authors have discussed the non-trivial quantum effects and classified them into four broad categories: (a) Quantum life principle; (b) Quantum computing in the brain; (c) Quantum computing in genetics; and (d) Quantum consciousness. First, I will review the above developments. I will then discuss in detail the ion transport in the ion channel and the relevance of quantum theory in brain function. The ion transport in the ion channel plays a key role in information processing by the brain.
Open quantum systems recent developments
Joye, Alain; Pillet, Claude-Alain
2006-01-01
Understanding dissipative dynamics of open quantum systems remains a challenge in mathematical physics. This problem is relevant in various areas of fundamental and applied physics. From a mathematical point of view, it involves a large body of knowledge. Significant progress in the understanding of such systems has been made during the last decade. These books present in a self-contained way the mathematical theories involved in the modeling of such phenomena. They describe physically relevant models, develop their mathematical analysis and derive their physical implications. In Volume I the Hamiltonian description of quantum open systems is discussed. This includes an introduction to quantum statistical mechanics and its operator algebraic formulation, modular theory, spectral analysis and their applications to quantum dynamical systems. Volume II is dedicated to the Markovian formalism of classical and quantum open systems. A complete exposition of noise theory, Markov processes and stochastic differential...
Noncommutative mathematics for quantum systems
Franz, Uwe
2016-01-01
Noncommutative mathematics is a significant new trend of mathematics. Initially motivated by the development of quantum physics, the idea of 'making theory noncommutative' has been extended to many areas of pure and applied mathematics. This book is divided into two parts. The first part provides an introduction to quantum probability, focusing on the notion of independence in quantum probability and on the theory of quantum stochastic processes with independent and stationary increments. The second part provides an introduction to quantum dynamical systems, discussing analogies with fundamental problems studied in classical dynamics. The desire to build an extension of the classical theory provides new, original ways to understand well-known 'commutative' results. On the other hand the richness of the quantum mathematical world presents completely novel phenomena, never encountered in the classical setting. This book will be useful to students and researchers in noncommutative probability, mathematical physi...
Fault Tolerant Quantum Filtering and Fault Detection for Quantum Systems
Gao, Qing; Dong, Daoyi; Petersen, Ian R.
2015-01-01
This paper aims to determine the fault tolerant quantum filter and fault detection equation for a class of open quantum systems coupled to a laser field that is subject to stochastic faults. In order to analyze this class of open quantum systems, we propose a quantum-classical Bayesian inference method based on the definition of a so-called quantum-classical conditional expectation. It is shown that the proposed Bayesian inference approach provides a convenient tool to simultaneously derive t...
Information in individual quantum systems
A new measure of information in quantum mechanics is proposed which takes into account that for quantum systems, the only feature known before an experiment is performed are the probabilities for various events to occur. The sum of the individual measures of information for mutually complementary observations is invariant under the choice of the particular set of complementary observations and conserved in time if there is no information exchange with an environment unitary transformation. This operational quantum information invariant results in k bits of information for a system consisting of $k$ qubits. For a composite system, maximal entanglement results if the total information carried by the system is exhausted in specifying joint properties, with no individual qubit carrying any information on its own. We interpret our results as implying that information is the most fundamental notion in quantum mechanics. Based on this observation we suggest ideas for a foundational principle for quantum theory. It is proposed here that the foundational principle for quantum theory may be identified through the assumption that the most elementary system carries one bit of information only. Therefore an elementary system can only give a definite answer in one specific measurement. The irreducible randomness of individual outcomes in other measurements and quantum complementarity are then necessary consequences. The most natural function between probabilities for outcomes to occur and the experimental parameters, consistent with the foundational principle proposed, is the well-known sinusoidal dependence. (author)
A prototype quantum cryptography system
In this work we have constructed a new secure quantum key distribution system based on the BB84 protocol. Many current state-of-the-art quantum cryptography systems encounter major problems concerning low bit rate, synchronization, and stabilization. Our quantum cryptography system utilizes only laser diodes and standard passive optical components, to enhance the stability and also to decrease the space requirements. The development of this demonstration for a practical quantum key distribution system is a consequence of our previous work on the quantum cryptographic system using optical fiber components for the transmitter and receiver. There we found that the optical fiber couplers should not be used due to the problems with space, stability and alignment. The goal of the synchronization is to use as little transmission capacities as possible. The experimental results of our quantum key distribution system show the feasibility of getting more than 90 % transmission capacities with the approaches developed in this work. Therefore it becomes feasible to securely establish a random key sequence at a rate of 1 to ∼ 5K bit/s by using our stable, compact, cheap, and user-friendly modules for quantum cryptography. (author)
Preconditioned quantum linear system algorithm.
Clader, B D; Jacobs, B C; Sprouse, C R
2013-06-21
We describe a quantum algorithm that generalizes the quantum linear system algorithm [Harrow et al., Phys. Rev. Lett. 103, 150502 (2009)] to arbitrary problem specifications. We develop a state preparation routine that can initialize generic states, show how simple ancilla measurements can be used to calculate many quantities of interest, and integrate a quantum-compatible preconditioner that greatly expands the number of problems that can achieve exponential speedup over classical linear systems solvers. To demonstrate the algorithm's applicability, we show how it can be used to compute the electromagnetic scattering cross section of an arbitrary target exponentially faster than the best classical algorithm. PMID:23829722
Mechanism for quantum speedup in open quantum systems
Liu, Hai-Bin; Yang, W. L.; An, Jun-Hong; Xu, Zhen-Yu
2016-02-01
The quantum speed limit (QSL) time for open system characterizes the most efficient response of the system to the environmental influences. Previous results showed that the non-Markovianity governs the quantum speedup. Via studying the dynamics of a dissipative two-level system, we reveal that the non-Markovian effect is only the dynamical way of the quantum speedup, while the formation of the system-environment bound states is the essential reason for the quantum speedup. Our attribution of the quantum speedup to the energy-spectrum character can supply another vital path for experiments when the quantum speedup shows up without any dynamical calculations. The potential experimental observation of our quantum speedup mechanism in the circuit QED system is discussed. Our results may be of both theoretical and experimental interest in exploring the ultimate QSL in realistic environments, and may open new perspectives for devising active quantum speedup devices.
Quantum walk public-key cryptographic system
Vlachou, C.; Rodrigues, J.; Mateus, P.; Paunković, N.; Souto, A.
2015-12-01
Quantum Cryptography is a rapidly developing field of research that benefits from the properties of Quantum Mechanics in performing cryptographic tasks. Quantum walks are a powerful model for quantum computation and very promising for quantum information processing. In this paper, we present a quantum public-key cryptographic system based on quantum walks. In particular, in the proposed protocol the public-key is given by a quantum state generated by performing a quantum walk. We show that the protocol is secure and analyze the complexity of public key generation and encryption/decryption procedures.
Design of coherent quantum observers for linear quantum systems
Quantum versions of control problems are often more difficult than their classical counterparts because of the additional constraints imposed by quantum dynamics. For example, the quantum LQG and quantum H∞ optimal control problems remain open. To make further progress, new, systematic and tractable methods need to be developed. This paper gives three algorithms for designing coherent quantum observers, i.e., quantum systems that are connected to a quantum plant and their outputs provide information about the internal state of the plant. Importantly, coherent quantum observers avoid measurements of the plant outputs. We compare our coherent quantum observers with a classical (measurement-based) observer by way of an example involving an optical cavity with thermal and vacuum noises as inputs. (paper)
Quantum energy teleportation in a quantum Hall system
Yusa, Go; Izumida, Wataru; Hotta, Masahiro [Department of Physics, Tohoku University, Sendai 980-8578 (Japan)
2011-09-15
We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET), which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using reasonable experimental parameters.
Hypothesis testing with open quantum systems
Molmer, Klaus
2014-01-01
Using a quantum circuit model we derive the maximal ability to distinguish which of several candidate Hamiltonians describe an open quantum system. This theory, in particular, provides the maximum information retrievable from continuous quantum measurement records, available when a quantum system is perturbatively coupled to a broadband quantized environment.
Quantum variance: A measure of quantum coherence and quantum correlations for many-body systems
Frérot, Irénée; Roscilde, Tommaso
2016-08-01
Quantum coherence is a fundamental common trait of quantum phenomena, from the interference of matter waves to quantum degeneracy of identical particles. Despite its importance, estimating and measuring quantum coherence in generic, mixed many-body quantum states remains a formidable challenge, with fundamental implications in areas as broad as quantum condensed matter, quantum information, quantum metrology, and quantum biology. Here, we provide a quantitative definition of the variance of quantum coherent fluctuations (the quantum variance) of any observable on generic quantum states. The quantum variance generalizes the concept of thermal de Broglie wavelength (for the position of a free quantum particle) to the space of eigenvalues of any observable, quantifying the degree of coherent delocalization in that space. The quantum variance is generically measurable and computable as the difference between the static fluctuations and the static susceptibility of the observable; despite its simplicity, it is found to provide a tight lower bound to most widely accepted estimators of "quantumness" of observables (both as a feature as well as a resource), such as the Wigner-Yanase skew information and the quantum Fisher information. When considering bipartite fluctuations in an extended quantum system, the quantum variance expresses genuine quantum correlations among the two parts. In the case of many-body systems, it is found to obey an area law at finite temperature, extending therefore area laws of entanglement and quantum fluctuations of pure states to the mixed-state context. Hence the quantum variance paves the way to the measurement of macroscopic quantum coherence and quantum correlations in most complex quantum systems.
Quantum systems as classical systems
Cassa, Antonio
2001-01-01
A characteristical property of a classical physical theory is that the observables are real functions taking an exact outcome on every (pure) state; in a quantum theory, at the contrary, a given observable on a given state can take several values with only a predictable probability. However, even in the classical case, when an observer is intrinsically unable to distinguish between some distinct states he can convince himself that the measure of its ''observables'' can have several values in ...
Quantum cloning attacks against PUF-based quantum authentication systems
Yao, Yao; Gao, Ming; Li, Mo; Zhang, Jian
2016-08-01
With the advent of physical unclonable functions (PUFs), PUF-based quantum authentication systems have been proposed for security purposes, and recently, proof-of-principle experiment has been demonstrated. As a further step toward completing the security analysis, we investigate quantum cloning attacks against PUF-based quantum authentication systems and prove that quantum cloning attacks outperform the so-called challenge-estimation attacks. We present the analytical expression of the false-accept probability by use of the corresponding optimal quantum cloning machines and extend the previous results in the literature. In light of these findings, an explicit comparison is made between PUF-based quantum authentication systems and quantum key distribution protocols in the context of cloning attacks. Moreover, from an experimental perspective, a trade-off between the average photon number and the detection efficiency is discussed in detail.
Quantum cloning attacks against PUF-based quantum authentication systems
Yao, Yao; Gao, Ming; Li, Mo; Zhang, Jian
2016-05-01
With the advent of physical unclonable functions (PUFs), PUF-based quantum authentication systems have been proposed for security purposes, and recently, proof-of-principle experiment has been demonstrated. As a further step toward completing the security analysis, we investigate quantum cloning attacks against PUF-based quantum authentication systems and prove that quantum cloning attacks outperform the so-called challenge-estimation attacks. We present the analytical expression of the false-accept probability by use of the corresponding optimal quantum cloning machines and extend the previous results in the literature. In light of these findings, an explicit comparison is made between PUF-based quantum authentication systems and quantum key distribution protocols in the context of cloning attacks. Moreover, from an experimental perspective, a trade-off between the average photon number and the detection efficiency is discussed in detail.
The quantum Hall effect in quantum dot systems
It is proposed to use quantum dots in order to increase the temperatures suitable for observation of the integer quantum Hall effect. A simple estimation using Fock-Darwin spectrum of a quantum dot shows that good part of carriers localized in quantum dots generate the intervals of plateaus robust against elevated temperatures. Numerical calculations employing local trigonometric basis and highly efficient kernel polynomial method adopted for computing the Hall conductivity reveal that quantum dots may enhance peak temperature for the effect by an order of magnitude, possibly above 77 K. Requirements to potentials, quality and arrangement of the quantum dots essential for practical realization of such enhancement are indicated. Comparison of our theoretical results with the quantum Hall measurements in InAs quantum dot systems from two experimental groups is also given
Entanglement within the Quantum Trajectory Description of Open Quantum Systems
Nha, Hyunchul; Carmichael, H J
2004-01-01
The degree of entanglement in an open quantum system varies according to how information in the environment is read. A measure of this contextual entanglement is introduced based on quantum trajectory unravelings of the open system dynamics. It is used to characterize the entanglement in a driven quantum system of dimension $2\\times\\infty$ where the entanglement is induced by the environmental interaction. A detailed mechanism for the environment-induced entanglement is given.
Dynamics of complex quantum systems
Akulin, Vladimir M
2014-01-01
This book gathers together a range of similar problems that can be encountered in different fields of modern quantum physics and that have common features with regard to multilevel quantum systems. The main motivation was to examine from a uniform standpoint various models and approaches that have been developed in atomic, molecular, condensed matter, chemical, laser and nuclear physics in various contexts. The book should help senior-level undergraduate, graduate students and researchers putting particular problems in these fields into a broader scientific context and thereby taking advantage of well-established techniques used in adjacent fields. This second edition has been expanded to include substantial new material (e.g. new sections on Dynamic Localization and on Euclidean Random Matrices and new chapters on Entanglement, Open Quantum Systems, and Coherence Protection). It is based on the author’s lectures at the Moscow Institute of Physics and Technology, at the CNRS Aimé Cotton Laboratory, and on ...
Entangled systems. New directions in quantum physics
Entangled Systems is an introductory textbook for advanced students of physics, chemistry and computer science which covers an area of physics that has lately witnessed rapid expansion. The topics treated here include foundations of quantum theory, quantum information, quantum communication, quantum computing, quantum teleportation and hidden variables, thus providing not only a solid basis for the study of quantum theory as such, but also a profound foundation of knowledge from which readers can follow the rapid development of the topic or start out into a more specialized branch of research. Commented recommendations for further reading as well as end-of-chapter problems help the reader to access quickly the basic theoretical concepts of future key technologies. Only a basic prior knowledge of quantum theory and the necessary mathematical foundations is assumed, as introductory chapters are provided to present these to the readers. Thus, 'Entangled Systems' can be used both as a course book and for self-study purposes. From the contents: - The Mathematical Framework - Basic Concepts of Quantum Theory - The Simplest Quantum Systems: Qubits - Mixed State and Density Operator - Shannon's Entropy and Classical Information - The von Neumann Entropy and Quantum Information - Composite Systems - Entanglement - Correlations and Non-Local Measurements - There is no (Local-Realistic) Alternative to the Quantum Theory - Working with Entanglement - The Quantum Computer - General Measurements, POVM - The General Evolution of an Open Quantum System and Special Quantum Channels - Decoherence and Approaches to the Description of the Quantum Measurement Process - Two Implementations of Quantum Operations. (orig.)
Perturbative approach to Markovian open quantum systems
Li, Andy C. Y.; F. Petruccione; Jens Koch
2013-01-01
Perturbation theory (PT) is a powerful and commonly used tool in the investigation of closed quantum systems. In the context of open quantum systems, PT based on the Markovian quantum master equation is much less developed. The investigation of open systems mostly relies on exact diagonalization of the Liouville superoperator or quantum trajectories. In this approach, the system size is rather limited by current computational capabilities. Analogous to closed-system PT, we develop a PT suitab...
Quantum Indeterminacy of Cosmic Systems
Hogan, Craig J. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
2013-12-30
It is shown that quantum uncertainty of motion in systems controlled mainly by gravity generally grows with orbital timescale $H^{-1}$, and dominates classical motion for trajectories separated by distances less than $\\approx H^{-3/5}$ in Planck units. For example, the cosmological metric today becomes indeterminate at macroscopic separations, $H_0^{-3/5}\\approx 60$ meters. Estimates suggest that entangled non-localized quantum states of geometry and matter may significantly affect fluctuations during inflation, and connect the scale of dark energy to that of strong interactions.
