WorldWideScience

Sample records for pulp periodontal ligament

  1. Autoradiographic study of 3H-proline incorporation by rat periodontal ligament, gingival connective tissue and dental pulp

    International Nuclear Information System (INIS)

    Kameyama, Y.

    1975-01-01

    The rates of 3 H-proline incorporation by the rat periodontal ligament, the gingival connective tissue and the dental pulp were studied by autoradiography. The rate of 3 H-proline incorporation by the periodontal ligament was 2.8 times higher than by the gingival connective tissue and 5 times higher than by the dental pulp. These differences were significant (p 3 H-proline incorporation by the periodontal ligament was significantly different (p 3 H-proline incorporation. The ratio of the rates of 3 H-proline incorporation by the three tissues did not correlate with the ratio of the cellular densities in the same three tissues. (author)

  2. Comparison of Gingiva, Dental Pulp, and Periodontal Ligament Cells From the Standpoint of Mesenchymal Stem Cell Properties

    Science.gov (United States)

    Otabe, Koji; Muneta, Takeshi; Kawashima, Nobuyuki; Suda, Hideaki; Tsuji, Kunikazu; Sekiya, Ichiro

    2012-01-01

    The specific properties of mesenchymal stem cells (MSCs) in oral tissues still remain unknown though their existence has been previously reported. We collected gingiva, dental pulp, and periodontal ligament tissues from removed teeth and isolated MSCs. These MSCs were compared in terms of their yields per tooth, surface epitopes, and differentiation potentials by patient-matched analysis. For in vivo calcification analysis, rat gingival and dental pulp cells mounted on β-tricalcium phospateTCP were transplanted into the perivertebral muscle of rats for 6 weeks. Gingival cells and dental pulp cells showed higher yield per tooth than periodontal ligament cells (n=6, ppulp cells expressed MSC markers such as CD44, CD90, and CD166. Gingival and dental pulp cells obtained phenotypes of chondrocytes and adipocytes in vitro. Approximately 60% of the colonies of gingival cells and 40% of the colonies of dental pulp cells were positively stained with alizarin red in vitro, and both gingival and dental pulp cells were calcified in vivo. We clarified properties of MSCs derived from removed teeth. We could obtain a high yield of MSCs with osteogenic potential from gingiva and dental pulp. These results indicate that gingiva and dental pulp are putative cell sources for hard tissue regeneration. PMID:26858852

  3. Marker of cemento-periodontal ligament junction associated with periodontal regeneration.

    Science.gov (United States)

    Hara, Ryohko; Wato, Masahiro; Tanaka, Akio

    2005-06-01

    The purpose of this study was to identify factors promoting formation of the cemento-periodontal ligament junction. Regeneration of the cemento-periodontal ligament junction is an important factor in recovery of the connective tissue attachment to the cementum and it is important to identify all specific substances that promote its formation. To clarify the substances involved in cemento-periodontal ligament junction formation, we produced a monoclonal antibody (mAb) to human cemento-periodontal ligament junction (designated as the anti-TAP mAb) and examined its immunostaining properties and reactive antigen. Hybridomas producing monoclonal antibody against human cemento-periodontal ligament junction antigens were established by fusing P3U1 mouse myeloma cells with spleen cells from BALB/c mice immunized with homogenized human cemento-periodontal ligament junction. The mAb, the anti-TAP mAb for cemento-periodontal ligament junction, was then isolated. The immunoglobulin class and light chain of the mAb were examined using an isotyping kit. Before immunostaining, antigen determination using an enzymatic method or heating was conducted. Human teeth, hard tissue-forming lesions, and animal tissues were immunostained by the anti-TAP mAb. The anti-TAP mAb was positive in human cemento-periodontal ligament junction and predentin but negative in all other human and animal tissues examined. In the cemento-osseous lesions, the anti-TAP mAb was positive in the peripheral area of the cementum and cementum-like hard tissues and not in the bone and bone-like tissues. The anti-TAP mAb showed IgM (kappa) and recognized phosphoprotein. The anti-TAP mAb is potentially useful for developing new agents promoting cementogenesis and periodontal regeneration.

  4. Proteome of human stem cells from periodontal ligament and dental pulp.

    Directory of Open Access Journals (Sweden)

    Enrica Eleuterio

    Full Text Available BACKGROUND: Many adult tissues contain a population of stem cells with the ability to regenerate structures similar to the microenvironments from which they are derived in vivo and represent a promising therapy for the regeneration of complex tissues in the clinical disorder. Human adult stem cells (SCs including bone marrow stem cells (BMSCs, dental pulp stem cells (DPSCs and periodontal ligament stem cells (PDLSCs have been characterized for their high proliferative potential, expression of characteristic SC-associated markers and for the plasticity to differentiate in different lineage in vitro. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this study is to define the molecular features of stem cells from oral tissue by comparing the proteomic profiles obtained with 2-DE followed by MALDI-TOF/TOF of ex-vivo cultured human PDLSCs, DPSCs and BMSCs. Our results showed qualitative similarities in the proteome profiles among the SCs examined including some significant quantitative differences. To enrich the knowledge of oral SCs proteome we performed an analysis in narrow range pH 4-7 and 6-9, and we found that DPSCs vs PDLSCs express differentially regulated proteins that are potentially related to growth, regulation and genesis of neuronal cells, suggesting that SCs derived from oral tissue source populations may possess the potential ability of neuronal differentiation which is very consistent with their neural crest origin. CONCLUSION/SIGNIFICANCE: This study identifies some differentially expressed proteins by using comparative analysis between DPSCs and PDLSCs and BMSCs and suggests that stem cells from oral tissue could have a different cell lineage potency compared to BMSCs.

  5. Influence of moderate to severe chronic periodontitis on dental pulp.

    Science.gov (United States)

    Fatemi, K; Disfani, R; Zare, R; Moeintaghavi, A; Ali, Saadat A; Boostani, H R

    2012-10-01

    The relationship between periodontal disease and dental pulp changes is controversial and has been debated for many years. This human study was performed to evaluate the possible effects of moderate to advanced periodontal disease on the different aspect of dental pulp structure. Twenty hopeless permanent teeth were extracted from systemically healthy adults because of moderate to advanced chronic periodontitis, with a bone loss of >6 mm and a mobility of grade 2 or 3. Upon extraction, the apical 2 to 3 mm of the roots were immediately sectioned. Four to five sections were mounted on each slide, and every third slide was stained with hematoxylin and eosin. The specimens were histologically processed and examined by an oral pathologist. Non-inflamed pulp, with partial or complete necrosis in some sections and several non-necrotic sections, was found in only 6.3% of teeth. Most teeth (58.3%) displayed edematous pulps. Slightly fibrotic pulps were seen in 52.1% of sections. Odontoblastic integrity was seen in 31.3% of teeth. Most teeth (77.1%) displayed no pulp stones. In 43.8% of teeth, the pulp vessels displayed dilatation. Moderate to advanced periodontal disease can affect the dental pulp. Careful consideration of diagnostic and treatment planing in patients with endodontic-periodontal involvement is therefore recommended.

  6. Regenerative medicine in dental and oral tissues: Dental pulp mesenchymal stem cell

    Directory of Open Access Journals (Sweden)

    Janti Sudiono

    2017-08-01

    Full Text Available Background. Regenerative medicine is a new therapeutic modality using cell, stem cell and tissue engineering technologies. Purpose. To describe the regenerative capacity of dental pulp mesenchymal stem cell. Review. In dentistry, stem cell and tissue engineering technologies develop incredibly and attract great interest, due to the capacity to facilitate innovation in dental material and regeneration of dental and oral tissues. Mesenchymal stem cells derived from dental pulp, periodontal ligament and dental follicle, can be isolated, cultured and differentiated into various cells, so that can be useful for regeneration of dental, nerves, periodontal and bone tissues. Tissue engineering is a technology in reconstructive biology, which utilizes mechanical, cellular, or biological mediators to facilitate regeneration or reconstruction of a particular tissue. The multipotency, high proliferation rates and accessibility, make dental pulp as an attractive source of mesenchymal stem cells for tissue regeneration. Revitalized dental pulp and continued root development is the focus of regenerative endodontic while biological techniques that can restore lost alveolar bone, periodontal ligament, and root cementum is the focus of regenerative periodontic. Conclucion. Dentin-derived morphogens such as BMP are known to be involved in the regulation of odontogenesis. The multipotency and angiogenic capacity of DPSCs as the regenerative capacity of human dentin / pulp complex indicated that dental pulp may contain progenitors that are responsible for dentin repair. The human periodontal ligament is a viable alternative source for possible primitive precursors to be used in stem cell therapy.

  7. Review of common conditions associated with periodontal ligament widening

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, Hamed; Baharvand, Maryam [Dept. of Oral Medicine, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-12-15

    The aim of this article is to review a group of lesions associated with periodontal ligament (PDL) widening. An electronic search was performed using specialized databases such as Google Scholar, PubMed, PubMed Central, Science Direct, and Scopus to find relevant studies by using keywords such as “periodontium”, “periodontal ligament”, “periodontal ligament space”, “widened periodontal ligament”, and “periodontal ligament widening”. Out of nearly 200 articles, about 60 were broadly relevant to the topic. Ultimately, 47 articles closely related to the topic of interest were reviewed. When the relevant data were compiled, the following 10 entities were identified: occlusal/orthodontic trauma, periodontal disease/periodontitis, pulpo-periapical lesions, osteosarcoma, chondrosarcoma, non-Hodgkin lymphoma, progressive systemic sclerosis, radiation-induced bone defect, bisphosphonate-related osteonecrosis, and osteomyelitis. Although PDL widening may be encountered by many dentists during their routine daily procedures, the clinician should consider some serious related conditions as well.

  8. Review of common conditions associated with periodontal ligament widening

    International Nuclear Information System (INIS)

    Mortazavi, Hamed; Baharvand, Maryam

    2016-01-01

    The aim of this article is to review a group of lesions associated with periodontal ligament (PDL) widening. An electronic search was performed using specialized databases such as Google Scholar, PubMed, PubMed Central, Science Direct, and Scopus to find relevant studies by using keywords such as “periodontium”, “periodontal ligament”, “periodontal ligament space”, “widened periodontal ligament”, and “periodontal ligament widening”. Out of nearly 200 articles, about 60 were broadly relevant to the topic. Ultimately, 47 articles closely related to the topic of interest were reviewed. When the relevant data were compiled, the following 10 entities were identified: occlusal/orthodontic trauma, periodontal disease/periodontitis, pulpo-periapical lesions, osteosarcoma, chondrosarcoma, non-Hodgkin lymphoma, progressive systemic sclerosis, radiation-induced bone defect, bisphosphonate-related osteonecrosis, and osteomyelitis. Although PDL widening may be encountered by many dentists during their routine daily procedures, the clinician should consider some serious related conditions as well

  9. Influence of moderate to severe chronic periodontitis on dental pulp

    Science.gov (United States)

    Fatemi, K; Disfani, R; Zare, R; Moeintaghavi, A; Ali, Saadat A.; Boostani, H. R

    2012-01-01

    Background: The relationship between periodontal disease and dental pulp changes is controversial and has been debated for many years. This human study was performed to evaluate the possible effects of moderate to advanced periodontal disease on the different aspect of dental pulp structure. Materials and Methods: Twenty hopeless permanent teeth were extracted from systemically healthy adults because of moderate to advanced chronic periodontitis, with a bone loss of >6 mm and a mobility of grade 2 or 3. Upon extraction, the apical 2 to 3 mm of the roots were immediately sectioned. Four to five sections were mounted on each slide, and every third slide was stained with hematoxylin and eosin. The specimens were histologically processed and examined by an oral pathologist. Results: Non-inflamed pulp, with partial or complete necrosis in some sections and several non-necrotic sections, was found in only 6.3% of teeth. Most teeth (58.3%) displayed edematous pulps. Slightly fibrotic pulps were seen in 52.1% of sections. Odontoblastic integrity was seen in 31.3% of teeth. Most teeth (77.1%) displayed no pulp stones. In 43.8% of teeth, the pulp vessels displayed dilatation. Conclusions: Moderate to advanced periodontal disease can affect the dental pulp. Careful consideration of diagnostic and treatment planing in patients with endodontic-periodontal involvement is therefore recommended. PMID:23493524

  10. Role of periodontal ligament fibroblasts in osteoclastogenesis: a review

    NARCIS (Netherlands)

    Sokos, D.; Everts, V.; de Vries, T.J.

    2015-01-01

    During the last decade it has become clear that periodontal ligament fibroblasts may contribute to the in vitro differentiation of osteoclasts. We surveyed the current findings regarding their osteoclastogenesis potential. Periodontal ligament fibroblasts have the capacity to select and attract

  11. Differentiated embryonic chondrocytes 1 expression of periodontal ligament tissue and gingival tissue in the patients with chronic periodontitis.

    Science.gov (United States)

    Hu, Shenlin; Shang, Wei; Yue, Haitao; Chen, Ruini; Dong, Zheng; Hu, Jinhua; Mao, Zhao; Yang, Jian

    2015-04-01

    To evaluate the DEC1 expression of periodontal ligament tissue and gingival tissue in the patients with chronic periodontitis. 20 non-smoking patients with chronic periodontitis and 20 healthy individuals were enrolled. Periodontal ligament tissue and gingival tissue samples from healthy subjects were collected during teeth extraction for orthodontic reason or the third molar extraction. The parallel samples from patients with chronic periodontitis were obtained during periodontal flap operations or teeth extraction as part of periodontal treatment. The DEC1 expression and the alkaline phosphatase (ALP) activity of both the periodontal ligament tissue and gingival tissue were determined by Western blot, Immunohistochemistry and ALP Detection Kit. The DEC1 expression of periodontal ligament tissue in the patients with chronic periodontitis decreased significantly along with the decreased ALP activity. On the contrary, the DEC1 expression of gingival tissue in the patients with chronic periodontitis increased significantly. Further study found that the DEC1 expression of gingival tissue increased mainly in the suprabasal layer of gingival epithelial cells but decreased in the gingival connective tissue of the patients with chronic periodontitis. The DEC1 expression decreases in the periodontal ligament tissue which is related to the osteogenic capacity, whereas the DEC1 expression increases in the suprabasal layer of gingival epithelial cells which are involved in immune inflammatory response in the patients with chronic periodontitis. The findings provide a new target to explore the pathology and the therapy of periodontitis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Assessment of oxygen saturation in dental pulp of permanent teeth with periodontal disease.

    Science.gov (United States)

    Giovanella, Larissa Bergesch; Barletta, Fernando Branco; Felippe, Wilson Tadeu; Bruno, Kely Firmino; de Alencar, Ana Helena Gonçalves; Estrela, Carlos

    2014-12-01

    In individuals with periodontal disease, dental pulp status should be determined before a treatment plan is made. Pulse oximeters are promising diagnostic tools to evaluate pulp vascularization. This study used pulse oximetry to determine the level of oxygen saturation in dental pulp of intact permanent teeth with periodontal attachment loss (PAL) and gingival recession (GR) and to evaluate the correlation between periodontal disease and level of oxygen saturation in the pulp. This study included 67 anterior teeth of 35 patients; all teeth showed intact crowns, PAL, a periodontal pocket (PP), and GR. The teeth underwent periodontal examination, cold and electric pulp testing, and pulse oximetry measurements. The Pearson correlation coefficient and a linear regression coefficient were calculated to evaluate the degree of correlation between periodontal disease markers (PAL, PP, and GR) and the level of oxygen saturation in dental pulp. These tests also evaluated possible associations between oxygen saturation and cold and electric pulp testing. PAL, PP, and GR had negative correlations with oxygen saturation in dental pulp. Conversely, no statistically significant association was found between oxygen saturation in dental pulp and the response to electric sensibility testing. Oxygen saturation was lower in the pulp of permanent teeth with PAL, PP, and GR, indicating that periodontal disease correlates with the level of oxygen saturation in the pulp. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Regeneration of bone and periodontal ligament induced by recombinant amelogenin after periodontitis.

    Science.gov (United States)

    Haze, Amir; Taylor, Angela L; Haegewald, Stefan; Leiser, Yoav; Shay, Boaz; Rosenfeld, Eli; Gruenbaum-Cohen, Yael; Dafni, Leah; Zimmermann, Bernd; Heikinheimo, Kristiina; Gibson, Carolyn W; Fisher, Larry W; Young, Marian F; Blumenfeld, Anat; Bernimoulin, Jean P; Deutsch, Dan

    2009-06-01

    Regeneration of mineralized tissues affected by chronic diseases comprises a major scientific and clinical challenge. Periodontitis, one such prevalent disease, involves destruction of the tooth-supporting tissues, alveolar bone, periodontal-ligament and cementum, often leading to tooth loss. In 1997, it became clear that, in addition to their function in enamel formation, the hydrophobic ectodermal enamel matrix proteins (EMPs) play a role in the regeneration of these periodontal tissues. The epithelial EMPs are a heterogeneous mixture of polypeptides encoded by several genes. It was not clear, however, which of these many EMPs induces the regeneration and what mechanisms are involved. Here we show that a single recombinant human amelogenin protein (rHAM(+)), induced in vivo regeneration of all tooth-supporting tissues after creation of experimental periodontitis in a dog model. To further understand the regeneration process, amelogenin expression was detected in normal and regenerating cells of the alveolar bone (osteocytes, osteoblasts and osteoclasts), periodontal ligament, cementum and in bone marrow stromal cells. Amelogenin expression was highest in areas of high bone turnover and activity. Further studies showed that during the first 2 weeks after application, rHAM(+) induced, directly or indirectly, significant recruitment of mesenchymal progenitor cells, which later differentiated to form the regenerated periodontal tissues. The ability of a single protein to bring about regeneration of all periodontal tissues, in the correct spatio-temporal order, through recruitment of mesenchymal progenitor cells, could pave the way for development of new therapeutic devices for treatment of periodontal, bone and ligament diseases based on rHAM(+).

  14. Keratinocyte growth factor mRNA expression in periodontal ligament fibroblasts

    DEFF Research Database (Denmark)

    Dabelsteen, S; Wandall, H H; Grøn, B

    1997-01-01

    Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF mRNA is expres......Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF m......RNA is expressed in periodontal ligament fibroblasts, and that the expression is increased upon serum stimulation. Fibroblasts from human periodontal ligament, from buccal mucosa, from gingiva, and from skin were established from explants. Alkaline phosphatase activity was used as an indicator of the periodontal...

  15. Advanced Scaffolds for Dental Pulp and Periodontal Regeneration.

    Science.gov (United States)

    Bottino, Marco C; Pankajakshan, Divya; Nör, Jacques E

    2017-10-01

    No current therapy promotes root canal disinfection and regeneration of the pulp-dentin complex in cases of pulp necrosis. Antibiotic pastes used to eradicate canal infection negatively affect stem cell survival. Three-dimensional easy-to-fit antibiotic-eluting nanofibers, combined with injectable scaffolds, enriched or not with stem cells and/or growth factors, may increase the likelihood of achieving predictable dental pulp regeneration. Periodontitis is an aggressive disease that impairs the integrity of tooth-supporting structures and may lead to tooth loss. The latest advances in membrane biomodification to endow needed functionalities and technologies to engineer patient-specific membranes/constructs to amplify periodontal regeneration are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Histological evaluation of the pulp in teeth from dogs with naturally occurring periodontal disease.

    Science.gov (United States)

    Nemec, Ana; Pavlica, Zlatko; Stiblar-Martincic, Draga; Petelin, Milan; Erzen, Damjan; Crossley, David

    2007-12-01

    The purpose of this investigation was to evaluate the pulp of dog teeth affected by advanced periodontal disease. Histological examination was done on demineralized teeth extracted during clinical treatment of mature, client owned small and medium-size breed dogs with either good periodontal health or with advanced naturally occurring periodontal disease. Routinely stained sections from 5 clinically normal teeth and 22 teeth with advanced periodontitis from dogs between 5 and 12-years of age were examined using light microscopy. The pulp cavities of most teeth were narrow with low cellularity and some fibrosis of the pulp. Findings specific to periodontally affected teeth included acute and chronic pulpitis, vascular congestion, and pulp necrosis. A glomus body was identified in the pulp of one tooth and areas of poorly mineralized cementum were seen in both normal and diseased teeth. Age related changes in dog teeth appear similar to those reported for man and the rat. In addition to age related changes, the pulp of dog teeth with advanced periodontal disease were frequently inflamed or necrotic. This may reflect the advanced periodontitis affecting these teeth or a mechanical effect related to excessive tooth mobility. Further study is required to determine the etiology and significance of these findings and to investigate pulp status in less severely diseased teeth.

  17. Effect of the Periodontal Ligament of the Bilateral Support Teeth on the Stress Analysis of Dental Implant

    Directory of Open Access Journals (Sweden)

    Xie Yanhua

    2017-01-01

    Full Text Available The aim of this work is to analyze the function of natural teeth’s periodontal ligament and the effects of periodontal ligament on implants by the finite element method (FEM, when static functional loads occur. The finite element analysis models are established, which consist of fragment of mandible, natural teeth, periodontal ligament, and implant. Finite element software Abaqus is used to analyze the stress transfer in models with or without periodontal ligament, and mandibular first molar is implant. The implant obtained the maximum stress value of 87.71MPa when periodontal ligament of natural tooth is absent, but the maximum value reduces to 38.43 MPa with the action of periodontal ligament. It illustrates that periodontal ligament has significant effects on stress transfer. When the finite element model of single natural tooth or dentition with implant is generated, periodontal ligament should be taken into account.

  18. Role of integrins in the periodontal ligament: organizers and facilitators.

    Science.gov (United States)

    Barczyk, Malgorzata; Bolstad, Anne Isine; Gullberg, Donald

    2013-10-01

    The periodontal ligament is the tissue that connects teeth to bone. The periodontal ligament is a fascinating tissue from a cell biologist's point of view, and because of its special properties and stem-cell content it has also come into the limelight in emerging fields of regenerative medicine. An increased range of genetically modified mouse models offer new tools for studying molecular mechanisms of tooth development. However, owing to species-specific organization of the tooth apparatus, the use of genetic animal models to study the role of the periodontal ligament in normal human tooth physiology and tooth pathology is challenging. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Identification of multipotent stem cells from adult dog periodontal ligament.

    Science.gov (United States)

    Wang, Wen-Jun; Zhao, Yu-Ming; Lin, Bi-Chen; Yang, Jie; Ge, Li-Hong

    2012-08-01

    Periodontal diseases, which are characterized by destruction of the connective tissues responsible for restraining the teeth within the jaw, are the main cause of tooth loss. Periodontal regeneration mediated by human periodontal ligament stem cells (hPDLSCs) may offer an alternative strategy for the treatment of periodontal disease. Dogs are a widely used large-animal model for the study of periodontal-disease progression, tissue regeneration, and dental implants, but little attention has been paid to the identification of the cells involved in this species. This study aimed to characterize stem cells isolated from canine periodontal ligament (cPDLSCs). The cPDLSCs, like hPDLSCs, showed clonogenic capability and expressed the mesenchymal stem cell markers STRO-1, CD146, and CD105, but not CD34. After induction of osteogenesis, cPDLSCs showed calcium accumulation in vitro. Moreover, cPDLSCs also showed both adipogenic and chondrogenic potential. Compared with cell-free controls, more cementum/periodontal ligament-like structures were observed in CB-17/SCID mice into which cPDLSCs had been transplanted. These results suggest that cPDLSCs are clonogenic, highly proliferative, and have multidifferentiation potential, and that they could be used as a new cellular therapeutic approach to facilitate successful and more predictable regeneration of periodontal tissue using a canine model of periodontal disease. © 2012 Eur J Oral Sci.

  20. ELECTRIC PULP TEST OF TEETH WITH PERIODONTAL DISEASE.

    Directory of Open Access Journals (Sweden)

    Tsonko Uzunov

    2014-10-01

    Full Text Available Purpose: The aim of the research is to investigate the change in pulp vitality of teeth with periodontal disease using electric pulp tester (EPT. Methods: Subjected to observation were 108 patients with chronic periodontitis. Vitality of 805 teeth with periodontal pocket depth greater than 4 mm was studied by EPT. The research was conducted with EPT "Yonovit ". Results: The highest percentage of surveyed teeth (68.4% respond to the norm when they are tested with EPT – values between 3 μA and 10 μA . Teeth that respond to EPT with values ​​below 3 μA and between 35-100 μA are relatively equal - respectively 4.3% and 3.3%. With increased threshold of irritation – 10-35 μA react 23.4% of teeth. Small number of teeth have threshold of irritation over 100 μA - 0.6%. Conclusion: The value of EPT among periodontal damaged teeth depends on many factors - patient's age, extent of periodontal affect, group affiliation of teeth, etc.

  1. A low-level diode laser therapy reduces the lipopolysaccharide (LPS)-induced periodontal ligament cell inflammation

    International Nuclear Information System (INIS)

    Huang, T H; Chen, C C; Liu, S L; Lu, Y C; Kao, C T

    2014-01-01

    The purpose of this study was to investigate the cytologic effects of inflammatory periodontal ligament cells in vitro after low-level laser therapy. Human periodontal ligament cells were cultured, exposed to lipopolysaccharide and subjected to low-level laser treatment of 5 J cm −2 or 10 J cm −2 using a 920 nm diode laser. A periodontal ligament cell attachment was observed under a microscope, and the cell viability was quantified by a mitochondrial colorimetric assay. Lipopolysaccharide-treated periodontal ligament cells were irradiated with the low-level laser, and the expression levels of several inflammatory markers, iNOS, TNF-α and IL-1, and pErk kinase, were analyzed by reverse transcription polymerase chain reaction and western blot. The data were collected and analyzed by one-way analysis of variance; p < 0.05 indicated a statistically significant difference. The low-level laser treatment of periodontal ligament cells increased their ability to attach and survive. After irradiation, the expression levels of iNOS, TNF-α and IL-1 in lipopolysaccharide-exposed periodontal ligament cells decreased over time (p < 0.05). In periodontal ligament cells, low-level diode laser treatment increased the cells’ proliferative ability and decreased the expression of the examined inflammatory mediators. (letters)

  2. A Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments

    Directory of Open Access Journals (Sweden)

    Ashrafi H.

    2016-06-01

    Full Text Available Introduction: Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and especially, biomechanics fields. Periodontal ligament plays an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. It is also the most accessible ligament in human body as it can be directly manipulated without any surgical intervention. From a mechanical point of view, this ligament can be considered as a thin interface made by a solid phase, consisting mainly of collagen fibers, which is immersed into a so-called ground substance. However, the viscoelastic constitutive effects of biological tissues are seldom considered rigorous during Nano-indentation tests. Methods: In the present paper, a mathematical contact approach is developed to enable determining creep compliance and relaxation modulus of distinct periodontal ligaments, using constant–rate indentation and loading time histories, respectively. An adequate curve-fitting method is presented to determine these characteristics based on the Nano-indentation of rigid Berkovich tips. Generalized Voigt-Kelvin and Wiechert models are used to model constitutive equations of periodontal ligaments, in which the relaxation and creep functions are represented by series of decaying exponential functions of time. Results: Time-dependent creep compliance and relaxation function have been obtained for tissue specimens of periodontal ligaments. Conclusion: To improve accuracy, relaxation and creep moduli are measured from two tests separately. Stress relaxation effects appear more rapidly than creep in the periodontal ligaments.

  3. Effect of storage media on the proliferation of periodontal ligament fibroblasts

    International Nuclear Information System (INIS)

    Lauer, H.C.; Mueller, J.G.; Gross, J.; Horster, M.F.

    1987-01-01

    The effect of storage media, which are routinely used in replantation, upon the proliferative capacity of periodontal ligament fibroblasts, was compared with the effect of a tissue culture medium. The periodontal tissue was obtained from mandibular central incisors of White New Zealand rabbits. The experiments were performed in fibroblasts derived during second subculture. The storage media were physiologic salt solution, Ringer's solution and Rivanol; the tissue culture medium was alpha-minimum essential medium without nucleosides. The incubation period was 1 hour. [ 3 H]-thymidine incorporation and cell counts were taken to indicate changes in the proliferative capacity of the fibroblasts. The tissue culture experiments showed that the proliferative ability of the periodontal ligament fibroblasts was dependent upon the composition of the storage medium. Physiologic salt solution, Ringer's solution and Rivanol were unable to maintain the metabolism of the fibroblasts. alpha-MEM medium, however, was capable of stimulating proliferation of the periodontal ligament fibroblasts

  4. The chronology of the radiographic visibility of the periodontal ligament and the root pulp in the lower third molars.

    Science.gov (United States)

    Timme, M; Timme, W H; Olze, A; Ottow, C; Ribbecke, S; Pfeiffer, H; Dettmeyer, R; Schmeling, A

    2017-07-01

    Eruption and mineralization of third molars are the main criteria for dental age estimation in living adolescents. As the validation of completion of the 18th year of life appears not to be possible with the forensically necessary probability even if all the third molars of a person are completely mineralized, degenerative dental characteristics might be used for this purpose. In previous publications by Olze et al. (2010a,b) the radiographic visibility of the periodontal ligament and the root pulp in lower third molars were suggested as methods for this purpose. The aim of this study was to validate these characteristics in a large study population with a wide age range. In a material of 2346 orthopantomograms of 1167 female and 1179 male Germans aged from 15 to 70years the radiographic visibility of the root pulp in the lower third molars with completed mineralization were studied according to stage classifications proposed by Olze et al. (2010a,b). 1541 orthopantomograms of 705 females and 836 males with a sufficient quality of the radiograph showed at least one third molar. The suitability of the studied characteristics for age estimation in living individuals could be confirmed. Males and females presenting stage 1 of both characteristics were older than 18years of life. Males and females presenting stage 2 of both characteristics were older than 21years of life. The high number of missing third molars in the studied age group (46-60%) must be considered as a limitation of the methods. In further studies the influence of ethnicity, dietary habits and modern dental health care on the characteristics in question should be investigated. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  5. The intricate anatomy of the periodontal ligament and its development: Lessons for periodontal regeneration

    NARCIS (Netherlands)

    de Jong, T.; Bakker, A. D.; Everts, V.; Smit, T. H.

    2017-01-01

    The periodontal ligament (PDL) connects the tooth root and alveolar bone. It is an aligned fibrous network that is interposed between, and anchored to, both mineralized surfaces. Periodontal disease is common and reduces the ability of the PDL to act as a shock absorber, a barrier for pathogens and

  6. A Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments.

    Science.gov (United States)

    Ashrafi, H; Shariyat, M

    2016-06-01

    Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and especially, biomechanics fields. Periodontal ligament plays an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. It is also the most accessible ligament in human body as it can be directly manipulated without any surgical intervention. From a mechanical point of view, this ligament can be considered as a thin interface made by a solid phase, consisting mainly of collagen fibers, which is immersed into a so-called ground substance. However, the viscoelastic constitutive effects of biological tissues are seldom considered rigorous during Nano-indentation tests. In the present paper, a mathematical contact approach is developed to enable determining creep compliance and relaxation modulus of distinct periodontal ligaments, using constant-rate indentation and loading time histories, respectively. An adequate curve-fitting method is presented to determine these characteristics based on the Nano-indentation of rigid Berkovich tips. Generalized Voigt-Kelvin and Wiechert models are used to model constitutive equations of periodontal ligaments, in which the relaxation and creep functions are represented by series of decaying exponential functions of time. Time-dependent creep compliance and relaxation function have been obtained for tissue specimens of periodontal ligaments. To improve accuracy, relaxation and creep moduli are measured from two tests separately. Stress relaxation effects appear more rapidly than creep in the periodontal ligaments.

  7. A Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments

    Science.gov (United States)

    Ashrafi, H.; Shariyat, M.

    2016-01-01

    Introduction Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and especially, biomechanics fields. Periodontal ligament plays an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. It is also the most accessible ligament in human body as it can be directly manipulated without any surgical intervention. From a mechanical point of view, this ligament can be considered as a thin interface made by a solid phase, consisting mainly of collagen fibers, which is immersed into a so-called ground substance. However, the viscoelastic constitutive effects of biological tissues are seldom considered rigorous during Nano-indentation tests. Methods In the present paper, a mathematical contact approach is developed to enable determining creep compliance and relaxation modulus of distinct periodontal ligaments, using constant–rate indentation and loading time histories, respectively. An adequate curve-fitting method is presented to determine these characteristics based on the Nano-indentation of rigid Berkovich tips. Generalized Voigt-Kelvin and Wiechert models are used to model constitutive equations of periodontal ligaments, in which the relaxation and creep functions are represented by series of decaying exponential functions of time. Results Time-dependent creep compliance and relaxation function have been obtained for tissue specimens of periodontal ligaments. Conclusion To improve accuracy, relaxation and creep moduli are measured from two tests separately. Stress relaxation effects appear more rapidly than creep in the periodontal ligaments. PMID:27672630

  8. Infection and Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Sahng G. Kim

    2016-03-01

    Full Text Available The regeneration of the pulp-dentin complex has been a great challenge to both scientists and clinicians. Previous work has shown that the presence of prior infection may influence the characteristics of tissues formed in the root canal space after regenerative endodontic treatment. The formation of ectopic tissues such as periodontal ligament, bone, and cementum has been observed in the root canal space of immature necrotic teeth with apical periodontitis, while the regeneration of dentin and pulp has been identified in previously non-infected teeth. The current regenerative endodontic therapy utilizes disinfection protocols, which heavily rely on chemical irrigation using conventional disinfectants. From a microbiological point of view, the current protocols may not allow a sufficiently clean root canal microenvironment, which is critical for dentin and pulp regeneration. In this article, the significance of root canal disinfection in regenerating the pulp-dentin complex, the limitations of the current regenerative endodontic disinfection protocols, and advanced disinfection techniques designed to reduce the microorganisms and biofilms in chronic infection are discussed.

  9. Various methods for isolation of multipotent human periodontal ligament cells for regenerative medicine.

    Science.gov (United States)

    Tran, Ha Le Bao; Doan, Vu Nguyen; Le, Huong Thi Ngoc; Ngo, Lan Thi Quynh

    2014-08-01

    Periodontal ligament (PDL) is a specialized connective tissue that connects cementum and alveolar bone to maintain and support the teeth in situ and preserve tissue homeostasis. Recent studies have revealed the existence of stem cells in human dental tissues including periodontal ligament that play an important role, not only in the maintenance of the periodontium but also in promoting periodontal regeneration. In this study, human periodontal ligament cells (hPDLCs) were isolated by outgrowth and enzymatic dissociation methods. Expression of surface markers on PDLCs as human mesenchymal stem cells (MSCs) was identified by flow cytometry. In addition, proliferation and differentiation capacity of cultured cells to osteoblasts, adipocytes were evaluated. As a result, we successfully cultured cells from the human periodontal ligament tissues. PDLCs express mesenchymal stem cell (MSC) markers such as CD44, CD73, and CD90 and do not express CD34, CD45, and HLA-DR. PDLCs also possess the multipotential to differentiate into various types of cells, such as osteoblast and adipocytes, in vitro. Therefore, these cells have high potential to serve as materials for tissue engineering, especially dental tissue engineering.

  10. The effect of chronic periodontitis on dental pulp: A clinical and histopathological study

    Directory of Open Access Journals (Sweden)

    Surekha Ramrao Rathod

    2014-01-01

    Full Text Available Background: This human study was carried out to evaluate the possible effects of severe chronic periodontal disease on the different aspect of dental pulp structure. Materials and Methods: A total of 20 permanent teeth with a hopeless prognosis due to severe chronic periodontitis were extracted from systemically healthy adults, with a pocket probing depth of ≥8 mm and a mobility of grade 3. After extraction, the apical 2-3 mm of the roots were immediately sectioned with a fissure bur. Results: Inflammation was usual finding in the samples, however, only 15% of the teeth showed no inflammation. Pulpal necrosis (partial or complete was seen in different sections, and it was observed that 50% sections had no necrosis. Partial necrosis was a common finding seen when compared to complete necrosis (6.7%. About 60% of samples showed edematous pulp. Only 6.7% of samples showed absence of fibrosis. Pulp with moderate fibrosis was seen commonly seen in many sections. A majority of teeth (70% also displayed a loss of odontoblastic integrity. In only 25% of samples, pulp stones were detected. Conclusion: Our results revealed that severe chronic periodontitis can affect dental pulp. The cumulative effect of the periodontal disease, as indicated by the factors of calcifications, apposition of calcified tissue, resorption or inflammation from the root caries or from the involved lateral canals, is damaged pulp tissue, but total disintegration is a certainty only when all main apical foramina are involved by bacterial plaque. Proper evaluation and treatment of periodontal-endodontic involvement is recommended.

  11. Dental pulp stem cells. Biology and use for periodontal tissue engineering.

    Science.gov (United States)

    Ashri, Nahid Y; Ajlan, Sumaiah A; Aldahmash, Abdullah M

    2015-12-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors.

  12. An experimental study on the effect of irradiation on deciduous dental pulp and periodontal membrane

    International Nuclear Information System (INIS)

    Nagayama, Takehiko

    1986-01-01

    Left mandibular third deciduous molars of young dogs were irradiated for 3,000 R with 200 kVp X-ray and the effect on the dental pulp and periodontal membrane was investigated histopathologically. 1. From 3rd to 7th days after irradiation, localized inflammatory cell infiltration was observed in part in the dental pulp tissue. No abnormal findings were observed in the periodontal membrane. 2. On 14th day after irradiation in the coronal dental pulp, cells decreased; karyopycnosis occurred; cells were connected only by cellular processes, and large and small reticular networks were formed. In the periodontal membrane, fibers ran irregularly although in part and findings of atrophy were seen. Fibroblasts showed a decreasing tendency. 3. In the cases from 1 to 2 months after irradiation, the pulp tissue showed marked atrophy of odontoblasts and the dental pulp showed hyalinization-like changes. In the periodontal membrane, Sharpey's fibers ran irregularly or became indistinct, and fibroblasts decreased extensively. The periodontal membrane in general showed hyalinization. 4. In the cases of 4 months after irradiation, the pulp tissue on the whole showed marked atrophy and disappearance of odontoblast layers. In the periodontal membrane, inflammatory cell infiltration was seen in part and membrane fibers, as those in 2nd month, showed marked atrophy, became enlarged, and presented findings of hyalinization. 5. At 8th month, the necleoli nearly disappeared in the pulp tissue from the crown to the root and the cells were connected like filaments by cellular processes. Nearly all the blood vessels and fibers disappeared. In the periodontal membrane, most of Sharpey's fibers disappeared. Fibroblasts showed marked atrophy and disappearance, and few normal fibloblasts could be found. (J.P.N.)

  13. Effect of thermoplastic appliance thickness on initial stress distribution in periodontal ligament

    Directory of Open Access Journals (Sweden)

    De-Shin Liu

    2015-04-01

    Full Text Available A numerical investigation into the initial stress distribution induced within the periodontal ligament by thermoplastic appliances with different thicknesses is performed. Based on the plaster model of a 25-year-old male patient, a finite element model of the maxillary lateral incisors and their supporting structures is constructed. In addition, four finite element models of thermoplastic appliances with different thicknesses in the range of 0.5–1.25 mm are also constructed based on the same plaster model. Finite element analysis simulations are performed to examine the effects of the force delivered by the thermoplastic appliances on the stress response of the periodontal ligament during the elastic recovery process. The results show that the stress induced in the periodontal ligament increases with an increasing appliance thickness. For example, the stress triples from 0.0012 to 0.0038 MPa as the appliance thickness is increased from 0.75 to 1.25 mm. The results presented in this study provide a useful insight into as a result of the compressive and tensile stresses induced by thermoplastic appliances of different thicknesses. Moreover, the results enable the periodontal ligament stress levels produced by thermoplastic appliances of different thicknesses to be reliably estimated.

  14. Pulp and periodontal tissue repair - regeneration or tissue metaplasia after dental trauma. A review

    DEFF Research Database (Denmark)

    Andreasen, Jens O

    2012-01-01

    Healing subsequent to dental trauma is known to be very complex, a result explained by the variability of the types of dental trauma (six luxations, nine fracture types, and their combinations). On top of that, at least 16 different cellular systems get involved in more severe trauma types each o...... of tissue replaces the injured). In this study, a review is given of the impact of trauma to various dental tissues such as alveolar bone, periodontal ligament, cementum, Hertvigs epithelial root sheath, and the pulp....... of them with a different potential for healing with repair, i.e. (re-establishment of tissue continuity without functional restitution) and regeneration (where the injured or lost tissue is replaced with new tissue with identical tissue anatomy and function) and finally metaplasia (where a new type...

  15. Progenitor cell populations in the periodontal ligament of mice

    International Nuclear Information System (INIS)

    McCulloch, C.A.

    1985-01-01

    Stem cells in a variety of renewal tissues exhibit a slow rate of cell proliferation. The periodontal ligament of mouse molars was examined for the presence of slowly cycling progenitor cells to provide evidence for the existence of stem cells in this tissue. A pulse injection of 3 H-thymidine was administered and mice were sacrificed between 1 hour and 14 days after injection. Analysis of radioautographs using percentage of labeled cells and grain counts demonstrated that a population of label-retaining cells within 10 micron of blood vessels traversed the cell cycle more slowly than proliferating cells located greater than 10 micron from blood vessels. These data suggest that there is a slowly dividing population of progenitor cells in paravascular sites in mouse molar periodontal ligament which may be stem cells

  16. Influence of periodontal ligament simulation on bond strength and fracture resistance of roots restored with fiber posts

    Directory of Open Access Journals (Sweden)

    Ana Maria Estivalete MARCHIONATTI

    2014-10-01

    Full Text Available Objective: Considering that periodontal ligament simulation may influence the stress distribution over teeth restored with intraradicular retainers, this study aimed to assess the combined effect of mechanical cycling and periodontal ligament simulation on both the bond strength between fiber posts and root dentin and the fracture resistance of teeth restored using glass fiber posts. Material and Methods: Ninety roots were randomly distributed into 3 groups (n=10 (C-MC: control; P-MC: polyether; AS-MC: addition silicone to test bond strength and 6 groups (n=10 (C: control; P: polyether; AS: addition silicone, without mechanical cycling, and C-MC, P-MC and AS-MC with mechanical cycling to test fracture strength, according to the material used to simulate the periodontal ligament. For the bond strength test, fiber posts were cemented, cores were built, mechanical cycling was applied (2×106 cycles, 88 N, 2.2 Hz, and 45º incline, and the teeth cut into 3 slices (2 mm, which were then subjected to the push-out test at 1 mm/min. For the fracture strength test, fiber posts were cemented, cores were built, and half of the groups received mechanical cycling, followed by the compressive strength (45° to the long axis and 1 mm/min performed on all groups. Results: Periodontal ligament simulation did not affect the bond strength (p=0.244 between post and dentin. Simulation of periodontal ligament (p=0.153 and application of mechanical cycling (p=0.97 did not affect fracture resistance. Conclusions: The materials used to simulate the periodontal ligament did not affect fracture or bond strength, therefore periodontal ligament simulation using the tested materials could be considered optional in the conditions of the study.

  17. Role of the epithelial cell rests of Malassez in the development, maintenance and regeneration of periodontal ligament tissues.

    Science.gov (United States)

    Xiong, Jimin; Gronthos, Stan; Bartold, P Mark

    2013-10-01

    Periodontitis is a highly prevalent inflammatory disease that results in damage to the tooth-supporting tissues, potentially leading to tooth loss. Periodontal tissue regeneration is a complex process that involves the collaboration of two hard tissues (cementum and alveolar bone) and two soft tissues (gingiva and periodontal ligament). To date, no periodontal-regenerative procedures provide predictable clinical outcomes. To understand the rational basis of regenerative procedures, a better understanding of the events associated with the formation of periodontal components will help to establish reliable strategies for clinical practice. An important aspect of this is the role of the Hertwig's epithelial root sheath in periodontal development and that of its descendants, the epithelial cell rests of Malassez, in the maintenance of the periodontium. An important structure during tooth root development, the Hertwig's epithelial root sheath is not only a barrier between the dental follicle and dental papilla cells but is also involved in determining the shape, size and number of roots and in the development of dentin and cementum, and may act as a source of mesenchymal progenitor cells for cementoblasts. In adulthood, the epithelial cell rests of Malassez are the only odontogenic epithelial population in the periodontal ligament. Although there is no general agreement on the functions of the epithelial cell rests of Malassez, accumulating evidence suggests that the putative roles of the epithelial cell rests of Malassez in adult periodontal ligament include maintaining periodontal ligament homeostasis to prevent ankylosis and maintain periodontal ligament space, to prevent root resorption, to serve as a target during periodontal ligament innervation and to contribute to cementum repair. Recently, ovine epithelial cell rests of Malassez cells have been shown to harbor clonogenic epithelial stem-cell populations that demonstrate similar properties to mesenchymal stromal

  18. Effect of F-spondin on cementoblastic differentiation of human periodontal ligament cells

    International Nuclear Information System (INIS)

    Kitagawa, Masae; Kudo, Yasusei; Iizuka, Shinji; Ogawa, Ikuko; Abiko, Yoshimitsu; Miyauchi, Mutsumi; Takata, Takashi

    2006-01-01

    Cementum is a mineralized tissue produced by cementoblasts covering the roots of teeth that provides for the attachment of periodontal ligament to roots and surrounding alveolar bone. To study the mechanism of proliferation and differentiation of cementoblasts is important for understanding periodontal physiology and pathology including periodontal tissue regeneration. However, the detailed mechanism of the proliferation and differentiation of human cementoblasts is still unclear. We previously established human cementoblast-like (HCEM) cell lines. We thought that comparing the transcriptional profiles of HCEM cells and human periodontal ligament (HPL) cells derived from the same teeth could be a good approach to identify genes that influence the nature of cementoblasts. We identified F-spondin as the gene demonstrating the high fold change expression in HCEM cells. Interestingly, F-spondin highly expressing HPL cells showed similar phenotype of cementoblasts, such as up-regulation of mineralized-related genes. Overall, we identified F-spondin as a promoting factor for cementoblastic differentiation

  19. In vitro human periodontal ligament-like tissue formation with porous poly-L-lactide matrix

    International Nuclear Information System (INIS)

    Liao, Wen; Okada, Masahiro; Sakamoto, Fumito; Okita, Naoya; Inami, Kaoru; Nishiura, Aki; Hashimoto, Yoshiya; Matsumoto, Naoyuki

    2013-01-01

    This study aimed to establish an in vitro human periodontal ligament-like tissue (HPdLLT) by three-dimensional culturing of human periodontal ligament fibroblasts (HPdLFs) in a porous poly-L-lactide (PLLA) matrix modified hydrophilically with ammonia solution. After ammonia modification, the surface roughness and culture-medium-soaking-up ability of the PLLA matrix increased, whereas the contact angle of water drops decreased. The thickness, porosity, and pore size of the PLLA matrix were 400 ± 50 μm, 83.3%, and 75–150 μm, respectively. HPdLFs (1 × 10 5 cells) were seeded on the modified PLLA matrix and centrifuged to facilitate seeding into its interior and cultured for 14 days. Scanning electron microscope (SEM) observation, proliferation assay, picrosirius-red staining, and real-time polymerase chain reaction (RT-PCR) for type-1 collagen (COL1), periodontal ligament associated protein-1 (PLAP-1), fibroblast growth factor-2 (FGF-2), and alkaline phosphatase (ALP) mRNA were conducted on days 1, 3, 7, and 14. HPdLFs were observed entirely from the surface to the rear side of the matrix. Cell proliferation analysis, SEM observation, and picrosirius-red staining showed both progressive growth of 3D-cultured HPdLFs and extracellular matrix maturation by the secretion of COL1 and type 3 collagen (COL3) from days 1 to 14. Expressions of COL1, PLAP-1, and FGF-2 mRNA suggested the formation of cellular components and supplementation of extracellular components. Expressions of ALP, COL1, and PLAP-1 mRNA suggested the osteogenic potential of the HPdLLT. The results indicated in vitro HPdLLT formation, and it could be used in future periodontal ligament tissue engineering to achieve optimal periodontal regeneration. - Highlights: • First report on ammonia treated PLLA matrix for in vitro human periodontal ligament-like tissue generation. • Good combination of matrix thickness, pore size, and porosity. • Biodegradable PLLA is also possible to be used in vivo

  20. In vitro human periodontal ligament-like tissue formation with porous poly-L-lactide matrix

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Wen [Graduate School of Dentistry, Department of Orthodontics, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata-shi, Osaka-fu 573-1121 (Japan); Okada, Masahiro [Department of Biomaterials, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata-shi, Osaka-fu 573-1121 (Japan); Sakamoto, Fumito; Okita, Naoya [Graduate School of Dentistry, Department of Orthodontics, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata-shi, Osaka-fu 573-1121 (Japan); Inami, Kaoru; Nishiura, Aki [Department of Orthodontics, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata-shi, Osaka-fu 573-1121 (Japan); Hashimoto, Yoshiya, E-mail: yoshiya@cc.osaka-dent.ac.jp [Department of Biomaterials, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata-shi, Osaka-fu 573-1121 (Japan); Matsumoto, Naoyuki [Department of Orthodontics, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata-shi, Osaka-fu 573-1121 (Japan)

    2013-08-01

    This study aimed to establish an in vitro human periodontal ligament-like tissue (HPdLLT) by three-dimensional culturing of human periodontal ligament fibroblasts (HPdLFs) in a porous poly-L-lactide (PLLA) matrix modified hydrophilically with ammonia solution. After ammonia modification, the surface roughness and culture-medium-soaking-up ability of the PLLA matrix increased, whereas the contact angle of water drops decreased. The thickness, porosity, and pore size of the PLLA matrix were 400 ± 50 μm, 83.3%, and 75–150 μm, respectively. HPdLFs (1 × 10{sup 5} cells) were seeded on the modified PLLA matrix and centrifuged to facilitate seeding into its interior and cultured for 14 days. Scanning electron microscope (SEM) observation, proliferation assay, picrosirius-red staining, and real-time polymerase chain reaction (RT-PCR) for type-1 collagen (COL1), periodontal ligament associated protein-1 (PLAP-1), fibroblast growth factor-2 (FGF-2), and alkaline phosphatase (ALP) mRNA were conducted on days 1, 3, 7, and 14. HPdLFs were observed entirely from the surface to the rear side of the matrix. Cell proliferation analysis, SEM observation, and picrosirius-red staining showed both progressive growth of 3D-cultured HPdLFs and extracellular matrix maturation by the secretion of COL1 and type 3 collagen (COL3) from days 1 to 14. Expressions of COL1, PLAP-1, and FGF-2 mRNA suggested the formation of cellular components and supplementation of extracellular components. Expressions of ALP, COL1, and PLAP-1 mRNA suggested the osteogenic potential of the HPdLLT. The results indicated in vitro HPdLLT formation, and it could be used in future periodontal ligament tissue engineering to achieve optimal periodontal regeneration. - Highlights: • First report on ammonia treated PLLA matrix for in vitro human periodontal ligament-like tissue generation. • Good combination of matrix thickness, pore size, and porosity. • Biodegradable PLLA is also possible to be used in vivo.

  1. Periodontal ligament cellular structures engineered with electrospun poly(DL-lactide-co-glycolide) nanofibrous membrane scaffolds.

    Science.gov (United States)

    Inanç, Bülend; Arslan, Y Emre; Seker, Sükran; Elçin, A Eser; Elçin, Y Murat

    2009-07-01

    Periodontal tissue engineering is expected to overcome the limitations associated with the existing regenerative techniques for the treatment of periodontal defects involving alveolar bone, cementum, and periodontal ligament. Cell-based tissue engineering approaches involve the utilization of in vitro expanded cells with regenerative capacity and their delivery to the appropriate sites via biomaterial scaffolds. The aim of this study was to establish living periodontal ligament cell-containing structures on electrospun poly(DL-lactic-co-glycolic acid) (PLGA) nanofiber membrane scaffolds, assess their viability and characteristics, and engineer multilayered structures amenable to easy handling. Human periodontal ligament (hPDL) cells were expanded in explant culture and then characterized morphologically and immunohistochemically. PLGA nanofiber membranes were prepared by the electrospinning process; mechanical tensile properties were determined, surface topography, nanofiber size, and porosity status were investigated with SEM. Cells were seeded on the membranes at approximately 50,000 cell/cm(2) and cultured for 21 days either in expansion or in osteogenic induction medium. Cell adhesion and viability were demonstrated using SEM and MTT, respectively, and osteogenic differentiation was determined with IHC and immunohistomorphometric evaluation of osteopontin, osteocalcin, and bone sialoprotein marker expression. At days 3, 6, 9, and 12 additional cell/membrane layers were deposited on the existing ones and multilayered hybrid structures were established. Results indicate the feasibility of periodontal ligament cell-containing tissue-like structures engineering with PDL cells and electrospun nanofiber PLGA scaffolds supporting cell adhesion, viability and osteogenic differentiation properties of cells in hybrid structures amenable to macroscopic handling.

  2. Isolation and evaluation of dental pulp stem cells from teeth with advanced periodontal disease.

    Science.gov (United States)

    Derakhshani, Ali; Raoof, Maryam; Dabiri, Shahriar; Farsinejad, Ali Reza; Gorjestani, Hedayat; Yaghoobi, Mohammad Mehdi; Shokouhinejad, Noushin; Ehsani, Maryam

    2015-04-01

    Successful isolation of mesenchymal stem cells from waste tissues might be extremely promising for developing stem cell-based therapies. This study aimed to explore whether cells retrieved from teeth extracted due to advanced periodontal disease present mesenchymal stem cell-like properties. Pulp cells were isolated from 15 intact molars and 15 teeth with advanced periodontal disease. Cell proliferation and markers of mesenchymal stem cells were evaluated. Based on the RT-PCR and agarose gel electrophoresis, nucleostemin, Oct-4 and jmj2c, but not Nanog, were expressed in undifferentiated mesenchymal stem cells of both groups. Interestingly, diseased pulp exhibited higher gene expressions although it was not statistically significant. The average percentage of BrdU positive cells in the diseased group (84.4%, n = 5) was significantly higher than that of the control group (65.4%, n = 5) (t-test, P = 0.001). Our results indicate the successful isolation of mesenchymal stem cells from the pulp tissue of hopeless periodontally involved teeth.

  3. Optimizing the reconstruction filter in cone-beam CT to improve periodontal ligament space visualization: An in vitro study

    International Nuclear Information System (INIS)

    Houno, Yuuki; Kodera, Yoshie; Hishikawa, Toshimitsu; Naitoh, Munetaka; Mitani, Akio; Noguchi, Toshihide; Ariji, Eiichiro; Gotoh, Kenichi

    2017-01-01

    Evaluation of alveolar bone is important in the diagnosis of dental diseases. The periodontal ligament space is difficult to clearly depict in cone-beam computed tomography images because the reconstruction filter conditions during image processing cause image blurring, resulting in decreased spatial resolution. We examined different reconstruction filters to assess their ability to improve spatial resolution and allow for a clearer visualization of the periodontal ligament space. Cone-beam computed tomography projections of 2 skull phantoms were reconstructed using 6 reconstruction conditions and then compared using the Thurstone paired comparison method. Physical evaluations, including the modulation transfer function and the Wiener spectrum, as well as an assessment of space visibility, were undertaken using experimental phantoms. Image reconstruction using a modified Shepp-Logan filter resulted in better sensory, physical, and quantitative evaluations. The reconstruction conditions substantially improved the spatial resolution and visualization of the periodontal ligament space. The difference in sensitivity was obtained by altering the reconstruction filter. Modifying the characteristics of a reconstruction filter can generate significant improvement in assessments of the periodontal ligament space. A high-frequency enhancement filter improves the visualization of thin structures and will be useful when accurate assessment of the periodontal ligament space is necessary

  4. Optimizing the reconstruction filter in cone-beam CT to improve periodontal ligament space visualization: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Houno, Yuuki; Kodera, Yoshie [Graduate School of Medicine, Nagoya University, Nagoya (Japan); Hishikawa, Toshimitsu; Naitoh, Munetaka; Mitani, Akio; Noguchi, Toshihide; Ariji, Eiichiro [Aichi Gakuin University, Nisshin (Japan); Gotoh, Kenichi [Div. of Radiology, Dental Hospital, Aichi Gakuin University, Nisshin (Japan)

    2017-09-15

    Evaluation of alveolar bone is important in the diagnosis of dental diseases. The periodontal ligament space is difficult to clearly depict in cone-beam computed tomography images because the reconstruction filter conditions during image processing cause image blurring, resulting in decreased spatial resolution. We examined different reconstruction filters to assess their ability to improve spatial resolution and allow for a clearer visualization of the periodontal ligament space. Cone-beam computed tomography projections of 2 skull phantoms were reconstructed using 6 reconstruction conditions and then compared using the Thurstone paired comparison method. Physical evaluations, including the modulation transfer function and the Wiener spectrum, as well as an assessment of space visibility, were undertaken using experimental phantoms. Image reconstruction using a modified Shepp-Logan filter resulted in better sensory, physical, and quantitative evaluations. The reconstruction conditions substantially improved the spatial resolution and visualization of the periodontal ligament space. The difference in sensitivity was obtained by altering the reconstruction filter. Modifying the characteristics of a reconstruction filter can generate significant improvement in assessments of the periodontal ligament space. A high-frequency enhancement filter improves the visualization of thin structures and will be useful when accurate assessment of the periodontal ligament space is necessary.

  5. Experimental study on the effect of x-irradiation in the rat periodontal ligament

    International Nuclear Information System (INIS)

    Cho, Won Pyo; You, Dong Soo

    1980-01-01

    The author studied on the effects of X-ray irradiation to the development of periodontal ligament in gestation rats. They were irradiated in their abdomen with 100, 200 and 300 rads respectively in one shot irradiation with deep radiation therapy equipment(MAXIMAR 250-III). In 7th, 14th, 21th and 28th day after delivery, those new born rats were respectively sacrificed with ether anesthesia and removed of their mandibles. After removal, those mandibles were fixed in 10% neutral buffer formalin, decalcified with 5% trichloroacetic acid for 5 days and embedded with paraffin. Staining was performed with H-E, Van Gieson, Mallory azan, Bielshowsky-Gomori silver stain and Halmi's oxytalan fiber stain. The results were as follows: 1. Before tooth eruption, all the fiber components in dental sac were almost always oriented near the outer enamel epithelial layer. But in irradiated new born rats, those collagen fiber orientation was more irregular than those of control groups, and this phenomenon was more severe in proportion to the amount of irradiation in the gestation period. 2. Before tooth eruption, the connective tissue fibers in periodontal ligament were stained with lighter in the irradiated groups than those of control groups. Oxytalan fibers of irradiated groups were thin and splitting pattern of their fiber morphology to compare with those of control groups. 3. After tooth eruption, the periodontal ligament fibers of irradiated groups were oriented functionally and their morphology was thick, fine and heavy staining. Oxytalan fibers were revealed with oblique parallel arrangement in the periodontal ligament of irradiated groups.

  6. Gingival and periodontal ligament fibroblasts differ in their inflammatory response to viable Porphyromonas gingivalis

    NARCIS (Netherlands)

    Scheres, N; Laine, M L; de Vries, T J; Everts, V; van Winkelhoff, A J

    BACKGROUND AND OBJECTIVE: Porphyromonas gingivalis is an oral pathogen strongly associated with destruction of the tooth-supporting tissues in human periodontitis. Gingival fibroblasts (GF) and periodontal ligament fibroblasts (PDLF) are functionally different cell types in the periodontium that can

  7. Acemannan sponges stimulate alveolar bone, cementum and periodontal ligament regeneration in a canine class II furcation defect model.

    Science.gov (United States)

    Chantarawaratit, P; Sangvanich, P; Banlunara, W; Soontornvipart, K; Thunyakitpisal, P

    2014-04-01

    Periodontal disease is a common infectious disease, found worldwide, causing the destruction of the periodontium. The periodontium is a complex structure composed of both soft and hard tissues, thus an agent applied to regenerate the periodontium must be able to stimulate periodontal ligament, cementum and alveolar bone regeneration. Recent studies demonstrated that acemannan, a polysaccharide extracted from Aloe vera gel, stimulated both soft and hard tissue healing. This study investigated effect of acemannan as a bioactive molecule and scaffold for periodontal tissue regeneration. Primary human periodontal ligament cells were treated with acemannan in vitro. New DNA synthesis, expression of growth/differentiation factor 5 and runt-related transcription factor 2, expression of vascular endothelial growth factor, bone morphogenetic protein-2 and type I collagen, alkaline phosphatase activity, and mineralized nodule formation were determined using [(3)H]-thymidine incorporation, reverse transcription-polymerase chain reaction, enzyme-linked immunoabsorbent assay, biochemical assay and alizarin red staining, respectively. In our in vivo study, premolar class II furcation defects were made in four mongrel dogs. Acemannan sponges were applied into the defects. Untreated defects were used as a negative control group. The amount of new bone, cementum and periodontal ligament formation were evaluated 30 and 60 d after the operation. Acemannan significantly increased periodontal ligament cell proliferation, upregulation of growth/differentiation factor 5, runt-related transcription factor 2, vascular endothelial growth factor, bone morphogenetic protein 2, type I collagen and alkaline phosphatase activity, and mineral deposition as compared with the untreated control group in vitro. Moreover, acemannan significantly accelerated new alveolar bone, cementum and periodontal ligament formation in class II furcation defects. Our data suggest that acemannan could be a candidate

  8. Age estimation using the radiographic visibility of the periodontal ligament in lower third molars in a Portuguese population.

    Science.gov (United States)

    Sequeira, Catarina-Dourado; Teixeira, Alexandra; Caldas, Inês-Morais; Afonso, Américo; Pérez-Mongiovi, Daniel

    2014-12-01

    The mineralization of third molars has been used repeatedly as a method of forensic age estimation. However, this procedure is of little use beyond age 18, especially to determinate if an individual is older than 21 years of age; thus, the development of new approaches is essential. The visibility of the periodontal ligament has been suggested for this purpose. The aim of this work was to determine the usefulness of this methodology in a Portuguese population. Periodontal ligament visibility was assessed in the lower third molars, using a sample of 487 orthopantomograms, 228 of which belonging to females and 259 to males, from a Portuguese population aged 17 to 31 years. A classification of four stages based on the visual phenomenon of disappearance of the periodontal ligament of fully mineralized third molars was used. For each stage, median, variance, minimal and maximal age were assessed. The relationship between age and stage of periodontal ligament had a statistical significance for both sexes. In this population, stage 3 can be used to state that a male person is over 21 years-old; for females, another marker should be used. This technique can be useful for determining age over 21, particularly in males. Differences between studies are evident, suggesting that specific population standards should be used when applying this technique. Key words:Forensic sciences, forensic odontology, age estimation, third molar, periodontal ligament.

  9. Successful isolation, in vitro expansion and characterization of stem cells from Human Dental Pulp

    OpenAIRE

    Preethy SP; Srinivasan T; Tholcopiyan L; Thamaraikannan P; Srinivasan V; Murugan P; Manjunath S; Kannan TA; Shalini R; Sunil PM; Manikandhan R; Muthu MS; Abraham S

    2010-01-01

    BACKGROUND: Recent studies have shown that mesenchymal stem cells isolated from post natal human dental pulp, (Dental pulp stem cells-DPSCs) which is from permanent teeth and SHED (stem cells from human exfoliated deciduous teeth),the Periodontal ligament stem cells (PDLSC) and Stem cells from root Apical papilla(SCAP)have the potential to differentiate into cells of a variety of tissues including heart, muscle, cartilage, bone, nerve, salivary glands, teeth etc(1,2,3,4).This multipotential a...

  10. Predicting the holistic force-displacement relation of the periodontal ligament: in-vitro experiments and finite element analysis

    OpenAIRE

    Chang, Chih-Han; Lei, Yao-Ning; Ho, Yi-Hung; Sung, Yu-Hsing; Lin, Ting-Sheng

    2014-01-01

    Background The biomechanical property of the periodontal ligament (PDL) is important in orthodontics and prosthodontics. The objective of this study was to evaluate the feasibility of measuring the biomechanical behavior of the periodontal ligament using micro-computed tomography (micro-CT). Methods A custom-made apparatus measured the force and displacement of a porcine PDL specimen within the micro-CT environment. Synchronized computed tomography (CT) images were used to obtain the deformat...

  11. Extracellular matrix of dental pulp stem cells: Applications in pulp tissue engineering using somatic MSCs

    Directory of Open Access Journals (Sweden)

    Sriram eRavindran

    2014-01-01

    Full Text Available Dental Caries affects approximately 90% of the world’s population. At present, the clinical treatment for dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality. Tissue engineering can potentially solve this problem by enabling regeneration of a functional pulp tissue. Dental pulp stem cells (DPSCs have been shown to be an excellent source for pulp regeneration. However, limited availability of these cells hinders its potential for clinical translation. We have investigated the possibility of using somatic mesenchymal stem cells from other sources for dental pulp tissue regeneration using a biomimetic dental pulp extracellular matrix (ECM incorporated scaffold. Human periodontal ligament stem cells (PDLSCs and human bone marrow stromal cells (HMSCs were investigated for their ability to differentiate towards an odontogenic lineage. In vitro real-time PCR results coupled with histological and immunohistochemical examination of the explanted tissues confirmed the ability of PDLSCs and HMSCs to form a vascularized pulp-like tissue. These findings indicate that the dental pulp stem derived ECM scaffold stimulated odontogenic differentiation of PDLSCs and HMSCs without the need for exogenous addition of growth and differentiation factors. This study represents a translational perspective toward possible therapeutic application of using a combination of somatic stem cells and extracellular matrix for pulp regeneration.

  12. Periodontal ligament formation around different types of dental titanium implants. I. The self-tapping screw type implant system

    DEFF Research Database (Denmark)

    Warrer, K; Karring, T; Gotfredsen, K

    1993-01-01

    The aim of this study was to determine if a periodontal ligament can form around self-tapping, screw type titanium dental implants. Implants were inserted in contact with the periodontal ligament of root tips retained in the mandibular jaws of 7 monkeys. In each side of the mandible, 1 premolar......, a periodontal ligament can form on self-tapping, screw type titanium dental implants in areas where a void is present between the surrounding bone and the implant at the time of insertion....... and 2 molars were removed in such a manner that in approximately half the cases, the root tips were retained. Following healing, the experimental areas were examined on radiographs, and sites were selected for the insertion of the implants, so that every second implant would have a close contact...

  13. Pulp regeneration after non-infected and infected necrosis, what type of tissue do we want?

    DEFF Research Database (Denmark)

    Andreasen, Jens O; Bakland, Leif K

    2012-01-01

    Regeneration (revitalization) of infected necrotic pulp tissue has been an important issue in endodontics for more than a decade. Based on a series of case reports, there appears to be evidence that new soft tissue can enter the root canal with a potential for subsequent hard tissue deposition...... that such events may take place in four variants: (i) Revascularization of the pulp with accelerated dentin formation leading to pulp canal obliteration. This event has a good long-term prognosis. (ii) Ingrowth of cementum and periodontal ligament (PDL). The long-term prognosis for this event is not known. (iii...

  14. The influence of root surface distance to alveolar bone and periodontal ligament on periodontal wound healing.

    Science.gov (United States)

    Montevecchi, Marco; Parrilli, Annapaola; Fini, Milena; Gatto, Maria Rosaria; Muttini, Aurelio; Checchi, Luigi

    2016-10-01

    The purpose of this animal study was to perform a 3-dimensional micro-computed tomography (micro-CT) analysis in order to investigate the influence of root surface distance to the alveolar bone and the periodontal ligament on periodontal wound healing after a guided tissue regeneration (GTR) procedure. Three adult Sus scrofa domesticus specimens were used. The study sample included 6 teeth, corresponding to 2 third mandibular incisors from each animal. After coronectomy, a circumferential bone defect was created in each tooth by means of calibrated piezoelectric inserts. The experimental defects had depths of 3 mm, 5 mm, 7 mm, 9 mm, and 11 mm, with a constant width of 2 mm. One tooth with no defect was used as a control. The defects were covered with a bioresorbable membrane and protected with a flap. After 6 months, the animals were euthanised and tissue blocks were harvested and preserved for micro-CT analysis. New alveolar bone was consistently present in all experimental defects. Signs of root resorption were observed in all samples, with the extent of resorption directly correlated to the vertical extent of the defect; the medial third of the root was the most commonly affected area. Signs of ankylosis were recorded in the defects that were 3 mm and 7 mm in depth. Density and other indicators of bone quality decreased with increasing defect depth. After a GTR procedure, the periodontal ligament and the alveolar bone appeared to compete in periodontal wound healing. Moreover, the observed decrease in bone quality indicators suggests that intrabony defects beyond a critical size cannot be regenerated. This finding may be relevant for the clinical application of periodontal regeneration, since it implies that GTR has a dimensional limit.

  15. The effect of ATM kinase inhibition on the initial response of human dental pulp and periodontal ligament mesenchymal stem cells to ionizing radiation.

    Science.gov (United States)

    Cmielova, Jana; Havelek, Radim; Kohlerova, Renata; Soukup, Tomas; Bruckova, Lenka; Suchanek, Jakub; Vavrova, Jirina; Mokry, Jaroslav; Rezacova, Martina

    2013-07-01

    This study evaluates early changes in human mesenchymal stem cells (MSC) isolated from dental pulp and periodontal ligament after γ-irradiation and the effect of ataxia-telangiectasia mutated (ATM) inhibition. MSC were irradiated with 2 and 20 Gy by (60)Co. For ATM inhibition, specific inhibitor KU55933 was used. DNA damage was measured by Comet assay and γH2AX detection. Cell cycle distribution and proteins responding to DNA damage were analyzed 2-72 h after the irradiation. The irradiation of MSC causes an increase in γH2AX; the phosphorylation was ATM-dependent. Irradiation activates ATM kinase, and the level of p53 protein is increased due to its phosphorylation on serine15. While this phosphorylation of p53 is ATM-dependent in MSC, the increase in p53 was not prevented by ATM inhibition. A similar trend was observed for Chk1 and Chk2. The increase in p21 is greater without ATM inhibition. ATM inhibition also does not fully abrogate the accumulation of irradiated MSC in the G2-phase of the cell-cycle. In irradiated MSC, double-strand breaks are tagged quickly by γH2AX in an ATM-dependent manner. Although phosphorylations of p53(ser15), Chk1(ser345) and Chk2(thr68) are ATM-dependent, the overall amount of these proteins increases when ATM is inhibited. In both types of MSC, ATM-independent mechanisms for cell-cycle arrest in the G2-phase are triggered.

