WorldWideScience

Sample records for qualitative national tsunami

  1. National Geophysical Data Center Tsunami Data Archive

    Stroker, K. J.; Dunbar, P. K.; Brocko, R.

    2008-12-01

    NOAA's National Geophysical Data Center (NGDC) and co-located World Data Center for Geophysics and Marine Geology long-term tsunami data archive provides data and derived products essential for tsunami hazard assessment, forecast and warning, inundation modeling, preparedness, mitigation, education, and research. As a result of NOAA's efforts to strengthen its tsunami activities, the long-term tsunami data archive has grown from less than 5 gigabyte in 2004 to more than 2 terabytes in 2008. The types of data archived for tsunami research and operation activities have also expanded in fulfillment of the P.L. 109-424. The archive now consists of: global historical tsunami, significant earthquake and significant volcanic eruptions database; global tsunami deposits and proxies database; reference database; damage photos; coastal water-level data (i.e. digital tide gauge data and marigrams on microfiche); bottom pressure recorder (BPR) data as collected by Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys. The tsunami data archive comes from a wide variety of data providers and sources. These include the NOAA Tsunami Warning Centers, NOAA National Data Buoy Center, NOAA National Ocean Service, IOC/NOAA International Tsunami Information Center, NOAA Pacific Marine Environmental Laboratory, U.S. Geological Survey, tsunami catalogs, reconnaissance reports, journal articles, newspaper articles, internet web pages, and email. NGDC has been active in the management of some of these data for more than 50 years while other data management efforts are more recent. These data are openly available, either directly on-line or by contacting NGDC. All of the NGDC tsunami and related databases are stored in a relational database management system. These data are accessible over the Web as tables, reports, and interactive maps. The maps provide integrated web-based GIS access to individual GIS layers including tsunami sources, tsunami effects, significant earthquakes

  2. Tsunamis

    ... During a Wildfire Responders Wildfire Smoke After a Fire Worker Safety During Fire Cleanup Wildfires PSAs Related Links Winter Weather Extreme ... All Regions (NOAA) About Tsunamis (American Red Cross) World Health Organization (WHO) South Asia earthquake and tsunamis ...

  3. Tsunamis

    ... to escape it. CAUTION - If there is noticeable recession in water away from the shoreline this is ... that has water around it. Tsunami water can cause floors to crack or walls to collapse. Use ...

  4. Suspect Tsunami Deposits Point Reyes National Seashore Marin County California

    Hoirup, D. F.

    2006-12-01

    An anomalous sand layer is inter-bedded within estuary mud deposits of Point Reyes National Seashore (PORE), Marin County, California. The alternating mud and sand deposits resemble tsunami deposited sediments located along northern California, Oregon, Washington and southern British Columbia (Cascadia) coastline, and other coastal locations around the world. This study was conducted to determine if the sedimentary record indicates a significant deviation from the typical low-energy long-duration depositional environment of the PORE marshes, to a brief high-energy short- duration depositional environment, then returning to typical quiet deposition. The sand layer appears continuous along a nearly 170 m sampling traverse of the upper-most reach of the Home Bay marsh and along a 55 m sampling traverse normal to the first traverse. Generally, the sand layer appears to drape the marsh, an area measuring at least 75 m by 300 m. This estimate is based on visual inspection of tidal channel banks where the sand layer is well exposed, approximately 25 cm below the marsh surface. The sand layer ranges from one to several centimeters thick and has an abrupt, smooth to wavy lower contact with the underlying estuary mud. The upper contact of the sand layer with the overlying mud ranges from gradual to abrupt and has a smooth subsurface topography. Several samples collected during the traverses appear as sand-mud couplets and are inversely graded. Should pending laboratory analysis support the anomalous sand layer as deposited by tsunami, we can then apply these data to extend the tsunami record and ultimately, improve assessment of tsunami risk.

  5. The Puerto Rico Component of the National Tsunami Hazard and Mitigation Program Pr-Nthmp

    Huerfano Moreno, V. A.; Hincapie-Cardenas, C. M.

    2014-12-01

    Tsunami hazard assessment, detection, warning, education and outreach efforts are intended to reduce losses to life and property. The Puerto Rico Seismic Network (PRSN) is participating in an effort with local and federal agencies, to developing tsunami hazard risk reduction strategies under the National Tsunami Hazards and Mitigation Program (NTHMP). This grant supports the TsunamiReady program which is the base of the tsunami preparedness and mitigation in PR. The Caribbean region has a documented history of damaging tsunamis that have affected coastal areas. The seismic water waves originating in the prominent fault systems around PR are considered to be a near-field hazard for Puerto Rico and the Virgin islands (PR/VI) because they can reach coastal areas within a few minutes after the earthquake. Sources for local, regional and tele tsunamis have been identified and modeled and tsunami evacuation maps were prepared for PR. These maps were generated in three phases: First, hypothetical tsunami scenarios on the basis of the parameters of potential underwater earthquakes were developed. Secondly, each of these scenarios was simulated. The third step was to determine the worst case scenario (MOM). The run-ups were drawn on GIS referenced maps and aerial photographs. These products are being used by emergency managers to educate the public and develop mitigation strategies. Online maps and related evacuation products are available to the public via the PR-TDST (PR Tsunami Decision Support Tool). Currently all the 44 coastal municipalities were recognized as TsunamiReady by the US NWS. The main goal of the program is to declare Puerto Rico as TsunamiReady, including two cities that are not coastal but could be affected by tsunamis. Based on these evacuation maps, tsunami signs were installed, vulnerability profiles were created, communication systems to receive and disseminate tsunami messages were installed in each TWFP, and tsunami response plans were approved

  6. TSUNAMI HAZARD MITIGATION AND THE NOAA NATIONAL WATER LEVEL OBSERVATION NETWORK

    James R. Hubbard

    2002-01-01

    Full Text Available With the renewed interest in regional Tsunami Warning Systems and the potential tsunami threats throughout the Caribbean and West coast of the United States, the National Ocean Service (NOS, National Water Level Observation Network (NWLON consisting of 175 primary stations, is well situated to play a role in the National Hazard Mitigation effort. In addition, information regarding local mean sea level trends and GPS derived geodetic datum relationships at numerous coastal locations is readily available for tsunami hazard assessment and mapping applications.Tsunami inundation maps and modeling are just two of the more important products which may be derived from NWLON data. In addition to the seven water level gauges that are hardwired into the West Coast and Alaska Tsunami Warning Center (WClATWC, NOS has a significant number of gauges with real-time satellite telemetry capabilities located along the Pacific Northwest coastline, the Gulf of Mexico and the Caribbean. These gauges, in concert with near shore buoy systems, have the potential for increasing the effectiveness of the existing tsunami warning system.The recent expansion of the Caribbean Sea Level Gauge Network through the NOS regional partnerships with Central American and Caribbean countries have opened an opportunity for a basin-wide tsunami warning network in a region which is ill prepared for a major tsunami event.

  7. Tsunami.gov: NOAA's Tsunami Information Portal

    Shiro, B.; Carrick, J.; Hellman, S. B.; Bernard, M.; Dildine, W. P.

    2014-12-01

    We present the new Tsunami.gov website, which delivers a single authoritative source of tsunami information for the public and emergency management communities. The site efficiently merges information from NOAA's Tsunami Warning Centers (TWC's) by way of a comprehensive XML feed called Tsunami Event XML (TEX). The resulting unified view allows users to quickly see the latest tsunami alert status in geographic context without having to understand complex TWC areas of responsibility. The new site provides for the creation of a wide range of products beyond the traditional ASCII-based tsunami messages. The publication of modern formats such as Common Alerting Protocol (CAP) can drive geographically aware emergency alert systems like FEMA's Integrated Public Alert and Warning System (IPAWS). Supported are other popular information delivery systems, including email, text messaging, and social media updates. The Tsunami.gov portal allows NOAA staff to easily edit content and provides the facility for users to customize their viewing experience. In addition to access by the public, emergency managers and government officials may be offered the capability to log into the portal for special access rights to decision-making and administrative resources relevant to their respective tsunami warning systems. The site follows modern HTML5 responsive design practices for optimized use on mobile as well as non-mobile platforms. It meets all federal security and accessibility standards. Moving forward, we hope to expand Tsunami.gov to encompass tsunami-related content currently offered on separate websites, including the NOAA Tsunami Website, National Tsunami Hazard Mitigation Program, NOAA Center for Tsunami Research, National Geophysical Data Center's Tsunami Database, and National Data Buoy Center's DART Program. This project is part of the larger Tsunami Information Technology Modernization Project, which is consolidating the software architectures of NOAA's existing TWC's into

  8. Tsunamis - General

    National Oceanic and Atmospheric Administration, Department of Commerce — Tsunami is a Japanese word meaning harbor wave. It is a water wave or a series of waves generated by an impulsive vertical displacement of the surface of the ocean...

  9. Quality of life, vulnerability and resilience: a qualitative study of the tsunami impact on the affected population of Sri Lanka

    Alice Josephine Fauci

    2012-06-01

    Full Text Available AIM: This qualitative study is aimed at analysing the impact of the 2004 tsunami on the Quality of Life of the Sri Lankan population. It focused on the factors that have contributed to an increase in the people's susceptibility to the impact of hazards - their vulnerability - as well as of the natural ability to cope of the populations affected - their resilience. METHODOLOGY: The study is based on the conduction of 10 Focus Group discussions and 18 In-depth Interviews, then analysed through a qualitative analysis software. RESULTS AND CONCLUSIONS: The analysis shows that each factor involved in the interplay among the different processes that produced the changes in the affected people's quality of life is at the same time a damaged asset, a vulnerability factor and a resource to draw upon for coping. The complexity of this situation opens further speculation as to how disasters and relief interventions influence relationships and dynamics in society. This should thus be further investigated, together with the effects of individual and group trauma on society.

  10. NOAA/WDC Global Tsunami Deposits Database

    National Oceanic and Atmospheric Administration, Department of Commerce — Discover where, when and how severely tsunamis affected Earth in geologic history. Information regarding Tsunami Deposits and Proxies for Tsunami Events complements...

  11. Application of a Tsunami Warning Message Metric to refine NOAA NWS Tsunami Warning Messages

    Gregg, C. E.; Johnston, D.; Sorensen, J.; Whitmore, P.

    2013-12-01

    In 2010, the U.S. National Weather Service (NWS) funded a three year project to integrate social science into their Tsunami Program. One of three primary requirements of the grant was to make improvements to tsunami warning messages of the NWS' two Tsunami Warning Centers- the West Coast/Alaska Tsunami Warning Center (WCATWC) in Palmer, Alaska and the Pacific Tsunami Warning Center (PTWC) in Ewa Beach, Hawaii. We conducted focus group meetings with a purposive sample of local, state and Federal stakeholders and emergency managers in six states (AK, WA, OR, CA, HI and NC) and two US Territories (US Virgin Islands and American Samoa) to qualitatively asses information needs in tsunami warning messages using WCATWC tsunami messages for the March 2011 Tohoku earthquake and tsunami event. We also reviewed research literature on behavioral response to warnings to develop a tsunami warning message metric that could be used to guide revisions to tsunami warning messages of both warning centers. The message metric is divided into categories of Message Content, Style, Order and Formatting and Receiver Characteristics. A message is evaluated by cross-referencing the message with the operational definitions of metric factors. Findings are then used to guide revisions of the message until the characteristics of each factor are met. Using findings from this project and findings from a parallel NWS Warning Tiger Team study led by T. Nicolini, the WCATWC implemented the first of two phases of revisions to their warning messages in November 2012. A second phase of additional changes, which will fully implement the redesign of messages based on the metric, is in progress. The resulting messages will reflect current state-of-the-art knowledge on warning message effectiveness. Here we present the message metric; evidence-based rational for message factors; and examples of previous, existing and proposed messages.

  12. A User's Guide to the Tsunami Datasets at NOAA's National Data Buoy Center

    Bouchard, R. H.; O'Neil, K.; Grissom, K.; Garcia, M.; Bernard, L. J.; Kern, K. J.

    2013-12-01

    The National Data Buoy Center (NDBC) has maintained and operated the National Oceanic and Atmospheric Administration's (NOAA) tsunameter network since 2003. The tsunameters employ the NOAA-developed Deep-ocean Assessment and Reporting of Tsunamis (DART) technology. The technology measures the pressure and temperature every 15 seconds on the ocean floor and transforms them into equivalent water-column height observations. A complex series of subsampled observations are transmitted acoustically in real-time to a moored buoy or marine autonomous vehicle (MAV) at the ocean surface. The surface platform uses its satellite communications to relay the observations to NDBC. NDBC places the observations onto the Global Telecommunication System (GTS) for relay to NOAA's Tsunami Warning Centers (TWC) in Hawai'i and Alaska and to the international community. It takes less than three minutes to speed the observations from the ocean floor to the TWCs. NDBC can retrieve limited amounts of the 15-s measurements from the instrumentation on the ocean floor using the technology's two-way communications. NDBC recovers the full resolution 15-s measurements about every 2 years and forwards the datasets and metadata to the National Geophysical Data Center for permanent archive. Meanwhile, NDBC retains the real-time observations on its website. The type of real-time observation depends on the operating mode of the tsunameter. NDBC provides the observations in a variety of traditional and innovative methods and formats that include descriptors of the operating mode. Datasets, organized by station, are available from the NDBC website as text files and from the NDBC THREDDS server in netCDF format. The website provides alerts and lists of events that allow users to focus on the information relevant for tsunami hazard analysis. In addition, NDBC developed a basic web service to query station information and observations to support the Short-term Inundation Forecasting for Tsunamis (SIFT

  13. The Puerto Rico Component of the National Tsunami Hazard and Mitigation Program (PR-NTHMP)

    Vanacore, E. A.; Huerfano Moreno, V. A.; Lopez, A. M.

    2015-12-01

    The Caribbean region has a documented history of damaging tsunamis that have affected coastal areas. Of particular interest is the Puerto Rico - Virgin Islands (PRVI) region, where the proximity of the coast to prominent tectonic faults would result in near-field tsunamis. Tsunami hazard assessment, detection capabilities, warning, education and outreach efforts are common tools intended to reduce loss of life and property. It is for these reasons that the PRSN is participating in an effort with local and federal agencies to develop tsunami hazard risk reduction strategies under the NTHMP. This grant supports the TsunamiReady program, which is the base of the tsunami preparedness and mitigation in PR. In order to recognize threatened communities in PR as TsunamiReady by the US NWS, the PR Component of the NTHMP have identified and modeled sources for local, regional and tele-tsunamis and the results of simulations have been used to develop tsunami response plans. The main goal of the PR-NTHMP is to strengthen resilient coastal communities that are prepared for tsunami hazards, and recognize PR as TsunamiReady. Evacuation maps were generated in three phases: First, hypothetical tsunami scenarios of potential underwater earthquakes were developed, and these scenarios were then modeled through during the second phase. The third phase consisted in determining the worst-case scenario based on the Maximum of Maximums (MOM). Inundation and evacuation zones were drawn on GIS referenced maps and aerial photographs. These products are being used by emergency managers to educate the public and develop mitigation strategies. Maps and related evacuation products, like evacuation times, can be accessed online via the PR Tsunami Decision Support Tool. Based on these evacuation maps, tsunami signs were installed, vulnerability profiles were created, communication systems to receive and disseminate tsunami messages were installed in each TWFP, and tsunami response plans were

  14. Tsunami overview.

    Morrow, Robert C; Llewellyn, D Mark

    2006-10-01

    Historically, floods and tsunamis have caused relatively few severe injuries; an exception to that tendency followed the great Andaman Island-Sumatra earthquake and tsunami of 2004. More than 280,000 people died, the coastal plains were massively scoured, and more than 1 million individuals were made homeless by the quake and resulting tsunami, which affected a 10-nation region around the Indian Ocean. This destruction overwhelmed local resources and called forth an unprecedented, prolonged, international response. The USNS Mercy deployed on a unique mission and rendered service to the people and government of Indonesia. This introduction provides background on the nature and extent of the damage, conditions upon arrival of the hospital ship 5 weeks after the initial destruction, and the configuration of professionals aboard (officers and sailors of the U.S. Navy, civilian volunteers from Project HOPE, officers of the U.S. Public Health Service, and officers and civilian mariners of the Military Sealift Command). Constraints on the mission provide context for the other articles of this issue that document and comment on the activities, challenges, methods, and accomplishments of this unique mission's "team of teams," performing humanitarian assistance and disaster relief in the Pacific theater. PMID:17447612

  15. Post Fukushima tsunami simulations for Malaysian coasts

    Koh, Hock Lye; Teh, Su Yean; Abas, Mohd Rosaidi Che

    2014-10-01

    The recent recurrences of mega tsunamis in the Asian region have rekindled concern regarding potential tsunamis that could inflict severe damage to affected coastal facilities and communities. The 11 March 2011 Fukushima tsunami that crippled nuclear power plants in Northern Japan has further raised the level of caution. The recent discovery of petroleum reserves in the coastal water surrounding Malaysia further ignites the concern regarding tsunami hazards to petroleum facilities located along affected coasts. Working in a group, federal government agencies seek to understand the dynamics of tsunami and their impacts under the coordination of the Malaysian National Centre for Tsunami Research, Malaysian Meteorological Department. Knowledge regarding the generation, propagation and runup of tsunami would provide the scientific basis to address safety issues. An in-house tsunami simulation models known as TUNA has been developed by the authors to assess tsunami hazards along affected beaches so that mitigation measures could be put in place. Capacity building on tsunami simulation plays a critical role in the development of tsunami resilience. This paper aims to first provide a simple introduction to tsunami simulation towards the achievement of tsunami simulation capacity building. The paper will also present several scenarios of tsunami dangers along affected Malaysia coastal regions via TUNA simulations to highlight tsunami threats. The choice of tsunami generation parameters reflects the concern following the Fukushima tsunami.

  16. Using Interdisciplinary Research Methods to Revise and Strengthen the NWS TsunamiReadyTM Community Recognition Program

    Scott, C.; Gregg, C. E.; Ritchie, L.; Stephen, M.; Farnham, C.; Fraser, S. A.; Gill, D.; Horan, J.; Houghton, B. F.; Johnson, V.; Johnston, D.

    2013-12-01

    The National Tsunami Hazard Mitigation Program (NTHMP) partnered with the National Weather Service (NWS) in early 2000 to create the TsunamiReadyTM Community Recognition program. TsunamiReadyTM, modeled after the older NWS StormReadyTM program, is designed to help cities, towns, counties, universities and other large sites in coastal areas reduce the potential for disastrous tsunami-related consequences. To achieve TsunamiReadyTM recognition, communities must meet certain criteria aimed at better preparing a community for tsunami, including specific actions within the following categories: communications and coordination, tsunami warning reception, local warning dissemination, community preparedness, and administration. Using multidisciplinary research methods and strategies from Public Health; Psychology; Political, Social and Physical Sciences and Evaluation, our research team is working directly with a purposive sample of community stakeholders in collaboration and feedback focus group sessions. Invitation to participate is based on a variety of factors including but not limited to an individual's role as a formal or informal community leader (e.g., in business, government, civic organizations), or their organization or agency affiliation to emergency management and response. Community organizing and qualitative research methods are being used to elicit discussion regarding TsunamiReadyTM requirements and the division of requirements based on some aspect of tsunami hazard, vulnerability and risk, such as proximity to active or passive plate margins or subduction zone generated tsunamis versus earthquake-landslide generated tsunamis . The primary aim of this research is to use social science to revise and refine the NWS TsunamiReadyTM Guidelines in an effort to better prepare communities to reduce risk to tsunamis.

  17. Yakutat Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Yakutat, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  18. Midway Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midway Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  19. Bermuda Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Bermuda Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  20. NOAA's Integrated Tsunami Database: Data for improved forecasts, warnings, research, and risk assessments

    Stroker, Kelly; Dunbar, Paula; Mungov, George; Sweeney, Aaron; McCullough, Heather; Carignan, Kelly

    2015-04-01

    The National Oceanic and Atmospheric Administration (NOAA) has primary responsibility in the United States for tsunami forecast, warning, research, and supports community resiliency. NOAA's National Geophysical Data Center (NGDC) and co-located World Data Service for Geophysics provide a unique collection of data enabling communities to ensure preparedness and resilience to tsunami hazards. Immediately following a damaging or fatal tsunami event there is a need for authoritative data and information. The NGDC Global Historical Tsunami Database (http://www.ngdc.noaa.gov/hazard/) includes all tsunami events, regardless of intensity, as well as earthquakes and volcanic eruptions that caused fatalities, moderate damage, or generated a tsunami. The long-term data from these events, including photographs of damage, provide clues to what might happen in the future. NGDC catalogs the information on global historical tsunamis and uses these data to produce qualitative tsunami hazard assessments at regional levels. In addition to the socioeconomic effects of a tsunami, NGDC also obtains water level data from the coasts and the deep-ocean at stations operated by the NOAA/NOS Center for Operational Oceanographic Products and Services, the NOAA Tsunami Warning Centers, and the National Data Buoy Center (NDBC) and produces research-quality data to isolate seismic waves (in the case of the deep-ocean sites) and the tsunami signal. These water-level data provide evidence of sea-level fluctuation and possible inundation events. NGDC is also building high-resolution digital elevation models (DEMs) to support real-time forecasts, implemented at 75 US coastal communities. After a damaging or fatal event NGDC begins to collect and integrate data and information from many organizations into the hazards databases. Sources of data include our NOAA partners, the U.S. Geological Survey, the UNESCO Intergovernmental Oceanographic Commission (IOC) and International Tsunami Information Center

  1. Lost tsunami

    Pareschi, M. T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia; Boschi, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italia; Favalli, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia

    2006-01-01

    Numerical simulations support the occurrence of a catastrophic tsunami impacting all of the eastern Mediterranean in early Holocene. The tsunami was triggered by a debris avalanche from Mt. Etna (Sicily, Italy) which entered the Ionian Sea in the order of minutes. Simulations show that the resulting tsunami waves were able to destabilize soft marine sediments across the Ionian Sea floor. This generated the well-known, sporadically located, ‘‘homogenite’’ deposits of th...

  2. Tsunami Hockey

    Weinstein, S.; Becker, N. C.; Wang, D.; Fryer, G. J.

    2013-12-01

    An important issue that vexes tsunami warning centers (TWCs) is when to cancel a tsunami warning once it is in effect. Emergency managers often face a variety of pressures to allow the public to resume their normal activities, but allowing coastal populations to return too quickly can put them at risk. A TWC must, therefore, exercise caution when cancelling a warning. Kim and Whitmore (2013) show that in many cases a TWC can use the decay of tsunami oscillations in a harbor to forecast when its amplitudes will fall to safe levels. This technique should prove reasonably robust for local tsunamis (those that are potentially dangerous within only 100 km of their source region) and for regional tsunamis (whose danger is limited to within 1000km of the source region) as well. For ocean-crossing destructive tsunamis such as the 11 March 2011 Tohoku tsunami, however, this technique may be inadequate. When a tsunami propagates across the ocean basin, it will encounter topographic obstacles such as seamount chains or coastlines, resulting in coherent reflections that can propagate great distances. When these reflections reach previously-impacted coastlines, they can recharge decaying tsunami oscillations and make them hazardous again. Warning center scientists should forecast sea-level records for 24 hours beyond the initial tsunami arrival in order to observe any potential reflections that may pose a hazard. Animations are a convenient way to visualize reflections and gain a broad geographic overview of their impacts. The Pacific Tsunami Warning Center has developed tools based on tsunami simulations using the RIFT tsunami forecast model. RIFT is a linear, parallelized numerical tsunami propagation model that runs very efficiently on a multi-CPU system (Wang et al, 2012). It can simulate 30-hours of tsunami wave propagation in the Pacific Ocean at 4 arc minute resolution in approximately 6 minutes of real time on a 12-CPU system. Constructing a 30-hour animation using 1

  3. The effect analysis of 1741 Oshima-Oshima tsunami in the West Coast of Japan to Korea

    It is very difficult to determine and assessment for tsunami hazard. For determining a tsunami risk for NPP site, a development of tsunami hazard is one of the most important. Through the tsunami hazard analysis, a tsunami return period can be determined. For the performing a tsunami hazard analysis, empirical method and numerical method should be needed. Kim et al, already developed tsunami hazard for east coast of Korea for the calculation of tsunami risk of nuclear power plant. In the case of tsunami hazard analysis, a development of tsunami catalog should be performed. In the previous research of Kim et al, the maximum wave height was assumed by the author's decision based on historical record in the annals of Chosun dynasty for evaluating the tsunami catalog. Therefore, in this study, a literature survey was performed for a quantitative measure of historical tsunami record transform to qualitative tsunami wave height for the evaluation of tsunami catalog. In this study, the 1741 tsunami was determined by using a literature review for the evaluation of tsunami hazard. The 1741 tsunami reveals a same tsunami between the historical records in Korea and Japan. The tsunami source of 1741 tsunami was not an earthquake and volcanic. Using the numerical analysis, the wave height of 1741 tsunami can be determined qualitatively

  4. Tsunami Preparedness

    ... Food Safety Highway Safety Landslide Pet Safety Poisoning Power Outage Terrorism Thunderstorm Tornado Tsunami Volcano Water Safety Wildfire ... Facebook Twitter Flickr Youtube Donate Funds Your Donation Impacts Lives ... Disaster Relief Health and Safety Training & Education Lifesaving Blood Get Assistance ...

  5. The unperceived risk to Europe's coasts: tsunamis and the vulnerability of Cadiz, Spain

    J. Birkmann

    2010-12-01

    Full Text Available The development of appropriate risk and vulnerability reduction strategies to cope with tsunami risks is a major challenge for countries, regions, and cities exposed to potential tsunamis. European coastal cities such as Cadiz are exposed to tsunami risks. However, most official risk reduction strategies as well as the local population are not aware of the probability of such a phenomenon and the potential threat that tsunami waves could pose to their littoral. This paper outlines how tsunami risks, and particularly tsunami vulnerability, could be assessed and measured. To achieve this, a vulnerability assessment framework was applied focusing on the city of Cadiz as a case study in order to highlight the practical use and the challenges and gaps such an assessment has to deal with. The findings yield important information that could assist with the systematic improvement of societal response capacities of cities and their inhabitants to potential tsunami risks. Hazard and vulnerability maps were developed, and qualitative data was obtained through, for example, focused group discussions. These maps and surveys are essential for the development of a people-centred early warning and response system. Therefore, in this regard, the Tsunami Early Warning and Mitigation System in the North Eastern Atlantic, the Mediterranean, and connected seas promoted by the UNESCO-Intergovernmental Oceanographic Commission (IOC should encompass these assessments to ensure that action is particularly intensified and fostered by those potentially exposed. That means that besides the necessary technical infrastructure for tsunami detection, additional response and adaptation measures need to be promoted – particularly those that reduce the vulnerability of people and regions exposed – in terms of national systems. In addition, it is important to develop emergency preparedness and awareness plans in order to create an integrated regional Tsunami Early Warning

  6. Florence, Oregon Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Florence, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  7. Seaside, Oregon Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seaside, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  8. Apra Harbor, Guam Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Apra Harbor, Guam Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  9. Myrtle Beach, South Carolina Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Myrtle Beach, South Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  10. Palm Beach, Florida Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Palm Beach, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  11. Daytona Beach, Florida Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Daytona Beach, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  12. Deep-ocean Assessment and Reporting of Tsunamis (DART) Stations

    Department of Homeland Security — As part of the U.S. National Tsunami Hazard Mitigation Program (NTHMP), the Deep Ocean Assessment and Reporting of Tsunamis (DART(R)) Project is an ongoing effort...