Polygamy of Entanglement in Multipartite Quantum Systems
Kim, Jeong San
2009-01-01
We show that bipartite entanglement distribution (or entanglement of assistance) in multipartite quantum systems is by nature polygamous. We first provide an analytic upper bound for the concurrence of assistance in bipartite quantum systems, and derive a polygamy inequality of multipartite entanglement in arbitrary dimensional quantum systems.
Overview of progress in quantum systems control
CONG Shuang; ZHENG Yisong; JI Beichen; DAI Yi
2007-01-01
The development of the theory on quantum systems control in the last 20 years is reviewed in detail.The research on the controllability of quantum systems is first introduced,then the study on the quantum open-loop control methods often used for controlling simple quantum systems is analyzed briefly.The learning control method and the feedback control method are mainly discussed for they are two important methods in quantum systems control and their advantages and disadvantages are presented.According to the trends in quantum systems control development,the paper predicts the future trends of its development and applications.A complete design procedure necessary for the quantum control system is presented.Finally,several vital problems hindering the advancement of quantum control are pointed out.
QUANTUM AND CLASSICAL CORRELATIONS IN GAUSSIAN OPEN QUANTUM SYSTEMS
Aurelian ISAR
2015-01-01
Full Text Available In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum correlations (quantum entanglement and quantum discord for a system consisting of two noninteracting bosonic modes embedded in a thermal environment. We solve the Kossakowski-Lindblad master equation for the time evolution of the considered system and describe the entanglement and discord in terms of the covariance matrix for Gaussian input states. For all values of the temperature of the thermal reservoir, an initial separable Gaussian state remains separable for all times. We study the time evolution of logarithmic negativity, which characterizes the degree of entanglement, and show that in the case of an entangled initial squeezed thermal state, entanglement suppression takes place for all temperatures of the environment, including zero temperature. We analyze the time evolution of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and show that it decays asymptotically in time under the effect of the thermal bath. This is in contrast with the sudden death of entanglement. Before the suppression of the entanglement, the qualitative evolution of quantum discord is very similar to that of the entanglement. We describe also the time evolution of the degree of classical correlations and of quantum mutual information, which measures the total correlations of the quantum system.
Applications of Feedback Control in Quantum Systems
Jacobs, Kurt
2006-01-01
We give an introduction to feedback control in quantum systems, as well as an overview of the variety of applications which have been explored to date. This introductory review is aimed primarily at control theorists unfamiliar with quantum mechanics, but should also be useful to quantum physicists interested in applications of feedback control. We explain how feedback in quantum systems differs from that in traditional classical systems, and how in certain cases the results from modern optim...
Software-defined Quantum Communication Systems
Humble, Travis S.; Sadlier, Ronald J.
2014-01-01
Quantum communication systems harness modern physics through state-of-the-art optical engineering to provide revolutionary capabilities. An important concern for quantum communication engineering is designing and prototyping these systems to evaluate proposed capabilities. We apply the paradigm of software-defined communication for engineering quantum communication systems to facilitate rapid prototyping and prototype comparisons. We detail how to decompose quantum communication terminals int...
Eigenfunctions in chaotic quantum systems
Baecker, Arnd
2007-07-01
The structure of wavefunctions of quantum systems strongly depends on the underlying classical dynamics. In this text a selection of articles on eigenfunctions in systems with fully chaotic dynamics and systems with a mixed phase space is summarized. Of particular interest are statistical properties like amplitude distribution and spatial autocorrelation function and the implication of eigenfunction structures on transport properties. For systems with a mixed phase space the separation into regular and chaotic states does not always hold away from the semiclassical limit, such that chaotic states may completely penetrate into the region of the regular island. The consequences of this flooding are discussed and universal aspects highlighted. (orig.)
Eigenfunctions in chaotic quantum systems
The structure of wavefunctions of quantum systems strongly depends on the underlying classical dynamics. In this text a selection of articles on eigenfunctions in systems with fully chaotic dynamics and systems with a mixed phase space is summarized. Of particular interest are statistical properties like amplitude distribution and spatial autocorrelation function and the implication of eigenfunction structures on transport properties. For systems with a mixed phase space the separation into regular and chaotic states does not always hold away from the semiclassical limit, such that chaotic states may completely penetrate into the region of the regular island. The consequences of this flooding are discussed and universal aspects highlighted. (orig.)
Quantum Computing in Solid State Systems
Ruggiero, B; Granata, C
2006-01-01
The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.
Quantum chaos in open systems: a quantum state diffusion analysis
Brun, Todd A.; Percival, Ian C.; Schack, Rüdiger
1995-01-01
Except for the universe, all quantum systems are open, and according to quantum state diffusion theory, many systems localize to wave packets in the neighborhood of phase space points. This is due to decoherence from the interaction with the environment, and makes the quasiclassical limit of such systems both more realistic and simpler in many respects than the more familiar quasiclassical limit for closed systems. A linearized version of this theory leads to the correct classical dynamics in...
Logical entropy of quantum dynamical systems
Ebrahimzadeh Abolfazl
2016-01-01
Full Text Available This paper introduces the concepts of logical entropy and conditional logical entropy of hnite partitions on a quantum logic. Some of their ergodic properties are presented. Also logical entropy of a quantum dynamical system is dehned and ergodic properties of dynamical systems on a quantum logic are investigated. Finally, the version of Kolmogorov-Sinai theorem is proved.
Quantum systems, channels, information. A mathematical introduction
Holevo, Alexander S.
2012-07-01
The subject of this book is theory of quantum system presented from information science perspective. The central role is played by the concept of quantum channel and its entropic and information characteristics. Quantum information theory gives a key to understanding elusive phenomena of quantum world and provides a background for development of experimental techniques that enable measuring and manipulation of individual quantum systems. This is important for the new efficient applications such as quantum computing, communication and cryptography. Research in the field of quantum informatics, including quantum information theory, is in progress in leading scientific centers throughout the world. This book gives an accessible, albeit mathematically rigorous and self-contained introduction to quantum information theory, starting from primary structures and leading to fundamental results and to exiting open problems.
Note on entropies for quantum dynamical systems.
Watanabe, Noboru
2016-05-28
Quantum entropy and channel are fundamental concepts for quantum information theory progressed recently in various directions. We will review the fundamental aspects of mean entropy and mean mutual entropy and calculate them for open system dynamics. PMID:27091165
Optimal protocols for slowly driven quantum systems.
Zulkowski, Patrick R; DeWeese, Michael R
2015-09-01
The design of efficient quantum information processing will rely on optimal nonequilibrium transitions of driven quantum systems. Building on a recently developed geometric framework for computing optimal protocols for classical systems driven in finite time, we construct a general framework for optimizing the average information entropy for driven quantum systems. Geodesics on the parameter manifold endowed with a positive semidefinite metric correspond to protocols that minimize the average information entropy production in finite time. We use this framework to explicitly compute the optimal entropy production for a simple two-state quantum system coupled to a heat bath of bosonic oscillators, which has applications to quantum annealing. PMID:26465432
Repeated interactions in open quantum systems
Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium
Repeated interactions in open quantum systems
Bruneau, Laurent, E-mail: laurent.bruneau@u-cergy.fr [Laboratoire AGM, Université de Cergy-Pontoise, Site Saint-Martin, BP 222, 95302 Cergy-Pontoise (France); Joye, Alain, E-mail: Alain.Joye@ujf-grenoble.fr [Institut Fourier, UMR 5582, CNRS-Université Grenoble I, BP 74, 38402 Saint-Martin d’Hères (France); Merkli, Marco, E-mail: merkli@mun.ca [Department of Mathematics and Statistics Memorial University of Newfoundland, St. John' s, NL Canada A1C 5S7 (Canada)
2014-07-15
Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.
Quantum state engineering in hybrid open quantum systems
Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.
2016-04-01
We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.
Optimal Lyapunov-based quantum control for quantum systems
Hou, S C; Dong, Daoyi; Petersen, Ian R; Yi, X X
2012-01-01
Quantum Lyapunov control was developed in order to transform a quantum system from arbitrary initial states to a target state. The idea is to find control fields that steer the Lyapunov function to zero as $t\\rightarrow \\infty$, meanwhile the quantum system is driven to the target state. In order to shorten the time required to reach the target state, we propose two designs to optimize Lyapunov control in this paper. The first design makes the Lyapunov function decrease as fast as possible with a constraint on the total power of control fields, and the second design has the same purpose but with a constraint on each control field. Examples of a three-level system demonstrate that the evolution time for Lyapunov control can be significantly shortened, especially when high control fidelity is required. Besides, this optimal Lyapunov-based quantum control is robust against uncertainties in the free Hamiltonian and decoherence in the system compared to conventional Lyapunov control.
Entangling transformations in composite finite quantum systems
Vourdas, A [Department of Computing, University of Bradford, Bradford BD7 1DP (United Kingdom)
2003-12-01
Phase space methods are applied in the context of finite quantum systems. 'Galois quantum systems' (with a dimension which is a power of a prime number) are considered, and symplectic Sp(2,Z(d)) transformations are studied. Composite systems comprising two finite quantum systems are also considered. Symplectic Sp(4,Z(d)) transformations are classified into local and entangling ones and the necessary matrices which perform such transformations are calculated numerically.
Quantum Simulation of Tunneling in Small Systems
Andrew T Sornborger
2012-01-01
A number of quantum algorithms have been performed on small quantum computers; these include Shor's prime factorization algorithm, error correction, Grover's search algorithm and a number of analog and digital quantum simulations. Because of the number of gates and qubits necessary, however, digital quantum particle simulations remain untested. A contributing factor to the system size required is the number of ancillary qubits needed to implement matrix exponentials of the potential operator....
Quantum probabilities and entanglement for multimode quantum systems
Quantum probabilities are defined for several important physical cases characterizing measurements with multimode quantum systems. These are the probabilities for operationally testable measurements, for operationally uncertain measurements, and for entangled composite events. The role of the prospect and state entanglement is emphasized. Numerical modeling is presented for a two-mode Bose-condensed system of trapped atoms. The interference factor is calculated by invoking the channel-state duality.
Thermodynamics of Weakly Measured Quantum Systems.
Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro
2016-02-26
We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics. PMID:26967399
Thermodynamics of Weakly Measured Quantum Systems
Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro
2016-02-01
We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.
Quantum Heat Engine With Multi-Level Quantum Systems
Quan, H T; Sun, C P
2005-01-01
By reformulating the first law of thermodynamics in the fashion of quantum-mechanical operators on the parameter manifold, we propose a universal class of quantum heat engines (QHE) using the multi-level quantum system as the working substance. We obtain a general expression of work for the thermodynamic cycle with two thermodynamic adiabatic processes, which are microscopically quantum adiabatic processes. We also classify the conditions for a 3-level QHE to extract positive work from a heat bath. Our result is counter-intuitively different from that of a 2-level system. As a more realistic illustration, a 3-level atom system with dark state configuration manipulated by classical light is used to demonstrate our central idea.
Quantum mechanics in complex systems
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Quantum Open System Theory: Bipartite Aspects
Yu, Ting; Eberly, J. H.
2006-01-01
We demonstrate in straightforward calculations that even under ideally weak noise the relaxation of bipartite open quantum systems contains elements not previously encountered in quantum noise physics. While additivity of decay rates is known to be generic for decoherence of a single system, we demonstrate that it breaks down for bipartite coherence of even the simplest composite systems.
Hybrid quantum systems of atoms and ions
In recent years, ultracold atoms have emerged as an exceptionally controllable experimental system to investigate fundamental physics, ranging from quantum information science to simulations of condensed matter models. Here we go one step further and explore how cold atoms can be combined with other quantum systems to create new quantum hybrids with tailored properties. Coupling atomic quantum many-body states to an independently controllable single-particle gives access to a wealth of novel physics and to completely new detection and manipulation techniques. We report on recent experiments in which we have for the first time deterministically placed a single ion into an atomic Bose Einstein condensate. A trapped ion, which currently constitutes the most pristine single particle quantum system, can be observed and manipulated at the single particle level. In this single-particle/many-body composite quantum system we show sympathetic cooling of the ion and observe chemical reactions of single particles in situ.
Macroscopic quantum systems and gravitational phenomena
Low-energy quantum systems are studied theoretically in light of possible experiments to test the interplay between quantum theory and general relativity. The research focus in this thesis is on quantum systems which can be controlled with very high precision and which allow for tests of quantum theory at novel scales in terms of mass and size. The pulsed regime of opto-mechanics is explored and it is shown how short optical pulses can be used to prepare and characterize quantum states of a massive mechanical resonator, and how some phenomenological models of quantum gravity can be probed. In addition, quantum interferometry with photons and matter-waves in the presence of gravitational time dilation is considered. It is shown that time dilation causes entanglement between internal states and the center-of-mass position and that it leads to decoherence of all composite quantum systems. The results of the thesis show that the interplay between quantum theory and general relativity affects even low-energy quantum systems and that it offers novel phenomena which can be probed in experiments. (author)
Controlling quantum critical dynamics of isolated systems
Del Campo, A.; K. Sengupta
2014-01-01
Controlling the non adiabatic dynamics of isolated quantum systems driven through a critical point is of interest in a variety of fields ranging from quantum simulation to finite-time thermodynamics. We briefly review the different methods for designing protocols which minimize excitation (defect) production in a closed quantum critical system driven out of equilibrium. We chart out the role of specific driving schemes for this procedure, point out their experimental relevance, and discuss th...
Robust observer for uncertain linear quantum systems
Yamamoto, Naoki
2006-01-01
In the theory of quantum dynamical filtering, one of the biggest issues is that the underlying system dynamics represented by a quantum stochastic differential equation must be known exactly in order that the corresponding filter provides an optimal performance; however, this assumption is generally unrealistic. Therefore, in this paper, we consider a class of linear quantum systems subjected to time-varying norm-bounded parametric uncertainties and then propose a robust observer such that th...
Tailoring superradiance to design artificial quantum systems
Longo, Paolo; Keitel, Christoph H.; Evers, Jörg
2016-03-01
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This “reverse engineering” of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems.
Quantum mechanics of open systems
Melikidze, Akakii
In quantum mechanics, there is a set of problems where the system of interest interacts with another system, usually called "environment". This interaction leads to the exchange of energy and information and makes the dynamics of the system of interest essentially non-unitary. Such problems often appeared in condensed matter physics and attracted much attention after recent advances in nanotechnology. As broadly posed as they are, these problems require a variety of different approaches. This thesis is an attempt to examine several of these approaches in applications to different condensed matter problems. The first problem concerns the so-called "Master equation" approach which is very popular in quantum optics. I show that analytic properties of environmental correlators lead to strong restrictions on the applicability of the approach to the strong-coupling regime of interest in condensed matter physics. In the second problem, I use path integrals to treat the localization of particles on attractive short-range potentials when the environment produces an effective viscous friction force. I find that friction changes drastically the localization properties and leads to much stronger localization in comparison to the non-dissipative case. This has implications for the motion of heavy particles in fermionic liquids and, as will be argued below, is also relevant to the problem of high-temperature superconductivity. Finally, the third problem deals with the interplay of geometric phases and energy dissipation which occurs in the motion of vortices in superconductors. It is shown that this interplay leads to interesting predictions for vortex tunneling in high-temperature superconductors which have been partially confirmed by experiments.
Dynamical entropy for infinite quantum systems
We review the recent physical application of the so-called Connes-Narnhofer-Thirring entropy, which is the successful quantum mechanical generalization of the classical Kolmogorov-Sinai entropy and, by its very conception, is a dynamical entropy for infinite quantum systems. We thus comparingly review also the physical applications of the classical dynamical entropy for infinite classical systems. 41 refs. (Author)
Linear response theory for quantum open systems
J. H. Wei; Yan, YiJing
2011-01-01
Basing on the theory of Feynman's influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open system at its steady-state, which can be applied to various fields of non-equilibrium condensed matter physics.
Quantum information theory with Gaussian systems
This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)
Quantum information theory with Gaussian systems
Krueger, O.