  16. Chemically modified tetracyclines stimulate matrix metalloproteinase-s production by periodontal ligament cells

    NARCIS (Netherlands)

    Bildt, M.M.; Snoek-van Beurden, A.M.P.; Groot, J. de; El, B. van; Kuijpers-Jagtman, A.M.; Hoff, J.W. van den

    2006-01-01

    Background and Objective: The purpose of this study was to investigate the effects of chemically modified tetracyclines (CMTs) on the production of gelatinases [matrix metalloproteinase (MMP)-2 and -9] by human periodontal ligament (PDL) cells, and on the activity of recombinant gelatinases.

  17. Autologous dental pulp stem cells in periodontal regeneration: a case report.

    Science.gov (United States)

    Aimetti, Mario; Ferrarotti, Francesco; Cricenti, Luca; Mariani, Giulia Maria; Romano, Federica

    2014-01-01

    Histologic findings in animal models suggest that the application of dental pulp stem cells (DPSCs) may promote periodontal regeneration in infrabony defects. This case report describes the clinical and radiographic regenerative potential of autologous DPSCs in the treatment of human noncontained intraosseous defects. A chronic periodontitis patient with one vital third molar requiring extraction was surgically treated. The third molar was extracted and used as an autologous DPSCs source to regenerate the infrabony defect on the mandibular right second premolar. At the 1-year examination, the defect was completely filled with bonelike tissue as confirmed through the reentry procedure.

  18. Cell proliferation and 3H-proline incorporation in periodontal ligament exposed to mechanical stress

    International Nuclear Information System (INIS)

    Kunz, J.; Plascke, C.; Duncker, M.

    1988-01-01

    In order to study the metabolic processes induced in the periodontal ligament by mechanical influences, a tension spring was implanted in rats between the incisor and the first maxillary molar on the right-hand side, while the left maxilla of these animals as well as non-operated rats served as controls. Under such mechanical stress, there occurred at 3, 10 and 21 days after implantation a significant increase in the 3 H-thymidine labelling index, which was demonstrate histoautoradiographically. A change in cell density was not discovered. Therefore, the increase in S-phase fraction as equally recorded in both pressure and tension zones is regarded as an expression of an enhanced cell turnover. Cell renewal in the periodontal ligament can be modified by inflammatory processes within the gingival region. There is a slight enlargement of the periodontal space in the tension zone. Under experimental conditions, no change occurs in the silver grain number per cell after 3 H-proline administration. The results indicate that, following the impact of orthodontic forces, the reactivity of periodontal cell proliferation as compared to collagen synthesis is enhanced. (author)

  19. Tissue Engineering of Necrotic Dental Pulp of Immature Teeth with Apical Periodontitis in Dogs: Radiographic and Histological Evaluation.

    Science.gov (United States)

    El Ashiry, Eman A; Alamoudi, Najlaa M; El Ashiry, Mahmoud K; Bastawy, Hagar A; El Derwi, Douaa A; Atta, Hazem M

    2018-05-15

    To evaluate tissue engineering technology to regenerate pulp-dentin like tissues in pulp canals of immature necrotic permanent teeth with apical periodontitis in dogs. The study was performed on 36 teeth in 12 dogs. The experiment was carried out using split mouth design. In each dog 3 teeth were selected for implementing the study procedure. Apical periodontitis was induced in Group A and B teeth. Group (A): immature upper left 2 nd permanent incisors that were transplanted with a construct of autologous dental pulp stem cells with growth factors seeded in a chitosn hydrogel scaffold. Group (B): immature upper right 2 nd permanent incisor that received only growth factors with scaffold. A third tooth in each dog was selected randomly for isolation of dental pulp stem cells (DPSCs). Both groups were closed with a double coronal seal of white MTA (Mineral trioxide aggregate) and glass ionomer cement. Both groups were monitored radiographically for 4 months and histologically after sacrificing the animals. There was no statistically significant difference in radiographic findings between group (A) and group (B) for healing of radiolucencies, while there was statistically significant difference between group (A) and group (B) regarding radicular thickening, root lengthening and apical closure. Histologically, group (A) teeth showed regeneration of pulp-dentin like tissue while group (B) teeth did not show any tissue regeneration. Dental pulp stem cells and growth factors incorporated in chitosan hydrogel are able to regenerate pulp-dentine like tissue and help in complete root maturation of non-vital immature permanent teeth with apical periodontitis in dogs.

  20. Bacterial infections of pulp and periodontal origin.

    Science.gov (United States)

    González-Moles, Miguel Angel; González, Nabila M

    2004-01-01

    The anatomical and structural characteristics of the pulp make this structure prone to altering as a result of, for instance, periodontal conditions (proximity), iatrogenic alterations, infections and involvement of vascular and nerve structures (it is surrounded by hard tissues that prevent expansion), to name just a few. Pulpitis is a process that courses with pain of varying intensity that allows us to determine the location of the lesion in clinical terms. Its evolution varies and may even progress to pulpar necrosis that in turn, produces neuritis-like pain. Diagnosis is established by means of clinical symptomatology and supported by X-rays, palpation of tissues at painful sites, application of electrical stimuli, heat, etc. Periodontitis is a bacterial infection originating in the apex. The most important form is the so-called acute apical periodontitis that arises as a result of a prior episode of pulpitis. It is characterized by acute pain located in the tooth, accompanied by the feeling of having a long-tooth. The patient refers being unable to chew on that side; there may be painful mobility of the tooth and an outflow of pus that alleviates symptoms. X-rays do not provide a lot of information, but may attest to a widening of the apical space. This pathology may disseminate to surrounding tissues, leading to conditions of considerable severity.

  1. Adenovirus-mediated transfer of hepatocyte growth factor gene to human dental pulp stem cells under good manufacturing practice improves their potential for periodontal regeneration in swine.

    Science.gov (United States)

    Cao, Yu; Liu, Zhenhai; Xie, Yilin; Hu, Jingchao; Wang, Hua; Fan, Zhipeng; Zhang, Chunmei; Wang, Jingsong; Wu, Chu-Tse; Wang, Songlin

    2015-12-15

    Periodontitis is one of the most widespread infectious diseases in humans. We previously promoted significant periodontal tissue regeneration in swine models with the transplantation of autologous periodontal ligament stem cells (PDLSCs) and PDLSC sheet. We also promoted periodontal tissue regeneration in a rat model with a local injection of allogeneic bone marrow mesenchymal stem cells. The purpose of the present study is to investigate the roles of the hepatocyte growth factor (HGF) and human dental pulp stem cells (DPSCs) in periodontal tissue regeneration in swine. In the present study, we transferred an adenovirus that carried HGF gene into human DPSCs (HGF-hDPSCs) under good manufacturing practice (GMP) conditions. These cells were then transplanted into a swine model for periodontal regeneration. Twenty miniature pigs were used to generate periodontitis with bone defect of 5 mm in width, 7 mm in length, and 3 mm in depth. After 12 weeks, clinical, radiological, quantitative and histological assessment of regenerated periodontal tissues was performed to compare periodontal regeneration in swine treated with cell implantation. Our study showed that injecting HGF-hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. A hDPSC or HGF-hDPSC sheet showed superior periodontal tissue regeneration compared to the injection of dissociated cells. However, the sheets required surgical placement; thus, they were suitable for surgically-managed periodontitis treatments. The adenovirus-mediated transfer of the HGF gene markedly decreased hDPSC apoptosis in a hypoxic environment or in serum-free medium, and it increased blood vessel regeneration. This study indicated that HGF-hDPSCs produced under GMP conditions significantly improved periodontal bone regeneration in swine; thus, this method represents a potential clinical application for periodontal regeneration.

  2. Influence of nanotopography on periodontal ligament stem cell functions and cell sheet based periodontal regeneration.

    Science.gov (United States)

    Gao, Hui; Li, Bei; Zhao, Lingzhou; Jin, Yan

    2015-01-01

    Periodontal regeneration is an important part of regenerative medicine, with great clinical significance; however, the effects of nanotopography on the functions of periodontal ligament (PDL) stem cells (PDLSCs) and on PDLSC sheet based periodontal regeneration have never been explored. Titania nanotubes (NTs) layered on titanium (Ti) provide a good platform to study this. In the current study, the influence of NTs of different tube size on the functions of PDLSCs was observed. Afterward, an ectopic implantation model using a Ti/cell sheets/hydroxyapatite (HA) complex was applied to study the effect of the NTs on cell sheet based periodontal regeneration. The NTs were able to enhance the initial PDLSC adhesion and spread, as well as collagen secretion. With the Ti/cell sheets/HA complex model, it was demonstrated that the PDLSC sheets were capable of regenerating the PDL tissue, when combined with bone marrow mesenchymal stem cell (BMSC) sheets and HA, without the need for extra soluble chemical cues. Simultaneously, the NTs improved the periodontal regeneration result of the ectopically implanted Ti/cell sheets/HA complex, giving rise to functionally aligned collagen fiber bundles. Specifically, much denser collagen fibers, with abundant blood vessels as well as cementum-like tissue on the Ti surface, which well-resembled the structure of natural PDL, were observed in the NT5 and NT10 sample groups. Our study provides the first evidence that the nanotopographical cues obviously influence the functions of PDLSCs and improve the PDLSC sheet based periodontal regeneration size dependently, which provides new insight to the periodontal regeneration. The Ti/cell sheets/HA complex may constitute a good model to predict the effect of biomaterials on periodontal regeneration.

  3. Transplantation of periodontal ligament cell sheets expressing human β-defensin-3 promotes anti-inflammation in a canine model of periodontitis

    Science.gov (United States)

    Zhu, Minwen; Miao, Bo; Zhu, Jianhua; Wang, Haiyan; Zhou, Zengtong

    2017-01-01

    Periodontitis is a chronic oral inflammatory disease caused by microorganisms. Human β-defensin-3 (HBD-3) is an endogenous antimicrobial peptide that inhibits a broad spectrum of microorganisms. Cell sheet technology has been widely applied in tissue and organ reconstructions. In the current study, it was aimed to investigate the anti-inflammatory effect of periodontal tissue engineered by HBD-3 gene-modified periodontal ligament cell (PDLC) sheets, and to identify a suitable method of promoting the regeneration of periodontal tissues. Western blot analysis and antimicrobial tests were used to confirm the expression of HBD-3. The effect of the cell sheets on anti-inflammatory activity and bone remodeling in a dog model of periodontitis was demonstrated by immunohistochemistry. The results demonstrated that the transfected PDLCs stably expressed HBD-3. Periodontal pathogens were susceptible to the antimicrobial activity of the cell sheets. In addition, the cell sheets relieved the bone resorption caused by inflammation in the in vivo model. HBD-3 may potentially be applied in the treatment of periodontitis and may function as osteogenic promoter via its anti-inflammatory effect. PMID:28944821

  4. Degenerative alterations of the cementum-periodontal ligament complex and early tooth loss in a young patient with periodontal disease.

    Science.gov (United States)

    Petruţiu, S A; Buiga, Petronela; Roman, Alexandra; Danciu, Theodora; Mihu, Carmen Mihaela; Mihu, D

    2012-01-01

    Premature exfoliation of primary or permanent teeth in children or adolescents is extremely rare and it can be a manifestation of an underlying systemic disease. This study aims to present the histological aspects associated with early tooth loss in a case of periodontal disease developed without local inflammation and with minimal periodontal pockets and attachment loss. The maxillary left second premolar was extracted together with a gingival collar attached to the root surface. The histological analysis recorded the resorption of the cementum in multiple areas of the entire root surface with the connective tissue of the desmodontium invading the lacunae defects. The connective tissue rich in cells occupied the periodontal ligamentar space and the resorptive areas. No inflammation was obvious in the periodontal ligament connective tissue. This report may warn clinicians about the possibility of the association of cemental abnormalities with early tooth loss.

  5. Migration of periodontal ligament fibroblasts on nanometric topographical patterns: influence of filopodia and focal adhesions on contact guidance.

    Directory of Open Access Journals (Sweden)

    Douglas W Hamilton

    Full Text Available Considered to be the "holy grail" of dentistry, regeneration of the periodontal ligament in humans remains a major clinical problem. Removal of bacterial biofilms is commonly achieved using EDTA gels or lasers. One side effect of these treatment regimens is the etching of nanotopographies on the surface of the tooth. However, the response of periodontal ligament fibroblasts to such features has received very little attention. Using laser interference lithography, we fabricated precisely defined topographies with continuous or discontinuous nanogrooves to assess the adhesion, spreading and migration of PDL fibroblasts. PDL fibroblasts adhered to and spread on all tested surfaces, with initial spreading and focal adhesion formation slower on discontinuous nanogrooves. Cells had a significantly smaller planar area on both continuous and discontinuous nanogrooves in comparison with cells on non-patterned controls. At 24 h post seeding, cells on both types of nanogrooves were highly elongated parallel to the groove long axis. Time-lapse video microscopy revealed that PDL fibroblast movement was guided on both types of grooves, but migration velocity was not significantly different from cells cultured on non-patterned controls. Analysis of filopodia formation using time-lapse video microscopy and labeling of vinculin and F-actin revealed that on nanogrooves, filopodia were highly aligned at both ends of the cell, but with increasing time filopodia and membrane protrusions developed at the side of the cell perpendicular to the cell long axis. We conclude that periodontal ligament fibroblasts are sensitive to nanotopographical depths of 85-100 µm, which could be utilized in regeneration of the periodontal ligament.

  6. Transplantation of periodontal ligament cell sheets expressing human β‑defensin‑3 promotes anti‑inflammation in a canine model of periodontitis.

    Science.gov (United States)

    Zhu, Minwen; Miao, Bo; Zhu, Jianhua; Wang, Haiyan; Zhou, Zengtong

    2017-11-01

    Periodontitis is a chronic oral inflammatory disease caused by microorganisms. Human β‑defensin‑3 (HBD‑3) is an endogenous antimicrobial peptide that inhibits a broad spectrum of microorganisms. Cell sheet technology has been widely applied in tissue and organ reconstructions. In the current study, it was aimed to investigate the anti‑inflammatory effect of periodontal tissue engineered by HBD‑3 gene‑modified periodontal ligament cell (PDLC) sheets, and to identify a suitable method of promoting the regeneration of periodontal tissues. Western blot analysis and antimicrobial tests were used to confirm the expression of HBD‑3. The effect of the cell sheets on anti‑inflammatory activity and bone remodeling in a dog model of periodontitis was demonstrated by immunohistochemistry. The results demonstrated that the transfected PDLCs stably expressed HBD‑3. Periodontal pathogens were susceptible to the antimicrobial activity of the cell sheets. In addition, the cell sheets relieved the bone resorption caused by inflammation in the in vivo model. HBD‑3 may potentially be applied in the treatment of periodontitis and may function as osteogenic promoter via its anti‑inflammatory effect.

  7. Tenomodulin expression in the periodontal ligament enhances cellular adhesion.

    Directory of Open Access Journals (Sweden)

    Yuske Komiyama

    Full Text Available Tenomodulin (Tnmd is a type II transmembrane protein characteristically expressed in dense connective tissues such as tendons and ligaments. Its expression in the periodontal ligament (PDL has also been demonstrated, though the timing and function remain unclear. We investigated the expression of Tnmd during murine tooth eruption and explored its biological functions in vitro. Tnmd expression was related to the time of eruption when occlusal force was transferred to the teeth and surrounding tissues. Tnmd overexpression enhanced cell adhesion in NIH3T3 and human PDL cells. In addition, Tnmd-knockout fibroblasts showed decreased cell adhesion. In the extracellular portions of Tnmd, the BRICHOS domain or CS region was found to be responsible for Tnmd-mediated enhancement of cell adhesion. These results suggest that Tnmd acts on the maturation or maintenance of the PDL by positively regulating cell adhesion via its BRICHOS domain.

  8. Functional Role of HSP47 in the Periodontal Ligament Subjected to Occlusal Overload in Mice.

    Science.gov (United States)

    Mimura, Hiroaki; Takaya, Tatsuo; Matsuda, Saeka; Nakano, Keisuke; Muraoka, Rina; Tomida, Mihoko; Okafuji, Norimasa; Fujii, Takeo; Kawakami, Toshiyuki

    2016-01-01

    We carried out an experiment to induce traumatic occlusion in mice periodontal tissue and analyzed the expression of HSP47. Continuous traumatic occlusion resulted to damage and remodeling of periodontal ligament as well as increase in osteoclasts and bone resorption. Four days after traumatic occlusion, osteoclasts did not increase but Howship's lacunae became enlarged. That is, the persistent occlusal overload can destroy collagen fibers in the periodontal ligament. This was evident by the increased in HSP47 expression with the occlusal overload. HSP47 is maintained in fibroblasts for repair of damaged collagen fibers. On the other hand, osteoclasts continue to increase although the load was released. The osteoclasts that appeared on the alveolar bone surface were likely due to sustained activity. The increase in osteoclasts was estimated to occur after load application at day 4. HSP47 continued to increase until day 6 in experiment 2 but then reduced at day 10. Therefore, HSP47 appears after a period of certain activities to repair damaged collagen fibers, and the activity was returned to a state of equilibrium at day 30 with significantly diminished expression. Thus, the results suggest that HSP47 is actively involved in homeostasis of periodontal tissue subjected to occlusal overload.

  9. Impact of nicotine on the interplay between human periodontal ligament cells and CD4+ T cells.

    Science.gov (United States)

    Ge, Xin; Liu, Ying-Feng; Wong, Yong; Wu, Li-Zheng; Tan, Ling; Liu, Fen; Wang, Xiao-Jing

    2016-09-01

    Periodontitis is a common infectious disease associated with destruction of periodontal ligaments and alveolar bones. CD4(+) T cell-mediated immune response is involved in the progression of periodontitis. Tobacco consumption increases the risk of periodontal disease. However, the impact of nicotine on the interaction between human periodontal ligament (PDL) cells and CD4(+) T cells remains unrevealed. Our study aims to investigate the effect of nicotine on PDL cells and the cocultured CD4(+) T cells. The PDL cell cultures were established by explants from healthy individuals, exposed to nicotine or α-bungarotoxin (α-BTX), and incubated solely or in combination with CD4(+) T cells. Afterwards, cell viability, secreted cytokines, and matrix metalloproteinases (MMPs) were evaluated. In monoculture of PDL cells, nicotine dramatically repressed cell viability and increased apoptosis. Meanwhile, α-BTX largely reversed the nicotine-induced apoptosis and increased viability of PDL cells. Compared with the monoculture, MMP-1, MMP-3, interleukin (IL)-1β, IL-6, IL-17, and IL-21 in supernatant of cocultures were markedly elevated after treatment with nicotine. Moreover, α-BTX significantly attenuated nicotine-triggered production of these components either in mono- or co-cultures. In addition, PDL cell-derived CXCL12 following nicotine treatment recruited CD4(+) T cells. Above all, nicotine deteriorated periodontitis partially by promoting PDL cell-CD4(+) T cell-mediated inflammatory response and matrix degradation. © The Author(s) 2015.

  10. Root maturation and dentin–pulp response to enamel matrix derivative in pulpotomized permanent teeth

    Directory of Open Access Journals (Sweden)

    Sherif S Darwish

    2014-01-01

    Full Text Available The success of pulpotomy of young permanent teeth depends on the proper selection of dressing materials. This study aimed to evaluate the histological and histomorphometric response of dentin–pulp complex to the enamel matrix derivative (Emdogain® gel compared to that of calcium hydroxide when used as a pulp dressing in immature young permanent dogs’ teeth. Dentin-like tissues bridging the full width of the coronal pulp at the interface between the injured and healthy pulp tissues were seen after 1 month in both groups. With time, the dentin bridge increased in thickness for calcium hydroxide but disintegrated and fully disappeared for Emdogain-treated group. Progressive inflammation and total pulp degeneration were only evident with Emdogain-treated group. The root apices of Emdogain-treated teeth became matured and closed by cementum that attached to new alveolar bone by a well-oriented periodontal ligament. In young permanent dentition, Emdogain could be a good candidate for periodontium but not dentino–pulpal complex regeneration.

  11. A radiographic study estimating age of mandibular third molars by periodontal ligament visibility.

    Science.gov (United States)

    Chaudhary, M A; Liversidge, H M

    2017-12-01

    Visibility of the periodontal ligament of mandibular third molars (M3) has been suggested as a method to estimate age. To assess the accuracy of this method and compare the visibility of the periodontal ligament in the left M3 with the right M3. The sample was archived panoramic dental radiographs of 163 individuals (75 males, 88 females, age 16-53 years) with mature M3's. Reliability was assessed using Kappa. Accuracy was assessed by subtracting chronological age from estimated age for males and females. Stages were cross-tabulated against age stages younger than and at least 18 and 21 years of age. Stages were compared in the left M3 and right M3. Analysis showed excellent intra-observer reliability. Mean difference between estimated and chronological ages was 7.21 years (SD 5.16) for left M3 and 7.69 (SD 6.08) for right M3 in males and 6.87 (SD 5.83) for left M3 and 8.61 (SD 6.58) for right M3 in females. Minimum ages of stages 0 to 2 were younger than previously reported, despite a small sample of individuals younger than 18. The left and right M3 stage differed in 46% of the 85 individuals with readings from both side and estimated age differed from -10.5 to 12.2 years between left and right. Accuracy of this method was between 6 and 8 years with an error of 5 to 6 years. The number of individuals with mature M3 apices younger than 18 years was small. The stage of visibility of the periodontal ligament differed between left and right in almost half of our sample with both teeth present. Our findings question the use of this method to estimate age or to discriminate between age younger and at least 18 years.

  12. Assessment of Surface Markers Derived from Human Periodontal Ligament Stem Cells: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Zainab Kadkhoda

    2016-12-01

    Full Text Available Objectives: Periodontal tissue regeneration for treatment of periodontal disease has not yet been mastered in tissue engineering. Stem cells, scaffold, and growth factors are the three main basic components of tissue engineering. Periodontal ligament (PDL contains stem cells; however, the number, potency and features of these cells have not yet been understood. This study aimed to isolate and characterize the properties of PDL stem cells. Materials and Methods: In this experimental study, samples were isolated from the PDL of extracted teeth of five patients and then stained immunohistochemically for detection of cell surface markers. Cells were then examined by immuno-flow cytometry for mesenchymal markers as well as for osteogenic and adipogenic differentiation.Results: The isolated cell population had fibroblast-like morphology and flow cytometry revealed that the mesenchymal surface markers were (means: CD90 (84.55, CD31 (39.97, CD166 (33.77, CD105 (31.19, CD45 (32/44, CD44 (462.11, CD34 (227.33, CD38 (86.94, CD13 (34.52 and CD73 (50.39. The PDL stem cells also differentiated into osteoblasts and adipocytes in osteogenic and adipogenic media, respectively.Conclusions: PDL stem cells expressed mesenchymal stem cell (MSC markers and differentiated into osteoblasts and adipocytes in osteogenic and adipogenic media, respectively.Keywords: Adipocytes; Antigens; Mesenchymal Stromal Cells; Osteoblasts; Periodontal Ligament

  13. In vitro cytotoxicity of white MTA, MTA Fillapex® and Portland cement on human periodontal ligament fibroblasts.

    Science.gov (United States)

    Yoshino, Patrícia; Nishiyama, Celso Kenji; Modena, Karin Cristina da Silva; Santos, Carlos Ferreira; Sipert, Carla Renata

    2013-01-01

    The aim of this study was to compare the in vitro cytotoxicity of white mineral trioxide aggregate (MTA), MTA Fillapex® and Portland cement (PC) on human cultured periodontal ligament fibroblasts. Periodontal ligament fibroblast culture was established and the cells were used for cytotoxic tests after the fourth passage. Cell density was set at 1.25 X10 4 cells/well in 96-well plates. Endodontic material extracts were prepared by placing sealer/cement specimens (5x3mm) in 1mL of culture medium for 72 h. The extracts were then serially two-fold diluted and inserted into the cell-seeded wells for 24, 48 and 72 h. MTT assay was employed for analysis of cell viability. Cell supernatants were tested for nitric oxide using the Griess reagent system. MTA presented cytotoxic effect in undiluted extracts at 24 and 72 h. MTA Fillapex® presented the highest cytotoxic levels with important cell viability reduction for pure extracts and at ½ and ¼ dilutions. In this study, PC did not induce alterations in fibroblast viability. Nitric oxide was detected in extract-treated cell supernatants and also in the extracts only, suggesting presence of nitrite in the soluble content of the tested materials. In the present study, MTA Fillapex displayed the highest cytotoxic effect on periodontal ligament fibroblasts followed by white MTA and PC.

  14. Cytotoxicity evaluation of sodium alendronate on cultured human periodontal ligament fibroblasts.

    Science.gov (United States)

    Correia, Vera de Fátima Padrão; Caldeira, Celso L; Marques, Márcia Martins

    2006-12-01

    External root resorption processes are usually associated with dental trauma, mainly avulsion and intrusion. In such cases endodontic therapy aims to prevent this process by using medications that can inhibit osteoclastic activity, such as bisphosphonates. However, these drugs must be biocompatible to the periapical tissues. The aim of this study was to analyze the cytotoxicity of a bisphosphonate (sodium alendronate) on human periodontal ligament fibroblasts (PDL cells). Cells were plated in a density of 1 x 10(3) cells per dish. The experimental groups were GI (control) no sodium alendronate, and GII, GIII, and GIV with sodium alendronate at the concentrations of 10(-5), 10(-6), and 10(-7) M, respectively. The experimental times were 1, 6, 12, and 24 h (short-term) for viability and 2, 4, 6, and 8 days (long-term) for cell survival. Data in triplicate were statistically analyzed. Cultures treated with the highest alendronate concentration (GII) showed cell viability percentages significantly lower (P < 0.01) than those of the other groups (GI, GIII, and GIV), at 12 and 24 h. Cell growth on GII and GIII groups was similar. GII presented smaller growth than the other groups (P < 0.05). We concluded that sodium alendronate, on direct contact with human periodontal ligament fibroblasts, is cytotoxic in concentrations higher than of 10(-6) M.

  15. Periodontitis

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001059.htm Periodontitis To use the sharing features on this page, please enable JavaScript. Periodontitis is inflammation and infection of the ligaments and ...

  16. Biomechanical force induces the growth factor production in human periodontal ligament-derived cells.

    Science.gov (United States)

    Ichioka, Hiroaki; Yamamoto, Toshiro; Yamamoto, Kenta; Honjo, Ken-Ichi; Adachi, Tetsuya; Oseko, Fumishige; Mazda, Osam; Kanamura, Narisato; Kita, Masakazu

    2016-01-01

    Although many reports have been published on the functional roles of periodontal ligament (PDL) cells, the mechanisms involved in the maintenance and homeostasis of PDL have not been determined. We investigated the effects of biomechanical force on growth factor production, phosphorylation of MAPKs, and intracellular transduction pathways for growth factor production in human periodontal ligament (hPDL) cells using MAPK inhibitors. hPDL cells were exposed to mechanical force (6 MPa) using a hydrostatic pressure apparatus. The levels of growth factor mRNA and protein were examined by real-time RT-PCR and ELISA. The phosphorylation of MAPKs was measured using BD™ CBA Flex Set. In addition, MAPKs inhibitors were used to identify specific signal transduction pathways. Application of biomechanical force (equivalent to occlusal force) increased the synthesis of VEGF-A, FGF-2, and NGF. The application of biomechanical force increased the expression levels of phosphorylated ERK and p38, but not of JNK. Furthermore, the levels of VEGF-A and NGF expression were suppressed by ERK or p38 inhibitor. The growth factors induced by biomechanical force may play a role in the mechanisms of homeostasis of PDL.

  17. Stimulation of interleukin-6 production of periodontal ligament cells by Porphyromonas endodontalis lipopolysaccharide.

    Science.gov (United States)

    Ogura, N; Shibata, Y; Kamino, Y; Matsuda, U; Hayakawa, M; Oikawa, T; Takiguchi, H; Izumi, H; Abiko, Y

    1994-12-01

    Interleukin-6 (IL-6), which is a multifunctional cytokine, has important roles in acute and chronic inflammation and may also be implicated in bone resorption. We examined the IL-6 production in periodontal ligament (PDL) cells which were treated with lipopolysaccharide (LPS) from several oral inflammatory pathogens. The LPS from Porphyromonas endodontalis, which was isolated from infected root canals and radicular cyst fluids, was more potent than the LPS from any other periodontal organisms examined. P. endodontalis LPS stimulated IL-6 release from PDL cells in a time- and dose-dependent manner. Northern blot hybridization analysis revealed that the IL-6 mRNA level in PDL cells was increased by P. endodontalis LPS. These results suggest that stimulation of the IL-6 release of PDL cells by P. endodontalis LPS may have a role in the progression of inflammation and alveolar bone resorption in periodontal and periapical diseases.

  18. Loss of proliferation and differentiation capacity of aged human periodontal ligament stem cells and rejuvenation by exposure to the young extrinsic environment.

    Science.gov (United States)

    Zheng, Wei; Wang, Shi; Ma, Dandan; Tang, Liang; Duan, Yinzhong; Jin, Yan

    2009-09-01

    The application of periodontal ligament stem cells (PDLSCs) may be effective for periodontal regenerative therapy. As tissue regenerative potential may be negatively regulated by aging, whether aging and its microenvironment modify human PDLSCs remains a question. In this study, we compared the proliferation and differentiation capacity of PDLSCs obtained from young and aged donors. Then, we exposed aged PDLSCs to young periodontal ligament cell-conditioned medium (PLC-CM), and young PDLSCs were exposed to aged PLC-CM. Morphological appearance, colony-forming assay, cell cycle analysis, osteogenic and adipogenic induction media, gene expression of cementoblast phenotype, and in vivo differentiation capacities of PDLSCs were evaluated. PDLSCs obtained from aged donors exhibited decreased proliferation and differentiation capacity when compared with those from young donors. Young PLC-CM enhanced the proliferation and differentiation capacity of PDLSCs from aged donors. Aged PDLSCs induced by young PLC-CM showed enhanced tissue-regenerative capacity to produce cementum/periodontal ligament-like structures, whereas young PDLSCs induced by aged PLC-CM transplants mainly formed connective tissues. To our knowledge, this is the first study to mimic the developmental microenvironment of PDLSCs in vitro, and our data suggest that age influences the proliferation and differentiation potential of human PDLSCs, and that the activity of human PDLSCs can be modulated by the extrinsic microenvironment.

  19. Pulp Calcification in Traumatized Primary Teeth - Classification, Clinical And Radiographic Aspects.

    Science.gov (United States)

    Mello-Moura, Anna Carolina Volpi; Santos, Ana Maria Antunes; Bonini, Gabriela Azevedo Vasconcelos Cunha; Zardetto, Cristina Giovannetti Del Conte; Moura-Netto, Cacio; Wanderley, Marcia Turolla

    The aim of this study was to standardize the nomenclature of pulp alteration to pulp calcification (PC) and to classify it according to type, quantity and location, as well as relate it to clinical and radiographic features. The dental records of 946 patients from the Research and Clinical Center for Dental Trauma in Primary Teeth were studied. Two hundred and fifty PC-traumatized upper deciduous incisors were detected. According to radiographic analysis of the records, 62.5% showed diffuse calcification, 36.3% tube-like calcification, and 1.2% concentric calcification. According to the extension of pulp calcification, the records showed: 80% partial calcification, 17.2% total coronal calcification and partial radicular calcification, and 2.8 % total coronal and radicular calcification. As for location, only 2.4% were on the coronal pulp, 5.2% on the radicular pulp and 92.4% on both radicular and coronal pulp. Regarding coronal discoloration, 54% were yellow and 2% gray. In relation to periradicular changes, 10% showed widened periodontal ligament space, 3.1% internal resorption, 10% external resorption, 10.4% periapical bone rarefaction. Since PC is a general term, it is important to classify it and correlate it to clinical and radiographic changes, in order to establish the correct diagnosis, treatment and prognosis of each case.

  20. Periodontal ligament, cementum, and alveolar bone in the oldest herbivorous tetrapods, and their evolutionary significance.

    Directory of Open Access Journals (Sweden)

    Aaron R H LeBlanc

    Full Text Available Tooth implantation provides important phylogenetic and functional information about the dentitions of amniotes. Traditionally, only mammals and crocodilians have been considered truly thecodont, because their tooth roots are coated in layers of cementum for anchorage of the periodontal ligament, which is in turn attached to the bone lining the alveolus, the alveolar bone. The histological properties and developmental origins of these three periodontal tissues have been studied extensively in mammals and crocodilians, but the identities of the periodontal tissues in other amniotes remain poorly studied. Early work on dental histology of basal amniotes concluded that most possess a simplified tooth attachment in which the tooth root is ankylosed to a pedestal composed of "bone of attachment", which is in turn fused to the jaw. More recent studies have concluded that stereotypically thecodont tissues are also present in non-mammalian, non-crocodilian amniotes, but these studies were limited to crown groups or secondarily aquatic reptiles. As the sister group to Amniota, and the first tetrapods to exhibit dental occlusion, diadectids are the ideal candidates for studies of dental evolution among terrestrial vertebrates because they can be used to test hypotheses of development and homology in deep time. Our study of Permo-Carboniferous diadectid tetrapod teeth and dental tissues reveal the presence of two types of cementum, periodontal ligament, and alveolar bone, and therefore the earliest record of true thecodonty in a tetrapod. These discoveries in a stem amniote allow us to hypothesize that the ability to produce the tissues that characterize thecodonty in mammals and crocodilians is very ancient and plesiomorphic for Amniota. Consequently, all other forms of tooth implantation in crown amniotes are derived arrangements of one or more of these periodontal tissues and not simply ankylosis of teeth to the jaw by plesiomorphically retaining "bone

  1. Allogeneic Transplantation of Periodontal Ligament-Derived Multipotent Mesenchymal Stromal Cell Sheets in Canine Critical-Size Supra-Alveolar Periodontal Defect Model.

    Science.gov (United States)

    Tsumanuma, Yuka; Iwata, Takanori; Kinoshita, Atsuhiro; Washio, Kaoru; Yoshida, Toshiyuki; Yamada, Azusa; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Izumi, Yuichi

    2016-01-01

    Periodontitis is a chronic inflammatory disease that induces the destruction of tooth-supporting tissues, followed by tooth loss. Although several approaches have been applied to periodontal regeneration, complete periodontal regeneration has not been accomplished. Tissue engineering using a combination of cells and scaffolds is considered to be a viable alternative strategy. We have shown that autologous transplantation of periodontal ligament-derived multipotent mesenchymal stromal cell (PDL-MSC) sheets regenerates periodontal tissue in canine models. However, the indications for autologous cell transplantation in clinical situations are limited. Therefore, this study evaluated the safety and efficacy of allogeneic transplantation of PDL-MSC sheets using a canine horizontal periodontal defect model. Canine PDL-MSCs were labeled with enhanced green fluorescent protein (EGFP) and were cultured on temperature-responsive dishes. Three-layered cell sheets were transplanted around denuded root surfaces either autologously or allogeneically. A mixture of β-tricalcium phosphate and collagen gel was placed on the bone defects. Eight weeks after transplantation, dogs were euthanized and subjected to microcomputed tomography and histological analyses. RNA and DNA were extracted from the paraffin sections to verify the presence of EGFP at the transplantation site. Inflammatory markers from peripheral blood sera were quantified using an enzyme-linked immunosorbent assay. Periodontal regeneration was observed in both the autologous and the allogeneic transplantation groups. The allogeneic transplantation group showed particularly significant regeneration of newly formed cementum, which is critical for the periodontal regeneration. Serum levels of inflammatory markers from peripheral blood sera showed little difference between the autologous and allogeneic groups. EGFP amplicons were detectable in the paraffin sections of the allogeneic group. These results suggest that

  2. Adipose-Derived-Stem-Cell-Seeded Fibrin Matrices for Periodontal Ligament Engineering: The Need for Dynamic Strain

    NARCIS (Netherlands)

    de Jong, Thijs; Oostendorp, Corien; Bakker, Astrid D.; van Kuppevelt, Toin H.; Smit, Theo H.

    2017-01-01

    Introduction: The periodontal ligament (PDL) connects the tooth to the alveolar bone. For PDL regeneration after tissue damage, we propose human adipose-derived stem cells (hASCs) embedded in fibrin. We showed previously that hASCs in fibrin extensively produce collagen, but in a non-functional,

  3. Substance P and Calcitonin gene-related peptide expression in human periodontal ligament after root canal preparation with Reciproc Blue, WaveOne Gold, XP EndoShaper and hand files.

    Science.gov (United States)

    Caviedes-Bucheli, J; Rios-Osorio, N; Rey-Rojas, M; Laguna-Rivero, F; Azuero-Holguin, M M; Diaz, L E; Curtidor, H; Castaneda-Ramirez, J J; Munoz, H R

    2018-05-17

    To quantify the Substance P (SP) and Calcitonin gene-related peptide (CGRP) expression in healthy human periodontal ligament from premolars after root canal preparation with Reciproc Blue, WaveOne Gold, XP EndoShaper and hand files. Fifty human periodontal ligament samples were obtained from healthy mandibular premolars where extraction was indicated for orthodontic reasons. Prior to extraction, 40 of these premolars were equally divided into four groups, and root canals were prepared using four different systems: Reciproc Blue, WaveOne Gold, XP EndoShaper, and a hand instrumentation technique. The remaining 10 healthy premolars were extracted without treatment and served as a negative control group. All periodontal ligament samples were processed, and SP and CGRP were measured by radioimmunoassay. The Kruskal-Wallis test was used to establish significant differences between groups and LSD post hoc comparisons were also performed. Greater SP and CGRP values were found in the hand instrumentation group, followed by the XP EndoShaper, WaveOne Gold and the Reciproc groups. The lower SP and CGRP values were for the healthy periodontal ligament group. The Kruskal-Wallis test revealed significant differences between groups (p 0.05). All the root canal preparation techniques tested increased SP and CGRP expression in human periodontal ligament, with hand files and XP EndoShaper instruments being associated with greater neuropeptide release compared to Reciproc Blue and WaveOne Gold files. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Dynamic Mechanical and Nanofibrous Topological Combinatory Cues Designed for Periodontal Ligament Engineering.

    Science.gov (United States)

    Kim, Joong-Hyun; Kang, Min Sil; Eltohamy, Mohamed; Kim, Tae-Hyun; Kim, Hae-Won

    2016-01-01

    Complete reconstruction of damaged periodontal pockets, particularly regeneration of periodontal ligament (PDL) has been a significant challenge in dentistry. Tissue engineering approach utilizing PDL stem cells and scaffolding matrices offers great opportunity to this, and applying physical and mechanical cues mimicking native tissue conditions are of special importance. Here we approach to regenerate periodontal tissues by engineering PDL cells supported on a nanofibrous scaffold under a mechanical-stressed condition. PDL stem cells isolated from rats were seeded on an electrospun polycaprolactone/gelatin directionally-oriented nanofiber membrane and dynamic mechanical stress was applied to the cell/nanofiber construct, providing nanotopological and mechanical combined cues. Cells recognized the nanofiber orientation, aligning in parallel, and the mechanical stress increased the cell alignment. Importantly, the cells cultured on the oriented nanofiber combined with the mechanical stress produced significantly stimulated PDL specific markers, including periostin and tenascin with simultaneous down-regulation of osteogenesis, demonstrating the roles of topological and mechanical cues in altering phenotypic change in PDL cells. Tissue compatibility of the tissue-engineered constructs was confirmed in rat subcutaneous sites. Furthermore, in vivo regeneration of PDL and alveolar bone tissues was examined under the rat premaxillary periodontal defect models. The cell/nanofiber constructs engineered under mechanical stress showed sound integration into tissue defects and the regenerated bone volume and area were significantly improved. This study provides an effective tissue engineering approach for periodontal regeneration-culturing PDL stem cells with combinatory cues of oriented nanotopology and dynamic mechanical stretch.

  5. LPS from P. gingivalis and Hypoxia Increases Oxidative Stress in Periodontal Ligament Fibroblasts and Contributes to Periodontitis

    Directory of Open Access Journals (Sweden)

    L. Gölz

    2014-01-01

    Full Text Available Oxidative stress is characterized by an accumulation of reactive oxygen species (ROS and plays a key role in the progression of inflammatory diseases. We hypothesize that hypoxic and inflammatory events induce oxidative stress in the periodontal ligament (PDL by activating NOX4. Human primary PDL fibroblasts were stimulated with lipopolysaccharide from Porphyromonas gingivalis (LPS-PG, a periodontal pathogen bacterium under normoxic and hypoxic conditions. By quantitative PCR, immunoblot, immunostaining, and a specific ROS assay we determined the amount of NOX4, ROS, and several redox systems. Healthy and inflamed periodontal tissues were collected to evaluate NOX4 and redox systems by immunohistochemistry. We found significantly increased NOX4 levels after hypoxic or inflammatory stimulation in PDL cells (P<0.001 which was even more pronounced after combination of the stimuli. This was accompanied by a significant upregulation of ROS and catalase (P<0.001. However, prolonged incubation with both stimuli induced a reduction of catalase indicating a collapse of the protective machinery favoring ROS increase and the progression of inflammatory oral diseases. Analysis of inflamed tissues confirmed our hypothesis. In conclusion, we demonstrated that the interplay of NOX4 and redox systems is crucial for ROS formation which plays a pivotal role during oral diseases.

  6. Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells

    International Nuclear Information System (INIS)

    Kado, T.; Hidaka, T.; Aita, H.; Endo, K.; Furuichi, Y.

    2012-01-01

    Highlights: ► Cell-adhesive molecules were covalently immobilized on a Ti surface. ► Immobilized cell-adhesive molecules maintained native function on the Ti surface. ► Immobilized collagen enhanced adhesion of periodontal ligament cells to the Ti. - Abstract: A simple chemical modification method was developed to immobilize cell-adhesive molecules on a titanium surface to improve its compatibility with human periodontal ligament cells (HPDLCs).The polished titanium disk was immersed in 1% (v/v) p-vinylbenzoic acid solution for 2 h to introduce carboxyl groups onto the surface. After rinsing with distilled deionized water, the titanium disk was dipped into 1.47% 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide solution containing 0.1 mg/ml Gly-Arg-Gly-Asp-Ser (GRGDS), human plasma fibronectin (pFN), or type I collagen from calf skin (Col) to covalently immobilize the cell-adhesive molecules on the titanium surface via formation of peptide bonds. X-ray photoelectron spectroscopy analyses revealed that cell-adhesive molecules were successfully immobilized on the titanium surfaces. The Col-immobilized titanium surface revealed higher values regarding nano rough characteristics than the as-polished titanium surface under scanning probe microscopy. The number of HPDLCs attached to both the pFN- and Col-immobilized titanium surfaces was twice that attached to the as-polished titanium surfaces. The cells were larger with the cellular processes that stretched to a greater extent on the pFN- and Col-immobilized titanium surfaces than on the as-polished titanium surface (p < 0.05). HPDLCs on the Col-immobilized titanium surfaces showed more extensive expression of vinculin at the tips of cell projections and more contiguously along the cell outline than on the as-polished, GRGDS-immobilized and pFN-immobilized titanium surfaces. It was concluded that cell-adhesive molecules successfully immobilized on the titanium surface and improved the compatibility of the surface

  7. The Relation of Endodontic-Periodontal Lesion and Therapy

    Directory of Open Access Journals (Sweden)

    Trijani Suwandi

    2013-07-01

    Full Text Available The correlation between endodontic-periodontal lesion has been documented well be researches. Endodontic lesion originates from pulp, while periodontal lesion originates from periodontal tissues. Anatomically they are connected by apical foramen, lateral canal and accessories, as well as dentin tubules. The correlation appeared as the endodontic defect can be from periodontal lesion, or a periodontal defect is from a pulp tissue. Together they can emerge and form a combination lesion. Endodontic infections have been highly correlated with deeper periodontal pockets and furcation involvement in mandibular, the causal relationship between the two pathoses has not yet been established. This consensus supports the influence of degenerated or inflamed pulp that can happen on the periodontium; but not all researchers agree about the effect of periodontal disease on the pulp. Conclusion: The mechanism of endo-perio lesion need to taken care in order to have appropriate diagnostic so that the right therapy would be able to keep the teeth in the oral cavity.

  8. Indirect pulp capping in primary molar using glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Murtia Metalita

    2014-12-01

    Full Text Available Background: Indirect pulp capping in primary teeth, however, is more rarely conducted than permanent teeth, since it thought to have low impact and most suggestion is for taking caries lesion aggressively on primary teeth. Purpose: The study was aimed to evaluate the subjective complaint, clinical symptom, and radiographic appearance of indirect pulp capping treatment using glass ionomers cements in primary molar. Methods: Sixteen children in range of age 6 to 8 years old, who visited Clinic of Pediatric Dentistry Universitas Airlangga Dental Hospital, Surabaya Indonesia, were the subject of study. They had one occlusal dental caries on one side of maxillary or mandibular primary molar with the diagnose of pulpitis reversible. The experimental group, had indirect pulp capping treatment with glass ionomer cements (GC Fuji VII®, while the control group, had indirect pulp capping treatment with calcium hydroxide (Metapaste. Each group was filled with GC Fuji IX® as permanent restoration. After one week, one month, and three months later, the observations were made on subjective complaint, clinical symptom, and radiographic appearance. Results: The results showed no subjective complaint such as pain or problem on mastication; no negative clinical symptoms such as pain on palpation, gingivitis or periodontitis, and abnormal tooth mobility; no negative radiographic appearance such as pathological apical radioluscency, internal or external resorbtion, and change of ligament periodontal widthafter the treatment. Conclusion: The study suggested that indirect pulp capping treatment using glass ionomer cement materials on primary teeth might be considered to be the treatment choice.Latar belakang: Indirect pulp capping pada gigi sulung lebih jarang dilakukan dibandingkan gigi permanen, karena dianggap memiliki dampak yang rendah dan sebagian besar menyarankan untuk mengambil lesi karies secara agresif pada gigi sulung. Tujuan: Penelitian ini bertujuan

  9. Gap-junction-mediated communication in human periodontal ligament cells.

    Science.gov (United States)

    Kato, R; Ishihara, Y; Kawanabe, N; Sumiyoshi, K; Yoshikawa, Y; Nakamura, M; Imai, Y; Yanagita, T; Fukushima, H; Kamioka, H; Takano-Yamamoto, T; Yamashiro, T

    2013-07-01

    Periodontal tissue homeostasis depends on a complex cellular network that conveys cell-cell communication. Gap junctions (GJs), one of the intercellular communication systems, are found between adjacent human periodontal ligament (hPDL) cells; however, the functional GJ coupling between hPDL cells has not yet been elucidated. In this study, we investigated functional gap-junction-mediated intercellular communication in isolated primary hPDL cells. SEM images indicated that the cells were in contact with each other via dendritic processes, and also showed high anti-connexin43 (Cx43) immunoreactivity on these processes. Gap-junctional intercellular communication (GJIC) among hPDL cells was assessed by fluorescence recovery after a photobleaching (FRAP) analysis, which exhibited dye coupling between hPDL cells, and was remarkably down-regulated when the cells were treated with a GJ blocker. Additionally, we examined GJs under hypoxic stress. The fluorescence recovery and expression levels of Cx43 decreased time-dependently under the hypoxic condition. Exposure to GJ inhibitor or hypoxia increased RANKL expression, and decreased OPG expression. This study shows that GJIC is responsible for hPDL cells and that its activity is reduced under hypoxia. This is consistent with the possible role of hPDL cells in regulating the biochemical reactions in response to changes in the hypoxic environment.

  10. Effects of hydroxyapatite nanostructure on channel surface of porcine acellular dermal matrix scaffold on cell viability and osteogenic differentiation of human periodontal ligament stem cells

    Directory of Open Access Journals (Sweden)

    Ge S

    2013-05-01

    Full Text Available Shaohua Ge,1 Ning Zhao,1 Lu Wang,1 Hong Liu,2 Pishan Yang11Shandong Provincial Key Laboratory of Oral Biomedicine, Department of Periodontology, Shandong University; 2State Key Laboratory of Crystal Materials, Center of Bio and Micro/Nano Functional Materials, Shandong University, Jinan, People's Republic of ChinaAbstract: A new nanostructured hydroxyapatite-coated porcine acellular dermal matrix (HAp-PADM was fabricated by a biomimetic mineralization method. Human periodontal ligament stem cells were seeded on HAp-PADM and the effects of this scaffold on cell shape, cytoskeleton organization, cell viability, and osteogenic differentiation were examined. Periodontal ligament stem cells cultured on HAp-PADM exhibited different cell shape when compared with those on pure PADM. Moreover, HAp-PADM promoted cell viability and alkaline phosphatase activity significantly. Based on quantitative real-time polymerase chain reaction, the expression of bone-related markers runt-related transcription factor 2 (Runx2, osteopontin (OPN, and osteocalcin (OCN upregulated in the HAp-PADM scaffold. The enhancement of osteogenic differentiation of periodontal ligament stem cells on the HAp-PADM scaffold was proposed based on the research results. The results of this study highlight the micro-nano, two-level, three-dimensional HAp-PADM composite as a promising scaffold for periodontal tissue engineering.Keywords: hydroxyapatite, scaffold, nanostructure, proliferation, differentiation, tissue engineering

  11. Electrospun Zein/Gelatin Scaffold-Enhanced Cell Attachment and Growth of Human Periodontal Ligament Stem Cells

    Directory of Open Access Journals (Sweden)

    Fanqiao Yang

    2017-10-01

    Full Text Available Periodontitis is a widespread dental disease affecting 10 to 15% of worldwide adult population, yet the current treatments are far from satisfactory. The human periodontal ligament stem cell is a promising potential seed cell population type in cell-based therapy and tissue regeneration, which require appropriate scaffold to provide a mimic extracellular matrix. Zein, a native protein derived from corn, has an excellent biodegradability, and therefore becomes a hotspot on research and application in the field of biomaterials. However, the high hydrophobicity of zein is unfavorable for cell adhesion and thus greatly limits its use. In this study, we fabricate co-electrospun zein/gelatin fiber scaffolds in order to take full advantages of the two natural materials and electrospun fiber structure. Zein and gelatin in four groups of different mass ratios (100:00, 100:20, 100:34, 100:50, and dissolved the mixtures in 1,1,1,3,3,3-hexafluoro-2-propanol, then produced membranes by electrospinning. The results showed that the scaffolds were smooth and homogeneous, as shown in scanning electron micrographs. The diameter of hybrid fibers was increased from 69 ± 22 nm to 950 ± 356 nm, with the proportion of gelatin increase. The cell affinity of zein/gelatin nanofibers was evaluated by using human periodontal ligament stem cells. The data showed that hydrophilicity and cytocompatibility of zein nanofibers were improved by blended gelatin. Taken together, our results indicated that the zein/gelatin co-electrospun fibers had sufficient mechanical properties, satisfied cytocompatibility, and can be utilized as biological scaffolds in the field of tissue regeneration.

  12. Periodontal ligament and intraosseous anesthetic injection techniques: alternatives to mandibular nerve blocks.

    Science.gov (United States)

    Moore, Paul A; Cuddy, Michael A; Cooke, Matthew R; Sokolowski, Chester J

    2011-09-01

    and Overview. The provision of mandibular anesthesia traditionally has relied on nerve block anesthetic techniques such as the Halsted, the Gow-Gates and the Akinosi-Vazirani methods. The authors present two alternative techniques to provide local anesthesia in mandibular teeth: the periodontal ligament (PDL) injection and the intraosseous (IO) injection. The authors also present indications for and complications associated with these techniques. The PDL injection and the IO injection are effective anesthetic techniques for managing nerve block failures and for providing localized anesthesia in the mandible. Dentists may find these techniques to be useful alternatives to nerve block anesthesia.

  13. Advanced glycation end products (AGEs) and their receptor (RAGE) induce apoptosis of periodontal ligament fibroblasts

    International Nuclear Information System (INIS)

    Li, D.X.; Deng, T.Z.; Lv, J.; Ke, J.

    2014-01-01

    Diabetics have an increased prevalence of periodontitis, and diabetes is one of the causative factors of severe periodontitis. Apoptosis is thought to be involved in this pathogenic relationship. The aim of this study was to investigate apoptosis in human periodontal ligament (PDL) fibroblasts induced by advanced glycation end products (AGEs) and their receptor (RAGE). We examined the roles of apoptosis, AGEs, and RAGE during periodontitis in diabetes mellitus using cultured PDL fibroblasts that were treated by AGE-modified bovine serum albumin (AGE-BSA), bovine serum albumin (BSA) alone, or given no treatment (control). Microscopy and real-time quantitative PCR indicated that PDL fibroblasts treated with AGE-BSA were deformed and expressed higher levels of RAGE and caspase 3. Cell viability assays and flow cytometry indicated that AGE-BSA reduced cell viability (69.80±5.50%, P<0.01) and increased apoptosis (11.31±1.73%, P<0.05). Hoechst 33258 staining and terminal-deoxynucleotidyl transferase-mediated nick-end labeling revealed that AGE-BSA significantly increased apoptosis of PDL fibroblasts. The results showed that the changes in PDL fibroblasts induced by AGE-BSA may explain how AGE-RAGE participates in and exacerbates periodontium destruction

  14. Advanced glycation end products (AGEs) and their receptor (RAGE) induce apoptosis of periodontal ligament fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.X.; Deng, T.Z.; Lv, J.; Ke, J. [Department of Stomatology, Air Force General Hospital PLA, Haidian District, Beijing (China)

    2014-09-19

    Diabetics have an increased prevalence of periodontitis, and diabetes is one of the causative factors of severe periodontitis. Apoptosis is thought to be involved in this pathogenic relationship. The aim of this study was to investigate apoptosis in human periodontal ligament (PDL) fibroblasts induced by advanced glycation end products (AGEs) and their receptor (RAGE). We examined the roles of apoptosis, AGEs, and RAGE during periodontitis in diabetes mellitus using cultured PDL fibroblasts that were treated by AGE-modified bovine serum albumin (AGE-BSA), bovine serum albumin (BSA) alone, or given no treatment (control). Microscopy and real-time quantitative PCR indicated that PDL fibroblasts treated with AGE-BSA were deformed and expressed higher levels of RAGE and caspase 3. Cell viability assays and flow cytometry indicated that AGE-BSA reduced cell viability (69.80±5.50%, P<0.01) and increased apoptosis (11.31±1.73%, P<0.05). Hoechst 33258 staining and terminal-deoxynucleotidyl transferase-mediated nick-end labeling revealed that AGE-BSA significantly increased apoptosis of PDL fibroblasts. The results showed that the changes in PDL fibroblasts induced by AGE-BSA may explain how AGE-RAGE participates in and exacerbates periodontium destruction.

  15. Vital Pulp Therapy of a Mature Molar with Concurrent Hyperplastic Pulpitis, Internal Root Resorption and Periradicular Periodontitis: A Case Report.

    Science.gov (United States)

    Asgary, Saeed; Kemal Çalışkan, Mehmet

    2015-01-01

    Vital pulp therapy (VPT) of permanent mature teeth is continuously ascertaining to be a more reliable endodontic treatment. The purpose of this case report was to describe successful VPT of a mature mandibular left first molar with concurrent hyperplastic pulpitis, internal root resorption and periradicular periodontitis in a 35-year-old male patient. After complete caries removal and access cavity preparation, the dental pulp was removed from the coronal third of the roots. To protect the remaining pulp, calcium-enriched mixture (CEM) cement was placed and adapted into the cavities; the tooth was then restored with amalgam. Six months after VPT, radiographic examination showed evidence of periradicular healing. Clinically, the tooth was functional without signs and symptoms of infection/inflammation. The successful outcome of this case suggests that diseased dental pulp (i.e. irreversible pulpitis) has the potential to heal after pulp protection with CEM biocement.

  16. Vital Pulp Therapy of a Mature Molar with Concurrent Hyperplastic Pulpitis, Internal Root Resorption and Periradicular Periodontitis: A Case Report

    Science.gov (United States)

    Asgary, Saeed; Kemal Çalışkan, Mehmet

    2015-01-01

    Vital pulp therapy (VPT) of permanent mature teeth is continuously ascertaining to be a more reliable endodontic treatment. The purpose of this case report was to describe successful VPT of a mature mandibular left first molar with concurrent hyperplastic pulpitis, internal root resorption and periradicular periodontitis in a 35-year-old male patient. After complete caries removal and access cavity preparation, the dental pulp was removed from the coronal third of the roots. To protect the remaining pulp, calcium-enriched mixture (CEM) cement was placed and adapted into the cavities; the tooth was then restored with amalgam. Six months after VPT, radiographic examination showed evidence of periradicular healing. Clinically, the tooth was functional without signs and symptoms of infection/inflammation. The successful outcome of this case suggests that diseased dental pulp (i.e. irreversible pulpitis) has the potential to heal after pulp protection with CEM biocement. PMID:26523145

  17. Electrospun fibrous scaffolds combined with nanoscale hydroxyapatite induce osteogenic differentiation of human periodontal ligament cells

    Directory of Open Access Journals (Sweden)

    Wu XN

    2014-08-01

    Full Text Available Xiaonan Wu,1 Leiying Miao,2,# Yingfang Yao,3 Wenlei Wu,1 Yu Liu,1 Xiaofeng Chen,1 Weibin Sun1,# 1Department of Periodontology, Hospital of Stomatology, Medical School of Nanjing University, Nanjing, People’s Republic of China; 2Department of Cariology and Endodontics, Hospital of Stomatology, Medical School of Nanjing University, Nanjing, People’s Republic of China; 3Eco-materials and Renewable Energy Research Center, Department of Materials Science and Engineering, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, People’s Republic of China #These authors contributed equally to this work Abstract: Periodontal repair is a complex process in which regeneration of alveolar bone is a vital component. The aim of this study was to develop a biodegradable scaffold with good biocompatibility and osteoinductive ability. Two types of composite fibrous scaffolds were produced by electrospinning, ie, type I collagen/poly(є-caprolactone (COL/PCL and type I collagen/poly(є-caprolactone/nanoscale hydroxyapatite (COL/PCL/nHA with an average fiber diameter of about 377 nm. After a simulated body fluid (SBF immersion test, the COL/PCL/nHA-SBF scaffold developed a rough surface because of the calcium phosphate deposited on the fibers, suggesting that the presence of nHA promoted the mineralization potential of the scaffold. Energy dispersive X-ray spectroscopy clearly showed the calcium and phosphorus content in the COL/PCL/nHA and COL/PCL/nHA-SBF scaffolds, confirming the findings of nHA and calcium phosphate precipitation on scanning electron micrographs. Water contact analysis revealed that nHA could improve the hydrophilic nature of the COL/PCL/nHA-SBF scaffold. The morphology of periodontal ligament cells cultured on COL/PCL-SBF and COL/PCL/nHA-SBF was evaluated by scanning electron microscopy. The results showed that cells adhered to either type of scaffold and were slightly spindle-shaped in the beginning, then

  18. Bone repair by periodontal ligament stem cell-seeded nanohydroxyapatite-chitosan scaffold

    Directory of Open Access Journals (Sweden)

    Ge S

    2012-10-01

    Full Text Available Shaohua Ge,1 Ning Zhao,1 Lu Wang,1 Meijiao Yu,1 Hong Liu,2 Aimei Song,1 Jing Huang,1 Guancong Wang,2 Pishan Yang11Key Laboratory of Oral Biomedicine of Shandong Province, Department of Periodontology, School of Stomatology, 2Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, ChinaBackground: A nanohydroxyapatite-coated chitosan scaffold has been developed in recent years, but the effect of this composite scaffold on the viability and differentiation of periodontal ligament stem cells (PDLSCs and bone repair is still unknown. This study explored the behavior of PDLSCs on a new nanohydroxyapatite-coated genipin-chitosan conjunction scaffold (HGCCS in vitro as compared with an uncoated genipin-chitosan framework, and evaluated the effect of PDLSC-seeded HGCCS on bone repair in vivo.Methods: Human PDLSCs were cultured and identified, seeded on a HGCCS and on a genipin-chitosan framework, and assessed by scanning electron microscopy, confocal laser scanning microscopy, MTT, alkaline phosphatase activity, and quantitative real-time polymerase chain reaction at different time intervals. Moreover, PDLSC-seeded scaffolds were used in a rat calvarial defect model, and new bone formation was assessed by hematoxylin and eosin staining at 12 weeks postoperatively.Results: PDLSCs were clonogenic and positive for STRO-1. They had the capacity to undergo osteogenic and adipogenic differentiation in vitro. When seeded on HGCCS, PDLSCs exhibited significantly greater viability, alkaline phosphatase activity, and upregulated the bone-related markers, bone sialoprotein, osteopontin, and osteocalcin to a greater extent compared with PDLSCs seeded on the genipin-chitosan framework. The use of PDLSC-seeded HGCCS promoted calvarial bone repair.Conclusion: This study demonstrates the potential of HGCCS combined with PDLSCs as a promising tool for bone regeneration.Keywords: periodontal ligament, stem

  19. Gold Nanoparticles Promote Proliferation of Human Periodontal Ligament Stem Cells and Have Limited Effects on Cells Differentiation

    Directory of Open Access Journals (Sweden)

    Chen Li

    2016-01-01

    Full Text Available Gold nanoparticles (AuNPs had been widely applied in the practice and advancement of chemistry, biology, and medicine due to facility of synthesis and versatility in surface functionalization. Recent studies had shown that AuNPs can be applied to cells, affecting cellular physiological processes such as proliferation and differentiation. In this study, four diameters of AuNPs (20, 40, 60, and 80 nm were cocultured with human periodontal ligament cells (hPDLCs at six different concentrations. The optimal size and concentration of AuNPs were selected to treat human periodontal ligament stem cells (hPDLSCs to evaluate proliferation. Moreover, the influence of AuNPs on multiple differentiation capacity of hPDLSCs was clarified. The results revealed that AuNPs (60 nm, 56 μM can effectively promote the proliferation of hPDLCs/hPDLSCs in vitro, slightly enhance osteoblastic differentiation, and have no effect on adipogenic differentiation. In addition, the expression of COL-1, Runx2, BSP, and OCN was upregulated in the presence of AuNPs (60 nm, 56 μM. These results indicated that AuNPs (60 nm, 56 μM can effectively promote the proliferation of hPDLCs/hPDLSCs and have no significant effect on the differentiation of hPDLSCs. These results provide an insight on the advantage of implementing of AuNPs on hPDLSCs culture and expose the influence of these materials on periodontal tissue engineering.

  20. The attachment of V79 and human periodontal ligament fibroblasts on periodontally involved root surfaces following treatment with EDTA, citric acid, or tetracycline HCL: an SEM in vitro study.

    Science.gov (United States)

    Chandra, R Viswa; Jagetia, Ganesh Chandra; Bhat, K Mahalinga

    2006-02-15

    The present in vitro study has been designed to establish and compare the effects of citric acid, EDTA, and tetracycline HCl on human periodontally diseased roots on the structure, attachment, and orientation of V79 (primary Chinese hamster lung fibroblasts) cells and human periodontal ligament fibroblasts (HPDL). Commercially available V79 cells and HPDL derived from healthy human third molars were used in this study. These fibroblasts were left in solution for seven days in order to attain confluence. Forty single-rooted teeth were obtained from patients diagnosed with periodontitis. The crown part was removed under constant irrigation and the root was split vertically into two equal halves, thus, yielding 80 specimens. Following scaling and root planing, the specimens were washed with phosphate buffered saline (PBS) and kept in 50 microg/ml gentamycin sulphate solution for 24 hours. The root pieces were then treated as follows: citric acid at pH 1, 24% EDTA, or with a 10% solution of tetracycline HCl and were then placed in V79 fibroblast cultures and HPDL cultures. The specimens were harvested after four weeks and were fixed in 2.5% glutaraldehyde in PBS before preparation for scanning electron microscopy (SEM). The behavior of V79 cells was similar to that of human periodontal ligament cells on root conditioned surfaces. V79 and HPDL showed a healthy morphology on root surfaces treated with citric acid and EDTA and a relatively unhealthy appearance on root surfaces treated with tetracycline HCl and distilled water (control group). The results suggest the use of citric acid and EDTA as root conditioning agents favorably affects the migration, attachment, and morphology of fibroblasts on human root surfaces, which may play a significant role in periodontal healing and regeneration.

  1. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    International Nuclear Information System (INIS)

    Sawada, Keigo; Takedachi, Masahide; Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki; Lee, Chun Man; Okura, Hanayuki; Matsuyama, Akifumi; Kitamura, Masahiro; Murakami, Shinya

    2015-01-01

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation

  2. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Keigo [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Takedachi, Masahide, E-mail: takedati@dent.osaka-u.ac.jp [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Lee, Chun Man [Medical Center for Translational Research, Osaka University Hospital, Osaka (Japan); Okura, Hanayuki; Matsuyama, Akifumi [Research on Disease Bioresources, Platform of Therapeutics for Rare Disease, National Institute of Biomedical Innovation, Osaka (Japan); Kitamura, Masahiro; Murakami, Shinya [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan)

    2015-08-14

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation.

  3. Potential Role of Dentin Sialoprotein by Inducing Dental Pulp Mesenchymal Stem Cell Differentiation and Mineralization for Dental Tissue Repair

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    2010-09-01

    Full Text Available Introduction: Dentin sialoprotein (DSP is a dentin extracellular matrix protein, a unique marker of dentinogenesis and plays a vital role in odontoblast differentiation and dentin mineralization. Recently, studies have shown that DSP induces differentiation and mineralization of periodontal ligament stem cells and dental papilla mesenchymal cells in vitro and rescues dentin deficiency and increases enamel mineralization in animal models.The hypothesis: DSP as a nature therapeutic agent stimulates dental tissue repair by inducing endogenous dental pulp mesenchymal stem/progenitor cells into odontoblast-like cells to synthesize and to secrete dentin extracellular matrix forming new tertiary dentin as well as to regenerate a functional dentin-pulp complex. As DSP is a nature protein, and clinical procedure for DSP therapy is easy and simple, application of DSP may provide a new avenue for dentists with additional option for the treatment of substantially damaged vital teeth.Evaluation of the hypothesis: Dental caries is the most common dental disease. Deep caries and pulp exposure have been treated by various restorative materials with limited success. One promising approach is dental pulp stem/progenitor-based therapies to regenerate dentin-pulp complex and restore its functions by DSP induction in vivo.

  4. Potential Role of Dentin Sialoprotein by Inducing Dental Pulp Mesenchymal Stem Cell Differentiation and Mineralization for Dental Tissue Repair.

    Science.gov (United States)

    Yuan, Guo-Hua; Yang, Guo-Bin; Wu, Li-An; Chen, Zhi; Chen, Shuo

    2010-01-01

    INTRODUCTION: Dentin sialoprotein (DSP) is a dentin extracellular matrix protein, a unique marker of dentinogenesis and plays a vital role in odontoblast differentiation and dentin mineralization. Recently, studies have shown that DSP induces differentiation and mineralization of periodontal ligament stem cells and dental papilla mesenchymal cells in vitro and rescues dentin deficiency and increases enamel mineralization in animal models. THE HYPOTHESIS: DSP as a nature therapeutic agent stimulates dental tissue repair by inducing endogenous dental pulp mesenchymal stem/progenitor cells into odontoblast-like cells to synthesize and to secrete dentin extracellular matrix forming new tertiary dentin as well as to regenerate a functional dentin-pulp complex. As DSP is a nature protein, and clinical procedure for DSP therapy is easy and simple, application of DSP may provide a new avenue for dentists with additional option for the treatment of substantially damaged vital teeth. EVALUATION OF THE HYPOTHESIS: Dental caries is the most common dental disease. Deep caries and pulp exposure have been treated by various restorative materials with limited success. One promising approach is dental pulp stem/progenitor-based therapies to regenerate dentin-pulp complex and restore its functions by DSP induction in vivo.

  5. [Experimental study on human periodontal ligament cells transfected with human amelogenin gene].

    Science.gov (United States)

    Yu, Guang; Shu, Rong; Sun, Ying; Cheng, Lan; Song, Zhong-Chen; Zhang, Xiu-Li

    2008-02-01

    To construct the recombinant lentiviral vector of human amelogenin gene, infect human periodontal ligament cells with the recombinant lentivirus, and evaluate the feasibility of applying modified PDLCs as seeds for a further periodontal reconstruction. The mature peptide of hAm cDNA was cloned and linked into the vector plasmid, the recombinant plasmid FUAmW was confirmed by double enzyme digestion and sequence analysis. Recombinant lentivirus was prepared from 293T cells by polytheylenimine (PEI)-mediated transient cotransfection. The hPDLCs and 293T cells were infected with the generated lentivirus. The infection efficiency was analysed by detection of green fluorescence protein (GFP) with fluorescent microscope and flow cytometer 72 hours later. The expression of hAm gene was detected by reverse transcription polymerase chain reaction (RT-PCR). The sequence of inserted fragment in recombinant plasmid was identical to the hAm sequence reported in Genebank. Green fluorescence was visible under fluorescent microscope, FCM assay showed that positive percentage was 69.46% and 33.99% in 293T and hPDLCs, respectively. The targeted gene was obtained in the experimental groups by RT-PCR. The recombinan lentiviral vector of hAm gene is constructed successfully and it could be transfected into cultured hPDLCs. hAm gene and seed cells may be used for further study in the fields periodontal tissue engineering. Supported by National Natural Science Foundation of China (Grant No. 30672315).

  6. Pulpal changes associated with advanced periodontal disease: A histopathological study.

    Science.gov (United States)

    Gautam, Siddharth; Galgali, Sushama R; Sheethal, H S; Priya, N S

    2017-01-01

    Over the past century, the dental literature has consistently reflected a controversy related to the effect of periodontal disease on the dental pulp. Nonetheless, practitioners are of the opinion that teeth having deep periodontal pockets show variable pulpal response, which may necessitate root canal treatment. Thus, this study aimed to evaluate the changes in pulp due to advanced periodontal disease. Forty caries-free teeth affected with severe periodontitis were collected from patients aged between 18 and 55 years. The collected teeth were stored in formalin for 24 h and were then decalcified and examined histologically after staining with hematoxylin and eosin to note the changes that occurred in pulp. Pulpal calcification (52.62%) and partial necrosis of pulp (52.62%) were found to be the most common findings. Inflammation, which was found in 47.38% of the cases, ranged from mild to severe in most sections and was always chronic. Pulp with complete necrosis was seen in 26.32% of cases. Fibrosis and pulpal edema were seen in 36.84% of cases. In the presence of moderate to severe chronic periodontitis, degenerative changes such as inflammation, fibrosis, edema, calcification and necrosis were observed to variable degree.