  13. British Columbia, Canada Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The British Columbia, Canada Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  14. Crescent City, California Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Crescent City, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  15. Santa Barbara, California Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Santa Barbara, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  16. Arena Cove, California Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arena Cove, California Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  17. Pearl Harbor, Hawaii Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pearl Harbor, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  18. Haleiwa, Hawaii Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Haleiwa, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  19. Nantucket, Massachusetts Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nantucket, Massachusetts Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  20. Homer, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Homer, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  1. Adak, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Adak, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  2. Unalaska, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Unalaska, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  3. Port Alexander, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Alexander, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  4. Port Orford, Oregon Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Orford, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  5. Santa Monica, California Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Santa Monica, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  6. Keauhou, Hawaii Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Keauhou, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  7. Hanalei, Hawaii Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hanalei, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  8. Ponce, Puerto Rico Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ponce, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  9. Savannah, Georgia Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Savannah, Georgia Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  10. King Cove, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The King Cove, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  11. Portland, Maine Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Portland, Maine Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  12. Fajardo, Puerto Rico Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Fajardo, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  13. Christiansted, Virgin Islands Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Christiansted, Virgin Islands Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami...

  14. Lahaina, Hawaii Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Lahaina, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  15. Port San Luis, California Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port San Luis, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  16. Kawaihae, Hawaii Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kawaihae, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  17. Kodiak, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kodiak, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  18. Honolulu, Hawaii Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Honolulu, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  19. Virginia Beach Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Virginia Beach, Virginia Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  20. Morehead City, North Carolina Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Morehead City, North Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami...

  1. Eureka, California Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Eureka, California Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  2. Newport, Oregon Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Newport, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  3. Chignik, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Chignik, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  4. Key West, Florida Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Key West, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  5. Cape Hatteras, North Carolina Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cape Hatteras, North Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami...

  6. Monterey, California Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Monterey, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  7. Kihei, Hawaii Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kihei, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  8. Nikolski, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nikolski, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  9. Shemya, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Shemya, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  10. San Francisco, California Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The San Francisco, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  11. Craig, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Craig, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  12. Point Reyes, California Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Point Reyes, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  13. San Juan, Puerto Rico Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The San Juan, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  14. La Push, Washington Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The La Push, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  15. Atlantic City, New Jersey Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic City, New Jersey Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  16. Mayaguez, Puerto Rico Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Mayaguez, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  17. Kahului, Hawaii Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kahului, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  18. Garibaldi, Oregon Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Garibaldi, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  19. Toke Point, Washington Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Toke Point, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  20. Port Angeles, Washington Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Angeles, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  1. Kailua-Kona, Hawaii Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kailua-Kona, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  2. Los Angeles, California Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Los Angeles, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  3. CO-OPS 1-minute Raw Tsunami Water Level Data

    National Oceanic and Atmospheric Administration, Department of Commerce — CO-OPS has been involved with tsunami warning and mitigation since the Coast & Geodetic Survey started the Tsunami Warning System in 1948 to provide warnings to...

  4. Bar Harbor, ME Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Bar Harbor, Maine Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  5. Cordova, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cordova, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  6. Sitka, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  7. Montauk, New York Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Montauk, New York Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  8. Seward, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seward, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  9. Arecibo, Puerto Rico Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arecibo, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  10. Hilo, Hawaii Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hilo, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  11. Sand Point, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sand Point, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  12. Ocean City, Maryland Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean City, Maryland Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  13. Wake Island Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Wake Island Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  14. Atka, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atka, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  15. Nawiliwili, Hawaii Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nawiliwili, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  16. Charlotte Amalie, Virgin Islands Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Charlotte Amalie, Virgin Islands Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami...

  17. Pago Pago, American Samoa Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pago Pago, American Samoa Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  18. Westport, Washington Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Westport, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  19. Neah Bay, Washington Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Neah Bay, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  20. Elfin Cove, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Elfin Cove, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  1. San Diego, California Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The San Diego, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  2. Tsunami focusing

    Spillane, M. C.; Titov, V. V.; Moore, C. W.; Aydin, B.; Kanoglu, U.; Synolakis, C. E.

    2010-12-01

    Tsunamis are long waves generated by impulsive disturbances of the seafloor or coastal topography caused by earthquakes, submarine/subaerial mass failures. They evolve substantially through three dimensional - 2 spatial+1 temporal - spreading as the initial surface deformation propagates. This is referred to as its directivity and focusing. A directivity function was first defined by Ben-Menahem (1961, Bull. Seismol. Soc. Am. 51, 401-435) using the source length and the rupture velocity. Okal (2003, Pure Appl. Geophys. 160, 2189-2221) discussed the details of the analysis of Ben-Menahem (1961) and demonstrated the distinct difference between the directivity patterns of landslide and earthquake generated tsunamis. Marchuk and Titov (1989, Proc. IUGG/IOC International Tsunami Symposium, July 31 - August 3, 1989, Novosibirsk, USSR. p.11-17) described the process of tsunami focusing for a rectangular initial deformation combining positive and negative surface displacements. They showed the existence of a focusing point where abnormal tsunami wave height can be registered. Here, first, we describe and quantify numerically tsunami focusing processes for a combined positive and negative - N-wave type - strip source representing the 17 July 1998 Papua New Guinea and 17 July 2006 Java events. Specifically, considering field observations and tsunami focusing, we propose a source mechanism for the 17 July 2006 Java event. Then, we introduce a new analytical solution for a strip source propagating over a flat bottom using the linear shallow-water wave equation. The analytical solution of Carrier and Yeh (2005, Computer Modeling In Engineering & Sciences, 10(2), 113-121) appears to have two drawbacks. One, the solution involves singular complete elliptic integral of the first kind which results in a self-similar approximate solution for the far-field at large times. Two, only the propagation of Gaussian shaped finite-crest wave profiles can be modeled. Our solution is not only

  3. Integrated Historical Tsunami Event and Deposit Database

    Dunbar, P. K.; McCullough, H. L.

    2010-12-01

    The National Geophysical Data Center (NGDC) provides integrated access to historical tsunami event, deposit, and proxy data. The NGDC tsunami archive initially listed tsunami sources and locations with observed tsunami effects. Tsunami frequency and intensity are important for understanding tsunami hazards. Unfortunately, tsunami recurrence intervals often exceed the historic record. As a result, NGDC expanded the archive to include the Global Tsunami Deposits Database (GTD_DB). Tsunami deposits are the physical evidence left behind when a tsunami impacts a shoreline or affects submarine sediments. Proxies include co-seismic subsidence, turbidite deposits, changes in biota following an influx of marine water in a freshwater environment, etc. By adding past tsunami data inferred from the geologic record, the GTD_DB extends the record of tsunamis backward in time. Although the best methods for identifying tsunami deposits and proxies in the geologic record remain under discussion, developing an overall picture of where tsunamis have affected coasts, calculating recurrence intervals, and approximating runup height and inundation distance provides a better estimate of a region’s true tsunami hazard. Tsunami deposit and proxy descriptions in the GTD_DB were compiled from published data found in journal articles, conference proceedings, theses, books, conference abstracts, posters, web sites, etc. The database now includes over 1,200 descriptions compiled from over 1,100 citations. Each record in the GTD_DB is linked to its bibliographic citation where more information on the deposit can be found. The GTD_DB includes data for over 50 variables such as: event description (e.g., 2010 Chile Tsunami), geologic time period, year, deposit location name, latitude, longitude, country, associated body of water, setting during the event (e.g., beach, lake, river, deep sea), upper and lower contacts, underlying and overlying material, etc. If known, the tsunami source mechanism

  4. Impact of Qualitative Components on Economic Growth of Nations

    Romuald I. Zalewski

    2011-06-01

    Full Text Available According to theory, innovative activity gives a chance to increase a competitiveness and economic growth of nation. The purpose of this paper is validation of that assumption using the latest data available for EU countries. Data set of indicators include: global innovation index, (GII, European Summary Innovative Index (SII, Ranking of Competitiveness of Nations (in a form of summary as well as subsidiary data and set of macro economy data (GDP, labor productivity, export, export of high-tech, R&D expenditure as [as % of GDP] etc as measures of economic growth. Various regression models: liner, curvilinear, planar or spatial with one or two dependent variables will be calculated and explained. In addition the appropriate 2 D and 3 D-graphs will be used and presented to strengthen verbal arguments and explanation. The main result of this paper is relationship between innovative activity, competitive ability and growth measured as GDP per capita. Such relationship is shown as fairy good linear span of countries. Only two of them: Luxemburg and Norway due to higher than average growth value are outliers. The valuable outcome of this paper is classification of nation into groups: highly innovative- highly competitive, highly competitive-non innovative, highly innovative- non competitive and non innovative – non competitive. The last group of nations fall into trap of low competitiveness.

  5. Deep-Ocean Assessment and Reporting of Tsunamis (DART(R))

    National Oceanic and Atmospheric Administration, Department of Commerce — As part of the U.S. National Tsunami Hazard Mitigation Program (NTHMP), the Deep Ocean Assessment and Reporting of Tsunamis (DART(R)) Project is an ongoing effort...

  6. Washington Tsunami Hazard Mitigation Program

    Walsh, T. J.; Schelling, J.

    2012-12-01

    Washington State has participated in the National Tsunami Hazard Mitigation Program (NTHMP) since its inception in 1995. We have participated in the tsunami inundation hazard mapping, evacuation planning, education, and outreach efforts that generally characterize the NTHMP efforts. We have also investigated hazards of significant interest to the Pacific Northwest. The hazard from locally generated earthquakes on the Cascadia subduction zone, which threatens tsunami inundation in less than hour following a magnitude 9 earthquake, creates special problems for low-lying accretionary shoreforms in Washington, such as the spits of Long Beach and Ocean Shores, where high ground is not accessible within the limited time available for evacuation. To ameliorate this problem, we convened a panel of the Applied Technology Council to develop guidelines for construction of facilities for vertical evacuation from tsunamis, published as FEMA 646, now incorporated in the International Building Code as Appendix M. We followed this with a program called Project Safe Haven (http://www.facebook.com/ProjectSafeHaven) to site such facilities along the Washington coast in appropriate locations and appropriate designs to blend with the local communities, as chosen by the citizens. This has now been completed for the entire outer coast of Washington. In conjunction with this effort, we have evaluated the potential for earthquake-induced ground failures in and near tsunami hazard zones to help develop cost estimates for these structures and to establish appropriate tsunami evacuation routes and evacuation assembly areas that are likely to to be available after a major subduction zone earthquake. We intend to continue these geotechnical evaluations for all tsunami hazard zones in Washington.

  7. National Cyber Security Policy and Strategy of Nigeria: A Qualitative Analysis

    Osho, Oluwafemi; Onoja, Agada D.

    2015-01-01

    Abstract With advancements in modernization came the infiltration of information and communication technologies across the world, Nigeria inclusive. Several benefits are obtainable from these but also prevalent are some associated risks. Communication exists massively in cyberspace and as such poses a myriad of threats to a nation. This can be addressed on a national spectrum by the implementation of cyber security policies and strategies. This research involves making a qualitative analys...

  8. Psychometrically and qualitatively validating a cross-national cumulative measure of fear-based xenophobia

    Veer, van der C.G.; Ommundsen, R.; Yakushko, O.; Higler, L.; Hagen, K.A.

    2011-01-01

    .40. The result, a cross-national 5-item scale measuring fear-based xenophobia, was tested by means of the Three-step Test-Interview (Hak, Van der Veer and Jansen 2008) with 10 students in The Netherlands and 10 students in Norway. The analysis of these qualitative interviews shows that individual r

  9. Tsunami diaries

    Radović Srđan

    2005-01-01

    Full Text Available Inspired by recent discussion on how Serbian media influenced allegedly indifferent reaction of the public to the aftermath of tsunami, this paper examines the role of electronic media in Serbia, television in particular, in regard to their function as a central communication channel for acquiring knowledge about world surroundings. With a premise of having cultural and discursive power, Dnevnik, the central news program of the Serbian public broadcaster, is taken as a paradigmatic media text for analysis in order to examine ways in which global affairs and phenomena are portrayed and structured in television representation of reality. It is suggested that it is fair to conclude that world affairs are marginalized within the representational frame of news broadcasts, and that the media discourse could be depicted as dominantly introverted when it comes to global flow of information and cultural meanings, which is significant regarding cultural perception of world realities among Serbian audiences.

  10. Tsunami Casualty Model

    Yeh, H.

    2007-12-01

    More than 4500 deaths by tsunamis were recorded in the decade of 1990. For example, the 1992 Flores Tsunami in Indonesia took away at least 1712 lives, and more than 2182 people were victimized by the 1998 Papua New Guinea Tsunami. Such staggering death toll has been totally overshadowed by the 2004 Indian Ocean Tsunami that claimed more than 220,000 lives. Unlike hurricanes that are often evaluated by economic losses, death count is the primary measure for tsunami hazard. It is partly because tsunamis kill more people owing to its short lead- time for warning. Although exact death tallies are not available for most of the tsunami events, there exist gender and age discriminations in tsunami casualties. Significant gender difference in the victims of the 2004 Indian Ocean Tsunami was attributed to women's social norms and role behavior, as well as cultural bias toward women's inability to swim. Here we develop a rational casualty model based on humans' limit to withstand the tsunami flows. The application to simple tsunami runup cases demonstrates that biological and physiological disadvantages also make a significant difference in casualty rate. It further demonstrates that the gender and age discriminations in casualties become most pronounced when tsunami is marginally strong and the difference tends to diminish as tsunami strength increases.

  11. Tsunami-HySEA model validation for tsunami current predictions

    Macías, Jorge; Castro, Manuel J.; González-Vida, José Manuel; Ortega, Sergio

    2016-04-01

    Model ability to compute and predict tsunami flow velocities is of importance in risk assessment and hazard mitigation. Substantial damage can be produced by high velocity flows, particularly in harbors and bays, even when the wave height is small. Besides, an accurate simulation of tsunami flow velocities and accelerations is fundamental for advancing in the study of tsunami sediment transport. These considerations made the National Tsunami Hazard Mitigation Program (NTHMP) proposing a benchmark exercise focussed on modeling and simulating tsunami currents. Until recently, few direct measurements of tsunami velocities were available to compare and to validate model results. After Tohoku 2011 many current meters measurement were made, mainly in harbors and channels. In this work we present a part of the contribution made by the EDANYA group from the University of Malaga to the NTHMP workshop organized at Portland (USA), 9-10 of February 2015. We have selected three out of the five proposed benchmark problems. Two of them consist in real observed data from the Tohoku 2011 event, one at Hilo Habour (Hawaii) and the other at Tauranga Bay (New Zealand). The third one consists in laboratory experimental data for the inundation of Seaside City in Oregon. Acknowledgements: This research has been partially supported by the Junta de Andalucía research project TESELA (P11-RNM7069) and the Spanish Government Research project DAIFLUID (MTM2012-38383-C02-01) and Universidad de Málaga, Campus de Excelencia Andalucía TECH. The GPU and multi-GPU computations were performed at the Unit of Numerical Methods (UNM) of the Research Support Central Services (SCAI) of the University of Malaga.

  12. Tsunamis: Water Quality

    ... Landslides Tornadoes Tsunamis Volcanoes Wildfires Winter Weather Tsunamis: Water Quality Language: English Español (Spanish) Recommend on Facebook ... about testing should be directed to local authorities. Water for Drinking, Cooking, and Personal Hygiene Safe water ...

  13. Tsunami Risk and Vulnerability

    Khomarudin, Muhammad Rokhis

    2010-01-01

    The research focuses on providing reliable spatial information in support of tsunami risk and vulnerability assessment within the framework of the German-Indonesian Tsunami Early Warning System (GITEWS) project. It contributes to three major components of the project: (1) the provision of spatial information on surface roughness as an important parameter for tsunami inundation modeling and hazard assessment; (2) the modeling of population distribution, which is an essential factor in tsunami ...

  14. Tsunami Information Sources

    Robert L. Wiegel

    2005-01-01

    I have expanded substantially my list of information sources on: tsunami generation (sources, impulsive mechanisms), propagation, effects of nearshore bathymetry, and wave run-up on shore - including physical (hydraulic) modeling and numerical modeling. This expanded list includes the subjects of field investigations of tsunamis soon after an event; damage effects in harbors on boats, ships, and facilities; tsunami wave-induced forces; damage by tsunami waves to structures on shore; scour/ero...

  15. The First Real-Time Tsunami Animation

    Becker, N. C.; Wang, D.; McCreery, C.; Weinstein, S.; Ward, B.

    2014-12-01

    For the first time a U.S. tsunami warning center created and issued a tsunami forecast model animation while the tsunami was still crossing an ocean. Pacific Tsunami Warning Center (PTWC) scientists had predicted they would have this ability (Becker et al., 2012) with their RIFT forecast model (Wang et al., 2009) by using rapidly-determined W-phase centroid-moment tensor earthquake focal mechanisms as tsunami sources in the RIFT model (Wang et al., 2012). PTWC then acquired its own YouTube channel in 2013 for its outreach efforts that showed animations of historic tsunamis (Becker et al., 2013), but could also be a platform for sharing future tsunami animations. The 8.2 Mw earthquake of 1 April 2014 prompted PTWC to issue official warnings for a dangerous tsunami in Chile, Peru and Ecuador. PTWC ended these warnings five hours later, then issued its new tsunami marine hazard product (i.e., no coastal evacuations) for the State of Hawaii. With the international warning canceled but with a domestic hazard still present PTWC generated a forecast model animation and uploaded it to its YouTube channel six hours before the arrival of the first waves in Hawaii. PTWC also gave copies of this animation to television reporters who in turn passed it on to their national broadcast networks. PTWC then created a version for NOAA's Science on a Sphere system so it could be shown on these exhibits as the tsunami was still crossing the Pacific Ocean. While it is difficult to determine how many people saw this animation since local, national, and international news networks showed it in their broadcasts, PTWC's YouTube channel provides some statistics. As of 1 August 2014 this animation has garnered more than 650,000 views. Previous animations, typically released during significant anniversaries, rarely get more than 10,000 views, and even then only when external websites share them. Clearly there is a high demand for a tsunami graphic that shows both the speed and the severity of a

  16. In Brief: Tsunami hits the Solomon Islands

    Zielinski, Sarah

    2007-04-01

    A magnitude 8.1 earthquake shook the Solomon Islands on 1 April at approximately 7:40 A.M. local time. The earthquake generated a tsunami several meters high that struck many of the islands. The earthquake occurred along the boundary of the Pacific plate where the Australia, Woodlark, and Solomon Sea plates subduct beneath it, according to the U.S. Geological Survey's Earthquake Hazards Program. At least 34 people were killed by the tsunami and several dozen more are still missing, according to the National Disaster Council in the Solomon Islands. The NDC estimates that 900-2500 homes were destroyed by the tsunami, displacing about 5500 people.

  17. NGDC/WDS Global Historical Tsunami Database, 2100 BC to present

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Historical Tsunami Database provides information on over 2,400 tsunamis from 2100 BC to the present in the the Atlantic, Indian, and Pacific Oceans; and...

  18. A qualitative approach to exploring competencies among host country national managers in Japanese MNCs

    Yoshitaka Yamazaki

    2013-01-01

    The purpose of this study is to find out what competencies are adaptively necessary for Asian managers of host country nationals (HCNs) who effectively work for subsidiaries of Japanese multinational corporations. A uniqueness of this study describes a qualitative approach conducted through interviews with Japanese, Chinese, Hong Kong, Malaysian, and Thai managers. A total of research participants were 267 from a leading Japanese MNC that has been strategically expanding Asia including those ...

  19. Improving Tsunami Resilience in Europe - ASTARTE

    Baptista, Maria Ana; Yalciner, Ahmet; Canals, Miquel; Behrens, Joern; Fuhrman, David; Gonzalez, Mauricio; Harbitz, Carl; Kanoglu, Utku; Karanci, Nurai; Lavigne, Franck; Lorito, Stefano; Meghraoui, Mustafa; Melis, Nikolaos S.; Necmioglu, Ocal; Papadopoulos, Gerassimos A.; Rudloff, Alexander; Schindele, François; Terrinha, Pedro; Tinti, Stefano

    2014-05-01

    The North East Atlantic, Mediterranean and Adjacent Seas (called NEAM by IOC-UNESCO) is known to be exposed to tsunamis and, like other regions of the world, faces increasing levels of risk due to i) the continuous development of coastal areas with critical infrastructures and accumulated values, and ii) the year-round presence of millions of tourists. In recent years, European researchers have greatly advanced knowledge of tsunami hazards and implementation of operational infrastructures, such as the creation of a regional system of candidate tsunami watch providers (CTWP) and national tsunami warning centers (NTWC). However, significant gaps remain and intensified efforts are needed. The ASTARTE (Assessment STrategy And Risk for Tsunami in Europe) is a three-year long EU-funded project, started in November 2013, that aims to develop a comprehensive strategy to mitigate tsunami impact in the NEAM region. To achieve this goal, an interdisciplinary consortium has been assembled. It includes all NEAM CTWPs and expert institutions across Europe and worldwide. ASTARTE will improve i) the basic knowledge on tsunami generation and recurrence with novel empirical data and new statistical analyses for assessing long-term recurrence and hazards of large events in sensitive areas within NEAM, ii) numerical techniques for tsunami simulation focusing on real-time codes, novel statistical emulation approaches, and experiments on damage analysis, and iii) methods for the assessment of hazard, vulnerability, and risk. ASTARTE will also provide i) guidelines for tsunami Eurocodes, ii) better forecasting and warning tools for CTWPs and NTWCs, and iii) guidelines for decision makers to increase the sustainability and resilience of coastal communities. In summary, ASTARTE will develop basic scientific and technical elements allowing for a significant enhancement of the Tsunami Warning System in the NEAM region in terms of monitoring, early warning,forecast, and resilience, with

  20. Advanced Planning for Tsunamis in California

    Miller, K.; Wilson, R. I.; Larkin, D.; Reade, S.; Carnathan, D.; Davis, M.; Nicolini, T.; Johnson, L.; Boldt, E.; Tardy, A.

    2013-12-01

    The California Tsunami Program is comprised of the California Governor's Office of Emergency Services (CalOES) and the California Geological Survey (CGS) and funded through the National Tsunami Hazard Mitigation Program (NTHMP) and the Federal Emergency Management Agency (FEMA). The program works closely with the 20 coastal counties in California, as well as academic, and industry experts to improve tsunami preparedness and mitigation in shoreline communities. Inundation maps depicting 'worst case' inundation modeled from plausible sources around the Pacific were released in 2009 and have provided a foundation for public evacuation and emergency response planning in California. Experience during recent tsunamis impacting the state (Japan 2011, Chile 2010, Samoa 2009) has brought to light the desire by emergency managers and decision makers for even more detailed information ahead of future tsunamis. A solution to provide enhanced information has been development of 'playbooks' to plan for a variety of expected tsunami scenarios. Elevation 'playbook' lines can be useful for partial tsunami evacuations when enough information about forecast amplitude and arrival times is available to coastal communities and there is sufficient time to make more educated decisions about who to evacuate for a given scenario or actual event. NOAA-issued Tsunami Alert Bulletins received in advance of a distant event will contain an expected wave height (a number) for each given section of coast. Provision of four elevation lines for possible inundation enables planning for different evacuation scenarios based on the above number potentially alleviating the need for an 'all or nothing' decision with regard to evacuation. Additionally an analytical tool called FASTER is being developed to integrate storm, tides, modeling errors, and local tsunami run-up potential with the forecasted tsunami amplitudes in real-time when a tsunami Alert is sent out. Both of these products will help

  1. Global Tsunami Deposits Database, a demonstration

    Brocko, V. R.; Dunbar, P. K.

    2008-12-01

    A result of collaboration between NOAA's National Geophysical Data Center (NGDC) and the Cooperative Institute for Research in the Environmental Sciences (CIRES), the Global Tsunami Database includes instrumental records, human observations, and now, information inferred from the geologic record. Historical reports, tide gauge data, Deep Ocean Assessment and Reporting of Tsunamis (DART) data, and information gleaned from published tsunami deposit research build a multi-faceted view of tsunami hazards and their history around the world. Tsunami history provides clues to what might happen in the future, including frequency of occurrence and maximum wave heights. However, instrumental and written records commonly span too little time to reveal the full range of a region's tsunami hazard. The sedimentary deposits of tsunamis, identified with the aid of modern analogs, increasingly complement instrumental and human observations. By adding the component of tsunamis inferred from the geologic record, the database extends the record of tsunamis backward in time. Deposit locations, their estimated age and descriptions of the deposits themselves fill in the tsunami record. Tsunamis inferred from proxies, such as evidence for coseismic subsidence, are included to estimate recurrence intervals, but are flagged to highlight the absence of a physical deposit. NGDC and CIRES welcome contributions and suggestions to improve the content and presentation of the database. Authors may submit their own descriptions and upload digital versions of publications. The data and information may be searched and viewed using tools designed to extract and display data from the Oracle database (selection forms, Web Map Services, and Web Feature Services). For example, users may select or sort by many fields, including event, location, region, age of deposit, author, publication type, grain size, composition, presence/absence of plant material. They may find tsunami deposit references for a given

  2. Global Tsunami Database: Adding Geologic Deposits, Proxies, and Tools

    Dunbar, P. K.; McCullough, H.

    2009-12-01

    NOAA’s National Geophysical Data Center (NGDC) has expanded the tsunami data archive to include information inferred from the geologic record. Tsunami history provides clues to what might happen in the future, including frequency of occurrence and maximum wave heights. However, instrumental and written records commonly span too little time to reveal the full range of a region's tsunami hazard, so a global database of citations to articles on tsunami deposits was added to the archive. The citation database provides additional data on historical events and extends the record of tsunamis backward in time, in some cases to prehistoric or paleotsunami deposits preserved in the geologic record. The sedimentary deposits of tsunamis, identified with the aid of modern analogs, increasingly complement instrumental and human observations. Deposit locations, their estimated age and descriptions of the deposits themselves fill in the tsunami record. Tsunamis inferred from proxies, such as evidence for coseismic subsidence, are included to estimate recurrence intervals, but are flagged to highlight the absence of a physical deposit. There are currently over 800 citations describing deposits from all over the world in the database. More than half of the deposits are from Quaternary tsunamis and over 300 are associated with a specific historic tsunami event. The tsunami deposits are integrated with the historical tsunami event database where applicable. For example, users can search for articles describing deposits related to the 1755 Lisbon tsunami and view those records, as well as link to the related historic event record. Users can search the tsunami deposit database for a given location, year or geologic age, event or author. The data and information may be viewed using tools designed to extract and display data from the Oracle database (selection forms, Web Map Services, and Web Feature Services).

  3. Tsunami: The Underrated Hazard

    Synolakis, Costas; Fryer, Gerard J.

    Tsunami: the Underrated Hazard, by Edward Bryant, would appear to be a welcome addition to the scholarly tsunami literature. No book on tsunamis has the broad perspective of this work. The book looks attractive, with many high-quality photographs. It looks comprehensive, with discussions of tsunami hydrodynamics, tsunami effects on coastal landscapes, and causes of tsunamis (earthquakes, landslides, volcanic eruptions, meteorite impacts). It looks practical, with a section on risk and mitigation. It also looks entertaining, with an opening chapter on tsunami legends and a closing chapter presenting fanciful descriptions of imagined events. Appearances are deceiving, though. Any initial enthusiasm for the work evaporates on even casual reading. The book is so flawed by errors, omissions, confusion, and unsupported conjecture that we cannot recommend it to anyone.