2006-04-06
This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)
Measuring quantum systems with tunnel junctions
Full text: We present a formalism that allows to describe a quantum system modulating the transmission of a tunnel junction. The tunnel junction acts as an environment for the quantum system. Contrary to the conventional approach to open quantum systems we retain a degree of freedom of the environment, the charge passed through the junction, after averaging over the bath degrees of freedom, employing a projection operator technique. The resulting object characterizing the joint dynamics of the system and the charge is the charge specific density matrix. We derive a master equation describing the time evolution of the charge specific density matrix. We consider two examples of quantum systems coupled to the junction: a spin and a harmonic oscillator. In the spin case we are able to analyze a quantum measurement process in detail. For the oscillator we investigate the noise in the tunnel junction induced by the coupling. (author)
Logic of infinite quantum systems
Mundici, Daniele
1993-10-01
Limits of sequences of finite-dimensional (AF) C *-algebras, such as the CAR algebra for the ideal Fermi gas, are a standard mathematical tool to describe quantum statistical systems arising as thermodynamic limits of finite spin systems. Only in the infinite-volume limit one can, for instance, describe phase transitions as singularities in the thermodynamic potentials, and handle the proliferation of physically inequivalent Hilbert space representations of a system with infinitely many degrees of freedom. As is well known, commutative AF C *-algebras correspond to countable Boolean algebras, i.e., algebras of propositions in the classical two-valued calculus. We investigate the noncommutative logic properties of general AF C *-algebras, and their corresponding systems. We stress the interplay between Gödel incompleteness and quotient structures in the light of the “nature does not have ideals” program, stating that there are no quotient structures in physics. We interpret AF C *-algebras as algebras of the infinite-valued calculus of Lukasiewicz, i.e., algebras of propositions in Ulam's “ twenty questions” game with lies.
Slightly anharmonic systems in quantum optics
Klimov, Andrey B.; Chumakov, Sergey M.
1995-01-01
We consider an arbitrary atomic system (n-level atom or many such atoms) interacting with a strong resonant quantum field. The approximate evolution operator for a quantum field case can be produced from the atomic evolution operator in an external classical field by a 'quantization prescription', passing the operator arguments to Wigner D-functions. Many important phenomena arising from the quantum nature of the field can be described by such a way.
Interaction between classical and quantum systems
An unconventional approach to the measurement problem in quantum mechanics is considered--the apparatus is treated as a classical system, belonging to the macro-world. In order to have a measurement the apparatus must interact with the quantum system. As a first step, the classical apparatus is embedded into a large quantum mechanical structure, making use of a superselection principle. The apparatus and system are coupled such that the apparatus remains classical (principle of integrity), and unambiguous information of the values of a quantum observable are transferred to the variables of the apparatus. Further measurement of the classical apparatus can be done, causing no problems of principle. Thus interactions causing pointers to move (which are not treated) can be added. The restrictions placed by the principle of integrity on the form of the interaction between classical and quantum systems are examined and illustration is given by means of a simple example in which one sees the principle of integrity at work
Mixing and entropy increase in quantum systems
This paper attempts to explain the key feature of deterministic chaotic classical systems and how they can be translated to quantum systems. To do so we develop the appropriate algebraic language for the non-specialist. 22 refs. (Author)
Quantum entanglement in photoactive prebiotic systems
Tamulis, Arvydas; Grigalavicius, Mantas
2014-01-01
This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modelled photoactive prebiotic kernel systems. We define our modelled self-assembled supramolecular photoactive centres, composed of one or more sensitizer molecules, precursors of fatty acids and a number of water molecules, as a photoactive prebiotic kernel systems. We propose that life first emerged in the form of such minimal photoactive prebiotic kernel systems and lat...
Local Unitary Invariants for Multipartite Quantum Systems
Wang, Jing; Li, Ming; Fei, Shao-Ming; Li-Jost, Xianqing
2014-01-01
We present an approach of constructing invariants under local unitary transformations for multipartite quantum systems. The invariants constructed in this way can be complement to that in [Science 340 (2013) 1205-1208]. Detailed examples are given to compute such invariant in detail. It is shown that these invariants can be used to detect the local unitary equivalence of degenerated quantum states.
Limit cycles in quantum systems
In this thesis we investigate Limit Cycles in Quantum Systems. Limit cycles are a renormalization group (RG) topology. When degrees of freedom are integrated out, the coupling constants flow periodically in a closed curve. The presence of limit cycles is restricted by the necessary condition of discrete scale invariance. A signature of discrete scale invariance and limit cycles is log-periodic behavior. The first part of this thesis is concerned with the study of limit cycles with the similarity renormalization group (SRG). Limit cycles are mainly investigated within conventional renormalization group frameworks, where degrees of freedom, which are larger than a given cutoff, are integrated out. In contrast, in the SRG potentials are unitarily transformed and thereby obtain a band-diagonal structure. The width of the band structure can be regarded as an effective cutoff. We investigate the appearance of limit cycles in the SRG evolution. Our aim is to extract signatures as well as the scaling factor of the limit cycle. We consider the 1/R2-potential in a two-body system and a three-body system with large scattering lengths. Both systems display a limit cycle. Besides the frequently used kinetic energy generator we apply the exponential and the inverse generator. In the second part of this thesis, Limit Cycles at Finite Density, we examine the pole structure of the scattering amplitude for distinguishable fermions at zero temperature in the medium. Unequal masses and a filled Fermi sphere for each fermion species are considered. We focus on negative scattering lengths and the unitary limit. The properties of the three-body spectrum in the medium and implications for the phase structure of ultracold Fermi gases are discussed.
Limit cycles in quantum systems
Niemann, Patrick
2015-04-27
In this thesis we investigate Limit Cycles in Quantum Systems. Limit cycles are a renormalization group (RG) topology. When degrees of freedom are integrated out, the coupling constants flow periodically in a closed curve. The presence of limit cycles is restricted by the necessary condition of discrete scale invariance. A signature of discrete scale invariance and limit cycles is log-periodic behavior. The first part of this thesis is concerned with the study of limit cycles with the similarity renormalization group (SRG). Limit cycles are mainly investigated within conventional renormalization group frameworks, where degrees of freedom, which are larger than a given cutoff, are integrated out. In contrast, in the SRG potentials are unitarily transformed and thereby obtain a band-diagonal structure. The width of the band structure can be regarded as an effective cutoff. We investigate the appearance of limit cycles in the SRG evolution. Our aim is to extract signatures as well as the scaling factor of the limit cycle. We consider the 1/R{sup 2}-potential in a two-body system and a three-body system with large scattering lengths. Both systems display a limit cycle. Besides the frequently used kinetic energy generator we apply the exponential and the inverse generator. In the second part of this thesis, Limit Cycles at Finite Density, we examine the pole structure of the scattering amplitude for distinguishable fermions at zero temperature in the medium. Unequal masses and a filled Fermi sphere for each fermion species are considered. We focus on negative scattering lengths and the unitary limit. The properties of the three-body spectrum in the medium and implications for the phase structure of ultracold Fermi gases are discussed.
Nonclassical light from an incoherently pumped quantum dot in a microcavity
Teuber, L.; Grünwald, P.; Vogel, W.
2015-11-01
Semiconductor microcavities with artificial single-photon emitters have become one of the backbones of semiconductor quantum optics. In many cases, however, technical and physical issues limit the study of optical fields to incoherently excited systems. We analyze the model of an incoherently driven two-level system in a single-mode cavity. The specific structure of the applied master equation yields a recurrence relation for the steady-state values of correlations of the intracavity field and the emitter. We provide boundary conditions that permit a systematic solution which is numerically less demanding than standard methods. The method allows us to directly infer reasonable cutoff conditions from the system parameters. Different cavity systems from previous experiments are analyzed in terms of field correlation functions which can be measured via homodyne correlation measurements. We find that nonclassical correlations occur in systems of moderate quantum-dot-cavity coupling rather than strong coupling. Our boundary conditions also allow us to derive analytical results for the overall quantum state and its higher-order moments. We obtain very good approximations for the full quantum state of the field in terms of the characteristic functions. It turns out that for every physically reasonable set of system parameters, the state of the intracavity field is nonclassical.
Avoiding irreversible dynamics in quantum systems
Karasik, Raisa Iosifovna
2009-10-01
Devices that exploit laws of quantum physics offer revolutionary advances in computation and communication. However, building such devices presents an enormous challenge, since it would require technologies that go far beyond current capabilities. One of the main obstacles to building a quantum computer and devices needed for quantum communication is decoherence or noise that originates from the interaction between a quantum system and its environment, and which leads to the destruction of the fragile quantum information. Encoding into decoherence-free subspaces (DFS) provides an important strategy for combating decoherence effects in quantum systems and constitutes the focus of my dissertation. The theory of DFS relies on the existence of certain symmetries in the decoherence process, which allow some states of a quantum system to be completely decoupled from the environment and thus to experience no decoherence. In this thesis I describe various approaches to DFS that are developed in the current literature. Although the general idea behind various approaches to DFS is the same, I show that different mathematical definitions of DFS actually have different physical meaning. I provide a rigorous definition of DFS for every approach, explaining its physical meaning and relation to other definitions. I also examine the theory of DFS for Markovian systems. These are systems for which the environment has no memory, i.e., any change in the environment affects the quantum system instantaneously. Examples of such systems include many systems in quantum optics that have been proposed for implementation of a quantum computer, such as atomic and molecular gases, trapped ions, and quantum dots. Here I develop a rigorous theory that provides necessary and sufficient conditions for the existence of DFS. This theory allows us to identify a special new class of DFS that was not known before. Under particular circumstances, dynamics of a quantum system can connive together with
Level shift operators for open quantum systems
Merkli, Marco
2006-01-01
Level shift operators describe the second order displacement of eigenvalues under perturbation. They play a central role in resonance theory and ergodic theory of open quantum systems at positive temperatures. We exhibit intrinsic properties of level shift operators, properties which stem from the structure of open quantum systems at positive temperatures and which are common to all such systems. They determine the geometry of resonances bifurcating from eigenvalues of positive temperature Ha...
Optimal control of open quantum systems
The present work deals with the application of Optimal Control Theory (OCT) to open quantum systems with a particular focus on solid-state quantum information processing devices. The latter are typically nanoscale structures that have to be manufactured, prepared, controlled and measured with an extraordinary degree of precision so that their quantum properties can be harnessed. Because array scalability is one of the main advantages of solid-state qubit realizations, they distinguish themselves as promising candidates for the implementation of efficient quantum information processors. However, these devices usually interact with a solid-state environment that may lead to adverse effects regarding their performance. Therefore, isolation of the nanostructure from its environment poses an important problem. This corresponds to a somewhat contradictory requirement since unwanted interactions can affect the quantum system by the same channels that are used to control the qubit. Closing these channels would lead to a reduction in the sensitivity with respect to environmental interacti
Chapter 2 A Single Quantum System
Toschek, Peter E.
The evolution of quantum mechanics has followed the critical analysis of "gedanken" experiments. Many of these concrete speculations can become implemented today in the laboratory--thanks to now available techniques. A key experiment is concerned with the time evolution of a quantum system under repeated or continuing observation. Here, three problems overlap: (1) The microphysical measurement by a macroscopic device, (2) the system's temporal evolution, and (3) the emergence of macroscopic reality out of the microcosmos. A well-known calculation shows the evolution of a quantum system being slowed down, or even obstructed, when the system is merely observed. An experiment designed to demonstrate this "quantum Zeno effect" and performed in the late eighties on an ensemble of identical atomic ions confirmed its quantum description, but turned out inconclusive with respect to the very origin of the impediment of evolution. During the past years, experiments on individual electrodynamically stored and laser-cooled ions have been performed that unequivocally demonstrate the observed system's quantum evolution being impeded. Strategy and results exclude any physical reaction on the measured object, but reveal the effect of the gain of information as put forward by the particular correlation of the ion state with the detected signal. They shed light on the process of measurement as well as on the quantum evolution and allow an epistemological interpretation.
Quantum Implemention of an LTI System with the minimal number of additional quantum noise inputs
Vuglar, Shanon L.; Petersen, Ian R.
2013-01-01
Physical Realizability addresses the question of whether it is possible to implement a given LTI system as a quantum system. It is in general not true that a given synthesized quantum controller described by a set of stochastic differential equations is equivalent to some physically meaningful quantum system. However, if additional quantum noises are permitted in the implementation it is always possible to implement an arbitrary LTI system as a quantum system. In this paper we give an express...
Quantum entanglement in condensed matter systems
Laflorencie, Nicolas
2016-08-01
This review focuses on the field of quantum entanglement applied to condensed matter physics systems with strong correlations, a domain which has rapidly grown over the last decade. By tracing out part of the degrees of freedom of correlated quantum systems, useful and non-trivial information can be obtained through the study of the reduced density matrix, whose eigenvalue spectrum (the entanglement spectrum) and the associated Rényi entropies are now well recognized to contain key features. In particular, the celebrated area law for the entanglement entropy of ground-states will be discussed from the perspective of its subleading corrections which encode universal details of various quantum states of matter, e.g. symmetry breaking states or topological order. Going beyond entropies, the study of the low-lying part of the entanglement spectrum also allows to diagnose topological properties or give a direct access to the excitation spectrum of the edges, and may also raise significant questions about the underlying entanglement Hamiltonian. All these powerful tools can be further applied to shed some light on disordered quantum systems where impurity/disorder can conspire with quantum fluctuations to induce non-trivial effects. Disordered quantum spin systems, the Kondo effect, or the many-body localization problem, which have all been successfully (re)visited through the prism of quantum entanglement, will be discussed in detail. Finally, the issue of experimental access to entanglement measurement will be addressed, together with its most recent developments.
Quantum dynamics of complex molecular systems
Miller, William H.
2005-01-01
This Perspective presents a broad overview of the present status of theoretical capabilities for describing quantum dynamics in molecular systems with many degrees of freedom, e.g., chemical reactions in solution, clusters, solids, or biomolecular environments.
Teleportation in an indivisible quantum system
Kiktenko E.O.; Fedorov A.K.; Man’ko V.I.
2016-01-01
Teleportation protocol is conventionally treated as a method for quantum state transfer between two spatially separated physical carriers. Recent experimental progress in manipulation with high-dimensional quantum systems opens a new framework for implementation of teleportation protocols. We show that the one-qubit teleportation can be considered as a state transfer between subspaces of the whole Hilbert space of an indivisible eight-dimensional system. We explicitly show all corresponding o...
Spectrum analysis with quantum dynamical systems
Ng, Shilin; Ang, Shan Zheng; Wheatley, Trevor A.; Yonezawa, Hidehiro; Furusawa, Akira; Huntington, Elanor H.; Tsang, Mankei
2016-04-01
Measuring the power spectral density of a stochastic process, such as a stochastic force or magnetic field, is a fundamental task in many sensing applications. Quantum noise is becoming a major limiting factor to such a task in future technology, especially in optomechanics for temperature, stochastic gravitational wave, and decoherence measurements. Motivated by this concern, here we prove a measurement-independent quantum limit to the accuracy of estimating the spectrum parameters of a classical stochastic process coupled to a quantum dynamical system. We demonstrate our results by analyzing the data from a continuous-optical-phase-estimation experiment and showing that the experimental performance with homodyne detection is close to the quantum limit. We further propose a spectral photon-counting method that can attain quantum-optimal performance for weak modulation and a coherent-state input, with an error scaling superior to that of homodyne detection at low signal-to-noise ratios.
Combinatorial Approach to Modeling Quantum Systems
Kornyak, Vladimir V.