  7. Effect of mineral trioxide aggregate and formocresol pulpotomy on ...

    African Journals Online (AJOL)

    2014-09-16

    Sep 16, 2014 ... ... and Methods: Fifty primary molars, with deep carious lesion that exposed a vital but asymptomatic pulp, .... and/or periapical bone destruction or pulp stones. ... following: A normal periodontal ligament space, no furcation.

  8. ET-1 Promotes Differentiation of Periodontal Ligament Stem Cells into Osteoblasts through ETR, MAPK, and Wnt/β-Catenin Signaling Pathways under Inflammatory Microenvironment

    Science.gov (United States)

    Liang, Li; Zhou, Wei; Yang, Nan; Yu, Jifeng; Liu, Hongchen

    2016-01-01

    Periodontitis is a kind of chronic inflammatory disease that affects the tooth-supporting tissues. ET-1 is related to periodontitis and involved in the regulation of cytokines, but the mechanisms remain unclear. The aim of this study is to investigate how ET-1 affects proinflammatory cytokine expression and differentiation in human periodontal ligament stem cells (PDLSCs). PDLSCs were isolated from the periodontal ligament tissues of periodontitis patients and then treated with ET-1 (1, 10, or 100 nM) for 12 h, 24 h, or 72 h. The osteogenic potential of PDLSCs was tested using ALP staining. TNF-α, IL-1β, and IL-6 levels were evaluated by ELISA and western blot. Runx2, OCN, and COL1 mRNA and western levels were detected by RT-PCR and western blot, respectively. To examine the signaling pathways and molecular mechanisms involved in ET-1-mediated cytokine expression and osteogenic differentiation, ETR pathway, MAPKs pathway, Wnt/β-catenin pathway, and Wnt/Ca2+ pathway were detected by RT-PCR and western blot, respectively. ET-1 promoted differentiation of PDLSCs into osteoblasts by increasing secretion of TNF-α, IL-1β, and IL-6 in a dose- and time-dependent manner. ET-1 also increased expression of Runx2, OCN, and COL1. ET-1 promotes differentiation of PDLSCs into osteoblasts through ETR, MAPK, and Wnt/β-catenin signaling pathways under inflammatory microenvironment. PMID:26884650

  9. ET-1 Promotes Differentiation of Periodontal Ligament Stem Cells into Osteoblasts through ETR, MAPK, and Wnt/β-Catenin Signaling Pathways under Inflammatory Microenvironment

    Directory of Open Access Journals (Sweden)

    Li Liang

    2016-01-01

    Full Text Available Periodontitis is a kind of chronic inflammatory disease that affects the tooth-supporting tissues. ET-1 is related to periodontitis and involved in the regulation of cytokines, but the mechanisms remain unclear. The aim of this study is to investigate how ET-1 affects proinflammatory cytokine expression and differentiation in human periodontal ligament stem cells (PDLSCs. PDLSCs were isolated from the periodontal ligament tissues of periodontitis patients and then treated with ET-1 (1, 10, or 100 nM for 12 h, 24 h, or 72 h. The osteogenic potential of PDLSCs was tested using ALP staining. TNF-α, IL-1β, and IL-6 levels were evaluated by ELISA and western blot. Runx2, OCN, and COL1 mRNA and western levels were detected by RT-PCR and western blot, respectively. To examine the signaling pathways and molecular mechanisms involved in ET-1-mediated cytokine expression and osteogenic differentiation, ETR pathway, MAPKs pathway, Wnt/β-catenin pathway, and Wnt/Ca2+ pathway were detected by RT-PCR and western blot, respectively. ET-1 promoted differentiation of PDLSCs into osteoblasts by increasing secretion of TNF-α, IL-1β, and IL-6 in a dose- and time-dependent manner. ET-1 also increased expression of Runx2, OCN, and COL1. ET-1 promotes differentiation of PDLSCs into osteoblasts through ETR, MAPK, and Wnt/β-catenin signaling pathways under inflammatory microenvironment.

  10. A clinically translatable concept for periodontal ligament engineering around dental implants : The characterization of patient-friendly materials with optimal biomechanical properties

    NARCIS (Netherlands)

    de Jong, T.

    2017-01-01

    The periodontal ligament (PDL) connects the tooth to the alveolar bone. It functions as a shock absorber, forms a barrier against pathogens, and provides sensory information. These capacities are lost when the PDL is damaged, or when teeth are lost. Replacing missing teeth with dental implants is

  11. Vertical periodontal ligament distraction--a new method for aligning ankylosed and displaced canines.

    Science.gov (United States)

    Wilmes, Benedict; Drescher, Dieter

    2009-05-01

    In the course of a clinical pilot study we tested the vertical periodontal ligament (V-PDL) distraction as a means of aligning ankylosed upper canines. The objective of this study was to analyze the appropriateness und effectiveness of this method. The ankylosed upper canines of five female patients aged between 16 und 19 years were surgically exposed, luxated, and after a latency period of 5 to 7 days, distracted at a rate of 0.5 mm per day. The installed distractors were borne by the periodontal-mucosa, the periodontal-mucosa and the bone, or by the bone exclusively. We evaluated the distraction distance and time and degree of hard and soft tissue generation present in the region surrounding the distracted teeth. All canines were aligned after a mean distraction period of 43.2 days (+/- 3.6 days). The mean distraction distance was 10.8 mm. Three canines had defects at the cemento-enamel junction, and one canine had to be extracted due to a large defect at the root. Vertical PDL distraction is a minimally-invasive therapy to align ankylosed impacted canines. Even if the long-term prognosis of distracted canines with defects is uncertain, the patient benefits from the vertical PDL distraction because both hard and soft tissues are generated in the vicinity of the distracted canine.

  12. Dental Investigations: Efficiency of Nonsurgical Periodontal Therapy in Moderate Chronic Periodontitis

    OpenAIRE

    Mlachkova Antoaneta M.; Popova Christina L.

    2014-01-01

    INTRODUCTION: Chronic periodontitis is defined as an inflammatory disease of the supporting tissues of teeth caused by microorganisms in the dental biofilm, resulting in progressive destruction of the periodontal ligament and alveolar bone with pocket formation and gingival recession. Treatment of chronic periodontitis aims at arresting the inflammation and stopping the loss of attachment by removal and control of the supra- and subgingival biofilm and establishing a local environment and mic...

  13. Acute changes in intra-alveolar tooth position and local clearance of 125I from the periodontal ligament

    International Nuclear Information System (INIS)

    Edwall, B.; Berg, J.O.; Gazelius, B.; Edwall, L.; Aars, H.

    1987-01-01

    Changes in intra-alveolar tooth position and local 125 I clearance from the periodontal ligament (PDL) were monitored simultaneously in cats. Axial tooth movements, reflecting periodontal ligament volume changes, were measured with an ultrasonic transit time technique. Local blood flow changes in the PDL were studied indirectly by measuring the local clearance of 125 I. Stimulation of the cervical sympathetic trunk caused an intrusive movement of the tooth with a concomitant reduction of the 125 I-clearance. Infusion of noradrenaline induced a similar respone. Stimulation of the inferior alveolar nerve during systemic treatment with phentolamine caused an extrusive movement of the tooth with a concomitant increase in the clearance of the tracer from the PDL. Intra-arterial infusion of the vasodilator substance P mimicked that response. Fization of the tooth to the jaw bone, thus preventing an intrusive movement, did not change the reductions in clearance seen on sympathetic stimulation, indicating that this blood flow reduction was not dependent on tooth movement. A qualitative relation between PDL blood flow (as measured by local 125 I clearance) and PDL volume (as measured by tooth position) in shown. The two variables measured are suggested to reflect two aspects of blood flow in the PDL

  14. Dental pulp stem cells

    DEFF Research Database (Denmark)

    Ashri, N. Y.; Ajlan, S. A.; Aldahmash, Abdullah M.

    2015-01-01

    scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from...... an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors....

  15. Mesenchymal Stem Cells Derived from Dental Pulp: A Review

    Directory of Open Access Journals (Sweden)

    Edgar Ledesma-Martínez

    2016-01-01

    Full Text Available The mesenchymal stem cells of dental pulp (DPSCs were isolated and characterized for the first time more than a decade ago as highly clonogenic cells that were able to generate densely calcified colonies. Now, DPSCs are considered to have potential as stem cell source for orthopedic and oral maxillofacial reconstruction, and it has been suggested that they may have applications beyond the scope of the stomatognathic system. To date, most studies have shown that, regardless of their origin in third molars, incisors, or exfoliated deciduous teeth, DPSCs can generate mineralized tissue, an extracellular matrix and structures type dentin, periodontal ligament, and dental pulp, as well as other structures. Different groups worldwide have designed and evaluated new efficient protocols for the isolation, expansion, and maintenance of clinically safe human DPSCs in sufficient numbers for various therapeutics protocols and have discussed the most appropriate route of administration, the possible contraindications to their clinical use, and the parameters to be considered for monitoring their clinical efficacy and proper biological source. At present, DPSC-based therapy is promising but because most of the available evidence was obtained using nonhuman xenotransplants, it is not a mature technology.

  16. Porphyromonas gingivalis GroEL induces osteoclastogenesis of periodontal ligament cells and enhances alveolar bone resorption in rats.

    Directory of Open Access Journals (Sweden)

    Feng-Yen Lin

    Full Text Available Porphyromonas gingivalis is a major periodontal pathogen that contains a variety of virulence factors. The antibody titer to P. gingivalis GroEL, a homologue of HSP60, is significantly higher in periodontitis patients than in healthy control subjects, suggesting that P. gingivalis GroEL is a potential stimulator of periodontal disease. However, the specific role of GroEL in periodontal disease remains unclear. Here, we investigated the effect of P. gingivalis GroEL on human periodontal ligament (PDL cells in vitro, as well as its effect on alveolar bone resorption in rats in vivo. First, we found that stimulation of PDL cells with recombinant GroEL increased the secretion of the bone resorption-associated cytokines interleukin (IL-6 and IL-8, potentially via NF-κB activation. Furthermore, GroEL could effectively stimulate PDL cell migration, possibly through activation of integrin α1 and α2 mRNA expression as well as cytoskeletal reorganization. Additionally, GroEL may be involved in osteoclastogenesis via receptor activator of nuclear factor κ-B ligand (RANKL activation and alkaline phosphatase (ALP mRNA inhibition in PDL cells. Finally, we inoculated GroEL into rat gingiva, and the results of microcomputed tomography (micro-CT and histomorphometric assays indicated that the administration of GroEL significantly increased inflammation and bone loss. In conclusion, P. gingivalis GroEL may act as a potent virulence factor, contributing to osteoclastogenesis of PDL cells and resulting in periodontal disease with alveolar bone resorption.

  17. Periodontal ligament stem/progenitor cells with protein-releasing scaffolds for cementum formation and integration on dentin surface.

    Science.gov (United States)

    Cho, Hankyu; Tarafder, Solaiman; Fogge, Michael; Kao, Kristy; Lee, Chang H

    2016-11-01

    Purpose/Aim: Cementogenesis is a critical step in periodontal tissue regeneration given the essential role of cementum in anchoring teeth to the alveolar bone. This study is designed to achieve integrated cementum formation on the root surfaces of human teeth using growth factor-releasing scaffolds with periodontal ligament stem/progenitor cells (PDLSCs). Human PDLSCs were sorted by CD146 expression, and characterized using CFU-F assay and induced multi-lineage differentiation. Polycaprolactone scaffolds were fabricated using 3D printing, embedded with poly(lactic-co-glycolic acids) (PLGA) microspheres encapsulating connective tissue growth factor (CTGF), bone morphogenetic protein-2 (BMP-2), or bone morphogenetic protein-7 (BMP-7). After removing cementum on human tooth roots, PDLSC-seeded scaffolds were placed on the exposed dentin surface. After 6-week culture with cementogenic/osteogenic medium, cementum formation and integration were evaluated by histomorphometric analysis, immunofluorescence, and qRT-PCR. Periodontal ligament (PDL) cells sorted by CD146 and single-cell clones show a superior clonogenecity and multipotency as compared with heterogeneous populations. After 6 weeks, all the growth factor-delivered groups showed resurfacing of dentin with a newly formed cementum-like layer as compared with control. BMP-2 and BMP-7 showed de novo formation of tissue layers significantly thicker than all the other groups, whereas CTGF and BMP-7 resulted in significantly improved integration on the dentin surface. The de novo mineralized tissue layer seen in BMP-7-treated samples expressed cementum matrix protein 1 (CEMP1). Consistently, BMP-7 showed a significant increase in CEMP1 mRNA expression. Our findings represent important progress in stem cell-based cementum regeneration as an essential part of periodontium regeneration.

  18. [Discussion on combined periodontic-endodontic lesion type].

    Science.gov (United States)

    Wang, Kai; Zhou, Li

    2008-02-01

    Combined the elaboration on periodontic-endodontic lesion in the textbook Periodontics with the deficiencies existed in the clinical and teaching work and demonstrated the understanding on the type of the combined periodontic-endodontic lesion, and suggested the viewpoint of no sub-type of combined periodontic-endodontic lesion. Only regard the type of pulp disease that induced by periodontal disease as genuine combined periodontic-endodontic lesion.

  19. An investigation of dentinal fluid flow in dental pulp during food mastication: simulation of fluid-structure interaction.

    Science.gov (United States)

    Su, Kuo-Chih; Chuang, Shu-Fen; Ng, Eddie Yin-Kwee; Chang, Chih-Han

    2014-06-01

    This study uses fluid-structure interaction (FSI) simulation to investigate the relationship between the dentinal fluid flow in the dental pulp of a tooth and the elastic modulus of masticated food particles and to investigate the effects of chewing rate on fluid flow in the dental pulp. Three-dimensional simulation models of a premolar tooth (enamel, dentine, pulp, periodontal ligament, cortical bone, and cancellous bone) and food particle were created. Food particles with elastic modulus of 2,000 and 10,000 MPa were used, respectively. The external displacement loading (5 μm) was gradually directed to the food particle surface for 1 and 0.1 s, respectively, to simulate the chewing of food particles. The displacement and stress on tooth structure and fluid flow in the dental pulp were selected as evaluation indices. The results show that masticating food with a high elastic modulus results in high stress and deformation in the tooth structure, causing faster dentinal fluid flow in the pulp in comparison with that obtained with soft food. In addition, fast chewing of hard food particles can induce faster fluid flow in the pulp, which may result in dental pain. FSI analysis is shown to be a useful tool for investigating dental biomechanics during food mastication. FSI simulation can be used to predict intrapulpal fluid flow in dental pulp; this information may provide the clinician with important concept in dental biomechanics during food mastication.

  20. Bilayered construct for simultaneous regeneration of alveolar bone and periodontal ligament.

    Science.gov (United States)

    Nivedhitha Sundaram, M; Sowmya, S; Deepthi, S; Bumgardener, Joel D; Jayakumar, R

    2016-05-01

    Periodontitis is an inflammatory disease that causes destruction of tooth-supporting tissues and if left untreated leads to tooth loss. Current treatments have shown limited potential for simultaneous regeneration of the tooth-supporting tissues. To recreate the complex architecture of the periodontium, we developed a bilayered construct consisting of poly(caprolactone) (PCL) multiscale electrospun membrane (to mimic and regenerate periodontal ligament, PDL) and a chitosan/2wt % CaSO4 scaffold (to mimic and regenerate alveolar bone). Scanning electron microscopy results showed the porous nature of the scaffold and formation of beadless electrospun multiscale fibers. The fiber diameter of microfiber and nanofibers was in the range of 10 ± 3 µm and 377 ± 3 nm, respectively. The bilayered construct showed better protein adsorption compared to the control. Osteoblastic differentiation of human dental follicle stem cells (hDFCs) on chitosan/2wt % CaSO4 scaffold showed maximum alkaline phosphatase at seventh day followed by a decline thereafter when compared to chitosan control scaffold. Fibroblastic differentiation of hDFCs was confirmed by the expression of PLAP-1 and COL-1 proteins which were more prominent on PCL multiscale membrane in comparison to control membranes. Overall these results show that the developed bilayered construct might serve as a good candidate for the simultaneous regeneration of the alveolar bone and PDL. © 2015 Wiley Periodicals, Inc.

  1. Gram-negative periodontal bacteria induce the activation of Toll-like receptors 2 and 4, and cytokine production in human periodontal ligament cells.

    Science.gov (United States)

    Sun, Ying; Shu, Rong; Li, Chao-Lun; Zhang, Ming-Zhu

    2010-10-01

    Periodontitis is a bacterially induced chronic inflammatory disease. Toll-like receptors (TLRs), which could recognize microbial pathogens, are important components in the innate and adaptive immune systems. Both qualitatively and quantitatively distinct immune responses might result from different bacteria stimulation and the triggering of different TLRs. This study explores the interaction of Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans) with TLR2 and TLR4. We studied the gene expression changes of TLR2 and TLR4 and cytokine production (interleukin-1β, -6, -8, -10, and tumor necrosis factor-alpha) in human periodontal ligament cells (HPDLCs) stimulated with heat-killed bacteria or P. gingivalis lipopolysaccharide (LPS) in the presence or absence of monoclonal antibodies to TLR2 or TLR4 (anti-TLR2/4 mAb). Both test bacteria and 10 microg/ml P. gingivalis LPS treatment increased the gene expression of TLR2 and TLR4 and cytokine production in HPDLCs. In addition, these upregulations could be blocked by anti-TLR2/4 mAb. However, the expression of TLR4 mRNA in HPDLCs stimulated with 1 microg/ml P. gingivalis LPS was not increased. No differences were found in the cytokine production caused by 1 microg/ml P. gingivalis LPS treatment in the presence or absence of anti-TLR4 mAb. These patterns of gene expression and cytokine production indicate that Gram-negative periodontal bacteria or their LPS might play a role in triggering TLR2 and/or TLR4, and be of importance for the immune responses in periodontitis.

  2. Combination of platelet-rich plasma within periodontal ligament stem cell sheets enhances cell differentiation and matrix production.

    Science.gov (United States)

    Xu, Qiu; Li, Bei; Yuan, Lin; Dong, Zhiwei; Zhang, Hao; Wang, Han; Sun, Jin; Ge, Song; Jin, Yan

    2017-03-01

    The longstanding goal of periodontal therapy is to regenerate periodontal tissues. Although platelet-rich plasma (PRP) has been gaining increasing popularity for use in the orofacial region, whether PRP is useful for periodontal regeneration is still unknown. The purpose of this study was to determine whether a mixture of periodontal ligament stem cell (PDLSC) sheets and PRP promoted bone regeneration, one of the most important measurement indices of periodontal tissue regenerative capability in vitro and in vivo. In this study, we evaluated the effects of different doses of PRP on the differentiation of human PDLSCs. Then cell sheet formation, extracellular matrix deposition and osteogenic gene expression in response to different doses of PRP treatment during sheet grafting was investigated. Furthermore, we implanted PDLSC sheets treated with 1% PRP subcutaneously into immunocompromised mice to evaluate their bone-regenerative capability. The results revealed that 1% PRP significantly enhanced the osteogenic differentiation of PDLSCs. Based on the production of extracellular matrix proteins, the results of scanning electron microscopy and the expression of the osteogenic genes ALP, Runx2, Col-1 and OCN, the provision of 1% PRP for PDLSC sheets was the most effective PRP administration mode for cell sheet formation. The results of in vivo transplantation showed that 1% PRP-mediated PDLSC sheets exhibited better periodontal tissue regenerative capability than those obtained without PRP intervention. These data suggest that a suitable concentration of PRP stimulation may enhance extracellular matrix production and positively affect cell behaviour in PDLSC sheets. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Influence of root embedment material and periodontal ligament simulation on fracture resistance tests Influência do material de inclusão e da simulação do ligamento periodontal nos ensaios de resistência à fratura

    Directory of Open Access Journals (Sweden)

    Carlos José Soares

    2005-03-01

    Full Text Available The aim of this study was to evaluate the influence of the embedment material and periodontal ligament simulation on fracture resistance of bovine teeth. Eighty bovine incisor teeth were randomized into 8 groups (n = 10, embedded in acrylic or polystyrene resin using 4 types of periodontal ligament simulation: 1 - absence of the ligament; 2 - polyether impression material; 3 - polysulfide impression material; 4 - polyurethane elastomeric material. The specimens were stored at 37°C and 100% humidity for 24 hours. Specimens were submitted to tangential load on the palatal surface at 0.5 mm/minute crosshead speed until fracture. The fracture modes were analyzed as follows: 1 - coronal fracture; 2 - cemento-enamel junction fracture; 3 - partial root fracture; 4 - total root fracture. Statistical analyses by two-way ANOVA and Tukey's test were applied (p O objetivo deste estudo foi avaliar a influência do material de inclusão e da simulação de ligamento periodontal na resistência à fratura de dentes bovinos. Oitenta incisivos bovinos foram divididos em 8 grupos (n = 10 e, então, incluídos em cilindros com dois materiais, resina acrílica ou resina de poliestireno, usando-se quatro tipos de simulação do ligamento periodontal: 1 - ausência do ligamento; 2 - material de moldagem à base de poliéter; 3 - material de moldagem à base de polissulfeto; e 4 - material elastomérico à base de poliuretano. As amostras foram armazenadas em 100% de umidade a 37°C por 24 horas e então submetidas a carregamento tangencial na superfície palatina com velocidade de 0,5 mm/minuto até a fratura. Os padrões de fratura foram analisados de acordo com: 1 - fraturas coronais; 2 - fratura da junção esmalte-cemento; 3 - fratura parcial da raiz; 4 - fratura radicular total. A análise estatística empregou análise de variância fatorial e teste de Tukey (p < 0,05. Os resultados mostram que o método de inclusão e a simulação do ligamento periodontal

  4. Cytotoxicity of newly developed pozzolan cement and other root-end filling materials on human periodontal ligament cell

    Directory of Open Access Journals (Sweden)

    Minju Song

    2014-02-01

    Full Text Available Objectives The purpose of this study was to evaluate in vitro cytotoxicity of the pozzolan cement and other root-end filling materials using human periodontal ligament cell. Materials and Methods Endocem (Maruchi, white ProRoot MTA (Dentsply, white Angelus MTA (Angelus, and Super EBA (Bosworth Co. were tested after set completely in an incubator at 37℃ for 7 days, Endocem was tested in two ways: 1 immediately after mixing (fresh specimens and 2 after setting completely like other experimental materials. The methods for assessment included light microscopic examination, cell counting and WST-1 assay on human periodontal ligament cell. Results In the results of microscopic examination and cell counting, Super EBA showed significantly lower viable cell than any other groups (p < 0.05. As the results of WST-1 assay, compared with untreated control group, there was no significant cell viability of the Endocem group. However, the fresh mixed Endocem group had significantly less cell viability. The cells exposed to ProRoot MTA and Angelus MTA showed the highest viability, whereas the cells exposed to Super EBA displayed the lowest viability (p < 0.05. Conclusions The cytotoxicity of the pozzolan cement (Endocem was comparable with ProRoot MTA and Angelus MTA. Considering the difficult manipulation and long setting time of ProRoot MTA and Angelus MTA, Endocem can be used as the alternative of retrofilling material.

  5. Osteogenic differentiation of dental pulp stem cells under the influence of three different materials

    DEFF Research Database (Denmark)

    Ajlan, S. A.; Ashri, N. Y.; Aldahmash, Abdullah M.

    2015-01-01

    Background: Regeneration of periodontal tissues is a major goal of periodontal therapy. Dental pulp stem cells (DPSCs) show mesenchymal cell properties with the potential for dental tissue engineering. Enamel matrix derivative (EMD) and platelet-derived growth factor (PDGF) are examples of materi......Background: Regeneration of periodontal tissues is a major goal of periodontal therapy. Dental pulp stem cells (DPSCs) show mesenchymal cell properties with the potential for dental tissue engineering. Enamel matrix derivative (EMD) and platelet-derived growth factor (PDGF) are examples...

  6. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice.

    Science.gov (United States)

    Hu, Jingchao; Cao, Yu; Xie, Yilin; Wang, Hua; Fan, Zhipeng; Wang, Jinsong; Zhang, Chunmei; Wang, Jinsong; Wu, Chu-Tse; Wang, Songlin

    2016-09-09

    Periodontitis, one of the most prevalent infectious diseases in humans, results in the destruction of tooth-supporting tissues. The purpose of the present study is to evaluate the effect of cell injection and cell sheet transplantation on periodontal regeneration in a swine model. In the present study, human dental pulp stem cells (hDPSCs) were transplanted into a swine model for periodontal regeneration. Twelve miniature pigs were used to generate periodontitis with bone defects of 5 mm in width, 7 mm in length, and 3 mm in depth. hDPSCs were obtained for bone regeneration using cell injection or cell sheet transplantation. After 12 weeks, clinical, radiological, and histological assessments of regenerated periodontal tissues were performed to compare periodontal regeneration treated with xenogeneic cell injection and cell sheet implantation. Our study showed that translating hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. After 12 weeks, both the hDPSC sheet treatment and hDPSC injection significantly improved periodontal tissue healing clinically in comparison with the control group. The volume of regenerative bone in the hDPSC sheet group (52.7 ± 4.1 mm(3)) was significantly larger than in the hDPSC injection group (32.4 ± 5.1 mm(3)) (P cell sheet transplantation significantly regenerated periodontal bone in swine. The hDPSC sheet had more bone regeneration capacity compared with hDPSC injection.

  7. Effect of micro-nano-hybrid structured hydroxyapatite bioceramics on osteogenic and cementogenic differentiation of human periodontal ligament stem cell via Wnt signaling pathway

    Directory of Open Access Journals (Sweden)

    Mao LX

    2015-11-01

    Full Text Available Lixia Mao,1,* Jiaqiang Liu,1,* Jinglei Zhao,1 Jiang Chang,2 Lunguo Xia,1 Lingyong Jiang,1 Xiuhui Wang,2 Kaili Lin,2,3 Bing Fang11Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Top Priority Clinical Medical Center of Shanghai Municipal Commission of Health and Family Planning, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, 2State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 3Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, People’s Republic of China*These authors contributed equally to this workAbstract: The surface structure of bioceramic scaffolds is crucial for its bioactivity and osteoinductive ability, and in recent years, human periodontal ligament stem cells have been certified to possess high osteogenic and cementogenic differential ability. In the present study, hydroxyapatite (HA bioceramics with micro-nano-hybrid surface (mnHA [the hybrid of nanorods and microrods] were fabricated via hydrothermal reaction of the α-tricalcium phosphate granules as precursors in aqueous solution, and the effects of mnHA on the attachment, proliferation, osteogenic and cementogenic differentiations of human periodontal ligament stem cells as well as the related mechanisms were systematically investigated. The results showed that mnHA bioceramics could promote cell adhesion, proliferation, alkaline phosphatase (ALP activity, and expression of osteogenic/cementogenic-related markers including runt-related transcription factor 2 (Runx2, ALP, osteocalcin (OCN, cementum attachment protein (CAP, and cementum protein (CEMP as compared to the HA bioceramics with flat and dense surface. Moreover, mnHA bioceramics stimulated gene expression of low-density lipoprotein receptor

  8. Evaluation of a dental pulp-derived cell sheet cultured on amniotic membrane substrate.

    Science.gov (United States)

    Honjo, Ken-ichi; Yamamoto, Toshiro; Adachi, Tetsuya; Amemiya, Takeshi; Mazda, Osam; Kanamura, Narisato; Kita, Masakazu

    2015-01-01

    Mesenchymal stem cells (MSC) are transplanted for periodontal tissue regeneration, and the periodontal ligament (PDL) is regenerated using a cultured cell sheet. This cultured cell sheet is prepared using PDL-derived cells, growth factors, and amniotic membrane (AM). Dental pulp (DP)-derived cells can be easily obtained from extracted wisdom teeth, proliferate rapidly, and are less susceptible to bacterial infection than PDL-derived cells. Thus, to prepare a novel cell sheet, DP-derived cells were cultured on AM as a culture substrate for immunohistochemical examination. Wisdom teeth extracted from three adults were cut along the cement-enamel border. DP tissue was collected, minced, and primarily cultured. After three or four passage cultures, DP-derived cells were cultured on AM, followed by hematoxylin-eosin (H-E) and immunofluorescence staining. DP-derived cells cultured on AM formed a layered structure. Cells positive for vimentin, Ki-67, ZO-1, desmoplakin, CD29, 44, 105 or 146, STRO-1, collagen IV or VII or laminin 5 or α5 chain were localized. DP-derived cells proliferated on AM, while retaining the properties of DP, which allowed the cultured cell sheet to be prepared. In addition, the cultured cell sheet contained MSC, which suggests its potential application in periodontal tissue regeneration.

  9. Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix

    International Nuclear Information System (INIS)

    Ma, Yufei; Ji, Yuan; Huang, Guoyou; Zhang, Xiaohui; Xu, Feng; Ling, Kai

    2015-01-01

    Periodontitis is an inflammatory disease negatively affecting up to 15% of adults worldwide. Periodontal ligament stem cells (PDLSCs) hold great promises for periodontal tissue regeneration, where it is necessary to find proper extracellular matrix (ECM) materials (e.g., composition, concentration). In this study, we proposed a bioprinting-based approach to generate nano-liter sized three-dimensional (3D) cell-laden hydrogel array with gradient of ECM components, through controlling the volume ratio of two hydrogels, such as gelatin methacrylate (GelMA) and poly(ethylene glycol) (PEG) dimethacrylate. The resulting cell-laden array with a gradient of GelMA/PEG composition was used to screen human PDLSC response to ECM. The behavior (e.g., cell viability, spreading) of human PDLSCs in GelMA/PEG array were found to be depended on the volume ratios of GelMA/PEG, with cell viability and spreading area decreased along with increasing the ratio of PEG. The developed approach would be useful for screening cell-biomaterial interaction in 3D and promoting regeneration of functional tissue. (paper)

  10. MicroRNA-214 Suppresses Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Targeting ATF4

    Directory of Open Access Journals (Sweden)

    Siqi Yao

    2017-01-01

    Full Text Available Periodontitis is the main cause of adult tooth loss. Stem cell-based tissue engineering has become a promising therapy for periodontitis treatment. To date, human periodontal ligament stem cells (hPDLSCs have been shown to be a favorable source for tissue engineering, but modulatory mechanisms of hPDLSCs remain unclear. Approximately 60% of mammalian genes are the targets of over 2000 miRNAs in multiple human cell types, and miRNAs are able to influence various biological processes in the human body, including bone formation. In this study, we found that after osteogenic induction, miR-214 was significantly decreased in hPDLSCs; therefore, we examined the effects of miR-214 on osteogenic differentiation. Computational miRNA target prediction analyses and luciferase reporter assays revealed that activating transcription factor 4 (ATF4 is a direct target of miR-214. We prepared cells overexpressing miR-214 and found that miR-214 negatively regulates osteogenic differentiation of hPDLSCs. For the target of miR-214, ATF4 protein expression level was decreased after induction. In conclusion, we found that miR-214-ATF4 axis is a novel pathway for regulating hPDLSC osteogenic differentiation.

  11. Conditioned media from differentiating craniofacial bone marrow stromal cells influence mineralization and proliferation in periodontal ligament stem cells.

    Science.gov (United States)

    Jin, Zhenyu; Feng, Yuan; Liu, Hongwei

    2016-10-01

    Previous reports have mainly focused on the behavioral responses of human periodontal ligament stem cells (hPDLSCs) in interaction with tibia bone marrow stromal cells (BMSCs). However, there is little study on the biologic features of hPDLSCs under the induction of maxilla BMSCs (M-BMSCs) at different phases of osteogenic differentiation. We hypothesized that M-BMSCs undergoing osteogenic differentiation acted on the proliferation, differentiation, and bone-forming capacity of hPDLSCs. In this paper, primary hPDLSCs and human M-BMSCs (hM-BMSCs) were expanded in vitro. After screening of surface markers for characterization, hPDLSCs were cocultured with different phases of differentiating hM-BMSCs. Cell proliferation and alkaline phosphatase activity were examined, and mineralization-associated markers such as osteocalcin and runt-related transcription factor 2 of hPDLSCs in coculture with uninduced/osteoinduced hM-BMSCs were evaluated. hPDLSCs in hM-BMSCs-conditioned medium (hM-BMSCs-CM) group showed a reduction in proliferation compared with untreated hPDLSCs, while osteoinduced hM-BMSCs for 10 day-conditioned medium (hM-BMSCs-CM-10ds) and osteoinduced hM-BMSCs for 15 day-conditioned medium (hM-BMSCs-CM-15ds) enhance the proliferation of hPDLSCs. hM-BMSCs of separate differentiation stages temporarily inhibited osteogenesis of hPDLSCs in the early days. Upon extending time periods, uninduced/osteoinduced hM-BMSCs markedly enhanced osteogenesis of hPDLSCs to different degrees. The transplantation results showed hM-BMSCs-CM-15ds treatment promoted tissue regeneration to generate cementum/periodontal ligament-like structure characterized by hard-tissue formation. This research supported the notion that hM-BMSCs triggered osteogenesis of hPDLSCs suggesting important implications for periodontal engineering.

  12. [The use of Emdogain in periodontal and osseous regeneration

    NARCIS (Netherlands)

    Sculean, A.; Rathe, F.; Junker, R.; Becker, J.; Schwarz, F.; Arweiler, N.B.

    2007-01-01

    The goal of regenerative periodontal therapy is the reconstitution of the lost periodontal structures (i. e. the new formation of root cementum, periodontal ligament and alveolar bone). Results from basic research have pointed to the important role of an enamel matrix protein derivative (EMD) in

  13. Streptococcus gordonii lipoproteins induce IL-8 in human periodontal ligament cells.

    Science.gov (United States)

    Kim, A Reum; Ahn, Ki Bum; Kim, Hyun Young; Seo, Ho Seong; Kum, Kee-Yeon; Yun, Cheol-Heui; Han, Seung Hyun

    2017-11-01

    Streptococcus gordonii, a Gram-positive oral bacterium, is a life-threatening pathogen that causes infective endocarditis. It is frequently isolated from the periapical lesions of patients with apical periodontitis and has thus been implicated in inflammatory responses. However, little is known about the virulence factors of S. gordonii responsible for the induction of inflammatory responses in the periapical areas. Here, we investigated the role of S. gordonii cell wall-associated virulence factors on interleukin (IL)-8 induction in human periodontal ligament (PDL) cells using ethanol-inactivated wild-type S. gordonii, a lipoteichoic acid (LTA)-deficient mutant (ΔltaS), and a lipoprotein-deficient mutant (Δlgt). Wild-type S. gordonii induced IL-8 expression at both the protein and mRNA levels in human PDL cells in a dose- and time-dependent manner. A transient transfection and reporter gene assay demonstrated that wild-type S. gordonii activated Toll-like receptor 2 (TLR2). Additionally, IL-8 production induced by wild-type S. gordonii was substantially inhibited by anti-TLR2-neutralizing antibodies. Both wild-type S. gordonii and the ΔltaS mutant induced IL-8 production; however, this response was not observed when cells were stimulated with the Δlgt mutant. Interestingly, lipoproteins purified from S. gordonii induced IL-8 production, whereas purified LTA did not. In addition, purified lipoproteins stimulated TLR2 more potently than LTA. Furthermore, S. gordonii-induced IL-8 expression was specifically inhibited by blocking p38 kinase, while lipoprotein-induced IL-8 expression was inhibited by blocking p38 kinase, ERK, or JNK. Of particular note, exogenous addition of purified S. gordonii lipoproteins enhanced Δlgt-induced IL-8 production in human PDL cells to an extent similar to that induced by the wild-type strain. Collectively, these results suggest that lipoproteins are an important component of S. gordonii for the induction of IL-8 production in human

  14. Doxycycline reduces the expression and activity of matrix metalloproteinase-2 in the periodontal ligament of the rat incisor without altering the eruption process.

    Science.gov (United States)

    Gomes, J R; Omar, N F; Neves, J D S; Novaes, P D

    2017-06-01

    Doxycycline is an antibiotic agent that inhibits the activity of matrix metalloproteinases (MMPs) present in the extracellular matrix. In this study, the rat incisor was submitted to a hypofunctional condition, and the effects of doxycycline (80 mg/kg/d) on the expression and activity of MMP-2, as well as on eruption rate, were determined in the odontogenic region and in the periodontal ligament for 14 d. Rats were distributed into four groups: normofunctional (NF); doxycyline normofunctional (DNF); hypofunctional (HP); and doxycyline hypofunctional (DHP). The left lower incisors of 10 rats were shortened every 2 d, using a high-rotation drill, to produce the HP and DHP groups, after starting doxycycline treatment (80 mg/kg) by gavage. Eruption was measured using a millimeter ocular, from the gingival margin to the top of the tooth in the HP and DHP groups, and also by a mark made in the tooth previously, in the NF and DNF groups. The hemimandibles were removed and the teeth were extracted to collect the periodontal and odontogenic tissues for immunohistochemical analyses and zymography. The eruption rates were higher in the HP and the DHP groups than in the NF and DNF groups, respectively (p matrix of the periodontal ligament during the tooth-eruption process. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Modificações no periodonto de ratos diabéticos após a movimentação ortodôntica Periodontal ligament changes after induced dental movement in diabetic rats

    Directory of Open Access Journals (Sweden)

    Luis Alberto Sabino Vila Real

    2009-02-01

    Full Text Available OBJETIVOS: o objetivo deste trabalho foi avaliar as modificações do ligamento periodontal de incisivos de ratos diabéticos submetidos a forças ortodônticas. MÉTODOS: vinte ratos machos Wistar (Rattus norvegicus com 105 dias de idade foram empregados. Os ratos foram divididos em quatro grupos: C - animais normoglicêmicos não submetidos à movimentação dentária; CAO - animais normoglicêmicos submetidos à movimentação dentária; D - animais diabéticos não submetidos à movimentação dentária; DAO - animais diabéticos submetidos à movimentação dentária. Os animais permaneceram com o dispositivo de movimentação dentária por 5 dias. Foram avaliados o número de vasos sangüíneos e a espessura do ligamento periodontal nos terços cervical, médio e apical dos cortes histológicos. RESULTADOS E CONCLUSÕES: no lado de tensão, a movimentação dentária nos animais do grupo CAO resultou em um ligamento periodontal mais espesso (17,64% no terço apical, 39,28% no terço médio e 51,35% na região cervical, quando comparado ao grupo C (p 0,05. Ainda no lado de tensão, foram observadas lacunas de reabsorção nos animais dos grupos CAO, D e DAO. O lado de pressão não foi examinado nesta fase do estudo.AIM: The aim of this study was to evaluate the periodontal ligament changes after induced dental movement of the upper incisor in diabetic rats. METHODS: Twenty Wistar rats (Rattus norvegicus with 105 days of age were used. The rats were divided in four groups: C - normoglicemic animals not submitted to dental movement; CAO - normoglicemic animals submitted to dental movement; D - diabetic animals not submitted the dental movement; DAO - diabetic animals submitted to dental movement. The animals had remained with dental movement devices during 5 days. The number of sanguine vessels and the thickness of the periodontal ligament were evaluated at cervical, medium and apical histological cut regions. RESULTS AND CONCLUSION: At

  16. Mechanical design, analysis, and laboratory testing of a dental implant with axial flexibility similar to natural tooth with periodontal ligament.

    Science.gov (United States)

    Pektaş, Ömer; Tönük, Ergin

    2014-11-01

    At the interface between the jawbone and the roots of natural teeth, a thin, elastic, shock-absorbing tissue, called the periodontal ligament, forms a cushion which provides certain flexibility under mechanical loading. The dental restorations supported by implants, however, involve comparatively rigid connections to the jawbone. This causes overloading of the implant while bearing functional loading together with neighboring natural teeth, which leads to high stresses within the implant system and in the jawbone. A dental implant, with resilient components in the upper structure (abutment) in order to mimic the mechanical behavior of the periodontal ligament in the axial direction, was designed, analyzed in silico, and produced for mechanical testing. The aims of the design were avoiding high levels of stress, loosening of the abutment connection screw, and soft tissue irritations. The finite element analysis of the designed implant revealed that the elastic abutment yielded a similar axial mobility with the natural tooth while keeping stress in the implant at safe levels. The in vitro mechanical testing of the prototype resulted in similar axial mobility predicted by the analysis and as that of a typical natural tooth. The abutment screw did not loosen under repeated loading and there was no static or fatigue failure. © IMechE 2014.

  17. The effects of modeling simplifications on craniofacial finite element models: the alveoli (tooth sockets) and periodontal ligaments.

    Science.gov (United States)

    Wood, Sarah A; Strait, David S; Dumont, Elizabeth R; Ross, Callum F; Grosse, Ian R

    2011-07-07

    Several finite element models of a primate cranium were used to investigate the biomechanical effects of the tooth sockets and the material behavior of the periodontal ligament (PDL) on stress and strain patterns associated with feeding. For examining the effect of tooth sockets, the unloaded sockets were modeled as devoid of teeth and PDL, filled with teeth and PDLs, or simply filled with cortical bone. The third premolar on the left side of the cranium was loaded and the PDL was treated as an isotropic, linear elastic material using published values for Young's modulus and Poisson's ratio. The remaining models, along with one of the socket models, were used to determine the effect of the PDL's material behavior on stress and strain distributions under static premolar biting and dynamic tooth loading conditions. Two models (one static and the other dynamic) treated the PDL as cortical bone. The other two models treated it as a ligament with isotropic, linear elastic material properties. Two models treated the PDL as a ligament with hyperelastic properties, and the other two as a ligament with viscoelastic properties. Both behaviors were defined using published stress-strain data obtained from in vitro experiments on porcine ligament specimens. Von Mises stress and strain contour plots indicate that the effects of the sockets and PDL material behavior are local. Results from this study suggest that modeling the sockets and the PDL in finite element analyses of skulls is project dependent and can be ignored if values of stress and strain within the alveolar region are not required. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Intrusive luxation of 60 permanent incisors

    DEFF Research Database (Denmark)

    Tsilingaridis, Georgios; Malmgren, Barbro; Andreasen, Jens O

    2012-01-01

      Intrusive luxation in the permanent dentition is an uncommon injury but it is considered one of the most severe types of dental trauma because of the risk for damage to the periodontal ligament, pulp and alveolar bone. Management of intrusive luxation in the permanent dentition is controversial....... The purpose of this study was to evaluate pulp survival and periodontal healing in intrusive luxated permanent teeth in relation to treatment alternatives, degree of intrusion and root development....

  19. Stem cell research: applicability in dentistry.

    Science.gov (United States)

    Mathur, Shivani; Chopra, Rahul; Pandit, I K; Srivastava, Nikhil; Gugnani, Neeraj

    2014-01-01

    In the face of extraordinary advances in the prevention, diagnosis, and treatment of human diseases, the inability of most tissues and organs to repair and regenerate after damage is a problem that needs to be solved. Stem cell research is being pursued in the hope of achieving major medical breakthroughs. Scientists are striving to create therapies that rebuild or replace damaged cells with tissues grown from stem cells that will offer hope to people suffering from various ailments. Regeneration of damaged periodontal tissue, bone, pulp, and dentin is a problem that dentists face today. Stem cells present in dental pulp, periodontal ligament, and alveolar bone marrow have the potential to repair and regenerate teeth and periodontal structures. These stem cells can be harvested from dental pulp, periodontal ligament, and/or alveolar bone marrow; expanded; embedded in an appropriate scaffold; and transplanted back into a defect to regenerate bone and tooth structures. These cells have the potential to regenerate dentin, periodontal ligament, and cementum and can also be used to restore bone defects. The kind of scaffold, the source of cells, the type of in vitro culturing, and the type of surgical procedure to be used all require careful consideration. The endeavor is clearly multidisciplinary in nature, and the practicing dental surgeon has a critical role in it. Playing this role in the most effective way requires awareness of the huge potential associated with the use of stem cells in a clinical setting, as well as a proper understanding of the related problems.

  20. Portland cement induces human periodontal ligament cells to differentiate by upregulating miR-146a

    Directory of Open Access Journals (Sweden)

    Min-Ching Wang

    2018-04-01

    Full Text Available Background/Purpose: Bioaggregates such as Portland cement (PC can be an economical alternative for mineral trioxide aggregate (MTA with additional benefit of less discoloration. MTA has been known to induce differentiations of several dental cells. MicroRNAs are important regulators of biological processes, including differentiation, physiologic homeostasis, and disease progression. This study is to explore how PC enhances the differentiation of periodontal ligament (PDL cells in microRNAs level. Methods: PDL cells were cultured in a regular PC- or MTA-conditioned medium or an osteoinduction medium (OIM. Alizarin red staining was used to evaluate the extent of mineralization. Transfection of microRNA mimics induced exogenous miR-31 and miR-146a expression. The expression of microRNAs and differentiation markers was assayed using reverse-transcriptase polymerase chain reaction. Results: PC enhanced the mineralization of PDL cells in a dose-dependent manner in the OIM. Exogenous miR-31 and miR-146a expression upregulated alkaline phosphatase (ALP, bone morphogenic protein (BMP, and dentin matrix protein 1 (DMP1 expression. However, miR-31 and miR-146a modulates cementum protein 1 (CEMP1 expression in different ways. PC also enhanced ALP and BMP but attenuated CEMP1 in the OIM. Although the OIM or PC treatment upregulated miR-21, miR-29b, and miR-146a, only miR-146a was able to be induced by PC in combination with OIM. Conclusion: This study demonstrated that PC enhances the differentiation of PDL cells, especially osteogenic through miR-146a upregulation. In order to control the ankylosis after regenerative endodontics with the usage of bioaggregates, further investigations to explore these differentiation mechanisms in the miRNA level may be needed. Keywords: Portland cement, Bioaggregate, miR-146a, Osteogenic differentiation, Periodontal ligament (PDL

  1. Cytokeratin expression of engrafted three-dimensional culture tissues using epithelial cells derived from porcine periodontal ligaments.

    Science.gov (United States)

    Yamada, Rie; Kitajima, Kayoko; Arai, Kyoko; Igarashi, Masaru

    2014-09-01

    This study investigated the differentiation and proliferation of epithelial cells derived from periodontal ligaments after three-dimensional culture using collagen gel with fibroblasts in vitro and in vivo. Epithelial cells and fibroblasts were derived from porcine periodontal ligaments. Epithelial cells were labeled using a fluorescent red membrane marker (PKH-26GL) and were seeded onto collagen gel with fibroblasts, followed by incubation in an air-liquid interface for 7 days. Three-dimensional cultures were grafted onto the backs of nude mice and removed at 1, 7, and 14 days after surgery (in vivo model). Unfixed sections (5 μm) were used to detect the presence of red fluorescent cells. Paraffin sections were analyzed histologically and immunohistochemically. Specimens were compared with three-dimensional culture tissues at 8, 14 and 21 days (in vitro model). Grafted three-dimensional cultures formed a stratified epithelial structure similar to skin in vivo. Epithelial cells were sequenced in basal-layer-like structures at 14 days in vivo. Immunohistochemical findings showed that the expression of cytokeratin was detected in the epithelial layer in in vitro and in vivo models. Ck8 + 18 + 19 was expressed in the upper epithelial layer in the in vitro model at 14 and 21 days, but not in vivo. Involucrin was expressed in the certified layers in vitro at 14 days, but not in vivo. Laminin was detected at the dermo-epidermal junction in vivo at 7 and 14 days, but not in vitro. These results suggest that differentiation of three-dimensional culture tissues differs in vivo and in vitro. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Pathogenesis of apical periodontitis and the causes of endodontic failures.

    Science.gov (United States)

    Nair, P N R

    2004-11-01

    Apical periodontitis is a sequel to endodontic infection and manifests itself as the host defense response to microbial challenge emanating from the root canal system. It is viewed as a dynamic encounter between microbial factors and host defenses at the interface between infected radicular pulp and periodontal ligament that results in local inflammation, resorption of hard tissues, destruction of other periapical tissues, and eventual formation of various histopathological categories of apical periodontitis, commonly referred to as periapical lesions. The treatment of apical periodontitis, as a disease of root canal infection, consists of eradicating microbes or substantially reducing the microbial load from the root canal and preventing re-infection by orthograde root filling. The treatment has a remarkably high degree of success. Nevertheless, endodontic treatment can fail. Most failures occur when treatment procedures, mostly of a technical nature, have not reached a satisfactory standard for the control and elimination of infection. Even when the highest standards and the most careful procedures are followed, failures still occur. This is because there are root canal regions that cannot be cleaned and obturated with existing equipments, materials, and techniques, and thus, infection can persist. In very rare cases, there are also factors located within the inflamed periapical tissue that can interfere with post-treatment healing of the lesion. The data on the biological causes of endodontic failures are recent and scattered in various journals. This communication is meant to provide a comprehensive overview of the etio-pathogenesis of apical periodontitis and the causes of failed endodontic treatments that can be visualized in radiographs as asymptomatic post-treatment periapical radiolucencies.

  3. Human Umbilical Cord MSCs as New Cell Sources for Promoting Periodontal Regeneration in Inflammatory Periodontal Defect.

    Science.gov (United States)

    Shang, Fengqing; Liu, Shiyu; Ming, Leiguo; Tian, Rong; Jin, Fang; Ding, Yin; Zhang, Yongjie; Zhang, Hongmei; Deng, Zhihong; Jin, Yan

    2017-01-01

    Human periodontal ligament stem cells (hPDLSCs) transplantation represents a promising approach for periodontal regeneration; however, the cell source is limited due to the invasive procedure required for cell isolation. As human umbilical cord mesenchymal stem cells (hUCMSCs) can be harvested inexpensively and inexhaustibly, here we evaluated the regenerative potentials of hUCMSCs as compared with hPDLSCs to determine whether hUCMSCs could be used as new cell sources for periodontal regeneration. Methods The characteristics of hUCMSCs, including multi-differentiation ability and anti-inflammatory capability, were determined by comparison with hPDLSCs. We constructed cell aggregates (CA) using hUCMSCs and hPDLSCs respectively. Then hPDLSCs-CA and hUCMSCs-CA were combined with β-tricalcium phosphate bioceramic (β-TCP) respectively and their regenerative potentials were determined in a rat inflammatory periodontal defect model. Results hPDLSCs showed higher osteogenic differentiation potentials than hUCMSCs. Meanwhile, hUCMSCs showed higher extracellular matrix secretion and anti-inflammatory abilities than hPDLSCs. Similar to hPDLSCs, hUCMSCs were able to contribute to regeneration of both soft and hard periodontal tissues under inflammatory periodontitis condition. There were more newly formed bone and periodontal ligaments in hPDLSCs and hUCMSCs groups than in non-cell treated group. Moreover, no significant differences of regenerative promoting effects between hPDLSCs and hUCMSCs were found. Conclusion : hUCMSCs generated similar promoting effects on periodontal regeneration compared with hPDLSCs, and can be used as new cell sources for periodontal regeneration.

  4. Emdogain in regenerative periodontal therapy. A review of the literature.

    NARCIS (Netherlands)

    Sculean, A.; Windisch, P.; Dori, F.; Keglevich, T.; Molnar, B.; Gera, I.

    2007-01-01

    The goal of regenerative periodontal therapy is the reconstitution of the lost periodontal structures (i.e. the new formation of root cementum, periodontal ligament and alveolar bone). Results from basic research have pointed to the important role of the enamel matrix protein derivative (EMD) in the

  5. Effect of micro-nano-hybrid structured hydroxyapatite bioceramics on osteogenic and cementogenic differentiation of human periodontal ligament stem cell via Wnt signaling pathway

    Science.gov (United States)

    Mao, Lixia; Liu, Jiaqiang; Zhao, Jinglei; Chang, Jiang; Xia, Lunguo; Jiang, Lingyong; Wang, Xiuhui; Lin, Kaili; Fang, Bing

    2015-01-01

    The surface structure of bioceramic scaffolds is crucial for its bioactivity and osteoinductive ability, and in recent years, human periodontal ligament stem cells have been certified to possess high osteogenic and cementogenic differential ability. In the present study, hydroxyapatite (HA) bioceramics with micro-nano-hybrid surface (mnHA [the hybrid of nanorods and microrods]) were fabricated via hydrothermal reaction of the α-tricalcium phosphate granules as precursors in aqueous solution, and the effects of mnHA on the attachment, proliferation, osteogenic and cementogenic differentiations of human periodontal ligament stem cells as well as the related mechanisms were systematically investigated. The results showed that mnHA bioceramics could promote cell adhesion, proliferation, alkaline phosphatase (ALP) activity, and expression of osteogenic/cementogenic-related markers including runt-related transcription factor 2 (Runx2), ALP, osteocalcin (OCN), cementum attachment protein (CAP), and cementum protein (CEMP) as compared to the HA bioceramics with flat and dense surface. Moreover, mnHA bioceramics stimulated gene expression of low-density lipoprotein receptor-related protein 5 (LRP5) and β-catenin, which are the key genes of canonical Wnt signaling. Moreover, the stimulatory effect on ALP activity and osteogenic and cementogenic gene expression, including that of ALP, OCN, CAP, CEMP, and Runx2 of mnHA bioceramics could be repressed by canonical Wnt signaling inhibitor dickkopf1 (Dkk1). The results suggested that the HA bioceramics with mnHA could act as promising grafts for periodontal tissue regeneration. PMID:26648716

  6. Molecular Characteristics of the Equine Periodontal Ligament

    Directory of Open Access Journals (Sweden)

    Antje Pöschke

    2018-01-01

    Full Text Available The equine periodontal ligament (PDL is a fibrous connective tissue that covers the intra-alveolar parts of the tooth and anchors it to the alveolar bone—it, therefore, provides a similar function to a tendinous structure. While several studies have considered the formation and structure of tendons, there is insufficient information particularly on the molecular composition of the PDL. Especially for the equine PDL, there is limited knowledge concerning the expression of genes commonly regarded as typical for tendon tissue. In this study, the gene expression of, e.g., collagen type 1 alpha 1 (COL1, collagen type 3 alpha 1 (COL3, scleraxis (SCX, and fibrocartilage markers was examined in the functional mature equine PDL compared with immature and mature equine tendon tissue. PDL samples were obtained from incisor, premolar, and molar teeth from seven adult horses. Additionally, tendon samples were collected from four adult horses and five foals at different sampling locations. Analyses of gene expression were performed using real-time quantitative polymerase chain reaction (qRT-PCR. Significantly higher expression levels of COL1 and 3 were found in the mature equine PDL in comparison with mature tendon, indicating higher rates of collagen production and turnover in the mature equine PDL. The expression levels of SCX, a specific marker for tenogenic-differentiated cells, were on a similar level in functional mature PDL and in mature tendon tissue. Evidence of chondrogenic metaplasia, often found in tendon entheses or in pressurized regions of tendons, was not found in the mature equine PDL. The obtained results justify further experiments focused on the possible use of equine PDL cells for cell-based regenerative therapies.

  7. Periodontal healing complications following extrusive and lateral luxation in the permanent dentition: a longitudinal cohort study

    DEFF Research Database (Denmark)

    Hermann, Nuno Vibe; Lauridsen, Eva Fejerskov; Christensen, Søren Steno Ahrensburg

    2012-01-01

    To analyze the risk of tooth loss and complications in periodontal ligament (PDL) healing following extrusive and lateral luxation in the permanent dentition.......To analyze the risk of tooth loss and complications in periodontal ligament (PDL) healing following extrusive and lateral luxation in the permanent dentition....

  8. Role of genetic in periodontal disease

    Directory of Open Access Journals (Sweden)

    Anand Narayanrao Wankhede

    2017-01-01

    Full Text Available Genetics is the study and understanding of the phenomena of heredity and variation. A large number of genes are associated with many systemic conditions. Periodontitis is inflammatory condition of periodontium. Periodontium consists of gingiva, periodontal ligament, cementum, and alveolar bone. It is considered being a multifactorial disease. Studies of animals and humans support the concept that a large number of genes' factor may be associated with periodontitis and clearly play a role in the predisposition and progression of periodontal diseases. It has been proven that genetic factors impair inflammatory and immune responses during periodontal diseases. Research on identifying specific genes causing periodontitis may improve and prevent the disease progression. The aim of this article is to focus on genetic risk factors and its influence for the various forms of periodontal disease.

  9. Effect of dynamic three-dimensional culture on osteogenic potential of human periodontal ligament-derived mesenchymal stem cells entrapped in alginate microbeads.

    Science.gov (United States)

    Vecchiatini, R; Penolazzi, L; Lambertini, E; Angelozzi, M; Morganti, C; Mazzitelli, S; Trombelli, L; Nastruzzi, C; Piva, R

    2015-08-01

    Bioreactors are devices that efficiently create an environment that enables cell cultures to grow in a three-dimensional (3D) context mimicking in vivo conditions. In this study, we investigate the effect of dynamic fluid flow on the osteogenic potential of human mesenchymal stem cells obtained from periodontal ligament and entrapped in alginate microbeads. After proper immunophenotyping, cells were encapsulated in barium alginate, cultured in 3D static or 3D dynamic conditions represented by a bioreactor system. Calcein-AM/propidium iodide staining was used to assess cellular viability. Quantitative real-time polymerase chain reaction was used to analyze the expression of osteogenic markers (Runx2 and COL1). Alizarin Red S staining and the Fourier transform infrared spectroscopy were used to assess mineral matrix deposition. Optimal encapsulation procedure, in terms of polymer pumping rate, distance from droplet generator to the gelling bath and atomizing airflow was assessed. Cell viability was not affected by encapsulation in alginate microbeads. Bioreactor cell exposure was effective in anticipating osteogenic differentiation and improving mineral matrix deposition. For the first time human mesenchymal stem cells obtained from periodontal ligaments encapsulated in alginate microbeads were cultured in a bioreactor system. This combination could represent a promising strategy to create a cell-based smart system with enhanced osteogenic potential useful for many different dental applications. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Detection and clonal analysis of anaerobic bacteria associated to endodontic-periodontal lesions.

    Science.gov (United States)

    Pereira, Cássio V; Stipp, Rafael N; Fonseca, Douglas C; Pereira, Luciano J; Höfling, José F

    2011-12-01

    Microbial agents in root canal systems can induce periodontal inflammation. The aims of this study are to detect anaerobic microorganisms in endodontic-periodontal lesions, determine the genetic diversity among them, and assess the simultaneous colonization of the pulp and periodontal microenvironments by a single clone. Twenty-seven teeth of patients with endodontic-periodontal lesions were selected. Samples were spread on an agar-blood medium, the detection of each species was performed using a polymerase chain reaction, and the determination of the simultaneous presence of the same species in the microenvironments by one or more clones was determined using arbitrarily primed PCR. Prevotella intermedia (Pi) was the most prevalent species of the colonies in periodontal pockets, whereas Porphyromonas gingivalis (Pg) and Pi were the more prevalent in root canals. Isolates of Pi and Pg were simultaneously identified in root canals and periodontal pockets. Eighteen percent of teeth exhibited the simultaneous colonization by Pg, Tannerella forsythia (previously T. forsythensis), and Porphyromonas endodontalis in the pulp and periodontal microenvironments. The presence of these species was noted even in niches from which no colonies were isolated. Seventeen different genotypes were found in periodontal and pulp sites, with the majority of sites colonized by one or two different genotypes. A high degree of genotype similarity was found for samples of Pg isolated from only one site as well as for those isolated from both microenvironments. Different clones of Pi and Pg with a high intraspecific genotype similarity were found to colonize the same anatomic sites in endodontic-periodontal infections.

  11. Methodical bias for comparison of periodontal ligament injection and local infiltration anesthesia for routine extractions in the maxilla

    Directory of Open Access Journals (Sweden)

    Kämmerer PW

    2018-03-01

    Full Text Available Peer W Kämmerer, Monika Daubländer Department of Oral, Maxillofacial and Facial Plastic Surgery, University Medical Centre Mainz, Mainz, GermanyWe read the article by Al-Shayyab1 with great interest, though we think that there is a methodical bias. Usage of standard dental syringes with 27-gauge needles is not recommended for periodontal ligament (PDL injections as they are very unlikely to achieve the correct pressure needed for successful single tooth anesthesia. In accordance with this, specialized syringes with short 30-gauge needles are commonly used all over the literature.2 The author addresses this in the “Discussion” section and writes that “a standard conventional dental syringe was used in the present study, not a special PDL syringe, since the former is readily available in the clinic and proves equally successful when a standard 27-gauge short needle was used,” citing Malamed from 1982 (a time during which the modern PDL syringes were not developed yet3 and Madan et al who write that “intraligamentary injection technique is equally effective when a standard 27-gauge needle is used”.4 The second assumption refers to the needle only, not the syringe. In addition, this needle issue is not proven by any reference or study. Therefore, one might come to the conclusion that PDL was not carried out correctly. Also, the authors did not evaluate pulp or tissue anesthesia and started the extraction procedure after a latency period of 5 minutes in all cases. In accordance with this, the success rates of the PDL injection cannot be given, but would be of interest.View the original paper by Al-Shayyab and colleagues.

  12. The application of an enamel matrix protein derivative (Emdogain) in regenerative periodontal therapy: a review.

    NARCIS (Netherlands)

    Sculean, A.; Schwarz, F.; Becker, J.; Brecx, M.

    2007-01-01

    Regenerative periodontal therapy aims at reconstitution of the lost periodontal structures such as new formation of root cementum, periodontal ligament and alveolar bone. Findings from basic research indicate that enamel matrix protein derivative (EMD) has a key role in periodontal wound healing.

  13. Adhesion and Proliferation of Human Periodontal Ligament Cells on Poly(2-methoxyethyl acrylate

    Directory of Open Access Journals (Sweden)

    Erika Kitakami

    2014-01-01

    Full Text Available Human periodontal ligament (PDL cells obtained from extracted teeth are a potential cell source for tissue engineering. We previously reported that poly(2-methoxyethyl acrylate (PMEA is highly biocompatible with human blood cells. In this study, we investigated the adhesion, morphology, and proliferation of PDL cells on PMEA and other types of polymers to design an appropriate scaffold for tissue engineering. PDL cells adhered and proliferated on all investigated polymer surfaces except for poly(2-hydroxyethyl methacrylate and poly[(2-methacryloyloxyethyl phosphorylcholine-co-(n-butyl methacrylate]. The initial adhesion of the PDL cells on PMEA was comparable with that on polyethylene terephthalate (PET. In addition, the PDL cells on PMEA spread well and exhibited proliferation behavior similar to that observed on PET. In contrast, platelets hardly adhered to PMEA. PMEA is therefore expected to be an excellent scaffold for tissue engineering and for culturing tissue-derived cells in a blood-rich environment.

  14. Periodontal regeneration using a bilayered PLGA/calcium phosphate construct.

    Science.gov (United States)

    Carlo Reis, Emily C; Borges, Andréa P B; Araújo, Michel V F; Mendes, Vanessa C; Guan, Limin; Davies, John E

    2011-12-01

    The regeneration of tissues affected by periodontal disease is a complex process; it encompasses the formation of bone, cementum and periodontal ligament. We developed a semi-rigid PLGA (polylactide-co-glycolide acid)/CaP (calcium phosphate) bilayered biomaterial construct to promote periodontal regeneration, which has a continuous outer barrier membrane and an inner topographically complex component. Our experimental model compared periodontal prophylaxis alone with prophylaxis and biomaterial implantation in the treatment of class II furcation defects in dogs. Clinical evaluation, micro-computed tomography, histology and backscattered electron imaging were used for data analysis. Healing occurred uneventfully and bone volumetric values, trabecular number and trabecular thickness were all significantly greater in the treated group; while trabecular separation was significantly greater in the control group. New cementum, bone, and periodontal ligament with Sharpey fibre insertions were only seen in the treated group. Although periodontal regeneration has been reported elsewhere, the advantages of employing our bilayered PLGA + CaP construct are twofold: 1)it did not collapse into the defect; and, 2) its inner side was able to retain the blood clot throughout the buccal defect. The result was greater periodontal regeneration than has previously been reported with traditional flexible membranes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Low-intensity pulsed ultrasound stimulation facilitates osteogenic differentiation of human periodontal ligament cells.

    Directory of Open Access Journals (Sweden)

    Bo Hu

    Full Text Available Human periodontal ligament cells (hPDLCs possess stem cell properties, which play a key role in periodontal regeneration. Physical stimulation at appropriate intensities such as low-intensity pulsed ultrasound (LIPUS enhances cell proliferation and osteogenic differentiation of mesechymal stem cells. However, the impacts of LIPUS on osteogenic differentiation of hPDLCs in vitro and its molecular mechanism are unknown. This study was undertaken to investigate the effects of LIPUS on osteogenic differentiation of hPDLCs. HPDLCs were isolated from premolars of adolescents for orthodontic reasons, and exposed to LIPUS at different intensities to determine an optimal LIPUS treatment dosage. Dynamic changes of alkaline phosphatase (ALP activities in the cultured cells and supernatants, and osteocalcin production in the supernatants after treatment were analyzed. Runx2 and integrin β1 mRNA levels were assessed by reverse transcription polymerase chain reaction analysis after LIPUS stimulation. Blocking antibody against integrinβ1 was used to assess the effects of integrinβ1 inhibitor on LIPUS-induced ALP activity, osteocalcin production as well as calcium deposition. Our data showed that LIPUS at the intensity of 90 mW/cm2 with 20 min/day was more effective. The ALP activities in lysates and supernatants of LIPUS-treated cells started to increase at days 3 and 7, respectively, and peaked at day 11. LIPUS treatment significantly augmented the production of osteocalcin after day 5. LIPUS caused a significant increase in the mRNA expression of Runx2 and integrin β1, while a significant decline when the integrinβ1 inhibitor was used. Moreover, ALP activity, osteocalcin production as well as calcium nodules of cells treated with both daily LIPUS stimulation and integrinβ1 antibody were less than those in the LIPUS-treated group. In conclusion, LIPUS promotes osteogenic differentiation of hPDLCs, which is associated with upregulation of Runx2 and

  16. β-cryptoxanthin regulates bone resorption related-cytokine production in human periodontal ligament cells.

    Science.gov (United States)

    Nishigaki, Masaru; Yamamoto, Toshiro; Ichioka, Hiroaki; Honjo, Ken-Ichi; Yamamoto, Kenta; Oseko, Fumishige; Kita, Masakazu; Mazda, Osam; Kanamura, Narisato

    2013-07-01

    β-cryptoxanthin (β-cry) is a type of carotenoid found in certain fruits and vegetables. Although it has been shown that β-cry inhibits alveolar bone resorption, the molecular mechanisms for this have not yet been clarified. In the present study, we investigated the effects of β-cry on bone resorption related-cytokine production in human periodontal ligament (hPDL) cells. hPDL cells were stimulated with β-cry (1×10(-7)mol/l), mechanical stress (1 or 6MPa), and P. gingivalis. The production of interleukin (IL)-1β, IL-6, IL-8, tumour necrosis factor (TNF)-α, osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-B ligand (RANKL) were analyzed by RT-PCR and ELISA. The production of IL-1β, IL-6, IL-8, and TNF-α was not induced in hPDL cells after stimulation with β-cry, although these cytokines were produced after stimulation with P. gingivalis. On the other hand, IL-6 and IL-8 were produced after exposure to 6MPa of mechanical stress. The production of IL-6 and IL-8 was significantly decreased by the addition of β-cry. Furthermore, β-cry up-regulated the production of OPG, but not RANKL. β-cry inhibited the production of IL-6 and IL-8 induced by mechanical stress and periodontopathogenic bacteria in hPDL cells. Moreover, β-cry up-regulated OPG production. These results suggest that β-cry may prevent bone resorption in periodontitis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Periodontal Therapy in Dogs Using Bone Augmentation Products Marketed for Veterinary Use.

    Science.gov (United States)

    Angel, Molly

    Periodontal disease is extremely common in companion animal practice. Patients presenting for a routine oral examination and prophylaxis may be found to have extensive periodontal disease and attachment loss. Vertical bone loss is a known sequela to periodontal disease and commonly involves the distal root of the mandibular first molar. This case report outlines two dogs presenting for oral examination and prophylaxis with general anesthesia. Both patients did not have any clinical symptoms of periodontal disease other than halitosis. Both patients were diagnosed with three-walled vertical bone loss defects of one or both mandibular first molars utilizing dental radiography as well as periodontal probing, measuring, and direct visual inspection. These defects were consistent with periodontal disease index stage 4 (>50% attachment loss). The lesions were treated with appropriate root planing and debridement. Bone augmentation products readily available and marketed for veterinary use were then utilized to fill the defects to promote both the re-establishment of normal alveolar bone height and periodontal ligament reattachment to the treated surface. Follow-up assessment and owner dedication is critical to treatment outcome. Both patients' 6 mo follow-up examinations radiographically indicated bone repair and replacement with visible periodontal ligament space.

  18. Biochemical study of human periodontal ligament: preparation of cell attachment materials induced by pulsed electromagnetic fields.