  4. A culture of tsunami preparedness and applying knowledge from recent tsunamis affecting California

    Miller, K. M.; Wilson, R. I.

    2012-12-01

    It is the mission of the California Tsunami Program to ensure public safety by protecting lives and property before, during, and after a potentially destructive or damaging tsunami. In order to achieve this goal, the state has sought first to use finite funding resources to identify and quantify the tsunami hazard using the best available scientific expertise, modeling, data, mapping, and methods at its disposal. Secondly, it has been vital to accurately inform the emergency response community of the nature of the threat by defining inundation zones prior to a tsunami event and leveraging technical expertise during ongoing tsunami alert notifications (specifically incoming wave heights, arrival times, and the dangers of strong currents). State scientists and emergency managers have been able to learn and apply both scientific and emergency response lessons from recent, distant-source tsunamis affecting coastal California (from Samoa in 2009, Chile in 2010, and Japan in 2011). Emergency managers must understand and plan in advance for specific actions and protocols for each alert notification level provided by the NOAA/NWS West Coast/Alaska Tsunami Warning Center. Finally the state program has provided education and outreach information via a multitude of delivery methods, activities, and end products while keeping the message simple, consistent, and focused. The goal is a culture of preparedness and understanding of what to do in the face of a tsunami by residents, visitors, and responsible government officials. We provide an update of results and findings made by the state program with support of the National Tsunami Hazard Mitigation Program through important collaboration with other U.S. States, Territories and agencies. In 2009 the California Emergency Management Agency (CalEMA) and the California Geological Survey (CGS) completed tsunami inundation modeling and mapping for all low-lying, populated coastal areas of California to assist local jurisdictions on

  5. TIDE-TSUNAMI INTERACTIONS

    Zygmunt Kowalik

    2006-01-01

    Full Text Available In this paper we investigate important dynamics defining tsunami enhancement in the coastal regions and related to interaction with tides. Observations and computations of the Indian Ocean Tsunami usually show amplifications of the tsunami in the near-shore regions due to water shoaling. Additionally, numerous observations depicted quite long ringing of tsunami oscillations in the coastal regions, suggesting either local resonance or the local trapping of the tsunami energy. In the real ocean, the short-period tsunami wave rides on the longer-period tides. The question is whether these two waves can be superposed linearly for the purpose of determining the resulting sea surface height (SSH or rather in the shallow water they interact nonlinearly, enhancing/reducing the total sea level and currents. Since the near–shore bathymetry is important for the run-up computation, Weisz and Winter (2005 demonstrated that the changes of depth caused by tides should not be neglected in tsunami run-up considerations. On the other hand, we hypothesize that much more significant effect of the tsunami-tide interaction should be observed through the tidal and tsunami currents. In order to test this hypothesis we apply a simple set of 1-D equations of motion and continuity to demonstrate the dynamics of tsunami and tide interaction in the vicinity of the shelf break for two coastal domains: shallow waters of an elongated inlet and narrow shelf typical for deep waters of the Gulf of Alaska.

  6. Tsunami-HySEA: A GPU based model for the Italian candidate Tsunami Service Provider

    Gonzalez Vida, Jose Manuel; Macias, Jorge; Castro, Manuel; de la Asuncion, Marc; Melini, Daniele; Romano, Fabrizio; Tonini, Roberto; Lorito, Stefano; Piatanesi, Alessio; Molinari, Irene

    2015-04-01

    Tsunami Service Providers (TSP), providing tsunami warnings in the framework of the systems coordinated by IOC/UNESCO worldwide, and other national tsunami warning centers, are striving to complement, or replace, decision matrices and pre-calculated tsunami scenario databases with FTRT (Faster Than Real Time) tsunami simulations. The aim is to increase the accuracy of tsunami forecast by assimilating the largest possible amount of data in quasi real time, and performing simulations in a few minutes wall-clock time, possibly including the coastal inundation stage. This strategy of direct real time computation, that could seem unfeasible a decade ago, it is now foreseeable thanks to the astonishingly recent increase in the computational power and bandwidth evolution of modern GPUs. The INGV in collaboration with the EDANYA Group (University of Málaga) are developing and implementing a FTRT Tsunami Simulation approach for the Italian candidate TSP, namely the Centro Allerta Tsunami (CAT), which is in pre-operational stage starting from 1 October 2014, in the 24/7 seismic monitoring room at INGV. The mandate of CAT is to provide warnings for potential tsunamis within the Mediterranean basin to its subscribers, in the framework of NEAMTWS (http://www.ioc-tsunami.org/index.php?option=com_content&view=article&id=70:neamtws-home&catid=9&Itemid=14&lang=es). CAT also performs global monitoring, for continuous testing, training, and validation purposes. The tsunami-HySEA model, developed by EDANYA Group, implements in the same code the three phases of an earthquake generated tsunami: generation, propagation and coastal inundation. At the same time it is implemented in nested meshes with different resolution and multi-GPU environment, which allows much faster than real time simulations. The challenge set by the Italian TSP for warning in the NEAMTWS region is twofold: to be able to reasonably constrain the earthquake source in the absence of deep sea tsunami sensors, and to

  7. Local tsunami warnings: Perspectives from recent large events

    Melgar, Diego; Allen, Richard M.; Riquelme, Sebastian; Geng, Jianghui; Bravo, Francisco; Baez, Juan Carlos; Parra, Hector; Barrientos, Sergio; Fang, Peng; Bock, Yehuda; Bevis, Michael; Caccamise, Dana J.; Vigny, Christophe; Moreno, Marcos; Smalley, Robert

    2016-02-01

    We demonstrate a flexible strategy for local tsunami warning that relies on regional geodetic and seismic stations. Through retrospective analysis of four recent tsunamigenic events in Japan and Chile, we show that rapid earthquake source information, provided by methodologies developed for earthquake early warning, can be used to generate timely estimates of maximum expected tsunami amplitude with enough accuracy for tsunami warning. We validate the technique by comparing to detailed models of earthquake source and tsunami propagation as well as field surveys of tsunami inundation. Our approach does not require deployment of new geodetic and seismic instrumentation in many subduction zones and could be implemented rapidly by national monitoring and warning agencies. We illustrate the potential impact of our method with a detailed comparison to the actual timeline of events during the recent 2015 Mw8.3 Illapel, Chile, earthquake and tsunami that prompted the evacuation of 1 million people.

  8. Tsunamis in Cuba?; Tsunamis en Cuba?

    Cotilla Rodriguez, M. O.

    2011-07-01

    Cuba as neo tectonics structure in the southern of the North American plate had three tsunamis. One of them [local] occurred in the Central-Northern region [1931.10.01, Nortecubana fault], the other was a tele tsunami [1755.11.01, in the SW of the Iberian Peninsula] that hit the Bay of Santiago de Cuba, and the third took place at 1867.11.18, by the regional source of Virgin Islands, which produced waves in the Eastern Cuban region. This tsunami originated to the NE of Puerto Rico in 1918.10.11, with another earthquake of equal magnitude and at similar coordinates, produced a tsunami that did not affect Cuba. Information on the influence of regional tsunami in 1946.08.08 of the NE of the Dominican Republic [Matanzas] in Northwestern Cuba [beaches Guanabo-Baracoa] is contrary to expectations with the waves propagation. The local event of 1939.08.15 attributed to Central- Northern Cuba [Cayo Frances with M = 8.1] does not correspond at all with the maximum magnitude of earthquakes in this region and the potential of the Nortecubana fault. Tsunamis attributed to events such as 1766.06.11 and 1932.02.03 in the Santiago de Cuba Bay are not reflected in the original documents from experts and eyewitnesses. Tsunamis from Jamaica have not affected the coasts of Cuba, despite its proximity. There is no influence in Cuba of tsunamigenic sources of the southern and western parts of the Caribbean, or the Gulf of Mexico. Set out the doubts as to the influence of tsunamis from Haiti and Dominican Republic at Guantanamo Bay which is closer to and on the same latitude, and spatial orientation than the counterpart of Santiago de Cuba, that had impact. The number of fatalities by authors in the Caribbean is different and contradictory. (Author) 76 refs.

  9. Psychometrically and qualitatively validating a cross-national cumulative measure of fear-based xenophobia

    Veer, van der, P.; Ommundsen, R.; Yakushko, O.; Higler, L.; Hagen, K.A.

    2011-01-01

    .40. The result, a cross-national 5-item scale measuring fear-based xenophobia, was tested by means of the Three-step Test-Interview (Hak, Van der Veer and Jansen 2008) with 10 students in The Netherlands and 10 students in Norway. The analysis of these qualitative interviews shows that individual respondents’ criteria for the ranking of the scale items strongly depend on the way immigrants are framed. Ranking according to different levels of fear turned out to be only one criterion out of se...

  10. 2004 Sumatra Tsunami

    Vongvisessomjai, S.; Suppataratarn, P.

    2005-01-01

    A catastrophic tsunami on December 26, 2004 caused devastation in the coastal region of six southern provinces of Thailand on the Andaman Sea coast. This paper summaries the characteristics of tsunami with the aim of informing and warning the public and reducing future casualties and damage.The first part is a review of the records of past catastrophic tsunamis, namely those in Chile in 1960, Alaska in 1964, and Flores, Java, Indonesia, in 1992, and the lessons drawn from these tsunamis. An a...

  11. Probabilistic Tsunami Hazard Analysis

    Thio, H. K.; Ichinose, G. A.; Somerville, P. G.; Polet, J.

    2006-12-01

    The recent tsunami disaster caused by the 2004 Sumatra-Andaman earthquake has focused our attention to the hazard posed by large earthquakes that occur under water, in particular subduction zone earthquakes, and the tsunamis that they generate. Even though these kinds of events are rare, the very large loss of life and material destruction caused by this earthquake warrant a significant effort towards the mitigation of the tsunami hazard. For ground motion hazard, Probabilistic Seismic Hazard Analysis (PSHA) has become a standard practice in the evaluation and mitigation of seismic hazard to populations in particular with respect to structures, infrastructure and lifelines. Its ability to condense the complexities and variability of seismic activity into a manageable set of parameters greatly facilitates the design of effective seismic resistant buildings but also the planning of infrastructure projects. Probabilistic Tsunami Hazard Analysis (PTHA) achieves the same goal for hazards posed by tsunami. There are great advantages of implementing such a method to evaluate the total risk (seismic and tsunami) to coastal communities. The method that we have developed is based on the traditional PSHA and therefore completely consistent with standard seismic practice. Because of the strong dependence of tsunami wave heights on bathymetry, we use a full waveform tsunami waveform computation in lieu of attenuation relations that are common in PSHA. By pre-computing and storing the tsunami waveforms at points along the coast generated for sets of subfaults that comprise larger earthquake faults, we can efficiently synthesize tsunami waveforms for any slip distribution on those faults by summing the individual subfault tsunami waveforms (weighted by their slip). This efficiency make it feasible to use Green's function summation in lieu of attenuation relations to provide very accurate estimates of tsunami height for probabilistic calculations, where one typically computes

  12. Tsunami Run-up Heights at Imwon Port, Korea

    Cho, Yong-Sik; Cho, Jeong-Seon

    2015-04-01

    surveyed again. The run-up heights for both 1983 and 1993 Tsunami events are computed along the Eastern Coastline of the Korean Peninsula. Finally, a tsunami hazard map is generated based on the computed and observed run-up heights. Significant information such as proper evacuation routes, shelters and hot lines are included in the map. Acknowledgements The research described in this publication was supported by the National Research Foundation of Korea (Reference No. 2010-0022337).

  13. A~probabilistic tsunami hazard assessment for Indonesia

    N. Horspool

    2014-05-01

    Full Text Available Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence based decision making on risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean Tsunami, but this has been largely concentrated on the Sunda Arc, with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent Probabilistic Tsunami Hazard Assessment (PTHA for Indonesia. This assessment produces time independent forecasts of tsunami hazard at the coast from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte-carlo approach to probabilistic seismic hazard assessment (PSHA and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and through sampling probability density functions. For short return periods (100 years the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500–2500 years, the tsunami hazard is highest along the Sunda Arc, reflecting larger maximum magnitudes along the Sunda Arc. The annual probability of experiencing a tsunami with a height at the coast of > 0.5 m is greater than 10% for Sumatra, Java, the Sunda Islands (Bali, Lombok, Flores, Sumba and north Papua. The annual probability of experiencing a tsunami with a height of >3.0 m, which would cause significant inundation and fatalities, is 1–10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1–1% for north Sulawesi, Seram and Flores. The results of this national scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.

  14. Educating and Preparing for Tsunamis in the Caribbean

    von Hillebrandt-Andrade, C.; Aliaga, B.; Edwards, S.

    2013-12-01

    The Caribbean and Adjacent Regions has a long history of tsunamis and earthquakes. Over the past 500 years, more than 75 tsunamis have been documented in the region by the NOAA National Geophysical Data Center. Just since 1842, 3446 lives have been lost to tsunamis; this is more than in the Northeastern Pacific for the same time period. With a population of almost 160 million, over 40 million visitors a year and a heavy concentration of residents, tourists, businesses and critical infrastructure along its shores (especially in the northern and eastern Caribbean), the risk to lives and livelihoods is greater than ever before. The only way to survive a tsunami is to get out of harm's way before the waves strike. In the Caribbean given the relatively short distances from faults, potential submarine landslides and volcanoes to some of the coastlines, the tsunamis are likely to be short fused, so it is imperative that tsunami warnings be issued extremely quickly and people be educated on how to recognize and respond. Nevertheless, given that tsunamis occur infrequently as compared with hurricanes, it is a challenge for them to receive the priority they require in order to save lives when the next one strikes the region. Close cooperation among countries and territories is required for warning, but also for education and public awareness. Geographical vicinity and spoken languages need to be factored in when developing tsunami preparedness in the Caribbean, to make sure citizens receive a clear, reliable and sound science based message about the hazard and the risk. In 2006, in the wake of the Indian Ocean tsunami and after advocating without success for a Caribbean Tsunami Warning System since the mid 90's, the Intergovernmental Oceanographic Commission of UNESCO established the Intergovernmental Coordination Group for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (CARIBE EWS). Its purpose is to advance an end to end tsunami

  15. Real-time tsunami inundation forecasting and damage mapping towards enhancing tsunami disaster resiliency

    Koshimura, S.; Hino, R.; Ohta, Y.; Kobayashi, H.; Musa, A.; Murashima, Y.

    2014-12-01

    With use of modern computing power and advanced sensor networks, a project is underway to establish a new system of real-time tsunami inundation forecasting, damage estimation and mapping to enhance society's resilience in the aftermath of major tsunami disaster. The system consists of fusion of real-time crustal deformation monitoring/fault model estimation by Ohta et al. (2012), high-performance real-time tsunami propagation/inundation modeling with NEC's vector supercomputer SX-ACE, damage/loss estimation models (Koshimura et al., 2013), and geo-informatics. After a major (near field) earthquake is triggered, the first response of the system is to identify the tsunami source model by applying RAPiD Algorithm (Ohta et al., 2012) to observed RTK-GPS time series at GEONET sites in Japan. As performed in the data obtained during the 2011 Tohoku event, we assume less than 10 minutes as the acquisition time of the source model. Given the tsunami source, the system moves on to running tsunami propagation and inundation model which was optimized on the vector supercomputer SX-ACE to acquire the estimation of time series of tsunami at offshore/coastal tide gauges to determine tsunami travel and arrival time, extent of inundation zone, maximum flow depth distribution. The implemented tsunami numerical model is based on the non-linear shallow-water equations discretized by finite difference method. The merged bathymetry and topography grids are prepared with 10 m resolution to better estimate the tsunami inland penetration. Given the maximum flow depth distribution, the system performs GIS analysis to determine the numbers of exposed population and structures using census data, then estimates the numbers of potential death and damaged structures by applying tsunami fragility curve (Koshimura et al., 2013). Since the tsunami source model is determined, the model is supposed to complete the estimation within 10 minutes. The results are disseminated as mapping products to

  16. The Three Tsunamis

    Antcliff, Richard R.

    2007-01-01

    We often talk about how different our world is from our parent's world. We then extrapolate this thinking to our children and try to imagine the world they will face. This is hard enough. However, change is changing! The rate at which change is occurring is accelerating. These new ideas, technologies and ecologies appear to be coming at us like tsunamis. Our approach to responding to these oncoming tsunamis will frame the future our children will live in. There are many of these tsunamis; I am just going to focus on three really big ones heading our way.

  17. Response to the 2011 Great East Japan Earthquake and Tsunami disaster.

    Koshimura, Shunichi; Shuto, Nobuo

    2015-10-28

    We revisited the lessons of the 2011 Great East Japan Earthquake Tsunami disaster specifically on the response and impact, and discussed the paradigm shift of Japan's tsunami disaster management policies and the perspectives for reconstruction. Revisiting the modern histories of Tohoku tsunami disasters and pre-2011 tsunami countermeasures, we clarified how Japan's coastal communities have prepared for tsunamis. The discussion mainly focuses on structural measures such as seawalls and breakwaters and non-structural measures of hazard map and evacuation. The responses to the 2011 event are discussed specifically on the tsunami warning system and efforts to identify the tsunami impacts. The nation-wide post-tsunami survey results shed light on the mechanisms of structural destruction, tsunami loads and structural vulnerability to inform structural rehabilitation measures and land-use planning. Remarkable paradigm shifts in designing coastal protection and disaster mitigation measures were introduced, leading with a new concept of potential tsunami levels: Prevention (Level 1) and Mitigation (Level 2) levels according to the level of 'protection'. The seawall is designed with reference to Level 1 tsunami scenario, while comprehensive disaster management measures should refer to Level 2 tsunami for protection of human lives and reducing potential losses and damage. Throughout the case study in Sendai city, the proposed reconstruction plan was evaluated from the tsunami engineering point of view to discuss how the post 2011 paradigm was implemented in coastal communities for future disaster mitigation. The analysis revealed that Sendai city's multiple protection measures for Level 2 tsunami will contribute to a substantial reduction of the tsunami inundation zone and potential losses, combined with an effective tsunami evacuation plan. PMID:26392623

  18. Evaluation of Intensity of Recent Seismogenic Tsunamis in the World Ocean from 2000 to 2014

    Gusiakov, Viacheslav K.

    2015-12-01

    Tsunami intensity on the S oloviev-I mamura scale is one of the most important parameters for characterizing the overall size of a tsunami generated by submarine earthquakes. Consequently, this parameter is included in both global tsunami databases maintained by the National Centers for Environmental Information/World Data Service (NCEI/WDS) and the Novosibirsk Tsunami Laboratory of the Institute of Computational Mathematics and Mathematical Geophysics (NTL/ICMMG). S. Soloviev made the initial evaluation of the intensities of a large number of destructive historical tsunamis while compiling his two historical catalogs of tsunamis in the Pacific. The Novosibirsk Tsunami Laboratory under the Expert Tsunami Database Project made further determinations of tsunami intensity for the events after 1975. These intensities have been periodically incorporated into the NCEI/WDS tsunami database under the Global Tsunami Database Joint ICG/ITSU-IUGG/TC Project. In the on-line version of the NCEI/WDS Tsunami Database, the data on tsunami intensity are available only for the events prior to 2003. The main purpose of this paper is to extend the temporal coverage of this important parameter for characterizing tsunamigenic events to the present in order to provide researchers with more data for analyzing the temporal and spatial tsunami occurrence. However, of the 164 tsunamigenic events in the World Ocean from 2000 to the present, we could determine the intensity value for only 44 events that is less than 27 % of the total. For the rest of the events (that is, 73 %), the intensity value cannot be determined due to the lack of data on wave heights from the nearest coast. This shows that despite a great improvement in the tsunami-recording network in the Pacific and other oceanic basins during the last two decades, the data for reliable estimates of tsunami intensity are still problematic.

  19. Hokkaido Nansei-Oki Tsunami, July 12, 1993

    National Oceanic and Atmospheric Administration, Department of Commerce — An earthquake occurred off the west coast of Hokkaido and the small offshore island of Okushiri in the Sea of Japan. In two to five minutes the tsunami, one of the...

  20. Malaria in Sri Lanka: one year post-tsunami

    Briët, Olivier J T; Galappaththy, Gawrie N L; Amerasinghe, Priyanie H;

    2006-01-01

    One year ago, the authors of this article reported in this journal on the malaria situation in Sri Lanka prior to the tsunami that hit on 26 December 2004, and estimated the likelihood of a post-tsunami malaria outbreak to be low. Malaria incidence has decreased in 2005 as compared to 2004 in most...... districts, including the ones that were hit hardest by the tsunami. The malaria incidence (aggregated for the whole country) in 2005 followed the downward trend that started in 2000. However, surveillance was somewhat affected by the tsunami in some coastal areas and the actual incidence in these areas may...... have been higher than recorded, although there were no indications of this and it is unlikely to have affected the overall trend significantly. The focus of national and international post tsunami malaria control efforts was supply of antimalarials, distribution of impregnated mosquito nets and...

  1. Global Tsunami Database: Adding Geologic Deposits, Proxies, and Tools

    Brocko, V. R.; Varner, J.

    2007-12-01

    A result of collaboration between NOAA's National Geophysical Data Center (NGDC) and the Cooperative Institute for Research in the Environmental Sciences (CIRES), the Global Tsunami Database includes instrumental records, human observations, and now, information inferred from the geologic record. Deep Ocean Assessment and Reporting of Tsunamis (DART) data, historical reports, and information gleaned from published tsunami deposit research build a multi-faceted view of tsunami hazards and their history around the world. Tsunami history provides clues to what might happen in the future, including frequency of occurrence and maximum wave heights. However, instrumental and written records commonly span too little time to reveal the full range of a region's tsunami hazard. The sedimentary deposits of tsunamis, identified with the aid of modern analogs, increasingly complement instrumental and human observations. By adding the component of tsunamis inferred from the geologic record, the Global Tsunami Database extends the record of tsunamis backward in time. Deposit locations, their estimated age and descriptions of the deposits themselves fill in the tsunami record. Tsunamis inferred from proxies, such as evidence for coseismic subsidence, are included to estimate recurrence intervals, but are flagged to highlight the absence of a physical deposit. Authors may submit their own descriptions and upload digital versions of publications. Users may sort by any populated field, including event, location, region, age of deposit, author, publication type (extract information from peer reviewed publications only, if you wish), grain size, composition, presence/absence of plant material. Users may find tsunami deposit references for a given location, event or author; search for particular properties of tsunami deposits; and even identify potential collaborators. Users may also download public-domain documents. Data and information may be viewed using tools designed to extract and

  2. Major Tsunamis of 1992 - Nicaragua and Indonesia

    National Oceanic and Atmospheric Administration, Department of Commerce — At 7:16 p.m. on September 1, 1992, an earthquake with a magnitude of 7.0 generated a tsunami with waves between eight and fifteen meters high that struck twenty-six...

  3. The Catalog of Event Data of the Operational Deep-ocean Assessment and Reporting of Tsunamis (DART) Stations at the National Data Buoy Center

    Bouchard, R.; Locke, L.; Hansen, W.; Collins, S.; McArthur, S.

    2007-12-01

    DART systems are a critical component of the tsunami warning system as they provide the only real-time, in situ, tsunami detection before landfall. DART systems consist of a surface buoy that serves as a position locater and communications transceiver and a Bottom Pressure Recorder (BPR) on the seafloor. The BPR records temperature and pressure at 15-second intervals to a memory card for later retrieval for analysis and use by tsunami researchers, but the BPRs are normally recovered only once every two years. The DART systems also transmit subsets of the data, converted to an estimation of the sea surface height, in near real-time for use by the tsunami warning community. These data are available on NDBC's webpages, http://www.ndbc.noaa.gov/dart.shtml. Although not of the resolution of the data recorded to the BPR memory card, the near real-time data have proven to be of value in research applications [1]. Of particular interest are the DART data associated with geophysical events. The DART BPR continuously compares the measured sea height with a predicted sea-height and when the difference exceeds a threshold value, the BPR goes into Event Mode. Event Mode provides an extended, more frequent near real-time reporting of the sea surface heights for tsunami detection. The BPR can go into Event Mode because of geophysical triggers, such as tsunamis or seismic activity, which may or may not be tsunamigenic. The BPR can also go into Event Mode during recovery of the BPR as it leaves the seafloor, or when manually triggered by the Tsunami Warning Centers in advance of an expected tsunami. On occasion, the BPR will go into Event Mode without any associated tsunami or seismic activity or human intervention and these are considered "False'' Events. Approximately one- third of all Events can be classified as "False". NDBC is responsible for the operations, maintenance, and data management of the DART stations. Each DART station has a webpage with a drop-down list of all

  4. Tsunamis: Sanitation and Hygiene

    ... on Specific Types of Emergencies Tsunamis: Sanitation and Hygiene Language: English Español (Spanish) Recommend on Facebook Tweet ... critical for you to remember to practice basic hygiene during the emergency period. Always wash your hands ...

  5. Tsunamis: Water Quality

    ... Planning Information on Specific Types of Emergencies Tsunamis: Water Quality Language: English Español (Spanish) Recommend on Facebook ... about testing should be directed to local authorities. Water for Drinking, Cooking, and Personal Hygiene Safe water ...

  6. Tsunamis and marine life

    Rao, D.V.S.; Ingole, B.S.; Tang, D.; Satyanarayan, B.; Zhao, H.

    , 2005), India, augmented by observations made by agencies in Sri Lanka and Indonesia. The tsunami impacted both the oceanic waters and the near-shore waters. The massive dislocation of sub-surface deep waters was similar to an upwelling...

  7. CONSIDERATIONS ON THE TREATMENT OF QUALITATIVE CHARACTERISTICS OF ACCOUNTING INFORMATION AT THE INTERNATIONAL LEVEL AND IN VARIOUS NATIONAL ACCOUNTING SYSTEMS

    Ionela Cristina Breahna Pravat

    2014-07-01

    Full Text Available The qualitative characteristics of accounting information presented by financial-accounting reports represent a concept which was subsequently introduced in the national legal accounting framework and, as a rule, the national conceptual frameworks represent the documents by means of which these quality criteria are established. At a worldwide level, there are more international or national organisms that have an important role in the elaboration of accounting standards in general and more specifically in the formulation of qualitative characteristics of financial reporting. We find two important ones among them, and these are: International Accounting Standards Board, which creates and promotes International Financial Reporting Standards (IFRS, and Financial Accounting Standards Board, which elaborates Generally Accepted Accounting Principles (US GAAP. However, at the level of each country a standardizing authority decides the rules for producing the financial reports and the qualitative characteristics that must be respected by the information contained in these documents. In this context, this paper aims to present a few general considerations concerning the treatment of the qualitative characteristics of the financial-accounting information in different accounting systems, such as the American one, or the British, French, German, Romanian ones, with insistence on the international approach to qualitative characteristics.