2016-02-01
Using the fact that any linear representation of a group can be embedded into permutations, we propose a constructive description of quantum behavior that provides, in particular, a natural explanation of the appearance of complex numbers and unitarity in the formalism of the quantum mechanics. In our approach, the quantum behavior can be explained by the fundamental impossibility to trace the identity of the indistinguishable objects in their evolution. Any observation only provides information about the invariant relations between such objects. The trajectory of a quantum system is a sequence of unitary evolutions interspersed with observations—non-unitary projections. We suggest a scheme to construct combinatorial models of quantum evolution. The principle of selection of the most likely trajectories in such models via the large numbers approximation leads in the continuum limit to the principle of least action with the appropriate Lagrangians and deterministic evolution equations
Quantum electro-mechanical system (QEMS)
Full text: Recent development in Nano Electro-Mechanical Systems (NEMS) has yield oscillators with resonant frequencies above Giga Hertz with quality factors above 100,000. At this scale a NEMS oscillator becomes a quantum device capable of operating at the atomic level with extraordinary sensitivity to small forces or molecular masses. With this motivation, we study the phonon-electron interaction in several quantum electromechanical systems (QEMS). First, a system comprising a single quantum dot harmonically bound between two electrodes which facilitates a tunneling current between them and secondly the electron shuttle system firstly introduced by Gorelik. We describe the system via quantum master equation for the density operator of the electronic and vibrational degrees of freedom and thus incorporates the dynamics of both diagonal (population) and off diagonal (coherence) terms. We derive coupled equations of motion for the electron occupation number of the dot and the vibrational degrees of freedom, including damping of the vibration and thermo-mechanical noise. This dynamical description is related to observable features of the system including the stationary current as a function of bias voltage. A number of possible applications are explored for feasibility including molecular QEMS devices as quantum limited nanoscale detectors and as elements in quantum computer architectures. Copyright (2005) Australian Institute of Physics
Measurement, Filtering and Control in Quantum Open Dynamical Systems
Belavkin, V. P.
2002-01-01
A Markovian model for a quantum automata, i.e. an open quantum dynamical discrete-time system with input and output channels and a feedback, is described. A dynamical theory of quantum discrete-time adaptive measurements and multi-stage quantum statistical decisions is developed and applied to the optimal feedback control problem for the quantum dynamical objects. Quantum analogies of Stratonovich non-stationary filtering, and Bellman quantum dynamical programming in the discrete time are der...
Noise in quantum systems: facts and fantasies
Full text: We present a critical review of recent developments on quantum noise in a variety of mesoscopic conductors including ballistic, diffusive and tunnelling systems. We begin with a microscopic approach that describes quantum transport and fluctuations for correlated electrons at high external field taking the system beyond the linear response regime. We discuss two commonly believed results that (a) shot noise in diffusive systems is suppressed by '1/3' universally and (b) there is a 'crossover' of shot noise to thermal noise at finite temperature and applied field. Our analysis reveals contradictions based on fundamental physics and its logical implications. We examine another issue of measuring fractional charges in fractional quantum Hall effect (FQHE) experiments. It is believed that shot noise spectral density reveals the charge quantum of the current carriers as a Schottky phenomenon. Here again we analyse a number of unverified assumptions beyond the myth
CIME School on Quantum Many Body Systems
Rivasseau, Vincent; Solovej, Jan Philip; Spencer, Thomas
2012-01-01
The book is based on the lectures given at the CIME school "Quantum many body systems" held in the summer of 2010. It provides a tutorial introduction to recent advances in the mathematics of interacting systems, written by four leading experts in the field: V. Rivasseau illustrates the applications of constructive Quantum Field Theory to 2D interacting electrons and their relation to quantum gravity; R. Seiringer describes a proof of Bose-Einstein condensation in the Gross-Pitaevski limit and explains the effects of rotating traps and the emergence of lattices of quantized vortices; J.-P. Solovej gives an introduction to the theory of quantum Coulomb systems and to the functional analytic methods used to prove their thermodynamic stability; finally, T. Spencer explains the supersymmetric approach to Anderson localization and its relation to the theory of random matrices. All the lectures are characterized by their mathematical rigor combined with physical insights.
Robust observer for uncertain linear quantum systems
In the theory of quantum dynamical filtering, one of the biggest issues is that the underlying system dynamics represented by a quantum stochastic differential equation must be known exactly in order that the corresponding filter provides an optimal performance; however, this assumption is generally unrealistic. Therefore, in this paper, we consider a class of linear quantum systems subjected to time-varying norm-bounded parametric uncertainties and then propose a robust observer such that the variance of the estimation error is guaranteed to be within a certain bound. Although in the linear case much of classical control theory can be applied to quantum systems, the quantum robust observer obtained in this paper does not have a classical analog due to the system's specific structure with respect to the uncertainties. Moreover, by considering a typical quantum control problem, we show that the proposed robust observer is fairly robust against a parametric uncertainty of the system even when the other estimators--the optimal Kalman filter and risk-sensitive observer--fail in the estimation
Exotic Quantum Order in Low-Dimensional Systems
Girvin, Steven M.
1997-01-01
Strongly correlated quantum systems in low dimensions often exhibit novel quantum ordering. This ordering is sometimes hidden and can be revealed only by examining new `dual' types of correlations. Such ordering leads to novel collective modes and fractional quantum numbers. Examples will be presented from quantum spin chains and the quantum Hall effect.
T-Systems and Y-Systems for Quantum Affinizations of Quantum Kac-Moody Algebras
Tomoki Nakanishi; Junji Suzuki; Atsuo Kuniba
2009-01-01
The T-systems and Y-systems are classes of algebraic relations originally associated with quantum affine algebras and Yangians. Recently the T-systems were generalized to quantum affinizations of a wide class of quantum Kac-Moody algebras by Hernandez. In this note we introduce the corresponding Y-systems and establish a relation between T and Y-systems. We also introduce the T and Y-systems associated with a class of cluster algebras, which include the former T and Y-systems of simply laced ...
Quantum optical properties in plasmonic systems
Ooi, C. H. Raymond [Department of Physics, University of Malaya, 50603, Kuala Lumpur (Malaysia)
2015-04-24
Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.
Note on quantum groups and integrable systems
Popolitov, A.
2016-01-01
The free-field formalism for quantum groups [preprint ITEP-M3/94, CRM-2202 hep-th/9409093] provides a special choice of coordinates on a quantum group. In these coordinates the construction of associated integrable system [arXiv:1207.1869] is especially simple. This choice also fits into general framework of cluster varieties [math.AG/0311245]—natural changes in coordinates are cluster mutations.
The Moyal equation for open quantum systems
We generalize the Moyal equation, which describes the dynamics of quantum observables in phase space, to quantum systems coupled to a reservoir. It is shown that phase space observables become functionals of fluctuating noise forces introduced by the coupling to the reservoir. For Markovian reservoirs, the Moyal equation turns into a functional differential equation in which the reservoir’s effect can be described by a single parameter. (paper)
Random Control over Quantum Open Systems
Jing, Jun; Bishop, C. Allen; Wu, Lian-Ao
2014-01-01
Parametric fluctuations or stochastic signals are introduced into the control pulse sequence to investigate the feasibility of random control over quantum open systems. In a large parameter error region, the out-of-order control pulses work as well as the regular pulses for dynamical decoupling and dissipation suppression. Calculations and analysis are based on a non-perturbative control approach allowed by an exact quantum-state-diffusion equation. When the average frequency and duration of ...
Quartz-superconductor quantum electromechanical system
Woolley, M. J.; Emzir, M. F.; Milburn, G. J.; Jerger, M.; Goryachev, M.; Tobar, M. E.; Fedorov, A.
2016-01-01
We propose and analyse a quantum electromechanical system composed of a monolithic quartz bulk acoustic wave (BAW) oscillator coupled to a superconducting transmon qubit via an intermediate LC electrical circuit. Monolithic quartz oscillators offer unprecedentedly high effective masses and quality factors for the investigation of mechanical oscillators in the quantum regime. Ground-state cooling of such mechanical modes via resonant piezoelectric coupling to an LC circuit, which is itself sid...
Guaranteed Cost LQG Control of Uncertain Linear Quantum Stochastic Systems
A. J. SHAIJU; Petersen, I. R.; James, M R
2008-01-01
In this paper, we formulate and solve a guaranteed cost control problem for a class of uncertain linear stochastic quantum systems. For these quantum systems, a connection with an associated classical (non-quantum) system is first established. Using this connection, the desired guaranteed cost results are established. The theory presented is illustrated using an example from quantum optics.
Symmetric and asymmetric quantum channels in quantum communication systems
Symmetric and asymmetric quantum channels which act on bipartite bosonic states are considered. The linear dissipative channel and the quantum teleportation channel are applied. The influences of the symmetric and asymmetric quantum channels on bipartite Gaussian states are investigated by means of the inseparability condition. Furthermore, quantum teleportation and quantum dense coding of continuous variables performed by means of two-mode squeezed-vacuum states under the influence of the noisy quantum channels are discussed
Cluster formation in quantum critical systems
The presence of magnetic clusters has been verified in both antiferromagnetic and ferromagnetic quantum critical systems. We review some of the strongest evidence for strongly doped quantum critical systems (Ce(Ru0.24Fe0.76)2Ge2) and we discuss the implications for the response of the system when cluster formation is combined with finite size effects. In particular, we discuss the change of universality class that is observed close to the order-disorder transition. We detail the conditions under which clustering effects will play a significant role also in the response of stoichiometric systems and their experimental signature.
Open quantum systems far from equilibrium
Schaller, Gernot
2014-01-01
This monograph provides graduate students and also professional researchers aiming to understand the dynamics of open quantum systems with a valuable and self-contained toolbox. Special focus is laid on the link between microscopic models and the resulting open-system dynamics. This includes how to derive the celebrated Lindblad master equation without applying the rotating wave approximation. As typical representatives for non-equilibrium configurations it treats systems coupled to multiple reservoirs (including the description of quantum transport), driven systems, and feedback-controlled quantum systems. Each method is illustrated with easy-to-follow examples from recent research. Exercises and short summaries at the end of every chapter enable the reader to approach the frontiers of current research quickly and make the book useful for quick reference.
PSPACE has 2-round quantum interactive proof systems
Watrous, John
1999-01-01
In this paper we consider quantum interactive proof systems, i.e., interactive proof systems in which the prover and verifier may perform quantum computations and exchange quantum messages. It is proved that every language in PSPACE has a quantum interactive proof system that requires only two rounds of communication between the prover and verifier, while having exponentially small (one-sided) probability of error. It follows that quantum interactive proof systems are strictly more powerful t...
Incoherent control of locally controllable quantum systems
An incoherent control scheme for state control of locally controllable quantum systems is proposed. This scheme includes three steps: (1) amplitude amplification of the initial state by a suitable unitary transformation, (2) projective measurement of the amplified state, and (3) final optimization by a unitary controlled transformation. The first step increases the amplitudes of some desired eigenstates and the corresponding probability of observing these eigenstates, the second step projects, with high probability, the amplified state into a desired eigenstate, and the last step steers this eigenstate into the target state. Within this scheme, two control algorithms are presented for two classes of quantum systems. As an example, the incoherent control scheme is applied to the control of a hydrogen atom by an external field. The results support the suggestion that projective measurements can serve as an effective control and local controllability information can be used to design control laws for quantum systems. Thus, this scheme establishes a subtle connection between control design and controllability analysis of quantum systems and provides an effective engineering approach in controlling quantum systems with partial controllability information.
Quantum Dynamics of Nonlinear Cavity Systems
Nation, Paul D
2010-01-01
We investigate the quantum dynamics of three different configurations of nonlinear cavity systems. To begin, we carry out a quantum analysis of a dc superconducting quantum interference device (SQUID) mechanical displacement detector comprised of a SQUID with a mechanically compliant loop segment. The SQUID is approximated by a nonlinear current-dependent inductor, inducing a flux tunable nonlinear Duffing term in the cavity equation of motion. Expressions are derived for the detector signal and noise response where it is found that a soft-spring Duffing self-interaction enables a closer approach to the displacement detection standard quantum limit, as well as cooling closer to the ground state. Next, we make use of a superconducting transmission line formed from an array of dc-SQUIDs for investigating analogue Hawking radiation. Biasing the array with a space-time varying flux modifies the propagation velocity of the transmission line, leading to an effective metric with a horizon. This setup allows for quan...
Computational quantum-classical boundary of complex and noisy quantum systems
Fujii, Keisuke; Tamate, Shuhei
2014-01-01
It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on...
Scattering theory for open quantum systems
Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator AD in a Hilbert space H is used to describe an open quantum system. In this case the minimal self-adjoint dilation K of AD can be regarded as the Hamiltonian of a closed system which contains the open system {AD,h}, but since K is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family {A(μ)} of maximal dissipative operators depending on energy μ, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single Pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schroedinger-Poisson systems. (orig.)
Quantum games in open systems using biophysical Hamiltonians
We analyze the necessary physical conditions to model an open quantum system as a quantum game. By applying the formalism of quantum operations on a particular system, we use Kraus operators as quantum strategies. The physical interpretation is a conflict among different configurations of the environment. The resolution of the conflict displays regimes of minimum loss of information
Quantum games in open systems using biophysical Hamiltonians
Faber, Jean [National Laboratory of Scientific Computing (LNCC), Av. Getulio Vargas 333, Quitandinha 25651-075, Petropolis, RJ (Brazil)]. E-mail: faber@lncc.br; Portugal, Renato [National Laboratory of Scientific Computing (LNCC), Av. Getulio Vargas 333, Quitandinha 25651-075, Petropolis, RJ (Brazil)]. E-mail: portugal@lncc.br; Rosa, Luiz Pinguelli [Federal University of Rio de Janeiro, COPPE-UFRJ, RJ (Brazil)]. E-mail: lpr@adc.coppe.ufrj.br
2006-09-25
We analyze the necessary physical conditions to model an open quantum system as a quantum game. By applying the formalism of quantum operations on a particular system, we use Kraus operators as quantum strategies. The physical interpretation is a conflict among different configurations of the environment. The resolution of the conflict displays regimes of minimum loss of information.
Quantum Systems and Alternative Unitary Descriptions
Marmo, G; Ventriglia, F
2003-01-01
Motivated by the existence of bi-Hamiltonian classical systems and the correspondence principle, in this paper we analyze the problem of finding Hermitian scalar products which turn a given flow on a Hilbert space into a unitary one. We show how different invariant Hermitian scalar products give rise to different descriptions of a quantum system in the Ehrenfest and Heisenberg picture.
Recent advances in quantum integrable systems
Amico, L.; Belavin, A.; Buffenoir, E.; Castro Alvaredo, A.; Caudrelier, V.; Chakrabarti, A.; Corrig, E.; Crampe, N.; Deguchi, T.; Dobrev, V.K.; Doikou, A.; Doyon, B.; Feher, L.; Fioravanti, D.; Gohmann, F.; Hallnas, M.; Jimbo, M.; Konno, N.C.H.; Korchemsky, G.; Kulish, P.; Lassalle, M.; Maillet, J.M.; McCoy, B.; Mintchev, M.; Pakuliak, S.; Quano, F.Y.Z.; Ragnisco, R.; Ravanini, F.; Rittenberg, V.; Rivasseau, V.; Rossi, M.; Satta, G.; Sedrakyan, T.; Shiraishi, J.; Suzuki, N.C.J.; Yamada, Y.; Zamolodchikov, A.; Ishimoto, Y.; Nagy, Z.; Posta, S.; Sedra, M.B.; Zuevskiy, A.; Gohmann, F
2005-07-01
This meeting was dedicated to different aspects of the theory of quantum integrable systems. The organizers have intended to concentrate on topics related to the study of correlation functions, to systems with boundaries and to models at roots of unity. This document gathers the abstracts of 32 contributions, most of the contributions are accompanied by the set of transparencies.