    Science.gov (United States)

    Kim, K T

    1990-09-01

    The periodontium, especially the periodontal ligament and alveolar bone, are tissues constantly subjected to physical stress such as occlusion and mastication. This study was designed to explore the effect of the pulsed electromagnetic fields (PEMF) on the cell attachment and the spread of human periodontal ligament fibroblasts (HPLF) and rat osteoblasts (ROB). PEMF are categorized as one type of mechanical stress. HPLF were obtained by the explantation method described by Saito et al. They were then subcultured in Dulbecco's modified Eagle's medium (D-MEM) and supplemented with 2 mg/ml dialyzed fetal calf serum protein (FCSP), 50 micrograms/ml ascorbic acid and penicillin/streptomycin after trypsinization. ROB were isolated from a two-day-old rat calvaria by the sequential bacterial collagenase digestion method described by Dziak and Brand and were subcultured in D-MEM supplemented with FCSP, ascorbic acid and penicillin/streptomycin. After the confluent HPLF were cultured with serum-free MCDB 107 medium, the quiescent HPLF were exposed with or without PEMF for 24 hr. This was followed by the collection of the control conditioned medium (C-CM) and PEMF exposed conditioned medium (PEMF-CM). The cell attachment assay was performed so that the hydrophobic 24 multiwells were coated with the whole conditioned medium or fractionated conditioned medium by a PO-60K column. After coating, heat inactivated BSA blocked nonspecific sites for cell adhesion, and 3H-TdR labeled HPLF or ROB were cultured on the precoated wells. The activity of cell attachment and spreading was determined by the radioactivity of 3H-TdR using a scintillation counter. The characters of cell attachment factors derived from HPLF were hydrophobic, heat labile and proteolytic enzyme digestible. In addition, the fractionated PEMF-CM enhanced the spreading activity of ROB. PEMF induced the 10 KDa which can enhance the HPLF and ROB spreading. Therefore, the cell attachment and spreading factors secreted by

  19. Effects of Intermittent Administration of Parathyroid Hormone (1-34 on Bone Differentiation in Stromal Precursor Antigen-1 Positive Human Periodontal Ligament Stem Cells

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Wang

    2016-01-01

    Full Text Available Periodontitis is the most common cause of tooth loss and bone destruction in adults worldwide. Human periodontal ligament stem cells (hPDLSCs may represent promising new therapeutic biomaterials for tissue engineering applications. Stromal precursor antigen-1 (STRO-1 has been shown to have roles in adherence, proliferation, and multipotency. Parathyroid hormone (PTH has been shown to enhance proliferation in osteoblasts. Therefore, in this study, we aimed to compare the functions of STRO-1(+ and STRO-1(− hPDLSCs and to investigate the effects of PTH on the osteogenic capacity of STRO-1(+ hPDLSCs in order to evaluate their potential applications in the treatment of periodontitis. Our data showed that STRO-1(+ hPDLSCs expressed higher levels of the PTH-1 receptor (PTH1R than STRO-1(− hPDLSCs. In addition, intermittent PTH treatment enhanced the expression of PTH1R and osteogenesis-related genes in STRO-1(+ hPDLSCs. PTH-treated cells also exhibited increased alkaline phosphatase activity and mineralization ability. Therefore, STRO-1(+ hPDLSCs represented a more promising cell resource for biomaterials and tissue engineering applications. Intermittent PTH treatment improved the capacity for STRO-1(+ hPDLSCs to repair damaged tissue and ameliorate the symptoms of periodontitis.

  20. Nrf2 Inhibits Periodontal Ligament Stem Cell Apoptosis under Excessive Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yanli Liu

    2017-05-01

    Full Text Available The present study aimed to analyze novel mechanisms underlying Nrf2-mediated anti-apoptosis in periodontal ligament stem cells (PDLSCs in the periodontitis oxidative microenvironment. We created an oxidative stress model with H2O2-treated PDLSCs. We used real-time PCR, Western blotting, TUNEL staining, fluorogenic assay and transfer genetics to confirm the degree of oxidative stress and apoptosis as well as the function of nuclear factor-erythroid 2-related factor 2 (Nrf2. We demonstrated that with upregulated levels of reactive oxygen species (ROS and malondialdehyde (MDA, the effect of oxidative stress was obvious under H2O2 treatment. Oxidative molecules were altered after the H2O2 exposure, whereby the signaling of Nrf2 was activated with an increase in its downstream effectors, heme oxygenase-1 (HO-1, NAD(PH:quinone oxidoreductase 1 (NQO1 and γ-glutamyl cysteine synthetase (γ-GCS. Additionally, the apoptosis levels gradually increased with oxidative stress by the upregulation of caspase-9, caspase-3, Bax and c-Fos levels in addition to the downregulation of Bcl-2. However, there was no alterations in levels of caspase-8. The enhanced antioxidant effect could not mitigate the occurrence of apoptosis. Furthermore, Nrf2 overexpression effectively improved the anti-oxidative levels and increased cell proliferation. At the same time, overexpression effectively restrained TUNEL staining and decreased the molecular levels of caspase-9, caspase-3, Bax and c-Fos, but not that of caspase-8. In contrast, silencing the expression of Nrf2 levels had the opposite effect. Collectively, Nrf2 alleviates PDLSCs via its effects on regulating oxidative stress and anti-intrinsic apoptosis by the activation of oxidative enzymes.

  1. Anti-inflammatory and anti-osteoclastogenic effects of zinc finger protein A20 overexpression in human periodontal ligament cells.

    Science.gov (United States)

    Hong, J-Y; Bae, W-J; Yi, J-K; Kim, G-T; Kim, E-C

    2016-08-01

    Although overexpression of the nuclear factor κB inhibitory and ubiquitin-editing enzyme A20 is thought to be involved in the pathogenesis of inflammatory diseases, its function in periodontal disease remains unknown. The aims of the present study were to evaluate A20 expression in patients with periodontitis and to study the effects of A20 overexpression, using a recombinant adenovirus encoding A20 (Ad-A20), on the inflammatory response and on osteoclastic differentiation in lipopolysaccharide (LPS)- and nicotine-stimulated human periodontal ligament cells (hPDLCs). The concentration of prostaglandin E2 was measured by radioimmunoassay. Reverse transcription-polymerase chain reactions and western blot analyses were used to measure mRNA and protein levels, respectively. Osteoclastic differentiation was assessed in mouse bone marrow-derived macrophages using conditioned medium from LPS- and nicotine-treated hPDLCs. A20 was upregulated in the gingival tissues and neutrophils from patients with periodontitis and in LPS- and nicotine-exposed hPDLCs. Pretreatment with A20 overexpression by Ad-A20 markedly attenuated LPS- and nicotine-induced production of prostaglandin E2 , as well as expression of cyclooxygenase-2 and proinflammatory cytokines. Moreover, A20 overexpression inhibited the number and size of tartrate-resistant acid phosphatase-stained osteoclasts, and downregulated osteoclast-specific gene expression. LPS- and nicotine-induced p38 phosphorylation and nuclear factor κB activation were blocked by Ad-A20. Ad-A20 inhibited the effects of nicotine and LPS on the activation of pan-protein kinase C, Akt, GSK-3β and protein kinase Cα. This study is the first to demonstrate that A20 overexpression has anti-inflammatory effects and blocks osteoclastic differentiation in a nicotine- and LPS-stimulated hPDLC model. Thus, A20 overexpression may be a potential therapeutic target in inflammatory bone loss diseases, such as periodontal disease. © 2015 John Wiley

  2. Timing of pulp extirpation for replanted avulsed teeth.

    LENUS (Irish Health Repository)

    Stewart, Chris

    2009-01-01

    A search was performed (April 2004) across four databases, namely Ovid Medline, Cochrane Library, PubMed and Web of Science, relevant to the proposed PICO ( Patient or problem, Intervention, Comparison, Outcome) question: (P) for a replanted avulsed permanent tooth, (I) is early pulp extirpation within 10-14 days of replantation, (C) compared with delayed pulp extirpation, (O) associated an increased likelihood of successful periodontal healing after tooth replantation. Only articles published in the English language were considered.

  3. Dental Pulp Revascularization of Necrotic Permanent Teeth with Immature Apices.

    Science.gov (United States)

    El Ashiry, Eman A; Farsi, Najat M; Abuzeid, Sawsan T; El Ashiry, Mohamed M; Bahammam, Hammam A

    The treatment of immature necrotic teeth with apical periodontitis presents challenges in endodontic and pediatric dentistry. Revascularization is a recent treatment for such cases as an alternative to conventional apexification. The purpose is to examine the effect of a pulpal revascularization procedure on immature necrotic teeth with apical periodontitis. Twenty patients were enrolled for pulp revascularization procedure by root canal disinfection using a triple antibiotic mixture for 1-2 weeks, followed by creating a blood clot, sealing the root canal orifice using white mineral trioxide aggregate and a coronal seal of composite resin. Patients were recalled periodically for up to 24 months. During follow-up, all patients were asymptomatic. Three cases of chronic apical periodontitis showed clinical disappearance of the sinus tract 2 weeks after treatment. Radiography revealed progressive periapical radiolucency resolution within the first 12 months. Within 12-24 months, the treated teeth showed progressive increases in dentinal wall thickness, root length and continued root development. Clinical and radiographic evidence showed successful revascularization treatments of immature necrotic permanent teeth with apical periodontitis. More studies are necessary to understand the underlying mechanisms and to perform histopathology of the pulp space contents after revascularization procedures.

  4. Efficiency of nonsurgical periodontal therapy in moderate chronic periodontitis.

    Science.gov (United States)

    Mlachkova, Antoaneta M; Popova, Christina L

    2014-01-01

    Chronic periodontitis is defined as an inflammatory disease of the supporting tissues of teeth caused by microorganisms in the dental biofilm, resulting in progressive destruction of the periodontal ligament and alveolar bone with pocket formation and gingival recession. Treatment of chronic periodontitis aims at arresting the inflammation and stopping the loss of attachment by removal and control of the supra- and subgingival biofilm and establishing a local environment and microflora compatible with periodontal health. The AIM of this study was to evaluate the effectiveness of non-surgical therapy (scaling and root planning) in the treatment of moderate chronic periodontitis. The study included 30 patients aged between 33 and 75 years, of which 46.7% women and 53.3% men, diagnosed with moderate and, at some sites, severe periodontitis. They were treated with non-surgical periodontal therapy methods (scaling and root planning and curettage if indicated). Additionally, chemical plaque control with rinse water containing chlorhexidine was applied. The diagnostic and reassessment procedures included measuring the periodontal indices of 601 periodontal units before and after the therapy. The indices measured were the papillary bleeding index (PBI), the hygiene index (HI), the probing pocket depth (PPD) and the clinical attachment level (CAL). Significant reduction of plaque and gingival inflammation was found in all treated patients; we also found a statistically significant reduction of periodontal pockets with clinically measured depth 5 mm did not show statistically significant lower incidence rates probably due to the initially small percentage of deep pockets in the patients studied. There was a statistically significant reduction of all sites with attachment loss, the highest significance found at sites where the attachment loss was greater than 5 mm. The results of the study suggest that nonsurgical periodontal therapy is effective in managing the moderate

  5. The Relationship Between Periodontal Disease and Neoplasms of the Oral Cavity: A Review Article

    OpenAIRE

    Nourelahi; Roshannia; Kameli; Hormozi

    2016-01-01

    Context Oral cavity is one of the most common sites for neoplasms with a multifactorial etiology. Tobacco and alcohol are the main risk factors. Periodontal disease is an inflammatory disease affecting periodontal tissues such as gingiva, periodontal ligament and alveolar bone. Periodontal disease is linked to many systemic diseases. Recently a link between periodontal disease and cancer is suggested. The current review article aimed to evaluate the association between periodonta...

  6. Effect of Cytokines on Osteoclast Formation and Bone Resorption during Mechanical Force Loading of the Periodontal Membrane

    Directory of Open Access Journals (Sweden)

    Hideki Kitaura

    2014-01-01

    Full Text Available Mechanical force loading exerts important effects on the skeleton by controlling bone mass and strength. Several in vivo experimental models evaluating the effects of mechanical loading on bone metabolism have been reported. Orthodontic tooth movement is a useful model for understanding the mechanism of bone remodeling induced by mechanical loading. In a mouse model of orthodontic tooth movement, TNF-α was expressed and osteoclasts appeared on the compressed side of the periodontal ligament. In TNF-receptor-deficient mice, there was less tooth movement and osteoclast numbers were lower than in wild-type mice. These results suggest that osteoclast formation and bone resorption caused by loading forces on the periodontal ligament depend on TNF-α. Several cytokines are expressed in the periodontal ligament during orthodontic tooth movement. Studies have found that inflammatory cytokines such as IL-12 and IFN-γ strongly inhibit osteoclast formation and tooth movement. Blocking macrophage colony-stimulating factor by using anti-c-Fms antibody also inhibited osteoclast formation and tooth movement. In this review we describe and discuss the effect of cytokines in the periodontal ligament on osteoclast formation and bone resorption during mechanical force loading.

  7. Novel application of stem cell-derived factors for periodontal regeneration

    International Nuclear Information System (INIS)

    Inukai, Takeharu; Katagiri, Wataru; Yoshimi, Ryoko; Osugi, Masashi; Kawai, Takamasa; Hibi, Hideharu; Ueda, Minoru

    2013-01-01

    Highlights: ► Mesenchymal stem cells (MSCs) secrete a variety of cytokines. ► Cytokines were detected in conditioned medium from cultured MSCs (MSC-CM). ► MSC-CM enhanced activation of dog MSCs and periodontal ligament cells. ► MSC-CM significantly promoted alveolar bone and cementum regeneration. ► Multiple cytokines contained in MSC-CM promote periodontal regeneration. -- Abstract: The effect of conditioned medium from cultured mesenchymal stem cells (MSC-CM) on periodontal regeneration was evaluated. In vitro, MSC-CM stimulated migration and proliferation of dog MSCs (dMSCs) and dog periodontal ligament cells (dPDLCs). Cytokines such as insulin-like growth factor, vascular endothelial growth factor, transforming growth factor-β1, and hepatocyte growth factor were detected in MSC-CM. In vivo, one-wall critical-size, intrabony periodontal defects were surgically created in the mandible of dogs. Dogs with these defects were divided into three groups that received MSC-CM, PBS, or no implants. Absorbable atelo-collagen sponges (TERUPLUG®) were used as a scaffold material. Based on radiographic and histological observation 4 weeks after transplantation, the defect sites in the MSC-CM group displayed significantly greater alveolar bone and cementum regeneration than the other groups. These findings suggest that MSC-CM enhanced periodontal regeneration due to multiple cytokines contained in MSC-CM.

  8. Periodontal tissue regeneration with PRP incorporated gelatin hydrogel sponges

    International Nuclear Information System (INIS)

    Nakajima, Dai; Tabata, Yasuhiko; Sato, Soh

    2015-01-01

    Gelatin hydrogels have been designed and prepared for the controlled release of the transforming growth factor (TGF-b1) and the platelet-derived growth factor (PDGF-BB). PRP (Platelet rich plasma) contains many growth factors including the PDGF and TGF-b1. The objective of this study was to evaluate the regeneration of periodontal tissue following the controlled release of growth factors in PRP. For the periodontal ligament cells and osteoblast, PRP of different concentrations was added. The assessment of DNA, mitochondrial activity and ALP activity were measured. To evaluate the TGF-β1 release from PRP incorporated gelatin sponge, amounts of TGF-β1 in each supernatant sample were determined by the ELISA. Transplantation experiments to prepare a bone defect in a rat alveolar bone were an implanted gelatin sponge incorporated with different concentration PRP. In DNA assay and MTT assay, after the addition of PRP to the periodontal ligament cells and osteoblast, the cell count and mitochondrial activity had increased the most in the group with the addition of 5  ×  PRP. In the ALP assay, after the addition of PRP to the periodontal ligament cells, the cell activity had increased the most in the group with the addition of 3  ×  PRP. In the transplantation, the size of the bone regenerated in the defect with 3  ×  PRP incorporated gelatin sponge was larger than that of the other group. (paper)

  9. Periodontal tissue regeneration with PRP incorporated gelatin hydrogel sponges.

    Science.gov (United States)

    Nakajima, Dai; Tabata, Yasuhiko; Sato, Soh

    2015-10-20

    Gelatin hydrogels have been designed and prepared for the controlled release of the transforming growth factor (TGF-b1) and the platelet-derived growth factor (PDGF-BB). PRP (Platelet rich plasma) contains many growth factors including the PDGF and TGF-b1. The objective of this study was to evaluate the regeneration of periodontal tissue following the controlled release of growth factors in PRP. For the periodontal ligament cells and osteoblast, PRP of different concentrations was added. The assessment of DNA, mitochondrial activity and ALP activity were measured. To evaluate the TGF-β1 release from PRP incorporated gelatin sponge, amounts of TGF-β1 in each supernatant sample were determined by the ELISA. Transplantation experiments to prepare a bone defect in a rat alveolar bone were an implanted gelatin sponge incorporated with different concentration PRP. In DNA assay and MTT assay, after the addition of PRP to the periodontal ligament cells and osteoblast, the cell count and mitochondrial activity had increased the most in the group with the addition of 5  ×  PRP. In the ALP assay, after the addition of PRP to the periodontal ligament cells, the cell activity had increased the most in the group with the addition of 3  ×  PRP. In the transplantation, the size of the bone regenerated in the defect with 3  ×  PRP incorporated gelatin sponge was larger than that of the other group.

  10. Effect of periodontal ligament removal with gauze prior to delayed replantation in rabbit incisors on rate of replacement resorption.

    Science.gov (United States)

    Maslamani, Manal; Joseph, Bobby; Gabato, Severino; Andersson, Lars

    2018-03-23

    Delayed (dry storage > 60 minutes) replantation results in ankylosis and replacement resorption. It has been suggested to remove the non-viable periodontal ligament before replantation to possibly reduce the rate of replacement resorption. However there has been no study on the rate of replacement resorption after such measures. The aim of this study was to investigate if there was any difference in the rate of replacement resorption by either removing the periodontal ligament (PDL) with gauze or not removing PDL in teeth subjected to delayed replantation followed by healing for 2 or 6 weeks. Maxillary central incisors were extracted in 8 rabbits. In the right central incisors, the necrotic PDL was removed by dry gauze over the root surface. In the left eight extracted teeth PDL was left on the root surface. All extracted teeth were left to dry for 60 minutes. Extra-oral root canal treatment was performed before replantation. The rabbits were sacrificed after 2 weeks and 6 weeks respectively. Histologic processing and evaluation was done. In the 2 weeks group, all teeth showed ankylosis. The cementum was intact, and fusion of the bone and root was generally seen without resorption of the root, whereas in the 6 weeks group regardless of whether PDL had been kept or not, ankylosis and osseous replacement of the dentin was seen. There was no evidence of inflammatory infiltrate in the sections examined. Removal of PDL prior to delayed replantation may result in some initial protection of the cementum during the first few weeks. However, over longer times there seems to be neither protection of the dentin from ankylosis and osseous replacement, nor any influence on the rate of replacement resorption. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. PENYEMBUHAN LUKA SETELAH PERAWATAN BEDAH PERIODONTAL (Studi Pustaka

    Directory of Open Access Journals (Sweden)

    Natalina Natalina

    2015-08-01

    Full Text Available Background. Periodontal therapy for treatment of periodontitis involves the elimination of anatomic defect. There are two primary approaches to eliminating these anatomic defects : resective (gingivectomy, osseous resection, and apically positioned flaps, and regenerative surgery (osseous graft, guided tissue regeneration, resorbable barriers, coronally position flaps. Aims. The dentist know the outcomes after periodontal surgery. References. Periodontal regeneration means healing after periodontal surgery that results in the formation of a new attachment apparatus, consisting of cementum, periodontal ligament, and alveolar bone. Periodontal repair implies healing without restoration of the normal attachment apparatus. Histologic evaluation is the only reliable method to determine the true efficacy of periodontal therapies. Discussion. The variables involved in periodontal wound healing to solve how to achieve periodontal regeneration are manipulation of progenitor cell, alteration of pathologically exposed root surfaces, exclusion of gingival epithelium, and wound stabilization. Conclusions. Periodontal surgery usually do not result in periodontal regeneration. Gingival epithelium that proliferates apically can be inhibited by stabilization of the flap margin and regenerative surgery.

  12. Human periodontal ligament cell viability in milk and milk substitutes.

    Science.gov (United States)

    Pearson, Robert M; Liewehr, Frederick R; West, Leslie A; Patton, William R; McPherson, James C; Runner, Royce R

    2003-03-01

    The purpose of this study was to determine the efficacy of several milk substitutes compared to whole milk in maintaining the viability of human periodontal ligament (PDL) cells on avulsed teeth. PDL cells were obtained from freshly extracted, healthy third molars and cultured in Eagle's minimal essential media (EMEM). The cells were plated onto 24-well culture plates and allowed to attach for 24 h. EMEM was replaced with refrigerated whole milk (positive control), reconstituted powdered milk, evaporated milk, or one of two baby formulas (Similac or Enfamil). Tap water served as the negative control. Tissue culture plates were incubated with the experimental media at 37 degrees C for 1, 2, 4, or 8 h. Cell viability was determined by a cell proliferation assay (CellTiter 96 AQ Assay), with absorbance read at 450 nM. A two-way ANOVA (p effect on PDL cell viability between any of the materials and whole milk. At 2 h, Enfamil and Similac performed significantly better than whole milk, whereas evaporated milk performed worse. At 4 h, Enfamil performed better than whole milk, whereas all other milk substitutes performed worse. At 8 h, all substitutes performed worse than whole milk. These results suggest that Enfamil, which is supplied in powder form that does not require special storage and has a shelf life of 18 months, is a more effective storage medium for avulsed teeth than pasteurized milk for at least 4 h.

  13. Influence of bone marrow-derived mesenchymal stem cells pre-implantation differentiation approach on periodontal regeneration in vivo.

    Science.gov (United States)

    Cai, Xinjie; Yang, Fang; Yan, Xiangzhen; Yang, Wanxun; Yu, Na; Oortgiesen, Daniel A W; Wang, Yining; Jansen, John A; Walboomers, X Frank

    2015-04-01

    The implantation of bone marrow-derived mesenchymal stem cells (MSCs) has previously been shown successful to achieve periodontal regeneration. However, the preferred pre-implantation differentiation strategy (e.g. maintenance of stemness, osteogenic or chondrogenic induction) to obtain optimal periodontal regeneration is still unknown. This in vivo study explored which differentiation approach is most suitable for periodontal regeneration. Mesenchymal stem cells were obtained from Fischer rats and seeded onto poly(lactic-co-glycolic acid)/poly(ɛ-caprolactone) electrospun scaffolds, and then pre-cultured under different in vitro conditions: (i) retention of multilineage differentiation potential; (ii) osteogenic differentiation approach; and (iii) chondrogenic differentiation approach. Subsequently, the cell-scaffold constructs were implanted into experimental periodontal defects of Fischer rats, with empty scaffolds as controls. After 6 weeks of implantation, histomorphometrical analyses were applied to evaluate the regenerated periodontal tissues. The chondrogenic differentiation approach showed regeneration of alveolar bone and ligament tissues. The retention of multilineage differentiation potential supported only ligament regeneration, while the osteogenic differentiation approach boosted alveolar bone regeneration. Chondrogenic differentiation of MSCs before implantation is a useful strategy for regeneration of alveolar bone and periodontal ligament, in the currently used rat model. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Conservative Approach in the Management of Radicular Cyst in a Child: Case Report

    Directory of Open Access Journals (Sweden)

    Narendra Varma Penumatsa

    2013-01-01

    Full Text Available Radicular cyst is the most common odontogenic cystic lesion of inflammatory origin. It is also known as periapical cyst, apical periodontal cyst, root end cyst, or dental cyst. It arises from epithelial residues in the periodontal ligament as a result of inflammation. The inflammation usually follows the death of dental pulp. This paper presents a case report of a patient with radicular cyst associated with a primary molar.

  15. The effectiveness of mangosteen rind extract as additional therapy on chronic periodontitis (Clinical trials)

    OpenAIRE

    Ina Hendiani; Dede Hadidjah; Agus Susanto; Indra Mustika Setia Pribadi

    2017-01-01

    ABSTRACT   Introduction: Periodontitis is an inflammatory disease that attacks the periodontal tissue comprises the gingiva, periodontal ligament, cementum and alveolar bone caused mainly by plaque bacteriophage or other specific dominant type of bacteria. The purpose of this study was to determine the therapeutic effect of clinical application of mangosteen peel extract gel as adjunctive therapy scaling and root planing in patients with chronic periodontitis. This research was expect...

  16. Novel application of stem cell-derived factors for periodontal regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Inukai, Takeharu, E-mail: t-inukai@med.nagoya-u.ac.jp [Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine (Japan); Katagiri, Wataru, E-mail: w-kat@med.nagoya-u.ac.jp [Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine (Japan); Yoshimi, Ryoko, E-mail: lianzi@med.nagoya-u.ac.jp [Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine (Japan); Osugi, Masashi, E-mail: masashi@med.nagoya-u.ac.jp [Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine (Japan); Kawai, Takamasa, E-mail: takamasa@med.nagoya-u.ac.jp [Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine (Japan); Hibi, Hideharu, E-mail: hibihi@med.nagoya-u.ac.jp [Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine (Japan); Ueda, Minoru, E-mail: mueda@med.nagoya-u.ac.jp [Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine (Japan)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer Mesenchymal stem cells (MSCs) secrete a variety of cytokines. Black-Right-Pointing-Pointer Cytokines were detected in conditioned medium from cultured MSCs (MSC-CM). Black-Right-Pointing-Pointer MSC-CM enhanced activation of dog MSCs and periodontal ligament cells. Black-Right-Pointing-Pointer MSC-CM significantly promoted alveolar bone and cementum regeneration. Black-Right-Pointing-Pointer Multiple cytokines contained in MSC-CM promote periodontal regeneration. -- Abstract: The effect of conditioned medium from cultured mesenchymal stem cells (MSC-CM) on periodontal regeneration was evaluated. In vitro, MSC-CM stimulated migration and proliferation of dog MSCs (dMSCs) and dog periodontal ligament cells (dPDLCs). Cytokines such as insulin-like growth factor, vascular endothelial growth factor, transforming growth factor-{beta}1, and hepatocyte growth factor were detected in MSC-CM. In vivo, one-wall critical-size, intrabony periodontal defects were surgically created in the mandible of dogs. Dogs with these defects were divided into three groups that received MSC-CM, PBS, or no implants. Absorbable atelo-collagen sponges (TERUPLUG Registered-Sign ) were used as a scaffold material. Based on radiographic and histological observation 4 weeks after transplantation, the defect sites in the MSC-CM group displayed significantly greater alveolar bone and cementum regeneration than the other groups. These findings suggest that MSC-CM enhanced periodontal regeneration due to multiple cytokines contained in MSC-CM.

  17. Prevalence and Analysis of Factors Related to Occurrence of Pulp ...

    African Journals Online (AJOL)

    Uche

    between pulp stone and pristine posterior teeth, chronic periodontitis and posterior teeth ... Conclusion: It is recommended that researchers should pay special care in case selections, and ... (1982) reported a PS prevalence rate of 20.7 % in.

  18. In vivo extracellular matrix protein expression by human periodontal ...

    African Journals Online (AJOL)

    ONOS

    2010-08-23

    Aug 23, 2010 ... Extracellular matrix proteins (ECM) are described as molecular regulators of these events. ..... zation and adhesive interaction of cells (Yamada, 1983). .... periodontal ligament fibroblasts after simulation of orthodontic force.

  19. A Biofilm Pocket Model to Evaluate Different Non-Surgical Periodontal Treatment Modalities in Terms of Biofilm Removal and Reformation, Surface Alterations and Attachment of Periodontal Ligament Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Tobias T Hägi

    Full Text Available There is a lack of suitable in vitro models to evaluate various treatment modalities intending to remove subgingival bacterial biofilm. Consequently, the aims of this in vitro-study were: a to establish a pocket model enabling mechanical removal of biofilm and b to evaluate repeated non-surgical periodontal treatment with respect to biofilm removal and reformation, surface alterations, tooth hard-substance-loss, and attachment of periodontal ligament (PDL fibroblasts.Standardized human dentin specimens were colonized by multi-species biofilms for 3.5 days and subsequently placed into artificially created pockets. Non-surgical periodontal treatment was performed as follows: a hand-instrumentation with curettes (CUR, b ultrasonication (US, c subgingival air-polishing using erythritol (EAP and d subgingival air-polishing using erythritol combined with chlorhexidine digluconate (EAP-CHX. The reduction and recolonization of bacterial counts, surface roughness (Ra and Rz, the caused tooth substance-loss (thickness as well as the attachment of PDL fibroblasts were evaluated and statistically analyzed by means of ANOVA with Post-Hoc LSD.After 5 treatments, bacterial reduction in biofilms was highest when applying EAP-CHX (4 log10. The lowest reduction was found after CUR (2 log10. Additionally, substance-loss was the highest when using CUR (128±40 µm in comparison with US (14±12 µm, EAP (6±7 µm and EAP-CHX (11±10 µm. Surface was roughened when using CUR and US. Surfaces exposed to US and to EAP attracted the highest numbers of PDL fibroblasts.The established biofilm model simulating a periodontal pocket combined with interchangeable placements of test specimens with multi-species biofilms enables the evaluation of different non-surgical treatment modalities on biofilm removal and surface alterations. Compared to hand instrumentation the application of ultrasonication and of air-polishing with erythritol prevents from substance-loss and results

  20. Treatment of Angle Class I Malocclusion with Severe Bimaxillary Protrusion using Miniscrew Implants and Periodontal Ligament Distraction

    Directory of Open Access Journals (Sweden)

    K C Prabhat

    2014-01-01

    Full Text Available Bimaxillary dentoalveolar protrusion is common in Asian population. In this patient with procumbent upper and lower lips, excessive lip strain, proclined and protruded maxillary and mandibular incisors with vertical growth pattern, an acceptable treatment result, was achieved with 4-first-premolar extractions. This case report is presented with the aim, to describe the treatment approach for bimaxillary dentoalveolar protrusion using miniscrew implants for anchorage in upper arch and periodontal ligament distraction for canine retraction in lower arch and then retraction of incisors into the newly formed bone distal to lateral incisor. Treatment was completed in 18 months. The patient profile was improved, with reduction in lip procumbency, decrease in lip eversion and protrusion, and decrease mentalis strain. Dentally, the interincisal angulation improved significantly because both the maxillary and mandibular incisors were uprighted after space closer.

  1. Silk-Fibroin and Graphene Oxide Composites Promote Human Periodontal Ligament Stem Cell Spontaneous Differentiation into Osteo/Cementoblast-Like Cells.

    Science.gov (United States)

    Vera-Sánchez, Mar; Aznar-Cervantes, Salvador; Jover, Eva; García-Bernal, David; Oñate-Sánchez, Ricardo E; Hernández-Romero, Diana; Moraleda, Jose M; Collado-González, Mar; Rodríguez-Lozano, Francisco Javier; Cenis, Jose Luis

    2016-11-15

    Graphene represents one of the most interesting additions to the tissue engineering toolbox. Novel graphene-based composites are required to improve the beneficial graphene properties in terms of tridimensional polymeric structure, conferring a higher mechanical strength and favoring the differentiation of human mesenchymal stem cells. Here, we have demonstrated in a wide range of composite combinations, the successful use of graphene and silk-fibroin constructs for future bioengineering applications in the field of clinical regenerative dentistry using human periodontal ligament stem cells. Our results provide exciting new data for the development of suitable scaffolds that allow good cell engrafting, preservation of cell viability and proliferation, promotion of spontaneous osteoblastic differentiation, and importantly, stimulation of a higher cementum physiological synthesis than using other different available biomaterials.

  2. Bacterial analysis of combined periodontal-endodontic lesions by polymerase chain reaction-denaturing gradient gel electrophoresis.

    Science.gov (United States)

    Xia, Minghui; Qi, Qingguo

    2013-01-01

    We used denaturing gradient gel electrophoresis (DGGE) to compare bacterial profiles in periodontium and root canals of teeth with combined periodontal-endodontic lesions. Samples of dental plaque and necrotic pulp were collected from thirteen extracted teeth with advanced periodontitis. Genomic DNA was extracted for polymerase chain reaction (PCR) analysis using universal bacterial primers. The PCR products were then loaded onto DGGE gels to obtain fractionated bands. Characteristic DGGE bands were excised and DNA was cloned and sequenced. The number of bands, which indicates the number of bacterial species, was compared between dental plaques and necrotic pulp tissues from the same tooth. Although the difference was statistically significant (P bacteria species were present in both the periodontal pockets and root canals of the same tooth; however, periodontal bacteria did not always invade the root canals, and some bacteria in root canals were not present in periodontal pockets of the same tooth. In some teeth, unique bacteria in root canals had not passed from periodontal pockets. A basic local alignment search tool (BLAST) sequence search in Genbank indicated that new bacteria species were present in periodontal pockets and root canals. Their characteristics must thus be further analyzed.

  3. Immunolocalization of bone-resorptive cytokines in rat pulp and periapical lesions following surgical pulp exposure.

    Science.gov (United States)

    Tani-Ishii, N; Wang, C Y; Stashenko, P

    1995-08-01

    The bone-resorptive cytokines interleukin 1 (IL-1) and tumor necrosis factor (TNF) have been implicated in the pathogenesis of many chronic inflammatory diseases, including pulpitis and apical periodontitis.To further elucidate their role in these disorders, we have identified cells that express IL-1 alpha and TNF alpha in infected pulps and in developing rat periapical lesions after surgical pulp exposure. As detected by immunohistochemistry, IL-1 alpha- and TNF alpha-positive cells were present as early as 2 days after pulp exposure in both the pulp and periapical region. The numbers of cytokine-expressing cells increased up to day 4 in the pulp and up to day 30 in the periapex. In contrast, cells expressing IL-1 beta and TNF beta, the homologous forms of these mediators, were not found in pulp or periapical lesions during this period. Cells expressing IL-1 alpha and TNF alpha were identified primarily as macrophages and fibroblasts, with occasional staining of polymorphonuclear leukocytes. Osteoblasts and osteoclasts were also positive, whereas lymphocytes were negative. In general, cytokine-expressing cells were located proximal to abscesses and the root apex. These findings demonstrate that cells that express bone-resorptive cytokines IL-1 alpha and TNF alpha are present immediately after pulp exposure in this model, which supports the hypothesis that these mediators play a key role in pulpal and periapical pathogenesis, including the concomitant bone destruction. They also indicate that both resident connective tissue cells as well as infiltrating cells express bone-resorptive cytokines in response to infection in these lesions.

  4. Uncovering the molecular networks in periodontitis

    Science.gov (United States)

    Trindade, Fábio; Oppenheim, Frank G.; Helmerhorst, Eva J.; Amado, Francisco; Gomes, Pedro S.; Vitorino, Rui

    2015-01-01

    Periodontitis is a complex immune-inflammatory disease that results from a preestablished infection in gingiva, mainly due to Gram-negative bacteria that colonize deeper in gingival sulcus and latter periodontal pocket. Host inflammatory and immune responses have both protective and destructive roles. Although cytokines, prostaglandins, and proteases struggle against microbial burden, these molecules promote connective tissue loss and alveolar bone resorption, leading to several histopathological changes, namely destruction of periodontal ligament, deepening of periodontal pocket, and bone loss, which can converge to attain tooth loss. Despite the efforts of genomics, transcriptomics, proteomics/peptidomics, and metabolomics, there is no available biomarker for periodontitis diagnosis, prognosis, and treatment evaluation, which could assist on the established clinical evaluation. Nevertheless, some genes, transcripts, proteins and metabolites have already shown a different expression in healthy subjects and in patients. Though, so far, ‘omics approaches only disclosed the host inflammatory response as a consequence of microbial invasion in periodontitis and the diagnosis in periodontitis still relies on clinical parameters, thus a molecular tool for assessing periodontitis lacks in current dental medicine paradigm. Saliva and gingival crevicular fluid have been attracting researchers due to their diagnostic potential, ease, and noninvasive nature of collection. Each one of these fluids has some advantages and disadvantages that are discussed in this review. PMID:24828325

  5. EVALUATION OF CONDITION OF THE PULP BY PULSE OXIMETRY.

    Directory of Open Access Journals (Sweden)

    Dimitar Kosturkov

    2015-12-01

    Full Text Available Purpose: To conduct pulse oximetry (PO and electric pulp test (EPT on intact frontal teeth in clinically healthy patients aged between 18 and 25 years who do not have periodontal disease. Material/Methods: To achieve the aim 1058 teeth of 31 patients were studied. The following inclusion criteria for the study were set: 1. Age – 18-25 years. 2. Clinically healthy patient, who does not have any systemic diseases, do not take any medicine systematically. 3. Intact frontal teeth – without carious lesions, restorations or root canal treatment. 4. Lack of periodontal disease. Research was conducted with a pulse oximeter Contec™ - CMS60D and a custom made probe holder. Results: Average values obtained by pulse oximetry in upper jaw vary between 83% and 85%. In lower jaw – between 82% and 85%. 99% is the maximum and 48% is the minimum registered value. The average value of the measurement of all the teeth is 84%. The average saturation measured on the small finger of the right hand of the patient is 98%. The average value of EPT for all teeth is 4 μA. The maximum measured value is 20 μA, and the minimum - 1 μA. Conclusions: 1. Adequate study of the pulp includes two complementary methods – electric pulp test (evaluation of innervation and pulse oximetry (assessment of pulp microcirculation. 2. Teeth that are larger in size have larger values of PO and EPT, which is in direct relation to the size of their pulp chamber. 3. The total saturation, measured in the little finger of the right hand is greater than the one of the teeth.

  6. Dental Investigations: Efficiency of Nonsurgical Periodontal Therapy in Moderate Chronic Periodontitis

    Directory of Open Access Journals (Sweden)

    Mlachkova Antoaneta M.

    2014-08-01

    Full Text Available INTRODUCTION: Chronic periodontitis is defined as an inflammatory disease of the supporting tissues of teeth caused by microorganisms in the dental biofilm, resulting in progressive destruction of the periodontal ligament and alveolar bone with pocket formation and gingival recession. Treatment of chronic periodontitis aims at arresting the inflammation and stopping the loss of attachment by removal and control of the supra- and subgingival biofilm and establishing a local environment and microflora compatible with periodontal health. The AIM of this study was to evaluate the effectiveness of non-surgical therapy (scaling and root planning in the treatment of moderate chronic periodontitis. MATERIALS AND METHODS: The study included 30 patients aged between 33 and 75 years, of which 46.7% women and 53.3% men, diagnosed with moderate and, at some sites, severe periodontitis. They were treated with non-surgical periodontal therapy methods (scaling and root planning and curettage if indicated. Additionally, chemical plaque control with rinse water containing chlorhexidine was applied. The diagnostic and reassessment procedures included measuring the periodontal indices of 601 periodontal units before and after the therapy. The indices measured were the papillary bleeding index (PBI, the hygiene index (HI, the probing pocket depth (PPD and the clinical attachment level (CAL. RESULTS: Significant reduction of plaque and gingival inflammation was found in all treated patients; we also found a statistically significant reduction of periodontal pockets with clinically measured depth ⋋ 5 mm (PD ⋋ 5 mm. Pockets with PD > 5 mm did not show statistically significant lower incidence rates probably due to the initially small percentage of deep pockets in the patients studied. There was a statistically significant reduction of all sites with attachment loss, the highest significance found at sites where the attachment loss was greater than 5 mm. CONCLUSION

  7. An evaluation of the periapical status of teeth with necrotic pulps using periapical radiography and cone-beam computed tomography.

    Science.gov (United States)

    Abella, F; Patel, S; Durán-Sindreu, F; Mercadé, M; Bueno, R; Roig, M

    2014-04-01

    To evaluate the presence or absence of periapical (PA) radiolucencies on individual roots of teeth with necrotic pulps, as assessed with digital PA radiographs and cone-beam computed tomography (CBCT). Digital PA radiographs and CBCT scans were taken from 161 endodontically untreated teeth (from 155 patients) diagnosed with non-vital pulps (pulp necrosis with normal PA tissue, symptomatic apical periodontitis, asymptomatic apical periodontitis, acute apical abscess and chronic apical abscess). Images were assessed by two calibrated endodontists to analyse the radiographic PA status of the teeth. A consensus was reached in the event of any disagreement. The data were analysed using a McNemar's test, and significance was set at P ≤ 0.05. Three hundred and forty paired images of roots were assessed with both digital PA radiographs and CBCT images. Fifteen additional roots were identified with CBCT. PA radiolucencies were present in 132 (38.8%) roots when assessed with PA radiographs, and in 196 (57.6%) roots when assessed with CBCT. This difference was statistically significant (P apical periodontitis or acute apical abscess, CBCT images revealed a statistically larger number of PA radiolucencies than did PA radiographs (P asymptomatic apical periodontitis (P = 0.31) or chronic apical abscess (P = 1). Unlike PA radiographs, CBCT revealed a higher prevalence of PA radiolucencies when endodontically untreated teeth with non-vital pulps were examined. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. Proliferation and osteogenic differentiation of human periodontal ligament cells on akermanite and β-TCP bioceramics

    Directory of Open Access Journals (Sweden)

    L Xia

    2011-07-01

    Full Text Available The purpose of this study was to investigate the effects of akermanite as compared to β-TCP on attachment, proliferation, and osteogenic differentiation of human periodontal ligament cells (hPDLCs. Scanning electron microscopy (SEM and actin filament labeling were used to reveal attachment and growth of hPDLCs seeded on β-TCP and akermanite ceramic. Cell proliferation was tested by lactic acid production and MTT analysis, while osteogenic differentiation was assayed by alkaline phosphatase (ALP expression and real-time polymerase chain reaction (PCR analysis on markers of osteopontin (OPN, dentin matrix acidic phosphoprotein-1 (DMP-1, and osteocalcin (OCN, and further detected by enzyme-linked immunosorbent analysis (ELISA analysis for OCN expression. Besides, the ions released from akermanite and their effect on hPDLCs was also measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES, MTT analysis, ALP expression and real-time PCR analysis. hPDLCs attached well on both ceramics, but showed better spreading on akermanite. hPDLCs proliferated more rapidly on akermanite than β-TCP. Importantly, osteogenic differentiation of hPDLCs was enhanced on akermanite compared to β-TCP. Besides, Ca, Mg and Si ions were released from akermanite, while only Ca ions were released from β-TCP. Moreover, more pronounced proliferation and higher osteogenic gene expression for hPDLCs cultured with akermanite extract were detected as compared to cells cultured on akermanite. Therefore, akermanite ceramic showed an enhanced effect on proliferation and osteogenic differentiation of hPDLCs, which might be attributed to the release of ions containing Ca, Mg and Si from the material. It is suggested that akermanite ceramics may serve as a potential material for periodontal bone regeneration.

  9. Fighting for territories: time-lapse analysis of dental pulp and dental follicle stem cells in co-culture reveals specific migratory capabilities

    Directory of Open Access Journals (Sweden)

    C Schiraldi

    2012-11-01

    Full Text Available Stem cell migration is a critical step during the repair of damaged tissues. In order to achieve appropriate cell-based therapies for tooth and periodontal ligament repair it is necessary first to understand the dynamics of tissue-specific stem cell populations such as dental pulp stem cells (DPSC and dental follicle stem cells (DFSC. Using time-lapse imaging, we analysed migratory and proliferative capabilities of these two human stem cell lines in vitro. When cultured alone, both DPSC and DFSC exhibited low and irregular migration profiles. In co-cultures, DFSC, but not DPSC, spectacularly increased their migration activity and velocity. DFSC rapidly surrounded the DPSC, thus resembling the in vivo developmental process, where follicle cells encircle both dental epithelium and pulp. Cell morphology was dependent on the culture conditions (mono-culture or co-culture and changed over time. Regulatory genes involved in dental cell migration and differentiation such as TWIST1, MSX1, RUNX2, SFRP1 and ADAM28, were also evaluated in co-cultures. MSX1 up-regulation indicates that DPSC and DFSC retain their odontogenic potential. However, DPSC lose their capacity to differentiate into odontoblasts in the presence of DFSC, as suggested by RUNX2 up-regulation and TWIST1 down-regulation. In contrast, the unchanged levels of SFRP1 expression suggest that DFSC retain their potential to form periodontal tissues even in the presence of DPSC. These findings demonstrate that stem cells behave differently according to their environment, retain their genetic memory, and compete with each other to acquire the appropriate territory. Understanding the mechanisms involved in stem cell migration may lead to new therapeutic approaches for tooth repair.

  10. Contradictions in the treatment of traumatic dental injuries and ways to proceed in dental trauma research

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Lauridsen, Eva; Andreasen, Frances Meriam

    2010-01-01

    dentition. Accepted treatment philosophy is dentin coverage (dental liner and/or dentin bonded restoration) to prevent bacteria penetration into the pulp. Today there is, apart from deep proximal fractures, no evidence that this treatment is necessary to protect the pulp. In case of luxation injuries......, the accepted treatment principles appear to be anatomically correct repositioning, stabilization with a splint and sometimes antibiotic coverage. In clinical studies, these principles could not be proven to optimize either periodontal or pulpal healing, the explanation possibly being that both reposition...... and application of splints in certain cases add extra damage to the pulp and periodontal ligament. In case of root fractures with dislocation, fast and optimal repositioning and rigid long-term splinting (i.e. 3 months) have been considered the principle of treatment. However, a recent clinical study has shown...

  11. Correlation between Histological Status of the Pulp and Its Response to Sensibility Tests

    OpenAIRE

    Naseri, Mandana; Khayat, Akbar; Zamaheni, Sara; Shojaeian, Shiva

    2017-01-01

    Introduction: The purpose of this study was to assess the accuracy of sensibility tests by correlating it with histologic pulp condition. Methods and Materials: Assessment of clinical signs and symptoms were performed on 65 permanent teeth that were scheduled to be extracted for periodontal, prosthodontic or orthodontic reasons. The normal pulp and reversible pulpitis were considered as treatable tooth conditions while irreversible pulpitis and necrosis were considered as untreatable conditio...

  12. Periodontal Bioengineering: A Discourse in Surface Topographies, Progenitor Cells and Molecular Profiles

    Science.gov (United States)

    Dangaria, Smit J.

    2011-12-01

    Stem/progenitor cells are a population of cells capable of providing replacement cells for a given differentiated cell type. We have applied progenitor cell-based technologies to generate novel tissue-engineered implants that use biomimetic strategies with the ultimate goal of achieving full regeneration of lost periodontal tissues. Mesenchymal periodontal tissues such as cementum, alveolar bone (AB), and periodontal ligament (PDL) are neural crest-derived entities that emerge from the dental follicle (DF) at the onset of tooth root formation. Using a systems biology approach we have identified key differences between these periodontal progenitors on the basis of global gene expression profiles, gene cohort expression levels, and epigenetic modifications, in addition to differences in cellular morphologies. On an epigenetic level, DF progenitors featured high levels of the euchromatin marker H3K4me3, whereas PDL cells, AB osteoblasts, and cementoblasts contained high levels of the transcriptional repressor H3K9me3. Secondly, we have tested the influence of natural extracellular hydroxyapatite matrices on periodontal progenitor differentiation. Dimension and structure of extracellular matrix surfaces have powerful influences on cell shape, adhesion, and gene expression. Here we show that natural tooth root topographies induce integrin-mediated extracellular matrix signaling cascades in tandem with cell elongation and polarization to generate physiological periodontium-like tissues. In this study we replanted surface topography instructed periodontal ligament progenitors (PDLPs) into rat alveolar bone sockets for 8 and 16 weeks, resulting in complete attachment of tooth roots to the surrounding alveolar bone with a periodontal ligament fiber apparatus closely matching physiological controls along the entire root surface. Displacement studies and biochemical analyses confirmed that progenitor-based engineered periodontal tissues were similar to control teeth and

  13. Human dental pulp stem cells: Applications in future regenerative medicine

    Science.gov (United States)

    Potdar, Pravin D; Jethmalani, Yogita D

    2015-01-01

    Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine. PMID:26131314

  14. Comparison of periodontal ligament injection and inferior alveolar nerve block in mandibular primary molars pulpotomy: a randomized control trial.

    Science.gov (United States)

    Haghgoo, Roza; Taleghani, Ferial

    2015-05-01

    Inferior alveolar nerve block is a common technique for anesthesia of the primary mandibular molars. A number of disadvantages have been shown to be associated with this technique. Periodontal ligament (PDL) injection could be considered as an alternative to inferior alveolar nerve block. The aim of this study was to evaluate the effectiveness of PDL injection in the anesthesia of primary molar pulpotomy with mandibular block. This study was performed using a sequential double-blind randomized trial design. 80 children aged 3-7 years old who required pulpotomy in symmetrical mandibular primary molars were selected. The teeth of these children were anesthetized with periodontal injection on one side of the mandible and block on the other. Pulpotomy was performed on each patient during the same appointment. Signs of discomfort, including hand and body tension and eye movement, the verbal complaint and crying (SEM scale), were evaluated by a dental assistant who was blinded to the treatment allocation of the patients. Finally, the data were analyzed using the exact Fisher test and Pearson Chi-squared exact test. Success rate was 88/75 and 91/25 in the PDL injection and nerve block groups, respectively. There was no statistically significant difference between the two techniques (P = 0.250). Results showed that PDL injection can be used as an alternative to nerve block in pulpotomy of the mandibular primary molars.

  15. Combined endodontic-periodontic treatment of a palatal groove: a case report.

    Science.gov (United States)

    Schwartz, Scott A; Koch, Michael A; Deas, David E; Powell, Charles A

    2006-06-01

    The palatal groove is a developmental anomaly that predisposes the tooth involved to a severe periodontal defect. When further complicated by pulp necrosis, these grooves often present a diagnostic and treatment planning challenge that requires an interdisciplinary treatment approach. This case report describes the successful collaborative management of a maxillary lateral incisor with an extensive palatal groove using a combination of nonsurgical endodontic therapy, odontoplasty, and periodontal regenerative techniques.

  16. The Plastic Nature of the Human Bone-Periodontal Ligament-Tooth Fibrous Joint

    Science.gov (United States)

    Ho, Sunita P.; Kurylo, Michael P.; Grandfield, Kathryn; Hurng, Jonathan; Herber, Ralf-Peter; Ryder, Mark I.; Altoe, Virginia; Aloni, Shaul; Feng, Jian Q. (Jerry); Webb, Samuel; Marshall, Grayson W.; Curtis, Donald; Andrews, Joy C.; Pianetta, Piero

    2014-01-01

    This study investigates bony protrusions within a narrowed periodontal ligament space (PDL-space) of a human bone-PDL-tooth fibrous joint by mapping structural, biochemical, and mechanical heterogeneity. Higher resolution structural characterization was achieved via complementary atomic force microscopy (AFM), nano transmission X-ray microscopy (nano-TXM), and micro tomography (Micro XCT™). Structural heterogeneity was correlated to biochemical and elemental composition, illustrated via histochemistry and microprobe X-ray fluorescence analysis (μ-XRF), and mechanical heterogeneity evaluated by AFM-based nanoindentation. Results demonstrated that the narrowed PDL-space was due to invasion of bundle bone (BB) into PDL-space. Protruded BB had a wider range with higher elastic modulus values (2-8 GPa) compared to lamellar bone (0.8-6 GPa), and increased quantities of Ca, P and Zn as revealed by μ-XRF. Interestingly, the hygroscopic 10-30 μm interface between protruded BB and lamellar bone exhibited higher X-ray attenuation similar to cement lines and lamellae within bone. Localization of the small leucine rich proteoglycan biglycan (BGN) responsible for mineralization was observed at the PDL-bone interface and around the osteocyte lacunae. Based on these results, it can be argued that the LB-BB interface was the original site of PDL attachment, and that the genesis of protruded BB identified as protrusions occurred as a result of shift in strain. We emphasize the importance of bony protrusions within the context of organ function and that additional study is warranted. PMID:24063947

  17. Gingiva as a new and the most accessible source of mesenchymal stem cells from the oral cavity to be used in regenerative therapies

    Directory of Open Access Journals (Sweden)

    Bartłomiej Górski

    2016-08-01

    Full Text Available Since the discovery of bone marrow mesenchymal stem cells (BMMSCs, many researchers have focused their attention on new sources of mesenchymal stem cells (MSCs. Consequently, MSCs that display self-renewal capacity, multidifferentiation potential and immunomodulatory properties have been isolated from human oral tissues, including tooth, periodontal ligament, and gingiva. Oral MSCs involve dental pulp stem cells (DPSCs, stem cells from exfoliated deciduous teeth (SHED, periodontal ligament stem cells (PDLSCs, dental follicle stem cells (DFCs, stem cells from apical papilla (SCAP and gingival stem cells (GMSCs. Current research on oral stem cells is expanding at an unprecedented rate. That being the case, a plethora of in vitro differentiation assays, immunodeficient animal transplantations and preclinical trials have demonstrated that these cells exhibit strong potential for both regenerative dentistry and medicine. Oral MSCs have proved their capability to repair cornea, dental pulp, periodontal, bone, cartilage, tendon, neural, muscle and endothelial tissues without neoplasm formation as well as to treat inflammatory diseases and immune disorders. This article describes the current understanding of oral MSCs and their prospective applications in cell-based therapy, tissue engineering and regenerative medicine. Special attention is placed on GMSCs as they are easily accessible and may be obtained in a convenient and minimally invasive way.

  18. miRNA-720 controls stem cell phenotype, proliferation and differentiation of human dental pulp cells.

    Directory of Open Access Journals (Sweden)

    Emilio Satoshi Hara

    Full Text Available Dental pulp cells (DPCs are known to be enriched in stem/progenitor cells but not well characterized yet. Small non-coding microRNAs (miRNAs have been identified to control protein translation, mRNA stability and transcription, and have been reported to play important roles in stem cell biology, related to cell reprogramming, maintenance of stemness and regulation of cell differentiation. In order to characterize dental pulp stem/progenitor cells and its mechanism of differentiation, we herein sorted stem-cell-enriched side population (SP cells from human DPCs and periodontal ligament cells (PDLCs, and performed a locked nucleic acid (LNA-based miRNA array. As a result, miR-720 was highly expressed in the differentiated main population (MP cells compared to that in SP cells. In silico analysis and a reporter assay showed that miR-720 targets the stem cell marker NANOG, indicating that miR-720 could promote differentiation of dental pulp stem/progenitor cells by repressing NANOG. Indeed, gain-and loss-of-function analyses showed that miR-720 controls NANOG transcript and protein levels. Moreover, transfection of miR-720 significantly decreased the number of cells positive for the early stem cell marker SSEA-4. Concomitantly, mRNA levels of DNA methyltransferases (DNMTs, which are known to play crucial factors during stem cell differentiation, were also increased by miR-720 through unknown mechanism. Finally, miR-720 decreased DPC proliferation as determined by immunocytochemical analysis against ki-67, and promoted odontogenic differentiation as demonstrated by alizarin red staining, as well as alkaline phosphatase and osteopontin mRNA levels. Our findings identify miR-720 as a novel miRNA regulating the differentiation of DPCs.

  19. Effects of simvastain and enamel matrix derivative on Portland cement with bismuth oxide-induced growth and odontoblastic differentiation in human dental pulp cells.

    Science.gov (United States)

    Lee, So-Youn; Min, Kyung-San; Choi, Gi-Woon; Park, Jae-Hong; Park, Sang-Hyuk; Lee, Sang-Im; Kim, Eun-Cheol

    2012-03-01

    We previously reported that bismuth oxide containing Portland cement (BPC) showed similar biocompatibility to Portland cement (PC) in periodontal ligament cells. However, the bioactivity of simvastatin and Emdogain (Biora AB, Malmö, Sweden) on BPC was not reported. The aim of this study was to evaluate the effects of simvastatin and Emdogain on BPC compared with mineral trioxide aggregate (MTA) in human dental pulp cells (HDPCs). Cell growth was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay. Differentiation was evaluated by alkaline phosphatase (ALP) activity, alizarin red staining, and reverse-transcriptase polymerase chain reaction. The cell growth of HDPCs exposed to Emdogain and simvastatin plus BPC was superior to those administered BPC alone and similar to those that received MTA for 14 days. The simvastatin and Emdogain groups increased the odontogenic potential of the BPC group with respect to ALP activity, mineralization nodules, messenger RNA expression of ALP, osteopontin, osteocalcin, Runx2, and osterix. These results suggest that simvastatin and Emdogain improved cell growth and the differentiation of the BPC group in HDPCs and may be useful ingredients in BPC as pulp-capping material. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Normalization of periodontal tissues in osteopetrotic mib mutant rats, treated with CSF-1

    Science.gov (United States)

    Wojtowicz, A.; Yamauchi, M.; Sotowski, R.; Ostrowski, K.

    1998-01-01

    The osteopetrotic mib mutation in rats causes defects in the skeletal bone tissue in young animals. These defects, i.e. slow bone remodelling, changes in both crystallinity and mineral content, are transient and undergo normalization, even without any treatment in 6-wk-old animals. Treatment with CSF-1 (colony stimulating factor-1) accelerates the normalization process in skeletal bones. The periodontal tissues around the apices of incisors show abnormalities caused by the slow remodelling process of the mandible bone tissue, the deficiency of osteoclasts and their abnormal morphology, as well as the disorganization of periodontal ligament fibres. In contrast to the skeletal tissues, these abnormalities would not undergo spontaneous normalization. Under treatment with colony stimulating factor 1 (CSF-1), the primitive bone trabeculae of mandible are resorbed and the normalization of the number of osteoclasts and their cytology occurs. The organization of the periodontal ligament fibres is partially restored, resembling the histological structure of the normal one.

  1. Evaluation of Periodontal Ligament Cell Viability in Three Different Storage Media: An in Vitro Study

    Directory of Open Access Journals (Sweden)

    Meenakshi Sharma

    2016-01-01

    Full Text Available Objectives: This study was undertaken to evaluate the viability of periodontal ligament (PDL cells of avulsed teeth in three different storage media.Materials and Methods: Forty-five premolars extracted for orthodontic therapeutic purposes were randomly and equally divided into three groups based on storage media used [Group I: milk (control; Group II: aloe vera (experimental; Group III: egg white (experimental]. Following extractions, the teeth were placed in one of the three different storage media for 30 minutes, following which the scrapings of the PDL from these teeth were collected in Falcon tubes containing collagenase enzyme in 2.5 mL of phosphate buffered saline. The tubes were subsequently incubated for 30 minutes and centrifuged for five minutes at 800 rpm. The obtained PDL cells were stained with Trypan Blue and were observed under optical microscope. The percentage of viable cells was calculated.Results: Aloe vera showed the highest percentage of viable cells (114.3±8.0, followed by egg white (100.9±6.3 and milk (101.1±7.3.Conclusion: Within the limitations of this study, it appears that aloe vera maintains PDL cell viability better than egg white or milk.

  2. [Periodontal abscess: etiology, diagnosis and treatment].

    Science.gov (United States)

    Vályi, Péter; Gorzó, István

    2004-08-01

    The periodontal abscess is an acute destructive process in the periodontium resulting in localized collections of pus communicating with the oral cavity through the gingival sulcus or other periodontal sites and not arising from the tooth pulp. The prevalence of periodontal abscess is relatively high and it affects the prognosis of the tooth. Periodontal abscesses can develop on the base of persisting periodontitis but can also occur in the absence of periodontitis. The cause of the development of periodontal abscess originating from chronic periodontitis is the marginal closure of a periodontal pocket, or the pocket lumen might be too tight to drain the increased suppuration due to changes in the composition of subgingival microflora, alteration of bacterial virulence or host defenses. Diagnosis of a periodontal abscess is based on medical and dental history as well as oral examination (pocket depth, swelling, suppuration, mobility, sensibility of the tooth). The most prevalent group of bacteria: P. gingivalis, P. intermedia, B. forsythus, F. nucleatum and P. micros. Previous studies have suggested that the complete therapy of the periodontitis patients with acute periodontal abscess has to do in two stages: the first stage is the management of acute lesions, then the second stage is the appropriate comprehensive treatment of the original and/or residual lesions. The management of acute lesions includes establishing drainage via pocket lumen, subgingival scaling and root planing, curettage of the lining pocket epithelia and seriously inflamed connective tissue, compressing pocket wall to underlying tooth and periodontal support, and maintaining tissue contact. Some authors recommend the incision or to establish drainage and irrigation, or a flap surgery, or even extraction of hopeless teeth. We recommend the use of systemic antibiotics as a preventive measure of systemic disease or in case of systemic symptoms.

  3. Viability of human periodontal ligament fibroblasts in milk, Hank's balanced salt solution and coconut water as storage media.

    Science.gov (United States)

    Souza, B D M; Lückemeyer, D D; Reyes-Carmona, J F; Felippe, W T; Simões, C M O; Felippe, M C S

    2011-02-01

    To evaluate the effectiveness of various storage media at 5 °C for maintaining the viability of human periodontal ligament fibroblasts (PDLF). Plates with PDLF were soaked in recently prepared Hank's balanced salt solution (HBSS), skimmed milk, whole milk, Save-A-Tooth(®) system's HBSS (Save), natural coconut water, industrialized coconut water or tap water (negative control) at 5 °C for 3, 6, 24, 48, 72, 96 and 120 h. Minimum essential medium (MEM) at 37 °C served as the positive control. PDL cell viability was determined by MTT assay. Data were statistically analysed by Kruskal-Wallis test complemented by the Scheffé test (α=5%). The greatest number of viable cells was observed for MEM. Skimmed and whole milk, followed by natural coconut water and HBSS, were the most effective media in maintaining cell viability (Pmilk had the greatest capacity to maintain PDLF viability when compared with natural coconut water, HBSS, Save, industrialized coconut water and tap water. © 2010 International Endodontic Journal.

  4. Policaprolactone/polyvinylpyrrolidone/siloxane hybrid materials: Synthesis and in vitro delivery of diclofenac and biocompatibility with periodontal ligament fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Peña, José A. [Departamento de Química, Pontificia Universidad Javeriana, Bogotá D.C. (Colombia); Gutiérrez, Sandra J., E-mail: s.gutierrez@javeriana.edu.co [Centro de investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá (Colombia); Villamil, Jean C. [Centro de investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá (Colombia); Agudelo, Natalia A. [Instituto de Química, Universidad de Antioquia, Medellin (Colombia); Pérez, León D., E-mail: ldperezp@unal.edu.co [Grupo de Macromoléculas, Departamento de Química, Universidad Nacional de Colombia, Carrera 45 No 26–85, edificio 451 of. 449, Bogotá D.C. Colombia (Colombia)

    2016-01-01

    In this paper, we report the synthesis of polycaprolactone (PCL) based hybrid materials containing hydrophilic domains composed of N-vinylpyrrolidone (VP), and γ-methacryloxypropyltrimethoxysilane (MPS). The hybrid materials were obtained by RAFT copolymerization of N-vinylpyrrolidone and MPS using a pre-formed dixanthate-end-functionalized PCL as macro-chain transfer agent, followed by a post-reaction crosslinking step. The composition of the samples was determined by elemental and thermogravimetric analyses. Differential scanning calorimetry and X-ray diffraction indicated that the crystallinity of PCL decreases in the presence of the hydrophilic domains. Scanning electron microscopy images revealed that the samples present an interconnected porous structure on the swelling. Compared to PCL, the hybrid materials presented low water contact angle values and higher elastic modulus. These materials showed controlled release of diclofenac, and biocompatibility with human periodontal ligament fibroblasts. - Highlights: • Synthesis of Policaprolactone/polyvinylpyrrolidone/siloxane hybrid materials • Moderated hydrophilic materials with high swelling resistance • Organic–inorganic hybrid materials were biocompatible.

  5. Periodontitis: facts, fallacies and the future.

    Science.gov (United States)

    Slots, Jørgen

    2017-10-01

    This volume of Periodontology 2000 represents the 25th anniversary of the Journal, and uses the occasion to assess important advancements in periodontology over the past quarter-century as well as the hurdles that remain. Periodontitis is defined by pathologic loss of the periodontal ligament and alveolar bone. The disease involves complex dynamic interactions among active herpesviruses, specific bacterial pathogens and destructive immune responses. Periodontal diagnostics is currently based on clinical rather than etiologic criteria, and provides limited therapeutic guidance. Periodontal causative treatment consists of scaling, antiseptic rinses and occasionally systemic antibiotics, and surgical intervention has been de-emphasized, except perhaps for the most advanced types of periodontitis. Plastic surgical therapy includes soft-tissue grafting to cover exposed root surfaces and bone grafting to provide support for implants. Dental implants are used to replace severely diseased or missing teeth, but implant overuse is of concern. The utility of laser treatment for periodontitis remains unresolved. Host modulation and risk-factor modification therapies may benefit select patient groups. Patient self-care is a critical part of periodontal health care, and twice-weekly oral rinsing with 0.10-0.25% sodium hypochlorite constitutes a valuable adjunct to conventional anti-plaque and anti-gingivitis treatments. A link between periodontal herpesviruses and systemic diseases is a strong biological plausibility. In summary, research during the past 25 years has significantly changed our concepts of periodontitis pathobiology and has produced more-effective and less-costly therapeutic options. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Growth/differentiation factor-5: pre-clinical and clinical evaluations of periodontal regeneration and alveolar augmentation--review.

    Science.gov (United States)

    Lee, Jaebum; Wikesjö, Ulf M E

    2014-08-01

    Growth/differentiation factor-5 (GDF-5) plays critical roles in mesenchymal cell differentiation and stimulates human periodontal ligament cell proliferation. Potentially, GDF-5 may also play roles in wound healing including periodontal regeneration and alveolar augmentation. The objective of this review was to provide up-to-date information from pre-clinical/clinical studies evaluating GDF-5 for these indications. A comprehensive search using PubMed and Google search engines was conducted to identify reports on GDF-5 applied to periodontal and alveolar indications. Two reviewers independently screened the titles and abstracts from a total of 479 reports. Full-length articles of 17 pre-clinical and four clinical studies were selected and reviewed. Canine-, porcine- and non-human primate-based models as well as human clinical trials were used in the evaluation of GDF-5 in support of periodontal regeneration and alveolar augmentation. An absorbable collagen sponge (ACS), β-tricalcium phosphate (β-TCP) and a poly(lactic-co-glycolic) acid (PLGA) were evaluated as candidate carriers for GDF-5 using various dose and healing intervals demonstrating significantly enhanced periodontal regeneration/alveolar augmentation including cementum, periodontal ligament and alveolar bone with limited, if any, adverse effects. Growth/differentiation factor-5 supports periodontal regeneration/alveolar augmentation without aberrant healing events documented in qualified pre-clinical models and clinical pilot studies. In perspective, GDF-5 appears a promising technology for periodontal regeneration/alveolar augmentation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Prevotella intermedia stimulates tissue-type plasminogen activator and plasminogen activator inhibitor-2 expression via multiple signaling pathways in human periodontal ligament cells.

    Science.gov (United States)

    Guan, Su-Min; He, Jian-Jun; Zhang, Ming; Shu, Lei

    2011-06-01

    Prevotella intermedia is an important periodontal pathogen that induces various inflammatory and immune responses. In this study, we investigated the effects of P. intermedia on the plasminogen system in human periodontal ligament (hPDL) cells and explored the signaling pathways involved. Using semi-quantitative reverse transcription (RT)-PCR and quantitative real-time RT-qPCR, we demonstrated that P. intermedia challenge increased tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor (PAI)-2 expression in a concentration- and time-dependent manner, but exerted no influence on urokinase-type plasminogen activator and PAI-1mRNA expression in hPDL cells. Prevotella intermedia stimulation also enhanced tPA protein secretion as confirmed by enzyme-linked immunosorbent assay. Western blot results revealed that P. intermedia treatment increased phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase (p38). ERK, JNK and protein kinase C inhibitors significantly attenuated the P. intermedia-induced tPA and PAI-2 expression. Furthermore, p38 and phosphatidylinositol 3-kinase inhibitors markedly decreased PAI-2 expression, whereas they showed no or little inhibition on tPA expression. In contrast, inhibition of protein kinase A greatly enhanced the upregulatory effect of P. intermedia on tPA and PAI-2 expression. Our results suggest that P. intermedia may contribute to periodontal tissue destruction by upregulating tPA and PAI-2 expression in hPDL cells via multiple signaling pathways. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Endo-periodontal lesion--endodontic approach.

    Science.gov (United States)

    Jivoinovici, R; Suciu, I; Dimitriu, B; Perlea, P; Bartok, R; Malita, M; Ionescu, C

    2014-01-01

    Endo-perio lesions might be interdependent because of the vascular and anatomic connections between the pulp and the periodontium. The aim of this study is to emphasise that primary endodontic lesion heals after a proper instrumentation, disinfection and sealing of the endodontic space. The primary endodontic lesion with a secondary periodontal involvement first requires an endodontic therapy and, in the second stage, a periodontal therapy. The prognosis is good, with an adequate root canal treatment; it depends on the severity of the periodontal disease, appropriate healing time and the response to the treatment. A correct diagnosis is sometimes difficult; an accurate identification of the etiologic factors is important for an adequate treatment. Primary perio-endo lesion may heal after a proper disinfection and sealing of the endodontic system, the one-year follow-up radiograph showing bonny repair. Invasive periodontal procedures should be avoided at that moment. The microorganisms and by-products from the infected root canal may cross accessory and furcal canals and determine sinus tract and loss of attachment. In both clinical cases presented in this article, successful healing was obtained after a proper disinfection and sealing of the endodontic system.

  9. In vivo extracellular matrix protein expression by human periodontal ...

    African Journals Online (AJOL)

    It is well known that the orthodontic force applied to teeth generates a series of events that remodel the periodontal ligament (PDL). Extracellular matrix proteins (ECM) are described as molecular regulators of these events. However, the exact contribution of these proteins in human PDL modeling by orthodontic force ...

  10. Establishment and characterization of novel epithelial-like cell lines derived from human periodontal ligament tissue in vitro.

    Science.gov (United States)

    Tansriratanawong, Kallapat; Ishikawa, Hiroshi; Toyomura, Junko; Sato, Soh

    2017-10-01

    In this study, novel human-derived epithelial-like cells (hEPLCs) lines were established from periodontal ligament (PDL) tissues, which were composed of a variety of cell types and exhibited complex cellular activities. To elucidate the putative features distinguishing these from epithelial rest of Malassez (ERM), we characterized hEPLCs based on cell lineage markers and tight junction protein expression. The aim of this study was, therefore, to establish and characterize hEPLCs lines from PDL tissues. The hEPLCs were isolated from PDL of third molar teeth. Cellular morphology and cell organelles were observed thoroughly. The characteristics of epithelial-endothelial-mesenchymal-like cells were compared in several markers by gene expression and immunofluorescence, to ERM and human umbilical-vein endothelial cells (HUVECs). The resistance between cellular junctions was assessed by transepithelial electron resistance, and inflammatory cytokines were detected by ELISA after infecting hEPLCs with periodontopathic bacteria. The hEPLCs developed into small epithelial-like cells in pavement appearance similar to ERM. However, gene expression patterns and immunofluorescence results were different from ERM and HUVECs, especially in tight junction markers (Claudin, ZO-1, and Occludins), and endothelial markers (vWF, CD34). The transepithelial electron resistance indicated higher resistance in hEPLCs, as compared to ERM. Periodontopathic bacteria were phagocytosed with upregulation of inflammatory cytokine secretion within 24 h. In conclusion, hEPLCs that were derived using the single cell isolation method formed tight multilayers colonies, as well as strongly expressed tight junction markers in gene expression and immunofluorescence. Novel hEPLCs lines exhibited differently from ERM, which might provide some specific functions such as metabolic exchange and defense mechanism against bacterial invasion in periodontal tissue.