  8. Tsunamis in Cuba?

    Cuba as neo tectonics structure in the southern of the North American plate had three tsunamis. One of them [local] occurred in the Central-Northern region [1931.10.01, Nortecubana fault], the other was a tele tsunami [1755.11.01, in the SW of the Iberian Peninsula] that hit the Bay of Santiago de Cuba, and the third took place at 1867.11.18, by the regional source of Virgin Islands, which produced waves in the Eastern Cuban region. This tsunami originated to the NE of Puerto Rico in 1918.10.11, with another earthquake of equal magnitude and at similar coordinates, produced a tsunami that did not affect Cuba. Information on the influence of regional tsunami in 1946.08.08 of the NE of the Dominican Republic [Matanzas] in Northwestern Cuba [beaches Guanabo-Baracoa] is contrary to expectations with the waves propagation. The local event of 1939.08.15 attributed to Central- Northern Cuba [Cayo Frances with M = 8.1] does not correspond at all with the maximum magnitude of earthquakes in this region and the potential of the Nortecubana fault. Tsunamis attributed to events such as 1766.06.11 and 1932.02.03 in the Santiago de Cuba Bay are not reflected in the original documents from experts and eyewitnesses. Tsunamis from Jamaica have not affected the coasts of Cuba, despite its proximity. There is no influence in Cuba of tsunamigenic sources of the southern and western parts of the Caribbean, or the Gulf of Mexico. Set out the doubts as to the influence of tsunamis from Haiti and Dominican Republic at Guantanamo Bay which is closer to and on the same latitude, and spatial orientation than the counterpart of Santiago de Cuba, that had impact. The number of fatalities by authors in the Caribbean is different and contradictory. (Author) 76 refs.

  9. Tsunami: ocean dynamo generator.

    Sugioka, Hiroko; Hamano, Yozo; Baba, Kiyoshi; Kasaya, Takafumi; Tada, Noriko; Suetsugu, Daisuke

    2014-01-01

    Secondary magnetic fields are induced by the flow of electrically conducting seawater through the Earth's primary magnetic field ('ocean dynamo effect'), and hence it has long been speculated that tsunami flows should produce measurable magnetic field perturbations, although the signal-to-noise ratio would be small because of the influence of the solar magnetic fields. Here, we report on the detection of deep-seafloor electromagnetic perturbations of 10-micron-order induced by a tsunami, which propagated through a seafloor electromagnetometer array network. The observed data extracted tsunami characteristics, including the direction and velocity of propagation as well as sea-level change, first to verify the induction theory. Presently, offshore observation systems for the early forecasting of tsunami are based on the sea-level measurement by seafloor pressure gauges. In terms of tsunami forecasting accuracy, the integration of vectored electromagnetic measurements into existing scalar observation systems would represent a substantial improvement in the performance of tsunami early-warning systems. PMID:24399356

  10. Tsunami Generation Modelling for Early Warning Systems

    Annunziato, A.; Matias, L.; Ulutas, E.; Baptista, M. A.; Carrilho, F.

    2009-04-01

    In the frame of a collaboration between the European Commission Joint Research Centre and the Institute of Meteorology in Portugal, a complete analytical tool to support Early Warning Systems is being developed. The tool will be part of the Portuguese National Early Warning System and will be used also in the frame of the UNESCO North Atlantic Section of the Tsunami Early Warning System. The system called Tsunami Analysis Tool (TAT) includes a worldwide scenario database that has been pre-calculated using the SWAN-JRC code (Annunziato, 2007). This code uses a simplified fault generation mechanism and the hydraulic model is based on the SWAN code (Mader, 1988). In addition to the pre-defined scenario, a system of computers is always ready to start a new calculation whenever a new earthquake is detected by the seismic networks (such as USGS or EMSC) and is judged capable to generate a Tsunami. The calculation is performed using minimal parameters (epicentre and the magnitude of the earthquake): the programme calculates the rupture length and rupture width by using empirical relationship proposed by Ward (2002). The database calculations, as well the newly generated calculations with the current conditions are therefore available to TAT where the real online analysis is performed. The system allows to analyze also sea level measurements available worldwide in order to compare them and decide if a tsunami is really occurring or not. Although TAT, connected with the scenario database and the online calculation system, is at the moment the only software that can support the tsunami analysis on a global scale, we are convinced that the fault generation mechanism is too simplified to give a correct tsunami prediction. Furthermore short tsunami arrival times especially require a possible earthquake source parameters data on tectonic features of the faults like strike, dip, rake and slip in order to minimize real time uncertainty of rupture parameters. Indeed the earthquake

  11. A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters

    Ren, Luchuan

    2015-04-01

    A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters Luchuan Ren, Jianwei Tian, Mingli Hong Institute of Disaster Prevention, Sanhe, Heibei Province, 065201, P.R. China It is obvious that the uncertainties of the maximum tsunami wave heights in offshore area are partly from uncertainties of the potential seismic tsunami source parameters. A global sensitivity analysis method on the maximum tsunami wave heights to the potential seismic source parameters is put forward in this paper. The tsunami wave heights are calculated by COMCOT ( the Cornell Multi-grid Coupled Tsunami Model), on the assumption that an earthquake with magnitude MW8.0 occurred at the northern fault segment along the Manila Trench and triggered a tsunami in the South China Sea. We select the simulated results of maximum tsunami wave heights at specific sites in offshore area to verify the validity of the method proposed in this paper. For ranking importance order of the uncertainties of potential seismic source parameters (the earthquake's magnitude, the focal depth, the strike angle, dip angle and slip angle etc..) in generating uncertainties of the maximum tsunami wave heights, we chose Morris method to analyze the sensitivity of the maximum tsunami wave heights to the aforementioned parameters, and give several qualitative descriptions of nonlinear or linear effects of them on the maximum tsunami wave heights. We quantitatively analyze the sensitivity of the maximum tsunami wave heights to these parameters and the interaction effects among these parameters on the maximum tsunami wave heights by means of the extended FAST method afterward. The results shows that the maximum tsunami wave heights are very sensitive to the earthquake magnitude, followed successively by the epicenter location, the strike angle and dip angle, the interactions effect between the sensitive parameters are very obvious at specific site in offshore area, and there

  12. Perceptions of radiography and the National Health Service: a qualitative study

    Coombs, C.R. E-mail: c.r.coombs@lboro.ac.uk; Park, J.R.; Loan-Clarke, J.; Arnold, J.; Preston, D.; Wilkinson, A.J

    2003-05-01

    Purpose: To identify the factors that determine the attractiveness of radiography as a career choice and of the National Health Service (NHS) as an employer to potential recruits and returners. Methods: Individual and group interviews were conducted in the East Midlands region to explore participants' perceptions of the attractiveness of the NHS as an employer to potential radiography staff. Interviews were conducted with school pupils, radiography students, mature students, radiography assistants, agency radiographers and independent sector radiographers. Results: Eighty-eight individuals participated in the qualitative stage of the study. Analysis of the interview transcripts indicated that radiography as a career choice is perceived as boring and routine, involving high workloads and little recognition from the general public. Working with patients is the source of considerable job satisfaction but is offset by staff shortages, lack of flexibility over working hours and a lack of consideration of family commitments in the NHS. Financial costs are highlighted as dissuading many participants from considering a career as a radiographer in the NHS or returning to work for the NHS. Greater use of open days in conjunction with more advertising of the profession is suggested as tactics to improve recruitment. Conclusions: The provision of more flexible working hours, greater consideration of family commitments and increased financial support for training are necessary to improve the attractiveness of a radiography career. NHS Human Resource Managers should consider these findings concerning the applicant and returner pools when developing strategies to address the current shortfall of radiographers.

  13. Perceptions of radiography and the National Health Service: a qualitative study

    Purpose: To identify the factors that determine the attractiveness of radiography as a career choice and of the National Health Service (NHS) as an employer to potential recruits and returners. Methods: Individual and group interviews were conducted in the East Midlands region to explore participants' perceptions of the attractiveness of the NHS as an employer to potential radiography staff. Interviews were conducted with school pupils, radiography students, mature students, radiography assistants, agency radiographers and independent sector radiographers. Results: Eighty-eight individuals participated in the qualitative stage of the study. Analysis of the interview transcripts indicated that radiography as a career choice is perceived as boring and routine, involving high workloads and little recognition from the general public. Working with patients is the source of considerable job satisfaction but is offset by staff shortages, lack of flexibility over working hours and a lack of consideration of family commitments in the NHS. Financial costs are highlighted as dissuading many participants from considering a career as a radiographer in the NHS or returning to work for the NHS. Greater use of open days in conjunction with more advertising of the profession is suggested as tactics to improve recruitment. Conclusions: The provision of more flexible working hours, greater consideration of family commitments and increased financial support for training are necessary to improve the attractiveness of a radiography career. NHS Human Resource Managers should consider these findings concerning the applicant and returner pools when developing strategies to address the current shortfall of radiographers

  14. The Study to Improve Tsunami Preparedness Education in Turkey

    Sakamoto, Mayumi; Tanırcan, Gülüm; Kaneda, Yoshiyuki; Puskulcu, Seyhun; Kumamoto, Kunihiko

    2016-04-01

    Compared to its long history on disastrous earthquakes, disaster education history in Turkey is rather short. It has just started with an initiative of Disaster Preparedness Education Unit of Bogazici University (BU/DPEU) after 1999 Kocaeli Earthquake. Training modules and materials on disaster preparedness were prepared both for students, teachers and community. Regarding to the school education, the Ministry of National Education (MoNE) reformed their education plan in 2003, and disaster education became one of eight focused components for primary-middle education. In 2011-2014 MoNE had conducted "School-based Disaster Education Project" in collaboration with Japan International Cooperation Agency (JICA). The majority of the school education materials focus more on earthquake and there are very few education programs on tsunami. Within the MarDiM (Earthquake and Tsunami Disaster Mitigation in the Marmara Region and Disaster Education in Turkey) project between Turkey and Japan a multidisciplinary engineering research as well as development of disaster education, tsunami education booklet and video were newly developed in 2015. In order to investigate students' knowledge natural disasters and disaster preparedness with focus on tsunami, a questionnaire based survey was conducted. The survey aims to clarify following questions: 1) how students obtain natural disaster information, 2) how students prepare for natural disaster, 3) knowledge on tsunami (hazard mechanism, evacuation behavior, historical disaster). The study was conducted by BU/DPEU in 2015 and 375 students answered the questionnaire. Results showed that students have more interest on earthquake, flood, tsunami and landslide followed it. Most students have heard about tsunami and the school is a key resource of their information. They know relatively well about tsunami mechanism, however, they have less knowledge on tsunami evacuation behavior and tsunami history in Turkey. In order to let students have

  15. Tsunami risk assessments in Messina, Sicily – Italy

    A. Grezio

    2012-01-01

    Full Text Available We present a first detailed tsunami risk assessment for the city of Messina where one of the most destructive tsunami inundations of the last centuries occurred in 1908. In the tsunami hazard evaluation, probabilities are calculated through a new general modular Bayesian tool for Probability Tsunami Hazard Assessment. The estimation of losses of persons and buildings takes into account data collected directly or supplied by: (i the Italian National Institute of Statistics that provides information on the population, on buildings and on many relevant social aspects; (ii the Italian National Territory Agency that provides updated economic values of the buildings on the basis of their typology (residential, commercial, industrial and location (streets; and (iii the Train and Port Authorities. For human beings, a factor of time exposition is introduced and calculated in terms of hours per day in different places (private and public and in terms of seasons, considering that some factors like the number of tourists can vary by one order of magnitude from January to August. Since the tsunami risk is a function of the run-up levels along the coast, a variable tsunami risk zone is defined as the area along the Messina coast where tsunami inundations may occur.

  16. Food Safety After a Tsunami

    ... Hurricanes Landslides Tornadoes Tsunamis Volcanoes Wildfires Winter Weather Food Safety After a Tsunami Language: English Español (Spanish) ... baby formula that requires no added water. Keeping Foods Cold If available, dry ice can be used ...

  17. 2004 Sumatra Tsunami

    Vongvisessomjai, S.

    2005-09-01

    Full Text Available A catastrophic tsunami on December 26, 2004 caused devastation in the coastal region of six southern provinces of Thailand on the Andaman Sea coast. This paper summaries the characteristics of tsunami with the aim of informing and warning the public and reducing future casualties and damage.The first part is a review of the records of past catastrophic tsunamis, namely those in Chile in 1960, Alaska in 1964, and Flores, Java, Indonesia, in 1992, and the lessons drawn from these tsunamis. An analysis and the impact of the 2004 Sumatra tsunami is then presented and remedial measures recommended.Results of this study are as follows:Firstly, the 2004 Sumatra tsunami ranked fourth in terms of earthquake magnitude (9.0 M after those in 1960 in Chile (9.5 M, 1899 in Alaska (9.2 M and 1964 in Alaska (9.1 M and ranked first in terms of damage and casualties. It was most destructive when breaking in shallow water nearshore.Secondly, the best alleviation measures are 1 to set up a reliable system for providing warning at the time of an earthquake in order to save lives and reduce damage and 2 to establish a hazard map and implement land-use zoning in the devastated areas, according to the following principles:- Large hotels located at an elevation of not less than 10 m above mean sea level (MSL- Medium hotels located at an elevation of not less than 6 m above MSL- Small hotel located at elevation below 6 m MSL, but with the first floor elevated on poles to allow passage of a tsunami wave- Set-back distances from shoreline established for various developments- Provision of shelters and evacuation directionsFinally, public education is an essential part of preparedness.

  18. Tsunamis from nature to physics

    Helal, M.A. [Department of Mathematics, Faculty of Science, University of Cairo, Giza, Cairo (Egypt)], E-mail: mahelal@yahoo.com; Mehanna, M.S. [Department of Mathematics, Faculty of Science, University of Cairo, Giza, Cairo (Egypt)

    2008-05-15

    Tsunamis are gravity waves that propagate near the ocean surface. They belong to the same family as common sea waves that we enjoy at the beach; however, tsunamis are distinct in their mode of generation and in their characteristic period, wavelength, and velocity. The type of tsunamis that induce widespread damage number about one or two per decade. Thus 'killer tsunamis' although fearful, are a relatively rare phenomenon.

  19. TSUNAMI INFORMATION SOURCES - PART 4

    Robert L. Wiegel

    2009-01-01

    I have expanded substantially my list of information sources on: tsunami generation (sources, impulsive mechanisms), propagation, effects of nearshore bathymetry, and wave run-up on shore - including physical (hydraulic) modeling and numerical modeling. This expanded list includes the subjects of field investigations of tsunamis soon after an event; damage effects in harbors on boats, ships, and facilities; tsunami wave-induced forces; damage by tsunami waves to structures on shore; scour/ero...

  20. The March 2011 Japan tsunami

    Tappin, Dave

    2011-01-01

    The March 11th 2011 Tohoku-iki earthquake was the fifth largest on Earth in the last 50 years, it created one of the most devastating tsunamis in history. Dave Tappin describes the background to the tsunami and its impact based on his research on tsunamis and visits to Japan over the past three months.

  1. The Redwood Coast Tsunami Work Group: a unique organization promoting earthquake and tsunami resilience on California's North Coast

    Dengler, L.; Henderson, C.; Larkin, D.; Nicolini, T.; Ozaki, V.

    2012-12-01

    The Northern California counties of Del Norte, Humboldt, and Mendocino account for over 30% of California's coastline and is one of the most seismically active areas of the contiguous 48 states. The region is at risk from earthquakes located on- and offshore and from tsunamis generated locally from faults associated with the Cascadia subduction zone (CSZ) and from distant sources elsewhere in the Pacific. In 1995 the California Geological Survey (CGS) published a scenario for a CSZ earthquake that included both strong ground shaking effects and a tsunami. As a result of the scenario, the Redwood Coast Tsunami Work Group (RCTWG), an organization of government agencies, tribes, service groups, academia and the private sector, was formed to coordinate and promote earthquake and tsunami hazard awareness and mitigation in the three-county region. The RCTWG and its member agencies projects include education/outreach products and programs, tsunami hazard mapping, signage and siren planning. Since 2008, RCTWG has worked with the California Emergency Management Agency (Cal EMA) in conducting tsunami warning communications tests on the North Coast. In 2007, RCTWG members helped develop and carry out the first tsunami training exercise at FEMA's Emergency Management Institute in Emmitsburg, MD. The RCTWG has facilitated numerous multi-agency, multi-discipline coordinated exercises, and RCTWG county tsunami response plans have been a model for other regions of the state and country. Eight North Coast communities have been recognized as TsunamiReady by the National Weather Service, including the first National Park the first State Park and only tribe in California to be so recognized. Over 500 tsunami hazard zone signs have been posted in the RCTWG region since 2008. Eight assessment surveys from 1993 to 2010 have tracked preparedness actions and personal awareness of earthquake and tsunami hazards in the county and additional surveys have tracked public awareness and tourist

  2. Introduction of a qualitative perinatal audit at Muhimbili National Hospital, Dar es Salaam, Tanzania

    Thomas Angela N

    2009-09-01

    Full Text Available Abstract Background Perinatal death is a devastating experience for the mother and of concern in clinical practice. Regular perinatal audit may identify suboptimal care related to perinatal deaths and thus appropriate measures for its reduction. The aim of this study was to perform a qualitative perinatal audit of intrapartum and early neonatal deaths and propose means of reducing the perinatal mortality rate (PMR. Methods From 1st August, 2007 to 31st December, 2007 we conducted an audit of perinatal deaths (n = 133 with birth weight 1500 g or more at Muhimbili National Hospital (MNH. The audit was done by three obstetricians, two external and one internal auditors. Each auditor independently evaluated the cases narratives. Suboptimal factors were identified in the antepartum, intrapartum and early neonatal period and classified into three levels of delay (community, infrastructure and health care. The contribution of each suboptimal factor to adverse perinatal outcome was identified and the case graded according to possible avoidability. Degree of agreement between auditors was assessed by the kappa coefficient. Results The PMR was 92 per 1000 total births. Suboptimal factors were identified in 80% of audited cases and half of suboptimal factors were found to be the likely cause of adverse perinatal outcome and were preventable. Poor foetal heart monitoring during labour was indirectly associated with over 40% of perinatal death. There was a poor to fair agreement between external and internal auditors. Conclusion There are significant areas of care that need improvement. Poor monitoring during labour was a major cause of avoidable perinatal mortality. This type of audit was a good starting point for quality assurance at MNH. Regular perinatal audits to identify avoidable causes of perinatal deaths with feed back to the staff may be a useful strategy to reduce perinatal mortality.

  3. Alternative tsunami models

    Tan, A; Lyatskaya, I [Department of Physics, Alabama A and M University, Normal, AL 35762 (United States)], E-mail: arjun.tan@aamu.edu

    2009-01-15

    The interesting papers by Margaritondo (2005 Eur. J. Phys. 26 401) and by Helene and Yamashita (2006 Eur. J. Phys. 27 855) analysed the great Indian Ocean tsunami of 2004 using a simple one-dimensional canal wave model, which was appropriate for undergraduate students in physics and related fields of discipline. In this paper, two additional, easily understandable models, suitable for the same level of readership, are proposed: one, a two-dimensional model in flat space, and two, the same on a spherical surface. The models are used to study the tsunami produced by the central Kuril earthquake of November 2006. It is shown that the two alternative models, especially the latter one, give better representations of the wave amplitude, especially at far-flung locations. The latter model further demonstrates the enhancing effect on the amplitude due to the curvature of the Earth for far-reaching tsunami propagation.

  4. May Gravity detect Tsunami ?

    Fargion, D

    2004-01-01

    The present gravitational wave detectors are reaching lowest metric deviation fields able to detect galactic and extra-galactic gravitational waves, related to Supernova explosions up to Virgo cluster. The same gravitational wave detector are nevertheless almost able to reveal near field gravitational perturbations due to fast huge mass displacements as the ones occurring during largest Earth-Quake or Tsunami as the last on 26th December 2004 in Asiatic area. The prompt gravitational near field deformation by the Tsunami may reach the LIGO threshold sensitivity within 3000-10000 km distances. Their eventual discover (in LIGO data or in future on-line detector arrays) may offer the most rapid warning alarm system on earth. Nevertheless the later continental mass rearrangement and their gravitational field assessment on Earth must induce, for Richter Magnitude 9 Tsunami, a different terrestrial inertia momentum and a different rotation axis, as well as a detectable shrinking of the Earth radius of nearly R =1.7...

  5. ASTARTE: Assessment Strategy and Risk Reduction for Tsunamis in Europe

    Baptista, M. A.; Yalciner, A. C.; Canals, M.

    2014-12-01

    Tsunamis are low frequency but high impact natural disasters. In 2004, the Boxing Day tsunami killed hundreds of thousands of people from many nations along the coastlines of the Indian Ocean. Tsunami run-up exceeded 35 m. Seven years later, and in spite of some of the best warning technologies and levels of preparedness in the world, the Tohoku-Oki tsunami in Japan dramatically showed the limitations of scientific knowledge on tsunami sources, coastal impacts and mitigation measures. The experience from Japan raised serious questions on how to improve the resilience of coastal communities, to upgrade the performance of coastal defenses, to adopt a better risk management, and also on the strategies and priorities for the reconstruction of damaged coastal areas. Societal resilience requires the reinforcement of capabilities to manage and reduce risk at national and local scales.ASTARTE (Assessment STrategy And Risk for Tsunami in Europe), a 36-month FP7 project, aims to develop a comprehensive strategy to mitigate tsunami impact in this region. To achieve this goal, an interdisciplinary consortium has been assembled. It includes all CTWPs of NEAM and expert institutions across Europe and worldwide. ASTARTE will improve i) basic knowledge of tsunami generation and recurrence going beyond simple catalogues, with novel empirical data and new statistical analyses for assessing long-term recurrence and hazards of large events in sensitive areas of NEAM, ii) numerical techniques for tsunami simulation, with focus on real-time codes and novel statistical emulation approaches, and iii) methods for assessment of hazard, vulnerability, and risk. ASTARTE will also provide i) guidelines for tsunami Eurocodes, ii) better tools for forecast and warning for CTWPs and NTWCs, and iii) guidelines for decision makers to increase sustainability and resilience of coastal communities. In summary, ASTARTE will develop basic scientific and technical elements allowing for a significant

  6. Prioritizing Surgical Care on National Health Agendas: A Qualitative Case Study of Papua New Guinea, Uganda, and Sierra Leone.

    Dare, Anna J.; Katherine C Lee; Josh Bleicher; Elobu, Alex E; Kamara, Thaim B; Osborne Liko; Samuel Luboga; Akule Danlop; Gabriel Kune; Lars Hagander; Andrew J M Leather; Gavin Yamey

    2016-01-01

    Little is known about the social and political factors that influence priority setting for different health services in low- and middle-income countries (LMICs), yet these factors are integral to understanding how national health agendas are established. We investigated factors that facilitate or prevent surgical care from being prioritized in LMICs.We undertook country case studies in Papua New Guinea, Uganda, and Sierra Leone, using a qualitative process-tracing method. We conducted 74 semi...

  7. Probability-Based Design Criteria of the ASCE 7 Tsunami Loads and Effects Provisions (Invited)

    Chock, G.

    2013-12-01

    Mitigation of tsunami risk requires a combination of emergency preparedness for evacuation in addition to providing structural resilience of critical facilities, infrastructure, and key resources necessary for immediate response and economic and social recovery. Critical facilities would include emergency response, medical, tsunami refuges and shelters, ports and harbors, lifelines, transportation, telecommunications, power, financial institutions, and major industrial/commercial facilities. The Tsunami Loads and Effects Subcommittee of the ASCE/SEI 7 Standards Committee is developing a proposed new Chapter 6 - Tsunami Loads and Effects for the 2016 edition of the ASCE 7 Standard. ASCE 7 provides the minimum design loads and requirements for structures subject to building codes such as the International Building Code utilized in the USA. In this paper we will provide a review emphasizing the intent of these new code provisions and explain the design methodology. The ASCE 7 provisions for Tsunami Loads and Effects enables a set of analysis and design methodologies that are consistent with performance-based engineering based on probabilistic criteria. . The ASCE 7 Tsunami Loads and Effects chapter will be initially applicable only to the states of Alaska, Washington, Oregon, California, and Hawaii. Ground shaking effects and subsidence from a preceding local offshore Maximum Considered Earthquake will also be considered prior to tsunami arrival for Alaska and states in the Pacific Northwest regions governed by nearby offshore subduction earthquakes. For national tsunami design provisions to achieve a consistent reliability standard of structural performance for community resilience, a new generation of tsunami inundation hazard maps for design is required. The lesson of recent tsunami is that historical records alone do not provide a sufficient measure of the potential heights of future tsunamis. Engineering design must consider the occurrence of events greater than

  8. Benchmarking an Unstructured-Grid Model for Tsunami Current Modeling

    Zhang, Yinglong J.; Priest, George; Allan, Jonathan; Stimely, Laura

    2016-06-01

    We present model results derived from a tsunami current benchmarking workshop held by the NTHMP (National Tsunami Hazard Mitigation Program) in February 2015. Modeling was undertaken using our own 3D unstructured-grid model that has been previously certified by the NTHMP for tsunami inundation. Results for two benchmark tests are described here, including: (1) vortex structure in the wake of a submerged shoal and (2) impact of tsunami waves on Hilo Harbor in the 2011 Tohoku event. The modeled current velocities are compared with available lab and field data. We demonstrate that the model is able to accurately capture the velocity field in the two benchmark tests; in particular, the 3D model gives a much more accurate wake structure than the 2D model for the first test, with the root-mean-square error and mean bias no more than 2 cm s-1 and 8 mm s-1, respectively, for the modeled velocity.

  9. A review of tsunami simulation activities for NPPs safety

    The tsunami generated on December 26, 2004 due to Sumatra earthquake of magnitude 9.3 resulted in inundation at the various coastal sites of India. The site selection and design of Indian nuclear power plants demand the evaluation of run up and the structural barriers for the coastal plants: Besides it is also desirable to evaluate the early warning system for tsunamigenic earthquakes. The tsunamis originate from submarine faults, underwater volcanic activities, sub-aerial landslides impinging on the sea and submarine landslides. In case of a submarine earthquake-induced tsunami the wave is generated in the fluid domain due to displacement of the seabed. There are three phases of tsunami: generation, propagation, and run-up. Reactor Safety Division (RSD) of Bhabha Atomic Research Centre (BARC), Trombay has initiated computational simulation for all the three phases of tsunami source generation, its propagation and finally run up evaluation for the protection of public life, property and various industrial infrastructures located on the coastal regions of India. These studies could be effectively utilized for design and implementation of early warning system for coastal region of the country apart from catering to the needs of Indian nuclear installations. This paper presents some results of tsunami waves based on finite difference numerical approaches with shallow water wave theory. The present paper evaluate the results of various simulation i.e. Single fault Sumatra model, four and five fault Sumatra Model, Nias insignificant tsunami and also some parametric studies results for tsunami waring system scenario generation. A study is carried for the tsunami due to Sumatra earthquake in 2004 with TUNAMI-N2 software. Bathymetry data available from the National Geophysical Data Center was used for this study. The single fault and detailed four and five fault data were used to calculate sea surface deformations which were subsequently used as initial conditions for

  10. Coordinating Post-Tsunami Field Surveys in the us

    Kong, L. S.; Chiesa, C.; Dunbar, P. K.; Huart, J.; Richards, K.; Shulters, M.; Stein, A.; Tamura, G.; Wilson, R. I.; Young, E.