Recent advances in quantum integrable systems
This meeting was dedicated to different aspects of the theory of quantum integrable systems. The organizers have intended to concentrate on topics related to the study of correlation functions, to systems with boundaries and to models at roots of unity. This document gathers the abstracts of 32 contributions, most of the contributions are accompanied by the set of transparencies
Coherent polulation trapping in quantum systems
A coherent popualation trapping is a recently developed tool for high resolution spectroscopy. This method if based on a linear coherent interaction betwen the atomic system and the electromagnetic radiaiton falling upon and a registration of medium responses for a subsequent analysis of their fine structure which contains information about spectral characteristics of a quantum system
Quantum Algorithm for the Toeplitz Systems
Wan, Lin-Chun; Pan, Shi-Jie; Gao, Fei; Wen, Qiao-Yan
2016-01-01
Solving the Toeplitz systems, which is to find the vector $x$ such that $T_nx = b$ given a $n\\times n$ Toeplitz matrix $T_n$ and a vector $b$, has a variety of applications in mathematics and engineering. In this paper, we present a quantum algorithm for solving the Toeplitz systems, in which a quantum state encoding the solution with error $\\epsilon$ is generated. It is shown that our algorithm's complexity is nearly linear in the condition number, and polylog in the dimensions $n$ and in the inverse error $\\epsilon^{-1}$. This implies our algorithm is exponentially faster than the best classical algorithm for the same problem if the condition number of $T_n$ is $O(\\textrm{poly}(\\textrm{log}\\,n))$. Since no assumption on the sparseness of $T_n$ is demanded in our algorithm, the algorithm can serve as an example of quantum algorithms for solving non-sparse linear systems.
Current in open quantum systems.
Gebauer, Ralph; Car, Roberto
2004-10-15
We show that a dissipative current component is present in the dynamics generated by a Liouville-master equation, in addition to the usual component associated with Hamiltonian evolution. The dissipative component originates from coarse graining in time, implicit in a master equation, and needs to be included to preserve current continuity. We derive an explicit expression for the dissipative current in the context of the Markov approximation. Finally, we illustrate our approach with a simple numerical example, in which a quantum particle is coupled to a harmonic phonon bath and dissipation is described by the Pauli master equation. PMID:15524960
Heisenberg picture approach to the stability of quantum Markov systems
Pan, Yu, E-mail: yu.pan@anu.edu.au, E-mail: zibo.miao@anu.edu.au; Miao, Zibo, E-mail: yu.pan@anu.edu.au, E-mail: zibo.miao@anu.edu.au [Research School of Engineering, Australian National University, Canberra, ACT 0200 (Australia); Amini, Hadis, E-mail: nhamini@stanford.edu [Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305 (United States); Gough, John, E-mail: jug@aber.ac.uk [Institute of Mathematics and Physics, Aberystwyth University, SY23 3BZ Wales (United Kingdom); Ugrinovskii, Valery, E-mail: v.ugrinovskii@gmail.com [School of Engineering and Information Technology, University of New South Wales at ADFA, Canberra, ACT 2600 (Australia); James, Matthew R., E-mail: matthew.james@anu.edu.au [ARC Centre for Quantum Computation and Communication Technology, Research School of Engineering, Australian National University, Canberra, ACT 0200 (Australia)
2014-06-15
Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.
Heisenberg picture approach to the stability of quantum Markov systems
Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks
Tunneling with dissipation in open quantum systems
Based on the general form of the master equation for open quantum systems the tunneling is considered. Using the path integral technique a simple closed form expression for the tunneling rate through a parabolic barrier is obtained. The tunneling in the open quantum systems strongly depends on the coupling with environment. We found the cases when the dissipation prohibits tunneling through the barrier but decreases the crossing of the barrier for the energies above the barrier. As a particular application, the case of decay from the metastable state is considered
Quantum GIS (QGIS) Geographic Information System Tutorial
Urrutia Fernández, M. Àngels
2014-01-01
The goal of the present Master’s Thesis is to develop a learning tutorial for Lisboa Quantum GIS v.1.8.0 Geographic Information System. The resulting document is intended as a learning tool. This document should be useful to those people who wish to acquire basic skills in the use of Quantum GIS and, at the same time, should provide the user with a picture of what Geographic Information Systems (GIS) are. The skills that this tutorial aims to teach are how to locate and down...
Teleportation in an indivisible quantum system
Kiktenko E.O.
2016-01-01
Full Text Available Teleportation protocol is conventionally treated as a method for quantum state transfer between two spatially separated physical carriers. Recent experimental progress in manipulation with high-dimensional quantum systems opens a new framework for implementation of teleportation protocols. We show that the one-qubit teleportation can be considered as a state transfer between subspaces of the whole Hilbert space of an indivisible eight-dimensional system. We explicitly show all corresponding operations and discuss an alternative way of implementation of similar tasks.
Quantum Hall effect in semiconductor systems with quantum dots and antidots
The integer quantum Hall effect in systems of semiconductor quantum dots and antidots is studied theoretically as a factor of temperature. It is established that the conditions for carrier localization in quantum-dot systems favor the observation of the quantum Hall effect at higher temperatures than in quantum-well systems. The obtained numerical results show that the fundamental plateau corresponding to the transition between the ground and first excited Landau levels can be retained up to a temperature of T ∼ 50 K, which is an order of magnitude higher than in the case of quantum wells. Implementation of the quantum Hall effect at such temperatures requires quantum-dot systems with controllable characteristics, including the optimal size and concentration and moderate geometrical and composition fluctuations. In addition, ordered arrangement is desirable, hence quantum antidots are preferable
Nonequilibrium quantum dynamics in optomechanical systems
Patil, Yogesh Sharad; Cheung, Hil F. H.; Shaffer, Airlia; Wang, Ke; Vengalattore, Mukund
2016-05-01
The thermalization dynamics of isolated quantum systems has so far been explored in the context of cold atomic systems containing a large number of particles and modes. Quantum optomechanical systems offer prospects of studying such dynamics in a qualitatively different regime - with few individually addressable modes amenable to continuous quantum measurement and thermalization times that vastly exceed those observed in cold atomic systems. We have experimentally realized a dynamical continuous phase transition in a quantum compatible nondegenerate mechanical parametric oscillator. This system is formally equivalent to the optical parametric amplifiers whose dynamics have been a subject of intense theoretical study. We experimentally verify its phase diagram and observe nonequilibrium behavior that was only theorized, but never directly observed, in the context of optical parametric amplifiers. We discuss prospects of using nonequilibrium protocols such as quenches in optomechanical systems to amplify weak nonclassical correlations and to realize macroscopic nonclassical states. This work was supported by the DARPA QuASAR program through a Grant from the ARO and the ARO MURI on non-equilibrium manybody dynamics.
Enhancing the capability of controlling quantum systems via ancillary systems
Zhang Ming; Gao Da-Yuan; Dai Hong-Yi; Xie Hong-Wei; Hu De-Wen
2007-01-01
This paper explores the potential of controlling quantum systems by introducing ancillary systems and then performing unitary operation on the resulting composite systems. It generalizes the concept of pure state controllability for quantum systems and establishes the link between the operator controllability of the composite system and the generalized pure state controllability of its subsystem. It is constructively demonstrated that if a composite quantum system can be transferred between any pair of orthonormal pure vectors, then its subsystem is generalized pure-state controllable. Furthermore, the unitary operation and the coherent control can be concretely given to transfer the system from an initial state to the target state. Therefore, these properties may be potentially applied in quantum information,such as manipulating multiple quantum bits and creating entangled pure states. A concrete example has been given to illustrate that a maximally entangled pure state of a quantum system can be generated by introducing an ancillary system and performing open-loop coherent control on the resulting composite system.
Quantum statistical ensemble for emissive correlated systems
Shakirov, Alexey M.; Shchadilova, Yulia E.; Rubtsov, Alexey N.
2016-06-01
Relaxation dynamics of complex quantum systems with strong interactions towards the steady state is a fundamental problem in statistical mechanics. The steady state of subsystems weakly interacting with their environment is described by the canonical ensemble which assumes the probability distribution for energy to be of the Boltzmann form. The emergence of this probability distribution is ensured by the detailed balance of the transitions induced by the interaction with the environment. Here we consider relaxation of an open correlated quantum system brought into contact with a reservoir in the vacuum state. We refer to such a system as emissive since particles irreversibly evaporate into the vacuum. The steady state of the system is a statistical mixture of the stable eigenstates. We found that, despite the absence of the detailed balance, the stationary probability distribution over these eigenstates is of the Boltzmann form in each N -particle sector. A quantum statistical ensemble corresponding to the steady state is characterized by different temperatures in the different sectors, in contrast to the Gibbs ensemble. We investigate the transition rates between the eigenstates to understand the emergence of the Boltzmann distribution and find their exponential dependence on the transition energy. We argue that this property of transition rates is generic for a wide class of emissive quantum many-body systems.
An exactly solvable system from quantum optics
Maciejewski, Andrzej J., E-mail: maciejka@astro.ia.uz.zgora.pl [J. Kepler Institute of Astronomy, University of Zielona Góra, Licealna 9, PL-65-417 Zielona Góra (Poland); Przybylska, Maria, E-mail: M.Przybylska@if.uz.zgora.pl [Institute of Physics, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra (Poland); Stachowiak, Tomasz, E-mail: stachowiak@cft.edu.pl [Center for Theoretical Physics PAS, Al. Lotników 32/46, 02-668 Warsaw (Poland)
2015-07-31
We investigate a generalisation of the Rabi system in the Bargmann–Fock representation. In this representation the eigenproblem of the considered quantum model is described by a system of two linear differential equations with one independent variable. The system has only one irregular singular point at infinity. We show how the quantisation of the model is related to asymptotic behaviour of solutions in a vicinity of this point. The explicit formulae for the spectrum and eigenfunctions of the model follow from an analysis of the Stokes phenomenon. An interpretation of the obtained results in terms of differential Galois group of the system is also given. - Highlights: • New exactly solvable system from quantum optics is found. • Normalisation condition for system in Bargmann representation is used. • Formulae for spectrum and eigenfunctions from analysis of Stokes phenomenon are given.
Exact and non-smooth control of quantum spin systems
Ciaramella, Gabriele
2015-01-01
An efficient and accurate computational framework for solving control problems governed by quantum spin systems is presented. Spin systems are extremely important in modern quantum technologies such as nuclear magnetic resonance spectroscopy, quantum imaging and quantum computing. In these applications, two classes of quantum control problems arise: optimal control problems and exact-controllability problems, with a bilinear con- trol structure. These models correspond to the Schrödinger-Paul...
Strongly Interacting Quantum Systems out of Equilibrium
Kasztelan, Christian
2010-01-01
The main topic of this thesis is the study of many-body effects in strongly correlated one- or quasi one-dimensional condensed matter systems. These systems are characterized by strong quantum and thermal fluctuations, which make mean-field methods fail and demand for a fully numerical approach. Fortunately, a numerical method exist, which allows to treat unusually large one -dimensional system at very high precision. This method is the density-matrix renormalization group method (DMRG), in...
EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems
Dodonov, Victor V.; Man'ko, Margarita A.
2010-09-01
Although time-dependent quantum systems have been studied since the very beginning of quantum mechanics, they continue to attract the attention of many researchers, and almost every decade new important discoveries or new fields of application are made. Among the impressive results or by-products of these studies, one should note the discovery of the path integral method in the 1940s, coherent and squeezed states in the 1960-70s, quantum tunneling in Josephson contacts and SQUIDs in the 1960s, the theory of time-dependent quantum invariants in the 1960-70s, different forms of quantum master equations in the 1960-70s, the Zeno effect in the 1970s, the concept of geometric phase in the 1980s, decoherence of macroscopic superpositions in the 1980s, quantum non-demolition measurements in the 1980s, dynamics of particles in quantum traps and cavity QED in the 1980-90s, and time-dependent processes in mesoscopic quantum devices in the 1990s. All these topics continue to be the subject of many publications. Now we are witnessing a new wave of interest in quantum non-stationary systems in different areas, from cosmology (the very first moments of the Universe) and quantum field theory (particle pair creation in ultra-strong fields) to elementary particle physics (neutrino oscillations). A rapid increase in the number of theoretical and experimental works on time-dependent phenomena is also observed in quantum optics, quantum information theory and condensed matter physics. Time-dependent tunneling and time-dependent transport in nano-structures are examples of such phenomena. Another emerging direction of study, stimulated by impressive progress in experimental techniques, is related to attempts to observe the quantum behavior of macroscopic objects, such as mirrors interacting with quantum fields in nano-resonators. Quantum effects manifest themselves in the dynamics of nano-electromechanical systems; they are dominant in the quite new and very promising field of circuit
Local thermoelectric probes of nonequilibrium quantum systems
Stafford, Charles
A theory of local temperature and voltage measurement in an interacting quantum system far from equilibrium is developed. We prove that a steady-state measurement by a floating thermoelectric probe is unique if it exists. Furthermore, we show that a solution exists provided there is no net local population inversion. In the case of population inversion, the system may be assigned a (unique) negative temperature. An expression for the local entropy of a nonequilibrium quantum system is introduced that, together with the local temperature and voltage, allows for a complete analysis of the local thermodynamics of the thermoelectric processes in the system. The Clausius form of the second law and the third law are shown to hold exactly locally, while the zeroth and first laws are shown to be valid to leading order in the Sommerfeld expansion. The local quantum thermodynamics underlying the enhancement of thermoelectricity by quantum interference is discussed. Work supported by the U.S. Department of Energy, Office of Science, Award No. DE-SC0006699.
Quantum mechanics of a system with confinement
A study is made of the quantum mechanical model of confinement. The spectrum of a system with permanently confined channel is investiogated. A closed analytical expression is obtained for the S-matrix describing the scattering on N levels in the confined channel. The influence of the confined channel on the resonant and Coulomb states in the scattering channel is considered
Nonseparability and noncommutativity in quantum systems
de La Torre, A. C.; Catuogno, P.; Ferrando, S.
1991-02-01
The quantum covariance function is calculated in some EPR-like systems for commuting observables in order to illustrate the nonseparability contribution to the incompatibility between commuting operators. It is shown that an attempt to eliminate the noncommutativity contribution to incompatibility fails in finite-dimensional cases and would require a nonseparable Hilbert space (nonseparable in the mathematical sense).
Wigner quantum systems (Lie superalgebraic approach)
Palev, T. D.; Stoilova, N. I.
2001-01-01
We present three groups of examples of Wigner Quantum Systems related to the Lie superalgebras $osp(1/6n)$, $sl(1/3n)$ and $sl(n/3)$ and discuss shortly their physical features. In the case of $sl(1/3n)$ we indicate that the underlying geometry is noncommutative.
Quantum chromatic numbers via operator systems
Paulsen, Vern I.; Todorov, Ivan G.
2013-01-01
We define several new types of quantum chromatic numbers of a graph and characterise them in terms of operator system tensor products. We establish inequalities between these chromatic numbers and other parameters of graphs studied in the literature and exhibit a link between them and non-signalling correlation boxes.
System and method for making quantum dots
Bakr, Osman M.
2015-05-28
Embodiments of the present disclosure provide for methods of making quantum dots (QDs) (passivated or unpassivated) using a continuous flow process, systems for making QDs using a continuous flow process, and the like. In one or more embodiments, the QDs produced using embodiments of the present disclosure can be used in solar photovoltaic cells, bio-imaging, IR emitters, or LEDs.
Quantum field theory and multiparticle systems
The use of quantum field theory methods for the investigation of the physical characteristics of the MANY-BODY SYSTEMS is discussed. Mainly discussed is the method of second quantization and the method of the Green functions. Briefly discussed is the method of calculating the Green functions at finite temperatures. (Z.J.)
Lithography system using quantum entangled photons
Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)
2002-01-01
A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.
Quantum mechanics classical results, modern systems, and visualized examples
Robinett, Richard W
2006-01-01
`Quantum Mechanics'' is a comprehensive introduction to quantum mechanics for advanced undergraduate students in physics. It provides the reader with a strong conceptual background in the subject, extensive experience with the necessary mathematical background, as well as numerous visualizations of quantum concepts and phenomena. - ;Quantum Mechanics: Classical Results, Modern Systems, and Visualized Examples is a comprehensive introduction to non-relativistic quantum mechanics for advanced undergraduate students in physics and related fields. It provides students with a strong conceptual background in the most important theoretical aspects of quantum mechanics, extensive experience with the mathematical tools required to solve problems, the opportunity to use quantum ideas to confront modern experimental. realizations of quantum systems, and numerous visualizations of quantum concepts and phenomena. Changes from the First Edition include many new discussions of modern quantum systems (such as Bose-Einstein c...