  11. Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration.

    Science.gov (United States)

    Zhang, Hao; Liu, Shiyu; Zhu, Bin; Xu, Qiu; Ding, Yin; Jin, Yan

    2016-11-14

    Tissue-engineering strategies based on mesenchymal stem cells (MSCs) and cell sheets have been widely used for periodontal tissue regeneration. However, given the complexity in periodontal structure, the regeneration methods using a single species of MSC could not fulfill the requirement for periodontal regeneration. We researched the interaction between the periodontal ligament stem cells (PDLSCs) and jaw bone marrow-derived mesenchymal stem cells (JBMMSCs), and constructed a composite cell sheet comprising both of the above MSCs to regenerate complex periodontium-like structures in nude mice. Our results show that by co-culturing PDLSCs and JBMMSCs, the expressions of bone and extracellular matrix (ECM)-related genes and proteins were significantly improved in both MSCs. Further investigations showed that, compared to the cell sheet using PDLSCs or JBMMSCs, the composite stem cell sheet (CSCS), which comprises these two MSCs, expressed higher levels of bone- and ECM-related genes and proteins, and generated a composite structure more similar to the native periodontal tissue physiologically in vivo. In conclusion, our results demonstrate that the crosstalk between PDLSCs and JBMMSCs in cell sheets facilitate regeneration of complex periodontium-like structures, providing a promising new strategy for physiological and functional regeneration of periodontal tissue.

  12. Effect of storage in media with different ion strengths and osmolalities on human periodontal ligament cells

    International Nuclear Information System (INIS)

    Blomloef, L.; Otteskog, P.; Hammarstroem, L.

    1981-01-01

    The viability of the periodontal ligament (PDL) cells is critical for a successful healing of replanted exarticulated teeth. It is mainly dependent on the duration of the extra-alveolar time and the storage medium. Saliva has usually been recommended as the most suitable storage medium, but recent experimental studies indicate that milk is preferable. In the present study the effect on cultured PDL cells of saliva and milk has been compared with some reference media such as tap water or saline by means of a 3 H-uridine leakage test. Storage in milk or saline was found to cause much less 3 H-uridine leakage than storage in saliva or tap water. Cells stored in milk for 60-180 min showed about the same leakage as cells stored in saline or Hanks' balanced salt solution. Osmolality measurements showed that saliva was hypotonic, while the osmolality of milk ranged within physiological limits. When the osmolality of saliva was increased by addition of NaCl the leakage of the stored cells decreased to the level of cells stored in 0.9% NaCl or milk. (author)

  13. Quasi-automatic 3D finite element model generation for individual single-rooted teeth and periodontal ligament.

    Science.gov (United States)

    Clement, R; Schneider, J; Brambs, H-J; Wunderlich, A; Geiger, M; Sander, F G

    2004-02-01

    The paper demonstrates how to generate an individual 3D volume model of a human single-rooted tooth using an automatic workflow. It can be implemented into finite element simulation. In several computational steps, computed tomography data of patients are used to obtain the global coordinates of the tooth's surface. First, the large number of geometric data is processed with several self-developed algorithms for a significant reduction. The most important task is to keep geometrical information of the real tooth. The second main part includes the creation of the volume model for tooth and periodontal ligament (PDL). This is realized with a continuous free form surface of the tooth based on the remaining points. Generating such irregular objects for numerical use in biomechanical research normally requires enormous manual effort and time. The finite element mesh of the tooth, consisting of hexahedral elements, is composed of different materials: dentin, PDL and surrounding alveolar bone. It is capable of simulating tooth movement in a finite element analysis and may give valuable information for a clinical approach without the restrictions of tetrahedral elements. The mesh generator of FE software ANSYS executed the mesh process for hexahedral elements successfully.

  14. Treatment of combined endodontic-periodontic lesions using guided tissue regeneration: clinical case and histology.

    Science.gov (United States)

    Ghezzi, Carlo; Virzì, Mauro; Schupbach, Peter; Broccaioli, Alessandro; Simion, Massimo

    2012-08-01

    The aim of this case report is to histologically evaluate periapical healing after combined endodontic-periodontic treatment. A maxillary left central incisor was treated with conventional endodontic therapy, followed by periodontal surgery. The facial bony defect was filled with a mixture of autologous bone and Bio-Oss. A resorbable membrane was used. Histology showed the presence of new cementum, ligament, and bone around the apex of the treated tooth. This finding was clinically associated with minimal residual probing depth and maximum attachment gain. This histologic report demonstrates the possibility of true regeneration in a case of severe periodontal attachment loss resulting from an endodontic-periodontic lesion.

  15. Human platelet lysate supports the formation of robust human periodontal ligament cell sheets.

    Science.gov (United States)

    Tian, Bei-Min; Wu, Rui-Xin; Bi, Chun-Sheng; He, Xiao-Tao; Yin, Yuan; Chen, Fa-Ming

    2018-04-01

    The use of stem cell-derived sheets has become increasingly common in a wide variety of biomedical applications. Although substantial evidence has demonstrated that human platelet lysate (PL) can be used for therapeutic cell expansion, either as a substitute for or as a supplement to xenogeneic fetal bovine serum (FBS), its impact on cell sheet production remains largely unexplored. In this study, we manufactured periodontal ligament stem cell (PDLSC) sheets in vitro by incubating PDLSCs in sheet-induction media supplemented with various ratios of PL and FBS, i.e. 10% PL without FBS, 7.5% PL + 2.5% FBS, 5% PL + 5% FBS, 2.5% PL + 7.5% FBS or 10% FBS without PL. Cultures with the addition of all the designed supplements led to successful cell sheet production. In addition, all the resultant cellular materials exhibited similar expression profiles of matrix-related genes and proteins, such as collagen I, fibronectin and integrin β1. Interestingly, the cell components within sheets generated by media containing both PL and FBS exhibited improved osteogenic potential. Following in vivo transplantation, all sheets supported significant new bone formation. Our data suggest that robust PDLSC sheets can be produced by applying PL as either an alternative or an adjuvant to FBS. Further examination of the relevant influences of human PL that benefit cell behaviour and matrix production will pave the way towards optimized and standardized conditions for cell sheet production. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Platelet-Poor and Platelet-Rich Plasma Stimulate Bone Lineage Differentiation in Periodontal Ligament Stem Cells.

    Science.gov (United States)

    Martínez, Constanza E; González, Sergio A; Palma, Verónica; Smith, Patricio C

    2016-02-01

    Plasma-derived fractions have been used as an autologous source of growth factors; however, limited knowledge concerning their biologic effects has hampered their clinical application. In this study, the authors analyze the content and specific effect of both platelet-rich plasma (PRP) and platelet-poor plasma (PPP) on osteoblastic differentiation using primary cultures of human periodontal ligament stem cells (HPLSCs). The authors evaluated the growth factor content of PRP and PPP using a proteome profiler array and enzyme-linked immunosorbent assay. HPLSCs were characterized by flow cytometry and differentiation assays. The effect of PRP and PPP on HPLSC bone differentiation was analyzed by quantifying calcium deposition after 14 and 21 days of treatment. Albeit at different concentrations, the two fractions had similar profiles of growth factors, the most representative being platelet-derived growth factor (PDGF) isoforms (PDGF-AA, -BB, and -AB), insulin-like growth factor binding protein (IGFBP)-2, and IGFBP-6. Both formulations exerted a comparable stimulus on osteoblastic differentiation even at low doses (2.5%), increasing calcium deposits in HPLSCs. PRP and PPP showed a similar protein profile and exerted comparable effects on bone differentiation. Further studies are needed to characterize and compare the effects of PPP and PRP on bone healing in vivo.

  17. Association of human herpesvirus 6 subtypes with symptomatic apical periodontitis.

    Science.gov (United States)

    Hernádi, Katinka; Csoma, Eszter; Adám, Balázs; Szalmás, Anita; Gyöngyösi, Eszter; Veress, György; Ildikó-Márton; Kónya, József

    2011-09-01

    The occurrence of human herpesvirus (HHV) 6 subtypes A and B in apical periodontitis was determined. The relationship of HHV-6 subtypes to other disease associated herpesviruses, i.e., Epstein-Barr virus (EBV) and human cytomegalovirus, was also investigated. Forty apical periodontitis samples (17 symptomatic and 23 asymptomatic) and 40 healthy pulp control samples were collected. Nested polymerase chain reaction was used to detect HHV-6 DNA. HHV-6 DNA was observed in significantly higher frequencies in apical periodontitis samples than in control samples (20% vs. 2.5%; P = .03). Further classification of apical lesions revealed that subtype B of HHV-6 was significantly associated with large-sized and symptomatic lesions (P apical lesions (77%) harbored ≥1 of the tested herpesviruses: EBV was the most frequent herpesvirus (72.5%) in apical periodontitis, followed by HHV-6 (20%). Our findings suggest that EBV and HHV-6B infections can be associated with symptomatic apical periodontitis. Copyright © 2011 Mosby, Inc. All rights reserved.

  18. Qat Habit in Yemen Society: A Causative Factor for Oral Periodontal Diseases

    Science.gov (United States)

    Ali, Aiman A.

    2007-01-01

    The effect of a common habit among Yemeni population on the periodontal status was investigated. This cross-sectional study was done on 2500 Yemenis with mean age 27.01 years (1818 males and 682 females). Among these 1528 were qat chewers and 972 were non-chewers. Detailed questionnaire and pre-designed scoring system for the periodontal status were employed for each case. Study results indicated that out of 972 non-chewers 116(12%) had periodontal pocketing and 18 (1.9%) cases had gingival recession. On the other hand, out of 1528 chewers, 468 (31.8%) had periodontal pockets and 98 (6.4%) with gum bleeding, p<0.05. These effects were found to increase with increased frequency and duration of chewing. It was concluded that habit of qat can cause damage to the periodontal ligament as pocketing and gum recession. PMID:17911664

  19. Human Periodontal Ligament- and Gingiva-derived Mesenchymal Stem Cells Promote Nerve Regeneration When Encapsulated in Alginate/Hyaluronic Acid 3D Scaffold.

    Science.gov (United States)

    Ansari, Sahar; Diniz, Ivana M; Chen, Chider; Sarrion, Patricia; Tamayol, Ali; Wu, Benjamin M; Moshaverinia, Alireza

    2017-12-01

    Repair or regeneration of damaged nerves is still a challenging clinical task in reconstructive surgeries and regenerative medicine. Here, it is demonstrated that periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs) isolated from adult human periodontal and gingival tissues assume neuronal phenotype in vitro and in vivo via a subcutaneous transplantation model in nude mice. PDLSCs and GMSCs are encapsulated in a 3D scaffold based on alginate and hyaluronic acid hydrogels capable of sustained release of human nerve growth factor (NGF). The elasticity of the hydrogels affects the proliferation and differentiation of encapsulated MSCs within scaffolds. Moreover, it is observed that PDLSCs and GMSCs are stained positive for βIII-tubulin, while exhibiting high levels of gene expression related to neurogenic differentiation (βIII-tubulin and glial fibrillary acidic protein) via quantitative polymerase chain reaction (qPCR). Western blot analysis shows the importance of elasticity of the matrix and the presence of NGF in the neurogenic differentiation of encapsulated MSCs. In vivo, immunofluorescence staining for neurogenic specific protein markers confirms islands of dense positively stained structures inside transplanted hydrogels. As far as it is known, this study is the first demonstration of the application of PDLSCs and GMSCs as promising cell therapy candidates for nerve regeneration. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Microbiomes of Endodontic-Periodontal Lesions before and after Chemomechanical Preparation.

    Science.gov (United States)

    Gomes, Brenda P F A; Berber, Vanessa B; Kokaras, Alexis S; Chen, Tsute; Paster, Bruce J

    2015-12-01

    This study was conducted to evaluate the microbiomes of endodontic-periodontal lesions before and after chemomechanical preparation (CMP). Clinical samples were taken from 15 root canals (RCs) with necrotic pulp tissues and from their associated periodontal pockets (PPs) (n = 15) of teeth with endodontic-periodontal lesions before and after CMP. The Human Oral Microbe Identification using Next Generation Sequencing (NGS) protocol and viable culture were used to analyze samples from RCs and PPs. The Mann-Whitney U test and Benjamini-Hochberg corrections were performed to correlate the clinical and radiographic findings with microbial findings (P Bacteria were detected in 100% of the samples in both sites (15/15) using NGS. Firmicutes was the most predominant phylum in both sites using both methods. The most frequently detected species in the RCs before and after CMP using NGS were Enterococcus faecalis, Parvimonas micra, Mogibacterium timidum, Filifactor alocis, and Fretibacterium fastidiosum. The species most frequently detected in the PPs before and after CMP using NGS were P. micra, E. faecalis, Streptococcus constellatus, Eubacterium brachy, Tannerella forsythia, and F. alocis. Associations were found between periapical lesions ≤ 2 mm and Desulfobulbus sp oral taxon 041 and with periodontal pockets ≥ 6 mm and Dialister invisius and Peptostreptococcus stomatis (all P periodontal lesions is complex and more diverse than previously reported. It is important to note that bacteria do survive in some root canals after CMP. Finally, the similarity between the microbiota of both sites, before and after CMP, suggests there may be a pathway of infection between the pulp and periodontium. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Verification of γ-Amino-Butyric Acid (GABA) Signaling System Components in Periodontal Ligament Cells In Vivo and In Vitro.

    Science.gov (United States)

    Konermann, Anna; Kantarci, Alpdogan; Wilbert, Steven; Van Dyke, Thomas; Jäger, Andreas

    2016-11-01

    CNS key neurotransmitter γ-amino-butyric acid (GABA) and its signaling components are likewise detectable in non-neuronal tissues displaying inter alia immunomodulatory functions. This study aimed at identifying potential glutamate decarboxylase (GAD)65 and GABA receptor expression in periodontal ligament (PDL) cells in vivo and in vitro, with particular regard to inflammation and mechanical loading. Gene expression was analyzed in human PDL cells at rest or in response to IL-1ß (5 ng/ml) or TNFα (5 ng/ml) challenge via qRT-PCR. Western blot determined constitutive receptor expression, and confocal laser scanning fluorescence microscopy visualized expression changes induced by inflammation. ELISA quantified GAD65 release. Immunocytochemistry was performed for GABA component detection in vitro on mechanically loaded PDL cells, and in vivo on rat upper jaw biopsies with mechanically induced root resorptions. Statistical significance was set at p GABA B1 , GABA B2 , GABA A1 , and GABA A3 were ubiquitously expressed both on gene and protein level. GABA A2 and GAD65 were undetectable in resting cells, but induced by inflammation. GABA B1 exhibited the highest basal gene expression (6.97 % ± 0.16). IL-1ß markedly increased GABA B2 on a transcriptional (57.28-fold ± 12.40) and protein level seen via fluorescence microscopy. TNFα-stimulated PDL cells released GAD65 (3.68 pg/ml ± 0.17 after 24 h, 5.77 pg/ml ± 0.65 after 48 h). Immunocytochemistry revealed GAD65 expression in mechanically loaded PDL cells. In vivo, GABA components were varyingly expressed in an inflammatory periodontal environment. PDL cells differentially express GABA signaling components and secrete GAD65. Inflammation and mechanical loading regulate these neurotransmitter molecules, which are also detectable in vivo and are potentially involved in periodontal pathophysiology.

  2. Evaluation of a platelet lysate bilayered system for periodontal regeneration in a rat intrabony three-wall periodontal defect.

    Science.gov (United States)

    Babo, Pedro S; Cai, Xinjie; Plachokova, Adelina S; Reis, Rui L; Jansen, John; Gomes, Manuela E; Walboomers, X Frank

    2018-02-01

    With currently available therapies, full regeneration of lost periodontal tissues after periodontitis cannot be achieved. In this study, a combined compartmentalized system was tested, composed of (a) a platelet lysate (PL)-based construct, which was placed along the root aiming to regenerate the root cementum and periodontal ligament, and (b) a calcium phosphate cement composite incorporated with hyaluronic acid microspheres loaded with PL, aiming to promote the regeneration of alveolar bone. This bilayered system was assessed in a 3-wall periodontal defect in Wistar rats. The periodontal healing and the inflammatory response of the materials were scored for a period up to 6 weeks after implantation. Furthermore, histomorphometrical measurements were performed to assess the epithelial downgrowth, the formation of alveolar bone, and the formation of new connective tissue attachment. Our data showed that the stabilization of platelet-origin proteins on the root surface increased the overall periodontal healing score and restricted the formation of long epithelial junctions. Nevertheless, the faster degradation of the cement component with incorporated hyaluronic acid microspheres compromised the stability of the system, which hampered the periodontal regeneration. Overall, in this work, we proved the positive therapeutic effect of the immobilization of a PL-based construct over the root surface in a combined compartmentalized system to assist predictable healing of functional periodontium. Therefore, after optimization of the hard tissue analogue, the system should be further elaborated in (pre)clinical validation studies. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Periodontal and endodontic infectious/inflammatory profile in primary periodontal lesions with secondary endodontic involvement after a calcium hydroxide-based intracanal medication.

    Science.gov (United States)

    Duque, Thais M; Prado, Maira; Herrera, Daniel R; Gomes, Brenda P F A

    2018-03-23

    The aim of the present study was to investigate the effects of a calcium hydroxide-based intracanal medication (ICM) on periodontal and endodontic infectious/inflammatory contents and on periodontal clinical parameters in teeth with primary periodontal lesion and secondary endodontic involvement. Ten patients with abnormal pulp test results and deep probing depth derived from primary periodontal disease with secondary endodontic involvement were included. Samples were collected from root canals (RC) and periodontal pockets (PP) in order to investigate the microbiological status, levels of endotoxin (LPS), cytokines, and matrix metalloproteinases (MMP), before and after ICM. PCR was used for microbiological assessment. The kinetic-chromogenic LAL assay was used for LPS quantification. Quantikine ELISA kits were used for measurement of IL-1 α, IL-1 β, TNF-α, PGE 2 , MMP-2, MMP-3, MMP-8, MMP-9, and MMP-13 levels. The statistical analyses were made using the Friedman and Wilcoxon tests (p  0.05); however, the levels of the other MMPs and cytokines were reduced (p < 0.05). After 1 year of the root canal treatment, tooth mobility was significantly reduced (p ≤ 0.05). The use of a calcium hydroxide-based ICM showed positive effects for periodontal treatment prognosis, as it reduced LPS, cytokine, and MMP levels in periodontal pockets. Patients presenting deep probing depth and undergoing periodontal treatment for at least 6 months, with no positive response to periodontal therapy, might benefit with the endodontic treatment.

  4. Endo-periodontal lesion – endodontic approach

    Science.gov (United States)

    Jivoinovici, R; Suciu, I; Dimitriu, B; Perlea, P; Bartok, R; Malita, M; Ionescu, C

    2014-01-01

    Endo-perio lesions might be interdependent because of the vascular and anatomic connections between the pulp and the periodontium. The aim of this study is to emphasise that primary endodontic lesion heals after a proper instrumentation, disinfection and sealing of the endodontic space. The primary endodontic lesion with a secondary periodontal involvement first requires an endodontic therapy and, in the second stage, a periodontal therapy. The prognosis is good, with an adequate root canal treatment; it depends on the severity of the periodontal disease, appropriate healing time and the response to the treatment. A correct diagnosis is sometimes difficult; an accurate identification of the etiologic factors is important for an adequate treatment. Primary perio-endo lesion may heal after a proper disinfection and sealing of the endodontic system, the one-year follow-up radiograph showing bonny repair. Invasive periodontal procedures should be avoided at that moment. The microorganisms and by-products from the infected root canal may cross accessory and furcal canals and determine sinus tract and loss of attachment. In both clinical cases presented in this article, successful healing was obtained after a proper disinfection and sealing of the endodontic system. PMID:25713618

  5. Advanced drug delivery approaches against periodontitis.

    Science.gov (United States)

    Joshi, Deeksha; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    Periodontitis is an inflammatory disease of gums involving the degeneration of periodontal ligaments, creation of periodontal pocket and resorption of alveolar bone, resulting in the disruption of the support structure of teeth. According to WHO, 10-15% of the global population suffers from severe periodontitis. The disease results from the growth of a diverse microflora (especially anaerobes) in the pockets and release of toxins, enzymes and stimulation of body's immune response. Various local or systemic approaches were used for an effective treatment of periodontitis. Currently, controlled local drug delivery approach is more favorable as compared to systemic approach because it mainly focuses on improving the therapeutic outcomes by achieving factors like site-specific delivery, low dose requirement, bypass of first-pass metabolism, reduction in gastrointestinal side effects and decrease in dosing frequency. Overall it provides a safe and effective mode of treatment, which enhances patient compliance. Complete eradication of the organisms from the sites was not achieved by using various surgical and mechanical treatments. So a number of polymer-based delivery systems like fibers, films, chips, strips, microparticles, nanoparticles and nanofibers made from a variety of natural and synthetic materials have been successfully tested to deliver a variety of drugs. These systems are biocompatible and biodegradable, completely fill the pockets, and have strong retention on the target site due to excellent mucoadhesion properties. The review summarizes various available and recently developing targeted delivery devices for the treatment of periodontitis.

  6. Periapical fluid RANKL and IL-8 are differentially regulated in pulpitis and apical periodontitis.

    Science.gov (United States)

    Rechenberg, Dan-K; Bostanci, Nagihan; Zehnder, Matthias; Belibasakis, Georgios N

    2014-09-01

    The dental pulp space can become infected due to a breach in the surrounding hard tissues. This leads to inflammation of the pulp (pulpitis), soft tissue breakdown, and finally to bone loss around the root apex (apical periodontitis). The succession of the molecular events leading to apical periodontitis is currently not known. The main inflammatory mediator associated with neutrophil chemotaxis is interleukin-8 (IL-8), and with bone resorption the dyad of receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG). The levels of RANKL, OPG and IL-8 were studied in periapical tissue fluid of human teeth (n = 48) diagnosed with symptomatic irreversible pulpitis (SIP) and asymptomatic apical periodontitis (AAP). SIP represents the starting point, and AAP an established steady state of the disease. Periapical tissue fluid samples were collected using paper points and then evaluated using enzyme-linked immunosorbent assays (ELISAs). Target protein levels per case were calibrated against the corresponding total protein content, as determined fluorometrically. RANKL was expressed at significantly higher levels in SIP compared to AAP (P apical periodontitis, periapical bone resorption signaling, as determined by RANKL, occurs prior to inflammatory cell recruitment signaling, as determined by IL-8. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Pulp-dentin Regeneration: Current State and Future Prospects.

    Science.gov (United States)

    Cao, Y; Song, M; Kim, E; Shon, W; Chugal, N; Bogen, G; Lin, L; Kim, R H; Park, N-H; Kang, M K

    2015-11-01

    The goal of regenerative endodontics is to reinstate normal pulp function in necrotic and infected teeth that would result in reestablishment of protective functions, including innate pulp immunity, pulp repair through mineralization, and pulp sensibility. In the unique microenvironment of the dental pulp, the triad of tissue engineering would require infection control, biomaterials, and stem cells. Although revascularization is successful in resolving apical periodontitis, multiple studies suggest that it alone does not support pulp-dentin regeneration. More recently, cell-based approaches in endodontic regeneration based on pulpal mesenchymal stem cells (MSCs) have demonstrated promising results in terms of pulp-dentin regeneration in vivo through autologous transplantation. Although pulpal regeneration requires the cell-based approach, several challenges in clinical translation must be overcome-including aging-associated phenotypic changes in pulpal MSCs, availability of tissue sources, and safety and regulation involved with expansion of MSCs in laboratories. Allotransplantation of MSCs may alleviate some of these obstacles, although the long-term stability of MSCs and efficacy in pulp-dentin regeneration demand further investigation. For an alternative source of MSCs, our laboratory developed induced MSCs (iMSCs) from primary human keratinocytes through epithelial-mesenchymal transition by modulating the epithelial plasticity genes. Initially, we showed that overexpression of ΔNp63α, a major isoform of the p63 gene, led to epithelial-mesenchymal transition and acquisition of stem characteristics. More recently, iMSCs were generated by transient knockdown of all p63 isoforms through siRNA, further simplifying the protocol and resolving the potential safety issues of viral vectors. These cells may be useful for patients who lack tissue sources for endogenous MSCs. Further research will elucidate the level of potency of these iMSCs and assess their

  8. Comparison of Immunological Characteristics of Mesenchymal Stem Cells from the Periodontal Ligament, Umbilical Cord, and Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Jin-Hee Kim

    2018-01-01

    Full Text Available Mesenchymal stem cells (MSCs are of therapeutic importance in the fields of regenerative medicine and immunological diseases. Accordingly, studies evaluating MSCs for clinical applications are increasing. In this study, we characterized MSCs from the periodontal ligament, umbilical cord (UC-MSCs, and adipose tissue, which were relatively easy to obtain with limited ethical concerns regarding their acquisition, and compared their immunological characteristics. Among MSCs isolated from the three different tissues, UC-MSCs grew the fastest in vitro. The three types of MSCs were shown to inhibit proliferation of activated peripheral blood mononuclear cells (PBMCs to a similar degree, via the indoleamine 2,3-dioxygenase and cyclooxygenase-2 pathways. They were also shown to inhibit the proliferation of PBMCs using HLA-G, which was most prominent in UC-MSCs. Unlike the other two types of MSCs, UC-MSCs showed minimal expression of HLA-DR after activation, suggesting that they pose minimal risk of initiating an allogeneic immune response when administered in vivo. These characteristics, the ease of collection, and the minimal ethical concerns regarding their use suggest UC-MSCs to be suitable MSC therapeutic candidates.

  9. Effect of the simulated periodontal ligament on cast post-and-core removal using an ultrasonic device

    Directory of Open Access Journals (Sweden)

    Manoel Brito-Junior

    2010-10-01

    Full Text Available ABSTRACT OBJECTIVE: The aim of this study was to evaluate the effect of simulated periodontal ligament (SPDL on custom cast dowel and core removal by ultrasonic vibration. MATERIAL AND METHODS: Thirty-two human maxillary canines were included in resin cylinders with or without SPDL made from polyether impression material. In order to allow tensile testing, the roots included in resin cylinders with SPDL were fixed to cylinders with two stainless steel wires. Post-holes were prepared by standardizing the length at 8 mm and root canal impressions were made with self-cured resin acrylic. Cast dowel and core sets were fabricated and luted with Panavia F resin cement. Half of the samples were submitted to ultrasonic vibration before the tensile test. Data were analyzed statistically by two-way ANOVA and Tukey's post-hoc tests (p<0.05. RESULTS: The ultrasonic vibration reduced the tensile strength of the samples directly included in resin cylinders. There was no difference between the values, whether or not ultrasonic vibration was used, when the PDL was simulated. However, the presence of SPDL affected the tensile strength values even when no ultrasonic vibration was applied. CONCLUSION: Simulation of PDL has an effect on both ultrasonic vibration and tensile testing.

  10. Periodontal Ligament Mesenchymal Stromal Cells Increase Proliferation and Glycosaminoglycans Formation of Temporomandibular Joint Derived Fibrochondrocytes

    Directory of Open Access Journals (Sweden)

    Jianli Zhang

    2014-01-01

    Full Text Available Objectives. Temporomandibular joint (TMJ disorders are common disease in maxillofacial surgery. The aim of this study is to regenerate fibrocartilage with a mixture of TMJ fibrochondrocytes and periodontal ligament derived mesenchymal stem cells (PD-MSCs. Materials and Methods. Fibrochondrocytes and PD-MSC were cocultured (ratio 1 : 1 for 3 weeks. Histology and glycosaminoglycans (GAGs assay were performed to examine the deposition of GAG. Green florescent protein (GFP was used to track PD-MSC. Conditioned medium of PD-MSCs was collected to study the soluble factors. Gene expression of fibrochondrocytes cultured in conditioned medium was tested by quantitative PCR (qPCR. Results. Increased proliferation of TMJ-CH was observed in coculture pellets when compared to monoculture. Enhanced GAG production in cocultures was shown by histology and GAG quantification. Tracing of GFP revealed the fact that PD-MSC disappears after coculture with TMJ-CH for 3 weeks. In addition, conditioned medium of PD-MSC was also shown to increase the proliferation and GAG deposition of TMJ-CH. Meanwhile, results of qPCR demonstrated that conditioned medium enhanced the expression levels of matrix-related genes in TMJ-CH. Conclusions. Results from this study support the mechanism of MSC-chondrocyte interaction, in which MSCs act as secretor of soluble factors that stimulate proliferation and extracellular matrix deposition of chondrocytes.

  11. Gene therapy in periodontics.

    Science.gov (United States)

    Chatterjee, Anirban; Singh, Nidhi; Saluja, Mini

    2013-03-01

    GENES are made of DNA - the code of life. They are made up of two types of base pair from different number of hydrogen bonds AT, GC which can be turned into instruction. Everyone inherits genes from their parents and passes them on in turn to their children. Every person's genes are different, and the changes in sequence determine the inherited differences between each of us. Some changes, usually in a single gene, may cause serious diseases. Gene therapy is 'the use of genes as medicine'. It involves the transfer of a therapeutic or working gene copy into specific cells of an individual in order to repair a faulty gene copy. Thus it may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. It has a promising era in the field of periodontics. Gene therapy has been used as a mode of tissue engineering in periodontics. The tissue engineering approach reconstructs the natural target tissue by combining four elements namely: Scaffold, signaling molecules, cells and blood supply and thus can help in the reconstruction of damaged periodontium including cementum, gingival, periodontal ligament and bone.

  12. [The effect of Toll-like receptor 4 in nicotine suppressing the osteogenic potential of periodontal ligament stem cells].

    Science.gov (United States)

    Luan, Yan; Deqin, Yang

    2017-08-01

    Objective To explore the impact of nicotine on proliferation and osteogenic capability of periodontal ligament stem cells (PDLSCs), and the role of Toll-like receptor 4 (TLR4) in nicotine, suppressing the osteogenic capability of PDLSCs. Methods PDLSCs were cultured in vitro, and the flow cytometer was used to identify the surface antigen markers of PDLSCs. WST-1 was used to detect the proliferation ability of PDLSCs, which were stimulated by different concentrations of nicotine. Alizarin red staining was used to observe the formation of mineralized nodules after PDLSCs stimulation with different concentrations of nicotine. Real-time polymerase chain reaction (RT-PCR) and Western blot were used to detect the change in osteogenic potential of PDLSCs stimulated by nicotine, after TAK-242, and with the inhibitor of TLR4. Results PDLSCs expressed mesenchymal stem cell-associated markers CD90 and CD105. When the concentration of nicotine was 10⁻⁴ mol·L⁻¹, the PDLSC proliferation could be suppressed after 3 d compared with the control group (Pnicotine suppressed the PDLSCs (PNicotine suppresses the proliferation and osteogenic capability of PDLSCs, which may be regulated by TLR4.

  13. [Effects of cytosolic bacteria on cyclic GMP-AMP synthase expression in human gingival tissues and periodontal ligament cells].

    Science.gov (United States)

    Xiaojun, Yang; Yongmei, Tan; Zhihui, Tian; Ting, Zhou; Wanghong, Zhao; Jin, Hou

    2017-04-01

    This work aims to determine the effect of cytosolic bacteria on the expression of cyclic GMP-AMP synthase (cGAS) in human periodontal ligament cells (hPDLCs) and gingival tissues. The ability of Porphyromonas gingivalis (P. gingivalis) to invade hPDLCs was detected using laser scanning confocal microscope assay at a multiplicity of infection of 10. P. gingivalis-infected cells were sorted by fluorescence-activated cell sorting (FACS). Then, quantitative real time reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were used to detect cGAS expression in infected cells. Finally, the location and expression of cGAS in inflammatory and normal gingival tissues were investigated by immunohistochemistry. P. gingivalis actively invaded hPDLCs. Moreover, cGAS expression significantly increased in P. gingivalis-infected cells. Although cGAS was expressed in the epithelial and subepithelial cells of both inflamed and normal gingival tissues, cGAS expression significantly increased in inflamed gingival tissues. Cytosolic bacteria can upregulate cGAS expression in infected cells. These data suggest that cGAS may act as pattern-recognition receptors and participate in recognizing cytosolic nucleic acid pathogen-associated molecular patterns.
.

  14. Bromelain: A potential strategy for the adjuvant treatment of periodontitis

    Directory of Open Access Journals (Sweden)

    Felipe Rodolfo Pereira da Silva

    2016-01-01

    Full Text Available Introduction: Bromelain, a mixture of proteases derived from different parts of pineapple, has been described to have therapeutic benefits in a diversity of inflammatory diseases. Such effects are associated to its proteolytic activity. As one of the most common and multifactorial diseases, periodontitis is a bacterial infection that results from the damage to the integrity of the tissues around the tooth, which includes gingiva, periodontal ligament, and alveolar bone. In periodontitis, the recruitment of defense cells occurs, which releases several pro-inflammatory cytokines. At elevated levels, they can potentiate the alveolar bone loss. Studies have been conducted trying to alleviate the damage to the periodontium, however, the regeneration of the periodontal tissues is still limited. The Hypotheses: Based on previous studies showing that bromelain can act by decreasing the periodontal microorganism growth by proteolytically cleaving important cell surface molecules in leucocytes, by reducing neutrophils migration to periodontal sites, by downregulating the inflammation mediator levels, and by decreasing alveolar bone loss in the periodontitis. Evaluation of the Hypothesis: In a first moment, to evaluate this hypothesis, could be used two animal models: the ligature or bacteria inoculation induced periodontitis. If studies using animal models show encouraging results, appropriate clinical trials should be designed to evaluate the effect of bromelain as a complementary treatment for periodontal disease in humans, during the active phase or after the healing phase of mechanical therapy could be tested; to conduct a placebo-controlled study where health and periodontitis patients could be used.

  15. Chronic stress enhances progression of periodontitis via α1-adrenergic signaling: a potential target for periodontal disease therapy.

    Science.gov (United States)

    Lu, Huaixiu; Xu, Minguang; Wang, Feng; Liu, Shisen; Gu, Jing; Lin, Songshan

    2014-10-17

    This study assessed the roles of chronic stress (CS) in the stimulation of the sympathetic nervous system and explored the underlying mechanisms of periodontitis. Using an animal model of periodontitis and CS, the expression of tyrosine hydroxylase (TH) and the protein levels of the α1-adrenergic receptor (α1-AR) and β2-adrenergic receptor (β2-AR) were assessed. Furthermore, human periodontal ligament fibroblasts (HPDLFs) were stimulated with lipopolysaccharide (LPS) to mimic the process of inflammation. The proliferation of the HPDLFs and the expression of α1-AR and β2-AR were assessed. The inflammatory-related cytokines interleukin (IL)-1β, IL-6 and IL-8 were detected after pretreatment with the α1/β2-AR blockers phentolamine/propranolol, both in vitro and in vivo. Results show that periodontitis under CS conditions enhanced the expression of TH, α1-AR and β2-AR. Phentolamine significantly reduced the inflammatory cytokine levels. Furthermore, we observed a marked decrease in HPDLF proliferation and the increased expression of α1-ARfollowing LPS pretreatment. Pretreatment with phentolamine dramatically ameliorated LPS-inhibited cell proliferation. In addition, the blocking of α1-ARsignaling also hindered the upregulation of the inflammatory-related cytokines IL-1β, IL-6 and IL-8. These results suggest that CS can significantly enhance the pathological progression of periodontitis by an α1-adrenergic signaling-mediated inflammatory response. We have identified a potential therapeutic target for the treatment of periodontal disease, particularly in those patients suffering from concurrent CS.

  16. Endodontic and periodontal treatments of a geminated mandibular first premolar.

    Science.gov (United States)

    Aryanpour, S; Bercy, P; Van Nieuwenhuysen, J-P

    2002-02-01

    To describe a rare case of gemination involving a mandibular first premolar. The complex morphology of geminated teeth renders their endodontic and periodontal management difficult. Root canal and periodontal treatments were performed on a geminated mandibular first premolar with three canals. Clinical examination showed two separated crowns with united roots. Radiographically, two distinct pulp chambers with two joined and a third independent canal were seen. Conventional root canal treatment resulted in complete healing of the apical lesion. However, the occurrence of a vertical fracture led to the extraction of the mesial segment. At the follow-up visit, the distal segment was clinically healthy and continued to satisfy functional demands.

  17. Oral and periodontal manifestations associated with systemic sclerosis: A case series and review.

    Science.gov (United States)

    Jagadish, Rekha; Mehta, Dhoom Singh; Jagadish, P

    2012-04-01

    Systemic sclerosis is a rare connective tissue disorder with a wide range of oral manifestations. This case series reports significant oral and periodontal changes and also makes an attempt to correlate oral and systemic findings in these patients which enable the clinician for a better diagnosis and evolve a comprehensive treatment plan. Six patients with a known diagnosis of systemic sclerosis were included. After obtaining the patient's informed consent, relevant medical history, oral manifestations including periodontal findings and oral hygiene index simplified index were recorded. In these patients, oral changes included restricted mouth opening and, resorption of the mandible. The periodontal changes observed were gingival recession, absence or minimal gingival bleeding on probing, and widened periodontal ligament space, radiographically. Patients with systemic sclerosis often show wide range of oral manifestations, which is of major concern for the dentist.

  18. Oral and periodontal manifestations associated with systemic sclerosis: A case series and review

    Directory of Open Access Journals (Sweden)

    Rekha Jagadish

    2012-01-01

    Full Text Available Systemic sclerosis is a rare connective tissue disorder with a wide range of oral manifestations. This case series reports significant oral and periodontal changes and also makes an attempt to correlate oral and systemic findings in these patients which enable the clinician for a better diagnosis and evolve a comprehensive treatment plan. Six patients with a known diagnosis of systemic sclerosis were included. After obtaining the patient′s informed consent, relevant medical history, oral manifestations including periodontal findings and oral hygiene index simplified index were recorded. In these patients, oral changes included restricted mouth opening and, resorption of the mandible. The periodontal changes observed were gingival recession, absence or minimal gingival bleeding on probing, and widened periodontal ligament space, radiographically. Patients with systemic sclerosis often show wide range of oral manifestations, which is of major concern for the dentist.

  19. Redefining orthodontic space closure: sequential repetitive loading of the periodontal ligament--a clinical study.

    Science.gov (United States)

    Kalha, Anmol S; Kachiwala, Viral Ashok; Govardhan, Singatagere Nagaraj; McLaughlin, Richard P; Khurshaid, Syed Zameer

    2010-01-01

    To assess the rate of tooth movement, anchorage loss, root resorption, and alkaline phosphatase (ALP) activity in the gingival crevicular fluid (GCF) as a marker for bone remodeling during orthodontic space closure using two different mechanisms. Space closure was completed in 20 patients with extraction of all 4 premolars. Lateral cephalograms and radio-visiographs taken before (T1) and after (T2) space closure were assessed for anchorage loss and root resorption. Alkaline phosphatase levels were measured in 10 patients, which were divided into two groups of five each. Spaces were closed with a screw device in the first group and with active tie-backs in the second. Gingival crevicular fluid samples, collected at intervals, were assayed for alkaline phosphatase spectrophotometrically in each patient. The mean rate of tooth movement was 1.32 ± 0.22 mm/month. The mean amount of anchorage loss in the maxilla and mandible was 1.23 ± 0.60 mm and 1.08 ± 0.65 mm, respectively. Sixty (25%) roots showed no root resorption, while 180 (75%) roots displayed mild to moderate blunting of their apices. Gingival crevicular fluid-alkaline phosphatase level increased significantly from day 7 to day 28 in both groups, but significantly more in the screw retraction group (Pspace closure occurs more rapidly with sequential repetitive loading of the periodontal ligament than with conventional active tie-backs. This observation is in concurrence with a significant increase in the gingival crevicular fluid-alkaline phosphatase level. © 2010 BY QUINTESSENCE PUBLISHING CO, INC.

  20. Molecular characterization and function of tenomodulin, a marker of tendons and ligaments that integrate musculoskeletal components

    Directory of Open Access Journals (Sweden)

    Chisa Shukunami, DDS, PhD

    2016-11-01

    Full Text Available Tendons and ligaments are dense fibrous bands of connective tissue that integrate musculoskeletal components in vertebrates. Tendons connect skeletal muscles to the bone and function as mechanical force transmitters, whereas ligaments bind adjacent bones together to stabilize joints and restrict unwanted joint movement. Fibroblasts residing in tendons and ligaments are called tenocytes and ligamentocytes, respectively. Tenomodulin (Tnmd is a type II transmembrane glycoprotein that is expressed at high levels in tenocytes and ligamentocytes, and is also present in periodontal ligament cells and tendon stem/progenitor cells. Tnmd is related to chondromodulin-1 (Chm1, a cartilage-derived angiogenesis inhibitor, and both Tnmd and Chm1 are expressed in the CD31− avascular mesenchyme. The conserved C-terminal hydrophobic domain of these proteins, which is characterized by the eight Cys residues to form four disulfide bonds, may have an anti-angiogenic function. This review highlights the molecular characterization and function of Tnmd, a specific marker of tendons and ligaments.

  1. Repair of experimental plaque-induced periodontal disease in dogs.

    Science.gov (United States)

    Shoukry, M; Ben Ali, L; Abdel Naby, M; Soliman, A

    2007-09-01

    Forty mongrel dogs were used in this study for induction of periodontal disease by placing subgingival silk ligatures affecting maxillary and mandibular premolar teeth during a 12-month period. Experimental premolar teeth received monthly clinical, radiographic, and histometric/pathologic assessments. The results demonstrated significant increases in scores and values of periodontal disease parameters associated with variable degrees of alveolar bone loss. The experimental maxillary premolar teeth exhibited more severe and rapid rates of periodontal disease compared with mandibular premolar teeth. Histometric analysis showed significant reduction in free and attached gingiva of the experimental teeth. Histopathological examination of buccolingual sections from experimental premolar teeth showed the presence of rete pegs within the sulcular epithelium with acanthosis and erosive changes, widening of the periodontal ligament, and alveolar bone resorption. Various methods for periodontal repair were studied in 194 experimental premolar teeth exhibiting different degrees of periodontal disease. The treatment plan comprised non-surgical (teeth scaling, root planing, and oral hygiene) and surgical methods (closed gingival curettage, modified Widman flap, and reconstructive surgery using autogenous bone marrow graft and canine amniotic membrane). The initial non-surgical treatment resulted in a periodontal recovery rate of 37.6% and was found effective for treatment of early periodontal disease based on resolution of gingivitis and reduction of periodontal probing depths. Surgical treatment by closed gingival curettage to eliminate the diseased pocket lining resulted in a recovery rate of 48.8% and proved effective in substantially reducing deep periodontal pockets. Open root planing following flap elevation resulted in a recovery rate of 85.4% and was effective for deep and refractory periodontal pockets. Autogenous bone graft implantation combined with canine amniotic

  2. From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells

    Directory of Open Access Journals (Sweden)

    Xiao L

    2014-12-01

    Full Text Available Li Xiao,1 Masanori Nasu2 1Department of Pharmacology, 2Research Center, The Nippon Dental University, Tokyo, Japan Abstract: Adult mesenchymal stem cells (MSCs and epithelial stem cells play essential roles in tissue repair and self-healing. Oral MSCs and epithelial stem cells can be isolated from adult human oral tissues, for example, teeth, periodontal ligament, and gingiva. Cocultivated adult oral epithelial stem cells and MSCs could represent some developmental events, such as epithelial invagination and tubular structure formation, signifying their potentials for tissue regeneration. Oral epithelial stem cells have been used in regenerative medicine over 1 decade. They are able to form a stratified cell sheet under three-dimensional culture conditions. Both experimental and clinical data indicate that the cell sheets can not only safely and effectively reconstruct the damaged cornea in humans, but also repair esophageal ulcer in animal models. Oral MSCs include dental pulp stem cells (DPSCs, stem cells from exfoliated deciduous teeth (SHED, stem cells from apical papilla (SCAP, periodontal ligament stem cells (PDLSCs, and mesenchymal stem cells from gingiva (GMSCs. They are widely applied in both regenerative dentistry and medicine. DPSCs, SHED, and SCAP are able to form dentin–pulp complex when being transplanted into immunodeficient animals. They have been experimentally used for the regeneration of dental pulp, neuron, bone muscle and blood vessels in animal models and have shown promising results. PDLSCs and GMSCs are demonstrated to be ideal cell sources for repairing the damaged tissues of periodontal, muscle, and tendon. Despite the abovementioned applications of oral stem cells, only a few human clinical trials are now underway to use them for the treatment of certain diseases. Since clinical use is the end goal, their true regenerative power and safety need to be further examined.Keywords: oral mesenchymal stem cells, oral

  3. The Role of Reactive Oxygen Species and Autophagy in Periodontitis and Their Potential Linkage

    Directory of Open Access Journals (Sweden)

    Chengcheng Liu

    2017-06-01

    Full Text Available Periodontitis is a chronic inflammatory disease that causes damage to periodontal tissues, which include the gingiva, periodontal ligament, and alveolar bone. The major cause of periodontal tissue destruction is an inappropriate host response to microorganisms and their products. Specifically, a homeostatic imbalance between reactive oxygen species (ROS and antioxidant defense systems has been implicated in the pathogenesis of periodontitis. Elevated levels of ROS acting as intracellular signal transducers result in autophagy, which plays a dual role in periodontitis by promoting cell death or blocking apoptosis in infected cells. Autophagy can also regulate ROS generation and scavenging. Investigations are ongoing to elucidate the crosstalk mechanisms between ROS and autophagy. Here, we review the physiological and pathological roles of ROS and autophagy in periodontal tissues. The redox-sensitive pathways related to autophagy, such as mTORC1, Beclin 1, and the Atg12-Atg5 complex, are explored in depth to provide a comprehensive overview of the crosstalk between ROS and autophagy. Based on the current evidence, we suggest that a potential linkage between ROS and autophagy is involved in the pathogenesis of periodontitis.

  4. Pulp Revascularization on Permanent Teeth with Open Apices in a Middle-aged Patient.

    Science.gov (United States)

    Wang, Yu; Zhu, Xiaofei; Zhang, Chengfei

    2015-09-01

    Pulp revascularization is a promising procedure for the treatment of adolescents' immature permanent teeth with necrotic pulp and/or apical periodontitis. However, the ability to successfully perform pulp revascularization in a middle-aged patient remains unclear. A 39-year-old woman was referred for treatment of teeth #20 and #29 with necrotic pulp, extensive periapical radiolucencies, and incomplete apices. Pulp revascularization procedures were attempted, including root canal debridement, triple antibiotic paste medication, and platelet-rich plasma transplantation to act as a scaffold. Periapical radiographic and cone-beam computed tomographic examinations were used to review the changes in the apical lesions and root apex configuration. The patient remained asymptomatic throughout the 30-month follow-up. Periapical radiographic examination revealed no change in the apical lesions of either tooth at 8 months. The periapical radiolucency disappeared on tooth #20 and significantly decreased on tooth #29 by the 30-month follow-up, findings that were also confirmed by cone-beam computed tomographic imaging. No evidence of root lengthening or thickening was observed. Successful revascularization was achieved in a middle-aged patient's teeth. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. The potential application of stem cell in dentistry

    Directory of Open Access Journals (Sweden)

    Ketut Suardita

    2006-12-01

    Full Text Available Stem cells are generally defined as cells that have the capacity to self-renewal and differentiate to specialize cell. There are two kinds of stem cell, embryonic stem cell and adult stem cells. Stem cell therapy has been used to treat diseases including Parkinson’s and Alzheimer’s diseases, spinal cord injury, stroke, burns, heart diseases, diabetes, osteoarthritis, and rheumatoid arthritis. Stem cells were found in dental pulp, periodontal ligament, and alveolar bone marrow. Because of their potential in medical therapy, stem cells were used to regenerate lost or damage teeth and periodontal structures. This article discusses the potential application of stem cells for dental field.

  6. An investigation on clinical, radiological and biochemical methods for assessing periodontitis activity

    International Nuclear Information System (INIS)

    Janssen, P.T.M.

    1987-01-01

    In order to recognize in which stage rapidly progressing destruction of periodontal ligament fibers occurs, a number of diagnostic methods are studied in this thesis. It turns out that the actual much utilized clinical methods can not be improved while radiological and biochemical diagnositic methods are much more promising. 106 refs.; 20 figs.; 36 tabs

  7. Psychological Stress Delays Periodontitis Healing in Rats: The Involvement of Basic Fibroblast Growth Factor

    Directory of Open Access Journals (Sweden)

    Ya-Juan Zhao

    2012-01-01

    Full Text Available Objective. To evaluate the effects of psychological stress on periodontitis healing in rats and the contribution of basic fibroblast growth factor (bFGF expression to the healing process. Methods. Ninety-six rats were randomly distributed into control group, periodontitis group, and periodontitis plus stress group. Then, the rats were sacrificed at baseline and week(s 1, 2, and 4. The periodontitis healing condition was assessed, and the expression of interleukin-1β (IL-1β, tumor necrosis factor-α (TNF-α, and bFGF were tested by immunohistochemistry. Results. The stressed rats showed reduced body weight gain, behavioral changes, and increased serum corticosterone and ACTH levels (. The surface of inflammatory infiltrate, alveolar bone loss, attachment loss, and expression of IL-1β and TNF-α in the stress group were higher than those in the periodontitis group at weeks 2 and 4 (. Rats with experimental periodontitis showed decreased bFGF expression (, and the recovery of bFGF expression in the stress group was slower than that in the periodontitis group (. Negative correlations between inflammatory cytokines and bFGF were detected. Conclusion. Psychological stress could delay periodontitis healing in rats, which may be partly mediated by downregulation of the expression of bFGF in the periodontal ligament.

  8. Osteogenesis differentiation of human periodontal ligament cells by CO2 laser-treatment stimulating macrophages via BMP2 signalling pathway

    International Nuclear Information System (INIS)

    Hsieh, Wen-Hui; Chen, Yi-Jyun; Hung, Chi-Jr; Huang, Tsui-Hsien; Kao, Chia-Tze; Shie, Ming-You

    2014-01-01

    Immune reactions play an important role in determining the biostimulation of bone formation, either in new bone formation or inflammatory fibrous tissue encapsulation. Macrophage cell, the important effector cells in the immune reaction, which are indispensable for osteogenesis and their heterogeneity and plasticity, render macrophages a primer target for immune system modulation. However, there are very few studies about the effects of macrophage cells on laser treatment-regulated osteogenesis. In this study, we used CO 2 laser as a model biostimulation to investigate the role of macrophage cells on the CO 2 laser stimulated osteogenesis. Bone morphogenetic protein 2 (BMP2) was also significantly up regulated by the CO 2 laser stimulation, indicating that macrophage may participate in the CO 2 laser stimulated osteogenesis. Interestingly, when laser treatment macrophage-conditioned medium were applied to human periodontal ligament cells (hPDLs), the osteogenesis differentiation of hPDLs was significantly enhanced, indicating the important role of macrophages in CO 2 laser-induced osteogenesis. These findings provided valuable insights into the mechanism of CO 2 laser-stimulated osteogenic differentiation, and a strategy to optimize the evaluation system for the in vitro osteogenesis capacity of laser treatment. (paper)

  9. Human β-defensin 3-combined gold nanoparticles for enhancement of osteogenic differentiation of human periodontal ligament cells in inflammatory microenvironments

    Directory of Open Access Journals (Sweden)

    Zhou J

    2018-01-01

    Full Text Available Jing Zhou,1 Yangheng Zhang,1 Lingjun Li,1 Huangmei Fu,2 Wenrong Yang,2 Fuhua Yan1 1Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People’s Republic of China; 2School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, Australia Objective: It is a great challenge to absorb and conduct biophysicochemical interactions at the nano-bio interface. Peptides are emerging as versatile materials whose function can be programmed to perform specific tasks. Peptides combined nanoparticles might be utilized as a new approach of treatment. Human β-defensin 3 (hBD3, possesses both antimicrobial and proregeneration properties. Gold nanoparticles (AuNPs have shown promising applications in the field of tissue engineering. However, the coordinating effects of AuNPs and hBD3 on human periodontal ligament cells (hPDLCs remain unknown. In this study, we systematically investigated whether AuNPs and hBD3 would be able to coordinate and enhance the osteogenic differentiation of hPDLCs in inflammatory microenvironments, and the underlying mechanisms was explored. Methods: hPDLCs were stimulated with E. coli-LPS, hBD3 and AuNPs. Alkaline phosphatase (ALP and alizarin red S staining were used to observe the effects of hBD3 and AuNPs on the osteogenic differentiation of hPDLCs. Real-time PCR and western blot were performed to evaluate the osteogenic differentiation and Wnt/β-catenin signaling pathway related gene and protein expression.Results: In the inflammatory microenvironments stimulated by E. coli-LPS, we found that AuNPs and hBD3 increased the proliferation of hPDLCs slightly. In addition, hBD3-combined AuNPs could significantly enhance ALP activities and mineral deposition in vitro. Meanwhile, we observed that the osteogenic differentiation-related gene and protein expressions of ALP, collagenase-I (COL-1 and runt-related transcription factor 2 (Runx-2 were

  10. Growth/differentiation factor-5: a candidate therapeutic agent for periodontal regeneration? A review of pre-clinical data.

    Science.gov (United States)

    Moore, Yolanda R; Dickinson, Douglas P; Wikesjö, Ulf M E

    2010-03-01

    Therapeutic concepts involving the application of matrix, growth and differentiation factors have been advocated in support of periodontal wound healing/regeneration. Growth/differentiation factor-5 (GDF-5), a member of the bone morphogenetic protein family, represents one such factor. The purpose of this review is to provide a background of the therapeutic effects of GDF-5 expressed in various musculoskeletal settings using small and large animal platforms. A comprehensive literature search was conducted to identify all reports in the English language evaluating GDF-5 using the PubMed and Google search engines, and a manual search of the reference lists from the electronically retrieved reports. Two reviewers independently screened the titles and abstracts from a total of 69 reports, 22 of which were identified as pre-clinical (in vivo) evaluations of GDF-5. The full-length article of the 22 pre-clinical reports was then reviewed. Various applications including cranial and craniofacial bone formation, spine fusion, long bone fracture healing, cartilage, and tendon/ligament repair using a variety of small and large animal platforms evaluating GDF-5 as a therapeutic agent were identified. A majority of studies, using biomechanical, radiographic, and histological analysis, demonstrated significant dose-dependent effects of GDF-5. These include increased/enhanced local bone formation, fracture healing/repair, and cartilage and tendon/ligament formation. GDF-5 frequently was shown to accelerate wound maturation. Several studies demonstrated GDF-5 to be a realistic alternative to autograft bone. Studies using pre-clinical models and human histology suggest GDF-5 may also increase/enhance periodontal wound healing/regeneration. GDF-5 appears a promising therapeutic agent for periodontal wound healing/regeneration as GDF-5 supports/accelerates bone and tendon/ligament formation in several musculoskeletal settings including periodontal tissues.

  11. Faktor-Faktor Periodontal yang Harus Dipertimbangkan pada Perawatan dengan Gigi Tiruan Cekat

    Directory of Open Access Journals (Sweden)

    Riemawati A. Lesmana

    2015-10-01

    Full Text Available The main aim of the treatment with fixed restoration especially the crowns and bridges is to maintain the remaining teeth of dentition and the whole masticatory system. This treatment can be successful if periodontal consideration of the abutments and the fixed restoration is given. The periodontal of a tooth are gingiva, periodontal ligament, alveolar bone and cementum. The most common type of periodontal disease is gingivitis that usually caused by bacterial plaque attached to tooth or crown surface. The other disease that involve the tooth supporting tissue is called periodontitis, it can be preceded by long standing chronic gingivitis. Trauma from occlusion presents two predominant clinical features, increasing tooth mobility and widening of the periodontal space. Periodontal pocket is a disease of periodontal attachment unit that is caused by the apical migration of the epithelial attachment. Periodontal atrophy occurs as a result of repeated traumatic that cause reduction in height of periodontium. All gingival and periodontal diseases and trauma from occlusion must be eliminated before restorative procedures are begun. Dental fixed restoration and periodontal health are inseparably interrelated. The adaptation of the margins and the contours of the restoration, the surface smoothness, the embrasure and the pontic of a bridge, have a critical biologic impact on the gingiva and supporting periodontal tissue. Dental fixed restoration therefore play a significant role in maintaining gingival and periodontal health. Plaque control must be maintained regularly and the occlusion must be checked at regular intervals after the fixed prosthesis is inserted. The occlusal relationships change with time as the result of micromovement of the natural dentition and the wear of restorative materials.

  12. Comparative gene expression analysis of the human periodontal ligament in deciduous and permanent teeth.

    Directory of Open Access Journals (Sweden)

    Je Seon Song

    Full Text Available There are histological and functional differences between human deciduous and permanent periodontal ligament (PDL tissues. The aim of this study was to determine the differences between these two types of tissue at the molecular level by comparing their gene expression patterns. PDL samples were obtained from permanent premolars (n = 38 and anterior deciduous teeth (n = 31 extracted from 40 healthy persons. Comparative cDNA microarray analysis revealed several differences in gene expression between the deciduous and permanent PDL tissues. These findings were verified by qRT-PCR (quantitative reverse-transcription-polymerase chain reaction analysis, and the areas where genes are expressed were revealed by immunohistochemical staining. The expressions of 21 genes were up-regulated in deciduous relative to PDL tissues, and those of 30 genes were up-regulated in permanent relative to deciduous PDL tissues. The genes that were up-regulated in deciduous PDL tissues were those involved in the formation of the extracellular matrix (LAMC2, LAMB3, and COMP, tissue development (IGF2BP, MAB21L2, and PAX3, and inflammatory or immune reactions leading to tissue degradation (IL1A, CCL21, and CCL18. The up-regulated genes in permanent PDL tissues were related to tissue degradation (IL6 and ADAMTS18, myocontraction (PDE3B, CASQ2, and MYH10, and neurological responses (FOS, NCAM2, SYT1, SLC22A3, DOCK3, LRRTM1, LRRTM3, PRSS12, and ARPP21. The analysis of differential gene expressions between deciduous and permanent PDL tissues aids our understanding of histological and functional differences between them at the molecular level.

  13. Comparative gene expression analysis of the human periodontal ligament in deciduous and permanent teeth.

    Science.gov (United States)

    Song, Je Seon; Hwang, Dong Hwan; Kim, Seong-Oh; Jeon, Mijeong; Choi, Byung-Jai; Jung, Han-Sung; Moon, Seok Jun; Park, Wonse; Choi, Hyung-Jun

    2013-01-01

    There are histological and functional differences between human deciduous and permanent periodontal ligament (PDL) tissues. The aim of this study was to determine the differences between these two types of tissue at the molecular level by comparing their gene expression patterns. PDL samples were obtained from permanent premolars (n = 38) and anterior deciduous teeth (n = 31) extracted from 40 healthy persons. Comparative cDNA microarray analysis revealed several differences in gene expression between the deciduous and permanent PDL tissues. These findings were verified by qRT-PCR (quantitative reverse-transcription-polymerase chain reaction) analysis, and the areas where genes are expressed were revealed by immunohistochemical staining. The expressions of 21 genes were up-regulated in deciduous relative to PDL tissues, and those of 30 genes were up-regulated in permanent relative to deciduous PDL tissues. The genes that were up-regulated in deciduous PDL tissues were those involved in the formation of the extracellular matrix (LAMC2, LAMB3, and COMP), tissue development (IGF2BP, MAB21L2, and PAX3), and inflammatory or immune reactions leading to tissue degradation (IL1A, CCL21, and CCL18). The up-regulated genes in permanent PDL tissues were related to tissue degradation (IL6 and ADAMTS18), myocontraction (PDE3B, CASQ2, and MYH10), and neurological responses (FOS, NCAM2, SYT1, SLC22A3, DOCK3, LRRTM1, LRRTM3, PRSS12, and ARPP21). The analysis of differential gene expressions between deciduous and permanent PDL tissues aids our understanding of histological and functional differences between them at the molecular level.

  14. Human periodontal ligament stem cells cultured onto cortico-cancellous scaffold drive bone regenerative process

    Directory of Open Access Journals (Sweden)

    F Diomede

    2016-09-01

    Full Text Available The purpose of this work was to test, in vitro and in vivo, a new tissue-engineered construct constituted by porcine cortico-cancellous scaffold (Osteobiol Dual Block (DB and xeno-free ex vivo culture of human Periodontal Ligament Stem Cells (hPDLSCs. hPDLSCs cultured in xeno-free media formulation preserved the stem cells’ morphological features, the expression of stemness and pluripotency markers, and their ability to differentiate into mesenchymal lineage. Transmission electron microscopy analysis suggested that after one week of culture, both noninduced and osteogenic differentiation induced cells joined and grew on DB secreting extracellular matrix (ECM that in osteogenic induced samples was hierarchically assembled in fibrils. Quantitative RT-PCR (qRT-PCR showed the upregulation of key genes involved in the bone differentiation pathway in both differentiated and undifferentiated hPDLSCs cultured with DB (hPDLSCs/DB. Functional studies revealed a significant increased response of calcium transients in the presence of DB, both in undifferentiated and differentiated cells stimulated with calcitonin and parathormone, suggesting that the biomaterial could drive the osteogenic differentiation process of hPDLSCs. These data were confirmed by the increase of gene expression of L-type voltage-dependent Ca2+ (VDCCL, subunits α1C and α2D1 in undifferentiated cells in the presence of DB. In vivo implantation of the hPDLSCs/DB living construct in the mouse calvaria evidenced a precocious osteointegration and vascularisation process. Our results suggest consideration of DB as a biocompatible, osteoinductive and osteoconductive biomaterial, making it a promising tool to regulate cell activities in biological environments and for a potential use in the development of new custom-made tissue engineering.

  15. Management of endodontic-periodontic lesion of a maxillary lateral incisor with palatoradicular groove

    Directory of Open Access Journals (Sweden)

    Jayshree Ramakrishna Vishwas

    2014-01-01

    Full Text Available Presence of palatal radicular grooves are considered to be an important contributing factor to the development of localized periodontitis, as it favored the accumulation and proliferation of bacterial plaque deep into the periodontium. Pulp involvement could result due to the introduction of bacterial toxins through channels that existed between the root canal system and the groove. Early diagnosis, elimination of inflammation and correction of anatomic complications are the key to a favorable outcome for managing palatoradicular groove. Present report describes successful management with an interdisciplinary approach of maxillary lateral incisor with combined endodontic periodontic lesion associated with palatoradicular groove.

  16. Effects of concomitant use of fibroblast growth factor (FGF)-2 with beta-tricalcium phosphate (β-TCP) on the beagle dog 1-wall periodontal defect model

    International Nuclear Information System (INIS)

    Anzai, Jun; Kitamura, Masahiro; Nozaki, Takenori; Nagayasu, Toshie; Terashima, Akio; Asano, Taiji; Murakami, Shinya

    2010-01-01

    Research highlights: → Concomitant use of FGF-2 and β-TCP (an osteo-conductive scaffold) significantly promotes periodontal regeneration in the severe periodontitis model (1-wall defect model) of beagle dog. → FGF-2 enhanced new bone formation via β-TCP at the defects. → In particular, FGF-2 dramatically regenerated new periodontal ligament and cementum formations at the defects, that is one of the most important healing outcomes during the process of periodontal regeneration. → Epithelial downgrowth (undesirable wound healing) was decreased by administration of FGF-2. → This manuscript indicates for the first time that concomitant use of FGF-2 and β-TCP is efficacious in regenerating periodontal tissue following severe destruction of the tissue by progression of periodontitis. -- Abstract: The effects of concomitant use of fibroblast growth factor-2 (FGF-2) and beta-tricalcium phosphate (β-TCP) on periodontal regeneration were investigated in the beagle dog 1-wall periodontal defect model. One-wall periodontal defects were created in the mesial portion of both sides of the mandibular first molars, and 0.3% FGF-2 plus β-TCP or β-TCP alone was administered. Radiographic evaluation was performed at 0, 3, and 6 weeks. At 6 weeks, the periodontium with the defect site was removed and histologically analyzed. Radiographic findings showed that co-administration of FGF-2 significantly increased bone mineral contents of the defect sites compared with β-TCP alone. Histologic analysis revealed that the length of the regenerated periodontal ligament, the cementum, distance to the junctional epithelium, new bone height, and area of newly formed bone were significantly increased in the FGF-2 group. No abnormal inflammatory response or ankylosis was observed in either group. These findings indicate the efficacy of concomitant use of FGF-2 and β-TCP as an osteoconductive material for periodontal regeneration following severe destruction by progressive

  17. Effects of concomitant use of fibroblast growth factor (FGF)-2 with beta-tricalcium phosphate ({beta}-TCP) on the beagle dog 1-wall periodontal defect model

    Energy Technology Data Exchange (ETDEWEB)

    Anzai, Jun, E-mail: anzai_jun@kaken.co.jp [Pharmacology Department, Central Research Laboratories, Kaken Pharmaceutical Co., Ltd., 14, Shinomiya, Minamigawara-cho, Yamashina-ku, Kyoto 607-8042 (Japan); Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kitamura, Masahiro, E-mail: kitamura@dent.osaka-u.ac.jp [Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nozaki, Takenori, E-mail: tnozaki@dent.osaka-u.ac.jp [Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nagayasu, Toshie, E-mail: nagayasu_toshie@kaken.co.jp [Pharmacology Department, Central Research Laboratories, Kaken Pharmaceutical Co., Ltd., 14, Shinomiya, Minamigawara-cho, Yamashina-ku, Kyoto 607-8042 (Japan); Terashima, Akio, E-mail: terashima_akio@kaken.co.jp [Pharmacology Department, Central Research Laboratories, Kaken Pharmaceutical Co., Ltd., 14, Shinomiya, Minamigawara-cho, Yamashina-ku, Kyoto 607-8042 (Japan); Asano, Taiji, E-mail: asano_taiji@kaken.co.jp [Pharmacology Department, Central Research Laboratories, Kaken Pharmaceutical Co., Ltd., 14, Shinomiya, Minamigawara-cho, Yamashina-ku, Kyoto 607-8042 (Japan); Murakami, Shinya, E-mail: ipshinya@dent.osaka-u.ac.jp [Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2010-12-17

    Research highlights: {yields} Concomitant use of FGF-2 and {beta}-TCP (an osteo-conductive scaffold) significantly promotes periodontal regeneration in the severe periodontitis model (1-wall defect model) of beagle dog. {yields} FGF-2 enhanced new bone formation via {beta}-TCP at the defects. {yields} In particular, FGF-2 dramatically regenerated new periodontal ligament and cementum formations at the defects, that is one of the most important healing outcomes during the process of periodontal regeneration. {yields} Epithelial downgrowth (undesirable wound healing) was decreased by administration of FGF-2. {yields} This manuscript indicates for the first time that concomitant use of FGF-2 and {beta}-TCP is efficacious in regenerating periodontal tissue following severe destruction of the tissue by progression of periodontitis. -- Abstract: The effects of concomitant use of fibroblast growth factor-2 (FGF-2) and beta-tricalcium phosphate ({beta}-TCP) on periodontal regeneration were investigated in the beagle dog 1-wall periodontal defect model. One-wall periodontal defects were created in the mesial portion of both sides of the mandibular first molars, and 0.3% FGF-2 plus {beta}-TCP or {beta}-TCP alone was administered. Radiographic evaluation was performed at 0, 3, and 6 weeks. At 6 weeks, the periodontium with the defect site was removed and histologically analyzed. Radiographic findings showed that co-administration of FGF-2 significantly increased bone mineral contents of the defect sites compared with {beta}-TCP alone. Histologic analysis revealed that the length of the regenerated periodontal ligament, the cementum, distance to the junctional epithelium, new bone height, and area of newly formed bone were significantly increased in the FGF-2 group. No abnormal inflammatory response or ankylosis was observed in either group. These findings indicate the efficacy of concomitant use of FGF-2 and {beta}-TCP as an osteoconductive material for periodontal

  18. Synchrotron radiation analysis of possible correlations between metal status in human cementum and periodontal disease

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.R.; Naftel, S.J.; Nelson, A.J.; Edwards, M.; Mithoowani, H.; Stakiw, J. (UWO); (Saskatchewan)

    2010-03-16

    Periodontitis is a serious disease that affects up to 50% of an adult population. It is a chronic condition involving inflammation of the periodontal ligament and associated tissues leading to eventual tooth loss. Some evidence suggests that trace metals, especially zinc and copper, may be involved in the onset and severity of periodontitis. Thus we have used synchrotron X-ray fluorescence imaging on cross sections of diseased and healthy teeth using a microbeam to explore the distribution of trace metals in cementum and adhering plaque. The comparison between diseased and healthy teeth indicates that there are elevated levels of zinc, copper and nickel in diseased teeth as opposed to healthy teeth. This preliminary correlation between elevated levels of trace metals in the cementum and plaque of diseased teeth suggests that metals may play a role in the progress of periodontitis.