    2011-12-01

    Post-tsunami scientific field surveys are critical for improving the understanding of tsunamis and developing tools and programs to mitigate their effects. After a destructive tsunami, international, national, and local tsunami scientists need to gather information, much of which is perishable or degrades significantly with time. An influx of researchers can put stress on countries already overwhelmed by humanitarian response to the disaster and by the demands of emergency management and other support agencies. In the United States, in addition to university research scientists, government agencies such as the National Oceanic and Atmospheric Administration (NOAA), the U.S. Geologic Survey (USGS), and state/territorial emergency management agencies and geological surveys endeavor to collect physical and social science data to better understand the physics of tsunamis and the impact they have on coastal communities and ecosystems. After a Presidential Major Disaster Declaration, the Federal Emergency Management Agency (FEMA) Joint Field Office works with state/territory emergency management agencies to coordinate response to disasters. In the short-term, the collection and immediate sharing of data enable decision-making that better organizes and deploys often-limited resources to the areas most critically in need of response; and in the long-term, improves recovery planning that will mitigate the losses from the next tsunami. Recent tsunamis have emphasized the need for improved coordination of data collection among scientists and federal, state, and local emergency managers. Improved coordination will ensure data collection efforts are carried out in a safe, secure, efficient, and timely manner. To improve coordination of activities that will better integrate the scientific investigations with government response, the US National Tsunami Hazard Mitigation Program and Pacific Risk Management 'Ohana (PRiMO) are working together to develop a consistent framework for

  11. SAFRR Tsunami Scenarios and USGS-NTHMP Collaboration

    Ross, S.; Wood, N. J.; Cox, D. A.; Jones, L.; Cheung, K. F.; Chock, G.; Gately, K.; Jones, J. L.; Lynett, P. J.; Miller, K.; Nicolsky, D.; Richards, K.; Wein, A. M.; Wilson, R. I.

    2015-12-01

    Hazard scenarios provide emergency managers and others with information to help them prepare for future disasters. The SAFRR Tsunami Scenario, published in 2013, modeled a hypothetical but plausible tsunami, created by an Mw9.1 earthquake occurring offshore from the Alaskan peninsula, and its impacts on the California coast. It presented the modeled inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental impacts, social vulnerability, emergency management, and policy implications for California associated with the scenario tsunami. The intended users were those responsible for making mitigation decisions before and those who need to make rapid decisions during future tsunamis. It provided the basis for many exercises involving, among others, NOAA, the State of Washington, several counties in California, and the National Institutes of Health. The scenario led to improvements in the warning protocol for southern California and highlighted issues that led to ongoing work on harbor and marina safety. Building on the lessons learned in the SAFRR Tsunami Scenario, another tsunami scenario is being developed with impacts to Hawaii and to the source region in Alaska, focusing on the evacuation issues of remote communities with primarily shore parallel roads, and also on the effects of port closures. Community exposure studies in Hawaii (Ratliff et al., USGS-SIR, 2015) provided background for selecting these foci. One complicated and important aspect of any hazard scenario is defining the source event. The USGS is building collaborations with the National Tsunami Hazard Mitigation Program (NTHMP) to consider issues involved in developing a standardized set of tsunami sources to support hazard mitigation work. Other key USGS-NTHMP collaborations involve population vulnerability and evacuation modeling.

  12. Mexican Earthquakes and Tsunamis Catalog Reviewed

    Ramirez-Herrera, M. T.; Castillo-Aja, R.

    2015-12-01

    Today the availability of information on the internet makes online catalogs very easy to access by both scholars and the public in general. The catalog in the "Significant Earthquake Database", managed by the National Center for Environmental Information (NCEI formerly NCDC), NOAA, allows access by deploying tabular and cartographic data related to earthquakes and tsunamis contained in the database. The NCEI catalog is the product of compiling previously existing catalogs, historical sources, newspapers, and scientific articles. Because NCEI catalog has a global coverage the information is not homogeneous. Existence of historical information depends on the presence of people in places where the disaster occurred, and that the permanence of the description is preserved in documents and oral tradition. In the case of instrumental data, their availability depends on the distribution and quality of seismic stations. Therefore, the availability of information for the first half of 20th century can be improved by careful analysis of the available information and by searching and resolving inconsistencies. This study shows the advances we made in upgrading and refining data for the earthquake and tsunami catalog of Mexico since 1500 CE until today, presented in the format of table and map. Data analysis allowed us to identify the following sources of error in the location of the epicenters in existing catalogs: • Incorrect coordinate entry • Place name erroneous or mistaken • Too general data that makes difficult to locate the epicenter, mainly for older earthquakes • Inconsistency of earthquakes and the tsunami occurrence: earthquake's epicenter located too far inland reported as tsunamigenic. The process of completing the catalogs directly depends on the availability of information; as new archives are opened for inspection, there are more opportunities to complete the history of large earthquakes and tsunamis in Mexico. Here, we also present new earthquake and

  13. Speeding up tsunami wave propagation modeling

    Lavrentyev, Mikhail; Romanenko, Alexey

    2014-05-01

    Trans-oceanic wave propagation is one of the most time/CPU consuming parts of the tsunami modeling process. The so-called Method Of Splitting Tsunami (MOST) software package, developed at PMEL NOAA USA (Pacific Marine Environmental Laboratory of the National Oceanic and Atmospheric Administration, USA), is widely used to evaluate the tsunami parameters. However, it takes time to simulate trans-ocean wave propagation, that is up to 5 hours CPU time to "drive" the wave from Chili (epicenter) to the coast of Japan (even using a rather coarse computational mesh). Accurate wave height prediction requires fine meshes which leads to dramatic increase in time for simulation. Computation time is among the critical parameter as it takes only about 20 minutes for tsunami wave to approach the coast of Japan after earthquake at Japan trench or Sagami trench (as it was after the Great East Japan Earthquake on March 11, 2011). MOST solves numerically the hyperbolic system for three unknown functions, namely velocity vector and wave height (shallow water approximation). The system could be split into two independent systems by orthogonal directions (splitting method). Each system can be treated independently. This calculation scheme is well suited for SIMD architecture and GPUs as well. We performed adaptation of MOST package to GPU. Several numerical tests showed 40x performance gain for NVIDIA Tesla C2050 GPU vs. single core of Intel i7 processor. Results of numerical experiments were compared with other available simulation data. Calculation results, obtained at GPU, differ from the reference ones by 10^-3 cm of the wave height simulating 24 hours wave propagation. This allows us to speak about possibility to develop real-time system for evaluating tsunami danger.

  14. THE FRENCH TSUNAMI WARNING CENTER FOR THE MEDITERRANEAN AND NORTHEAST ATLANTIC: CENALT

    H. Hébert

    2013-01-01

    Full Text Available CENALT (CENtre d’ALerte aux Tsunamis is responsible for the French National Tsunami Warning Centre (NTWC. The CENALT is established in the framework of the Unesco/IOC/ICG/NEAMTWS. Its objective is to transmit a warning message in less than fifteen minutes for any events that could trigger a tsunami in the Western Mediterranean Sea and the North- Eastern Atlantic Ocean. The data collected from French installations and from institutions of European and North African countries is processed with software that permits early epicenter location of seismic events and measurements of expected tsunami impacts on the shore. On-duty analysts revise interactively all the generated information and use references of historical tsunami and earthquake databases - as well as computed tsunami scenarios – in order to disseminate the more comprehensive message possible.

  15. Tsunami Impacts in River Environments

    Tolkova, E.; Tanaka, H.; Roh, M.

    2014-12-01

    The 2010 Chilean and the 2011 Tohoku tsunami events demonstrated the tsunami's ability to penetrate much farther along rivers than the ground inundation. At the same time, while tsunami impacts to the coastal areas have been subject to countless studies, little is known about tsunami propagation in rivers. Here we examine the field data and conduct numerical simulations to gain better understanding of the tsunami impacts in rivers.The evidence which motivated our study is comprised of water level measurements of the aforementioned tsunamis in multiple rivers in Japan, and the 2011 Tohoku and some other tsunamis in the Columbia River in the US. When the available tsunami observations in these very different rivers are brought together, they display remarkably similar patterns not observed on the open coast. Two phenomena were discovered in the field data. First, the phase of the river tide determines the tsunami penetration distance in a very specific way common to all rivers. Tsunami wave progressively disappears on receding tide, whereas high tide greatly facilitates the tsunami intrusion, as seen in the Figure. Second, a strong near-field tsunami causes substantial and prolonged water accumulation in lower river reaches. As the 2011 tsunami intruded rivers in Japan, the water level along rivers rose 1-2 m and stayed high for many hours, with the maximum rise occurring several km from the river mouth. The rise in the water level at some upstream gaging stations even exceeded the tsunami amplitude there.Using the numerical experiments, we attempt to identify the physics behind these effects. We will demonstrate that the nonlinear interactions among the flow components (tsunami, tide, and riverine flow) are an essential condition governing wave dynamics in tidal rivers. Understanding these interactions might explain some previous surprising observations of waves in river environments. Figure: Measurements of the 2010/02/27 tsunami along Naruse and Yoshida rivers

  16. TSUNAMI WARNING SYSTEM IN THE PACIFIC: Brief Historical Review of its Establishment and Institutional Support

    George Pararas-Carayannis

    2015-05-01

    Full Text Available The year 2015 marks the 50th anniversary of operations of the International Tsunami Warning System in the Pacific Ocean. The present report describes briefly the establishment of the rudimentary early tsunami warning system in 1948 by the USA after the disastrous tsunami of April 1, 1946, generated by a great earthquake in the Aleutian Islands, struck without warning the Hawaiian Islands and other parts of the Pacific. Also reviewed are the progressive improvements made to the U.S. warning system, following the destructive tsunamis of 1952, 1957, 1960 and 1964, and of the early, support efforts undertaken in the U.S.A., initially by the Hawaii Institute of Geophysics of the University of Hawaii, by the U. S. Coast and Geodetic Survey and by the Honolulu Observatory - later renamed Pacific Tsunami Warning Center (PTWC. Following the 1964 Alaska tsunami, there was increased international cooperation, which resulted in a better understanding of the tsunami phenomenon and the development of a new field of Science of Tsunami Hazards in support of the early U.S. Warning System. Continuous supporting international cooperative efforts after 1965, resulted in the integration of the U.S. early warning system with other early regional tsunami warning systems of other nations to become the International Tsunami Warning System under the auspices of the Intergovernmental Oceanographic Commission (IOC of UNESCO for the purpose of mitigating the disaster’s impact in the Pacific, but later expanded to include other regions. Briefly reviewed in this paper is the subsequent institutional support of the International Tsunami Warning System in the Pacific, by the International Tsunami Information Center (ITIC, the International Tsunami Coordination Group (ICG/ITS, the Alaska Tsunami Warning Center (ATWC, the Joint Tsunami Research Effort (JTRE, NOAA’s National Geophysical Center (NGDC, the Pacific Marine Laboratory (PMEL of NOAA and of the later

  17. Improving tsunami resiliency: California's Tsunami Policy Working Group

    Real, Charles R.; Johnson, Laurie; Jones, Lucile M.; Ross, Stephanie

    2014-01-01

    California has established a Tsunami Policy Working Group to facilitate development of policy recommendations for tsunami hazard mitigation. The Tsunami Policy Working Group brings together government and industry specialists from diverse fields including tsunami, seismic, and flood hazards, local and regional planning, structural engineering, natural hazard policy, and coastal engineering. The group is acting on findings from two parallel efforts: The USGS SAFRR Tsunami Scenario project, a comprehensive impact analysis of a large credible tsunami originating from an M 9.1 earthquake in the Aleutian Islands Subduction Zone striking California’s coastline, and the State’s Tsunami Preparedness and Hazard Mitigation Program. The unique dual-track approach provides a comprehensive assessment of vulnerability and risk within which the policy group can identify gaps and issues in current tsunami hazard mitigation and risk reduction, make recommendations that will help eliminate these impediments, and provide advice that will assist development and implementation of effective tsunami hazard risk communication products to improve community resiliency.

  18. CARIBE WAVE/LANTEX Caribbean and Western Atlantic Tsunami Exercises

    von Hillebrandt-Andrade, C.; Whitmore, P.; Aliaga, B.; Huerfano Moreno, V.

    2013-12-01

    Over 75 tsunamis have been documented in the Caribbean and Adjacent Regions over the past 500 years. While most have been generated by local earthquakes, distant generated tsunamis can also affect the region. For example, waves from the 1755 Lisbon earthquake and tsunami were observed in Cuba, Dominican Republic, British Virgin Islands, as well as Antigua, Martinique, Guadalupe and Barbados in the Lesser Antilles. Since 1500, at least 4484 people are reported to have perished in these killer waves. Although the tsunami generated by the 2010 Haiti earthquake claimed only a few lives, in the 1530 El Pilar, Venezuela; 1602 Port Royale, Jamaica; 1918 Puerto Rico; and 1946 Samaná, Dominican Republic tsunamis the death tolls ranged to over a thousand. Since then, there has been an explosive increase in residents, visitors, infrastructure, and economic activity along the coastlines, increasing the potential for human and economic loss. It has been estimated that on any day, upwards of more than 500,000 people could be in harm's way just along the beaches, with hundreds of thousands more working and living in the tsunamis hazard zones. Given the relative infrequency of tsunamis, exercises are a valuable tool to test communications, evaluate preparedness and raise awareness. Exercises in the Caribbean are conducted under the framework of the UNESCO IOC Intergovernmental Coordination Group for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (CARIBE EWS) and the US National Tsunami Hazard Mitigation Program. On March 23, 2011, 34 countries and territories participated in the first CARIBE WAVE/LANTEX regional tsunami exercise, while in the second exercise on March 20, 2013 a total of 45 countries and territories participated. 481 organizations (almost 200 more than in 2011) also registered to receive the bulletins issued by the Pacific Tsunami Warning Center (PTWC), West Coast and Alaska Tsunami Warning Center and/or the Puerto Rico

  19. TSUNAMI INFORMATION SOURCES PART 3

    Robert L. Wiegel

    2009-01-01

    Full Text Available This is Part 3 of Tsunami Information Sources published by Robert L. Wiegel, as Technical Report UCB/HEL 2006-3 of the Hydraulic Engineering Laboratory of the Department of Civil & Environmental Engineering of the University of California at Berkeley. Part 3 is published in "SCIENCE OF TSUNAMI HAZARDS" -with the author's permission -so that it can receive wider distribution and use by the Tsunami Scientific Community.

  20. A tsunami early warning system and tsunami source propagation

    Hirata, K.

    2008-12-01

    The present-day's tsunami early warning systems (TEWSs) assume that a tsunami source is created instantaneously over the whole source area. However, finite rupture propagation speeds reasonably affect tsunami generation and propagation. Travel times of the first tsunami waves generated from rupture propagation fault models have to arrive later at some regions than those from instantaneous fault models but do not arrive faster everywhere [e.g., Neetsu et al., 2005]. On the other hand, the effect of earthquake rupture propagation on tsunami amplitude has scarcely investigated based on real bathymetry, although it had studied under flat ocean assumption [Aida, 1969; Yamashita and Sato, 1974]. We investigated it for regional tsunamis (travel distance between 5deg and 30 deg) by using real bathymetry in terms of numerical simulation. The grid size is 3 minutes of arc, interpolated from ETOPO2 [Smith and Sandwell, 1997]. A constant amount of slip was given on each subfault. Other subfault parameters are the same as Hirata et al.[2006]. Effect on the first upward wave amplitudes of offshore tsunamis is summarized as follows; (1) The slower the rupture velocity, the larger the increasing rate of the tsunami wave amplitude. For instance, in the offshore of the east coast of Sri Lanka, the 1st tsunami amplitude increases 10% at the rupture velocity of 3.5 km/sec, 14 % at 2.5 km/sec, 23% at 1.5 km/sec, and 38% at 1.0 km/sec in the case of 500km-long fault. This indicates that the rupture propagation effect on regional tsunami amplitude is large in the cases of slow earthquakes. (2) Increasing (or decreasing) rate in tsunami amplitude due to the rupture propagation is not necessarily larger in longer fault than shorter fault. In other words, even in the case of a short fault, say a few hundred kilometers, the effect of the rupture propagation on tsunami amplitude may not be neglected. This is because the increasing (or decreasing) rate in tsunami amplitude is related to

  1. Evaluation of the Relationship Between Coral Damage and Tsunami Dynamics; Case Study: 2009 Samoa Tsunami

    Dilmen, Derya I.; Titov, Vasily V.; Roe, Gerard H.

    2015-12-01

    On September 29, 2009, an Mw = 8.1 earthquake at 17:48 UTC in Tonga Trench generated a tsunami that caused heavy damage across Samoa, American Samoa, and Tonga islands. Tutuila island, which is located 250 km from the earthquake epicenter, experienced tsunami flooding and strong currents on the north and east coasts, causing 34 fatalities (out of 192 total deaths from this tsunami) and widespread structural and ecological damage. The surrounding coral reefs also suffered heavy damage. The damage was formally evaluated based on detailed surveys before and immediately after the tsunami. This setting thus provides a unique opportunity to evaluate the relationship between tsunami dynamics and coral damage. In this study, estimates of the maximum wave amplitudes and coastal inundation of the tsunami are obtained with the MOST model (T itov and S ynolakis, J. Waterway Port Coast Ocean Eng: pp 171, 1998; T itov and G onzalez, NOAA Tech. Memo. ERL PMEL 112:11, 1997), which is now the operational tsunami forecast tool used by the National Oceanic and Atmospheric Administration (NOAA). The earthquake source function was constrained using the real-time deep-ocean tsunami data from three DART® (Deep-ocean Assessment and Reporting for Tsunamis) systems in the far field, and by tide-gauge observations in the near field. We compare the simulated run-up with observations to evaluate the simulation performance. We present an overall synthesis of the tide-gauge data, survey results of the run-up, inundation measurements, and the datasets of coral damage around the island. These data are used to assess the overall accuracy of the model run-up prediction for Tutuila, and to evaluate the model accuracy over the coral reef environment during the tsunami event. Our primary findings are that: (1) MOST-simulated run-up correlates well with observed run-up for this event ( r = 0.8), it tends to underestimated amplitudes over coral reef environment around Tutuila (for 15 of 31 villages, run

  2. Tsunami Hazard Assessment in New Zealand Ports and Harbors

    Borrero, J. C.; Wotherspoon, L.; Power, W. L.; Goring, D.; Barberopoulou, A.; Melville, B.; Shamseldin, A.

    2012-12-01

    The New Zealand Ministry of Science and Innovation (MSI) has sponsored a 3-year collaborative project involving industry, government and university research groups to better assess and prepare for tsunami hazards in New Zealand ports and harbors. As an island nation, New Zealand is highly dependent on its maritime infrastructure for commercial and recreational interests. The recent tsunamis of 2009, 2010 and 2011 (Samoa, Chile and Japan) highlighted the vulnerability of New Zealand's marine infrastructure to strong currents generated by such far field events. These events also illustrated the extended duration of the effects from such tsunamis, with some of the strongest currents and highest water levels occurring many hours, if not days after the tsunami first arrival. In addition, New Zealand also sits astride the Tonga-Kermadec subduction zone, which given the events of recent years, cannot be underestimated as a major near field hazard. This presentation will discuss the modeling and research strategy that will be used to mitigate tsunami hazards in New Zealand ports and harbors. This will include a detailed time-series analysis (including Fourier and discrete Wavelet techniques) of water levels recorded throughout New Zealand form recent tsunami events (2009 Samoa, 2010 Chile and 2011 Japan). The information learned from these studies will guide detailed numerical modeling of tsunami induced currents at key New Zealand ports. The model results will then be used to guide a structural analysis of the relevant port structures in terms of hydrodynamic loads as well as mooring and impact loads due to vessel and/or debris. Ultimately the project will lead to an improvement in New Zealand's tsunami response plans by providing a decision making flow chart, targeted for marine facilities, to be used by emergency management officials during future tsunami events.Tsunami effects at Port Charles, New Zealand: (top) inundation into a neighborhood and (bottom left and right

  3. The SAFRR Tsunami Scenario: from Publication to Implementation

    Ross, S.; Jones, L.; Miller, K.; Wilson, R. I.; Burkett, E. R.; Bwarie, J.; Campbell, N. M.; Johnson, L. A.; Long, K.; Lynett, P. J.; Perry, S. C.; Plumlee, G. S.; Porter, K.; Real, C. R.; Ritchie, L. A.; Wein, A. M.; Whitmore, P.; Wood, N. J.

    2014-12-01

    The SAFRR Tsunami Scenario modeled a hypothetical but plausible tsunami, created by an Mw9.1 earthquake occurring offshore from the Alaskan peninsula, and its impacts on the California coast. We presented the likely inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental impacts, social vulnerability, emergency management, and policy implications for California associated with the scenario tsunami. The intended users were those responsible for making mitigation decisions before and those who need to make rapid decisions during future tsunamis. The Tsunami Scenario process is being evaluated by the University of Colorado's Natural Hazards Center; this is the first time that a USGS scenario of this scale has been formally and systematically evaluated by an external party. The SAFRR Tsunami Scenario was publicly introduced in September, 2013, through a series of regional workshops in California that brought together emergency managers, maritime authorities, first responders, elected officials and staffers, the business sector, state agencies, local media, scientific partners, and special districts such as utilities (http://pubs.usgs.gov/of/2013/1170/). In March, 2014, NOAA's annual tsunami warning exercise, PACIFEX, was based on the SAFRR Tsunami Scenario. Many groups conducted exercises associated with PACIFEX including the State of Washington and several counties in California. San Francisco had the most comprehensive exercise with a 3-day functional exercise based on the SAFRR Tsunami Scenario. In addition, the National Institutes of Health ran an exercise at the Ports of Los Angeles and Long Beach in April, 2014, building on the Tsunami Scenario, focusing on the recovery phase and adding a refinery fire. The benefits and lessons learned include: 1) stimulating dialogue among practitioners to solve problems; 2) seeing groups add extra components to their exercises that best address their

  4. Young children (0-8) and digital technology. A qualitative exploratory study. National report : Spain

    Matsumoto, Mitsuko; Aliagas, Cristina; Morgade Salgado, Marta; Correro, Cristina; Galera, Nieves; Roncero, Cristina; Poveda, David

    2016-01-01

    The study is a part of a larger qualitative study carried out across 16 European countries aimed at exploring experiences with digital technologies, e.g. smart phones, tablets, computers, TVs, video-games, etc. of young children aged between 0 and 8 years and their families. The overall research question is: In what ways, if any, are children and/or their families empowered by the use of new (online) technologies? and was addressed through four areas (Use, Perceptions/Attitudes, Individual co...

  5. Tsunami Field Survey for the Solomon Islands Earthquake of April 1, 2007

    Nishimura, Y.; Tanioka, Y.; Nakamura, Y.; Tsuji, Y.; Namegaya, Y.; Murata, M.; Woodward, S.

    2007-12-01

    Two weeks after the 2007 off-Solomon earthquake, an international tsunami survey team (ITST) of Japanese and US researchers performed a post tsunami survey in Ghizo and adjacent islands. Main purpose of the team was to provide information on the earthquake and tsunami to the national disaster council of the Solomon Islands, who was responsible for the disaster management at that time. The ITST had interview with the affected people and conducted reconnaissance mapping of the tsunami heights and flow directions. Tsunami flow heights at beach and inland were evaluated from watermarks on buildings and the position of broken branches and stuck materials on trees. These tsunami heights along the southern to western coasts of Ghizo Island were ca. 5m (a.s.l.). Tsunami run-up was traced by distribution of floating debris that carried up by the tsunami and deposited at their inundation limit. The maximum run-up was measured at Tapurai of Simbo Island to be ca. 9 m. Most of the inundation area was covered by 0-10 cm thick tsunami deposit that consists of beach sand, coral peaces and eroded soil. Coseismic uplift and subsidence were clearly identified by changes of the sea level before and after the earthquake, that were inferred by eyewitness accounts and evidences such as dried up coral reeves. These deformation patterns, as well as the tsunami height distribution, could constrain the earthquake fault geometry and motion. It is worthy of mention that the tsunami damage in villages in Ranongga Island has significantly reduced by 2-3 m uplift before the tsunami attack.

  6. TSUNAMI INFORMATION SOURCES - PART 4

    Robert L. Wiegel

    2006-01-01

    Full Text Available I have expanded substantially my list of information sources on: tsunami generation (sources, impulsive mechanisms, propagation, effects of nearshore bathymetry, and wave run-up on shore - including physical (hydraulic modeling and numerical modeling. This expanded list includes the subjects of field investigations of tsunamis soon after an event; damage effects in harbors on boats, ships, and facilities; tsunami wave-induced forces; damage by tsunami waves to structures on shore; scour/erosion; hazard mitigation; land use planning; zoning; siting, design, construction and maintenance of structures and infrastructure; public awareness and education; distant and local sources; tsunami warning and evacuation programs; tsunami probability and risk criteria. A few references are on "sedimentary signatures" useful in the study of historic and prehistoric tsunamis (paleo-tsunamis. In addition to references specifically on tsunamis, there are references on long water wave and solitary wave theory; wave refraction, diffraction, and reflection; shelf and basin free and forced oscillations (bay and harbor response; seiches; edge waves; Mach- reflection of long water waves ("stem waves"; wave run-up on shore; energy dissipation. All are important in understanding tsunamis, and in hazard mitigation. References are given on subaerial and submarine landslide (and rockfall generated waves in reservoirs, fjords, bays, and ocean; volcano explosive eruptions/collapse; underwater and surface explosions; asteroid impact. This report is in two parts: 1 Bibliographies, books and pamphlets, catalogs, collections, journals and newsletters, maps, organizations, proceedings, videos and photos; 2 Articles, papers, reports listed alphabetically by author.Many papers on the Indian Ocean (Sumatra tsunami of 26 December 2004, were given at the 22nd IUGG International Tsunami Symposium, Chania, Crete, 27-29 June 2005, but had not been published at the date of this report. For

  7. A CRITICAL REVIEW AND EVALUATION OF APPLYING SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCS AS A GEOCHEMICAL TRACER TO INDICATE TSUNAMI BACKWASH: The Bilateral, Deutsche Forschungsgemeinschaft (DFG and National Research Council of Thailand (NRCT Funded Project “Tsunami Deposits in Near-Shore- and Coastal Waters of Thailand (TUNWAT”

    Siwatt Pongpiachan

    2013-10-01

    Full Text Available Tsunamis symbolize one of the most harmful natural disasters for low-lying coastal zones and their residents, due to both its destructive power and irregularity. The 2004 Boxing Day tsunami, which attack the Andaman Sea coast of Thailand, resulted 5,395 of deaths and inestimable casualties, interrupted economies and social well-being in numerous coastal villages and caused in extreme alterations of both onshore and offshore coastal morphology. The Great Indian Ocean tsunami also highlighted that there are many missing jigsaw puzzle pieces in scientific knowledge, starting from the generating of tsunamis offshore to the countless influences to the marine ecosystems on the continental shelf, coastal areas and on land and to the economic and social systems consequences. As with all deposits that do not have a direct physical link to their causative sources, marine tsunami deposits must be distinguished from other deposits through regional correlation, dating and criteria for recognition within the deposits themselves. This study aims to provide comprehensive reviews on using Polycyclic Aromatic Hydrocarbons (PAHs as a chemical proxy to discriminate tsunami relateddeposits from typical marine sediments. The advantages and disadvantages of this chemical tracer will be critically reviewed and further discussed.