Cui, Ping
The thesis comprises two major themes of quantum statistical dynamics. One is the development of quantum dissipation theory (QDT). It covers the establishment of some basic relations of quantum statistical dynamics, the construction of several nonequivalent complete second-order formulations, and the development of exact QDT. Another is related to the applications of quantum statistical dynamics to a variety of research fields. In particular, unconventional but novel theories of the electron transfer in Debye solvents, quantum transport, and quantum measurement are developed on the basis of QDT formulations. The thesis is organized as follows. In Chapter 1, we present some background knowledge in relation to the aforementioned two themes of this thesis. The key quantity in QDT is the reduced density operator rho(t) ≡ trBrho T(t); i.e., the partial trace of the total system and bath composite rhoT(t) over the bath degrees of freedom. QDT governs the evolution of reduced density operator, where the effects of bath are treated in a quantum statistical manner. In principle, the reduced density operator contains all dynamics information of interest. However, the conventional quantum transport theory is formulated in terms of nonequilibrium Green's function. The newly emerging field of quantum measurement in relation to quantum information and quantum computing does exploit a sort of QDT formalism. Besides the background of the relevant theoretical development, some representative experiments on molecular nanojunctions are also briefly discussed. In chapter 2, we outline some basic (including new) relations that highlight several important issues on QDT. The content includes the background of nonequilibrium quantum statistical mechanics, the general description of the total composite Hamiltonian with stochastic system-bath interaction, a novel parameterization scheme for bath correlation functions, a newly developed exact theory of driven Brownian oscillator (DBO
Symmetry and stability of open quantum systems
The presentation of the thesis involves an introduction and six chapters. Chapter 1 presents notions and results used in the other chpaters. Chapters 2-6 present our results which are focused on two notions: generalized observable and dynamic semigroup. These notions characterize a specific research domain (set up during the last 10 years) which is currently called quantum mechanics of open systems. The two notions (generalized observable and dynamic semigroup) are mathematically correlated. They belong to the set of completely positive linear applications among observable algebras. This fact, associated with that formulation of quantum mechanics according to which it is a special case of quantum mechanics namely, that for which the observable algebra is commutative, help to understand the similar essence of the results presented in chapter 2-6. Thus, the natural mathematical background has been achieved for our results; it is represented by that category whose objects are the observable algebras and whose morphisms are completely positive linear contractions generating unity within unity. These ideas are extensively presented in the introduction. The fact that the relations between classical mechanics and quantum mechanics can be rigorously treated as positive linear applications between classical observable algebras commutative and quantum observable algebras non-commutative, which are automatically fully positive, has been initially shown in our paper. (author)
Ion-cavity system for quantum networks
Full text: A single atom interacting with a single mode of a cavity allows us to probe the quantum interaction between light and matter. In the context of quantum networks, such a system can provide an interface between stationary and flying qubits, making it possible for single photons to transport quantum information between the network nodes. We study a single 40Ca+ ion trapped inside a high-finesse optical resonator. First, we demonstrate and characterize a single-photon source, in which a vacuum-stimulated Raman process transfers atomic population between two Zeeman states of the ion, creating a single photon in the cavity. We evaluate the photon statistics by measuring the second-order correlation function. Moreover, we obtain the photon temporal profile and investigate the dynamics of the process. Secondly, we perform Raman spectroscopy using the cavity. Residual motion of the ion introduces motional sidebands in the Raman spectrum and thus offers prospects for cavity-assisted cooling. (author)
Quantum-mechanical aspects of classically chaotic driven systems
This paper treats atoms and molecules in laser fields as periodically driven quantum systems. The paper concludes by determining that stochastic excitation is possible in quantum systems with quasiperiodic driving. 17 refs
A Direct Coupling Coherent Quantum Observer for a Single Qubit Finite Level Quantum System
Petersen, Ian R.
2014-01-01
This paper considers the problem of constructing a direct coupling quantum observer for a single qubit finite level quantum system plant. The proposed observer is a single mode linear quantum system which is shown to be able to estimate one of the plant variables in a time averaged sense. A numerical example and simulations are included to illustrate the properties of the observer.
Periodic thermodynamics of open quantum systems
Brandner, Kay; Seifert, Udo
2016-06-01
The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature.
Quantum-cryptography key distribution (QCKD) experiments have been recently reported using polarization-entangled photons. However, in any practical realization, quantum systems suffer from either unwanted or induced interactions with the environment and the quantum measurement system, showing up as quantum and, ultimately, statistical noise. In this paper, we investigate how an ideal polarization entanglement in spontaneous parametric down-conversion (SPDC) suffers quantum noise in its practical implementation as a secure quantum system, yielding errors in the transmitted bit sequence. Since all SPDC-based QCKD schemes rely on the measurement of coincidence to assert the bit transmission between the two parties, we bundle up the overall quantum and statistical noise in an exhaustive model to calculate the accidental coincidences. This model predicts the quantum-bit error rate and the sifted key and allows comparisons between different security criteria of the hitherto proposed QCKD protocols, resulting in an objective assessment of performances and advantages of different systems
An impurity-induced gap system as a quantum data bus for quantum state transfer
Chen, Bing, E-mail: chenbingphys@gmail.com [Department of Applied Physics, College of Electronics, Communication and Physics, Shandong University of Science and Technology, Qingdao 266590 (China); Li, Yong [Beijing Computational Science Research Center, Beijing 100084 (China); Song, Z. [School of Physics, Nankai University, Tianjin 300071 (China); Sun, C.-P. [Beijing Computational Science Research Center, Beijing 100084 (China)
2014-09-15
We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness of this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer.
From classical to quantum theory of open systems
The paper presents a short survey of some results concerning the physical interpretation of the basic equations for quantum open systems. The concept of continuous medium for quantum systems is introduced. From this point of view, the question of completeness of a description and hidden parameters (scale) for quantum open systems are considered. The Heisenberg uncertainty principle in the physics of open quantum systems is represented
Security of practical quantum key distribution systems
Jain, Nitin
2015-02-24
This thesis deals with practical security aspects of quantum key distribution (QKD) systems. At the heart of the theoretical model of any QKD system lies a quantum-mechanical security proof that guarantees perfect secrecy of messages - based on certain assumptions. However, in practice, deviations between the theoretical model and the physical implementation could be exploited by an attacker to break the security of the system. These deviations may arise from technical limitations and operational imperfections in the physical implementation and/or unrealistic assumptions and insufficient constraints in the theoretical model. In this thesis, we experimentally investigate in depth several such deviations. We demonstrate the resultant vulnerabilities via proof-of-principle attacks on a commercial QKD system from ID Quantique. We also propose countermeasures against the investigated loopholes to secure both existing and future QKD implementations.
Security of practical quantum key distribution systems
This thesis deals with practical security aspects of quantum key distribution (QKD) systems. At the heart of the theoretical model of any QKD system lies a quantum-mechanical security proof that guarantees perfect secrecy of messages - based on certain assumptions. However, in practice, deviations between the theoretical model and the physical implementation could be exploited by an attacker to break the security of the system. These deviations may arise from technical limitations and operational imperfections in the physical implementation and/or unrealistic assumptions and insufficient constraints in the theoretical model. In this thesis, we experimentally investigate in depth several such deviations. We demonstrate the resultant vulnerabilities via proof-of-principle attacks on a commercial QKD system from ID Quantique. We also propose countermeasures against the investigated loopholes to secure both existing and future QKD implementations.
Chiral quantum mechanics (CQM) for antihydrogen systems
Van hooydonk, G.
2005-01-01
A first deception of QM on antiH already appears in one-center integrals for two-center systems (G. Van Hooydonk, physics/0511115). In reality, full QM is a theory for chiral systems but the QM establishment was wrong footed with a permutation of reference frames. With chiral quantum mechanics (CQM), the theoretical ban on natural antiH must be lifted as soon as possible.
Kinetic and thermodynamic temperatures in quantum systems
Gagliardi, Alessio; Pecchia, Alessandro; Di Carlo, Aldo
2013-01-01
In this work we present a formalism to describe non equilibrium conditions in systems with a discretized energy spectrum, such as quantum systems. We develop a formalism based on a combination of Gibbs-Shannon entropy and information thermodynamics that arrives to a generalization of the De-Brujin identity applicable to discrete and non-symmetric distributions. This allows to define the concept of a thermodynamic temperature with a different, albeit complementary meaning to the equilibrium ki...
Simulating open quantum systems by applying SU(4) to quantum master equations
Xu, Minghui; Tieri, D. A.; Holland, M J
2013-01-01
We show that open quantum systems of two-level atoms symmetrically coupled to a single-mode photon field can be efficiently simulated by applying a SU(4) group theory to quantum master equations. This is important since many foundational examples in quantum optics fall into this class. We demonstrate the method by finding exact solutions for many-atom open quantum systems such as lasing and steady state superradiance.
Compact quantum systems and the Pauli data problem
Bracken, A.J. (Univ. of Queensland, Brisbane (Australia)); Fawcett, R.J.B. (Queensland Univ. of Technology, Brisbane (Australia))
1993-02-01
Compact quantum systems have underlying compact kinematical Lie algebras, in contrast to familiar noncompact quantum systems built on the Weyl-Heisenberg algebra. Pauli asked in the latter case: to what extent does knowledge of the probability distributions in coordinate and momentum space determine the state vector The analogous questions for compact quantum system is raised, and some preliminary results are obtained.
Quantum mechanics in general quantum systems (II): Perturbation theory
Wang, A M
2006-01-01
We propose an improved scheme of perturbation theory based on our exact solution [See: An Min Wang, quant-ph/0611217] in general quantum systems independent of time. Our elementary start-point is to introduce the perturbing parameter as late as possible. Our main skills are Hamiltonian redivision so as to overcome a flaw of the usual perturbation theory, and the perturbing Hamiltonian matrix product decomposition in order to separate the contraction and anti-contraction terms. Our calculational technology is the limit process for eliminating apparent divergences. Our central idea is ``dynamical rearrangement and summation" for the sake of the partial contributions from the high order even all order approximations absorbed in our perturbed solution. Consequently, we obtain the improved forms of the zeroth, first, second and third order perturbed solutions absorbing the partial contributions from the high order even all order approximations of perturbation. Then we deduce the improved transition probability. In...
Topological Excitations in Double-Layer Quantum Hall systems
Moon, Kyungsun
1996-01-01
Double-layer quantum Hall systems with spontaneous broken symmetry can exhibit a novel manybody quantum Hall effect due to the strong interlayer coherence. When the layer separation becomes close to the critical value, quantum fluctuations can destroy the interlayer coherence and the quantum Hall effect will disappear. We calculate the renormalized isospin stiffness $\\rho_s$ due to quantum fluctuations within the Hartree-Fock-RPA formalism. The activation energy of the topological excitations...
Mathematical Structure in Quantum Systems and applications
This volume contains most of the contributions presented at the Conference 'Mathematical Structures in Quantum Systems and applications', held at the Centro de Ciencias de Benasque 'Pedro Pascual', Benasque (Spain) from 8-14 July 2012. The aim of the Conference was to bring together physicists working on different applications of mathematical methods to quantum systems in order to enable the different communities to become acquainted with other approaches and techniques that could be used in their own fields of expertise. We concentrated on three main subjects: – the geometrical description of Quantum Mechanics; – the Casimir effect and its mathematical implications; – the Quantum Zeno Effect and Open system dynamics. Each of these topics had a set of general lectures, aimed at presenting a global view on the subject, and other more technical seminars. We would like to thank all participants for their contribution to creating a wonderful scientific atmosphere during the Conference. We would especially like to thank the speakers and the authors of the papers contained in this volume, the members of the Scientific Committee for their guidance and support and, of course, the referees for their generous work. Special thanks are also due to the staff of the Centro de Ciencias de Benasque 'Pedro Pascual' who made this successful meeting possible. On behalf of the organising committee and the authors we would also like to acknowledge the partial support provided by the ESF-CASIMIR network ('New Trends and Applications of the Casimir Effect'), the QUITEMAD research Project (“Quantum technologies at Madrid”, Ref. Comunidad de Madrid P2009/ESP-1594), the MICINN Project (MTM2011-16027-E) and the Government from Arag´on (DGA) (DGA, Department of Industry and Innovation and the European Social Fund, DGA-Grant 24/1) who made the Conference and this Proceedings volume possible.
Quantum Transport in Strongly Correlated Systems
Bohr, Dan
2007-01-01
In the past decade there has been a trend towards studying ever smaller devices. Improved experimental techniques have made new experiments possible, one class of which is electron transport through molecules and artificially manufactured structures like quantum dots. In this type of systems...... screening plays a much less significant role than in bulk systems due to the reduced size of the objects, therefore making it necessary to consider the importance of correlations between electrons. The work presented in this thesis deals with quantum transport through strongly correlated systems using the...... describes the leads in momentum-space. We benchmark each of these schemes against exact Greens function results for the conductance in the non-interacting limit, thus demonstrating the accuracy of the lead descriptions. We first use the DMRG implementations to calculate the conductance of an interacting...
Focus on coherent control of complex quantum systems
Whaley, Birgitta; Milburn, Gerard
2015-10-01
The rapid growth of quantum information sciences over the past few decades has fueled a corresponding rise in high profile applications in fields such as metrology, sensors, spintronics, and attosecond dynamics, in addition to quantum information processing. Realizing this potential of today’s quantum science and the novel technologies based on this requires a high degree of coherent control of quantum systems. While early efforts in systematizing methods for high fidelity quantum control focused on isolated or closed quantum systems, recent advances in experimental design, measurement and monitoring, have stimulated both need and interest in the control of complex or large scale quantum systems that may also be coupled to an interactive environment or reservoir. This focus issue brings together new theoretical and experimental work addressing the formulation and implementation of quantum control for a broad range of applications in quantum science and technology today.
Quantum decoherence in the theory of open systems
Isar, A.
2007-01-01
In the framework of the Lindblad theory for open quantum systems, we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. It is found that the system manifests a quantum decoherence which is more and more significant in time. We calculate also the decoherence time scale and analyze the transition from quantum to classical behaviour of the considered system.
General System theory, Like-Quantum Semantics and Fuzzy Sets
Licata, Ignazio
2007-01-01
It is outlined the possibility to extend the quantum formalism in relation to the requirements of the general systems theory. It can be done by using a quantum semantics arising from the deep logical structure of quantum theory. It is so possible taking into account the logical openness relationship between observer and system. We are going to show how considering the truth-values of quantum propositions within the context of the fuzzy sets is here more useful for systemics . In conclusion we...
Quantum Annealing and Quantum Fluctuation Effect in Frustrated Ising Systems
Tanaka, Shu; Tamura, Ryo
2012-01-01
Quantum annealing method has been widely attracted attention in statistical physics and information science since it is expected to be a powerful method to obtain the best solution of optimization problem as well as simulated annealing. The quantum annealing method was incubated in quantum statistical physics. This is an alternative method of the simulated annealing which is well-adopted for many optimization problems. In the simulated annealing, we obtain a solution of optimization problem b...
Upper quantum Lyapunov Exponent and Anosov relations for quantum systems driven by a classical flow
Sapin, O; Weigert, S
2005-01-01
We generalize the definition of quantum Anosov properties and the related Lyapunov exponents to the case of quantum systems driven by a classical flow, i.e. skew-product systems. We show that the skew Anosov properties can be interpreted as regular Anosov properties in an enlarged Hilbert space, in the framework of a generalized Floquet theory. This extension allows us to describe the hyperbolicity properties of almost-periodic quantum parametric oscillators and we show that their upper Lyapunov exponents are positive and equal to the Lyapunov exponent of the corresponding classical parametric oscillators. As second example, we show that the configurational quantum cat system satisfies quantum Anosov properties.