  19. Differential Expression of Osteo-Modulatory Molecules in Periodontal Ligament Stem Cells in Response to Modified Titanium Surfaces

    Directory of Open Access Journals (Sweden)

    So Yeon Kim

    2014-01-01

    Full Text Available This study assessed differential gene expression of signaling molecules involved in osteogenic differentiation of periodontal ligament stem cells (PDLSCs subjected to different titanium (Ti surface types. PDLSCs were cultured on tissue culture polystyrene (TCPS, and four types of Ti discs (PT, SLA, hydrophilic PT (pmodPT, and hydrophilic SLA (modSLA with no osteoinductive factor and then osteogenic activity, including alkaline phosphatase (ALP activity, mRNA expression of runt-related gene 2, osterix, FOSB, FRA1, and protein levels of osteopontin and collagen type IA, were examined. The highest osteogenic activity appeared in PDLSCs cultured on SLA, compared with the TCPS and other Ti surfaces. The role of surface properties in affecting signaling molecules to modulate PDLSC behavior was determined by examining the regulation of Wnt pathways. mRNA expression of the canonical Wnt signaling molecules, Wnt3a and β-catenin, was higher on SLA and modSLA than on smooth surfaces, but gene expression of the calcium-dependent Wnt signaling molecules Wnt5a, calmodulin, and NFATc1 was increased significantly on PT and pmodPT. Moreover, integrin α2/β1, sonic hedgehog, and Notch signaling molecules were affected differently by each surface modification. In conclusion, surface roughness and hydrophilicity can affect differential Wnt pathways and signaling molecules, targeting the osteogenic differentiation of PDLSCs.

  20. Pulp polyp - A periapical lesion: Radiographic observational study

    Directory of Open Access Journals (Sweden)

    Kandagal V Suresh

    2015-01-01

    Full Text Available Introduction: Pulp polyp (PP is a chronic hyperplastic condition resulting in formation of granulation tissue and proliferative mass. The radiographic appearance of PP has innumerable presentations. Diagnosing and treatment planning of periapical lesions, heavily relies on the radiographic changes surrounding the root structures. Objective: To evaluate different radiographic periapical changes in clinically detected PP patients. Materials and Methods: Patients reporting to Department of Oral Medicine and Radiology and who were clinically diagnosed with PP by an oral diagnostician were subjected to radiographic examination. Digital intraoral periapical radiographs of 50 patients with PP were taken. Various periapical changes in the digital radiographs were recorded by a skilled oral radiologist. The data obtained was subjected to statistical analysis using SPSS ver 17.0 and P-value was set at <0.05 as significant. Result: Periapical changes like periodontal space widening (PDLW, loss of lamina dura, periapical abscess, periapical granuloma, hypercementosis, condensing osteitis and root resorption were noted. Periodontal space widening was seen in all patients (100%, loss of lamina dura was noted in 72%, periapical rarefying osteitis in 56%, condensing osteitis in 8%, hypercementosis, periapical granuloma, and root resorption were seen in 4% of PP patients. Majority of PP were asymptomatic (66%. Pulp polyp was commonly seen in mandibular first molar followed by mandibular second molar and maxillary first molar. Statistically significant difference was noticed between periapical changes in PP patients (P value <0.0001. All PP patients showed definite periapical changes suggesting it to be a periapical lesion. Conclusion: Pulp polyp is confined to the pulpal portion of the tooth which, may or may not cause changes in periapical region. The results of the present study showed that majority of the PP patients were associated with definite periapical

  1. Regeneração periodontal em cães Periodontal regeneration in dogs

    Directory of Open Access Journals (Sweden)

    Emily Correna Carlo Reis

    2011-12-01

    Full Text Available A doença periodontal pode ser definida como a condição inflamatória dos tecidos de suporte do dente em resposta ao acúmulo do biofilme. A consequencia é a formação de graves defeitos ósseos, devido à perda dos tecidos periodontais, levando, em última instância, à perda dos dentes, predisposição a fraturas de mandíbula e formação de comunicações oronasais. O principal tratamento é a prevenção, incluindo a escovação dentária diária e a profilaxia periodontal, procedimento realizado pelo médico veterinário para remoção do biofilme e cálculo dentário acumulados. A recuperação dos tecidos perdidos, ou seja, a regeneração periodontal, é um processo mais complexo, pois envolve a formação de três tecidos intimamente ligados: osso alveolar, ligamento periodontal e cemento. Assim, diversos materiais e técnicas foram e são constantemente desenvolvidos, incluindo membranas para regeneração tecidual guiada e a aplicação de enxertos e biomateriais, amplamente estudados na odontologia humana e já disponíveis para aplicação na rotina clínica veterinária. Adicionalmente, novas possibilidades surgem com a associação dessas técnicas a fatores de crescimento e células-tronco e o desenvolvimento das membranas multifuncionais.Periodontal disease can be defined as the inflammatory condition of the tooth-supportive tissues as a response to biofilm accumulation. The consequence is the formation of severe bone defects due to the loss of periodontal tissues that ultimately lead to tooth loss, predispose to mandible fractures and formation of oronasal communications. The main treatment is prevention, including daily tooth brushing and periodontal prophylaxis, a procedure done by veterinaries to remove retained biofilm and calculus. Recovering lost tissues, i.e. periodontal regeneration, is a more complex process involving the formation of three tissues highly connected: alveolar bone, periodontal ligament and

  2. Immunomodulatory Role of Stem Cell from Human Exfoliated Deciduous Teeth on Periodontal Regeneration.

    Science.gov (United States)

    Gao, Xianling; Shen, Zongshan; Guan, Meiliang; Huang, Qiting; Chen, Lingling; Qin, Wei; Ge, Xiaohu; Chen, Haijia; Xiao, Yin; Lin, Zhengmei

    2018-03-20

    Periodontitis is initiated by the infection of periodontal bacteria and subsequent tissue inflammation due to immunoreaction, eventually leading to periodontal apparatus loss. Stem cells from human exfoliated deciduous teeth (SHEDs) have exhibited beneficial characteristics in dental tissue regeneration. However, the immunomodulatory functions of SHEDs have not been elucidated in the context of periodontitis treatment. In this study, we investigated the potential immunomodulatory effects of SHEDs on experimental periodontitis and demonstrated that multi-dose delivery of SHEDs led to periodontal tissue regeneration. SHEDs and monocytes/macrophages were cocultured in transwell systems and SHEDs were found to be capable of promoting monocyte/macrophages conversion to CD206+ M2-like phenotype. Bioluminescence imaging (BLI) was employed to assess the survival and distribution of SHEDs after delivery in periodontal tissues in an induced periodontitis model, and BLI revealed that SHEDs survived for approximately 7 days in periodontal tissues with little tissue diffusion. Then, multi-dose SHEDs delivery was applied to treat periodontitis at 7-day intervals. Results showed that muti-dose SHEDs altered the cytokine expression profile in gingival crevicular fluid, reduced gum bleeding, increased new attachment of periodontal ligament and decreased osteoclast differentiation. Micro-computed tomography analysis showed SHEDs administration significantly increased periodontal regeneration and alveolar bone volume, and decreased distance of cementoenamel junction to alveolar bone crest (CEJ-ABC). Furthermore, an increase in the number of CD206+ M2 macrophages was observed in periodontal tissues following the delivery of SHEDs, which aligned well with the promoted conversion to CD206+ M2-like cells from monocytes/macrophages in vitro after stimulation by SHEDs. This study demonstrated in a rat periodontitis model that local delivery of SHEDs attributed to the induction of M2

  3. The use of cone beam computed tomography in the diagnosis and management of internal root resorption associated with chronic apical periodontitis: a case report.

    Science.gov (United States)

    Perlea, Paula; Nistor, Cristina Coralia; Iliescu, Mihaela Georgiana; Iliescu, Alexandru Andrei

    2015-01-01

    Internal root resorption is a consequence of chronic pulp inflammation. Later on, the pulp necrosis followed by a chronic apical periodontitis is installed. Hence, usually, in clinical practice, both lesions have to be simultaneously managed. Conventional periapical radiograph is mandatory in diagnosis. Improving the diagnosis and management of both lesions, cone beam computed tomography proves to be more reliable than conventional radiography.

  4. Novel navigation technique for the endodontic treatment of a molar with pulp canal calcification and apical pathology.

    Science.gov (United States)

    Shi, Xilin; Zhao, Shiyong; Wang, Weidong; Jiang, Qianzhou; Yang, Xuechao

    2018-04-01

    Apical periodontitis, the inflammation of periapical tissue, commonly requires root canal treatment to achieve apical healing. However, if it is accompanied by pulp canal calcification, the treatment becomes complicated, and locating the root canal can be challenging. This case report describes a novel approach for treating a molar with pulp canal calcification and apical pathology. Due to the risk of perforation during treatment, a digitally printed template was used to assist in accurately locating the root canal. After six months, the patient was asymptomatic and the periradicular radiolucency was gradually reducing in size. © 2017 Australian Society of Endodontology Inc.

  5. A new method to extract dental pulp DNA: application to universal detection of bacteria.

    Directory of Open Access Journals (Sweden)

    Lam Tran-Hung

    Full Text Available BACKGROUND: Dental pulp is used for PCR-based detection of DNA derived from host and bacteremic microorganims. Current protocols require odontology expertise for proper recovery of the dental pulp. Dental pulp specimen exposed to laboratory environment yields contaminants detected using universal 16S rDNA-based detection of bacteria. METHODOLOGY/PRINCIPAL FINDINGS: We developed a new protocol by encasing decontaminated tooth into sterile resin, extracting DNA into the dental pulp chamber itself and decontaminating PCR reagents by filtration and double restriction enzyme digestion. Application to 16S rDNA-based detection of bacteria in 144 teeth collected in 86 healthy people yielded a unique sequence in only 14 teeth (9.7% from 12 individuals (14%. Each individual yielded a unique 16S rDNA sequence in 1-2 teeth per individual. Negative controls remained negative. Bacterial identifications were all confirmed by amplification and sequencing of specific rpoB sequence. CONCLUSIONS/SIGNIFICANCE: The new protocol prevented laboratory contamination of the dental pulp. It allowed the detection of bacteria responsible for dental pulp colonization from blood and periodontal tissue. Only 10% such samples contained 16S rDNA. It provides a new tool for the retrospective diagnostic of bacteremia by allowing the universal detection of bacterial DNA in animal and human, contemporary or ancient tooth. It could be further applied to identification of host DNA in forensic medicine and anthropology.

  6. Application of collagen hydrogel/sponge scaffold facilitates periodontal wound healing in class II furcation defects in beagle dogs.

    Science.gov (United States)

    Kosen, Y; Miyaji, H; Kato, A; Sugaya, T; Kawanami, M

    2012-10-01

    A three-dimensional scaffold may play an important role in periodontal tissue engineering. We prepared bio-safe collagen hydrogel, which exhibits properties similar to those of native extracellular matrix. The aim of this study was to examine the effect of implantation of collagen hydrogel/sponge scaffold on periodontal wound healing in class II furcation defects in dogs. The collagen hydrogel/sponge scaffold was prepared by injecting collagen hydrogel, cross-linked to the ascorbate-copper ion system, into a collagen sponge. Class II furcation defects (of 5 mm depth and 3 mm width) were surgically created in beagle dogs. The exposed root surface was planed and demineralized with EDTA. In the experimental group, the defect was filled with collagen hydrogel/sponge scaffold. In the control group, no implantation was performed. Histometric parameters were evaluated 2 and 4 wk after surgery. At 2 wk, the collagen hydrogel/sponge scaffold displayed high biocompatibility and biodegradability with numerous cells infiltrating the scaffold. In the experimental group, reconstruction of alveolar bone and cementum was frequently observed 4 wk after surgery. Periodontal ligament tissue was also re-established between alveolar bone and cementum. Volumes of new bone, new cementum and new periodontal ligament were significantly greater in the experimental group than in the control group. In addition, epithelial down-growth was suppressed by application of collagen hydrogel. The collagen hydrogel/sponge scaffold possessed high tissue compatibility and degradability. Implantation of the scaffold facilitated periodontal wound healing in class II furcation defects in beagle dogs. © 2012 John Wiley & Sons A/S.

  7. Clinical and histologic evaluation of non-surgical periodontal therapy with enamel matrix derivative: a report of four cases.

    Science.gov (United States)

    Mellonig, James T; Valderrama, Pilar; Gregory, Holly J; Cochran, David L

    2009-09-01

    Enamel matrix derivative (EMD) is a composite of proteins that was demonstrated histologically to work as an adjunct to periodontal regenerative surgical therapy. The purpose of this study was to evaluate the clinical and histologic effects of EMD as an adjunct to scaling and root planing. Four patients with severe chronic periodontitis and scheduled to receive complete dentures were accrued. Probing depth and clinical attachment levels were obtained. Unlimited time was allowed for hand and ultrasonic instrumentation. A notch was placed in the root >or=1 to 2 mm from the apical extent of root planing. EMD was inserted into the pocket, and a periodontal dressing was placed. Patients were seen every 2 weeks for plaque control. At 6 months post-treatment, soft tissue measurements were repeated, and the teeth were removed en bloc and prepared for histomorphologic analysis. Probing depth reduction and clinical attachment level gain were obtained in three-fourths of the specimens. Three of the four specimens analyzed histologically demonstrated new cementum, bone, periodontal ligament, and connective tissue attachment coronal to the notch. In one specimen, the gingival margin had receded below the notch. The results were unexpected and may represent an aberration. However, the substantial reduction in deep probing depths and clinical attachment level gain in three of four specimens, in addition to the histologic findings of new cementum, new bone, a new periodontal ligament, and a new connective tissue attachment, suggest that EMD may be useful as an adjunct to scaling and root planing in single-rooted teeth.

  8. Effects of the α-adrenoceptor antagonists phentolamine, phenoxybenzamine, and Idazoxan on sympathetic blood flow control in the periodontal ligament of the cat

    International Nuclear Information System (INIS)

    Edwall, B.; Gazelius, B.

    1988-01-01

    Blood flow changes in the periodontal ligament (PDL) were measured indirectly by monitoring the local clearance of 125 I - during electric sympathetic nerve stimulation or close intra-arterial infusions of either noradrenaline (NA) or adrenaline (ADR) before and after administration of phentolamine (PA), phenoxybenzamine (PBZ) or Idazoxan (RX). At the doses used in the present study, PA was the only antagonist that significantly reduced the blood flow decrease seen on activation of sympathetic fibers, although PBZ also reduced this response. Idazoxan, however, did not induce the consistent effect on blood flow decreases seen on sympathetic activation. All three α-adrenoceptor antagonists almost abolished the effects of exogenously administered NA and ADR. The results suggest the presence of functional post-junctional adrenoceptors of both the α 1 and α 2 subtypes in the sympathetic regulation of the blood flow in the PDL of the cat. A component of the response elicited by electrical sympathetic stimulation appeared to be resistant to α-adrenoceptor blockade. Administration of guanethidine (which inhibits further release of NA and neuropeptide Y) after PA abolished this residual sympathetic response

  9. Chronic stress accelerates ligature-induced periodontitis by suppressing glucocorticoid receptor-α signaling.

    Science.gov (United States)

    Lu, Huaixiu; Xu, Minguang; Wang, Feng; Liu, Shisen; Gu, Jing; Lin, Songshan; Zhao, Lisheng

    2016-03-25

    Periodontitis is a common chronic inflammatory disease. Recent studies have shown that chronic stress (CS) might modulate periodontal disease, but there are few models of CS-induced periodontitis, and the underlying mechanisms are unclear. The present study established a rat model of periodontitis associated with CS induced by nylon thread ligatures. The severity of periodontitis was evaluated in this model by radiographic and pathological examination. The inflammatory reaction indicated by the elevated serum levels of interleukin (IL)-1β, IL-6 and IL-8 was assessed by enzyme-linked immunosorbent assay. Toll-like receptor-4 (TLR4) and glucocorticoid receptor-α (GR-α) expressions were detected by reverse transcriptase-PCR and western blotting. Open-field tests and serum corticosterone were used to evaluate CS. The results showed that CS induced behavioral changes and increased corticosterone levels of the animals with periodontitis. CS stimulation markedly increased alveolar bone loss, periodontal pocket depth and the number of plaques. It also enhanced the inflammatory reaction. These results suggest that CS accelerated the ligature-induced pathological changes associated with periodontitis. Further analysis of the mechanisms involved showed that GR-α expression was significantly downregulated in periodontal tissues of the animals undergoing CS. Blocking GR-α signaling in lipopolysaccharide and corticosteroid-treated human periodontal ligament fibroblast cells in vitro significantly upregulated the expression of p-Akt (protein kinase B) and TLR4, promoted nuclear factor-κB activity and increased levels of IL-1β, IL-6 and IL-8. This research suggests that CS might accelerate the pathological progression of periodontitis by a GR-α signaling-mediated inflammatory response and that this may be a potential therapeutic target for the treatment of periodontal disease, particularly in patients with CS.

  10. Stress Induced in Periodontal Ligament under Orthodontic Loading (Part II): A Comparison of Linear Versus Non-Linear Fem Study.

    Science.gov (United States)

    Hemanth, M; Deoli, Shilpi; Raghuveer, H P; Rani, M S; Hegde, Chatura; Vedavathi, B

    2015-09-01

    Simulation of periodontal ligament (PDL) using non-linear finite element method (FEM) analysis gives better insight into understanding of the biology of tooth movement. The stresses in the PDL were evaluated for intrusion and lingual root torque using non-linear properties. A three-dimensional (3D) FEM model of the maxillary incisors was generated using Solidworks modeling software. Stresses in the PDL were evaluated for intrusive and lingual root torque movements by 3D FEM using ANSYS software. These stresses were compared with linear and non-linear analyses. For intrusive and lingual root torque movements, distribution of stress over the PDL was within the range of optimal stress value as proposed by Lee, but was exceeding the force system given by Proffit as optimum forces for orthodontic tooth movement with linear properties. When same force load was applied in non-linear analysis, stresses were more compared to linear analysis and were beyond the optimal stress range as proposed by Lee for both intrusive and lingual root torque. To get the same stress as linear analysis, iterations were done using non-linear properties and the force level was reduced. This shows that the force level required for non-linear analysis is lesser than that of linear analysis.

  11. [Biologico-periodontal considerations in restoration of teeth partially destroyed by caries or traumatism].

    Science.gov (United States)

    Carrillo Martínez, J J; Zermeño Ibarra, J A; Mercado Martínez, E G; Villanueva Neuman, Y; Castellanos Olmedo, R

    1990-01-01

    Since a great number of teeth could be rehabilitated and not extracted, in this paper we analyze the relation Perio-protesis by the point of the biology of marginal periodontal ligament, and the different options to establish this relations when are lost by decay or traumatism. We discuss the contraindications to avoid greater problems than benefits when intend to rehabilitate lost teeth.

  12. Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells.

    Science.gov (United States)

    Ito, Mai; Arakawa, Toshiya; Okayama, Miki; Shitara, Akiko; Mizoguchi, Itaru; Takuma, Taishin

    2014-11-01

    The periodontal ligament (PDL) receives mechanical stress (MS) from dental occlusion or orthodontic tooth movement. Mechanical stress is thought to be a trigger for remodeling of the PDL and alveolar bone, although its signaling mechanism is still unclear. So we investigated the effect of MS on adenosine triphosphate (ATP) release and extracellular signal-regulated kinases (ERK) phosphorylation in PDL cells. Mechanical stress was applied to human PDL cells as centrifugation-mediated gravity loading. Apyrase, Ca(2+)-free medium and purinergic receptor agonists and antagonists were utilized to analyze the contribution of purinergic receptors to ERK phosphorylation. Gravity loading and ATP increased ERK phosphorylation by 5 and 2.5 times, respectively. Gravity loading induced ATP release from PDL cells by tenfold. Apyrase and suramin diminished ERK phosphorylation induced by both gravity loading and ATP. Under Ca(2+)-free conditions the phosphorylation by gravity loading was partially decreased, whereas ATP-induced phosphorylation was unaffected. Receptors P2Y4 and P2Y6 were prominently expressed in the PDL cells. Gravity loading induced ATP release and ERK phosphorylation in PDL fibroblasts, and ATP signaling via P2Y receptors was partially involved in this phosphorylation, which in turn would enhance gene expression for the remodeling of PDL tissue during orthodontic tooth movement. © 2013 Wiley Publishing Asia Pty Ltd.

  13. [Vital pulp therapy of damaged dental pulp].

    Science.gov (United States)

    Xuedong, Zhou; Dingming, Huang; Jianguo, Liu; Zhengwei, Huang; Xin, Wei; Deqin, Yang; Jin, Zhao; Liming, Chen; Lin, Zhu; Yanhong, Li; Jiyao, Li

    2017-08-01

    The development of an expert consensus on vital pulp therapy can provide practical guidance for the improvement of pulp damage care in China. Dental pulp disease is a major type of illness that adversely affects human oral health. Pulp capping and pulpotomy are currently the main methods for vital pulp therapy. Along with the development of minimal invasion cosmetic dentistry, using different treatment technologies and materials reasonably, preserving healthy tooth tissue, and extending tooth save time have become urgent problems that call for immediate solution in dental clinics. This paper summarizes the experiences and knowledge of endodontic experts. We develop a clinical path of vital pulp therapy for clinical work by utilizing the nature, approach, and degree of pulp damage as references, defense and self-repairing ability of pulp as guidance, and modern technologies of diagnosis and treatment as means.

  14. RANK/RANKL/OPG Signalization Implication in Periodontitis: New Evidence from a RANK Transgenic Mouse Model

    Directory of Open Access Journals (Sweden)

    Bouchra Sojod

    2017-05-01

    Full Text Available Periodontitis is based on a complex inflammatory over-response combined with possible genetic predisposition factors. The RANKL/RANK/OPG signaling pathway is implicated in bone resorption through its key function in osteoclast differentiation and activation, as well as in the inflammatory response. This central element of osteo-immunology has been suggested to be perturbed in several diseases, including periodontitis, as it is a predisposing factor for this disease. The aim of the present study was to validate this hypothesis using a transgenic mouse line, which over-expresses RANK (RTg and develops a periodontitis-like phenotype at 5 months of age. RTg mice exhibited severe alveolar bone loss, an increased number of TRAP positive cells, and disorganization of periodontal ligaments. This phenotype was more pronounced in females. We also observed dental root resorption lacunas. Hyperplasia of the gingival epithelium, including Malassez epithelial rests, was visible as early as 25 days, preceding any other symptoms. These results demonstrate that perturbations of the RANKL/RANK/OPG system constitute a core element of periodontitis, and more globally, osteo-immune diseases.

  15. RANK/RANKL/OPG Signalization Implication in Periodontitis: New Evidence from a RANK Transgenic Mouse Model

    Science.gov (United States)

    Sojod, Bouchra; Chateau, Danielle; Mueller, Christopher G.; Babajko, Sylvie; Berdal, Ariane; Lézot, Frédéric; Castaneda, Beatriz

    2017-01-01

    Periodontitis is based on a complex inflammatory over-response combined with possible genetic predisposition factors. The RANKL/RANK/OPG signaling pathway is implicated in bone resorption through its key function in osteoclast differentiation and activation, as well as in the inflammatory response. This central element of osteo-immunology has been suggested to be perturbed in several diseases, including periodontitis, as it is a predisposing factor for this disease. The aim of the present study was to validate this hypothesis using a transgenic mouse line, which over-expresses RANK (RTg) and develops a periodontitis-like phenotype at 5 months of age. RTg mice exhibited severe alveolar bone loss, an increased number of TRAP positive cells, and disorganization of periodontal ligaments. This phenotype was more pronounced in females. We also observed dental root resorption lacunas. Hyperplasia of the gingival epithelium, including Malassez epithelial rests, was visible as early as 25 days, preceding any other symptoms. These results demonstrate that perturbations of the RANKL/RANK/OPG system constitute a core element of periodontitis, and more globally, osteo-immune diseases. PMID:28596739

  16. Platelet lysate supports the in vitro expansion of human periodontal ligament stem cells for cytotherapeutic use.

    Science.gov (United States)

    Wu, Rui-Xin; Yu, Yang; Yin, Yuan; Zhang, Xi-Yu; Gao, Li-Na; Chen, Fa-Ming

    2017-08-01

    Human platelet lysate (PL) produced under optimal conditions of standardization and safety has been increasingly suggested as the future 'gold standard' supplement to replace fetal bovine serum (FBS) for the ex vivo propagation of mesenchymal stem cells for translational medicine and cell therapy applications. However, the multifaceted effects of PL on tissue-specific stem cells remain largely unexplored. In the present study, we investigated the stem cell behaviours of human periodontal ligament stem cells (PDLSCs) in media with or without PL. Our data indicate that human PL, either as an adjuvant for culture media or as a substitute for FBS, supports the proliferation and expansion of human PDLSCs derived from either 'young' or 'old' donors to the same extent as FBS, without interfering with their immunomodulatory capacities. Although PL appears to inhibit the in vitro differentiation of 'young' or 'old' PDLSCs, their decreased osteogenic potential may be restored to similar or higher levels compared with FBS-expanded cells. PL- and FBS-expanded PDLSCs exhibited a similar potential to form mineralized nodules and expressed similar levels of osteogenic genes. Our data indicate that large clinically relevant quantities of PDLSCs may be yielded by the use of human PL; however, further analysis of its precise composition and function will pave the way for determining optimized, defined culture conditions. In addition to the potential increase in patient safety, our findings highlight the need for further research to develop the potential of PL-expanded PDLSCs for clinical use. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Assessment of periostin levels in serum and gingival crevicular fluid of patients with periodontal disease.

    Science.gov (United States)

    Balli, U; Keles, Z P; Avci, B; Guler, S; Cetinkaya, B O; Keles, G C

    2015-12-01

    Periostin, a secreted adhesion molecule essential for periodontal tissue integrity, is highly expressed in the periodontal ligament and plays a critical role in tooth and bone development. The purpose of this study was to investigate periostin levels in the gingival crevicular fluid and serum of patients with periodontal disease and compare them with those of healthy individuals. Eighty individuals (41 males and 39 females; age range: 25-48 years) were enrolled in the study. Individuals were divided into three groups following clinical and radiographic examinations: the periodontal-healthy group (n = 20), gingivitis group (n = 30) and chronic periodontitis group (n = 30). Gingival crevicular fluid and serum samples were collected and periostin levels were determined using the enzyme-linked immunosorbent assay. The total amount and concentration of periostin decreased in gingival crevicular fluid with the progression and severity of the disease from healthy controls to gingivitis and to chronic periodontitis groups and differed significantly (p 0.05). Periostin in gingival crevicular fluid negatively correlated with the gingival index in the periodontal disease groups, whereas it is inversely correlated with the clinical attachment level only in the periodontitis group (p periodontal disease, and negatively correlated with the clinical parameters. Within the limits of the study, the periostin level in gingival crevicular fluid can be considered a reliable marker in the evaluation of periodontal disease susceptibility and activity. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. A three-dimensional cell culture model to study the mechano-biological behavior in periodontal ligament regeneration

    NARCIS (Netherlands)

    Oortgiesen, D.A.W.; Yu, N.; Bronckers, A.L.J.J.; Yang, F.; Walboomers, X.F.; Jansen, J.A.

    2012-01-01

    Periodontitis is a disease affecting the supporting structures of the teeth, which can eventually result in tooth loss. A three-dimensional (3D) tissue culture model was developed that may serve to grow a 3D construct that not only transplants into defective periodontal sites, but also allows to

  19. The progress of the periodontal syndrome in the rice rat

    International Nuclear Information System (INIS)

    Gotcher, J.E.; Jee, W.S.S.

    1981-01-01

    Several morphometric and cellular parameters were studied in the rice rat (Oryzomys palustris). When fed a soft, high carbohydrate diet, a severe periodontal disease occurred, with significant alterations in the morphometric and cellular endpoints observed. Weaned animals were placed on a high carbohydrate diet for periods of 6, 12 or 18 weeks. There was a linear rapid loss of bone by 18 weeks, approaching a 75% loss of original bone. Vascular spaces decreased as the remaining connective tissue became fibrotic in character. The percentage of the interdental test site which was destroyed by periodontal disease increased dramatically over the time of the experiment. The numbers of fibroblasts per mm of bone surface increased slightly at the 18 week period; osteoblasts were unchanged at any period. The numbers of osteoclast nuclei rose dramatically by 12 weeks, and these cell nuclei remained at increased levels at 18 weeks. Also, the numbers of inflammatory cells residing at the bone surface increased greatly by 18 weeks time. Finally, the numbers of 3 H-TdR labeled periodontal ligament (PDL) fibroblasts increased significantly at both 12 and 18 weeks time. These cellular changes and their relation to the bone loss due to periodontal disease are discussed. (author)

  20. Characterization and evaluation of graphene oxide scaffold for periodontal wound healing of class II furcation defects in dog.

    Science.gov (United States)

    Kawamoto, Kohei; Miyaji, Hirofumi; Nishida, Erika; Miyata, Saori; Kato, Akihito; Tateyama, Akito; Furihata, Tomokazu; Shitomi, Kanako; Iwanaga, Toshihiko; Sugaya, Tsutomu

    2018-01-01

    The 3-dimensional scaffold plays a key role in volume and quality of repair tissue in periodontal tissue engineering therapy. We fabricated a novel 3D collagen scaffold containing carbon-based 2-dimensional layered material, named graphene oxide (GO). The aim of this study was to characterize and assess GO scaffold for periodontal tissue healing of class II furcation defects in dog. GO scaffolds were prepared by coating the surface of a 3D collagen sponge scaffold with GO dispersion. Scaffolds were characterized using cytotoxicity and tissue reactivity tests. In addition, GO scaffold was implanted into dog class II furcation defects and periodontal healing was investigated at 4 weeks postsurgery. GO scaffold exhibited low cytotoxicity and enhanced cellular ingrowth behavior and rat bone forming ability. In addition, GO scaffold stimulated healing of dog class II furcation defects. Periodontal attachment formation, including alveolar bone, periodontal ligament-like tissue, and cementum-like tissue, was significantly increased by GO scaffold implantation, compared with untreated scaffold. The results suggest that GO scaffold is biocompatible and possesses excellent bone and periodontal tissue formation ability. Therefore, GO scaffold would be beneficial for periodontal tissue engineering therapy.

  1. Dentistry and internal medicine: from the focal infection theory to the periodontal medicine concept.

    Science.gov (United States)

    Pizzo, Giuseppe; Guiglia, Rosario; Lo Russo, Lucio; Campisi, Giuseppina

    2010-12-01

    During past decades the relationship between dentistry and internal medicine and especially the concept of the so-called focal infection theory have long been a matter of debate. The pathogenesis of focal diseases has been classically attributed to dental pulp pathologies and periapical infections. Nonetheless, in recent years, their role is being dismissed while increasing interest is being devoted to the possible associations between periodontal infection and systemic diseases. In fact, periodontal pathogens and their products, as well as inflammatory mediators produced in periodontal tissues, might enter the bloodstream, causing systemic effects and/or contributing to systemic diseases. On the basis of this mechanism, chronic periodontitis has been suggested as a risk factor for cardiovascular diseases associated with atherosclerosis, bacterial endocarditis, diabetes mellitus, respiratory disease, preterm delivery, rheumatoid arthritis, and, recently, osteoporosis, pancreatic cancer, metabolic syndrome, renal diseases and neurodegenerative diseases such as Alzheimer's disease. Various hypotheses, including common susceptibility, systemic inflammation, direct bacterial infection and cross-reactivity, or molecular mimicry, between bacterial antigens and self-antigens, have been postulated to explain these relationships. In this scenario, the association of periodontal disease with systemic diseases has set the stage for introducing the concept of periodontal medicine. This narrative review summarizes the evolution of focal infection theory up to the current pathophysiology of periodontal disease, and presents an update on the relationships between chronic periodontitis and systemic diseases. Copyright © 2010 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  2. Use of rat mature adipocyte-derived dedifferentiated fat cells as a cell source for periodontal tissue regeneration

    Directory of Open Access Journals (Sweden)

    Daisuke eAkita

    2016-02-01

    Full Text Available Lipid-free fibroblast-like cells, known as dedifferentiated fat (DFAT cells, can be generated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and can transdifferentiate into various cell types under appropriate culture conditions. The first objective of this study was to compare the multilineage differentiation potential of DFAT cells with that of adipose-derived stem cells (ASCs on mesenchymal stem cellsWe obtained DFAT cells and ASCs from inbred rats and found that rat DFAT cells possess higher osteogenic differentiation potential than rat ASCs. On the other hand, DFAT cells show similar adipogenic differentiation, and chondrogenic differentiation potential in comparison with ASCs. The second objective of this study was to assess the regenerative potential of DFAT cells combined with novel solid scaffolds composed of PLGA (Poly d, l-lactic-co-glycolic acid on periodontal tissue, and to compare this with the regenerative potential of ASCs combined with PLGA scaffolds. Cultured DFAT cells and ASCs were seeded onto PLGA scaffolds (DFAT/PLGA and ASCs/PLGA and transplanted into periodontal fenestration defects in rat mandible. Micro computed tomography analysis revealed a significantly higher amount of bone regeneration in the DFAT/PLGA group compared with that of ASCs/PLGA and PLGA-alone groups at 2, 3 and 5 weeks after transplantation. Similarly, histomorphometric analysis showed that DFAT/PLGA groups had significantly greater width of cementum, periodontal ligament and alveolar bone than ASCs/PLGA and PLGA-alone groups. In addition, transplanted fluorescent-labeled DFAT cells were observed in the periodontal ligament beside the newly formed bone and cementum. These findings suggest that DFAT cells have a greater potential for enhancing periodontal tissue regeneration than ASCs. Therefore, DFAT cells are a promising cell source for periodontium regeneration.

  3. Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure.

    Science.gov (United States)

    Costa, Pedro F; Vaquette, Cédryck; Zhang, Qiyi; Reis, Rui L; Ivanovski, Saso; Hutmacher, Dietmar W

    2014-03-01

    This study investigated the ability of an osteoconductive biphasic scaffold to simultaneously regenerate alveolar bone, periodontal ligament and cementum. A biphasic scaffold was built by attaching a fused deposition modelled bone compartment to a melt electrospun periodontal compartment. The bone compartment was coated with a calcium phosphate (CaP) layer for increasing osteoconductivity, seeded with osteoblasts and cultured in vitro for 6 weeks. The resulting constructs were then complemented with the placement of PDL cell sheets on the periodontal compartment, attached to a dentin block and subcutaneously implanted into athymic rats for 8 weeks. Scanning electron microscopy, X-ray diffraction, alkaline phosphatase and DNA content quantification, confocal laser microscopy, micro computerized tomography and histological analysis were employed to evaluate the scaffold's performance. The in vitro study showed that alkaline phosphatase activity was significantly increased in the CaP-coated samples and they also displayed enhanced mineralization. In the in vivo study, significantly more bone formation was observed in the coated scaffolds. Histological analysis revealed that the large pore size of the periodontal compartment permitted vascularization of the cell sheets, and periodontal attachment was achieved at the dentin interface. This work demonstrates that the combination of cell sheet technology together with an osteoconductive biphasic scaffold could be utilized to address the limitations of current periodontal regeneration techniques. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Revascularization procedure in an open apex tooth with external root resorption: A case report

    Directory of Open Access Journals (Sweden)

    Mahsa Dastpak

    2017-06-01

    Full Text Available External inflammatory root resorption (EIR represents a challenge in endodontic practice. EIR commonly occurs after dental trauma that results in periodontal ligament injury, pulp necrosis and subsequent infection.  Treatment of EIR is based on disinfecting the root canal system through chemomechanical procedures and then filling it with calcium hydroxide or triple antibiotic paste. Dental trauma commonly occurs in young patients whose teeth are not fully formed and have thin dentinal walls and open apices. Revascularization therapy has proven to be suitable for treatment of root canals of teeth with pulp necrosis and open apices. This case report presents successful revascularization treatment of a permanent immature tooth with external root resorption and chronic apical periodontitis. The tooth was treated by the protocol suggested by the American Association of Endodontics (AAE, consisted of disinfecting the root canal system, filling it with blood clot and sealing the root canal with mineral trioxide aggregate followed by bonded resin restoration. The symptoms disappeared, the size of the periapical lesion reduced and the tooth was asymptomatic during the 12 month follow up period.

  5. The Relationship Between Periodontal Disease and Neoplasms of the Oral Cavity: A Review Article

    Directory of Open Access Journals (Sweden)

    Nourelahi

    2016-08-01

    Full Text Available Context Oral cavity is one of the most common sites for neoplasms with a multifactorial etiology. Tobacco and alcohol are the main risk factors. Periodontal disease is an inflammatory disease affecting periodontal tissues such as gingiva, periodontal ligament and alveolar bone. Periodontal disease is linked to many systemic diseases. Recently a link between periodontal disease and cancer is suggested. The current review article aimed to evaluate the association between periodontal disease and risk of cancer in the oral cavity and some related factors. Evidence Acquisition Evidence suggests that oral cavity cancer is significantly more prevalent in patients with periodontal disease, poor oral hygiene or more missing teeth. Clinically, gingival squamous cell carcinoma (GSCC usually appears as an exophytic mass with a granular, papillary or verrucous surface or presents as an ulcerative lesion. Some reported cases of GSCC mimicking periodontal disease include gingival enlargement with no bone invasion, dentoalveolar abscess, erosive erythematosus lesion with keratotic papules, root exposure and tooth mobility, verrucous leukoplakia, verruciform xanthoma and development of hyperplastic granulation tissue after tooth extraction. Greater burden of oral flora that produce carcinogenic metabolites, human papilloma virus (HPV and other viruses that are residents of periodontal pocket, increased amount of inflammatory mediators and markers and some periodontal pathogens affecting cell cycle leading to mutation and dysplasia are considered as the rational for the relationship between malignant lesions of oral cavity and periodontal disease. Results Cancer of the oral cavity and periodontal disease are related from different aspects. Periodontal disease and tooth loss are considered as independent risk factors for cancer. Gingival squamous cell carcinoma can also mimic periodontal disease leading to misdiagnosis and delayed commencement of appropriate

  6. Caffeine may enhance orthodontic tooth movement through increasing osteoclastogenesis induced by periodontal ligament cells under compression.

    Science.gov (United States)

    Yi, Jianru; Yan, Boxi; Li, Meile; Wang, Yu; Zheng, Wei; Li, Yu; Zhao, Zhihe

    2016-04-01

    Caffeine is the kernel component of coffee and has multiple effects on bone metabolism. Here we aimed to investigate the effects of caffeine intake on orthodontic tooth movement (OTM). (1) In the in vivo study, two groups comprising 15 randomly assigned rats each underwent orthodontic treatment. One group ingested caffeine at 25mg/kg body weight per day and the other, plain water. After 3 weeks, the degree of tooth movement and effect on the periodontium were assessed. (2) In the in vitro study, we established a model mimicking the essential bioprocess of OTM, which contained a periodontal ligament tissue model (PDLtm), and a co-culture system of osteoblasts (OBs) and osteoclast precursors (pre-OCs). After being subjected to static compressive force with or without caffeine administration, the conditioned media from the PDLtm were used for the OB/pre-OC co-cultures to induce osteoclastogenesis. (1) In vivo, the caffeine group displayed a significantly greater rate of tooth movement than the control. The alveolar bone mineral density and bone volume fraction were similar between the two groups; however, immunohistochemical staining showed that the caffeine group had significantly more TRAP(+) osteoclasts and higher RANKL expression in the compressed periodontium. (2) In vitro, caffeine at 0.01mM significantly enhanced the compression-induced expression of RANKL and COX-2, as well as prostaglandin E2 production in the PDLtm. Furthermore, the "caffeine+compression"-conditioned media induced significantly more TRAP(+) OC formation when compared with compression alone. Daily intake of caffeine, at least at some specific dosage, may enhance OTM through increasing osteoclastogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Endodontic Periodontic Lesions and Host Modulation – Case Series

    Directory of Open Access Journals (Sweden)

    Afaf Zia

    2015-07-01

    Full Text Available Host modulation, includes inhibition of matrix metalloproteinases, blocking production of proinflammatory cytokines and inhibition of osteoclastic activity, has therapeutic value as adjunctive therapy in treating chronic periodontitis. This case series presented three patients with chief complaint of teeth mobility where endo perio involvement was diagnosed. The endo perio combined lesions generally shows the communication between pulp and periodontal tissues with the same origin of dental infection. Diagnosis in such cases is difficult and generally raising problem in the management. All of the cases were managed by non surgical endodontic therapy combined with host modulation. All local factors causing the lesion were removed. Clinical outcome after six and nine months were quite satisfactory. Combined endo perio cases are challenging to the dentists and involve multidisciplinary involvement. To manage such cases, dentists have to rely on the unconventional techniques.DOI: 10.14693/jdi.v22i1.378

  8. Why not to treat the tooth canal to solve external root resorptions? Here are the principles!

    Directory of Open Access Journals (Sweden)

    Alberto Consolaro

    Full Text Available ABSTRACT This paper aims at exposing the foundations or reasons why, in cases of external tooth resorption, including those of orthodontic origin, one should not perform a root canal to treat it. That should be done only to teeth with contamination or pulp necrosis, to remove the periapical inflammation induced by microbial products. When facing cases of external tooth resorption, one's conduct must always respect the following sequence of steps: first of all, identifying the cause accurately; then, planning the therapeutic approach and, finally, adopting the conducts in a very well-founded way. The situations in which endodontic treatment is recommended for tooth resorptions are those when there are: a pulp necrosis with microbial contamination, b aseptic pulp necrosis, c developing calcific metamorphosis of the pulp and d diagnosis of internal resorption. It is not possible, through the pulp, to control the resorption process that is taking place in the external part, after all, the causes are acting in the periodontal ligament. There is no evidence that justifies applying endodontic treatment, by means of root canal, to control external resorption processes, when the pulp shows vitality.

  9. Application of Stem Cell Technology in Dental Regenerative Medicine.

    Science.gov (United States)

    Feng, Ruoxue; Lengner, Chistopher

    2013-07-01

    In this review, we summarize the current literature regarding the isolation and characterization of dental tissue-derived stem cells and address the potential of these cell types for use in regenerative cell transplantation therapy. Looking forward, platforms for the delivery of stem cells via scaffolds and the use of growth factors and cytokines for enhancing dental stem cell self-renewal and differentiation are discussed. We aim to understand the developmental origins of dental tissues in an effort to elucidate the molecular pathways governing the genesis of somatic dental stem cells. The advantages and disadvantages of several dental stem cells are discussed, including the developmental stage and specific locations from which these cells can be purified. In particular, stem cells from human exfoliated deciduous teeth may act as a very practical and easily accessibly reservoir for autologous stem cells and hold the most value in stem cell therapy. Dental pulp stem cells and periodontal ligament stem cells should also be considered for their triple lineage differentiation ability and relative ease of isolation. Further, we address the potentials and limitations of induced pluripotent stem cells as a cell source in dental regenerative. From an economical and a practical standpoint, dental stem cell therapy would be most easily applied in the prevention of periodontal ligament detachment and bone atrophy, as well as in the regeneration of dentin-pulp complex. In contrast, cell-based tooth replacement due to decay or other oral pathology seems, at the current time, an untenable approach.

  10. CLINICAL, HISTOLOGICAL AND RADIOLOGICAL ASPECTS REGARDING THE INFLUENCE OF SOME EXTERNAL FACTORS ON THE PULP-DENTIN COMPLEX

    Directory of Open Access Journals (Sweden)

    C. Giuroiu

    2012-12-01

    Full Text Available The present study aimed at assesssing – by clinical, histological and radiological investigations – the influence of some external factors on the pulp-dentin complex, and at providing a causal interpretation of the structural changes observed. Materials and methods. Clinical and radiological exams were performed on 65 old patients with ages between 60-75, and also on 40 young patients with ages between 20-35, presenting different dental-periodontal pathologies. The pulp-dentin complex was submitted to a morphopathological examination, to highlight the structural changes observed at microscopic level. Fragments of dental pulp were imersed in a 4% formaldehyde solution with phosphate buffer 0.1 M., pH 7.2, for 12 -14 hours, at a temperature of 4ºC, and 3-5 µm thick slices were prepared. The slices were coloured with hematoxylin-eosine (HE, by the trichromic technique – Masson. Photographies were taken with a Zeiss microscope, with Kodak 200 ASA. Results. Significant differences were observed, between the two groups of patients, as to the external factors that produce structural changes on pulp-dentin organ. In the group of young patients dental caries and coronal fillings prevailed, while the group of old patients was mostly associated with atrition and chronic marginal periodontitis. Out of the 40 young patients, 30 presented chronic dental caries (75%, while, among the 65 old patients, only 24 presented dental caries (36.9%. The percentages of coronary fillings between the two study groups were close, which could be considered as one of the causes producing changes in the pulp-dentin organ, following aggresive preparation of cavities, the action of materials used for the protection of pulp-dentin complex or of the materials used for coronry fillings. Conclusions. Dental pulp has a remarkable ability to counteract the action of harmful factors, producing a mineral barrier and stimulating the reparatory processes. Changes in the endodontic

  11. Successful isolation, in vitro expansion and characterization of stem cells from Human Dental Pulp

    Directory of Open Access Journals (Sweden)

    Preethy SP

    2010-01-01

    Full Text Available BACKGROUND: Recent studies have shown that mesenchymal stem cells isolated from post natal human dental pulp, (Dental pulp stem cells-DPSCs which is from permanent teeth and SHED (stem cells from human exfoliated deciduous teeth,the Periodontal ligament stem cells (PDLSC and Stem cells from root Apical papilla(SCAPhave the potential to differentiate into cells of a variety of tissues including heart, muscle, cartilage, bone, nerve, salivary glands, teeth etc(1,2,3,4.This multipotential ability of DPSCs is being researched for clinical application for treating a variety of diseases like myocardial infarction, muscular dystrophy, neuro-degenerative disorders, cartilage replacement, tooth regeneration and for repair of bone defects to mention a few. Moreover, the isolation of stem cells from teeth is minimally invasive, readily accessible and the non immunogenic characteristic of dental stem cells has paved the way for efforts to store the exfoliated deciduous teeth or milk teeth which is usually discarded, for use in the future. In this study we have isolated and expanded in vitro, the cells obtained from human dental pulp. MATERIALS AND METHODS: After obtaining written informed consent, 24 teeth that were extracted for therapeutic or cosmetic reasons from 16 patients were used in this study. The specimens were transported from the clinic to NCRM lab taking 6 to 48 Hrs. For removal of the pulp tissue, the teeth were split obliquely at the Cementoenamel junction and the pulp tissue was isolated using brooches. The extracted pulp tissues were subjected to digestion using Collagenase type-I and type II at 37˚C for 15- 30 minutes. The digested cells were filtered with 70µm filter and centrifuged at 1800 rpm for 10 minutes. The pellet was then suspended in Dulbecco’s modified Eagle’s medium (DMEM/Ham’s F12 supplemented with 15% fetal bovine serum , 100 U/ml penicillin, 100 µg/ml streptomycin,2 m M L -glutamine, and 2 m M nonessential amino

  12. Squamous cell carcinoma presenting as an endodontic-periodontic lesion.

    Science.gov (United States)

    Levi, Paul A; Kim, David M; Harsfield, Scott L; Jacobson, Erica R

    2005-10-01

    Regardless of advances in diagnosis and treatment during the past 40 years, the overall 5-year survival rates for oral and oropharyngeal squamous cancers have only slightly improved and remain around 50%. Thus, the early diagnosis and treatment of carcinoma by health care providers are essential in achieving a good prognosis. We report a case of invasive squamous cell carcinoma that presented as a benign endodontic-periodontic lesion with a 7-mm periodontal pocket on tooth #15 in a 40-year-old, non-smoking woman. The subsequent management of the case is also discussed. The study was conducted in accordance with the Helsinki Declaration of 1975, as revised in 2000. Our patient was seen for a comprehensive periodontal examination including a periodontal charting, occlusal analysis, study casts, electronic pulp test for tooth #15, and complete mouth periapical radiographs. As there was a periapical radiolucency, an endodontic consultation was obtained. A periodontal flap surgical procedure was performed on teeth #13 to #15, and as there was bone erosion into the maxillary sinus, a biopsy of the soft tissue was submitted to the local hospital for histological analysis. The biopsied lesion was diagnosed as invasive, moderately differentiated squamous cell carcinoma with focal spindle and clear cell differentiation (grade II to III of IV). Bone invasion was also identified. The treatment of the carcinoma involved a hemimaxillectomy with the removal of the maxillary left posterior teeth. The patient remained free of tumor for 5 years after the initial presentation. Patient education and periodic oral cancer examinations by dental professionals are necessary to reduce diagnostic delay and improve prognosis. This case report emphasizes the important role of dental professionals, especially periodontists and endodontists, of being aware that squamous cell carcinoma may manifest itself clinically and/or radiographically as a common periodontal or endodontic lesion.

  13. The effectiveness of mangosteen rind extract as additional therapy on chronic periodontitis (Clinical trials

    Directory of Open Access Journals (Sweden)

    Ina Hendiani

    2017-03-01

    Full Text Available ABSTRACT   Introduction: Periodontitis is an inflammatory disease that attacks the periodontal tissue comprises the gingiva, periodontal ligament, cementum and alveolar bone caused mainly by plaque bacteriophage or other specific dominant type of bacteria. The purpose of this study was to determine the therapeutic effect of clinical application of mangosteen peel extract gel as adjunctive therapy scaling and root planing in patients with chronic periodontitis. This research was expected to developed new treatment in the field of dentistry, particularly in periodontics, which can be used as supporting material for the treatment of chronic periodontitis. Methods: Quasi-experimental research, split mouth, with as many as 14 chronic periodontitis patients. Mangosteen rind was prepared to be formed into extract gel, dried at room temperature, then the dried samples were macerated by using ethanol, then evaporated and decanted for 3 days until obtained condensed extract. The samples were patients with chronic periodontitis in at least 2 teeth with pockets ≥ 5 mm. Clinical parameters of pocket depth, gingival bleeding, and clinical epithelial attachment level were measured at baseline and 1 month after treatment. Analysis of data using the t-test. Results: The comparison of average gap ratio of pockets depth, gingival index, gingival bleeding and epithelium attachment levels, before and after treatment showed significant differences, such as in the test and control sides. Conclusion: The mangosteen rind gel as adjunctive therapy for scaling and root planing is able to reduce pockets depth, gingival index, and gingival bleeding, and improve clinical epithelial attachment.

  14. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration.

    Science.gov (United States)

    Hu, Lei; Gao, Zhenhua; Xu, Junji; Zhu, Zhao; Fan, Zhipeng; Zhang, Chunmei; Wang, Jinsong; Wang, Songlin

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS) combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases.

  15. Monocyte chemotactic protein-3: possible involvement in apical periodontitis chemotaxis.

    Science.gov (United States)

    Dezerega, A; Osorio, C; Mardones, J; Mundi, V; Dutzan, N; Franco, M; Gamonal, J; Oyarzún, A; Overall, C M; Hernández, M

    2010-10-01

    To study the expression of monocyte chemotactic protein-3 (MCP-3, also known as chemokine CCL-7) in tissue from apical lesions (AL) and to associate MCP-3 expression with symptomatic or asymptomatic apical periodontitis. To determine the expression of MCP-3 in AL, biopsies obtained during tooth extraction procedures were fixed, subjected to routine processing and diagnosed as apical granuloma (AG) (n = 7) or radicular cyst (RC) (n = 5). As controls, apical periodontal ligament (PDL) specimens from healthy premolars extracted for orthodontics reasons were included (n = 7). All specimens were immunostained for MCP-3 and examined under a light microscope. In addition, homogenates from AL (n = 14) and healthy PDL samples (n = 7) were studied through immunowestern blot. Finally, periapical exudates samples were collected from root canals of teeth having diagnosis of symptomatic (n = 14) and asymptomatic apical periodontitis (n = 14) during routine endodontic treatments and analysed by immunowestern blot and densitometry.   MCP-3 was detected in AG and RC and localized mainly to inflammatory leucocytes, whereas no expression was observed in healthy PDLs. MCP-3 was also detected in periapical exudate, and its levels were significantly higher in symptomatic than in asymptomatic apical periodontitis. MCP-3 was expressed in AL and its levels associated with clinical symptoms. MCP-3 might play a role in disease pathogenesis, possibly by stimulating mononuclear chemotaxis. © 2010 International Endodontic Journal.

  16. Diabetes enhances dental caries and apical periodontitis in caries-susceptible WBN/KobSlc rats.

    Science.gov (United States)

    Kodama, Yasushi; Matsuura, Masahiro; Sano, Tomoya; Nakahara, Yutaka; Ozaki, Kiyokazu; Narama, Isao; Matsuura, Tetsuro

    2011-02-01

    Many epidemiologic studies have suggested that diabetes may be an important risk factor for periodontal disease. To determine whether diabetes induces or enhances periodontal disease or dental caries, dental tissue from diabetic male and nondiabetic female WBN/KobSlc rats and male and female age-matched nondiabetic F344 rats was analyzed morphologically and morphometrically for these 2 types of lesions. Soft X-ray examination revealed that the incidence and severity of both molar caries and alveolar bone resorption were much higher in male WBN/KobSlc rats with chronic diabetes than in nondiabetic female rats of the same strain. Histopathologic examination showed that dental caries progressed from acute to subacute inflammation due to bacterial infections and necrosis in the pulp when the caries penetrated the dentin. In the most advanced stage of dental caries, inflammatory changes caused root abscess and subsequent apical periodontitis, with the formation of granulation tissue around the dental root. Inflammatory changes resulted in resorption of alveolar bone and correlated well with the severity of molar caries. Our results suggest that diabetic conditions enhance dental caries in WBN/KobSlc rats and that periodontal lesions may result from the apical periodontitis that is secondary to dental caries.

  17. Periodontal-endodontic lesion of a three-rooted maxillary premolar: report of a case.

    Science.gov (United States)

    Blanchard, Steven B; Almasri, Amjad; Gray, Jonathon L

    2010-05-01

    A 43-year-old African American male initially presented for a dental evaluation of a recurrent swelling on the buccal aspect of tooth #12. His medical history was unremarkable except for a 20-pack year history of smoking. He was eventually diagnosed as having a necrotic pulp #12, and received root canal treatment. The patient's problem was unresolved, and he was subsequently referred for a periodontal evaluation with a presumptive diagnosis of a periodontal abscess. A flap was reflected from teeth #11 through #15. A buccal furcation invasion was discovered on #12. Shortly thereafter, three distinct roots with three grade III furcation invasions were located. The tooth was deemed untreatable, and was extracted. The thin buccal plate of the extraction socket was preserved using freeze-dried bone allograft to facilitate future prosthodontic replacement. Healing was uneventful. Periodontal open flap debridement surgery was provided for the remainder of the mouth, and the patient was placed on a 3-month recall program. Periodontitis associated with endodontic lesions are among the most daunting diagnostic and therapeutic challenges faced by periodontists. This is particularly true for maxillary premolars with multiple roots. The tooth in this case, once periodontally involved, had a very poor prognosis. The prognosis was further compromised by the pulpal involvement. Therapy consisted of extraction of the tooth to relieve the patient's discomfort and treating the adjacent teeth with periodontal open flap debridement surgery. A review of the literature pertinent to the diagnosis and management of periodontal-endodontic lesions is also presented.

  18. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Lei Hu

    2017-01-01

    Full Text Available Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases.

  19. Esthetic periodontal surgery for impacted dilacerated maxillary central incisors.

    Science.gov (United States)

    Wei, Yu-Ju; Lin, Yi-Chun; Kaung, Shou-Shin; Yang, Shue-Fen; Lee, Shyh-Yuan; Lai, Yu-Lin

    2012-10-01

    Clinicians do not frequently see impacted dilacerated maxillary incisors in their patients. When they do, there are several diagnostic and management challenges for correcting root dilacerations. An unfavorable esthetic outcome might occur as a result of soft-tissue complications during surgical eruption procedures. We present 2 patients with an impacted and dilacerated maxillary central incisor. Computed tomography scans with 3-dimensional reformation were used to accurately assess the positions of the dilacerated teeth, the degree of dilaceration, and the stage of root formation. The therapy primarily involved 2-stage crown exposure surgery combined with orthodontic traction. An apicoectomy was performed on 1 dilacerated tooth; the other exhibited pulp vitality. This article highlights the periodontal surgical strategies for the esthetic management of inverted crowns. Through periodontal plastic surgery and interdisciplinary cooperation, the impacted dilacerated central incisors were properly aligned, and successful esthetic results were achieved. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  20. Management of endodontic-periodontic lesion of a maxillary lateral incisor with palatoradicular groove

    OpenAIRE

    Jayshree Ramakrishna Vishwas; Shoeb Yakub Shaikh; Varsha H. Tambe; Fareedi Mukram Ali; Mohammed Mustafa

    2014-01-01

    Presence of palatal radicular grooves are considered to be an important contributing factor to the development of localized periodontitis, as it favored the accumulation and proliferation of bacterial plaque deep into the periodontium. Pulp involvement could result due to the introduction of bacterial toxins through channels that existed between the root canal system and the groove. Early diagnosis, elimination of inflammation and correction of anatomic complications are the key to a favorabl...

  1. Conservative treatment of immature teeth with apical periodontitis using triple antibiotic paste disinfection

    OpenAIRE

    Wang, Hsin-Ju; Chen, Yea-Huey Melody; Chen, Kuan-Liang

    2016-01-01

    The purpose of this report is to present conservative treatment for two immature premolars with apical periodontitis. A triple antibiotic paste was used to disinfect the root canal systems for revascularization. In both cases, residual vital pulp tissue was noted in the root canal system after the opening of each premolar. The canals in both cases were irrigated with copious sodium hypochlorite solution and medicated with a paste consisting of ciprofloxacin, metronidazole, and minocycline. Th...

  2. Growth on elastic silicone substrate elicits a partial myogenic response in periodontal ligament derived stem cells

    Directory of Open Access Journals (Sweden)

    Daniel Pelaez

    2016-12-01

    Full Text Available The processes of cellular differentiation and phenotypic maintenance can be influenced by stimuli from a variety of different factors. One commonly overlooked factor is the mechanical properties of the growth substrate in which stem cells are maintained or differentiated down various lineages. Here we explored the effect that growth on an elastic silicone substrate had on the myogenic expression and cytoskeletal morphology of periodontal ligament derived stem cells. Cells were grown on either collagen I coated tissue culture polystyrene plates or collagen I coated elastic silicone membranes for a period of 4 days without further induction from soluble factors in the culture media. Following the 4-day growth, gene expression and immunohistochemical analysis for key cardiomyogenic markers was performed along with a morphological assessment of cytoskeletal organization. Results show that cells grown on the elastic substrate significantly upregulate key markers associated with contractile activity in muscle tissues. Namely, the myosin light chain polypeptides 2 and 7, as well as the myosin heavy chain polypeptide 7 genes underwent a statistically significant upregulation in the cells grown on elastic silicone membranes. Similarly, the cells on the softer elastic substrate stained positive for both sarcomeric actin and cardiac troponin t proteins following just 4 days of growth on the softer material. Cytoskeletal analysis showed that substrate stiffness had a marked effect on the organization and distribution of filamentous actin fibers within the cell body. Growth on silicone membranes produced flatter and shorter cellular morphologies with filamentous actin fibers projecting anisotropically throughout the cell body. These results demonstrate how crucial the mechanical properties of the growth substrate of cells can be on the ultimate cellular phenotype. These observations highlight the need to further optimize differentiation protocols to enhance

  3. CLINICAL, HISTOLOGICAL AND RADIOLOGICAL ASPECTS REGARDING THE INFLUENCE OF SOME EXTERNAL FACTORS ON THE PULP-DENTIN COMPLEX

    OpenAIRE

    C. Giuroiu; Maria Vataman; Liana Aminov; Mihaela Sălceanu; S. Andrian

    2012-01-01

    The present study aimed at assesssing – by clinical, histological and radiological investigations – the influence of some external factors on the pulp-dentin complex, and at providing a causal interpretation of the structural changes observed. Materials and methods. Clinical and radiological exams were performed on 65 old patients with ages between 60-75, and also on 40 young patients with ages between 20-35, presenting different dental-periodontal pathologies. The ...

  4. Evaluation of goat milk as storage media to preserve viability of human periodontal ligament cells in vitro.

    Science.gov (United States)

    Ulusoy, Ayça Tuba; Kalyoncuoglu, Elif; Kaya, Senay; Cehreli, Zafer Cavit

    2016-08-01

    The purpose of this study was to evaluate the effectiveness of goat milk as a storage media for maintenance of periodontal ligament (PDL) cell viability of avulsed teeth and compare it with commonly used and/or investigated storage media. PDL cells were obtained from the root surface of healthy premolars and were cultured in Eagle's maintenance medium (EMM). Cell cultures were treated with the following storage media: tap water (negative control); EMM (positive control); Hank's balanced salt solution; ultra high temperature (UHT) long-shelf-life lactose-free cow milk; UHT long-shelf-life whole cow milk; UHT long-shelf-life skimmed cow milk; UHT long-shelf-life soy milk; UHT long-shelf-life goat milk, UHT long-shelf-life follow on milk with probiotic, 20% propolis, and egg white. Culture plates were incubated with experimental media at 20°C for 1, 3, 6, 12, and 24 h. PDL cell viability was assessed by tetrazolium salt-based colorimetric (MTT) assay at each test period. One-way anova was used to evaluate the effects of storage solutions at each time point, followed by post hoc Duncan's multiple comparison test (P = 0.05). A dendrogram was constructed to show the arrangement of hierarchical clustering. Goat milk displayed the highest capacity to maintain cell viability at all test intervals (P milk with the probiotic showed the lowest time-dependent PDL cell viability among all test media (P milks, HBSS performed significantly less effectively in maintaining PDL cell viability during the entire test period (P milk can be recommended as a suitable storage medium for avulsed teeth. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Immunohistochemical Expression of TGF-β1 and Osteonectin in engineered and Ca(OH2-repaired human pulp tissues

    Directory of Open Access Journals (Sweden)

    Luiz Alexandre CHISINI

    Full Text Available Abstract The aim of the present study was to evaluate the expression of transforming growth factor-β1 (TGF-β1 and osteonectin (ON in pulp-like tissues developed by tissue engineering and to compare it with the expression of these proteins in pulps treated with Ca(OH2 therapy. Tooth slices were obtained from non-carious human third molars under sterile procedures. The residual periodontal and pulp soft tissues were removed. Empty pulp spaces of the tooth slice were filled with sodium chloride particles (250–425 µm. PLLA solubilized in 5% chloroform was applied over the salt particles. The tooth slice/scaffold (TS/S set was stored overnight and then rinsed thoroughly to wash out the salt. Scaffolds were previously sterilized with ethanol (100–70° and washed with phosphate-buffered saline (PBS. TS/S was treated with 10% EDTA and seeded with dental pulp stem cells (DPSC. Then, TS/S was implanted into the dorsum of immunodeficient mice for 28 days. Human third molars previously treated with Ca(OH2 for 90 days were also evaluated. Samples were prepared and submitted to histological and immunohistochemical (with anti-TGF-β1, 1:100 and anti-ON, 1:350 analyses. After 28 days, TS/S showed morphological characteristics similar to those observed in dental pulp treated with Ca(OH2. Ca(OH2-treated pulps showed the usual repaired pulp characteristics. In TS/S, newly formed tissues and pre-dentin was colored, which elucidated the expression of TGF-β1 and ON. Immunohistochemistry staining of Ca(OH2-treated pulps showed the same expression patterns. The extracellular matrix displayed a fibrillar pattern under both conditions. Regenerative events in the pulp seem to follow a similar pattern of TGF-β1 and ON expression as the repair processes.

  6. Odontogenic maxillary sinusitis diagnosed using conebeam x-ray CT

    International Nuclear Information System (INIS)

    Sato, Kiminori

    2007-01-01

    We evaluated the usefulness of conebeam x-ray CT in the diagnosis of odontogenic maxillary sinusitis in 21 patients. Among teeth causing odontogenic maxillary sinusitis, 95% had apical lesions after root canal treatment. Most root canals were filled with filling materials incompletely. Apical lesions in inappropriately treated teeth thus caused odontogenic maxillary sinusitis. Conebeam CT involves 3-dimensional isotropic voxel image date in up to 512 frames for transaxial, coronal, and sagittal planes, so resolution in imaging on the body axis was especially high. Multiplanar reconstruction and volume rendering images at any optional plane could be obtained without interpolation. The relationship between causative teeth and the maxillary sinus could be observed and measured, and odontogenic maxillary sinusitis accurately diagnosed. In addition to the accurate diagnosis of apical lesions, maxilla, and maxillary sinus, periodontal ligament space, lamina dura, pulp cavity, root canal, canal-treated root, apical periodontitis, alveolar ostitis, marginal periodontitis of causative teeth could be observed. Metal artifacts were minimized, making conebeam CT useful in the diagnosis of periodontal tissue and causative teeth, including root-canal-treated and crown-restored teeth. (author)

  7. Clinical Application of Cone-Beam Computed Tomography of the Rabbit Head: Part 1 - Normal Dentition.

    Science.gov (United States)

    Riggs, G G; Arzi, Boaz; Cissell, Derek D; Hatcher, David C; Kass, Philip H; Zhen, Amy; Verstraete, Frank J M

    2016-01-01

    Domestic rabbits ( Oryctolagus cuniculus ) are increasingly popular as household pets; therefore, veterinarians need to be familiar with the most common diseases afflicting rabbits including dental diseases. Diagnostic approaches for dental disease include gross oral examination, endoscopic oral examination, skull radiography, and computed tomography (CT). CT overcomes many limitations of standard radiography by permitting cross-sectional images of the rabbit head in multiple planes without superimposition of anatomic structures. Cone-beam CT (CBCT) is an oral and maxillofacial imaging modality that produces high-resolution images. The objective of this study was to describe and compare the normal anatomic features of the dentition and surrounding maxillofacial structures in healthy rabbits on CBCT and conventional CT. Ten New Zealand white rabbit cadaver heads were scanned using CBCT and conventional CT. Images were evaluated using Anatomage Invivo 5 software. The maxillofacial anatomy was labeled on CBCT images, and the mean lengths and widths of the teeth were determined. The visibility of relevant dental and anatomic features (pulp cavity, germinal center, tooth outline, periodontal ligament) were scored and compared between conventional CT and CBCT. The thinnest teeth were the maxillary second incisor teeth at 1.29 ± 0.26 mm and the maxillary third molar teeth at 1.04 ± 0.10 mm. In general, it was found that CBCT was superior to conventional CT when imaging the dentition. Importantly, the periodontal ligament was significantly ( P  < 0.01) more visible on CBCT than on conventional CT. Ability to see the periodontal ligament with such detail may allow earlier detection and treatment of periodontal disease in rabbits. This study is the first of its kind and shows the feasibility and yield of CBCT when evaluating the maxillofacial features and dentition in rabbits.

  8. Clinical Application of Cone-Beam Computed Tomography of the Rabbit Head: Part 1 – Normal Dentition

    Science.gov (United States)

    Riggs, G. G.; Arzi, Boaz; Cissell, Derek D.; Hatcher, David C.; Kass, Philip H.; Zhen, Amy; Verstraete, Frank J. M.

    2016-01-01

    Domestic rabbits (Oryctolagus cuniculus) are increasingly popular as household pets; therefore, veterinarians need to be familiar with the most common diseases afflicting rabbits including dental diseases. Diagnostic approaches for dental disease include gross oral examination, endoscopic oral examination, skull radiography, and computed tomography (CT). CT overcomes many limitations of standard radiography by permitting cross-sectional images of the rabbit head in multiple planes without superimposition of anatomic structures. Cone-beam CT (CBCT) is an oral and maxillofacial imaging modality that produces high-resolution images. The objective of this study was to describe and compare the normal anatomic features of the dentition and surrounding maxillofacial structures in healthy rabbits on CBCT and conventional CT. Ten New Zealand white rabbit cadaver heads were scanned using CBCT and conventional CT. Images were evaluated using Anatomage Invivo 5 software. The maxillofacial anatomy was labeled on CBCT images, and the mean lengths and widths of the teeth were determined. The visibility of relevant dental and anatomic features (pulp cavity, germinal center, tooth outline, periodontal ligament) were scored and compared between conventional CT and CBCT. The thinnest teeth were the maxillary second incisor teeth at 1.29 ± 0.26 mm and the maxillary third molar teeth at 1.04 ± 0.10 mm. In general, it was found that CBCT was superior to conventional CT when imaging the dentition. Importantly, the periodontal ligament was significantly (P < 0.01) more visible on CBCT than on conventional CT. Ability to see the periodontal ligament with such detail may allow earlier detection and treatment of periodontal disease in rabbits. This study is the first of its kind and shows the feasibility and yield of CBCT when evaluating the maxillofacial features and dentition in rabbits. PMID:27800485

  9. Clinical Application of Cone-Beam Computed Tomography of the Rabbit Head: Part 1 - Normal Dentition

    Directory of Open Access Journals (Sweden)

    GG Comet Riggs

    2016-10-01

    Full Text Available Domestic rabbits (Oryctolagus cuniculus are increasingly popular as household pets; therefore, veterinarians need to be familiar with the most common diseases afflicting rabbits including dental diseases. Diagnostic approaches for dental disease include gross oral examination, endoscopic oral examination, skull radiography, and computed tomography (CT. CT overcomes many limitations of standard radiography by permitting cross-sectional images of the rabbit head in multiple planes without superimposition of anatomic structures. Cone-beam CT (CBCT is an oral and maxillofacial imaging modality that produces high-resolution images. The objective of this study was to describe and compare the normal anatomic features of the dentition and surrounding maxillofacial structures in healthy rabbits on CBCT and conventional CT. Ten New Zealand white rabbit cadaver heads were scanned using CBCT and conventional CT. Images were evaluated using Anatomage Invivo 5 software. The maxillofacial anatomy was labeled on CBCT images and the mean lengths and widths of the teeth were determined. The visibility of relevant dental and anatomic features (pulp cavity, germinal center, tooth outline, periodontal ligament were scored and compared between conventional CT and CBCT. The thinnest teeth were the maxillary second incisor teeth at 1.29 ± 0.26 mm and the maxillary third molar teeth at 1.04 ±0.10 mm. In general, it was found that CBCT was superior to conventional CT when imaging the dentition. Importantly, the periodontal ligament was significantly (P<0.01 more visible on CBCT than on conventional CT. Ability to see the periodontal ligament with such detail may allow earlier detection and treatment of periodontal disease in rabbits. This study is the first of its kind and shows the feasibility and yield of CBCT when evaluating the maxillofacial features and dentition in rabbits.