  8. Tsunami propagation modelling – a sensitivity study

    P. Tkalich

    2007-12-01

    Full Text Available Indian Ocean (2004 Tsunami and following tragic consequences demonstrated lack of relevant experience and preparedness among involved coastal nations. After the event, scientific and forecasting circles of affected countries have started a capacity building to tackle similar problems in the future. Different approaches have been used for tsunami propagation, such as Boussinesq and Nonlinear Shallow Water Equations (NSWE. These approximations were obtained assuming different relevant importance of nonlinear, dispersion and spatial gradient variation phenomena and terms. The paper describes further development of original TUNAMI-N2 model to take into account additional phenomena: astronomic tide, sea bottom friction, dispersion, Coriolis force, and spherical curvature. The code is modified to be suitable for operational forecasting, and the resulting version (TUNAMI-N2-NUS is verified using test cases, results of other models, and real case scenarios. Using the 2004 Tsunami event as one of the scenarios, the paper examines sensitivity of numerical solutions to variation of different phenomena and parameters, and the results are analyzed and ranked accordingly.

  9. Transient Tsunamis in Lakes

    Couston, L.; Mei, C.; Alam, M.

    2013-12-01

    A large number of lakes are surrounded by steep and unstable mountains with slopes prone to failure. As a result, landslides are likely to occur and impact water sitting in closed reservoirs. These rare geological phenomena pose serious threats to dam reservoirs and nearshore facilities because they can generate unexpectedly large tsunami waves. In fact, the tallest wave experienced by contemporary humans occurred because of a landslide in the narrow bay of Lituya in 1958, and five years later, a deadly landslide tsunami overtopped Lake Vajont's dam, flooding and damaging villages along the lakefront and in the Piave valley. If unstable slopes and potential slides are detected ahead of time, inundation maps can be drawn to help people know the risks, and mitigate the destructive power of the ensuing waves. These maps give the maximum wave runup height along the lake's vertical and sloping boundaries, and can be obtained by numerical simulations. Keeping track of the moving shorelines along beaches is challenging in classical Eulerian formulations because the horizontal extent of the fluid domain can change over time. As a result, assuming a solid slide and nonbreaking waves, here we develop a nonlinear shallow-water model equation in the Lagrangian framework to address the problem of transient landslide-tsunamis. In this manner, the shorelines' three-dimensional motion is part of the solution. The model equation is hyperbolic and can be solved numerically by finite differences. Here, a 4th order Runge-Kutta method and a compact finite-difference scheme are implemented to integrate in time and spatially discretize the forced shallow-water equation in Lagrangian coordinates. The formulation is applied to different lake and slide geometries to better understand the effects of the lake's finite lengths and slide's forcing mechanism on the generated wavefield. Specifically, for a slide moving down a plane beach, we show that edge-waves trapped by the shoreline and free

  10. Tsunami flood modelling for Aceh & west Sumatra and its application for an early warning system

    Van Veen, B. A. D.; Vatvani, D.; Zijl, F.

    2014-05-01

    SummaryFor implementation of a regional Tsunami Early Warning System (EWS) in Sumatra island in Indonesia, a set of detailed and accurate tsunami propagation and flooding models using Delft3D were developed. The purpose of the models was not only to reproduce the 2004 Indian Ocean tsunami, but also to determine tsunami flood hazard maps with different return periods. The model outputs have then been used to build a tsunami flooding database covering 1250 hypothetical sources for different earthquake parameters along the Sunda Trench for an EWS called RiskMap. The model simulations produced detailed information of near-shore tsunami wave height, tsunami inundation length and run-up. Smart storage of computational results, in a geo-referenced database, allows quick access to the requisite information. The result is a system capable of issuing a warning within few minutes after a detection of an earthquake. The system has been successfully installed and tested in the last two years at national and regional emergency coordination centres, National Agency for Meteorology, Climatology and Geophysics (BMKG) and at Tsunami Disaster Mitigation Research Centre (TDMRC) in Banda Aceh.

  11. Recent Tsunami Highlights Need for Awareness of Tsunami Duration

    Kelly, Annabel; Dengler, Lori A.; Uslu, Burak; Barberopoulou, Aggeliki; Yim, Solomon C.; Bergen, Kristian J.

    2006-12-01

    On Wednesday, 15 November 2006, Crescent City Harbor, in Del Norte County, Calif., was hit by surges resulting from the tsunami generated by the Mw=8.3 Kuril Islands earthquake. The strong currents caused an estimated US $700,000 to $1 million in losses to the small boat basin at Citizen's Dock, destroying or damaging three floating docks and causing minor damage to several boats (Figure 1). The event highlighted a persistent problem for tsunami hazard mitigation: Most people are still unaware that the first tsunami waves rarely are the largest and that the potential for damaging waves may last for many hours.

  12. National and International Disability Rights Legislation: A Qualitative Account of Its Enactment in Australia

    Whitburn, Ben

    2015-01-01

    In this paper, a detailed analysis based on the lived experiences of the study participants and the researcher (each with vision impairment) in education, post school and in the pursuit for employment is developed. The policy discourses of disability legislation--both at national and international levels--are explored with particular reference to…

  13. Managing and Distributing Historical Tsunami Catalogs via the Web

    Dunbar, P. K.

    2004-12-01

    Advances in internet technology have made it easy to "publish" data. The challenge now lies in meaningful presentation of these data. The National Geophysical Data Center (NGDC) and co-located World Data Center for Solid Earth Geophysics, Boulder, publishes large amounts of heterogeneous data on the web, including several historical tsunami catalogs that have been merged into one digital database. These catalogs vary in geographic as well as time coverage. They also have different quality levels and histories. Since historical tsunami data are valuable in the verification and testing of numerical models, it is important to know the quality of the data. It is our responsibility to make this information available with the data. NGDC is addressing this problem by developing a system that supports internal data management and improvement as well as public access to these data. These tools include a data dictionary, quality assessment tools built on relational database management systems (RDBMS), and web-based interfaces designed for many audiences. Storing the data in a RDBMS facilitates the integration of several tables related to a database, such as additional comments and references. For example, NGDC is in the process of scanning several original source documents that include eyewitness accounts of tsunami effects and making this information available as hyperlinks from the web pages. The RDBMS also facilitates the integration of several related databases, such as tsunami sources, tsunami runups, and significant earthquakes. All of these tools are more powerful when they are combined with a GIS-driven spatial selection tool integrated into an internet mapping environment. The maps provide integrated web-based GIS access to individual GIS layers including tsunami sources, tsunami effects, significant earthquakes, volcano locations, and various spatial reference layers such as topography, population density, and political boundaries. The map service also provides ftp

  14. Introducing CAT (Centro di Allerta Tsunami), the Italian candidate Tsunami Watch Provider (It-cTWP) for the Mediterranean

    Michelini, Alberto; Amato, Alessandro; Badiali, Lucio; Basili, Roberto; Bernardi, Fabrizio; Govoni, Aladino; Lauciani, Valentino; Lomax, Anthony; Lorito, Stefano; Mele, Francesco; Melini, Daniele; Molinari, Irene; Piatanesi, Alessio; Romano, Fabrizio; Selva, Jacopo; Selvaggi, Giulio; Sensale, Giampaolo; Tonini, Roberto; Vazzoler, Stefano; Zanolin, Francesco

    2014-05-01

    The recently established CAT (Centro di Allerta Tsunami) at Istituto Nazionale di Geofisica e Vulcanologia (INGV) will be part of the Italian National Tsunami Warning Center (It-NTWC) and it is a candidate Tsunami Watch Provider (cTWP) for the Mediterranean Sea in the framework of the Tsunami Early Warning and Mitigation System in the North-eastern Atlantic, the Mediterranean and connected seas (NEAMTWS). It-NTWC is a partnership of three Italian institutions: INGV, the Italian Department of Civil Protection (Dipartimento di Protezione Civile, DPC) and the Institute for Environmental Protection and Research (Istituto Superiore per la Protezione e la Ricerca Ambientale, ISPRA) which provides the sea-level data of the Italian mareographic network (Rete Mareografica Nazionale, RMN) in quasi-real-time. CAT is the operational part of the It-NTWC based at the INGV 24/7 seismic monitoring centre in Rome. CAT will be committed to deliver tsunami warning messages to DPC and, when it will enter its operational cTWP phase, to any IOC/UNESCO member state that will subscribe for the service. The current implementation of CAT is based on the NEAMTWS Decision Matrix (DM). Earthquake parameters are determined automatically by the Early-Est (EE) software, and used as an input to DM and tsunami travel times calculation to provide warning messages, including earthquake parameters, plus level of alert and estimated tsunami arrival time at pre-defined forecast points along threatened coasts. Basing on updated automatic EE solutions, seismologist's revision, and sea-level readings subsequent messages can be delivered until warning status ends. The use of the DM allows a rapid implementation of a tsunami warning system, but it does not consider some important features to better characterize a tsunami forecast, such as the earthquake's focal mechanism, the directivity of tsunami propagation and the morphology of the coast. More sophisticated procedures are currently under development: a

  15. Tsunami hazard assessment in the Hudson River Estuary based on dynamic tsunami-tide simulations

    Shelby, Michael; Grilli, Stéphan T.; Grilli, Annette R.

    2016-05-01

    This work is part of a tsunami inundation mapping activity carried out along the US East Coast since 2010, under the auspice of the National Tsunami Hazard Mitigation program (NTHMP). The US East Coast features two main estuaries with significant tidal forcing, which are bordered by numerous critical facilities (power plants, major harbors,...) as well as densely built low-level areas: Chesapeake Bay and the Hudson River Estuary (HRE). HRE is the object of this work, with specific focus on assessing tsunami hazard in Manhattan, the Hudson and East River areas. In the NTHMP work, inundation maps are computed as envelopes of maximum surface elevation along the coast and inland, by simulating the impact of selected probable maximum tsunamis (PMT) in the Atlantic ocean margin and basin. At present, such simulations assume a static reference level near shore equal to the local mean high water (MHW) level. Here, instead we simulate maximum inundation in the HRE resulting from dynamic interactions between the incident PMTs and a tide, which is calibrated to achieve MHW at its maximum level. To identify conditions leading to maximum tsunami inundation, each PMT is simulated for four different phases of the tide and results are compared to those obtained for a static reference level. We first separately simulate the tide and the three PMTs that were found to be most significant for the HRE. These are caused by: (1) a flank collapse of the Cumbre Vieja Volcano (CVV) in the Canary Islands (with a 80 km3 volume representing the most likely extreme scenario); (2) an M9 coseismic source in the Puerto Rico Trench (PRT); and (3) a large submarine mass failure (SMF) in the Hudson River canyon of parameters similar to the 165 km3 historical Currituck slide, which is used as a local proxy for the maximum possible SMF. Simulations are performed with the nonlinear and dispersive long wave model FUNWAVE-TVD, in a series of nested grids of increasing resolution towards the coast, by one

  16. A qualitative analysis of hate speech reported to the Romanian National Council for Combating Discrimination (2003‑2015

    Adriana Iordache

    2015-12-01

    Full Text Available The article analyzes the specificities of Romanian hate speech over a period of twelve years through a qualitative analysis of 384 Decisions of the National Council for Combating Discrimination. The study employs a coding methodology which allows one to separate decisions according to the group that was the victim of hate speech. The article finds that stereotypes employed are similar to those encountered in the international literature. The main target of hate speech is the Roma, who are seen as „dirty“, „uncivilized“ and a threat to Romania’s image abroad. Other stereotypes encountered were that of the „disloyal“ Hungarian and of the sexually promiscuous woman. Moreover, women are seen as unfit for management positions. The article also discusses stereotypes about homosexuals, who are seen as „sick“ and about non-orthodox religions, portrayed as „sectarian“.

  17. Healthy universities--time for action: a qualitative research study exploring the potential for a national programme.

    Dooris, Mark; Doherty, Sharon

    2010-03-01

    Despite the absence of national or international steers, there is within England growing interest in the Healthy University approach. This article introduces Healthy Universities; reports on a qualitative study exploring the potential for a national programme contributing to health, well-being and sustainable development; and concludes with reflections and recommendations. The study used questionnaires and interviews with key informants from English higher education institutions and national stakeholder organizations. The findings confirmed that higher education offers significant potential to impact positively on the health and well-being of students, staff and wider communities through education, research, knowledge exchange and institutional practice. There was strong support for extending the healthy settings approach beyond schools and further education, through a National Healthy Higher Education Programme that provides a whole system Healthy University Framework. Informants argued that although there are important public health drivers, it will also be necessary to show how a Healthy Universities can help achieve core business objectives and contribute to related agendas such as sustainability. Two models were discussed: an accreditation scheme with externally assessed standardized achievement criteria; and a flexible and light-touch framework focusing on change-related processes and utilizing self-assessment. While highlighting the appeal of league tables, many informants feared that a top-down approach could backfire, generating resistance and resulting in minimal compliance. In contrast, the majority felt that a process-focused aspirational model would be more likely to win hearts and minds and facilitate system-level change. Key recommendations relate to national programme development, research and evaluation and international collaboration and networking. PMID:20167825

  18. System for Reporting High Resolution Ocean Pressures in Near Realtime for the Purposes of Tsunami Monitoring

    National Oceanic and Atmospheric Administration, Department of Commerce — This invention is the NOAA Deep ocean Assessment and Reporting of Tsunami (DART) system, which utilizes a seafloor tsunameter linked to an ocean surface buoy via...

  19. Tsunami Questionnaire Survey in Heraklion Test Site, Crete Island, Greece

    Papageorgiou, Antonia; Tsimi, Christina; Orfanogiannaki, Katerina; Papadopoulos, Gerassimos; Sachpazi, Maria; Lavigne, Franck; Grancher, Delphine

    2015-04-01

    tsunami is, if Heraklion could be affected by a tsunami, how a tsunami is generated etc. In the third part of the survey, people were asked questions regarding evacuation practices in case of a tsunami attack. In the last part, personal data, such as nationality, age, education level and more were collected. To analyse the replies received we used the statistical software SPSS. The results are really interesting showing that most people have only a general idea about the phenomenon of tsunamis while they don't feel sure about what to do or to avoid in case of a tsunami. This research is a contribution to the EU-FP7 tsunami research project ASTARTE (Assessment, Strategy And Risk Reduction for Tsunamis in Europe), grant agreement no: 603839, 2013-10-30.

  20. Earthquake and Tsunami planning, outreach and awareness in Humboldt County, California

    Ozaki, V.; Nicolini, T.; Larkin, D.; Dengler, L.

    2008-12-01

    Humboldt County has the longest coastline in California and is one of the most seismically active areas of the state. It is at risk from earthquakes located on and offshore and from tsunamis generated locally from faults associated with the Cascadia subduction zone (CSZ), other regional fault systems, and from distant sources elsewhere in the Pacific. In 1995 the California Division of Mines and Geology published the first earthquake scenario to include both strong ground shaking effects and a tsunami. As a result of the scenario, the Redwood Coast Tsunami Work Group (RCTWG), an organization of representatives from government agencies, tribes, service groups, academia and the private sector from the three northern coastal California counties, was formed in 1996 to coordinate and promote earthquake and tsunami hazard awareness and mitigation. The RCTWG and its member agencies have sponsored a variety of projects including education/outreach products and programs, tsunami hazard mapping, signage and siren planning, and has sponsored an Earthquake - Tsunami Education Room at the Humboldt County fair for the past eleven years. Three editions of Living on Shaky Ground an earthquake-tsunami preparedness magazine for California's North Coast, have been published since 1993 and a fourth is due to be published in fall 2008. In 2007, Humboldt County was the first region in the country to participate in a tsunami training exercise at FEMA's Emergency Management Institute in Emmitsburg, MD and the first area in California to conduct a full-scale tsunami evacuation drill. The County has conducted numerous multi-agency, multi-discipline coordinated exercises using county-wide tsunami response plan. Two Humboldt County communities were recognized as TsunamiReady by the National Weather Service in 2007. Over 300 tsunami hazard zone signs have been posted in Humboldt County since March 2008. Six assessment surveys from 1993 to 2006 have tracked preparedness actions and personal

  1. Tsunami 2004 and the biological oceanography of Bay of Bengal

    Stephen, R.; Jayalakshmi, K.J.; Rahman, H.; Karuppasamy, P.K.; Nair, K.K.C.

    in the fishery causing public alarm. Marine Biologists are faced with environmental crisis of new complexity, properties and consequences which are to be closely monitored. PROC. NATIONAL COMMEMORATIVE CONFERENCE ON TSUNAMI. MADURAl. - 28-29, DEC, 2006 23 Fig. 1...-in-Charge for encouragement. The authors express their gratitude to the Department of Ocean Development for the financial support and onboard facilities. References 1. Chadha, R.K., G. Latha, H. Yeh, C. Peterson and T. Katada, 2005. The tsunami of the great Sumatra...

  2. A Shift in Scientific Literacy: Earthquakes Generate Tsunamis

    Clark, Scott K.

    2010-09-01

    Scientific literacy is a fundamentally important prerequisite for decision making in this global age, particularly when it comes to decisions that affect our health, environment, technological advancement, and community development. A scientifically literate populace should be proficient at reading and interpreting science news articles [National Research Council, 1996]. For this to occur, terminology in news reports needs to be scientifically accurate. As scientists, we often resign ourselves to the reality that scientific accuracy in mainstream news reports sometimes falls short of what we would hope. However, in at least one case, the use of appropriate terminology in news reports has clearly improved. Prior to the devastating 26 December 2004 Indian Ocean earthquake and tsunami, nearly one in four newspaper and wire service articles that discussed earthquakes and tsunamis exclusively used the term “tidal wave” in lieu of “tsunami.” That ratio has decreased to less than one in 35 since the 26 December 2004 event. The apparent permanence of this lexical shift is demonstrated by the nearly unanimous use of the term tsunami in media reports of the 12 January 2010 Haitian and 27 February 2010 Chilean tsunamis, and provides an example of the impact natural disasters can have on scientific discourse in the news media.

  3. Emergency management response to a warning-level Alaska-source tsunami impacting California: Chapter J in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    Miller, Kevin M.; Long, Kate

    2013-01-01

    This chapter is directed towards two audiences: Firstly, it targets nonemergency management readers, providing them with insight on the process and challenges facing emergency managers in responding to tsunami Warning, particularly given this “short fuse” scenario. It is called “short fuse” because there is only a 5.5-hour window following the earthquake before arrival of the tsunami within which to evaluate the threat, disseminate alert and warning messages, and respond. This action initiates a period when crisis communication is of paramount importance. An additional dynamic that is important to note is that within 15 minutes of the earthquake, the National Oceanic and Atmospheric Administration (NOAA) and the National Weather Service (NWS) will issue alert bulletins for the entire Pacific Coast. This is one-half the time actually presented by recent tsunamis from Japan, Chile, and Samoa. Second, the chapter provides emergency managers at all levels with insights into key considerations they may need to address in order to augment their existing plans and effectively respond to tsunami events. We look at emergency management response to the tsunami threat from three perspectives:“Top Down” (Threat analysis and Alert/Warning information from the Federal agency charged with Alert and Warning) “Bottom Up” (Emergency management’s Incident Command approach to responding to emergencies and disasters based on the needs of impacted local jurisdictions) “Across Time” (From the initiating earthquake event through emergency response) We focus on these questions: What are the government roles, relationships, and products that support Tsunami Alert and Warning dissemination? (Emergency Planning and Preparedness.) What roles, relationships, and products support emergency management response to Tsunami Warning and impact? (Engendering prudent public safety response.) What are the key emergency management activities, considerations, and challenges brought

  4. TSUNAMI HAZARD IN NORTHERN VENEZUELA

    B. Theilen-Willige

    2006-01-01

    Full Text Available Based on LANDSAT ETM and Digital Elevation Model (DEM data derived by the Shuttle Radar Topography Mission (SRTM, 2000 of the coastal areas of Northern Venezuela were investigated in order to detect traces of earlier tsunami events. Digital image processing methods used to enhance LANDSAT ETM imageries and to produce morphometric maps (such as hillshade, slope, minimum and maximum curvature maps based on the SRTM DEM data contribute to the detection of morphologic traces that might be related to catastrophic tsunami events. These maps combined with various geodata such as seismotectonic data in a GIS environment allow the delineation of coastal regions with potential tsunami risk. The LANDSAT ETM imageries merged with digitally processed and enhanced SRTM data clearly indicate areas that might be prone by flooding in case of catastrophic tsunami events.

  5. Tsunami hazard assessment in the Hudson River Estuary based on dynamic tsunami-tide simulations

    Shelby, Michael; Grilli, Stéphan T.; Grilli, Annette R.

    2016-05-01

    This work is part of a tsunami inundation mapping activity carried out along the US East Coast since 2010, under the auspice of the National Tsunami Hazard Mitigation program (NTHMP). The US East Coast features two main estuaries with significant tidal forcing, which are bordered by numerous critical facilities (power plants, major harbors,...) as well as densely built low-level areas: Chesapeake Bay and the Hudson River Estuary (HRE). HRE is the object of this work, with specific focus on assessing tsunami hazard in Manhattan, the Hudson and East River areas. In the NTHMP work, inundation maps are computed as envelopes of maximum surface elevation along the coast and inland, by simulating the impact of selected probable maximum tsunamis (PMT) in the Atlantic ocean margin and basin. At present, such simulations assume a static reference level near shore equal to the local mean high water (MHW) level. Here, instead we simulate maximum inundation in the HRE resulting from dynamic interactions between the incident PMTs and a tide, which is calibrated to achieve MHW at its maximum level. To identify conditions leading to maximum tsunami inundation, each PMT is simulated for four different phases of the tide and results are compared to those obtained for a static reference level. We first separately simulate the tide and the three PMTs that were found to be most significant for the HRE. These are caused by: (1) a flank collapse of the Cumbre Vieja Volcano (CVV) in the Canary Islands (with a 80 km3 volume representing the most likely extreme scenario); (2) an M9 coseismic source in the Puerto Rico Trench (PRT); and (3) a large submarine mass failure (SMF) in the Hudson River canyon of parameters similar to the 165 km3 historical Currituck slide, which is used as a local proxy for the maximum possible SMF. Simulations are performed with the nonlinear and dispersive long wave model FUNWAVE-TVD, in a series of nested grids of increasing resolution towards the coast, by one

  6. Online Dispute Resolution (ODR within Developing Nations: A Qualitative Evaluation of Transfer and Impact

    Doug Leigh

    2014-01-01

    Full Text Available The field of online dispute resolution (ODR is developing both as practice and a profession. Evidence of this includes a growing community of scholars and practitioners. A Canadian International Development Agency (CIDA grant permitted 16 practitioners from developing countries to attend the 2008 ODR Forum in Victoria, British Columbia. In the year following the Forum, an evaluation was conducted to identify changes among these practitioners’ behaviors, knowledge, skills, abilities and credibility. Results indicate that ODR practitioners in developing countries are engaged in a wide range of activities, many of which are technologically and logistically complex. These practitioners also face a number of political and infrastructural challenges that are not as commonly experienced by those from developed nations. Taken together, these realities have implications both for the nature of ODR’s proliferation as a legitimate practice, as well as for the provision of education and training concerning its underpinnings.

  7. Revisiting the 1761 Transatlantic Tsunami

    Baptista, Maria Ana; Wronna, Martin; Miranda, Jorge Miguel

    2016-04-01

    The tsunami catalogs of the Atlantic include two transatlantic tsunamis in the 18th century the well known 1st November 1755 and the 31st March 1761. The 31st March 1761 earthquake struck Portugal, Spain, and Morocco. The earthquake occurred around noontime in Lisbon alarming the inhabitants and throwing down ruins of the past 1st November 1755 earthquake. According to several sources, the earthquake was followed by a tsunami observed as far as Cornwall (United Kingdom), Cork (Ireland) and Barbados (Caribbean). The analysis of macroseismic information and its compatibility with tsunami travel time information led to a source area close to the Ampere Seamount with an estimated epicenter circa 34.5°N 13°W. The estimated magnitude of the earthquake was 8.5. In this study, we revisit the tsunami observations, and we include a report from Cadiz not used before. We use the results of the compilation of the multi-beam bathymetric data, that covers the area between 34°N - 38°N and 12.5°W - 5.5°W and use the recent tectonic map published for the Southwest Iberian Margin to select among possible source scenarios. Finally, we use a non-linear shallow water model that includes the discretization and explicit leap-frog finite difference scheme to solve the shallow water equations in the spherical or Cartesian coordinate to compute tsunami waveforms and tsunami inundation and check the results against the historical descriptions to infer the source of the event. This study received funding from project ASTARTE- Assessment Strategy and Risk Reduction for Tsunamis in Europe a collaborative project Grant 603839, FP7-ENV2013 6.4-3

  8. TSUNAMI INFORMATION SOURCES PART 2

    Robert L. Wiegel

    2006-01-01

    Full Text Available Tsunami Information Sources (Robert L. Wiegel, University of California, Berkeley, CA, UCB/HEL 2005-1, 14 December 2005, 115 pages, is available in printed format, and on a diskette. It is also available in electronic format at the Water Resources Center Archives, University of California, Berkeley, CA http:www.lib.berkeley.edu/WRCA/tsunamis.htmland in the International Journal of The Tsunami Society, Science of Tsunami Hazards (Vol. 24, No. 2, 2006, pp 58-171 at http://www.sthjournal.org/sth6.htm.This is Part 2 of the report. It has two components. They are: 1.(Sections A and B. Sources added since the first report, and corrections to a few listed in the first report. 2.(Sections C and D. References from both the first report and this report, listed in two categories:Section C. Planning and engineering design for tsunami mitigation/protection; adjustments to the hazard; damage to structures and infrastructureSection D. Tsunami propagation nearshore; induced oscillations; runup/inundation (flooding and drawdown.

  9. USAID Indian Ocean Tsunami Warning System (IOTWS)

    Coble, M.; Mooney, W.

    2005-12-01

    The Indian Ocean Tsunami Warning System (IOTWS), created by an inter-agency agreement between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Trade and Development Agency (USTDA), the US Forest Service (USFS), and the U.S. Agency for International Development (USAID) will work toward developing a tsunami early warning and disaster management and response system for the Indian Ocean by utilizing the leadership and technical expertise of India, Sri Lanka, Thailand, Maldives, and Indonesia. Inter-agency cooperation combines expertise in a broad range of disciplines to accomplish several goals including: 1) developing an infrastructure for real-time data analysis of seismicity and for rapid communication and response networks, 2) land use planning and community preparation aimed at minimizing damage and loss of life from future disasters, and 3) international logistical and administrative support. Throughout the implementation of the IOTWS, a primary focus will be placed on``in-country capacity building,'' so that individual nations will be self-sustaining in the future. This will be accomplished, partly, by training provided by the U.S. Government through workshops, international exchange, and institutionalizing national capabilities. The USGS program was launched in August 2005 and will be implemented over a two-year period.

  10. A qualitative analysis of exemplary elementary science teachers' use and practice of the National Science Education Teaching Standards

    Pittman, Margaret Evans

    The dissertation's purpose was to document and discuss what 10 elementary science teachers, deemed exemplary by administrators, do in the science classroom to reflect the National Science Education Teaching Standards. To make implications for teacher education this report also explored these teachers' science professional development backgrounds. A qualitative triangulated approach of surveys, interviews and observations was used to document actualities, of what theorists have proposed should take place in a standards-based elementary science classroom. Several behavior patterns were identified among these exemplary teachers and their students. These teachers organized for collaborative and individual responsibility; planned according to the needs and interests of their students; encouraged scientific discourse and decision making among their students; facilitated the scientific inquiry process with hands-on, higher-order activities; and used alternative assessment strategies. They were involved in collaboration with peers in planning, training, and decision malting at the school, district, state, and national levels. Exposure to professional development and experience were identified as having the greatest influence on these exemplary teachers. During science lessons taught by these teachers, students were observed in high degrees of cooperation and collaboration with peers while engaging in higher-order discourse and process inquiry, regardless of their academic or social levels. Implications for science teachers' professional development are made, as are suggestions for future research in this area.