Quantum Systems based upon Galois Fields: from Sub-quantum to Super-quantum Correlations
Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; Takeuchi, Tatsu
2013-01-01
In this talk we describe our recent work on discrete quantum theory based on Galois fields. In particular, we discuss how discrete quantum theory sheds new light on the foundations of quantum theory and we review an explicit model of super-quantum correlations we have constructed in this context. We also discuss the larger questions of the origins and foundations of quantum theory, as well as the relevance of super-quantum theory for the quantum theory of gravity.
Quantum Systems based upon Galois Fields: from Sub-quantum to Super-quantum Correlations
Chang, Lay Nam; Minic, Djordje; Takeuchi, Tatsu
2014-01-01
In this talk we describe our recent work on discrete quantum theory based on Galois fields. In particular, we discuss how discrete quantum theory sheds new light on the foundations of quantum theory and we review an explicit model of super-quantum correlations we have constructed in this context. We also discuss the larger questions of the origins and foundations of quantum theory, as well as the relevance of super-quantum theory for the quantum theory of gravity.
Nonequilibrium representative ensembles for isolated quantum systems
An isolated quantum system is considered, prepared in a nonequilibrium initial state. In order to uniquely define the system dynamics, one has to construct a representative statistical ensemble. From the principle of least action it follows that the role of the evolution generator is played by a grand Hamiltonian, but not merely by its energy part. A theorem is proved expressing the commutators of field operators with operator products through variational derivatives of these products. A consequence of this theorem is the equivalence of the variational equations for field operators with the Heisenberg equations for the latter. A finite quantum system cannot equilibrate in the strict sense. But it can tend to a quasi-stationary state characterized by ergodic averages and the appropriate representative ensemble depending on initial conditions. Microcanonical ensemble, arising in the eigenstate thermalization, is just a particular case of representative ensembles. Quasi-stationary representative ensembles are defined by the principle of minimal information. The latter also implies the minimization of an effective thermodynamic potential. -- Highlights: → The evolution of a nonequilibrium isolated quantum system is considered. → The grand Hamiltonian is shown to be the evolution generator. → A theorem is proved connecting operator commutators with variational derivatives. → Quasi-stationary states are described by representative ensembles. → These ensembles, generally, depend on initial conditions.
Quantum response of dephasing open systems
We develop a theory of adiabatic response for open systems governed by Lindblad evolutions. The theory determines the dependence of the response coefficients on the dephasing rates and allows for residual dissipation even when the ground state is protected by a spectral gap. We give the quantum response a geometric interpretation in terms of Hilbert space projections: for a two-level system and, more generally, for systems with a suitable functional form of the dephasing, the dissipative and non-dissipative parts of the response are linked to a metric and to a symplectic form. The metric is the Fubini-Study metric and the symplectic form is the adiabatic curvature. When the metric and symplectic structures are compatible, the non-dissipative part of the inverse matrix of response coefficients turns out to be immune to dephasing. We give three examples of physical systems whose quantum states induce compatible metric and symplectic structures on control space: qubit, coherent states and a model of the integer quantum Hall effect.
Multimode optomechanical system in the quantum regime
Nielsen, William H P; Møller, Christoffer B; Polzik, Eugene S; Schliesser, Albert
2016-01-01
We realise a simple and robust optomechanical system with a multitude of long-lived ($Q>10^7$) mechanical modes in a phononic-bandgap shielded membrane resonator. An optical mode of a compact Fabry-Perot resonator detects these modes' motion with a measurement rate ($96~\\mathrm{kHz}$) that exceeds the mechanical decoherence rates already at moderate cryogenic temperatures ($10\\,\\mathrm{K}$). Reaching this quantum regime entails, i.~a., quantum measurement backaction exceeding thermal forces, and thus detectable optomechanical quantum correlations. In particular, we observe ponderomotive squeezing of the output light mediated by a multitude of mechanical resonator modes, with quantum noise suppression up to -2.4 dB (-3.6 dB if corrected for detection losses) and bandwidths $\\lesssim 90\\,\\mathrm{ kHz}$. The multi-mode nature of the employed membrane and Fabry-Perot resonators lends itself to hybrid entanglement schemes involving multiple electromagnetic, mechanical, and spin degrees of freedom.
Quantum phases and dynamics of geometric phase in a quantum spin chain system under linear quench
Sarkar, Sujit
2011-01-01
We study the quantum phases of anisotropic XY spin chain system in presence and absence of adiabatic quench. A connection between geometric phase and criticality is established from the dynamical behaviour of the geometric phase for a quench induced quantum phase transition in a quantum spin chain. We predict XX criticality associated with a sequence of non-contractible geometric phases.
Formulation and Application of Quantum Monte Carlo Method to Fractional Quantum Hall Systems
Suzuki, Sei; Nakajima, Tatsuya
2003-01-01
Quantum Monte Carlo method is applied to fractional quantum Hall systems. The use of the linear programming method enables us to avoid the negative-sign problem in the Quantum Monte Carlo calculations. The formulation of this method and the technique for avoiding the sign problem are described. Some numerical results on static physical quantities are also reported.
One-Way Quantum Deficit for 2 ⊗ d Systems
Ye, Biao-Liang; Fei, Shao-Ming
2016-08-01
We investigate one-way quantum deficit for 2 ⊗ d systems. Analytical expressions of one-way quantum deficit under both von Neumann measurement and weak measurement are presented. As an illustration, qubit-qutrit systems are studied in detail. It is shown that there exists non-zero one-way quantum deficit even quantum entanglement vanishes. Moreover, one-way quantum deficit via weak measurement turns out to be weaker than that via von Neumann measurement. The dynamics of entanglement and one-way quantum deficit under dephasing channels is also investigated.
The Quantum as an Emergent System
Groessing, Gerhard; Pascasio, Johannes Mesa; Schwabl, Herbert; 10.1088/1742-6596/361/1/012008
2012-01-01
Double slit interference is explained with the aid of what we call "21stcentury classical physics". We model a particle as an oscillator ("bouncer") in a thermal context, which is given by some assumed "zero-point" field of the vacuum. In this way, the quantum is understood as an emergent system, i.e., a steady-state system maintained by a constant throughput of (vacuum) energy. To account for the particle's thermal environment, we introduce a "path excitation field", which derives from the thermodynamics of the zero-point vacuum and which represents all possible paths a particle can take via thermal path fluctuations. The intensity distribution on a screen behind a double slit is calculated, as well as the corresponding trajectories and the probability density current. Further, particular features of the relative phase are shown to be responsible for nonlocal effects not only in ordinary quantum theory, but also in our classical approach.
Bilayer Quantum Hall Systems: Spin-Pseudospin Symmetry Breaking and Quantum Phase Transitions
Sarma, Sankar Das; Demler, Eugene
2000-01-01
We discuss and review recent advances in our understaning of quantum Hall systems where additional quantum numbers associated with spin and/or layer (pseudospin) indices play crucial roles in creating exotic quantum phases. Among the novel quantum phases we discuss are the recently discovered canted antiferromagnetic phase, the spontaneous interlayer coherent phase, and various spin Bose glass phases. We describe the theoretical models used in studying these novel phases and the various exper...
General Properties of Overlap Operators in Disordered Quantum Spin Systems
Itoi, C.
2016-04-01
We study short-range quantum spin systems with Gaussian disorder. We obtain quantum mechanical extensions of the Ghirlanda-Guerra identities. We discuss properties of overlap spin operators with these identities.
Li, Jun; Lu, Dawei; Luo, Zhihuang; Laflamme, Raymond; Peng, Xinhua; Du, Jiangfeng
2016-07-01
Precisely characterizing and controlling realistic quantum systems under noises is a challenging frontier in quantum sciences and technologies. In developing reliable controls for open quantum systems, one is often confronted with the problem of the lack of knowledge on the system controllability. The purpose of this paper is to give a numerical approach to this problem, that is, to approximately compute the reachable set of states for coherently controlled quantum Markovian systems. The approximation consists of setting both upper and lower bounds for system's reachable region of states. Furthermore, we apply our reachability analysis to the control of the relaxation dynamics of a two-qubit nuclear magnetic resonance spin system. We implement some experimental tasks of quantum state engineering in this open system at a near optimal performance in view of purity: e.g., increasing polarization and preparing pseudopure states. These results demonstrate the usefulness of our theory and show interesting and promising applications of environment-assisted quantum dynamics.
Open quantum systems and random matrix theory
A simple model for open quantum systems is analyzed with RMT. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the level spacing, width distribution and Δ3(L) statistic are examined as a function of the strength of this coupling. The usual super-radiant state is observed, and it is seen that as it is formed, the level spacing and Δ3(L) statistic exhibit the signatures of missed levels
Open quantum systems and Random Matrix Theory
Mulhall, Declan
2014-01-01
A simple model for open quantum systems is analyzed with Random Matrix Theory. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the $\\Delta_3(L)$ statistic, width distribution and level spacing are examined as a function of the strength of this coupling. A super-radiant transition is observed, and it is seen that as it is formed, the level spacing and $\\Delta_3(L)$ statistic exhibit the signat...
Ji Ying-Hua; Hu Ju-Ju; Hu Yan
2012-01-01
We investigate the influence of environmental decoherence on the dynamics of a coupled qubit system and quantum correlation.We analyse the relationship between concurrence and the degree of initial entanglement or the purity of initial quantum state,and also their relationship with quantum discord.The results show that the decrease of the purity of an initial quantum state can induce the attenuation of concurrence or quantum discord,but the attenuation of quantum discord is obviously slower than the concurrence's,correspondingly the survival time of quantum discord is longer.Further investigation reveals that the robustness of quantum discord and concurrence relies on the entanglement degree of the initial quantum state.The higher the degree of entanglement,the more robust the quantum discord is than concurrence.And the reverse is equally true.Birth and death happen to quantum discord periodically and a newborn quantum discord comes into being under a certain condition,so does the concurrence.
Quantum phase transition and entanglement in Li atom system
2008-01-01
By use of the exact diagonalization method, the quantum phase transition and en- tanglement in a 6-Li atom system are studied. It is found that entanglement appears before the quantum phase transition and disappears after it in this exactly solvable quantum system. The present results show that the von Neumann entropy, as a measure of entanglement, may reveal the quantum phase transition in this model.
Experimental quantum teleportation of a two-qubit composite system
无
2006-01-01
@@ Quantum teleportation, a way to state transfer the of a quantum system from one location to another, is central to quantum communication and plays an important role in a number of quantum computation protocols.Although significant experimental advances have been made in teleportation of single qubits (photons and ions), large scale applications require the transfer of composite systems containing two or more qubits, which has remained a real experimental challenge.
Huge Quantum Gravity Effects in the Solar System
Page, Don N.
2010-01-01
Normally one thinks of the motion of the planets around the Sun as a highly classical phenomenon, so that one can neglect quantum gravity in the Solar System. However, classical chaos in the planetary motion amplifies quantum uncertainties so that they become very large, giving huge quantum gravity effects. For example, evidence suggests that Uranus may eventually be ejected from the Solar System, but quantum uncertainties would make the direction at which it leaves almost entirely uncertain,...
Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.
Quartz-superconductor quantum electromechanical system
Woolley, Matt; Emzir, Muhammad; Milburn, Gerard; Jerger, Markus; Goryachev, Maxim; Tobar, Mike; Fedorov, Arkady
Quartz bulk acoustic wave oscillators support mechanical modes with very high resonance frequencies and extremely high quality factors. As such, they provide an appealing platform for quantum optics experiments with phonons, gravitational wave detection, and tests of quantum mechanics. We propose to cool and measure the motion of a quartz oscillator using a transmon, with the coupling mediated by a tuneable superconducting LC circuit. The mechanical motion (~250MHz) is resonantly coupled to the LC circuit (~250MHz) by a piezoelectric interaction, the LC circuit is coupled to the transmon (~8GHz) via sideband transitions, and there is a smaller direct coupling between the quartz oscillator and the transmon. By driving the transmon on its red sideband, the mechanical and electrical oscillators may be cooled close to their quantum ground state. By observing the fluorescence of the qubit, the occupations of the oscillators may be determined via the motional sidebands they induce. A minimal model of this system consists of a qubit coupled to two oscillators, which are themselves mutually coupled. The steady-state of the system and the qubit fluorescence spectrum are evaluated analytically using a perturbative projection operator technique, and verified numerically.
Colloquium: Non-Markovian dynamics in open quantum systems
Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano
2016-04-01
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of
Quantum statistical gravity: time dilation due to local information in many-body quantum systems
Sels, Dries; Wouters, Michiel
2016-01-01
We propose a generic mechanism for the emergence of a gravitational potential that acts on all classical objects in a quantum system. Our conjecture is based on the analysis of mutual information in many-body quantum systems. Since measurements in quantum systems affect the surroundings through entanglement, a measurement at one position reduces the entropy in its neighbourhood. This reduction in entropy can be described by a local temperature, that is directly related to the gravitational po...
Parallel decoherence in composite quantum systems
M Dugići; J Jeknić-Dugić
2012-08-01
For the standard quantum Brownian motion (QBM) model, we point out the occurrence of simultaneous (parallel), mutually irreducible and autonomous decoherence processes. Besides the standard Brownian particle, we show that there is at least another system undergoing the dynamics described by the QBM model. We do this by selecting the two mutually irreducible, global structures (decompositions into subsystems) of the composite system of the QBM model. The generalization of this observation is a new, challenging task in the foundations of the decoherence theory. We do not place our findings in any interpretational context.
A kicked quantum system including the continuum
The behaviour of a quantum particle in a separable one-term potential with three-dimensional form factor is investigated under the influence of an external force which alters the potential strength periodically or quasiperiodically. The unperturbed system possesses one bound state and a continuum of scattering states which has treated almost analytically. First numerical results, fully including the emission channel, indicate, for certain parameter combinations with commensurate or incommensurate frequency ratios, either a regular or an irregular dynamical behaviour of the system. 17 refs.; 3 figs
Effective operator formalism for open quantum systems
Reiter, Florentin; Sørensen, Anders Søndberg
2012-01-01
We present an effective operator formalism for open quantum systems. Employing perturbation theory and adiabatic elimination of excited states for a weakly driven system, we derive an effective master equation which reduces the evolution to the ground-state dynamics. The effective evolution...... involves a single effective Hamiltonian and one effective Lindblad operator for each naturally occurring decay process. Simple expressions are derived for the effective operators which can be directly applied to reach effective equations of motion for the ground states. We compare our method...
Many-body Wigner quantum systems
We present examples of many-body Wigner quantum systems. The position and the momentum operators RA and PA, A = 1, ..., n + 1, of the particles are noncanonical and are chosen so that Heisenberg and the Hamiltonian equations are identical. The spectrum of the energy with respect to the centre of mass is equidistant and has finite number of energy levels. The composite system is spread in a small volume around the centre of mass and within it the geometry is noncommutative. The underlying statistics is an exclusion statistics. (author). 23 refs
Constructing quantum games from a system of Bell's inequalities
Iqbal, Azhar
2009-01-01
We report constructing quantum games directly from a system of Bell's inequalities using Arthur Fine's analysis published in early 1980s. This analysis showed that such a system of inequalities forms a set of both necessary and sufficient conditions required to find a joint distribution function compatible with a given set of joint probabilities, in terms of which the system of Bell's inequalities is usually expressed. Using the setting of a quantum correlation experiment for playing a quantum game, and considering the examples of Prisoners' Dilemma and Matching Pennies, we argue that this approach towards constructing quantum games addresses well known criticism of quantum games.
Quantum Rotational Effects in Nanomagnetic Systems
O'Keeffe, Michael F.