  10. The clinical meaning of external cervical resorption in maxillary canine: transoperative dental trauma

    Directory of Open Access Journals (Sweden)

    Alberto Consolaro

    2014-12-01

    Full Text Available External Cervical Resorption in maxillary canines with pulp vitality is frequently associated with dental trauma resulting from surgical procedures carried out to prepare the teeth for further orthodontic traction. Preparation procedures might surgically manipulate the cementoenamel junction or cause luxation of teeth due to applying excessive force or movement tests beyond the tolerance limits of periodontal ligament and cervical tissue structures. Dentin exposure at the cementoenamel junction triggers External Cervical Resorption as a result of inflammation followed by antigen recognition of dentin proteins. External Cervical Resorption is painless, does not induce pulpitis and develops slowly. The lesion is generally associated with and covered by gingival soft tissues which disguise normal clinical aspects, thereby leading to late diagnosis when the process is near pulp threshold. Endodontic treatment is recommended only if surgical procedures are rendered necessary in the pulp space; otherwise, External Cervical Resorption should be treated by conservative means: protecting the dental pulp and restoring function and esthetics of teeth whose pulp will remain in normal conditions. Unfortunately, there is a lack of well-grounded research evincing how often External Cervical Resorption associated with canines subjected to orthodontic traction occurs.

  11. Assessment of cellular materials generated by co-cultured ‘inflamed’ and healthy periodontal ligament stem cells from patient-matched groups

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Hao-Ning [State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi' an (China); Department of Stomatology, The First Affiliated Hospital of the Chinese PLA General Hospital, Beijing 100048 (China); Xia, Yu [State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi' an (China); Department of Stomatology, The 309th Hospital of Chinese People' s Liberation Army, Beijing 100091 (China); Xu, Jie; Tian, Bei-Min; Zhang, Xi-Yu [State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi' an (China); Chen, Fa-Ming, E-mail: cfmsunhh@fmmu.edu.cn [State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi' an (China)

    2016-08-01

    Recently, stem cells derived from the'inflamed’ periodontal ligament (PDL) tissue of periodontally diseased teeth (I-PDLSCs) have been increasingly suggested as a more readily accessible source of cells for regenerative therapies than those derived from healthy PDL tissue (H-PDLSCs). However, substantial evidence indicates that I-PDLSCs exhibit impaired functionalities compared with H-PDLSCs. In this study, patient-matched I-PDLSCs and H-PDLSCs were co-cultured at various ratios. Cellular materials derived from these cultures were investigated regarding their osteogenic potential in vitro and capacity to form new bone following in vivo transplantation. While patient-matched I-PDLSCs and H-PDLSCs could co-exist in co-culture systems, the proportion of I-PDLSCs tended to increase during in vitro incubation. Compared with H-PDLSC monoculture, the presence of I-PDLSCs in the co-cultures appeared to enhance the overall cell proliferation. Although not completely rescued, the osteogenic and regenerative potentials of the cellular materials generated by co-cultured I-PDLSCs and H-PDLSCs were significantly improved compared with those derived from I-PDLSC monocultures. Notably, cells in co-cultures containing either 50% I-PDLSCs plus 50% H-PDLSCs or 25% I-PDLSCs plus 75% H-PDLSCs expressed osteogenesis-related proteins and genes at levels similar to those expressed in H-PDLSC monocultures (P>0.05). Irrespective of the percentage of I-PDLSCs, robust cellular materials were obtained from co-cultures with 50% or more H-PDLSCs, which exhibited equivalent potential to form new bone in vivo compared with sheets generated by H-PDLSC monocultures. These data suggest that the co-culture of I-PDLSCs with patient-matched H-PDLSCs is a practical and effective method for increasing the overall osteogenic and regenerative potentials of resultant cellular materials. - Highlights: • Co-culturing H-PDLSCs with I-PDLSCs led to rapid cell expansion. • H-PDLSCs and I-PDLSCs co

  12. Assessment of cellular materials generated by co-cultured ‘inflamed’ and healthy periodontal ligament stem cells from patient-matched groups

    International Nuclear Information System (INIS)

    Tang, Hao-Ning; Xia, Yu; Xu, Jie; Tian, Bei-Min; Zhang, Xi-Yu; Chen, Fa-Ming

    2016-01-01

    Recently, stem cells derived from the'inflamed’ periodontal ligament (PDL) tissue of periodontally diseased teeth (I-PDLSCs) have been increasingly suggested as a more readily accessible source of cells for regenerative therapies than those derived from healthy PDL tissue (H-PDLSCs). However, substantial evidence indicates that I-PDLSCs exhibit impaired functionalities compared with H-PDLSCs. In this study, patient-matched I-PDLSCs and H-PDLSCs were co-cultured at various ratios. Cellular materials derived from these cultures were investigated regarding their osteogenic potential in vitro and capacity to form new bone following in vivo transplantation. While patient-matched I-PDLSCs and H-PDLSCs could co-exist in co-culture systems, the proportion of I-PDLSCs tended to increase during in vitro incubation. Compared with H-PDLSC monoculture, the presence of I-PDLSCs in the co-cultures appeared to enhance the overall cell proliferation. Although not completely rescued, the osteogenic and regenerative potentials of the cellular materials generated by co-cultured I-PDLSCs and H-PDLSCs were significantly improved compared with those derived from I-PDLSC monocultures. Notably, cells in co-cultures containing either 50% I-PDLSCs plus 50% H-PDLSCs or 25% I-PDLSCs plus 75% H-PDLSCs expressed osteogenesis-related proteins and genes at levels similar to those expressed in H-PDLSC monocultures (P>0.05). Irrespective of the percentage of I-PDLSCs, robust cellular materials were obtained from co-cultures with 50% or more H-PDLSCs, which exhibited equivalent potential to form new bone in vivo compared with sheets generated by H-PDLSC monocultures. These data suggest that the co-culture of I-PDLSCs with patient-matched H-PDLSCs is a practical and effective method for increasing the overall osteogenic and regenerative potentials of resultant cellular materials. - Highlights: • Co-culturing H-PDLSCs with I-PDLSCs led to rapid cell expansion. • H-PDLSCs and I-PDLSCs co

  13. A histopathologic investigation on the effects of electrical stimulation on periodontal tissue regeneration in experimental bony defects in dogs.

    Science.gov (United States)

    Kaynak, Deniz; Meffert, Roland; Günhan, Meral; Günhan, Omer

    2005-12-01

    One endpoint of periodontal therapy is to regenerate the structure lost due to periodontal disease. In the periodontium, gingival epithelium is regenerated by oral epithelium. Underlying connective tissue, periodontal ligament, bone, and cementum are derived from connective tissue. Primitive connective tissue cells may develop into osteoblasts and cementoblasts, which form bone and cementum. Several procedural advances may support these regenerations; however, the regeneration of alveolar bone does not always occur. Therefore, bone stimulating factors are a main topic for periodontal reconstructive research. The present study was designed to examine histopathologically whether the application of an electrical field could demonstrate enhanced alveolar and cementum regeneration and modify tissue factors. Seven beagle dogs were used for this experiment. Mandibular left and right sides served as control and experimental sides, respectively, and 4-walled intrabony defects were created bilaterally between the third and fourth premolars. The experimental side was treated with a capacitively coupled electrical field (CCEF) (sinusoidal wave, 60 kHz, and 5 V peak-to-peak), applied for 14 hours per day. The following measurements were performed on the microphotographs: 1) the distance from the cemento-enamel junction to the apical notch (CEJ-AN) and from the crest of newly formed bone (alveolar ridge) to the apical notch (AR-AN); 2) the thickness of new cementum in the apical notch region; and 3) the length of junctional epithelium. The following histopathologic parameters were assessed by a semiquantitative subjective method: 1) inflammatory cell infiltration (ICI); 2) cellular activity of the periodontal ligament; 3) number and morphology of osteoclasts; 4) resorption lacunae; and 5) osteoblastic activity. The results showed that the quantity of new bone fill and the mean value of the thickness of the cementum were significantly higher for the experimental side (P 0

  14. Mechanical Forces Exacerbate Periodontal Defects in Bsp-null Mice

    Science.gov (United States)

    Soenjaya, Y.; Foster, B.L.; Nociti, F.H.; Ao, M.; Holdsworth, D.W.; Hunter, G.K.; Somerman, M.J.

    2015-01-01

    Bone sialoprotein (BSP) is an acidic phosphoprotein with collagen-binding, cell attachment, and hydroxyapatite-nucleating properties. BSP expression in mineralized tissues is upregulated at onset of mineralization. Bsp-null (Bsp-/-) mice exhibit reductions in bone mineral density, bone turnover, osteoclast activation, and impaired bone healing. Furthermore, Bsp-/- mice have marked periodontal tissue breakdown, with a lack of acellular cementum leading to periodontal ligament detachment, extensive alveolar bone and tooth root resorption, and incisor malocclusion. We hypothesized that altered mechanical stress from mastication contributes to periodontal destruction observed in Bsp-/- mice. This hypothesis was tested by comparing Bsp-/- and wild-type mice fed with standard hard pellet diet or soft powder diet. Dentoalveolar tissues were analyzed using histology and micro–computed tomography. By 8 wk of age, Bsp-/- mice exhibited molar and incisor malocclusion regardless of diet. Bsp-/- mice with hard pellet diet exhibited high incidence (30%) of severe incisor malocclusion, 10% lower body weight, 3% reduced femur length, and 30% elevated serum alkaline phosphatase activity compared to wild type. Soft powder diet reduced severe incisor malocclusion incidence to 3% in Bsp-/- mice, supporting the hypothesis that occlusal loading contributed to the malocclusion phenotype. Furthermore, Bsp-/- mice in the soft powder diet group featured normal body weight, long bone length, and serum alkaline phosphatase activity, suggesting that tooth dysfunction and malnutrition contribute to growth and skeletal defects reported in Bsp-/- mice. Bsp-/- incisors also erupt at a slower rate, which likely leads to the observed thickened dentin and enhanced mineralization of dentin and enamel toward the apical end. We propose that the decrease in eruption rate is due to a lack of acellular cementum and associated defective periodontal attachment. These data demonstrate the importance of BSP

  15. Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats.

    Science.gov (United States)

    Nishimura, Makoto; Chiba, Mirei; Ohashi, Toshiro; Sato, Masaaki; Shimizu, Yoshiyuki; Igarashi, Kaoru; Mitani, Hideo

    2008-04-01

    Accelerating the speed of orthodontic tooth movement should contribute to the shortening of the treatment period. This would be beneficial because long treatment times are a negative aspect of orthodontic treatment. In this study, we evaluated the effects of mechanical stimulation by resonance vibration on tooth movement, and we showed the cellular and molecular mechanisms of periodontal ligament responses. The maxillary first molars of 6-week-old male Wistar rats were moved to the buccal side by using an expansive spring for 21 days (n = 6, control group), and the amount of tooth movement was measured. Additional vibrational stimulation (60 Hz, 1.0 m/s(2)) was applied to the first molars by using a loading vibration system for 8 minutes on days 0, 7, and 14 during orthodontic tooth movement (n = 6, experimental group). The animals were killed under anesthesia, and each maxilla was dissected. The specimens were fixed, decalcified, and embedded in paraffin. Sections were used for immunohistochemical analysis of receptor activator of NF kappa B ligand (RANKL) expression. The number of osteoclasts in the alveolar bone was counted by using TRAP staining, and the amount of root resorption was measured in sections stained with hematoxylin and eosin. The average resonance frequency of the maxillary first molar was 61.02 +/- 8.38 Hz. Tooth movement in the experimental group was significantly greater than in the control group (P vibration might accelerate orthodontic tooth movement via enhanced RANKL expression in the periodontal ligament without additional damage to periodontal tissues such as root resorption.

  16. Potential Role of Dentin Sialoprotein by Inducing Dental Pulp Mesenchymal Stem Cell Differentiation and Mineralization for Dental Tissue Repair

    OpenAIRE

    Yuan, Guo-Hua; Yang, Guo-Bin; Wu, Li-An; Chen, Zhi; Chen, Shuo

    2010-01-01

    Introduction: Dentin sialoprotein (DSP) is a dentin extracellular matrix protein, a unique marker of dentinogenesis and plays a vital role in odontoblast differentiation and dentin mineralization. Recently, studies have shown that DSP induces differentiation and mineralization of periodontal ligament stem cells and dental papilla mesenchymal cells in vitro and rescues dentin deficiency and increases enamel mineralization in animal models.The hypothesis: DSP as a nature therapeutic agent stimu...

  17. Lipopolysaccharide can modify differentiation and immunomodulatory potential of periodontal ligament stem cells via ERK1,2 signaling.

    Science.gov (United States)

    Kukolj, Tamara; Trivanović, Drenka; Djordjević, Ivana Okić; Mojsilović, Slavko; Krstić, Jelena; Obradović, Hristina; Janković, Srdja; Santibanez, Juan Francisco; Jauković, Aleksandra; Bugarski, Diana

    2018-01-01

    Lipopolysaccharide (LPS) is a pertinent deleterious factor in oral microenvironment for cells which are carriers of regenerative processes. The aim of this study was to investigate the emerging in vitro effects of LPS (Escherichia coli) on human periodontal ligament stem cell (PDLSC) functions and associated signaling pathways. We demonstrated that LPS did not affect immunophenotype, proliferation, viability, and cell cycle of PDLSCs. However, LPS modified lineage commitment of PDLSCs inhibiting osteogenesis by downregulating Runx2, ALP, and Ocn mRNA expression, while stimulating chondrogenesis and adipogenesis by upregulating Sox9 and PPARγ mRNA expression. LPS promoted myofibroblast-like phenotype of PDLSCs, since it significantly enhanced PDLSC contractility, as well as protein and/or gene expression of TGF-β, fibronectin (FN), α-SMA, and NG2. LPS also increased protein and gene expression levels of anti-inflammatory COX-2 and pro-inflammatory IL-6 molecules in PDLSCs. Inhibition of peripheral blood mononuclear cells (MNCs) transendothelial migration in presence of LPS-treated PDLSCs was accompanied by the reduction of CD29 expression within MNCs. However, LPS treatment did not change the inhibitory effect of PDLSCs on mitogen-stimulated proliferation of CD4 + and the ratio of CD4 + CD25 high /CD4 + CD25 low lymphocytes. LPS-treated PDLSCs did not change the frequency of CD34 + and CD45 + cells, but decreased the frequency of CD33 + and CD14 + myeloid cells within MNCs. Moreover, LPS treatment attenuated the stimulatory effect of PDLSCs on CFC activity of MNCs, predominantly the CFU-GM number. The results indicated that LPS-activated ERK1,2 was at least partly involved in the observed effects on PDLSC differentiation capacity, acquisition of myofibroblastic attributes, and changes of their immunomodulatory features. © 2017 Wiley Periodicals, Inc.

  18. Long noncoding RNA TUG1 facilitates osteogenic differentiation of periodontal ligament stem cells via interacting with Lin28A.

    Science.gov (United States)

    He, Qin; Yang, Shuangyan; Gu, Xiuge; Li, Mengying; Wang, Chunling; Wei, Fulan

    2018-04-19

    Periodontal ligament stem cells (PDLSCs) are mesenchymal stem cells derived from dental tissues with multidirectional differentiation potential and excellent self-renewing ability. Recently, long noncoding RNAs (lncRNAs) have been shown to play important roles in MSC osteogenic differentiation. In this study, we found that taurine upregulated gene 1 (TUG1), an evolutionarily conserved and widely present lncRNA was significantly upregulated in osteogenically induced PDLSCs compared to their undifferentiated counterparts. Further investigation demonstrated that the expression of TUG1 was positively correlated with the osteogenic differentiation of PDLSCs following the induction, as evidenced by the increase in cellular alkaline phosphatase (ALP) level, formation of calcium nodules, and the upregulation of several osteogenic-related gene markers such as ALP, osteocalcin (OCN), and runt-related transcription factor 2 (Runx2). Conversely, TUG1 knockdown was demonstrated to inhibit the potential of PDLSCs for osteogenic differentiation. Using bioinformatics analysis, we identified lin-28 homolog A (Lin28A) as a potential target of TUG1 during osteogenic differentiation of PDLSCs. Lin28A was found to be significantly downregulated in TUG1-repressed PDLSCs and contained multiple binding sites for lncRNA TUG1. Moreover, suppression of Lin28A was shown to be able to inhibit osteogenic differentiation and decreased the expression of several osteogenic genes. Taken together, these results could help researchers better understand the mechanism that governs the osteogenic differentiation of PDLSCs, and also serve as a stepping stone for the development of novel therapeutic strategies that can be used to regenerate dental tissues.

  19. Human periodontal ligament stem cells secretome from multiple sclerosis patients suppresses NALP3 inflammasome activation in experimental autoimmune encephalomyelitis

    Science.gov (United States)

    Soundara Rajan, Thangavelu; Giacoppo, Sabrina; Diomede, Francesca; Bramanti, Placido; Trubiani, Oriana; Mazzon, Emanuela

    2017-01-01

    Research in recent years has largely explored the immunomodulatory effects of mesenchymal stem cells (MSCs) and their secretory products, called “secretome,” in the treatment of neuroinflammatory diseases. Here, we examined whether such immunosuppressive effects might be elicited due to inflammasome inactivation. To this end, we treated experimental autoimmune encephalomyelitis (EAE) mice model of multiple sclerosis (MS) with the conditioned medium or purified exosomes/microvesicles (EMVs) obtained from relapsing-remitting-MS patients human periodontal ligament stem cells (hPDLSCs) and investigated the regulation of NALP3 inflammasome. We noticed enhanced expression of NALP3, Cleaved Caspase 1, interleukin (IL)-1β, and IL-18 in EAE mouse spinal cord. Conversely, hPDLSCs-conditioned medium and EMVs significantly blocked NALP3 inflammasome activation and provided protection from EAE. Reduction in NALP3, Cleaved Caspase 1, IL-1β, and IL-18 level was noticed in conditioned medium and EMVs-treated EAE mice. Pro-inflammatory Toll-like receptor (TLR)-4 and nuclear factor (NF)-κB were elevated in EAE, while hPDLSCs-conditioned medium and EMVs treatment reduced their expression and increased IκB-α expression. Characterization of hPDLSCs-conditioned medium showed substantial level of anti-inflammatory IL-10, transforming growth factor (TGF)-β, and stromal cell–derived factor 1α (SDF-1α). We propose that the immunosuppressive role of hPDLSCs-derived conditioned medium and EMVs in EAE mice may partly attribute to the presence of soluble immunomodulatory factors, NALP3 inflammasome inactivation, and NF-κB reduction. PMID:28764573

  20. Efficiency of Castor Oil as a Storage Medium for Avulsed Teeth in Maintaining the Viability of Periodontal Ligament Cells.

    Science.gov (United States)

    Nabavizadeh, Mohammadreza; Abbaszadegan, Abbas; Khodabakhsi, Afrooz; Ahzan, Shamseddin; Mehrabani, Davood

    2018-03-01

    Researchers always seek a new storage medium for avulsed teeth. Castor oil is a vegetable oil with several advantages such as antimicrobial and antioxidant properties, low toxicity, and glutathione preservation capability, low cost, and high availability. The purpose of this study was to evaluate and compare the capacity of castor oil as a new storage medium in preserving the viability of periodontal ligament (PDL) cells compared to Hank's balanced salt solution (HBSS) and milk. Forty freshly extracted human teeth were divided into 3 experimental and 2 control groups. The experimental teeth were stored dry for 30 min and then immersed for 45 min in one of the following media; castor oil, HBSS, and milk. The positive and negative control groups were exposed to 0 min and 2 h of dry time respectively with no immersion in any storage medium. The teeth were then treated with dispase grade II and collagenase and the number of viable PDL cells were counted. Data were analyzed using Kruskal- Wallis test. The percentage of viable cells treated with castor oil, HBSS and milk counted immediately after removal from these media were 46.93, 51.02 and 55.10 % respectively. The statistical analysis revealed that the value for castor oil was significantly lower than HBSS and milk ( p > 0.05). Within the parameters of this study, it appears that castor oil cannot be served as an ideal medium for storage of avulsed tooth. More investigations under in vivo conditions are required to justify the results of this study.

  1. Perkembangan Terkini Membran Guided Tissue Regeneration/Guided Bone Regeneration sebagai Terapi Regenerasi Jaringan Periodontal

    Directory of Open Access Journals (Sweden)

    Cindy Cahaya

    2015-06-01

    kombinasi prosedur-prosedur di atas, termasuk prosedur bedah restoratif yang berhubungan dengan rehabilitasi oral dengan penempatan dental implan. Pada tingkat selular, regenerasi periodontal adalah proses kompleks yang membutuhkan proliferasi yang terorganisasi, differensiasi dan pengembangan berbagai tipe sel untuk membentuk perlekatan periodontal. Rasionalisasi penggunaan guided tissue regeneration sebagai membran pembatas adalah menahan epitel dan gingiva jaringan pendukung, sebagai barrier membrane mempertahankan ruang dan gigi serta menstabilkan bekuan darah. Pada makalah ini akan dibahas sekilas mengenai 1. Proses penyembuhan terapi periodontal meliputi regenerasi, repair ataupun pembentukan perlekatan baru. 2. Periodontal spesific tissue engineering. 3. Berbagai jenis membran/guided tissue regeneration yang beredar di pasaran dengan keuntungan dan kerugian sekaligus karakteristik masing-masing membran. 4. Perkembangan membran terbaru sebagai terapi regenerasi penyakit periodontal. Tujuan penulisan untuk memberi gambaran masa depan mengenai terapi regenerasi yang menjanjikan sebagai perkembangan terapi penyakit periodontal.   Latest Development of Guided Tissue Regeneration and Guided Bone Regeneration Membrane as Regenerative Therapy on Periodontal Tissue. Periodontitis is a patological state which influences the integrity of periodontal system that could lead to the destruction of the periodontal tissue and end up with tooth loss. Currently, there are so many researches and efforts to regenerate periodontal tissue, not only to stop the process of the disease but also to reconstruct the periodontal tissue. Periodontal regenerative therapy aims at directing the growth of new bone, cementum and periodontal ligament on the affected teeth. Regenerative procedures consist of soft tissue graft, bone graft, roots biomodification, guided tissue regeneration and combination of the procedures, including restorative surgical procedure that is

  2. Dental age estimation: periodontal ligament visibility (PLV)-pattern recognition of a conclusive mandibular maturity marker related to the lower left third molar at the 18-year threshold.

    Science.gov (United States)

    Lucas, Victoria S; McDonald, Fraser; Andiappan, Manoharan; Roberts, Graham

    2017-05-01

    The purpose of this study was to explore the applicability of periodontal ligament visibility (PLV) at the 18-year threshold. This mandibular maturity marker is graded into four separate age related stages, PLV-A, PLV-B, PLV-C, and PLV-D. These are discernible on a dental panoramic tomograph (DPT). The sample comprised a total of 2000 DPTs evenly divided into half yearly age bands from 16.00 to 25.99 years with 50 females and 50 males in each age band. It was found that PLV-A and PLV-B had minimum values below the 18-year threshold. PLV-C and PLV-D in females had minimum values of 18.08 and 18.58 years, respectively. In males, the minimum values for PLV-C was 18.10 years and PLV-D was 18.67 years. It was concluded that the presence of PLV-C or PLV-D indicates that a subject is over 18 years with a very high level of probability.

  3. Different effects of 25-kDa amelogenin on the proliferation, attachment and migration of various periodontal cells

    International Nuclear Information System (INIS)

    Li, Xiting; Shu, Rong; Liu, Dali; Jiang, Shaoyun

    2010-01-01

    Previous studies have assumed that amelogenin is responsible for the therapeutic effect of the enamel matrix derivative (EMD) in periodontal tissue healing and regeneration. However, it is difficult to confirm this hypothesis because both the EMD and the amelogenins are complex mixtures of multiple proteins. Further adding to the difficulties is the fact that periodontal tissue regeneration involves various types of cells and a sequence of associated cellular events including the attachment, migration and proliferation of various cells. In this study, we investigated the potential effect of a 25-kDa recombinant porcine amelogenin (rPAm) on primarily cultured periodontal ligament fibroblasts (PDLF), gingival fibroblasts (GF) and gingival epithelial cells (GEC). The cells were treated with 25-kDa recombinant porcine amelogenin at a concentration of 10 μg/mL. We found that rPAm significantly promoted the proliferation and migration of PDLF, but not their adhesion. Similarly, the proliferation and adhesion of GF were significantly enhanced by treatment with rPAm, while migration was greatly inhibited. Interestingly, this recombinant protein inhibited the growth rate, cell adhesion and migration of GEC. These data suggest that rPAm may play an essential role in periodontal regeneration through the activation of periodontal fibroblasts and inhibition of the cellular behaviors of gingival epithelial cells.

  4. Tissue-engineered collateral ligament composite allografts for scapholunate ligament reconstruction: an experimental study.

    Science.gov (United States)

    Endress, Ryan; Woon, Colin Y L; Farnebo, Simon J; Behn, Anthony; Bronstein, Joel; Pham, Hung; Yan, Xinrui; Gambhir, Sanjiv S; Chang, James

    2012-08-01

    In patients with chronic scapholunate (SL) dissociation or dynamic instability, ligament repair is often not possible, and surgical reconstruction is indicated. The ideal graft ligament would recreate both anatomical and biomechanical properties of the dorsal scapholunate ligament (dorsal SLIL). The finger proximal interphalangeal joint (PIP joint) collateral ligament could possibly be a substitute ligament. We harvested human PIP joint collateral ligaments and SL ligaments from 15 cadaveric limbs. We recorded ligament length, width, and thickness, and measured the biomechanical properties (ultimate load, stiffness, and displacement to failure) of native dorsal SLIL, untreated collateral ligaments, decellularized collateral ligaments, and SL repairs with bone-collateral ligament-bone composite collateral ligament grafts. As proof of concept, we then reseeded decellularized bone-collateral ligament-bone composite grafts with green fluorescent protein-labeled adipo-derived mesenchymal stem cells and evaluated them histologically. There was no difference in ultimate load, stiffness, and displacement to failure among native dorsal SLIL, untreated and decellularized collateral ligaments, and SL repairs with tissue-engineered collateral ligament grafts. With pair-matched untreated and decellularized scaffolds, there was no difference in ultimate load or stiffness. However, decellularized ligaments revealed lower displacement to failure compared with untreated ligaments. There was no difference in displacement between decellularized ligaments and native dorsal SLIL. We successfully decellularized grafts with recently described techniques, and they could be similarly reseeded. Proximal interphalangeal joint collateral ligament-based bone-collateral ligament-bone composite allografts had biomechanical properties similar to those of native dorsal SLIL. Decellularization did not adversely affect material properties. These tissue-engineered grafts may offer surgeons another

  5. Human Dental Pulp-Derived Cells Produce Bone-Like Tissue and Exhibit Bone Cell-Like Responsiveness to Mechanical Loading

    DEFF Research Database (Denmark)

    Kraft, David Christian Evar; Melsen, Birte; Bindslev, Dorthe Arenholt

    2010-01-01

    and characterize cell lines from human 3rd molar dental pulp tissue to determine whether human dental pulp-derived cells (DPCs) are osteogenic and responsive to mechanical loading by pulsating fluid flow (PFF) in vitro. Methods: Human DPCs used for this study were characterized by measuring proliferation....... We also assessed bone formation by DPCs on hydroxyapatite-tricalcium phosphate granules after subcutaneous implantation in mice. Results: We found that DPCs are intrinsically mechanosensitive and, like osteogenic cells, respond to PFF-induced fluid shear stress. Implantation of DPCs resulted...... remodeling in vivo, and therefore provide a promising new tool for regenerative dentistry, for example mineralized tissue engineering to restore bone defects in relation to periodontitis, periimplantatis and orofacial surgery. Experiments in progress have proven that DPCSs are also useful for assessing...

  6. Ligament Tissue Engineering

    OpenAIRE

    Khan, Wasim Sardar

    2016-01-01

    Ligaments are commonly injured in the knee joint, and have a poor capacity for healing due to their relative avascularity. Ligament reconstruction is well established for injuries such as anterior cruciate ligament rupture, however the use of autografts and allografts for ligament reconstruction are associated with complications, and outcomes are variable. Ligament tissue engineering using stem cells, growth factors and scaffolds is a novel technique that has the potential to provide an unlim...

  7. Penatalaksanaan Lesi Endo-Perio dengan Perawatan Endodontik Non Bedah

    Directory of Open Access Journals (Sweden)

    Irene Sulistio

    2014-06-01

    Full Text Available Secara anatomis pulpa dan periodontal saling berhubungan. Pada keadaan tertentu bisa terjadi inflamasi di pulpa dan periodontal. Hal ini disebut dengan lesi endodontik-periodontal. Perkembangan dan progresi lesi endo-perio ini dipengaruhi oleh faktor etiologi seperti bakteri, jamur, dan virus serta faktor pendukung seperti trauma, resorpsi akar, perforasi, dan malformasi gigi. Pada lesi endo-perio diperlukan rencana perawatan yang tepat agar prognosis perawatan dari gigi tersebut dapat baik. Artikel ini bertujuan memaparkan perawatan kasus lesi endo-perio yang berhasil setelah manajemen endodontik tanpa dilakukan bedah endodontik. Seorang pasien laki-laki berusia 21 tahun datang ke RSGM dengan keluhan gigi belakang kiri bawah sakit. Gigi tersebut pernah ditumpat 1 tahun yang lalu.Pada gambaran radiograf terdapat lesi radiolusen luas pada tulang alveolar sekitar akar distal. Perawatan endodontik dilakukan dengan pergantian bahan dressing kalsium hidroksida sebanyak 3 kali. Pada kontrol bulan kedua terlihat terjadi penulangan pada bagian lesi periodontal tersebut dan pasien tidak mengeluhkan rasa sakit. Kesimpulan hasil perawatan lesi endodontik periodontal dapat dirawat dengan perawatan endodontik non bedah. Management of Nonsurgical Endodontic Treatment on A Combined Endo-period Lesion. The pulp and periodontium have anatomic interrelationships. As the tooth matures, and the root is formed, three main avenues are created between pulp and periodontal ligament, i.e. dentinal tubules, lateral and accessory canals, apical foramen. These are the pathways that may provide a means by which pathological agent pass between the pulp and periodontium, thereby creating the endo - period lesion. Etiologic factors such as bacteria, fungi, and viruses as well as contributing factors such as trauma, root resorption, and dental malformations play a significant role in the development and progression of such lesions. In the endodontic - periodontal lesion is

  8. Decreased MORF leads to prolonged endoplasmic reticulum stress in periodontitis-associated chronic inflammation.

    Science.gov (United States)

    Xue, Peng; Li, Bei; An, Ying; Sun, Jin; He, Xiaoning; Hou, Rui; Dong, Guangying; Fei, Dongdong; Jin, Fang; Wang, Qintao; Jin, Yan

    2016-11-01

    The association between inflammation and endoplasmic reticulum (ER) stress has been described in many diseases. However, if and how chronic inflammation governs the unfolded protein response (UPR) and promotes ER homeostasis of chronic inflammatory disease remains elusive. In this study, chronic inflammation resulted in ER stress in mesenchymal stem cells in the setting of periodontitis. Long-term proinflammatory cytokines induced prolonged ER stress and decreased the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Interestingly, we showed that chronic inflammation decreases the expression of lysine acetyltransferase 6B (KAT6B, also called MORF), a histone acetyltransferase, and causes the upregulation of a key UPR sensor, PERK, which lead to the persistent activation of the UPR in PDLSCs. Furthermore, we found that the activation of UPR mediated by MORF in chronic inflammation contributes to the PERK-related deterioration of the osteogenic differentiation of PDLSCs both in vivo and in vitro. Taken together, our results suggest that chronic inflammation compromises UPR function through MORF-mediated-PERK transcription, which is a previously unrecognized mechanism that contributes to impaired ER function, prolonged ER stress and defective osteogenic differentiation of PDLSCs in periodontitis.

  9. Decreased Expression of Semaphorin3A/Neuropilin-1 Signaling Axis in Apical Periodontitis

    Directory of Open Access Journals (Sweden)

    Ying Lin

    2017-01-01

    Full Text Available Apical periodontitis (AP is a chronic infection of endodontic origin accompanied with bone destruction around the apical region. Semaphorin3A (Sema3A and neuropilin-1 (Nrp1 are regarded as a pair of immune regulators in bone metabolism. In this study, we firstly investigated the expression pattern of Sema3A/Nrp1 in apical periodontitis and its correlation with bone destruction. Using rat animal model, we analysed the level of mandibular bone destruction and the expression of Sema3A/Nrp1 on days 0, 7, 14, 21, 28, and 35 after pulp exposure. In addition, clinical samples from apical periodontitis patients were obtained to analyse the expression of Sema3A/Nrp1. These results indicated that the bone destruction level expanded from days 7 to 35. The number of positive cells and level of mRNA expression of Sema3A/Nrp1 were significantly decreased from days 7 to 35, with a negative correlation with bone destruction. Moreover, expression of Sema3A/Nrp1 in the AP group was reduced compared to the control group of clinical samples. In conclusion, decreased expression of Sema3A/Nrp1 was observed in periapical lesions and is potentially involved in the bone resorption of the periapical area, suggesting that Sema3A/Nrp1 may contribute to the pathological development of apical periodontitis.

  10. Regenerative potential and healing dynamics of the periodontium: a critical-size supra-alveolar periodontal defect study.

    Science.gov (United States)

    Polimeni, Giuseppe; Susin, Cristiano; Wikesjö, Ulf M E

    2009-03-01

    The nature and characteristics of the newly formed periodontium obtained following regenerative procedures remain a matter of controversy. The objective of this study was to evaluate the regenerative potential of the periodontal attachment and healing dynamics as observed from the spatial distribution of newly formed cementum, periodontal ligament (PDL) and alveolar bone following optimal circumstances for wound healing/regeneration in a discriminating animal model. Critical-size, 6-mm, supra-alveolar, periodontal defects were surgically created in six young adult Beagle dogs. Space-providing ePTFE devices with 300-microm laser-drilled pores were implanted to support wound stability and space provision in one jaw quadrant/animal. Treatments were alternated between left and right jaw quadrants in subsequent animals. The gingival flaps were advanced to submerge the defect sites for primary intention healing. Histometric analysis followed an 8-week healing interval. Healing was uneventful in all animals. The histometric analysis showed that cementum regeneration (2.99 +/- 0.22 mm) was significantly greater than PDL (2.54 +/- 0.18 mm, p=0.03) and bone regeneration (2.46 +/- 0.26 mm, p=0.03). The wound area showed significant positive non-linear effect on cementum (log beta=1.25, palveolar bone virtually regenerate in parallel under optimal circumstances for periodontal wound healing/regeneration. Moreover, space provision positively influences the extent of periodontal regeneration.

  11. Ultrasonography of ankle ligaments

    International Nuclear Information System (INIS)

    Peetrons, P.A.; Silvestre, A.; Cohen, M.; Creteur, V.

    2002-01-01

    The lateral collateral ligament of the ankle is a complex of 3 ligaments: The anterior and posterior talofibular ligaments and the calcaneofibular ligament; these ligaments work together to support the lateral aspect of the ankle. The anterior talofibular (ATF) ligament (Fig. 1) runs from the anterior of the talus. The probe is placed in a slightly oblique position from the malleolus toward the forefoot. The ligament is hyperechoic when its fibres are perpendicular to the ultrasound beam (anisotropy artifact is present in ligaments as well as in tendons). It is approximately 2 mm thick and, during examination, must be straight and tight from one insertion point to the other, as seen in Fig. 2. The posterior talofibular (PTF) ligament, which runs from the posterior part of the malleolus to the posterior part of the talus, is difficult to see on US, being partially or sometimes completely hidden by the malleolus. The calcaneofibular ligament forms the middle portion of the lateral collateral ligament. It is tight between the inferior part of the lateral malleolus and the calcaneus, and runs in a slightly posterior oblique direction toward the heel (Fig. 3). The ligament lies on the deep surface of the fibular tendons, forming a hammock to fall deep on the calcaneus surface (Fig. 4). The calcaneofibular ligament is approximately 2-3 nun thick and is hyperechoic in the distal two-thirds only because of the obliquity of the proximal part. When examining this ligament, it is mandatory that the ankle be flexed dorsally; this stretches the ligament so that it can be seen clearly. (author)

  12. Mandibular Osteonecrosis due to the Pulpal-Periodontal Syndrome: a Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Sven Seiwerth

    2017-01-01

    Full Text Available Objective: Ishemic bone disease has multifactorial etiologies. Cronic dental infections should be eliminated to prevent osteonecrosis of the jaw. Case report: We report an unusual case of osteonecrosis due to the pulpal-peridontal syndrome and subsequent pulp necrosis. A case of 38 year old woman who presented with exposed bone, 8 mm in diameter, in the lingual area of the right lower third molar. The patient was otherwise healthy and was not taking any medications. A detailed medical history showed no previous diseases. Patient denied any type of local trauma. A complete blood count showed no abnormalities. The panoramic radiograph revealed a deep periodontal pocket between teeth 47 and 48. The CBCT revealed a deep periodontal pocket between molars and bone sequestrum of the lingual plate. Topical treatment consisted of adhesive periodontal dressing based on the cellulose and betamethasone oitnment together with orabase, without improvement. Therefore, peroral amoxycillin was prescribed for a week. Since there was no improvement, the third molar was removed as well as necrotic bone; the alveolar bone was remodelled and utures were placed. After suturing, the whole area was covered using intraoral resorbable bandage. Microbial swab of the wound aspirate did not reveal polymorphonuclears or the presence of icroorganisms. Microbial swab of the biopsy specimen of the necrotic bone particle and sequestrum showed a large amount of gram-positive coccae, however, polymorphonuclears were not found. Histopathological analysis revealed acute chronic inflammation. One week after the surgery, the area healed completely. Conclusion: This case highlights the fact that in some patients bone exposure might develop due to the pulpal-peridontal syndrome i.e. pulp necrosis.

  13. The Experimental Study of the Performance of Nano-Thin Polyelectrolyte Shell for Dental Pulp Stem Cells Immobilization.

    Science.gov (United States)

    Grzeczkowicz, A; Granicka, L H; Maciejewska, I; Strawski, M; Szklarczyk, M; Borkowska, M

    2015-12-01

    Carious is the most frequent disease of mineralized dental tissues which might result in dental pulp inflammation and mortality. In such cases an endodontic treatment is the only option to prolong tooth functioning in the oral cavity; however, in the cases of severe pulpitis, especially when complicated with periodontal tissue inflammation, the endodontic treatment might not be enough to protect against tooth loss. Thus, keeping the dental pulp viable and/or possibility of the reconstruction of a viable dental pulp complex, appears to become a critical factor for carious and/or pulp inflammation treatment. The nowadays technologies, which allow handling dental pulp stem cells (DPSC), seem to bring us closer to the usage of dental stem cells for tooth tissues reconstruction. Thus, DPSC immobilized within nano-thin polymeric shells, allowing for a diffusion of produced factors and separation from bacteria, may be considered as a cover system supporting technology of dental pulp reconstruction. The DPSC were immobilized using a layer-by-layer technique within nano-thin polymeric shells constructed and modified by nanostructure involvement to ensure the layers stability and integrity as well as separation from bacterial cells. The cytotoxity of the material used for membrane production was assessed on the model of adherent cells. The performance of DPSC nano-coating was assessed in vitro. Membrane coatings showed no cytotoxicity on the immobilized cells. The presence of coating shell was confirmed with flow cytometry, atomic force microscopy and visualized with fluorescent microscopy. The transfer of immobilized DPSC within the membrane system ensuring cells integrity, viability and protection from bacteria should be considered as an alternative method for dental tissues transportation and regeneration.

  14. Effects of grape seed extract on periodontal disease: an experimental study in rats

    Directory of Open Access Journals (Sweden)

    Feyza Otan ÖZDEN

    Full Text Available Abstract Natural compounds capable of modulating the host response have received considerable attention, and herbal products are suggested as adjunctive agents in periodontal disease treatment. Objective This study aimed to demonstrate the effect of grape seed extract (GSE on periodontitis. Material and Methods Ligature induced periodontitis was created in 40 rats and they were assigned to four equal groups. One group was fed laboratory diet (group A while three groups received GSE additionally. Silk ligatures were placed around the cervical area of the mandibular first molars for four weeks to induce periodontitis. The GSE groups were reallocated regarding GSE consumption as: for two weeks before ligation (group B; totally eight weeks, from ligation to two weeks after removal of the ligature (group C; totally six weeks, and for two weeks from ligature removal (group D; totally two weeks. Sections were assessed histologically and immunohistochemically. Inflammatory cell number (ICN, connective tissue attachment level (CAL, osteoclast density (OD, IL-10 and TGF-β stainings in gingival epithelium (GE, connective tissue (GC, and periodontal ligament (PL were used as the study parameters. Results Lower ICN, higher CAL, and lower OD were observed in the GSE groups (p<0.05. IL-10 was more intensive in the GSE groups and in the GEs (p<0.05. Group B showed the highest IL-10 for PL (p<0.05. TGF-ß was higher in the GEs of all groups (p<0.017. Conclusions The results suggest anti-inflammatory activities of GSE, but further investigations are needed for clarification of these activities.

  15. AcceleDent as a Means for Pain Reduction During Orthodontic Treatment

    Science.gov (United States)

    2015-05-30

    whose materials are discussed in this article . ii     AcceleDent as a Means for Pain Reduction During Orthodontic Treatment APPROVAL Wendy...relieve compression of the periodontal ligament (PDL), promoting normal circulation which prevents build-up of inflammatory by-products, thus reducing...hyperalgesia of the periodontal ligament, respectively (Burstone 1962). According to Polat et al, the periodontal ligament becomes sensitive to released

  16. Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold.

    Science.gov (United States)

    Moshaverinia, Alireza; Chen, Chider; Xu, Xingtian; Akiyama, Kentaro; Ansari, Sahar; Zadeh, Homayoun H; Shi, Songtao

    2014-02-01

    Mesenchymal stem cells (MSCs) provide an advantageous alternative therapeutic option for bone regeneration in comparison to current treatment modalities. However, delivering MSCs to the defect site while maintaining a high MSC survival rate is still a critical challenge in MSC-mediated bone regeneration. Here, we tested the bone regeneration capacity of periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs) encapsulated in a novel RGD- (arginine-glycine-aspartic acid tripeptide) coupled alginate microencapsulation system in vitro and in vivo. Five-millimeter-diameter critical-size calvarial defects were created in immunocompromised mice and PDLSCs and GMSCs encapsulated in RGD-modified alginate microspheres were transplanted into the defect sites. New bone formation was assessed using microcomputed tomography and histological analyses 8 weeks after transplantation. Results confirmed that our microencapsulation system significantly enhanced MSC viability and osteogenic differentiation in vitro compared with non-RGD-containing alginate hydrogel microspheres with larger diameters. Results confirmed that PDLSCs were able to repair the calvarial defects by promoting the formation of mineralized tissue, while GMSCs showed significantly lower osteogenic differentiation capability. Further, results revealed that RGD-coupled alginate scaffold facilitated the differentiation of oral MSCs toward an osteoblast lineage in vitro and in vivo, as assessed by expression of osteogenic markers Runx2, ALP, and osteocalcin. In conclusion, these results for the first time demonstrated that MSCs derived from orofacial tissue encapsulated in RGD-modified alginate scaffold show promise for craniofacial bone regeneration. This treatment modality has many potential dental and orthopedic applications.

  17. Coconut milk and probiotic milk as storage media to maintain periodontal ligament cell viability: an in vitro study.

    Science.gov (United States)

    Saini, Divya; Gadicherla, Prahlad; Chandra, Prakash; Anandakrishna, Latha

    2017-06-01

    The viability of periodontal ligament (PDL) cells is a significant determinant of the long-term prognosis of replanted avulsed teeth. A storage medium is often required to maintain the viability of these cells during the extra-alveolar period. Many studies have been carried out to search for the most suitable storage medium for avulsed teeth, but an ideal solution has not yet been found. The purpose of the study was to compare and analyze the ability of coconut milk and probiotic milk to maintain PDL cell viability. In an in vitro setting, 69 caries free human premolars with normal periodontium that had been extracted for orthodontic purposes were randomly divided into two experimental groups on the basis of storage media used (i.e., coconut milk or probiotic milk) and a Hanks' balanced salt solution (HBSS) control group (23 samples per group). Immediately after extraction, the teeth were stored dry for 20 min and then immersed for 30 min in one of the storage media. The teeth were then subjected to collagenase-dispase assay and labeled with 0.5% trypan blue staining solution for determination of cell viability. The number of viable cells was counted under a light microscope and statistically analyzed using anova and post hoc Tukey test (P ≤ 0.05). Statistical analysis demonstrated there was a significant difference (P coconut milk and probiotic milk as well as HBSS in maintaining cell viability. However, there was no significant difference between probiotic milk and HBSS in ability to maintain PDL cell viability (P > 0.05). Coconut milk may not be suitable as an interim transport media due to poor maintenance of cell viability. However, probiotic milk was able to maintain PDL cell viability as well as HBSS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Is Pulp Inflammation a Prerequisite for Pulp Healing and Regeneration?

    Directory of Open Access Journals (Sweden)

    Michel Goldberg

    2015-01-01

    Full Text Available The importance of inflammation has been underestimated in pulpal healing, and in the past, it has been considered only as an undesirable effect. Associated with moderate inflammation, necrosis includes pyroptosis, apoptosis, and nemosis. There are now evidences that inflammation is a prerequisite for pulp healing, with series of events ahead of regeneration. Immunocompetent cells are recruited in the apical part. They slide along the root and migrate toward the crown. Due to the high alkalinity of the capping agent, pulp cells display mild inflammation, proliferate, and increase in number and size and initiate mineralization. Pulp fibroblasts become odontoblast-like cells producing type I collagen, alkaline phosphatase, and SPARC/osteonectin. Molecules of the SIBLING family, matrix metalloproteinases, and vascular and nerve mediators are also implicated in the formation of a reparative dentinal bridge, osteo/orthodentin closing the pulp exposure. Beneath a calciotraumatic line, a thin layer identified as reactionary dentin underlines the periphery of the pulp chamber. Inflammatory and/or noninflammatory processes contribute to produce a reparative dentinal bridge closing the pulp exposure, with minute canaliculi and large tunnel defects. Depending on the form and severity of the inflammatory and noninflammatory processes, and according to the capping agent, pulp reactions are induced specifically.

  19. Vital Pulp Therapy—Current Progress of Dental Pulp Regeneration and Revascularization

    Directory of Open Access Journals (Sweden)

    Weibo Zhang

    2010-01-01

    Full Text Available Pulp vitality is extremely important for the tooth viability, since it provides nutrition and acts as biosensor to detect pathogenic stimuli. In the dental clinic, most dental pulp infections are irreversible due to its anatomical position and organization. It is difficult for the body to eliminate the infection, which subsequently persists and worsens. The widely used strategy currently in the clinic is to partly or fully remove the contaminated pulp tissue, and fill and seal the void space with synthetic material. Over time, the pulpless tooth, now lacking proper blood supply and nervous system, becomes more vulnerable to injury. Recently, potential for successful pulp regeneration and revascularization therapies is increasing due to accumulated knowledge of stem cells, especially dental pulp stem cells. This paper will review current progress and feasible strategies for dental pulp regeneration and revascularization.

  20. Generation and periodontal differentiation of human gingival fibroblasts-derived integration-free induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiaohui [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China); Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Li, Yang [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Li, Jingwen [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China); Li, Peng [Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR (China); Liu, Yinan [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Wen, Jinhua, E-mail: jhwen@bjmu.edu.cn [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Luan, Qingxian, E-mail: kqluanqx@126.com [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China)

    2016-05-06

    Induced pluripotent stem cells (iPSCs) have been recognized as a promising cell source for periodontal tissue regeneration. However, the conventional virus-based reprogramming approach is associated with a high risk of genetic mutation and limits their therapeutic utility. Here, we successfully generated iPSCs from readily accessible human gingival fibroblasts (hGFs) through an integration-free and feeder-free approach via delivery of reprogramming factors of Oct4, Sox2, Klf4, L-myc, Lin28 and TP53 shRNA with episomal plasmid vectors. The iPSCs presented similar morphology and proliferation characteristics as embryonic stem cells (ESCs), and expressed pluripotent markers including Oct4, Tra181, Nanog and SSEA-4. Additionally, these cells maintained a normal karyotype and showed decreased CpG methylation ratio in the promoter regions of Oct4 and Nanog. In vivo teratoma formation assay revealed the development of tissues representative of three germ layers, confirming the acquisition of pluripotency. Furthermore, treatment of the iPSCs in vitro with enamel matrix derivative (EMD) or growth/differentiation factor-5 (GDF-5) significantly up-regulated the expression of periodontal tissue markers associated with bone, periodontal ligament and cementum respectively. Taken together, our data demonstrate that hGFs are a valuable cell source for generating integration-free iPSCs, which could be sequentially induced toward periodontal cells under the treatment of EMD and GDF-5. - Highlights: • Integration-free iPSCs are successfully generated from hGFs via an episomal approach. • EMD promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • GDF-5 promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • hGFs-derived iPSCs could be a promising cell source for periodontal regeneration.

  1. Generation and periodontal differentiation of human gingival fibroblasts-derived integration-free induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Yin, Xiaohui; Li, Yang; Li, Jingwen; Li, Peng; Liu, Yinan; Wen, Jinhua; Luan, Qingxian

    2016-01-01

    Induced pluripotent stem cells (iPSCs) have been recognized as a promising cell source for periodontal tissue regeneration. However, the conventional virus-based reprogramming approach is associated with a high risk of genetic mutation and limits their therapeutic utility. Here, we successfully generated iPSCs from readily accessible human gingival fibroblasts (hGFs) through an integration-free and feeder-free approach via delivery of reprogramming factors of Oct4, Sox2, Klf4, L-myc, Lin28 and TP53 shRNA with episomal plasmid vectors. The iPSCs presented similar morphology and proliferation characteristics as embryonic stem cells (ESCs), and expressed pluripotent markers including Oct4, Tra181, Nanog and SSEA-4. Additionally, these cells maintained a normal karyotype and showed decreased CpG methylation ratio in the promoter regions of Oct4 and Nanog. In vivo teratoma formation assay revealed the development of tissues representative of three germ layers, confirming the acquisition of pluripotency. Furthermore, treatment of the iPSCs in vitro with enamel matrix derivative (EMD) or growth/differentiation factor-5 (GDF-5) significantly up-regulated the expression of periodontal tissue markers associated with bone, periodontal ligament and cementum respectively. Taken together, our data demonstrate that hGFs are a valuable cell source for generating integration-free iPSCs, which could be sequentially induced toward periodontal cells under the treatment of EMD and GDF-5. - Highlights: • Integration-free iPSCs are successfully generated from hGFs via an episomal approach. • EMD promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • GDF-5 promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • hGFs-derived iPSCs could be a promising cell source for periodontal regeneration.

  2. Effect of difference in occlusal contact area of mandibular free-end edentulous area implants on periodontal mechanosensitive threshold of adjacent premolars.

    Science.gov (United States)

    Terauchi, Rie; Arai, Korenori; Tanaka, Masahiro; Kawazoe, Takayoshi; Baba, Shunsuke

    2015-01-01

    Implant treatment is believed to cause minimal invasion of remaining teeth. However, few studies have examined teeth adjacent to an implant region. Therefore, this study investigated the effect of occlusal contact size of implants on the periodontal mechanosensitive threshold of adjacent premolars. A cross-sectional study design was adopted. The Department of Oral Implantology, Osaka Dental University, was the setting where patients underwent implant treatment in the mandibular free-end edentulous area. The study population comprised of 87 patients (109 teeth) who underwent follow-up observation for at least 3 years following implant superstructure placement. As variables, age, sex, duration following superstructure placement, presence or absence of dental pulp, occlusal contact area, and periodontal mechanosensitive threshold were considered. The occlusal contact area was measured using Blue Silicone(®)and Bite Eye BE-I(®). Periodontal mechanosensitive threshold were measured using von Frey hair. As quantitative variables for periodontal mechanosensitive threshold, we divided subjects into two groups: normal (≤5 g) and high (≥5.1 g). For statistical analysis, we compared the two groups for the sensation thresholds using the Chi square test for categorical data and the Mann-Whitney U test for continuous volume data. For variables in which a significant difference was noted, we calculated the odds ratio (95 % confidence interval) and the effective dose. There were 93 teeth in the normal group and 16 teeth in the high group based on periodontal mechanosensitive threshold. Comparison of the two groups indicated no significant differences associated with age, sex, duration following superstructure placement, or presence or absence of dental pulp. A significant difference was noted with regard to occlusal contact area, with several high group subjects belonging to the small contact group (odds ratio: 4.75 [1.42-15.87]; effective dose: 0.29). The results of

  3. Medial collateral ligament healing one year after a concurrent medial collateral ligament and anterior cruciate ligament injury: an interdisciplinary study in rabbits.

    Science.gov (United States)

    Yamaji, T; Levine, R E; Woo, S L; Niyibizi, C; Kavalkovich, K W; Weaver-Green, C M

    1996-03-01

    The optimal treatment for concurrent injuries to the medial collateral and anterior cruciate ligaments has not been determined, despite numerous clinical and laboratory studies. The objective of this study was to examine the effect of surgical repair of the medial collateral ligament on its biomechanical and biochemical properties 52 weeks after such injuries. In the left knee of 12 skeletally mature New Zealand White rabbits, the medial collateral ligament was torn and the anterior cruciate ligament was transected and then reconstructed. This is an experimental model previously developed in our laboratory. In six rabbits, the torn ends of the medial collateral ligament were repaired, and in the remaining six rabbits, the ligament was not repaired. Fifty-two weeks after injury, we examined varus-valgus and anterior-posterior knee stability; structural properties of the femur-medial collateral ligament-tibia complex; and mechanical properties, collagen content, and mature collagen crosslinking of the medial collateral ligament. We could not detect significant differences between repair and nonrepair groups for any biomechanical or biochemical property. Our data support clinical findings that when the medial collateral and anterior cruciate ligaments are injured concurrently and the anterior cruciate ligament is reconstructed, conservative treatment of the ruptured medial collateral ligament can result in successful healing.

  4. Effect of ProRoot MTA, Portland cement, and amalgam on the expression of fibronectin, collagen I, and TGFβ by human periodontal ligament fibroblasts in vitro.

    Science.gov (United States)

    Fayazi, Sara; Ostad, Seyed Nasser; Razmi, Hasan

    2011-01-01

    Today many materials have been introduced for root-end filling materials. One of them is mineral trioxide aggregate (MTA) that is mentioned as a gold standard. The purpose of this in vitro study was to evaluate the reaction of human periodontal ligament fibroblasts to the root-end filling materials, such as ProRoot MTA, Portland cement, and amalgam. Eight impacted teeth were extracted in aseptic condition. The tissues around the roots were used to obtain fibroblast cells. After cell proliferation, they were cultured in the chamber slides and the extracts of the materials were added to the wells. Immunocytochemical method for measuring the expression of Fibronectin, collagen I and transforming growth factor beta (TGF®) was performed by Olysia Bioreport Imaging Software. The results were analyzed by SPSS 13.0 and Tukey post hoc test with PPortland cement group showed the most expression of collagen significantly and after 1 week, Portland cement and MTA groups had the most expression of collagen but there was no significant difference between these 2 groups. After 1 week, the Portland cement group demonstrated a higher amount of TGF® and fibronectin. The results suggest that Portland cement can be used as a less expensive root filling material with low toxicity. It has better effects than amalgam on the fibroblasts.

  5. MRI appearance of surgically proven abnormal accessory anterior-inferior tibiofibular ligament (Bassett's ligament)

    International Nuclear Information System (INIS)

    Subhas, Naveen; Vinson, Emily N.; Cothran, R.L.; Helms, Clyde A.; Santangelo, James R.; Nunley, James A.

    2008-01-01

    A thickened accessory anterior-inferior tibiofibular ligament (Bassett's ligament) of the ankle can be a cause of ankle impingement. Its imaging appearance is not well described. The purpose of this study was to determine if the ligament could be identified on magnetic resonance imaging (MRI), to determine associated abnormalities, and to determine if MRI could be used to differentiate normal from abnormal. Eighteen patients with a preoperative ankle MRI and an abnormal Bassett's ligament reported at surgery were found retrospectively. A separate cohort of 18 patients was selected as a control population. The presence of Bassett's ligament and its thickness were noted. The integrity and appearance of the lateral ankle ligaments, talar dome cartilage, and anterolateral gutter were also noted. In 34 of the 36 cases (94%), Bassett's ligament was identified on MRI. The ligament was seen in all three imaging planes and most frequently in the axial plane. The mean thickness of the ligament in the surgically abnormal cases was 2.37 mm, compared with 1.87 mm in the control with a p value = 0.015 (t test). Nine of the 18 abnormal cases (50%) had talar dome cartilage lesions as a result of contact with the ligament at surgery, with only 3 cases of high-grade defects seen on MRI. Fourteen of the 18 abnormal cases (78%) had of synovitis or scarring in the lateral gutter at surgery, with only 5 cases with scarring seen on MRI. The anterior-inferior tibiofibular ligament was abnormal or torn in 8 of the 18 abnormal cases (44%) by MRI and confirmed in only 3 cases at surgery. Bassett's ligament can be routinely identified on MRI and was significantly thicker in patients who had it resected at surgery. An abnormal Bassett's ligament is often present in the setting of a normal anterior-inferior tibiofibular ligament. The cartilage abnormalities and synovitis associated with an abnormal Bassett's ligament are poorly detected by conventional MRI. (orig.)

  6. PERAWATAN GIGI DENGAN KELAINAN ENDO-PERIO

    Directory of Open Access Journals (Sweden)

    Andrew Chandra Luwuk

    2015-07-01

    Full Text Available Endo-perio lesion could occur due to the close relationship between the pulp and the periodontium. Therefore, pulpal lesion could cause a periodontium lesion. To decide on an appropriate diagnosis, a thorough and careful examination needs to be done in order to determine the right treatment. Most of the endo-perio cases should be approached with a root canal treatment because the source of the lesion is in the canal, and there is a possibility of healing of the periapical and periodontal ligament without surgical intervention. A report of a healing of an endo-perio case without surgical approach will be discussed.

  7. Alcohol Inhibits Odontogenic Differentiation of Human Dental Pulp Cells by Activating mTOR Signaling

    Directory of Open Access Journals (Sweden)

    Wei Qin

    2017-01-01

    Full Text Available Long-term heavy alcohol consumption could result in a range of health, social, and behavioral problems. People who abuse alcohol are at high risks of seriously having osteopenia, periodontal disease, and compromised oral health. However, the role of ethanol (EtOH in the biological functions of human dental pulp cells (DPCs is unknown. Whether EtOH affects the odontoblastic differentiation of DPCs through the mechanistic target of rapamycin (mTOR remains unexplored. The objective of this study was to investigate the effects of EtOH on DPC differentiation and mineralization. DPCs were isolated and purified from human dental pulps. The proliferation and odontoblastic differentiation of DPCs treated with EtOH were subsequently investigated. Different doses of EtOH were shown to be cytocompatible with DPCs. EtOH significantly activated the mTOR pathway in a dose-dependent manner. In addition, EtOH downregulated the alkaline phosphatase activity, attenuated the mineralized nodule formation, and suppressed the expression of odontoblastic markers including ALP, DSPP, DMP-1, Runx2, and OCN. Moreover, the pretreatment with rapamycin, a specific mTOR inhibitor, markedly reversed the EtOH-induced odontoblastic differentiation and cell mineralization. Our findings show for the first time that EtOH can suppress DPC differentiation and mineralization in a mTOR-dependent manner, indicating that EtOH may be involved in negatively regulating the dental pulp repair.

  8. Alcohol Inhibits Odontogenic Differentiation of Human Dental Pulp Cells by Activating mTOR Signaling.

    Science.gov (United States)

    Qin, Wei; Huang, Qi-Ting; Weir, Michael D; Song, Zhi; Fouad, Ashraf F; Lin, Zheng-Mei; Zhao, Liang; Xu, Hockin H K

    2017-01-01

    Long-term heavy alcohol consumption could result in a range of health, social, and behavioral problems. People who abuse alcohol are at high risks of seriously having osteopenia, periodontal disease, and compromised oral health. However, the role of ethanol (EtOH) in the biological functions of human dental pulp cells (DPCs) is unknown. Whether EtOH affects the odontoblastic differentiation of DPCs through the mechanistic target of rapamycin (mTOR) remains unexplored. The objective of this study was to investigate the effects of EtOH on DPC differentiation and mineralization. DPCs were isolated and purified from human dental pulps. The proliferation and odontoblastic differentiation of DPCs treated with EtOH were subsequently investigated. Different doses of EtOH were shown to be cytocompatible with DPCs. EtOH significantly activated the mTOR pathway in a dose-dependent manner. In addition, EtOH downregulated the alkaline phosphatase activity, attenuated the mineralized nodule formation, and suppressed the expression of odontoblastic markers including ALP, DSPP, DMP-1, Runx2, and OCN. Moreover, the pretreatment with rapamycin, a specific mTOR inhibitor, markedly reversed the EtOH-induced odontoblastic differentiation and cell mineralization. Our findings show for the first time that EtOH can suppress DPC differentiation and mineralization in a mTOR-dependent manner, indicating that EtOH may be involved in negatively regulating the dental pulp repair.

  9. Effect of organosolv and soda pulping processes on the metals content of non-woody pulps.

    Science.gov (United States)

    González, M; Cantón, L; Rodríguez, A; Labidi, J

    2008-09-01

    In this work the effect of different pulping processes (ethyleneglycol, diethyleneglycol, ethanolamine and soda) of tow abounded raw materials (empty fruit bunches - EFB and rice straw) on the ash, silicates and metals (Fe, Zn, Cu, Pb, Mn, Ni and Cd) content of the obtained pulps have been studied. Results showed that pulps obtained by diethyleneglycol pulping process presented lower metals content (756 microg/g and 501 microg/g for EFB and rice straw pulp, respectively) than soda pulps (984 microg/g and 889 microg/g). Ethanolamine pulps presented values of holocellulose (74% and 77% for EFB and rice straw pulp, respectively), alpha-cellulose (74% and 69%), kappa number (18.7 and 18.5) and viscosity (612 and 90 6ml/g) similar to those of soda pulp, and lower lignin contents (11% and 12%).

  10. Lasers in Dentistry: Is It Really Safe?

    Directory of Open Access Journals (Sweden)

    Hamed Mortazavi

    2016-01-01

    Full Text Available Introduction: Lasers are used in various disciplines in dentistry such as restorative dentistry, endodontics, periodontics, pedodontics, and oral and maxillofacial surgery. Despite many advantages of dental lasers, this method might have some adverse effects. The aim of this review article is to debate about the impacts of lasers on orodental tissues. Methods: An electronic search was accomplished using specialized databases such as Google Scholar, PubMed, PubMed Central, Science Direct, and Scopus to find relevant studies by using keywords such as “laser”, “dentistry”, “adverse effect”, and “side effect”. Results: Several adverse effects of laser were identified such as impacts on dental pulp, effects on tooth surface, subcutaneous and submucosal effects, histopathological changes, and infection transmission due to laser smoke. During dental procedures, necrosis of the pulp, periodontal ligament and odontoblasts, cemental lysis, bone resorption, hypo/hyperpigmentation, burns, itching, and scarring might occur. In addition, laser can weaken the dentin by inducing surface cracks. Restorative procedures by laser might increase microleakage and decrease shear bond strength, as well as microhardness of tooth walls. Meanwhile, laser surgery might cause emphysema after abscess incision and drainage, frenectomy, flap elevation, and gingivoplasty. Conclusion: Practitioners should be very cautious in treatment planning and case selection during laser-based therapeutic procedures.

  11. The appearance of a lurking ligament in Laparoscopic Sleeve Gastrectomy; Posterior Gastric Ligament

    Directory of Open Access Journals (Sweden)

    Mutlu Ünver

    2017-03-01

    Full Text Available Objective: The aim of this study was to demonstrate a lurking ligament and its various formation types and to mention the importance of this ligament in Laparoscopic sleeve gastrectomy Methods: One hundred and twelve patients had laparoscopic sleeve gastrectomy (LSG procedure in our clinic between March 2011 and September 2013. All procedures were performed with a standard operative technique. Only difference for the last 50 patients was to avoid the excessive dissection of posterior gastric wall. The existence of posterior gastric ligament was recorded and different types of posterior gastric ligament was demonstrated. Results: Posterior gastric ligament was observed in all of the cases in different formation types. Three types of ligament; complete, partial and skippy, was demonstrated. 53(47.3% of the patients had skippy, while 41 (36.6% had partial and 18 (16.1% had complete type of posterior gastric ligament. Conclusion: A ligament named as ‘posterior gastric ligament’ and its various forms were defined in the third dimensional plane of stomach. Posterior gastric ligament remains as the only structure in LSG for preventing the mobility and ability of the stomach to rotate. The excessive dissection of the posterior gastric ligament should be avoided to prevent complications such as kinking and volvulus

  12. The Significance of SDF-1α-CXCR4 Axis in in vivo Angiogenic Ability of Human Periodontal Ligament Stem Cells.

    Science.gov (United States)

    Bae, Yoon-Kyung; Kim, Gee-Hye; Lee, Jae Cheoun; Seo, Byoung-Moo; Joo, Kyeung-Min; Lee, Gene; Nam, Hyun

    2017-06-30

    Periodontal ligament stem cells (PDLSCs) are multipotent stem cells derived from periodontium and have mesenchymal stem cell (MSC)-like characteristics. Recently, the perivascular region was recognized as the developmental origin of MSCs, which suggests the in vivo angiogenic potential of PDLSCs. In this study, we investigated whether PDLSCs could be a potential source of perivascular cells, which could contribute to in vivo angiogenesis. PDLSCs exhibited typical MSC-like characteristics such as the expression pattern of surface markers (CD29, CD44, CD73, and CD105) and differentiation potentials (osteogenic and adipogenic differentiation). Moreover, PDLSCs expressed perivascular cell markers such as NG2, αsmooth muscle actin, platelet-derived growth factor receptor β, and CD146. We conducted an in vivo Matrigel plug assay to confirm the in vivo angiogenic potential of PDLSCs. We could not observe significant vessel-like structures with PDLSCs alone or human umbilical vein endothelial cells (HU-VECs) alone at day 7 after injection. However, when PDLSCs and HUVECs were co-injected, there were vessel-like structures containing red blood cells in the lumens, which suggested that anastomosis occurred between newly formed vessels and host circulatory system. To block the SDF-1α and CXCR4 axis between PDLSCs and HUVECs, AMD3100, a CXCR4 antagonist, was added into the Matrigel plug. After day 3 and day 7 after injection, there were no significant vessel-like structures. In conclusion, we demonstrated the peri-vascular characteristics of PDLSCs and their contribution to in vivo angiogenesis, which might imply potential application of PDLSCs into the neovascularization of tissue engineering and vascular diseases.

  13. Intermittent Hypoxia Influences Alveolar Bone Proper Microstructure via Hypoxia-Inducible Factor and VEGF Expression in Periodontal Ligaments of Growing Rats

    Directory of Open Access Journals (Sweden)

    Shuji Oishi

    2016-09-01

    Full Text Available Intermittent hypoxia (IH recapitulates morphological changes in the maxillofacial bones in children with obstructive sleep apnea (OSA. Recently, we found that IH increased bone mineral density (BMD in the inter-radicular alveolar bone (reflecting enhanced osteogenesis in the mandibular first molar (M1 region in the growing rats, but the underlying mechanism remains unknown. In this study, we focused on the hypoxia-inducible factor (HIF pathway to assess the effect of IH by testing the null hypothesis of no significant differences in the mRNA-expression levels of relevant factors associated with the HIF pathway, between control rats and growing rats with IH. To test the null hypothesis, we investigated how IH enhances mandibular osteogenesis in the alveolar bone proper with respect to HIF-1α and vascular endothelial growth factor (VEGF in periodontal ligament (PDL tissues. Seven-week-old male Sprague–Dawley rats were exposed to IH for 3 weeks. The microstructure and BMD in the alveolar bone proper of the distal root of the mandibular M1 were evaluated using micro-computed tomography (micro-CT. Expression of HIF-1α and VEGF mRNA in PDL tissues were measured, whereas osteogenesis was evaluated by measuring mRNA levels for alkaline phosphatase (ALP and bone morphogenetic protein-2 (BMP-2. The null hypothesis was rejected: we found an increase in the expression of all of these markers after IH exposure. The results provided the first indication that IH enhanced osteogenesis of the mandibular M1 region in association with PDL angiogenesis during growth via HIF-1α in an animal model.