  11. Conference Report: Teaching Against the Grain: The Challenges of Teaching Qualitative Research in the Health Sciences. A National Workshop on Teaching Qualitative Research in the Health Sciences

    Eakin, Joan M.; Mykhalovskiy, Eric

    2005-01-01

    In diesem Beitrag wird über einen Workshop berichtet, der sich mit dem Charakter und den besonderen Herausforderungen qualitativer Forschung in gesundheitswissenschaftlichen Settings beschäftigte. Hintergrund für die Durchführung des Workshops war das wachsende Interesse an qualitativen Methoden in den Gesundheitswissenschaften bei zugleich ungenügendem pädagogischen Wissen und unzureichender institutioneller Unterstützung für qualitative Forschungsvorhaben. In unserer Perspektive sind mit de...

  12. Tsunami risk mapping simulation for Malaysia

    Teh, S.Y.; Koh, H. L.; Moh, Y.T.; De Angelis, D. L.; Jiang, J.

    2011-01-01

    The 26 December 2004 Andaman mega tsunami killed about a quarter of a million people worldwide. Since then several significant tsunamis have recurred in this region, including the most recent 25 October 2010 Mentawai tsunami. These tsunamis grimly remind us of the devastating destruction that a tsunami might inflict on the affected coastal communities. There is evidence that tsunamis of similar or higher magnitudes might occur again in the near future in this region. Of particular concern to Malaysia are tsunamigenic earthquakes occurring along the northern part of the Sunda Trench. Further, the Manila Trench in the South China Sea has been identified as another source of potential tsunamigenic earthquakes that might trigger large tsunamis. To protect coastal communities that might be affected by future tsunamis, an effective early warning system must be properly installed and maintained to provide adequate time for residents to be evacuated from risk zones. Affected communities must be prepared and educated in advance regarding tsunami risk zones, evacuation routes as well as an effective evacuation procedure that must be taken during a tsunami occurrence. For these purposes, tsunami risk zones must be identified and classified according to the levels of risk simulated. This paper presents an analysis of tsunami simulations for the South China Sea and the Andaman Sea for the purpose of developing a tsunami risk zone classification map for Malaysia based upon simulated maximum wave heights. ?? 2011 WIT Press.

  13. Tsunami Amplification due to Focusing

    Moore, C. W.; Kanoglu, U.; Titov, V. V.; Aydin, B.; Spillane, M. C.; Synolakis, C. E.

    2012-12-01

    Tsunami runup measurements over the periphery of the Pacific Ocean after the devastating Great Japan tsunami of 11 March 2011 showed considerable variation in far-field and near-field impact. This variation of tsunami impact have been attributed to either directivity of the source or by local topographic effects. Directivity arguments alone, however, cannot explain the complexity of the radiated patterns in oceans with trenches and seamounts. Berry (2007, Proc. R. Soc. Lond. A 463, 3055-3071) discovered how such underwater features may concentrate tsunamis into cusped caustics and thus cause large local amplifications at specific focal points. Here, we examine focusing and local amplification, not by considering the effects of underwater diffractive lenses, but by considering the details of the dipole nature of the initial profile, and propose that certain regions of coastline are more at-risk, not simply because of directivity but because typical tsunami deformations create focal regions where abnormal tsunami wave height can be registered (Marchuk and Titov, 1989, Proc. IUGG/IOC International Tsunami Symposium, Novosibirsk, USSR). In this work, we present a new general analytical solution of the linear shallow-water wave equation for the propagation of a finite-crest-length source over a constant depth without any restriction on the initial profile. Unlike the analytical solution of Carrier and Yeh (2005, Comp. Mod. Eng. & Sci. 10(2), 113-121) which was restricted to initial conditions with Gaussian profiles and involved approximation, our solution is not only exact, but also general and allows the use of realistic initial waveform such as N-waves as defined by Tadepalli and Synolakis (1994, Proc. R. Soc. Lond. A 445, 99-112). We then verify our analytical solution for several typical wave profiles, both with the NOAA tsunami forecast model MOST (Titov and Synolakis, 1998, J. Waterw. Port Coast. Ocean Eng. 124(4), 157-171) which is validated and verified through

  14. Integrating Caribbean Seismic and Tsunami Hazard into Public Policy and Action

    von Hillebrandt-Andrade, C.

    2012-12-01

    The Caribbean has a long history of tsunamis and earthquakes. Over the past 500 years, more than 80 tsunamis have been documented in the region by the NOAA National Geophysical Data Center. Almost 90% of all these historical tsunamis have been associated with earthquakes. Just since 1842, 3510 lives have been lost to tsunamis; this is more than in the Northeastern Pacific for the same time period. With a population of almost 160 million and a heavy concentration of residents, tourists, businesses and critical infrastructure along the Caribbean shores (especially in the northern and eastern Caribbean), the risk to lives and livelihoods is greater than ever before. Most of the countries also have a very high exposure to earthquakes. Given the elevated vulnerability, it is imperative that government officials take steps to mitigate the potentially devastating effects of these events. Nevertheless, given the low frequency of high impact earthquakes and tsunamis, in comparison to hurricanes, combined with social and economic considerations, the needed investments are not made and disasters like the 2010 Haiti earthquake occur. In the absence of frequent significant events, an important driving force for public officials to take action, is the dissemination of scientific studies. When papers of this nature have been published and media advisories issued, public officials demonstrate heightened interest in the topic which in turn can lead to increased legislation and funding efforts. This is especially the case if the material can be easily understood by the stakeholders and there is a local contact. In addition, given the close link between earthquakes and tsunamis, in Puerto Rico alone, 50% of the high impact earthquakes have also generated destructive tsunamis, it is very important that earthquake and tsunami hazards studies demonstrate consistency. Traditionally in the region, earthquake and tsunami impacts have been considered independently in the emergency planning

  15. Vulnerability Analysis of Buildings Exposed to the Tohoku Tsunami and Implications for Use of Multi-Story Buildings for Tsunami Vertical Evacuation

    Chock, G.; Robertson, I.; Carden, L.

    2012-12-01

    Fluid and impact loads and scouring from tsunami inundation creates substantial collapse risk for coastal buildings. An April 2011 survey after the Tohoku Tsunami led by the principal author investigated cases of structural failures, successes and near failures. During the 2011 Tohoku Tsunami, aerial and land-based video cameras captured the inundation at numerous locations along the Tohoku coastline of Japan. Tsunami flow depths and velocities were determined based on analysis of video records and the effects on simple benchmark structures in the flow path. Detailed field measurements and material samples were used to verify critical dimensions and properties of structures. A subsequent National Science Foundation-sponsored survey captured even more detailed LiDAR data of selected structures which was used to validate structural deformations from the structural analysis. The ASCE Structural Engineering Institute will be incorporating tsunami design provisions in the next update of the national load standard, ASCE 7-2016, Minimum Design Loads for Buildings and Other Structures. We will present several relevant case studies of full-scale tsunami loads on structures used to evaluate design provisions being considered for these provisions. The first two authors are also working on the performance-based tsunami design criteria, where a building's performance objective for design is based on the role it plays in the community. Drawing on findings from research and post-tsunami building vulnerability analyses, the authors will discuss how these findings are informing the direction of the forthcoming ASCE 7-2016 chapter on Tsunami Loads and Effects that will be the first national tsunami design provisions applicable for all US states with Pacific Ocean coastlines. During the 2011 Tohoku Tsunami, many thousands of people were saved by taking shelter in multi-story reinforced concrete buildings after the tsunami warning was issued. The first two authors visited a number of

  16. Geoethical issues involved in Tsunami Warning System concepts and operations

    Charalampakis, Marinos; Papadopoulos, Gerassimos A.; Tinti, Stefano

    2016-04-01

    The main goal of a Tsunami Warning System (TWS) is to mitigate the effect of an incoming tsunami by alerting coastal population early enough to allow people to evacuate safely from inundation zones. Though this representation might seem oversimplified, nonetheless, achieving successfully this goal requires a positive synergy of geoscience, communication, emergency management, technology, education, social sciences, politics. Geoethical issues arise always when there is an interaction between geoscience and society, and TWS is a paradigmatic case where interaction is very strong and is made critical because a) the formulation of the tsunami alert has to be made in a time as short as possible and therefore on uncertain data, and b) any evaluation error (underestimation or overestimation) can lead to serious (and sometimes catastrophic) consequences involving wide areas and a large amount of population. From the geoethical point of view three issues are critical: how to (i) combine forecasts and uncertainties reasonably and usefully, (ii) cope and possibly solve the dilemma whether it is better over-alerting or under-alerting population and (iii) deal with responsibility and liability of geoscientists, TWS operators, emergency operators and coastal population. The discussion will be based on the experience of the Hellenic National Tsunami Warning Center (HL-NTWC, Greece), which operates on 24/7 basis as a special unit of the Institute of Geodynamics, National Observatory of Athens, and acts also as Candidate Tsunami Service Provider (CTSP) in the framework of the North-Eastern Atlantic, the Mediterranean and connected seas Tsunami Warning System (NEAMTWS) of the IOC/UNESCO. Since August 2012, when HL-NTWC was officially declared as operational, 14 tsunami warning messages have been disseminated to a large number of subscribers after strong submarine earthquakes occurring in Greece and elsewhere in the eastern Mediterranean. It is recognized that the alerting process

  17. Historical Tsunami Event Locations with Runups

    Department of Homeland Security — The Global Historical Tsunami Database provides information on over 2,400 tsunamis from 2100 BC to the present in the the Atlantic, Indian, and Pacific Oceans; and...

  18. Deep-Ocean Measurements of Tsunami Waves

    Rabinovich, Alexander B.; Eblé, Marie C.

    2015-12-01

    Deep-ocean tsunami measurements play a major role in understanding the physics of tsunami wave generation and propagation, and in improving the effectiveness of tsunami warning systems. This paper provides an overview of the history of tsunami recording in the open ocean from the earliest days, approximately 50 years ago, to the present day. Modern tsunami monitoring systems such as the self-contained Deep-ocean Assessment and Reporting of Tsunamis and innovative cabled sensing networks, including, but not limited to, the Japanese bottom cable projects and the NEPTUNE-Canada geophysical bottom observatory, are highlighted. The specific peculiarities of seafloor longwave observations in the deep ocean are discussed and compared with observations recorded in coastal regions. Tsunami detection in bottom pressure observations is exemplified through analysis of distant (22,000 km from the source) records of the 2004 Sumatra tsunami in the northeastern Pacific.

  19. CTD_DATABASE - Cascadia tsunami deposit database

    U.S. Geological Survey, Department of the Interior — The Cascadia Tsunami Deposit Database contains data on the location and sedimentological properties of tsunami deposits found along the Cascadia margin. Data have...

  20. Numerical Modeling of Tsunami Bore Attenuation and Extreme Hydrodynamic Impact Forces Using the SPH Method

    Piche, Steffanie

    Understanding the impact of coastal forests on the propagation of rapidly advancing onshore tsunami bores is difficult due to complexity of this phenomenon and the large amount of parameters which must be considered. The research presented in the thesis focuses on understanding the protective effect of the coastal forest on the forces generated by the tsunami and its ability to reduce the propagation and velocity of the incoming tsunami bore. Concern for this method of protecting the coast from tsunamis is based on the effectiveness of the forest and its ability to withstand the impact forces caused by both the bore and the debris carried along by it. The devastation caused by the tsunami has been investigated in recent examples such as the 2011 Tohoku Tsunami in Japan and the Indian Ocean Tsunami which occurred in 2004. This research examines the reduction of the spatial extent of the tsunami bore inundation and runup due to the presence of the coastal forest, and attempts to quantify the impact forces induced by the tsunami bores and debris impact on the structures. This research work was performed using a numerical model based on the Smoothed Particle Hydrodynamics (SPH) method which is a single-phase three-dimensional model. The simulations performed in this study were separated into three sections. The first section focused on the reduction of the extent of the tsunami inundation and the magnitude of the bore velocity by the coastal forest. This section included the analysis of the hydrodynamic forces acting on the individual trees. The second section involved the numerical modeling of some of the physical laboratory experiments performed by researchers at the University of Ottawa, in cooperation with colleagues from the Ocean, Coastal and River Engineering Lab at the National Research Council, Ottawa, in an attempt to validate the movement and impact forces of floating driftwood on a column. The final section modeled the movement and impact of floating debris

  1. Tsunami Warning Center in Turkey : Status Update 2012

    Meral Ozel, N.; Necmioglu, O.; Yalciner, A. C.; Kalafat, D.; Yilmazer, M.; Comoglu, M.; Sanli, U.; Gurbuz, C.; Erdik, M.

    2012-04-01

    This is an update to EGU2011-3094 informing on the progress of the establishment of a National Tsunami Warning Center in Turkey (NTWC-TR) under the UNESCO Intergovernmental Oceanographic Commission - Intergovernmental Coordination Group for the Tsunami Early Warning and Mitigation System in the North-eastern Atlantic, the Mediterranean and connected seas (IOC-ICG/NEAMTWS) initiative. NTWC-TR is integrated into the 24/7 operational National Earthquake Monitoring Center (NEMC) of KOERI comprising 129 BB and 61 strong motion sensors. Based on an agreement with the Disaster and Emergency Management Presidency (DEMP), data from 10 BB stations located in the Aegean and Mediterranean Coast is now transmitted in real time to KOERI. Real-time data transmission from 6 primary and 10 auxiliary stations from the International Monitoring System will be in place in the very near future based on an agreement concluded with the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO) in 2011. In an agreement with a major Turkish GSM company, KOERI is enlarging its strong-motion network to promote real-time seismology and to extend Earthquake Early Warning system countrywide. 25 accelerometers (included in the number given above) have been purchased and installed at Base Transceiver Station Sites in coastal regions within the scope of this initiative. Data from 3 tide gauge stations operated by General Command of Mapping (GCM) is being transmitted to KOERI via satellite connection and the aim is to integrate all tide-gauge stations operated by GCM into NTWC-TR. A collaborative agreement has been signed with the European Commission - Joint Research Centre (EC-JRC) and MOD1 Tsunami Scenario Database and TAT (Tsunami Analysis Tool) are received by KOERI and user training was provided. The database and the tool are linked to SeisComp3 and currently operational. In addition KOERI is continuing the work towards providing contributions to JRC in order to develop an improved database

  2. A Hybrid Tsunami Risk Model for Japan

    Haseemkunju, A. V.; Smith, D. F.; Khater, M.; Khemici, O.; Betov, B.; Scott, J.

    2014-12-01

    Around the margins of the Pacific Ocean, denser oceanic plates slipping under continental plates cause subduction earthquakes generating large tsunami waves. The subducting Pacific and Philippine Sea plates create damaging interplate earthquakes followed by huge tsunami waves. It was a rupture of the Japan Trench subduction zone (JTSZ) and the resultant M9.0 Tohoku-Oki earthquake that caused the unprecedented tsunami along the Pacific coast of Japan on March 11, 2011. EQECAT's Japan Earthquake model is a fully probabilistic model which includes a seismo-tectonic model describing the geometries, magnitudes, and frequencies of all potential earthquake events; a ground motion model; and a tsunami model. Within the much larger set of all modeled earthquake events, fault rupture parameters for about 24000 stochastic and 25 historical tsunamigenic earthquake events are defined to simulate tsunami footprints using the numerical tsunami model COMCOT. A hybrid approach using COMCOT simulated tsunami waves is used to generate inundation footprints, including the impact of tides and flood defenses. Modeled tsunami waves of major historical events are validated against observed data. Modeled tsunami flood depths on 30 m grids together with tsunami vulnerability and financial models are then used to estimate insured loss in Japan from the 2011 tsunami. The primary direct report of damage from the 2011 tsunami is in terms of the number of buildings damaged by municipality in the tsunami affected area. Modeled loss in Japan from the 2011 tsunami is proportional to the number of buildings damaged. A 1000-year return period map of tsunami waves shows high hazard along the west coast of southern Honshu, on the Pacific coast of Shikoku, and on the east coast of Kyushu, primarily associated with major earthquake events on the Nankai Trough subduction zone (NTSZ). The highest tsunami hazard of more than 20m is seen on the Sanriku coast in northern Honshu, associated with the JTSZ.

  3. Advances in earthquake and tsunami sciences and disaster risk reduction since the 2004 Indian ocean tsunami

    Satake, Kenji

    2014-12-01

    The December 2004 Indian Ocean tsunami was the worst tsunami disaster in the world's history with more than 200,000 casualties. This disaster was attributed to giant size (magnitude M ~ 9, source length >1000 km) of the earthquake, lacks of expectation of such an earthquake, tsunami warning system, knowledge and preparedness for tsunamis in the Indian Ocean countries. In the last ten years, seismology and tsunami sciences as well as tsunami disaster risk reduction have significantly developed. Progress in seismology includes implementation of earthquake early warning, real-time estimation of earthquake source parameters and tsunami potential, paleoseismological studies on past earthquakes and tsunamis, studies of probable maximum size, recurrence variability, and long-term forecast of large earthquakes in subduction zones. Progress in tsunami science includes accurate modeling of tsunami source such as contribution of horizontal components or "tsunami earthquakes", development of new types of offshore and deep ocean tsunami observation systems such as GPS buoys or bottom pressure gauges, deployments of DART gauges in the Pacific and other oceans, improvements in tsunami propagation modeling, and real-time inversion or data assimilation for the tsunami warning. These developments have been utilized for tsunami disaster reduction in the forms of tsunami early warning systems, tsunami hazard maps, and probabilistic tsunami hazard assessments. Some of the above scientific developments helped to reveal the source characteristics of the 2011 Tohoku earthquake, which caused devastating tsunami damage in Japan and Fukushima Dai-ichi Nuclear Power Station accident. Toward tsunami disaster risk reduction, interdisciplinary and trans-disciplinary approaches are needed for scientists with other stakeholders.

  4. Tsunami Ready Recognition Program for the Caribbean and Adjacent Regions Launched in 2015

    von Hillebrandt-Andrade, C.; Hinds, K.; Aliaga, B.; Brome, A.; Lopes, R.

    2015-12-01

    Over 75 tsunamis have been documented in the Caribbean and Adjacent Regions over the past 500 years with 4,561 associated deaths according to the NOAA Tsunami Database. The most recent devastating tsunamis occurred in 1946 in Dominican Republic; 1865 died. With the explosive increase in residents, tourists, infrastructure, and economic activity along the coasts, the potential for human and economic loss is enormous. It has been estimated that on any day, more than 500,000 people in the Caribbean could be in harm's way just along the beaches, with hundreds of thousands more working and living in the tsunamis hazard zones. In 2005 the UNESCO Intergovernmental Oceanographic Commission established the Intergovernmental Coordination Group for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (ICG CARIBE EWS) to coordinate tsunami efforts among the 48 participating countries in territories in the region. In addition to monitoring, modeling and communication systems, one of the fundamental components of the warning system is community preparedness, readiness and resilience. Over the past 10 years 49 coastal communities in the Caribbean have been recognized as TsunamiReady® by the US National Weather Service (NWS) in the case of Puerto Rico and the US Virgin Islands and jointly by UNESCO and NWS in the case of the non US jurisdictions of Anguilla and the British Virgin Islands. In response to the positive feedback of the implementation of TsunamiReady, the ICG CARIBE EWS in 2015 recommended the approval of the guidelines for a Community Performance Based Recognition program. It also recommended the adoption of the name "Tsunami Ready", which has been positively consulted with the NWS. Ten requirements were established for recognition and are divided among Preparedness, Mitigation and Response elements which were adapted from the proposed new US TsunamiReady guidelines and align well with emergency management functions. Both a

  5. Approche pédogéomorphologique pour l’évaluation des impacts du tsunami du 26 décembre 2004 sur la qualité des sols et des eaux phréatiques du secteur de Lampuuk, ouest de Banda Aceh

    Sartohadi, Junun; Mardiatno, Djati; Setiawan, Anggri; Cahyadi, Rino; Hadmoko, Danang Sri; Wassmer, Patrick; Paris, Raphaël

    2016-01-01

    This research was carried out in Lampuuk District, Nanggroe Aceh Darussalam Province. The main aims of this research are to analyze the impacts of the tsunami on landforms, especially their morphological aspects, to analyze the change of water quality and to predict the time required to recover the water quality to initial condition. Pedo-geomorphological approach has been applied in this research in order to evaluate the impacts of tsunamis to each geomorphological unit. Geo-electrical sound...

  6. Public Policy Issues Associated with Tsunami Hazard Mitigation, Response and Recovery: Transferable Lessons from Recent Global Disasters

    Johnson, L.

    2014-12-01

    Since 2004, a sequence of devastating tsunamis has taken the lives of more than 300,000 people worldwide. The path of destruction left by each is typically measured in hundreds of meters to a few kilometers and its breadth can extend for hundreds even thousands of kilometers, crossing towns and countries and even traversing an entire oceanic basin. Tsunami disasters in Indonesia, Chile, Japan and elsewhere have also shown that the almost binary nature of tsunami impacts can present some unique risk reduction, response, recovery and rebuilding challenges, with transferable lessons to other tsunami vulnerable coastal communities around the world. In particular, the trauma can motivate survivors to relocate homes, jobs, and even whole communities to safer ground, sometimes at tremendous social and financial costs. For governments, the level of concentrated devastation usually exceeds the local capacity to respond and thus requires complex inter-governmental arrangements with regional, national and even international partners to support the recovery of impacted communities, infrastructure and economies. Two parallel projects underway in California since 2011—the SAFRR (Science Application for Risk Reduction) tsunami scenario project and the California Tsunami Policy Working Group (CTPWG)—have worked to digest key lessons from recent tsunami disasters, with an emphasis on identifying gaps to be addressed in the current state and federal policy framework to enhance tsunami risk awareness, hazard mitigation, and response and recovery planning ahead of disaster and also improve post-disaster implementation practices following a future California or U.S. tsunami event.

  7. Tsunami Preparedness: Building On Past Efforts to Reach More People… California and Beyond!

    Miller, K.; Siegel, J.; Pridmore, C. L.; Benthien, M. L.; Wilson, R. I.; Long, K.; Ross, S.

    2014-12-01

    The California Tsunami Program has continued to build upon past preparedness efforts, carried out year-round, while leveraging government support at all levels during National Tsunami Preparedness Week, the last week of March. A primary goal is for everyone who lives at or visits the coast to understand basic safety measures when responding to official tsunami alerts or natural warnings. In 2014, more so than ever before, many local, coastal jurisdictions conducted grass-roots activities in their areas. When requested, state and federal programs stepped in to contribute subject matter expertise, lessons learned, and support. And, this year, the new website, www.TsunamiZone.org, was developed. With a goal of establishing a baseline for future years, this website builds on the successes of the Great Shakeout Earthquake Drills (www.ShakeOut.org) by allowing people to locate and register for tsunami preparedness events in their area. Additionally, it provides a central location for basic tsunami preparedness information, and links to find out more. The idea is not only to empower people with the best available, vetted, scientifically-based public safety information, but also to provide ways in which individuals can take physical action to educate themselves and others. Several broad categories of preparedness actions include: official acknowledgement of National Tsunami Preparedness Week, local "tsunami walk" drills, simulated tsunami-based exercises, testing of sirens and notification systems, outreach materials (brochures, videos, maps), workshops, presentations, media events, and websites. Next steps include building on the foundation established in 2014 by leveraging ShakeOut audiences, providing people with more information about how they can participate in 2015, and carrying the effort forward to other states and territories.

  8. Validation and Performance Comparison of Numerical Codes for Tsunami Inundation

    Velioglu, D.; Kian, R.; Yalciner, A. C.; Zaytsev, A.

    2015-12-01

    In inundation zones, tsunami motion turns from wave motion to flow of water. Modelling of this phenomenon is a complex problem since there are many parameters affecting the tsunami flow. In this respect, the performance of numerical codes that analyze tsunami inundation patterns becomes important. The computation of water surface elevation is not sufficient for proper analysis of tsunami behaviour in shallow water zones and on land and hence for the development of mitigation strategies. Velocity and velocity patterns are also crucial parameters and have to be computed at the highest accuracy. There are numerous numerical codes to be used for simulating tsunami inundation. In this study, FLOW 3D and NAMI DANCE codes are selected for validation and performance comparison. Flow 3D simulates linear and nonlinear propagating surface waves as well as long waves by solving three-dimensional Navier-Stokes (3D-NS) equations. FLOW 3D is used specificaly for flood problems. NAMI DANCE uses finite difference computational method to solve linear and nonlinear forms of shallow water equations (NSWE) in long wave problems, specifically tsunamis. In this study, these codes are validated and their performances are compared using two benchmark problems which are discussed in 2015 National Tsunami Hazard Mitigation Program (NTHMP) Annual meeting in Portland, USA. One of the problems is an experiment of a single long-period wave propagating up a piecewise linear slope and onto a small-scale model of the town of Seaside, Oregon. Other benchmark problem is an experiment of a single solitary wave propagating up a triangular shaped shelf with an island feature located at the offshore point of the shelf. The computed water surface elevation and velocity data are compared with the measured data. The comparisons showed that both codes are in fairly good agreement with each other and benchmark data. All results are presented with discussions and comparisons. The research leading to these

  9. Tsunami early warning and decision support

    Steinmetz, T.; Raape, U.; Teßmann, S.; Strobl, C.; Friedemann, M.; Kukofka, T.; Riedlinger, T.; Mikusch, E.; Dech, S.