Quantum tunneling of the magnetic moment in a nanomagnet must conserve the total angular momentum. For a nanomagnet embedded in a rigid body, reversal of the magnetic moment will cause the body to rotate as a whole. When embedded in an elastic environment, tunneling of the magnetic moment will cause local elastic twists of the crystal structure. In this thesis, I will present a theoretical study of the interplay between magnetization and rotations in a variety of nanomagnetic systems which have some degree of rotational freedom. We investigate the effect of rotational freedom on the tunnel splitting of a nanomagnet which is free to rotate about its easy axis. Calculating the exact instanton of the coupled equations of motion shows that mechanical freedom of the particle renormalizes the easy axis anisotropy, increasing the tunnel splitting. To understand magnetization dynamics in free particles, we study a quantum mechanical model of a tunneling spin embedded in a rigid rotor. The exact energy levels for a symmetric rotor exhibit first and second order quantum phase transitions between states with different values the magnetic moment. A quantum phase diagram is obtained in which the magnetic moment depends strongly on the moments of inertia. An intrinsic contribution to decoherence of current oscillations of a flux qubit must come from the angular momentum it transfers to the surrounding body. Within exactly solvable models of a qubit embedded in a rigid body and an elastic medium, we show that slow decoherence is permitted if the solid is macroscopically large. The spin-boson model is one of the simplest representations of a two-level system interacting with a quantum harmonic oscillator, yet has eluded a closed-form solution. I investigate some possible approaches to understanding its spectrum. The Landau-Zener dynamics of a tunneling spin coupled to a torsional resonator show that for certain parameter ranges the system exhibits multiple Landau-Zener transitions
Integrable quantum Stäckel systems
The Stäckel separability of a Hamiltonian system is well known to ensure existence of a complete set of Poisson commuting integrals of motion quadratic in the momenta. We consider a class of Stäckel separable systems where the entries of the Stäckel matrix are monomials in the separation variables. We show that the only systems in this class for which the integrals of motion arising from the Stäckel construction keep commuting after quantization are, up to natural equivalence transformations, the so-called Benenti systems. Moreover, it turns out that the latter are the only quantum separable systems in the class under study.
Integrable quantum Stäckel systems
Błaszak, Maciej, E-mail: blaszakm@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Domański, Ziemowit, E-mail: ziemowit@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Sergyeyev, Artur, E-mail: Artur.Sergyeyev@math.slu.cz [Mathematical Institute, Silesian University in Opava, Na Rybníčku 1, 746 01 Opava (Czech Republic); Szablikowski, Błażej M., E-mail: bszablik@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)
2013-11-15
The Stäckel separability of a Hamiltonian system is well known to ensure existence of a complete set of Poisson commuting integrals of motion quadratic in the momenta. We consider a class of Stäckel separable systems where the entries of the Stäckel matrix are monomials in the separation variables. We show that the only systems in this class for which the integrals of motion arising from the Stäckel construction keep commuting after quantization are, up to natural equivalence transformations, the so-called Benenti systems. Moreover, it turns out that the latter are the only quantum separable systems in the class under study.
A toy model of a macroscopic quantum coherent system
This paper deals with macroscopic quantum coherence while using only basic quantum mechanics. A square double well is used to illustrate Leggett–Caldeira oscillations. The effect of thermal radiation on two-level systems is discussed. The concept of decoherence is introduced at an elementary level. Reference values are deduced for the energy, temperature and time scales involved in macroscopic quantum coherence. (paper)
Topological entanglement entropy in bilayer quantum Hall systems
Chung, Myung-Hoon
2013-01-01
We calculate the topological entanglement entropy in bilayer quantum Hall systems, dividing the set of quantum numbers into four parts. This topological entanglement entropy allows us to draw a phase diagram in the parameter space of layer separation and tunneling amplitude. We perform the finite size scaling analysis of the topological entanglement entropy in order to see the quantum phase transition clearly.
Comparison of quantum discord and relative entropy in some bipartite quantum systems
Mahdian, M.; Arjmandi, M. B.
2016-04-01
The study of quantum correlations in high-dimensional bipartite systems is crucial for the development of quantum computing. We propose relative entropy as a distance measure of correlations may be measured by means of the distance from the quantum state to the closest classical-classical state. In particular, we establish relations between relative entropy and quantum discord quantifiers obtained by means of orthogonal projection measurements. We show that for symmetrical X-states density matrices the quantum discord is equal to relative entropy. At the end of paper, various examples of X-states such as two-qubit and qubit-qutrit have been demonstrated.
Characterizing and Quantifying Frustration in Quantum Many-Body Systems
Giampaolo, S. M.; Gualdi, G.; A. Monras; Illuminati, F.
2011-01-01
We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical...
The transition to chaos conservative classical systems and quantum manifestations
Reichl, Linda E
2004-01-01
This book provides a thorough and comprehensive discussion of classical and quantum chaos theory for bounded systems and for scattering processes Specific discussions include • Noether’s theorem, integrability, KAM theory, and a definition of chaotic behavior • Area-preserving maps, quantum billiards, semiclassical quantization, chaotic scattering, scaling in classical and quantum dynamics, dynamic localization, dynamic tunneling, effects of chaos in periodically driven systems and stochastic systems • Random matrix theory and supersymmetry The book is divided into several parts Chapters 2 through 4 deal with the dynamics of nonlinear conservative classical systems Chapter 5 and several appendices give a thorough grounding in random matrix theory and supersymmetry techniques Chapters 6 and 7 discuss the manifestations of chaos in bounded quantum systems and open quantum systems respectively Chapter 8 focuses on the semiclassical description of quantum systems with underlying classical chaos, and Chapt...
Complex flows in granular and quantum systems
Herrera, Mark Richard
In this thesis we investigate three problems involving complex flows in granular and quantum systems. (a) We first study the dynamics of granular particles in a split-bottom shear cell experiment. We utilize network theory to quantify the dynamics of the granular system at the mesoscopic scale. We find an apparent phase transition in the formation of a giant component of broken links as a function of applied shear. These results are compared to a numerical model where breakages are based on the amount of local stretching in the granular pile. (b) Moving to quantum mechanical systems, we study revival and echo phenomena in systems of anharmonically confined atoms, and find a novel phenomena we call the "pre-revival echo". We study the effect of size and symmetry of the perturbations on the various echoes and revivals, and form a perturbative model to describe the phenomena. We then model the effect of interactions using the Gross-Pitaevskii Equation and study interactions' effect on the revivals. (c) Lastly, we continue to study the effect of interactions on particles in weakly anharmonic traps. We numerically observe a "dynamical localization" phenomena in the presence of both anharmonicity and interactions. States may remain localized or become spread out in the potential depending on the strength and sign of the anharmonicity and interactions. We formulate a model for this phenomena in terms of a classical phase space.
Upper quantum Lyapunov Exponent and Anosov relations for quantum systems driven by a classical flow
Sapin, O.; Jauslin, H. R.; Weigert, S.
2005-01-01
We generalize the definition of quantum Anosov properties and the related Lyapunov exponents to the case of quantum systems driven by a classical flow, i.e. skew-product systems. We show that the skew Anosov properties can be interpreted as regular Anosov properties in an enlarged Hilbert space, in the framework of a generalized Floquet theory. This extension allows us to describe the hyperbolicity properties of almost-periodic quantum parametric oscillators and we show that their upper Lyapu...
We present the experimental observation of the effects of macroscopic quantum tunnelling in a SQUID device, consisting of a rf SQUID coupled to a readout system based on a dc SQUID sensor. Data on the decay rate from the metastable flux states of a rf SQUID are reported, both in the classical and quantum regimes. The low dissipation level and the good insulation of the probe from external noise are encouraging in view of building a macroscopic quantum coherent system
Some aspects of quantum entanglement for CAR systems
Moriya, Hajime
2001-01-01
We study quantum entanglement for CAR systems. Since the subsystems of disjoint regions are not independent for CAR systems, there are some distinct features of quantum entanglement which cannot be observed in tensor product systems. We show the failure of triangle inequality of von Neumann and the possible increase of entanglement degree under operations done in a local region for a bipartite CAR system.
Quantum MIMO n-Systems and Conditions for Stability
Mansourbeigi, Seyed M H
2009-01-01
In this paper we present some conditions for the (strong) stabilizability of an n-D Quantum MIMO system P(X). It contains two parts. The first part is to introduce the n-D Quantum MIMO systems where the coefficients vary in the algebra of Q-meromorphic functions. Then we introduce some conditions for the stabilizability of these systems. The second part is to show that this Quantum system has the n-D system as its quantum limit and the results for the SISO,SIMO,MISO,MIMO are obtained again as special cases.
Superconducting system for adiabatic quantum computing
We study the Hamiltonian of a system of inductively coupled flux qubits, which has been theoretically proposed for adiabatic quantum computation to handle NP problems. We study the evolution of a basic structure consisting of three coupled rf-SQUIDs upon tuning the external flux bias, and we show that the adiabatic nature of the evolution is guaranteed by the presence of the single-SQUID gap. We further propose a scheme and the first realization of an experimental device suitable for verifying the theoretical results
The Dalton quantum chemistry program system
Aidas, Kestutis; Angeli, Celestino; Bak, Keld Lars;
2014-01-01
Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self-consistent-field, Møller–Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide vari......-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms....
Scattering properties of an open quantum system
We study the scattering properties of an open quantum system, in terms of the complex poles of the analytically continued energy Green's function. We use a model for which many dynamical properties can be expressed analytically. We first study particle wave scattering and compute the Wigner delay times. Then, using perturbation theory, we compute the photodetachment rate due to a weak time-periodic electric field. In addition, we show that the model we use qualitatively reproduces several features of the experimentally obtained photodetachment cross section of H- ions and gives interesting insight into the mechanism underlying the photodetachment of H- ions. (c) 2000 The American Physical Society
Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems
The capability of faithfully transmit quantum states and entanglement through quantum channels is one of the key requirements for the development of quantum devices. Different solutions have been proposed to accomplish such a challenging task, which, however, require either an ad hoc engineering of the internal interactions of the physical system acting as the channel or specific initialization procedures. Here we show that optimal dynamics for efficient quantum-state and entanglement transfer can be attained in generic quantum systems with homogeneous interactions by tuning the coupling between the system and the two attached qubits. We devise a general procedure to determine the optimal coupling, and we explicitly implement it in the case of a channel consisting of a spin-(1/2)XY chain. The quality of quantum-state and entanglement transfer is found to be very good and, remarkably, almost independent of the channel length.
Measuring entanglement entropy in a quantum many-body system.
Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus
2015-12-01
Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems. PMID:26632587
Asymptotically open quantum systems; Asymptotisch offene Quantensysteme
Westrich, M.
2008-04-15
In the present thesis we investigate the structure of time-dependent equations of motion in quantum mechanics.We start from two coupled systems with an autonomous equation of motion. A limit, in which the dynamics of one of the two systems has a decoupled evolution and imposes a non-autonomous evolution for the second system is identified. A result due to K. Hepp that provides a classical limit for dynamics turns out to be part and parcel for this limit and is generalized in our work. The method introduced by J.S. Howland for the solution of the time-dependent Schroedinger equation is interpreted as such a limit. Moreover, we associate our limit with the modern theory of quantization. (orig.)
Quantum Integrable Systems from Conformal Blocks
Chen, Heng-Yu
2016-01-01
In this note, we extend the striking connections between quantum integrable systems and conformal blocks recently found in http://arxiv.org/abs/1602.01858 in several directions. First, we explicitly demonstrate that the action of quartic conformal Casimir operator on general d-dimensional scalar conformal blocks, can be expressed in terms of certain combinations of commuting integrals of motions of the two particle hyperbolic BC2 Calogero-Sutherland system. The permutation and reflection properties of the underlying Dunkl operators play crucial roles in establishing such a connection. Next, we show that the scalar superconformal blocks in SCFTs with four and eight supercharges and suitable chirality constraints can also be identified with the eigenfunctions of the same Calogero-Sutherland system, this demonstrates the universality of such a connection. Finally, we observe that the so-called "seed" conformal blocks for constructing four point functions for operators with arbitrary space-time spins in four dime...
Level statistics for quantum Hall systems
Level statistics for two classes of disordered systems at criticality are analyzed in terms of different realizations of the Chalker-Coddington network model. These include: 1) Re-examination of the standard U(1) model describing dynamics of electrons on the lowest Landau level in the quantum Hall effect, where it is shown that after proper local unfolding the nearest-neighbor spacing distribution (NNSD) at the critical energy follows the Wigner surmise for Gaussian unitary ensembles (GUE). 2) Quasi-particles in disordered superconductors with broken time reversal and spin rotation invariance (in the language of random matrix theory this system is a representative of symmetry class D in the classification scheme of Altland and Zirnbauer). Here again the NNSD obeys the Wigner surmise for GUE, reflecting therefore only 'basic' discrete symmetries of the system (time reversal violation) and ignoring particle-hole symmetries and other finer details (criticality). In the localized regime level repulsion is suppressed
On synthesis of linear quantum stochastic systems by pure cascading
Nurdin, Hendra I
2010-01-01
Recently, it has been demonstrated that an arbitrary linear quantum stochastic system can be realized as a cascade connection of simple one degree of freedom quantum harmonic oscillators together with a direct interaction Hamiltonian which is bilinear in the canonical operators of the oscillators. However, from an experimental point of view, realizations by pure cascading, without a direct interaction Hamiltonian, would be much simpler to implement and this raises the natural question of what class of linear quantum stochastic systems are realizable by cascading alone. This paper gives a precise characterization of this class of linear quantum stochastic systems and then it is proved that, in the weaker sense of transfer function realizability, all passive linear quantum stochastic systems belong to this class. A constructive example is given to show the transfer function realization of a two degrees of freedom passive linear quantum stochastic system by pure cascading.
Characterizing and quantifying frustration in quantum many-body systems.
Giampaolo, S M; Gualdi, G; Monras, A; Illuminati, F
2011-12-23
We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identified as geometrically unfrustrated and subject to frustration of purely quantum origin. Our results therefore establish a unified framework for studying the intertwining of geometric and quantum contributions to frustration. PMID:22243147
Probability representation of kinetic equation for open quantum system
Man'ko, V I; Shchukin, E V
2003-01-01
The tomographic probability distribution is used to decribe the kinetic equations for open quantum systems. Damped oscillator is studied. Purity parameter evolution for different damping regime is considered.
Quantum systems related to root systems and radial parts of Laplace operators
Olshanetsky, M. A.; Perelomov, A.M.
2002-01-01
The relation between quantum systems associated to root systems and radial parts of Laplace operators on symmetric spaces is established. From this it follows the complete integrability of some quantum systems.
Correlations, quantum entanglement and interference in nanoscopic systems
Several of the most interesting quantum effects can or could be observed in nanoscopic systems. For example, the effect of strong correlations between electrons and of quantum interference can be measured in transport experiments through quantum dots, wires, individual molecules and rings formed by large molecules or arrays of quantum dots. In addition, quantum coherence and entanglement can be clearly observed in quantum corrals. In this paper we present calculations of transport properties through Aharonov–Bohm strongly correlated rings where the characteristic phenomenon of charge–spin separation is clearly observed. Additionally quantum interference effects show up in transport through π-conjugated annulene molecules producing important effects on the conductance for different source–drain configurations, leading to the possibility of an interesting switching effect. Finally, elliptic quantum corrals offer an ideal system to study quantum entanglement due to their focalizing properties. Because of an enhanced interaction between impurities localized at the foci, these systems also show interesting quantum dynamical behaviour and offer a challenging scenario for quantum information experiments
Quantum and statistical mechanics in open systems: theory and examples
Zueco, David
2009-01-01
Using the system-bath model Hamiltonian this thesis covers the equilibrium and out of equilibrium properties of quantum open systems. Topics included are the calculation of thermodynamical quantities of open systems, derivation of quantum master equations, phase space and numerical methods and Linear and non Linear Response Theory. Applications are the transport in periodic potentials and the dynamics of spins.
Stationary states of two-level open quantum systems
A problem of finding stationary states of open quantum systems is addressed. We focus our attention on a generic type of open system: a qubit coupled to its environment. We apply the theory of block operator matrices and find stationary states of two-level open quantum systems under certain conditions applied on both the qubit and the surrounding.
Stationary states of two-level open quantum systems
Gardas, Bartlomiej; Puchala, Zbigniew
2010-01-01
A problem of finding stationary states of open quantum systems is addressed. We focus our attention on a generic type of open system: a qubit coupled to its environment. We apply the theory of block operator matrices and find stationary states of two--level open quantum systems under certain conditions applied both on the qubit and the surrounding.