    2010-09-01

    An innovative newly developed modular and standards based Decision Support System (DSS) is presented which forms part of the German Indonesian Tsunami Early Warning System (GITEWS). The GITEWS project stems from the effort to implement an effective and efficient Tsunami Early Warning and Mitigation System for the coast of Indonesia facing the Sunda Arc along the islands of Sumatra, Java and Bali. The geological setting along an active continental margin which is very close to densely populated areas is a particularly difficult one to cope with, because potential tsunamis' travel times are thus inherently short. National policies require an initial warning to be issued within the first five minutes after an earthquake has occurred. There is an urgent requirement for an end-to-end solution where the decision support takes the entire warning chain into account. The system of choice is based on pre-computed scenario simulations and rule-based decision support which is delivered to the decision maker through a sophisticated graphical user interface (GUI) using information fusion and fast information aggregation to create situational awareness in the shortest time possible. The system also contains risk and vulnerability information which was designed with the far end of the warning chain in mind - it enables the decision maker to base his acceptance (or refusal) of the supported decision also on regionally differentiated risk and vulnerability information (see Strunz et al., 2010). While the system strives to provide a warning as quickly as possible, it is not in its proper responsibility to send and disseminate the warning to the recipients. The DSS only broadcasts its messages to a dissemination system (and possibly any other dissemination system) which is operated under the responsibility of BMKG - the meteorological, climatological and geophysical service of Indonesia - which also hosts the tsunami early warning center. The system is to be seen as one step towards

  10. Tsunami early warning and decision support

    T. Steinmetz

    2010-09-01

    Full Text Available An innovative newly developed modular and standards based Decision Support System (DSS is presented which forms part of the German Indonesian Tsunami Early Warning System (GITEWS. The GITEWS project stems from the effort to implement an effective and efficient Tsunami Early Warning and Mitigation System for the coast of Indonesia facing the Sunda Arc along the islands of Sumatra, Java and Bali. The geological setting along an active continental margin which is very close to densely populated areas is a particularly difficult one to cope with, because potential tsunamis' travel times are thus inherently short. National policies require an initial warning to be issued within the first five minutes after an earthquake has occurred. There is an urgent requirement for an end-to-end solution where the decision support takes the entire warning chain into account. The system of choice is based on pre-computed scenario simulations and rule-based decision support which is delivered to the decision maker through a sophisticated graphical user interface (GUI using information fusion and fast information aggregation to create situational awareness in the shortest time possible. The system also contains risk and vulnerability information which was designed with the far end of the warning chain in mind – it enables the decision maker to base his acceptance (or refusal of the supported decision also on regionally differentiated risk and vulnerability information (see Strunz et al., 2010. While the system strives to provide a warning as quickly as possible, it is not in its proper responsibility to send and disseminate the warning to the recipients. The DSS only broadcasts its messages to a dissemination system (and possibly any other dissemination system which is operated under the responsibility of BMKG – the meteorological, climatological and geophysical service of Indonesia – which also hosts the tsunami early warning center. The system is to be seen

  11. A Decade After the 2004 Indian Ocean Tsunami: The Progress in Disaster Preparedness and Future Challenges in Indonesia, Sri Lanka, Thailand and the Maldives

    Suppasri, Anawat; Goto, Kazuhisa; Muhari, Abdul; Ranasinghe, Prasanthi; Riyaz, Mahmood; Affan, Muzailin; Mas, Erick; Yasuda, Mari; Imamura, Fumihiko

    2015-12-01

    The 2004 Indian Ocean tsunami was one of the most devastating tsunamis in world history. The tsunami caused damage to most of the Asian and other countries bordering the Indian Ocean. After a decade, reconstruction has been completed with different levels of tsunami countermeasures in most areas; however, some land use planning using probabilistic tsunami hazard maps and vulnerabilities should be addressed to prepare for future tsunamis. Examples of early-stage reconstruction are herein provided alongside a summary of some of the major tsunamis that have occurred since 2004, revealing the tsunami countermeasures established during the reconstruction period. Our primary objective is to report on and discuss the vulnerabilities found during our field visits to the tsunami-affected countries—namely, Indonesia, Sri Lanka, Thailand and the Maldives. For each country, future challenges based on current tsunami countermeasures, such as land use planning, warning systems, evacuation facilities, disaster education and disaster monuments are explained. The problem of traffic jams during tsunami evacuations, especially in well-known tourist areas, was found to be the most common problem faced by all of the countries. The readiness of tsunami warning systems differed across the countries studied. These systems are generally sufficient on a national level, but local hazards require greater study. Disaster reduction education that would help to maintain high tsunami awareness is well established in most countries. Some geological evidence is well preserved even after a decade. Conversely, the maintenance of monuments to the 2004 tsunami appears to be a serious problem. Finally, the reconstruction progress was evaluated based on the experiences of disaster reconstruction in Japan. All vulnerabilities discussed here should be addressed to create long-term, disaster-resilient communities.

  12. Towards a certification process for tsunami early warning systems

    Löwe, Peter; Wächter, Jochen; Hammitzsch, Martin

    2013-04-01

    The natural disaster of the Boxing Day Tsunami of 2004 was followed by an information catastrophe. Crucial early warning information could not be delivered to the communities under imminent threat, resulting in over 240,000 casualties in 14 countries. This tragedy sparked the development of a new generation of integrated modular Tsunami Early Warning Systems (TEWS). While significant advances were accomplished in the past years, recent events, like the Chile 2010 and the Tohoku 2011 tsunami demonstrate that the key technical challenge for Tsunami Early Warning research on the supranational scale still lies in the timely issuing of status information and reliable early warning messages in a proven workflow. A second challenge stems from the main objective of the Intergovernmental Oceanographic Commission of UNESCO (IOC) Tsunami Programme, the integration of national TEWS towards ocean-wide networks: Each of the increasing number of integrated Tsunami Early Warning Centres has to cope with the continuing evolution of sensors, hardware and software while having to maintain reliable inter-center information exchange services. To avoid future information catastrophes, the performance of all components, ranging from individual sensors, to Warning Centers within their particular end-to-end Warning System Environments, and up to federated Systems of Tsunami Warning Systems has to be regularly validated against defined criteria. Since 2004, GFZ German Research Centre for Geosciences (GFZ) has built up expertise in the field of TEWS. Within GFZ, the Centre for GeoInformation Technology (CeGIT) has focused its work on the geoinformatics aspects of TEWS in two projects already, being the German Indonesian Tsunami Early Warning System (GITEWS) and the Distant Early Warning System (DEWS). This activity is continued in the TRIDEC project (Collaborative, Complex, and Critical Decision Processes in Evolving Crises) funded under the European Union's seventh Framework Programme (FP7

  13. A new approach for tsunami early warning using tsunami observations in a source region

    Tanioka, Y.

    2015-12-01

    After the 2011 devastating Tohoku tsunami, improvement of tsunami early warning system is one of key issues in Japan. Japanese government was decided to install 125 ocean bottom pressure sensors and seismometers with a cable system along the Japan and Kurile trench. Each sensor is separated by 30km. We should develop a new approach for real-time tsunami forecast using those newly available data combined with GNSS data or seismic data. A well-recognized problem to use tsunami data at pressure sensors on the top of tsunami source area is a fact that a large vertical coseismic deformation due to a large earthquake cannot be observed at those sensors. The sensors observe a tsunami wave when it starts to propagate. Because of that problem, GSNN data or seismic data are typically used to estimate the coseismic deformation for the tsunami numerical simulation. In this paper, we develop a new technique, which solve the problem. Our technique uses the observations at pressure sensors on the tsunami source area as an input to compute the tsunami directly. Actual tsunami heights at the sensors on the source area is unknown because the cosismic vertical deformation is unknown. However, we can observe directly the time derivative of tsunami heights at those sensors. Time derivatives of tsunami heights at each point are used as inputs to compute the tsunami height distribution in the calculated area. Then we can numerically compute a tsunami using a traditional finite difference technique from the tsunami height distribution computed. For numerical test, first, we compute the synthetic tsunamis using the fault model with 1 minute grid system. The computed tsunami waveforms at 15 minutes x 15 minutes grid points are used as the observed data for this new technique. Each observed point is separated by 15 minutes, about 30km. The result show that the accuracy of tsunami computation is good enough for tsunami forecast. Tsunami generation with a long duration, such as tsunami

  14. Impact of 2004 Tsunami in the Islands of Indian Ocean: Lessons Learned

    Georges Ramalanjaona

    2011-01-01

    Full Text Available Tsunami of 2004, caused by a 9.0 magnitude earthquake, is the most devastating tsunami in modern times, affecting 18 countries in Southeast Asia and Southern Africa, killing more than 250,000 people in a single day, and leaving more than 1.7 million homeless. However, less reported, albeit real, is its impact in the islands of the Indian Ocean more than 1,000 miles away from its epicenter. This is the first peer-reviewed paper on the 2004 tsunami events specifically in the eleven nations bordering the Indian Ocean, as they constitute a region at risk, due to the presence of tectonic interactive plate, absence of a tsunami warning system in the Indian Ocean, and lack established communication network providing timely information to that region. Our paper has a dual objective: the first objective is to report the 2004 tsunami event in relation to the 11 nations bordering the Indian Ocean. The second one is to elaborate on lessons learned from it from national, regional, and international disaster management programs to prevent such devastating consequences of tsunami from occurring again in the future.

  15. An environmental perspective of the post-tsunami scenario along the coast of Tamil Nadu, India: Role of sand dunes and forests

    Mascarenhas, A.; Jayakumar, S.

    of Environmental Management, vol.89(1), 2008; 24-34 Environmental Aspects of the Indian Ocean Tsunami Recovery REVISED – FINAL DRAFT An environmental perspective of post-tsunami scenario along the coast of Tamil Nadu, India: role of sand dunes... hazards, Tamil Nadu, India 2 1. Introduction In the aftermath of the December 2004 Indian Ocean tsunami, the socio-economic havoc was unprecedented. The Indian National Crisis Management Committee looks after mitigation of disasters and recommends...

  16. Implementation of a Global Navigation Satellite System (GNSS) Augmentation to Tsunami Early Warning Systems

    LaBrecque, John

    2016-04-01

    The Global Geodetic Observing System has issued a Call for Participation to research scientists, geodetic research groups and national agencies in support of the implementation of the IUGG recommendation for a Global Navigation Satellite System (GNSS) Augmentation to Tsunami Early Warning Systems. The call seeks to establish a working group to be a catalyst and motivating force for the definition of requirements, identification of resources, and for the encouragement of international cooperation in the establishment, advancement, and utilization of GNSS for Tsunami Early Warning. During the past fifteen years the populations of the Indo-Pacific region experienced a series of mega-thrust earthquakes followed by devastating tsunamis that claimed nearly 300,000 lives. The future resiliency of the region will depend upon improvements to infrastructure and emergency response that will require very significant investments from the Indo-Pacific economies. The estimation of earthquake moment magnitude, source mechanism and the distribution of crustal deformation are critical to rapid tsunami warning. Geodetic research groups have demonstrated the use of GNSS data to estimate earthquake moment magnitude, source mechanism and the distribution of crustal deformation sufficient for the accurate and timely prediction of tsunamis generated by mega-thrust earthquakes. GNSS data have also been used to measure the formation and propagation of tsunamis via ionospheric disturbances acoustically coupled to the propagating surface waves; thereby providing a new technique to track tsunami propagation across ocean basins, opening the way for improving tsunami propagation models, and providing accurate warning to communities in the far field. These two new advancements can deliver timely and accurate tsunami warnings to coastal communities in the near and far field of mega-thrust earthquakes. This presentation will present the justification for and the details of the GGOS Call for

  17. Resource allocation within the National AIDS Control Program of Pakistan: a qualitative assessment of decision maker's opinions

    Kadir Masood

    2007-01-01

    Full Text Available Abstract Background Limited resources, whether public or private, demand prioritisation among competing needs to maximise productivity. With a substantial increase in the number of reported HIV cases, little work has been done to understand how resources have been distributed and what factors may have influenced allocation within the newly introduced Enhanced National AIDS Control Program of Pakistan. The objective of this study was to identify perceptions of decision makers about the process of resource allocation within Pakistan's Enhanced National AIDS Control Program. Methods A qualitative study was undertaken and in-depth interviews of decision makers at provincial and federal levels responsible to allocate resources within the program were conducted. Results HIV was not considered a priority issue by all study participants and external funding for the program was thought to have been accepted because of poor foreign currency reserves and donor agency influence rather than local need. Political influences from the federal government and donor agencies were thought to manipulate distribution of funds within the program. These influences were thought to occur despite the existence of a well-laid out procedure to determine allocation of public resources. Lack of collaboration among departments involved in decision making, a pervasive lack of technical expertise, paucity of information and an atmosphere of ad hoc decision making were thought to reduce resistance to external pressures. Conclusion Development of a unified program vision through a consultative process and advocacy is necessary to understand goals to be achieved, to enhance program ownership and develop consensus about how money and effort should be directed. Enhancing public sector expertise in planning and budgeting is essential not just for the program, but also to reduce reliance on external agencies for technical support. Strengthening available databases for effective

  18. Four Business Opportunities after Tsunami

    2005-01-01

    @@ Chongqing International Economic and Technical Cooperation Corporation, which has rich experience in international engineering contracting, is actively preparing for the international bid for the reconstruction projects. Zhu Dalun,General Manager of this company, said after the great disaster happened, it would take some time for the relevant countries and regions to reconstruct their land, this tsunami in the Indian Ocean is no exception.

  19. Food Safety After a Tsunami

    ... Preparation & Planning Information on Specific Types of Emergencies Food Safety After a Tsunami Language: English Español (Spanish) Recommend on Facebook Tweet ... wash your hands with clean water and soap before and after you eat or prepare food and after you use the latrine or bathroom. ...

  20. Dispersive mudslide-induced tsunamis

    A. Rubino

    1998-01-01

    Full Text Available A nonlinear nested model for mudslide-induced tsunamis is proposed in which three phases of the life of the wave, i.e. the generation, far-field propagation and costal run-up are described by means of different mathematical models, that are coupled through appropriate matching procedures. The generation and run-up dynamics are simulated through a nonlinear shallow-water model with movable lateral boundaries: in the generation region two active layers are present, the lower one describing the slide descending on a sloping topography. For the intermediate phase, representing wave propagation far from the generation region, the hydrostatic assumption is not assumed as appropriate in general and, therefore, a nonlinear model allowing for weak phase dispersion, namely a Kadomtsev-Petviashvili equation, is used. This choice is made in order to assess the relevance of dispersive features such as solitary waves and dispersive tails. It is shown that in some realistic circumstances dispersive mudslide-induced tsunami waves can be produced over relatively short, distances. In such cases the use of a hydrostatic model throughout the whole tsunami history turns out to give erroneous results. In particular, when solitary waves are generated during the tsunami propagation in the open sea, the resulting run-up process yields peculiar wave forms leading to amplified coastal inundations with respect to a mere hydrostatic context.

  1. Mantle Decompression Thermal-Tsunami

    Herndon, J. Marvin

    2006-01-01

    Previously in geophysics, only three heat transport processes have been considered: conduction, radiation, and convection or, more generally, bouyancy-driven mass transport. As a consequence of whole-Earth decompression dynamics, I add a fourth, called mantle decompression thermal-tsunami, which may emplace heat at the base of the crust from a heretofore unanticipated source.

  2. Early Detection of Tsunami Scales using GPS

    Song, Y.

    2013-12-01

    This talk reviews how tsunamis form from earthquakes and how GPS technologies can be used to detect tsunami energy scales in real time. Most tsunami fatalities occur in near-field communities of earthquakes at offshore faults. Tsunami early warning is key for reducing the number of fatalities. Unfortunately, an earthquake's magnitude often does not gauge the resulting tsunami power. Here we show that real-time GPS stations along coastlines are able to detect seafloor motions due to big earthquakes, and that the detected seafloor displacements are able to determine tsunami energy and scales instantaneously for early warnings. Our method focuses on estimating tsunami energy directly from seafloor motions because a tsunami's potential or scale, no matter how it is defined, has to be proportional to the tsunami energy. Since seafloor motions are the only source of a tsunami, their estimation directly relates to the mechanism that generates tsunamis; therefore, it is a proper way of identifying earthquakes that are capable of triggering tsunamis, while being able to discriminate those particular earthquakes from false alarms. Examples of detecting the tsunami energy scales for the 2004 Sumatra M9.1 earthquake, the 2005 Nias M8.7 earthquake, the 2010 M8.8 Chilean earthquake, and the 2011 M9.0 Tohoku-Oki earthquake will be presented. Related reference: 1. Xu, Z. and Y. T. Song (2013), Combining the all-source Green's functions and the GPS-derived source for fast tsunami prediction - illustrated by the March 2011 Japan tsunami, J. Atmos. Oceanic Tech., jtechD1200201. 2. Song, Y. T., I. Fukumori, C. K. Shum, and Y. Yi (2012), Merging tsunamis of the 2011 Tohoku-Oki earthquake detected over the open ocean, Geophys. Res. Lett., doi:10.1029/2011GL050767. 3. Song, Y. T. and S.C. Han (2011) Satellite observations defying the long-held tsunami genesis theory, D.L. Tang (ed.), Remote Sensing of the Changing Oceans, DOI 10.1007/978-3-642-16541-2, Springer-Verlag Berlin Heidelberg

  3. The SAFRR tsunami scenario-physical damage in California: Chapter E in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    Porter, Keith; Byers, William; Dykstra, David; Lim, Amy; Lynett, Patrick; Ratliff, Jaime; Scawthorn, Charles; Wein, Anne; Wilson, Rick

    2013-01-01

    damageability of assets exposed to loss. Then, applying the damageability model and the velocity, wave amplitude, and inundation models discussed in other SAFRR chapters we offer a single realistic depiction of damage. Other outcomes are of course possible for this hypothetical event. Where practical we estimate repair costs and estimate the duration required to restore the assets to their pre-tsunami condition. We identify opportunities to enhance the resiliency of the assets, either through making them less vulnerable to damage or able to recover more quickly in spite of the damage. Finally, we identify uncertainties in the modeling where research would improve our understanding of the underlying mechanisms of damage and loss or otherwise improve our ability to estimate the future impacts of tsunamis and inform risk-management decisions for tsunamis. However, it is certain that the kinds of damages discussed here have occurred in past tsunamis, even in developed nations, and in a sufficiently large event, will occur in California. Our uncertainties can operate in either direction, either leading to an overestimate of damage or an underestimate. Therefore, losses in an actual future tsunami could be greater than depicted here. Furthermore this evaluation is not intended to be an exhaustive depiction of what could happen in this or similar tsunamis. Other impacts could occur that are not presented here.

  4. Evolution of tsunami warning systems and products.

    Bernard, Eddie; Titov, Vasily

    2015-10-28

    Each year, about 60 000 people and $4 billion (US$) in assets are exposed to the global tsunami hazard. Accurate and reliable tsunami warning systems have been shown to provide a significant defence for this flooding hazard. However, the evolution of warning systems has been influenced by two processes: deadly tsunamis and available technology. In this paper, we explore the evolution of science and technology used in tsunami warning systems, the evolution of their products using warning technologies, and offer suggestions for a new generation of warning products, aimed at the flooding nature of the hazard, to reduce future tsunami impacts on society. We conclude that coastal communities would be well served by receiving three standardized, accurate, real-time tsunami warning products, namely (i) tsunami energy estimate, (ii) flooding maps and (iii) tsunami-induced harbour current maps to minimize the impact of tsunamis. Such information would arm communities with vital flooding guidance for evacuations and port operations. The advantage of global standardized flooding products delivered in a common format is efficiency and accuracy, which leads to effectiveness in promoting tsunami resilience at the community level. PMID:26392620

  5. Tsunami Modeling, Forecast and Warning (Invited)

    Satake, K.

    2010-12-01

    Tsunami is an infrequent natural hazard; however, once it happens, the effects are devastating and can be on global scale, as demonstrated by the 2004 Indian Ocean tsunami. Deterministic modeling of tsunami generation, propagation and coastal behavior has become popular, at least for earthquake tsunamis. Once the earthquake parameters are specified, tsunami arrival times, heights and current velocity at specific coastal points, and inland inundation area can be estimated. Such modeling has been used to make hazard maps usually by assuming largest possible earthquakes. However, smaller tsunamis than such a worst-case scenario occur more frequently. If the hazard maps are used incorrectly, it may lose reliability of coastal residents. Probabilistic tsunami hazard assessments, similar to Probabilistic Seismic Hazard Analysis, have been made for some coasts. The output is tsunami hazard curves, i.e. annual probability (or return period) for specified coastal tsunami heights. A hazard curve is obtained by integration over the aleatory uncertainties, and a large number of hazard curves are made for each branch of logic tress representing epistemic uncertainty. Probabilistic tsunami hazard analysis is used for design of critical facilities but not popularly used for disaster mitigation. Tsunami warning systems, which have been significantly developed since 2004, rely on seismic and sea-level monitoring and pre-made numerical simulation. Real-time data assimilation of offshore sea level measurements can be used to update the warning levels. Tsunami from the February 2010 Chilean earthquake was recorded on many tide gauges and ocean bottom pressure gauges in the Pacific, before it arrived on the Japanese coast about 22 hours after the earthquake. The tsunami height was up to 2 m on the Japanese coast, causing fishery damage amounting 60 million US dollars, but did not cause any human damage.

  6. New Tsunami Response, Mitigation, and Recovery Planning "Playbooks" for California (USA) Maritime Communities

    Wilson, R. I.; Lynett, P. J.; Miller, K.; Eskijian, M.; Dengler, L. A.; Ayca, A.; Keen, A.; Admire, A. R.; Siegel, J.; Johnson, L. A.; Curtis, E.; Hornick, M.

    2015-12-01

    The 2010 Chile and 2011 Japan tsunamis both struck the California coast offering valuable experience and raised a number of significant issues for harbor masters, port captains, and other maritime entities. There was a general call for more planning products to help guide maritime communities in their tsunami response, mitigation, and recovery activities. The State of California is working with the U.S. Federal Emergency Management Agency (FEMA), the U.S. National Tsunami Hazard Mitigation Program (NTHMP), and other tsunami experts to provide communities with new tsunami planning tools to address these issues: Response Playbooks and plans have been developed for ports and harbors identifying potential tsunami current hazards and related damage for various size events. Maps have been generated showing minor, moderate, and severe damage levels that have been linked to current velocity thresholds of 3, 6, and 9 knots, respectively. Knowing this information allows harbor personnel to move ships or strengthen infrastructure prior to the arrival of distant source tsunamis. Damage probability tools and mitigation plans have been created to help reduce tsunami damage by evaluating the survivability of small and large vessels in harbors and ports. These results were compared to the actual damage assessments performed in California and Japan following the 2011 Japanese tsunami. Fragility curves were developed based on current velocity and direction to help harbor and port officials upgrade docks, piles, and related structures. Guidance documents are being generated to help in the development of both local and statewide recovery plans. Additional tools, like post-tsunami sediment and debris movement models, will allow harbors and ports to better understand if and where recovery issues are most likely to occur. Streamlining the regulatory and environmental review process is also a goal of the guidance. These maritime products and procedures are being integrated into guidance

  7. New Offshore Approach to Reduce Impact of Tsunami Waves

    Anant Chatorikar, Kaustubh

    2016-04-01

    The world is facing an increasing frequency and intensity of natural disaster that has devastating impacts on society. As per International Strategy for Disaster Reduction (ISDR), it has been observed that over five million people were killed or affected in last 10 years and huge amount of economic losses occurred due to natural disaster. The 2011 tsunami in Japan showed a tremendous setback to existing technology of tsunami protection. More than 25,000 lives have been lost, Apart from that the damage to the nuclear power stations has severely affected the nearby populace and marine life. After the 2004 tsunami, world's effort has been concentrated on early warning and effective mitigation plans to defend against tsunami. It is anybody's guess as to what would have happened if such natural calamity specifically tsunami of such magnitude strikes our nation as country has already suffered from it in 2004 and seen its disastrous effects. But the point is what if such calamity strikes the mega cities like Chennai, Mumbai and Kolkata again where there is extensive human habitation and conventional warning systems and mitigation methods are not effective when it comes to huge population of these cities, destruction caused by it will be worse than nuclear weapon strike as there is also very high possibility of deaths due to stampede. This paper talks about an idea inspired from daily routine and its relation with fundamental physics as well as method of its deployment is discussed. According to this idea when wave will strike the coast, aim is not to stop it but to reduce its impact within the permissible impact limits of existing infrastructure by converting it into foam wave with help of surfactants, thereby saving human lives as well as complications of Mitigation.

  8. New Offshore Approach to Reduce Impact of Tsunami Waves

    Anant Chatorikar, Kaustubh

    2016-07-01

    The world is facing an increasing frequency and intensity of natural disaster that has devastating impacts on society. As per International Strategy for Disaster Reduction (ISDR), it has been observed that over five million people were killed or affected in last 10 years and huge amount of economic losses occurred due to natural disaster. The 2011 tsunami in Japan showed a tremendous setback to existing technology of tsunami protection. More than 25,000 lives have been lost, Apart from that the damage to the nuclear power stations has severely affected the nearby populace and marine life. After the 2004 tsunami, world's effort has been concentrated on early warning and effective mitigation plans to defend against tsunami. It is anybody's guess as to what would have happened if such natural calamity specifically tsunami of such magnitude strikes our nation as country has already suffered from it in 2004 and seen its disastrous effects. But the point is what if such calamity strikes the mega cities like Chennai, Mumbai and Kolkata again where there is extensive human habitation and conventional warning systems and mitigation methods are not effective when it comes to huge population of these cities, destruction caused by it will be worse than nuclear weapon strike as there is also very high possibility of deaths due to stampede. This paper talks about an idea inspired from daily routine and its relation with fundamental physics as well as method of its deployment is discussed. According to this idea when wave will strike the coast, aim is not to stop it but to reduce its impact within the permissible impact limits of existing infrastructure by converting it into foam wave with help of surfactants, thereby saving human lives as well as complications of Mitigation.

  9. Issues of tsunami hazard maps revealed by the 2011 Tohoku tsunami

    Sugimoto, M.

    2013-12-01

    Tsunami scientists are imposed responsibilities of selection for people's tsunami evacuation place after the 2011 Tohoku Tsunami in Japan. A lot of matured people died out of tsunami hazard zone based on tsunami hazard map though students made a miracle by evacuation on their own judgment in Kamaishi city. Tsunami hazard maps were based on numerical model smaller than actual magnitude 9. How can we bridge the gap between hazard map and future disasters? We have to discuss about using tsunami numerical model better enough to contribute tsunami hazard map. How do we have to improve tsunami hazard map? Tsunami hazard map should be revised included possibility of upthrust or downthrust after earthquakes and social information. Ground sank 1.14m below sea level in Ayukawa town, Tohoku. Ministry of Land, Infrastructure, Transport and Tourism's research shows around 10% people know about tsunami hazard map in Japan. However, people know about their evacuation places (buildings) through experienced drills once a year even though most people did not know about tsunami hazard map. We need wider spread of tsunami hazard with contingency of science (See the botom disaster handbook material's URL). California Emergency Management Agency (CEMA) team practically shows one good practice and solution to me. I followed their field trip in Catalina Island, California in Sep 2011. A team members are multidisciplinary specialists: A geologist, a GIS specialist, oceanographers in USC (tsunami numerical modeler) and a private company, a local policeman, a disaster manager, a local authority and so on. They check field based on their own specialties. They conduct an on-the-spot inspection of ambiguous locations between tsunami numerical model and real field conditions today. The data always become older. They pay attention not only to topographical conditions but also to social conditions: vulnerable people, elementary schools and so on. It takes a long time to check such field

  10. Testing a real-time algorithm for the detection of tsunami signals on sea-level records

    Bressan, L.; Tinti, S.; Titov, V.

    2009-04-01

    One of the important tasks for the implementation of a tsunami warning system in the Mediterranean Sea is to develop a real-time detection algorithm. Unlike the Mediterranean Sea situation, tsunamis happen quite often in the Pacific Ocean and they have been historically recorded with a proper sampling rate. A large database of tsunami records is therefore available for the Pacific. The Tsunami Research Team of the University of Bologna is developing a real-time detection algorithm on synthetic records. Thanks to the collaboration with NCTR of PMEL/NOAA (NOAA Center for Tsunami Research of Pacific and Marine Environmental Laboratory/National Oceanic and Atmospheric Administration), it has been possible to test this algorithm on specific events recorded by Adak Island tide-gage, in Alaska, and by DART buoys, located offshore Alaska. This work has been undertaken in the framework of the Italian national project DPC-INGV S3. The detection algorithm has the goal to discriminate the first tsunami wave from the previous background signal. Shortly, the algorithm is built on a parameter based on the standard deviation of the signal calculated on a short time window and on its comparison with its computed prediction through a control function. The control function indicates a tsunami detection whenever it exceeds a certain threshold. The algorithm was calibrated and tested both on coastal tide-gages and on offshore buoys that measure sea-level changes. Its calibration presents different issues if the algorithm has to be implemented on an offshore buoy or on a coastal tide-gage. In particular, the algorithm parameters are site-specific for coastal sea-level signals, because sea-level changes are here mainly characterized by oscillations induced by the coastal topography. Adak Island background signal was analyzed and the algorithm parameters were set: It was found that there is a persistent presence of seiches with periods in the tsunami range, to which the algorithm is also