  14. Effects of a low level laser on periodontal tissue in hypofunctional teeth.

    Directory of Open Access Journals (Sweden)

    Hidetaka Hayashi

    Full Text Available Malocclusions, such as an open bite and high canines, are often encountered in orthodontic practice. Teeth without occlusal stimuli are known as hypofunctional teeth, and numerous atrophic changes have been reported in the periodontal tissue, including reductions in blood vessels in the periodontal ligament (PDL, heavy root resorption, and reduced bone mineral density (BMD in the alveolar bone. Low Level Laser (LLL has been shown to have a positive effect on bone formation and the vasculature. Although the recovery of hypofunctional teeth remains unclear, LLL is expected to have a positive influence on periodontal tissue in occlusal hypofunction. The aim of the present study was to elucidate the relationship between LLL and periodontal tissue in occlusal hypofunction. Twenty-four male rats aged 5 weeks were randomly divided into control and hypofunctional groups. An anterior metal cap and bite plate were attached to the maxillary and mandibular incisors in the hypofunctional group to simulate occlusal hypofunction in the molars. LLL irradiation was applied to the maxillary first molar through the gingival sulcus in half of the rats. Rats were divided into four groups; control, control+LLL, hypofunctional, and hypofunctional+LLL. Exposure to LLL irradiation was performed for 3 minutes every other day for 2 weeks. Animals were examined by Micro-CT at 5 and 7 weeks and were subsequently sacrificed. Heads were resected and examined histologically and immunohistologically. The hypofunctional group had obvious stricture of the PDL. However, no significant differences were observed in the PDL and alveolar bone between the hypofunctional+LLL and the control groups. In addition, the expression of basic fibroblast growth factor (bFGF and vascular endothelial growth factor (VEGF-positive cells were higher in the hypofunctional + LLL group than in the hypofunctional group. These results indicated that LLL enhanced the production of bFGF and VEGF in the

  15. Periodontal ligament influence on the stress distribution in a removable partial denture supported by implant: a finite element analysis

    Directory of Open Access Journals (Sweden)

    Carlos Marcelo Archangelo

    2012-06-01

    Full Text Available OBJECTIVES: The non-homogenous aspect of periodontal ligament (PDL has been examined using finite element analysis (FEA to better simulate PDL behavior. The aim of this study was to assess, by 2-D FEA, the influence of non-homogenous PDL on the stress distribution when the free-end saddle removable partial denture (RPD is partially supported by an osseointegrated implant. MATERIAL AND METHODS: Six finite element (FE models of a partially edentulous mandible were created to represent two types of PDL (non-homogenous and homogenous and two types of RPD (conventional RPD, supported by tooth and fibromucosa; and modified RPD, supported by tooth and implant [10.00x3.75 mm]. Two additional Fe models without RPD were used as control models. The non-homogenous PDL was modeled using beam elements to simulate the crest, horizontal, oblique and apical fibers. The load (50 N was applied in each cusp simultaneously. Regarding boundary conditions the border of alveolar ridge was fixed along the x axis. The FE software (Ansys 10.0 was used to compute the stress fields, and the von Mises stress criterion (svM was applied to analyze the results. RESULTS: The peak of svM in non-homogenous PDL was higher than that for the homogenous condition. The benefits of implants were enhanced for the non-homogenous PDL condition, with drastic svM reduction on the posterior half of the alveolar ridge. The implant did not reduce the stress on the support tooth for both PDL conditions. Conclusion: The PDL modeled in the non-homogeneous form increased the benefits of the osseointegrated implant in comparison with the homogeneous condition. Using the non-homogenous PDL, the presence of osseointegrated implant did not reduce the stress on the supporting tooth.

  16. Evaluation of a value prior to pulping-thermomechanical pulp business concept. Part 2.

    Science.gov (United States)

    Ted Bilek; Carl Houtman; Peter Ince

    2011-01-01

    Value Prior to Pulping (VPP) is a novel biorefining concept for pulp mills that includes hydrolysis extraction of hemicellulose wood sugars and acetic acid from pulpwood prior to pulping. The concept involves conversion of wood sugars via fermentation to fuel ethanol or other chemicals and the use of remaining solid wood material in the pulping process. This paper...

  17. Ibandronate promotes osteogenic differentiation of periodontal ligament stem cells by regulating the expression of microRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qiang [Department of General Dentistry and Emergency, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Zhao, Zhi-Ning [Clinical Laboratory, 451 Hospital of Chinese PLA, Xi' an 710054 (China); Cheng, Jing-Tao [Department of Special Dentistry, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Zhang, Bin [Department of Orthodontics, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Xu, Jie [Department of Periodontology, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Huang, Fei; Zhao, Rui-Ni [Department of General Dentistry and Emergency, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Chen, Yong-Jin, E-mail: cyj1229@fmmu.edu.cn [Department of General Dentistry and Emergency, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China)

    2011-01-07

    Research highlights: {yields} Ibandronate significantly promote the proliferation of PDLSC cells. {yields} Ibandronate enhanced the expression of ALP, COL-1, OPG, OCN, Runx2. {yields} The expression of a class of miRNAs, e.g., miR-18a, miR-133a, miR-141 and miR-19a, was significantly modified in PDLSC cells cultured with ibandronate. {yields} Ibandronate regulates the expression of diverse bone formation-related genes via miRNAs in PDLSCs. {yields} Ibandronate can suppress the activity of osteoclast while promoting the proliferation of osteoblast by regulating the expression of microRNAs. -- Abstract: Bisphosphonates (BPs) have a profound effect on bone resorption and are widely used to treat osteoclast-mediated bone diseases. They suppress bone resorption by inhibiting the activity of mature osteoclasts and/or the formation of new osteoclasts. Osteoblasts may be an alternative target for BPs. Periodontal ligament stem cells (PDLSCs) exhibit osteoblast-like features and are capable of differentiating into osteoblasts or cementoblasts. This study aimed to determine the effects of ibandronate, a nitrogen-containing BP, on the proliferation and the differentiation of PDLSCs and to identify the microRNAs (miRNAs) that mediate these effects. The PDLSCs were treated with ibandronate, and cell proliferation was measured using the MTT (3-dimethylthiazol-2,5-diphenyltetrazolium bromide) assay. The expression of genes and miRNAs involved in osteoblastic differentiation was assayed using quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). Ibandronate promoted the proliferation of PDLSCs and enhanced the expression of alkaline phosphatase (ALP), type I collagen (COL-1), osteoprotegerin (OPG), osteocalcin (OCN), and Runx2. The expression of miRNAs, including miR-18a, miR-133a, miR-141 and miR-19a, was significantly altered in the PDLSCs cultured with ibandronate. In PDLSCs, ibandronate regulates the expression of diverse bone formation

  18. Ibandronate promotes osteogenic differentiation of periodontal ligament stem cells by regulating the expression of microRNAs

    International Nuclear Information System (INIS)

    Zhou, Qiang; Zhao, Zhi-Ning; Cheng, Jing-Tao; Zhang, Bin; Xu, Jie; Huang, Fei; Zhao, Rui-Ni; Chen, Yong-Jin

    2011-01-01

    Research highlights: → Ibandronate significantly promote the proliferation of PDLSC cells. → Ibandronate enhanced the expression of ALP, COL-1, OPG, OCN, Runx2. → The expression of a class of miRNAs, e.g., miR-18a, miR-133a, miR-141 and miR-19a, was significantly modified in PDLSC cells cultured with ibandronate. → Ibandronate regulates the expression of diverse bone formation-related genes via miRNAs in PDLSCs. → Ibandronate can suppress the activity of osteoclast while promoting the proliferation of osteoblast by regulating the expression of microRNAs. -- Abstract: Bisphosphonates (BPs) have a profound effect on bone resorption and are widely used to treat osteoclast-mediated bone diseases. They suppress bone resorption by inhibiting the activity of mature osteoclasts and/or the formation of new osteoclasts. Osteoblasts may be an alternative target for BPs. Periodontal ligament stem cells (PDLSCs) exhibit osteoblast-like features and are capable of differentiating into osteoblasts or cementoblasts. This study aimed to determine the effects of ibandronate, a nitrogen-containing BP, on the proliferation and the differentiation of PDLSCs and to identify the microRNAs (miRNAs) that mediate these effects. The PDLSCs were treated with ibandronate, and cell proliferation was measured using the MTT (3-dimethylthiazol-2,5-diphenyltetrazolium bromide) assay. The expression of genes and miRNAs involved in osteoblastic differentiation was assayed using quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). Ibandronate promoted the proliferation of PDLSCs and enhanced the expression of alkaline phosphatase (ALP), type I collagen (COL-1), osteoprotegerin (OPG), osteocalcin (OCN), and Runx2. The expression of miRNAs, including miR-18a, miR-133a, miR-141 and miR-19a, was significantly altered in the PDLSCs cultured with ibandronate. In PDLSCs, ibandronate regulates the expression of diverse bone formation-related genes via miRNAs. The exact

  19. In Vitro Study of Temperature Changes in Pulp Chamber During Root Planing Procedure Using Er:YAG Laser.

    Science.gov (United States)

    Yaneva, Blagovesta K; Zagorchev, Plamen I; Firkova, Elena I; Glavinkov, Ivan T

    2016-09-01

    To assess temperature changes at specified time intervals during Er:YAG laser scaling and root planing of surfaces with dental calculus. Fifteen single-rooted teeth with advanced periodontal disease were extracted and fixed in a cylinder thermostat filled with distilled water at constant temperature (35.5°C). A specially designed thermal probe (type K thermocouple) accurate to ±0.1°C over the range from 20°C to 80°C was fitted into the pulp chamber of tooth sample. Scaling and root planing of the mesial and distal root surfaces was performed using an Er:YAG laser (Lite Touch, Syneron Dental, Israel) with a wavelength of 2940 nm, provided with a chisel tip, and at the following settings: output energy 100 mJ and 50 Hz, duration of irradiation - 40 sec, the tip in contact mode oblique to the root surface at an angle of approximately 10-15 degrees and water spray level 5-6. The temperature inside the pulp chamber was measured every 10 sec. The temperature in the pulp chamber taken every 10 seconds and compared with the temperature of 35.5°C at baseline decreased by 1.6°C, 2.4°C, 2.5°C, and 2.5°C for the first, second, third and fourth measurement, respectively. These changes did not reach statistical significance. The Er:YAG laser does not increase the temperature inside the pulp chamber. The assessed changes do not depend on the duration of irradiation which was kept within 40 seconds. Therefore, this treatment modality causes no thermal damage to the pulp under the above defined conditions and can be considered safe.

  20. Assessment of apical periodontitis by MRI. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Geibel, M.A. [Ulm Univ. (Germany). Oral and Maxillofacial Surgery; Schreiber, E.S.; Bracher, A.K.; Rasche, V. [Ulm Univ. (Germany). Internal Medicine II; Hell, E.; Ulrici, J. [Sirona Dental Systems GmbH, Bensheim (Germany). Dental Imaging; Sailer, L.K. [DOC Praxisklinik im Wiley, Neu-Ulm (Germany). MKG; Ozpeynirci, Y. [Ulm Univ. (Germany). Diagnostic and Interventional Radiology

    2015-04-15

    The purpose of this clinical feasibility study was to evaluate the applicability of magnetic resonance imaging (MRI) for the assessment of apical periodontitis in direct comparison with cone beam CT (CBCT). 19 consecutive patients (average age 43 ± 13 years) with 34 lesions in total (13 molars, 14 premolars and 7 front teeth) were enrolled in this feasibility study. Periapical lesions were defined as periapical radiolucencies (CBCT) or structural changes in the spongy bone signal (MRI), which were connected with the apical part of a root and with at least twice the width of the periodontal ligament space. The location and dimension of the lesions were compared between MRI and CBCT. While mainly mineralized tissue components such as teeth and bone were visible with CBCT, complimentary information of the soft tissue components was assessable with MRI. The MRI images provided sufficient diagnostic detail for the assessment of the main structures of interest. Heterogeneous contrast was observed within the lesion, with often a clear enhancement close to the apical foramen and the periodontal gap. No difference for lesion visibility was observed between MRI and CBCT. The lesion dimensions corresponded well, but were slightly but significantly overestimated with MRI. A heterogeneous lesion appearance was observed in several patients. Four patients presented with a well circumscribed hyperintense signal in the vicinity of the apical foramen. The MRI capability of soft tissue characterization may facilitate detailed analysis of periapical lesions. This clinical study confirms the applicability of multi-contrast MRI for the identification of periapical lesions.

  1. Assessment of apical periodontitis by MRI. A feasibility study

    International Nuclear Information System (INIS)

    Geibel, M.A.; Schreiber, E.S.; Bracher, A.K.; Rasche, V.; Hell, E.; Ulrici, J.; Sailer, L.K.; Ozpeynirci, Y.

    2015-01-01

    The purpose of this clinical feasibility study was to evaluate the applicability of magnetic resonance imaging (MRI) for the assessment of apical periodontitis in direct comparison with cone beam CT (CBCT). 19 consecutive patients (average age 43 ± 13 years) with 34 lesions in total (13 molars, 14 premolars and 7 front teeth) were enrolled in this feasibility study. Periapical lesions were defined as periapical radiolucencies (CBCT) or structural changes in the spongy bone signal (MRI), which were connected with the apical part of a root and with at least twice the width of the periodontal ligament space. The location and dimension of the lesions were compared between MRI and CBCT. While mainly mineralized tissue components such as teeth and bone were visible with CBCT, complimentary information of the soft tissue components was assessable with MRI. The MRI images provided sufficient diagnostic detail for the assessment of the main structures of interest. Heterogeneous contrast was observed within the lesion, with often a clear enhancement close to the apical foramen and the periodontal gap. No difference for lesion visibility was observed between MRI and CBCT. The lesion dimensions corresponded well, but were slightly but significantly overestimated with MRI. A heterogeneous lesion appearance was observed in several patients. Four patients presented with a well circumscribed hyperintense signal in the vicinity of the apical foramen. The MRI capability of soft tissue characterization may facilitate detailed analysis of periapical lesions. This clinical study confirms the applicability of multi-contrast MRI for the identification of periapical lesions.

  2. Recruitment of dental pulp cells by dentine and pulp extracellular matrix components.

    Science.gov (United States)

    Smith, J G; Smith, A J; Shelton, R M; Cooper, P R

    2012-11-01

    The present study aimed to determine whether dentine tissue and preparations of extracellular matrix (ECM) from pulp (pECM) and dentine (dECM), and breakdown products, influenced pulp cell migration. Chemotaxis transwell and agarose spot assays demonstrated that both dentine and pulp ECM molecules acted as chemoattractants for primary pulp cells. Chemoattractant activities of dECM and pECM were enhanced when subjected to acid and enzymatic breakdown, respectively. This enhanced activity following physiologically relevant breakdown may be pertinent to the disease environment. Pulp cell migration in response to dental ECMs was dependent on an active rho pathway. Recruited cells exhibited increased stem cell marker expression indicating that dental ECMs and their breakdown products selectively attract progenitor cells that contribute to repair processes. In conclusion, combined these results indicate that ECM molecules contribute to cell recruitment necessary for regeneration of the dentine-pulp complex after injury. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Radiation -adsorption treatment of pesticides by using wood pulp and bagasse pulp

    International Nuclear Information System (INIS)

    Abd El-Aal, S.E.; Sokker, S.S.; Dessooki, A.M.

    2005-01-01

    Alkaline pulping of pulp wood and bagasse using sodium hydroxide resulted in the reduction of lignin from the wood and bagasse fibers and consequently increase adsorption of the pesticide pollutants to these fibers. Three different types of pesticides were used in this study namely, metalaxyl, dicloran and arelon. which were irradiated at a dose of 4 kGy before adsorption treatment.The results show that moderate adsorption was observed for all pesticides when adsorption was carried out without alkaline pulping and irradiation. This is due to the presence of lignin which retard the adsorption process. Batch sorption experiments at different pH values (3, 7, 9) for the retention of these pesticides by pulp wood and pulp bagasse fibers indicated that sorption is governed by the interaction of the ionized form of these compounds with the polyhydroxyl structure of cellulose. The study shows that alkaline pulping of pulpwood and bagasse improves its ability towards adsorption of the radiation degraded pesticide molecules

  4. CT appearance of pulmonary ligament

    Energy Technology Data Exchange (ETDEWEB)

    Im, Jung Gi; Han, Man Chung; Chin, Soo Yil [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1984-03-15

    Pulmonary ligament consists of 2 serosal of pleura that connect the lower to the mediastinum. Author analyse and present CT appearance of pulmonary ligament of the 40 normal and abnormal patients on the basis of anatomic knowledge from the cross section of cadaver. Left pulmonary ligament is more frequency visualized than the right. The most important CT landmark in localizing pulmonary ligament is the esophagus where the ligament attaches on its lateral wall. Pitfalls in CT identification of pulmonary ligament are right phrenic nerve and right pericardiacophrenic vessels which emerge from lateral wall of the IVC and wall of the emphysematous bulla in the region of the pulmonary ligament.

  5. CT appearance of pulmonary ligament

    International Nuclear Information System (INIS)

    Im, Jung Gi; Han, Man Chung; Chin, Soo Yil

    1984-01-01

    Pulmonary ligament consists of 2 serosal of pleura that connect the lower to the mediastinum. Author analyse and present CT appearance of pulmonary ligament of the 40 normal and abnormal patients on the basis of anatomic knowledge from the cross section of cadaver. Left pulmonary ligament is more frequency visualized than the right. The most important CT landmark in localizing pulmonary ligament is the esophagus where the ligament attaches on its lateral wall. Pitfalls in CT identification of pulmonary ligament are right phrenic nerve and right pericardiacophrenic vessels which emerge from lateral wall of the IVC and wall of the emphysematous bulla in the region of the pulmonary ligament

  6. Pro-oxidant status and matrix metalloproteinases in apical lesions and gingival crevicular fluid as potential biomarkers for asymptomatic apical periodontitis and endodontic treatment response

    Directory of Open Access Journals (Sweden)

    Dezerega Andrea

    2012-03-01

    Full Text Available Abstract Background Oxidative stress and matrix metalloproteinases -9 and -2 are involved in periodontal breakdown, whereas gingival crevicular fluid has been reported to reflect apical status. The aim of this study was to characterize oxidant balance and activity levels of MMP -2 and -9 in apical lesions and healthy periodontal ligament; and second, to determine whether potential changes in oxidant balance were reflected in gingival crevicular fluid from asymptomatic apical periodontitis (AAP-affected teeth at baseline and after endodontic treatment. Methods Patients with clinical diagnosis of AAP and healthy volunteers having indication of tooth extraction were recruited. Apical lesions and healthy periodontal ligaments, respectively, were homogenized or processed to obtain histological tissue sections. Matrix metalloproteinase -9 and -2 levels and/or activity were analyzed by Immunowestern blot, zymography and consecutive densitometric analysis, and their tissue localization was confirmed by immunohistochemistry. A second group of patients with AAP and indication of endodontic treatment was recruited. Gingival crevicular fluid was extracted from AAP-affected teeth at baseline, after endodontic treatment and healthy contralateral teeth. Total oxidant and antioxidant status were determined in homogenized tissue and GCF samples. Statistical analysis was performed using STATA v10 software with unpaired t test, Mann-Whitney test and Spearman's correlation. Results Activity of MMP-2 and MMP-9 along with oxidant status were higher in apical lesions (p Conclusions Apical lesions display an oxidant imbalance along with increased activity of matrix metalloproteinase-2 and -9 and might contribute to AAP progression. Oxidant imbalance can also be reflected in GCF from AAP-affected teeth and was restored to normal levels after conservative endodontic treatment. These mediators might be useful as potential biomarkers for chair-side complementary diagnostic

  7. Pro-oxidant status and matrix metalloproteinases in apical lesions and gingival crevicular fluid as potential biomarkers for asymptomatic apical periodontitis and endodontic treatment response.

    Science.gov (United States)

    Dezerega, Andrea; Madrid, Sonia; Mundi, Verónica; Valenzuela, María A; Garrido, Mauricio; Paredes, Rodolfo; García-Sesnich, Jocelyn; Ortega, Ana V; Gamonal, Jorge; Hernández, Marcela

    2012-03-21

    Oxidative stress and matrix metalloproteinases -9 and -2 are involved in periodontal breakdown, whereas gingival crevicular fluid has been reported to reflect apical status. The aim of this study was to characterize oxidant balance and activity levels of MMP -2 and -9 in apical lesions and healthy periodontal ligament; and second, to determine whether potential changes in oxidant balance were reflected in gingival crevicular fluid from asymptomatic apical periodontitis (AAP)-affected teeth at baseline and after endodontic treatment. Patients with clinical diagnosis of AAP and healthy volunteers having indication of tooth extraction were recruited. Apical lesions and healthy periodontal ligaments, respectively, were homogenized or processed to obtain histological tissue sections. Matrix metalloproteinase -9 and -2 levels and/or activity were analyzed by Immunowestern blot, zymography and consecutive densitometric analysis, and their tissue localization was confirmed by immunohistochemistry. A second group of patients with AAP and indication of endodontic treatment was recruited. Gingival crevicular fluid was extracted from AAP-affected teeth at baseline, after endodontic treatment and healthy contralateral teeth. Total oxidant and antioxidant status were determined in homogenized tissue and GCF samples. Statistical analysis was performed using STATA v10 software with unpaired t test, Mann-Whitney test and Spearman's correlation. Activity of MMP-2 and MMP-9 along with oxidant status were higher in apical lesions (p Apical lesions display an oxidant imbalance along with increased activity of matrix metalloproteinase-2 and -9 and might contribute to AAP progression. Oxidant imbalance can also be reflected in GCF from AAP-affected teeth and was restored to normal levels after conservative endodontic treatment. These mediators might be useful as potential biomarkers for chair-side complementary diagnostic of apical status in GCF.

  8. Evaluation of a model for induction of periodontal disease in dogs

    Directory of Open Access Journals (Sweden)

    Rodrigo V. Sepúlveda

    2014-06-01

    Full Text Available There are several methods for inducing periodontal disease in animal models, being the bone defect one of the most reported. This study aimed to evaluate this model, through clinical, radiographic, tomographic and histological analyzes, thus providing standardized data for future regenerative works. Twelve dogs were subjected to the induction protocol. In a first surgical procedure, a mucoperiosteal flap was made on the buccal aspect of the right third and fourth premolars and a defect was produced exposing the furcation and mesial and distal roots, with dimensions: 5mm coronoapical, 5mm mesiodistal, and 3mm buccolingual. Periodontal ligament and cementum were curetted and the defect was filled with molding polyester, which was removed after 21 days on new surgical procedure. Clinical and radiographic examinations were performed after the two surgeries and before the collection of parts for dental tomography and histological analysis. All animals showed grade II furcation exposure in both teeth. Clinical attachment level increased after induction. Defect size did not change for coronoapical and buccolingual measurements, while mesiodistal size was significantly higher than at the time of defect production. Radiographic analysis showed decreased radiopacity and discontinuity of lamina dura in every tooth in the furcation area. The horizontal progression of the disease was evident in micro-computed tomography and defect content in the histological analysis. Therefore, it is concluded that this method promotes the induction of periodontal disease in dogs in a standardized way, thus being a good model for future work.

  9. Prevalence and activity of Epstein-Barr virus and human cytomegalovirus in symptomatic and asymptomatic apical periodontitis lesions.

    Science.gov (United States)

    Hernádi, Katinka; Szalmás, Anita; Mogyorósi, Richárd; Czompa, Levente; Veress, György; Csoma, Eszter; Márton, Ildikó; Kónya, József

    2010-09-01

    Apical periodontitis is a polymicrobial inflammation with a dominant flora of opportunistic Gram-negative bacteria; however, a pathogenic role of human herpesviruses such as Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) has been implicated recently. The aims of this study were to determine the prevalence, activity, and disease association of EBV and HCMV in apical periodontitis in an Eastern Hungarian population. Forty samples with apical periodontitis (17 symptomatic and 23 asymptomatic) and 40 healthy pulp controls were collected. EBV and HCMV prevalences were measured by polymerase chain reaction (PCR) detection of the viral DNA and viral activity was tested by reverse-transcription PCR amplification of viral messenger RNA. EBV DNA and EBNA-2 messenger RNA were found in apical periodontitis lesions at significantly (p apical lesions (10%) and controls (0%). The presence of EBV DNA in apical lesions was associated significantly with large (> or = 5 mm) lesion size (p = 0.02) but not with symptoms (p = 0.30). Symptomatic manifestation was significantly associated with the co-occurrence (odds ratio [OR], 8.80; 95% confidence interval [CI], 1.69-45.76) but not the sole occurrences of EBNA-2 messenger RNA (OR, 2.29; 95% CI, 0.48-11.06) and large lesion size (OR, 4.02; 95% CI, 0.81-19.89). EBV infection is a frequent event in apical periodontitis, whereas the involvement of HCMV still remains to be elucidated. This study showed that symptomatic manifestation was likely to occur if a large-sized apical periodontitis lesion is aggravated with active EBV infection. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Effect of All-Trans Retinoic Acid (ATRA against expression of Matrix Metalloproteinase-2 (MMP-2 in model mice (Rattus norvegicus periodontitis

    Directory of Open Access Journals (Sweden)

    Ilma Soraya

    2017-08-01

    Full Text Available Introduction: Periodontitis is a condition of inflammation of the tooth supporting tissues generally caused by bacteria Phorphyromonas gingivalis (Pg. and is usually characterized by the occurrence of the alveolar bone resorption. Matrix metalloproteinase-2 (MMP-2 is an enzyme that plays an important role in inflammatory conditions. All-trans retinoic acid (ATRA is a metabolite of vitamin A which plays a role in healing the inflamed tissue and maintain the immune system. The purpose of this study was to determine the effect of ATRA on the expression of MMP-2 in mouse models Rattus norvegicus of periodontitis. Methods: Experimental laboratory by using post test only with control group design. This study used 25 male Wistar mice (Rattus norvegicus that divided into 5 groups. Group 1 (G1 is a group of healthy mice, group 2 (G2 is a group of sick mice as induced periodontitis without treatment, group 3 (G3 is a group of periodontitis mice treated with 5 mg/kg dose of ATRA, group 4 (G4 is a group of periodontitis mice treated with 10 mg/kg dose of ATRA, group 5 (G5 is a group of periodontitis mice treated with 20 mg/kg dose of ATRA. Periodontitis induction was induced by Pg. bacteria every 3 days for 28 days and followed by administration of ATRA for 7 days. Expression of MMP-2 from gingival tissues and periodontal ligament was obtained by immunohistochemical methods. Results were analyzed using the Shapiro-Wilk Test and Mann-Whitney Test. Results: The results showed there were significant differences in the positive area of MMP-2 and MMP-2 color intensity (p < 0.05 between groups. Conclusion: ATRA dose of 20 mg/kg is the most effective dose in inhibiting the expression of MMP-2 in mice models of periodontitis when compared with the dose on other groups.

  11. EVALUATION OF LINERBOARD PROPERTIES FROM MALAYSIAN CULTIVATED KENAF SODA-ANTHRAQUINONE PULPS VERSUS COMMERCIAL PULPS

    Directory of Open Access Journals (Sweden)

    Ahmad Azizi Mossello

    2010-06-01

    Full Text Available Malaysian cultivated kenaf has been identified as a suitable raw material for linerboard production. This study examines the soda-antraquinone (soda-AQ pulp of kenaf fibers versus old corrugated container (OCC and unbleached softwood kraft pulps as the main sources for linerboard production. The results showed significant differences among the pulp properties. The unbleached kraft pulp with very high freeness required high beating to reach an optimized freeness and produced paper with the highest strength properties, except for tear resistance. The OCC gave paper with the lowest strength properties. In the case of kenaf fractions, bast pulp with high freeness needed less beating than softwood and produced paper with high tear resistance. Core fiber, which had the lowest freeness and highest drainage time, led to paper with high strength but very low tear resistance. Kenaf whole stem pulp showed intermediate properties between core and bast and close to those of unbleached softwood pulp, but with very lower beating requirement. Finally, kenaf whole stem, due to its strength properties, moderate separation cost, and simple pulping process, was judged to be more suitable for commercialization for linerboard production in Malaysia.

  12. Pulp necrosis following luxated injury to teeth in a patient with uncontrolled type II diabetes mellitus: a case report

    Directory of Open Access Journals (Sweden)

    Haneol Shin,

    2012-02-01

    Full Text Available Patients with diabetes mellitus show delayed wound healing and increased susceptibility to infection. Therefore, the effects of diabetes on pulpal and periodontal healing should be taken into consideration when treating diabetic dental traumatized patients. This case presents the treatment for dental traumatized 20 yr old female with uncontrolled type II diabetes. The traumatized upper central incisors had showed pulpal healing in early days. However, 7 mon after the trauma, the teeth had been diagnosed with pulp necrosis with apical abscess. Eventually, non surgical root canal treatment on the teeth had been performed.

  13. Microbiological characteristics of subgingival microbiota in adult periodontitis, localized juvenile periodontitis and rapidly progressive periodontitis subjects.

    Science.gov (United States)

    Nonnenmacher, C; Mutters, R; de Jacoby, L F

    2001-04-01

    To describe the prevalence of the cultivable subgingival microbiota in periodontal diseases and to draw attention to the polymicrobial nature of periodontic infections. The study population consisted of 95 patients, 51 females and 44 males, aged 14-62 years. Twenty-nine patients exhibited adult periodontitis (AP), six localized juvenile periodontitis (LJP), and 60 rapidly progressive periodontitis (RPP). Two to four pooled bacterial samples were obtained from each patient. Samples were collected with sterile paper points from the deepest periodontal pockets. The samples were cultured under anaerobic and microaerophilic conditions using selective and non-selective media. Isolates were characterized to species level by conventional biochemical tests and by a commercial rapid test system. Prevotella intermedia and Capnocytophaga spp. were the most frequently detected microorganisms in all diagnostic groups. Porphyromonas gingivalis and Peptostreptococcus micros were found more frequently in AP and RPP patients, while Actinobacillus actinomycetemcomitans and Eikenella corrodens were associated with AP, LJP and RPP patients. The other bacterial species, including Actinomyces spp., Streptococcus spp. and Eubacterium spp., were detected at different levels in the three disease groups. The data show the complexity of the subgingival microbiota associated with different periodontal disease groups, indicating that the detection frequency and levels of recovery of some periodontal pathogens are different in teeth affected by different forms of periodontal disease.

  14. Effects of Soda-Anthraquinone Pulping Variables on the Durian Rind Pulp and Paper Characteristics: A Preliminary Test

    Science.gov (United States)

    Rizal Masrol, Shaiful; Irwan Ibrahim, Mohd Halim; Adnan, Sharmiza; Rahmad Talib, Mohd; Sian, Lau Lee

    2017-08-01

    Good combination of pulping variables is required to obtain the quality pulp and paper characteristics. Thus, in this preliminary work, naturally dried durian rind were pulped under Soda-Anthraquinone (Soda-AQ) pulping process with 18% to 22% alkali charge, 0% to 0.1% Anthraquinone (AQ) charge, 90 minutes to 150 minutes of cooking time and 150°C to 170°C to investigate the effect of pulping variables on the characteristics of the pulp and paper. Pulping condition with 0% of AQ charge was also conducted for comparison. Results indicated that the best screen yield percentage, reject yield percentage, freeness, drainage time, tear index, number of folds and optical properties were shown by the pulp produced with combination of the highest active alkali (22%), AQ charge (0.1%), cooking time (150 minutes) and cooking temperature (170°C) except apparent density, tensile index and burst index. This preliminary result shows that the optimum quality of durian rind pulp as a potential papermaking raw material pulp could be produced by selecting the good combination of pulping variables which influences the pulp and paper characteristics.

  15. Definition of aggressive periodontitis in periodontal research. A systematic review

    DEFF Research Database (Denmark)

    Ramírez, Valeria; Hach, Maria; López, Rodrigo

    2018-01-01

    . Consequently, considerable variation in the understanding of aggressive periodontitis can be anticipated. AIM: To systematically asses, the definitions of aggressive periodontitis reported in original periodontal research. METHODS: A systematic review of original research on aggressive periodontitis published.......7% of the publications no information is provided as to how the cases were defined. Many combinations of criteria for case definition were found. CONCLUSIONS: This study revealed significant heterogeneity in the understanding and use of the term aggressive periodontitis in original research and poor documentation...

  16. Characterization of Coronal Pulp Cells and Radicular Pulp Cells in Human Teeth.

    Science.gov (United States)

    Honda, Masaki; Sato, Momoko; Toriumi, Taku

    2017-09-01

    Dental pulp has garnered much attention as an easily accessible postnatal tissue source of high-quality mesenchymal stem cells (MSCs). Since the discovery of dental pulp stem cells (DPSCs) in permanent third molars, stem cells from human exfoliated deciduous teeth and from supernumerary teeth (mesiodentes) have been identified as a population distinct from DPSCs. Dental pulp is divided into 2 parts based on the developing stage: the coronal pulp and the radicular pulp. Root formation begins after the crown part is completed. We performed a sequential study to examine the differences between the characteristics of coronal pulp cells (CPCs) and radicular pulp cells (RPCs) from permanent teeth, mesiodentes, and deciduous teeth. Interestingly, although we have not obtained any data on the difference between CPCs and RPCs in permanent teeth, there are some differences between the characteristics of CPCs and RPCs from mesiodentes and deciduous teeth. The MSC characteristics differed between the RPCs and CPCs, and the reprogramming efficiency for the generation of induced pluripotent stem cells was greater in RPCs than in CPCs from deciduous teeth. The proportion of CD105 + cells in CPCs versus that in RPCs varied in mesiodentes but not in permanent teeth. The results indicate that the proportion of CD105 + cells is an effective means of characterizing dental pulp cells in mesiodentes. Taken together, the stem cells in deciduous and supernumerary teeth share many characteristics, such as a high proliferation rate and an immunophenotype similar to that of DPSCs. Thus, mesiodentes accidentally encountered on radiographs by the general dental practitioner might be useful for stem cell therapy. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Mesenchymal Stem Cells of Dental Origin for Inducing Tissue Regeneration in Periodontitis: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Beatriz Hernández-Monjaraz

    2018-03-01

    Full Text Available Periodontitis is a chronic disease that begins with a period of inflammation of the supporting tissues of the teeth table and then progresses, destroying the tissues until loss of the teeth occurs. The restoration of the damaged dental support apparatus is an extremely complex process due to the regeneration of the cementum, the periodontal ligament, and the alveolar bone. Conventional treatment relies on synthetic materials that fill defects and replace lost dental tissue, but these approaches are not substitutes for a real regeneration of tissue. To address this, there are several approaches to tissue engineering for regenerative dentistry, among them, the use of stem cells. Mesenchymal stem cells (MSC can be obtained from various sources of adult tissues, such as bone marrow, adipose tissue, skin, and tissues of the orofacial area. MSC of dental origin, such as those found in the bone marrow, have immunosuppressive and immunotolerant properties, multipotency, high proliferation rates, and the capacity for tissue repair. However, they are poorly used as sources of tissue for therapeutic purposes. Their accessibility makes them an attractive source of mesenchymal stem cells, so this review describes the field of dental stem cell research and proposes a potential mechanism involved in periodontal tissue regeneration induced by dental MSC.

  18. Novel chitosan/collagen scaffold containing transforming growth factor-β1 DNA for periodontal tissue engineering

    International Nuclear Information System (INIS)

    Zhang Yufeng; Cheng Xiangrong; Wang Jiawei; Wang Yining; Shi Bin; Huang Cui; Yang Xuechao; Liu Tongjun

    2006-01-01

    The current rapid progression in tissue engineering and local gene delivery system has enhanced our applications to periodontal tissue engineering. In this study, porous chitosan/collagen scaffolds were prepared through a freeze-drying process, and loaded with plasmid and adenoviral vector encoding human transforming growth factor-β1 (TGF-β1). These scaffolds were evaluated in vitro by analysis of microscopic structure, porosity, and cytocompatibility. Human periodontal ligament cells (HPLCs) were seeded in this scaffold, and gene transfection could be traced by green fluorescent protein (GFP). The expression of type I and type III collagen was detected with RT-PCR, and then these scaffolds were implanted subcutaneously into athymic mice. Results indicated that the pore diameter of the gene-combined scaffolds was lower than that of pure chitosan/collagen scaffold. The scaffold containing Ad-TGF-β1 exhibited the highest proliferation rate, and the expression of type I and type III collagen up-regulated in Ad-TGF-β1 scaffold. After implanted in vivo, EGFP-transfected HPLCs not only proliferated but also recruited surrounding tissue to grow in the scaffold. This study demonstrated the potential of chitosan/collagen scaffold combined Ad-TGF-β1 as a good substrate candidate in periodontal tissue engineering

  19. Healthy Dental Pulp Oxygen Saturation Rates in Subjects with Homozygous Sickle Cell Anemia: A Cross-Sectional Study Nested in a Cohort.

    Science.gov (United States)

    Souza, Soraia de Fátima Carvalho; Thomaz, Erika Bárbara Abreu Fonseca; Costa, Cyrene Piazera Silva

    2017-12-01

    To compare the percentage of arterial oxygen saturation (SpO 2 ) in healthy teeth with confirmed pulp vitality between individuals with sickle cell anemia (HbSS) and normal hemoglobin A (HbAA). This is a cross-sectional study nested within a cohort. Samples (n = 2543) comprised teeth with intact crowns and pulp vitality confirmed by thermal sensitivity tests and no history of caries, periodontal disease, or dental trauma. A total of 728 teeth of 113 individuals with HbSS and 1815 teeth of 246 individuals with HbAA were evaluated. Data analysis was performed using the χ 2 and Mann-Whitney tests and Spearman correlation analysis (α = 0.05). The study groups were comparable in terms of age, race, and sex (P > .05). Subjects with HbSS exhibited lower median SpO 2 levels in the body and upper teeth, excluding canines, than subjects with HbAA (P  .05). Compared with individuals with HbAA, those with HbSS exhibited lower SpO 2 in maxillary teeth with confirmed pulp vitality, except in the canines. There was no correlation between SpO 2 levels of the body and dental pulp in individuals with HbSS or HbAA. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Periodontal abscess during supportive periodontal therapy: a review of the literature.

    Science.gov (United States)

    Silva, Geraldo L M; Soares, Rodrigo V; Zenóbio, Elton G

    2008-09-01

    The aim of this review is to present the current status of the occurrence and management of a periodontal abscess during supportive periodontal therapy (SPT). A periodontal abscess depicts typical features and has been described in patients under SPT in clinical trials. Common periodontal pathogens have been observed in this lesion and some etiologic factors may be responsible for its recurrence. This condition can be isolated or associated with factors that can change the prognosis of affected teeth. Although it has been frequently noticed in untreated periodontitis, the periodontal abscess can also occur in patients under SPT and has been regarded as one of the possible complications of SPT. Patients with a high susceptibility to periodontal disease lost more teeth than those with a healthy periodontium. Early diagnosis and appropriate intervention for periodontal abscesses in patients under SPT are extremely important for the management of the periodontal abscess since this condition can lead to loss of the involved tooth. A single case of a tooth diagnosed with periodontal abscess that responds favorably to adequate treatment does not seem to affect its longevity. An accurate diagnosis and adequate treatment can preserve the longevity of affected teeth.

  1. In vitro analysis of human periodontal microvascular endothelial cells.

    Science.gov (United States)

    Tsubokawa, Mizuki; Sato, Soh

    2014-08-01

    Endothelial cells (ECs) participate in key aspects of vascular biology, such as maintenance of capillary permeability, initiation of coagulation, and regulation of inflammation. According to previous reports, ECs have revealed highly specific characteristics depending on the organs and tissues. However, some reports have described the characteristics of the capillaries formed by human periodontal ECs. Therefore, the aim of the present study is to examine the functional characteristics of the periodontal microvascular ECs in vitro. Human periodontal ligament-endothelial cells (HPDL-ECs) and human gingiva-endothelial cells (HG-ECs) were isolated by immunoprecipitation with magnetic beads conjugated to a monoclonal anti-CD31 antibody. The isolated HPDL-ECs and HG-ECs were characterized to definitively demonstrate that these cell cultures represented pure ECs. Human umbilical-vein ECs and human dermal microvascular ECs were used for comparison. These cells were compared according to the proliferation potential, the formation of capillary-like tubes, the transendothelial electric resistance (TEER), and the expression of tight junction proteins. HPDL-ECs and HG-ECs with characteristic cobblestone monolayer morphology were obtained, as determined by light microscopy at confluence. Furthermore, the HPDL-ECs and HG-ECs expressed the EC markers platelet endothelial cell adhesion molecule-1 (also known as CD31), von Willebrand factor, and Ulex europaeus agglutinin 1, and the cells stained strongly positive for CD31 and CD309. In addition, the HPDL-ECs and HG-ECs were observed to form capillary-like tubes, and they demonstrated uptake of acetylated low-density lipoprotein. Functional analyses of the HPDL-ECs and HG-ECs showed that, compared to the control cells, tube formation persisted for only a brief period of time, and TEER was substantially reduced at confluence. Furthermore, the cells exhibited delocalization of zonula occludens-1 and occludin at cell-cell contact sites

  2. EVALUATION OF LINERBOARD PROPERTIES FROM MALAYSIAN CULTIVATED KENAF SODA-ANTHRAQUINONE PULPS VERSUS COMMERCIAL PULPS

    OpenAIRE

    Ahmad Azizi Mossello; Jalaluddin Harun; Rushdan Ibrahim; Hossien Resalati; Seyed Rashid Fallah Shamsi; Paridah Md Tahir; Mohd Nor Mohad Yusoff

    2010-01-01

    Malaysian cultivated kenaf has been identified as a suitable raw material for linerboard production. This study examines the soda-antraquinone (soda-AQ) pulp of kenaf fibers versus old corrugated container (OCC) and unbleached softwood kraft pulps as the main sources for linerboard production. The results showed significant differences among the pulp properties. The unbleached kraft pulp with very high freeness required high beating to reach an optimized freeness and produced paper with the h...

  3. Development of Tissue-Engineered Ligaments: Elastin Promotes Regeneration of the Rabbit Medial Collateral Ligament.

    Science.gov (United States)

    Hirukawa, Masaki; Katayama, Shingo; Sato, Tatsuya; Yamada, Masayoshi; Kageyama, Satoshi; Unno, Hironori; Suzuki, Yoshiaki; Miura, Yoshihiro; Shiratsuchi, Eri; Hasegawa, Masahiro; Miyamoto, Keiichi; Horiuchi, Takashi

    2017-12-21

    When ligaments are injured, reconstructive surgery is sometimes required to restore function. Methods of reconstructive surgery include transplantation of an artificial ligament and autotransplantation of a tendon. However, these methods have limitations related to the strength of the bone-ligament insertion and biocompatibility of the transplanted tissue after surgery. Therefore, it is necessary to develop new reconstruction methods and pursue the development of artificial ligaments. Elastin is a major component of elastic fibers and ligaments. However, the role of elastin in ligament regeneration has not been described. Here, we developed a rabbit model of a medial collateral ligament (MCL) rupture and treated animal knees with exogenous elastin [100 µg/(0.5 mL·week)] for 6 or 12 weeks. Elastin treatment increased gene expression and protein content of collagen and elastin (gene expression, 6-fold and 42-fold, respectively; protein content, 1.6-fold and 1.9-fold, respectively), and also increased the elastic modulus of MCL increased with elastin treatment (2-fold) compared with the controls. Our data suggest that elastin is involved in the regeneration of damaged ligaments. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. Periodontal Disease Part IV: Periodontal Infections

    OpenAIRE

    Turnbull, Robert S.

    1988-01-01

    In Part IV of this article, the author describes two periodontal infections, acute necrotizing ulcerative gingivitis (trench mouth) and periodontal abscess, both acute painful conditions for which patients may seek advice from their family physician rather than their dentist.

  5. Optimization of pulping conditions of abaca. An alternative raw material for producing cellulose pulp.

    Science.gov (United States)

    Jiménez, L; Ramos, E; Rodríguez, A; De la Torre, M J; Ferrer, J L

    2005-06-01

    The influence of temperature (150-170 degrees C), pulping time (15-45 min) and soda concentration (5-10%) in the pulping of abaca on the yield, kappa, viscosity, breaking length, stretch and tear index of pulp and paper sheets, was studied. Using a factorial design to identify the optimum operating conditions, equations relating the dependent variables to the operational variables of the pulping process were derived that reproduced the former with errors lower than 25%. Using a high temperature, and a medium time and soda concentration, led to pulp that was difficult to bleach (kappa 28.34) but provided acceptable strength-related properties (breaking length 4728 m; stretch 4.76%; tear index 18.25 mN m2/g), with good yield (77.33%) and potential savings on capital equipment costs. Obtaining pulp amenable to bleaching would entail using more drastic conditions than those employed in this work.

  6. Macroscopic and microscopic analysis of the thumb carpometacarpal ligaments: a cadaveric study of ligament anatomy and histology.

    Science.gov (United States)

    Ladd, Amy L; Lee, Julia; Hagert, Elisabet

    2012-08-15

    Stability and mobility represent the paradoxical demands of the human thumb carpometacarpal joint, yet the structural origin of each functional demand is poorly defined. As many as sixteen and as few as four ligaments have been described as primary stabilizers, but controversy exists as to which ligaments are most important. We hypothesized that a comparative macroscopic and microscopic analysis of the ligaments of the thumb carpometacarpal joint would further define their role in joint stability. Thirty cadaveric hands (ten fresh-frozen and twenty embalmed) from nineteen cadavers (eight female and eleven male; average age at the time of death, seventy-six years) were dissected, and the supporting ligaments of the thumb carpometacarpal joint were identified. Ligament width, length, and thickness were recorded for morphometric analysis and were compared with use of the Student t test. The dorsal and volar ligaments were excised from the fresh-frozen specimens and were stained with use of a triple-staining immunofluorescent technique and underwent semiquantitative analysis of sensory innervation; half of these specimens were additionally analyzed for histomorphometric data. Mixed-effects linear regression was used to estimate differences between ligaments. Seven principal ligaments of the thumb carpometacarpal joint were identified: three dorsal deltoid-shaped ligaments (dorsal radial, dorsal central, posterior oblique), two volar ligaments (anterior oblique and ulnar collateral), and two ulnar ligaments (dorsal trapeziometacarpal and intermetacarpal). The dorsal ligaments were significantly thicker (p histologic appearance of capsular tissue with low cellularity. The dorsal deltoid ligament complex is uniformly stout and robust; this ligament complex is the thickest morphometrically, has the highest cellularity histologically, and shows the greatest degree of sensory nerve endings. The hypocellular anterior oblique ligament is thin, is variable in its location, and

  7. Potential of hot water extraction of birch wood to produce high-purity dissolving pulp after alkaline pulping.

    Science.gov (United States)

    Borrega, Marc; Tolonen, Lasse K; Bardot, Fanny; Testova, Lidia; Sixta, Herbert

    2013-05-01

    The potential of hot water extraction of birch wood to produce highly purified dissolving pulp in a subsequent soda-anthraquinone pulping process was evaluated. After intermediate extraction intensities, pulps with low xylan content (3-5%) and high cellulose yield were successfully produced. Increasing extraction intensity further decreased the xylan content in pulp. However, below a xylan content of 3%, the cellulose yield dramatically decreased. This is believed to be due to cleavage of glycosidic bonds in cellulose during severe hot water extractions, followed by peeling reactions during alkaline pulping. Addition of sodium borohydride as well as increased anthraquinone concentration in the pulping liquor increased the cellulose yield, but had no clear effects on pulp purity and viscosity. The low intrinsic viscosity of pulps produced after severe extraction intensities and soda-anthraquinone pulping corresponded to the viscosity at the leveling-off degree of polymerization, suggesting that nearly all amorphous cellulose had been degraded. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Effects of platelet rich plasma (PRP) on human gingival fibroblast, osteoblast and periodontal ligament cell behaviour.

    Science.gov (United States)

    Kobayashi, Eizaburo; Fujioka-Kobayashi, Masako; Sculean, Anton; Chappuis, Vivianne; Buser, Daniel; Schaller, Benoit; Dőri, Ferenc; Miron, Richard J

    2017-06-02

    The use of platelet rich plasma (PRP, GLO) has been used as an adjunct to various regenerative dental procedures. The aim of the present study was to characterize the influence of PRP on human gingival fibroblasts, periodontal ligament (PDL) cells and osteoblast cell behavior in vitro. Human gingival fibroblasts, PDL cells and osteoblasts were cultured with conditioned media from PRP and investigated for cell migration, proliferation and collagen1 (COL1) immunostaining. Furthermore, gingival fibroblasts were tested for genes encoding TGF-β, PDGF and COL1a whereas PDL cells and osteoblasts were additionally tested for alkaline phosphatase (ALP) activity, alizarin red staining and mRNA levels of osteoblast differentiation markers including Runx2, COL1a2, ALP and osteocalcin (OCN). It was first found that PRP significantly increased cell migration of all cells up to 4 fold. Furthermore, PRP increased cell proliferation at 3 and 5 days of gingival fibroblasts, and at 3 days for PDL cells, whereas no effect was observed on osteoblasts. Gingival fibroblasts cultured with PRP increased TGF-β, PDGF-B and COL1 mRNA levels at 7 days and further increased over 3-fold COL1 staining at 14 days. PDL cells cultured with PRP increased Runx2 mRNA levels but significantly down-regulated OCN mRNA levels at 3 days. No differences in COL1 staining or ALP staining were observed in PDL cells. Furthermore, PRP decreased mineralization of PDL cells at 14 days post seeding as assessed by alizarin red staining. In osteoblasts, PRP increased COL1 staining at 14 days, increased COL1 and ALP at 3 days, as well as increased ALP staining at 14 days. No significant differences were observed for alizarin red staining of osteoblasts following culture with PRP. The results demonstrate that PRP promoted gingival fibroblast migration, proliferation and mRNA expression of pro-wound healing molecules. While PRP induced PDL cells and osteoblast migration and proliferation, it tended to have

  9. Enzymatic pulp upgrade for producing high-value cellulose out of a Kraft paper pulp.

    Science.gov (United States)

    Hutterer, Christian; Kliba, Gerhard; Punz, Manuel; Fackler, Karin; Potthast, Antje

    2017-07-01

    The high-yield separation of polymeric parts from wood-derived lignocellulosic material is indispensable in biorefinery concepts. For the separation of cellulose and xylan from hardwood paper pulps to obtain pulps of high cellulose contents, simple alkaline extractions were found to be the most suitable technology, although having certain limitations. These are embodied by residual alkali resistant xylan incorporated in the pulp matrix. Further purification in order to produce pure cellulose with a low uniformity could be achieved selectively degrading residual xylan and depolymerizing the cellulose macromolecules by xylanase and cellulase. The latter help to adjust cellulose chain lengths for certain dissolving pulp grades while reducing the demand for ozone in subsequent TCF bleaching. Experiments applying different commercially available enzyme preparations revealed the dependency of xylanase performance on the residual xylan content in pulps being stimulated by additional cellulase usage. The action of the latter strongly depends on the cellulose allomorphy confirming the impact of the pulp morphology. Hence, the combined application of both types of enzymes offers a high potential for upgrading pulps in order to produce a pure and high-value cellulose product. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Graft fixation in cruciate ligament reconstruction.

    Science.gov (United States)

    Brand, J; Weiler, A; Caborn, D N; Brown, C H; Johnson, D L

    2000-01-01

    Cruciate ligament reconstruction has progressed dramatically in the last 20 years. Anatomic placement of ligament substitutes has fostered rehabilitation efforts that stress immediate and full range of motion, immediate weightbearing, neuromuscular strength and coordination, and early return to athletic competition (3 months). This has placed extreme importance on secure graft fixation at the time of ligament reconstruction. Current ligament substitutes require a bony or soft tissue component to be fixed within a bone tunnel or on the periosteum at a distance from the normal ligament attachment site. Fixation devices have progressed from metal to biodegradable and from far to near-normal native ligament attachment sites. Ideally, the biomechanical properties of the entire graft construct would approach those of the native ligament and facilitate biologic incorporation of the graft. Fixation should be done at the normal anatomic attachment site of the native ligament (aperture fixation) and, over time, allow the biologic return of the histologic transition zone from ligament to fibrocartilage, to calcified fibrocartilage, to bone. The purpose of this article is to review current fixation devices and techniques in cruciate ligament surgery.

  11. Regenerative potential and anti-bacterial activity of tetracycline loaded apatitic nanocarriers for the treatment of periodontitis

    International Nuclear Information System (INIS)

    Madhumathi, K; Sampath Kumar, T S

    2014-01-01

    Current treatment of periodontal infections includes mechanical debridement, administration of antibiotics and bone grafting. Oral administration of antibiotics results in undesirable side effects, while current modes of local administration are affected by problems concerning allergic response to the polymeric carrier agents. We have developed an osteoconductive drug delivery system composed of apatitic nanocarriers capable of providing sustained delivery of drugs in the periodontium. Calcium deficient hydroxyapatite (CDHA) nanocarriers of different Ca/P ratios were synthesized and characterized using the x-ray diffraction method, transmission electron microscopy, inductively coupled plasma atomic emission spectroscopy, Fourier transform infrared spectroscopy and the BET gas isotherm method. Loading and release studies performed with tetracycline showed a sustained release of up to 88% in phosphate buffered saline over a period of five days. Antibacterial activity studies showed that the tetracycline loaded CDHA (TC-CDHA) nanocarriers were effective against S. aureus and E. coli bacteria. The biocompatibility of the TC-CDHA nanocarriers was demonstrated using an alamar blue assay and further characterized by cell uptake studies. Interestingly, cell uptake of drug loaded CDHA also increased the cellular proliferation of human periodontal ligament fibroblast cells. Hence, it can be concluded that the CDHA nanocarriers are ideal drug delivery agents and have bone regenerative potential for local periodontal applications. (paper)

  12. Low Temperature Soda-Oxygen Pulping of Bagasse.

    Science.gov (United States)

    Yue, Fengxia; Chen, Ke-Li; Lu, Fachuang

    2016-01-13

    Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today's pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm³/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115-125 °C), this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.

  13. Low Temperature Soda-Oxygen Pulping of Bagasse

    Directory of Open Access Journals (Sweden)

    Fengxia Yue

    2016-01-01

    Full Text Available Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today’s pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm3/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115–125 °C, this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.

  14. Extrinsic wrist ligaments: prevalence of injury by magnetic resonance imaging and association with intrinsic ligament tears.

    Science.gov (United States)

    Taneja, Atul K; Bredella, Miriam A; Chang, Connie Y; Joseph Simeone, F; Kattapuram, Susan V; Torriani, Martin

    2013-01-01

    The objective of this study was to determine the prevalence of extrinsic wrist ligament injury by magnetic resonance imaging and its association with intrinsic ligament tears. We reviewed conventional magnetic resonance images performed over a 5-year period from adult patients in the setting of wrist trauma. Two musculoskeletal radiologists examined the integrity of wrist ligaments and presence of bone abnormalities. In a cohort of 75 subjects, extrinsic ligament injury was present in 75%, with radiolunotriquetral being most frequently affected (45%). Intrinsic ligament injury was present in 60%. Almost half of subjects had combined intrinsic and extrinsic ligament injury. Bone abnormalities were seen in 69%. The rate of extrinsic injury was higher in subjects with bone injury (P = 0.008). There is high prevalence of extrinsic ligament injury in the setting of wrist trauma, especially in the presence of bone abnormalities, with combined injury of intrinsic and extrinsic ligaments in about half of cases.

  15. Pro-inflammatory cytokine levels in human apical periodontitis: Correlation with clinical and histological findings.

    Science.gov (United States)

    Jakovljevic, Aleksandar; Knezevic, Aleksandra; Karalic, Danijela; Soldatovic, Ivan; Popovic, Branka; Milasin, Jelena; Andric, Miroslav

    2015-08-01

    This study aimed to compare the levels of tumour necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) between apical periodontitis lesions with different clinical and histological features. Based on clinical data and history of disease, 100 human apical periodontitis lesions were categorised as either asymptomatic or symptomatic lesions. According to histological examination, lesions were divided into periapical granulomas and radicular cysts. Pulp tissues of 25 impacted wisdom teeth were used as controls. Homogenised tissue samples were centrifuged and supernatants were used for the determination of cytokine levels by enzyme-linked immunosorbent assay. Significantly higher levels of IL-1β and IL-6 were found in symptomatic lesions compared with asymptomatic lesions and control tissues (P < 0.001, P < 0.001, respectively). The concentration of IL-1β was significantly higher in radicular cysts compared with periapical granulomas (P = 0.003). Symptomatic lesions, as judged by high local production of IL-1β and IL-6, represent an immunologically active stage of the disease. © 2014 Australian Society of Endodontology.

  16. Arundo donax L. reed: new perspectives for pulping and bleaching. Part 4. Peroxide bleaching of organosolv pulps.

    Science.gov (United States)

    Shatalov, A A; Pereira, H

    2005-05-01

    A comparative study on TCF (totally chlorine-free) bleachability of organosolv pulps from the annual fibre crop Arundo donax L. (giant reed) was carried out using a simple three-stage peroxide bleaching sequence without oxygen pre-bleaching. ASAM (alkali-sulfite-anthraquinone-methanol), Organocell (alkali-anthraquinone-methanol) and ethanol-soda organosolv pulps were bleached and compared with kraft pulp, as a reference. The final brightness of 76-78% ISO was attained for all tested pulps. The chemical charge required to reach this level of brightness varied for different pulps (despite the equal initial content of the residual lignin) and directly related to starting brightness values. No direct correlation between brightness improvement and lignin removal during bleaching was found, indicating the influence of the specific pulp properties introduced by pulping process on bleaching chemistry. The general higher bleaching response of organosolv pulps from A. donax was noted in comparison with kraft.

  17. Periodontal and endodontic pathology delays extraction socket healing in a canine model

    Science.gov (United States)

    2017-01-01

    Purpose The aim of the present exploratory study was to evaluate extraction socket healing at sites with a history of periodontal and endodontic pathology. Methods The mandibular 4th premolar teeth in 5 adult beagle dogs served as experimental units. Periodontal and endodontic lesions were induced in 1 premolar site in each animal using wire ligatures and pulpal exposure over 3 months (diseased sites). The contralateral premolar sites served as healthy controls. The mandibular 4th premolar teeth were then extracted with minimal trauma, followed by careful wound debridement. The animals were sacrificed at days 1, 7, 30, 60, and 90 post-extraction for analysis, and the healing patterns at the healthy and diseased extraction sites were compared using radiography, scanning electron microscopy, histology, and histometry. Results During the first 7 days of healing, a significant presence of inflammatory granulation tissue was noted at the diseased sites (day 1), along with a slightly accelerated rate of fibrin clot resolution on day 7. On day 30, the diseased extraction sites showed a greater percentage of persistent fibrous connective tissue, and an absence of bone marrow formation. In contrast, healthy sites showed initial signs of bone marrow formation on day 30, and subsequently a significantly greater proportion of mature bone marrow formation on both days 60 and 90. Radiographs exhibited sclerotic changes adjoining apical endodontic lesions, with scanning electron microscopy showing collapsed Volkmann canals protruding from these regions in the diseased sites. Furthermore, periodontal ligament fibers exhibited a parallel orientation to the alveolar walls of the diseased sites, in contrast to a perpendicular arrangement in the healthy sites. Conclusions Within the limitations of this study, it appears that a history of periodontal and endodontic pathology may critically affect bone formation and maturation, leading to delayed and compromised extraction socket

  18. An ex vivo evaluation of the efficacy of andrographolide in modulating differential expression of transcription factors and target genes in periodontal cells and its potential role in treating periodontal diseases.

    Science.gov (United States)

    Ambili R; Janam, Prasanthila; Saneesh Babu, P S; Prasad, Manu; Vinod, D; Anil Kumar, P R; Kumary, T V; Asha Nair, S; Radhakrishna Pillai, M

    2017-01-20

    Andrographolide is a herbal extract traditionally used in South Asian countries for treating inflammatory diseases. To evaluate the efficacy of andrographolide in management of periodontal disease which is a highly prevalent oral disease. Periodontal ligament fibroblasts (PDLF) were cultured from healthy and diseased periodontium using explant culture methods. The safe dose of AG was determined using MTT assay. LPS (lipopolysaccharide) of the most important periodontopathogen, P gingivalis was used to activate NF-κB and STAT3 in PDLF. The efficacy of AG in inhibiting NF-κB and STAT3 was analyzed using immunofluorescence. Down regulation of expression of target genes of these transcription factors related to inflammation and bone resorption were analyzed using real time PCR. AG up to the concentration of 25μM was found to be safe as determined by MTT assay. Statistically significant activation of NF-κB and STAT3 in cultured PDLF was observed in diseased group compared to healthy controls before and after LPS challenge. 5μM AG pretreatment significantly inhibited activation of NF-κB and STAT3 and down regulated expression of inflammatory and bone resorptive genes in cultured PDLF. The findings of the present study propose the adjunctive use of a novel herbal drug andrographolide as a promising host modulation agent for periodontal therapy by inhibiting NF-κB and STAT3 activation and inhibition of inflammation and bone resorption related genes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Reactive lesion of the gingiva - Report of a case Ambika c., Soheyl S ...

    African Journals Online (AJOL)

    Department of Oral Medicine and Radiology, Maharishi Markandeshwer College of Dental Sciences and. Research, Mullana 133203, Haryana. ABSTRACT. Objective: Peripheral ossifying .... origin from cells of the periodontal ligament has been suggested 1,2. The reasons for considering a periodontal ligament origin for ...

  20. REPLACEMENT OF SOFTWOOD KRAFT PULP WITH ECF-BLEACHED BAMBOO KRAFT PULP IN FINE PAPER

    Directory of Open Access Journals (Sweden)

    Guanglei Zhao

    2010-06-01

    Full Text Available Non-wood fibers such as bamboo and wheat straw have been playing important roles in the pulp and paper industry in China. In this study an ECF-bleached bamboo kraft pulp was compared with a bleached softwood kraft pulp (NBSK as the reinforcement pulp in fine paper production. Areas that were examined include the refining of pure fibers, influence of bamboo on dewatering, retention, and sizing. The influence of bamboo kraft pulp as a part of a furnish replacing NBSK was compared as well. Results show that fiber shortening was more prominent with bamboo when refined. This resulted in a higher amount of fines, and addition wet-end chemicals may be required to compensate. Handsheets with bamboo as a reinforcement fiber showed similar mechanical and optical properties to handsheets containing NBSK.

  1. Will mineral trioxide aggregate replace calcium hydroxide in treating pulpal and periodontal healing complications subsequent to dental trauma?

    DEFF Research Database (Denmark)

    Bakland, Leif K; Andreasen, Jens O

    2012-01-01

    Mineral trioxide aggregate (MTA) has over the last two decades begun to take the place of calcium hydroxide (CH) in the treatment of a variety of pulpal and periodontal healing complications following dental trauma. These conditions include teeth with: (i) exposed pulps, (ii) immature roots......, the quality of such induced hard tissues, and finally the dentin weakening effect of CH, which in some instances lead to cervical root fractures in immature teeth. MTA appears, from a relatively few clinical studies, to overcome these shortcomings of CH. The lack of long-term clinical studies, however, may...

  2. Ankle ligament injuries

    Directory of Open Access Journals (Sweden)

    Per A.F.H. Renström

    1998-06-01

    Full Text Available Acute ankle ligament sprains are common injuries. The majority of these occur during athletic participation in the 15 to 35 year age range. Despite the frequency of the injury, diagnostic and treatment protocols have varied greatly. Lateral ligament complex injuries are by far the most common of the ankle sprains. Lateral ligament injuries typically occur during plantar flexion and inversion, which is the position of maximum stress on the anterotalofibular liagment (ATFL. For this reason, the ATFL is the most commonly torn ligament during an inversion injury. In more severe inversion injuries the calcaneofibular (CFL, posterotalofibular (PTFL and subtalar ligament can also be injured. Most acute lateral ankle ligament injuries recover quickly with nonoperative management. The treatment program, called "functional treatment," includes application of the RICE principle (rest, ice, compression, and elevation immediately after the injury, a short period of immobilization and protection with an elastic or inelastic tape or bandage, and early motion exercises followed by early weight bearing and neuromuscular ankle training. Proprioceptive training with a tilt board is commenced as soon as possible, usually after 3 to 4 weeks. The purpose is to improve the balance and neuromuscular control of the ankle. Sequelae after ankle ligament injuries are very common. As much as 10% to 30% of patients with a lateral ligament injury may have chronic symptoms. Symptoms usually include persistent synovitis or tendinitis, ankle stiffness, swelling, and pain, muscle weakness, and frequent giving-way. A well designed physical therapy program with peroneal strengthening and proprioceptive training, along with bracing and/or taping can alleviate instability problems in most patients. For cases of chronic instability that are refractory to bracing and external support, surgical treatment can be explored. If the chronic instability is associated with subtalar instability

  3. Enzymes improve ECF bleaching of pulp

    Directory of Open Access Journals (Sweden)

    Lachenal, D.

    2006-07-01

    Full Text Available The delignification efficiency of different laccase enzymes was examined on the eucalyptus Kraft pulp. The laccase enzyme from Trametes versicolor showing the highest delignification efficiency was selected and used in the elemental chlorine-free bleaching sequence for improving the pulp bleachability. An appreciable reduction in chlorine dioxide consumption was also obtained. Further reduction in chlorine dioxide consumption was obtained when the same laccase treated pulp was subjected to an acid treatment after the extraction stage followed by the DEPD sequence. Elemental-chlorine free bleaching was also performed using the xylanase-laccase treated pulp. Xylanase treatment was incorporated to the laccase mediator system in the elemental-chlorine free bleaching both sequentially and simultaneously. The bleaching sequence DEPD followed and in both the cases, the reduction in chlorine dioxide consumption was greater in comparison to the control. The chlorine dioxide consumption was reduced further when xylanase-laccase treated pulp was given an additional acid treatment. The final pulp properties of the treated pulps were comparable to the control pulp.

  4. Periodontal diseases and adverse pregnancy outcomes: Is there a role for vitamin D?

    Science.gov (United States)

    Uwitonze, Anne Marie; Uwambaye, Peace; Isyagi, Moses; Mumena, Chrispinus H; Hudder, Alice; Haq, Afrozul; Nessa, Kamrun; Razzaque, Mohammed S

    2018-01-16

    Studies have shown a relationship between maternal periodontal diseases (PDs) and premature delivery. PDs are commonly encountered oral diseases which cause progressive damage to the periodontal ligament and alveolar bones, leading to loss of teeth and oral disabilities. PDs also adversely affect general health by worsening of cardiovascular and metabolic diseases. Moreover, maternal PDs are thought to be related to increasing the frequency of preterm-birth with low birth weight (PBLBW) in new-borns. Prematurity and immaturity are the leading causes of prenatal and infant mortality and is a major public health problem around the world. Inflamed periodontal tissues generate significantly high levels of proinflammatory cytokines that may have systemic effects on the host mother and the fetus. In addition, the bacteria that cause PDs produce endotoxins which can harm the fetus. Furthermore, studies have shown that microorganisms causing PDs can get access to the bloodstream, invading uterine tissues, to induce PBLBW. Another likely mechanism that connects PDs with adverse pregnancy outcome is maternal vitamin D status. A role of inadequate vitamin D status in the genesis of PDs has been reported. Administration of vitamin D supplementation during pregnancy could reduce the risk of maternal infections and adverse pregnancy outcomes. As maternal PDs are significant risk factors for adverse pregnancy outcome, preventive antenatal care for pregnant women in collaboration with the obstetric and dental professions are required. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration.

    Science.gov (United States)

    Nakashima, Misako; Iohara, Koichiro; Sugiyama, Masahiko

    2009-01-01

    Dental caries is a common public health problem, causing early loss of dental pulp and resultant tooth loss. Dental pulp has important functions to sustain teeth providing nutrient and oxygen supply, innervation, reactionary/reparative dentin formation and immune response. Regeneration of pulp is an unmet need in endodontic therapy, and angiogenesis/vasculogenesis and neurogenesis are critical for pulp regeneration. Permanent and deciduous pulp tissue is easily available from teeth after extraction without ethical issues and has potential for clinical use. In this review, we introduce some stem cell subfractions, CD31(-)/CD146(-) SP cells and CD105(+) cells with high angiogenic and neurogenic potential, derived from human adult dental pulp tissue. Potential utility of these cells is addressed as a source of cells for treatment of cerebral and limb ischemia and pulp inflammation complete with angiogenesis and vasculogenesis.

  6. Eucalyptus kraft pulp production: Thermogravimetry monitoring

    International Nuclear Information System (INIS)

    Barneto, Agustin G.; Vila, Carlos; Ariza, Jose

    2011-01-01

    Highlights: → Thermogravimetric analysis can be used to monitor the pulping process in a pulp mill. → ECF bleaching process affects the crystalline cellulose volatilization. → The fibre size has an influence on composition and thermal behavior of pulp. - Abstract: Under oxidative environment the thermal degradation of lignocellulosic materials like wood or pulp is sensitive to slight composition changes. For this, in order to complement the chemical and X-ray diffraction results, thermogravimetric analyses (TGA) were used to monitor pulp production in a modern pulp mill. Runs were carried out on crude, oxygen delignified and bleached pulps from three eucalyptus woods from different species and geographical origins. Moreover, with the modeling of thermogravimetric data, it was possible to obtain an approximate composition of samples which includes crystalline and amorphous cellulose. TGA results show that pulping has an intensive effect on bulk lignin and hemicellulose, but it has limited influence on the removal of these substances when they are linked to cellulose microfibril. The stages of oxygen delignification and bleaching, based in chlorine dioxide and hydrogen peroxide, increase the crystalline cellulose volatilization rate. These changes are compatible with a more crystalline microfibril. The influence of the fibre size on pulp composition, crystallinity and thermal degradation behavior was observed.

  7. Periodontal disease, periodontal treatment and systemic nitric oxide in dogs.

    Science.gov (United States)

    Nemec, A; Verstraete, F J M; Jerin, A; Šentjurc, M; Kass, P H; Petelin, M; Pavlica, Z

    2013-06-01

    Thirty-two client-owned dogs treated for periodontal disease were divided in group 1 if no periodontitis, group 2 if ≤25%, and group 3 if >25% of the teeth present were affected with periodontitis. Blood was tested before and 2 weeks after periodontal therapy for nitrosyl hemoglobin (HbNO), plasma nitrite/nitrate (NOx) and 3-nitrotyrosine (NT) levels. No HbNO was detected in any of the animals tested. There was no significant difference in the NOx plasma levels within each group or across the groups before and after the treatment, but a noticeable increase in NOx plasma levels was observed in group 3 after the treatment. Plasma NT was detected in only one third of the animals. NO levels varied greatly across individual dogs. The data are suggestive of an overall increase in systemic NO response 2 weeks after periodontal treatment in dogs with advanced periodontal disease, but the response is greatly individually-dependent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Treatment of a Periodontic-Endodontic Lesion in a Patient with Aggressive Periodontitis.

    Science.gov (United States)

    Fahmy, Mina D; Luepke, Paul G; Ibrahim, Mohamed S; Guentsch, Arndt

    2016-01-01

    Case Description. This case report describes the successful management of a left mandibular first molar with a combined periodontic-endodontic lesion in a 35-year-old Caucasian woman with aggressive periodontitis using a concerted approach including endodontic treatment, periodontal therapy, and a periodontal regenerative procedure using an enamel matrix derivate. In spite of anticipated poor prognosis, the tooth lesion healed. This case report also discusses the rationale behind different treatment interventions. Practical Implication. Periodontic-endodontic lesions can be successfully treated if dental professionals follow a concerted treatment protocol that integrates endodontic and periodontic specialties. General dentists can be the gatekeepers in managing these cases.

  9. Treatment of a Periodontic-Endodontic Lesion in a Patient with Aggressive Periodontitis

    Directory of Open Access Journals (Sweden)

    Mina D. Fahmy

    2016-01-01

    Full Text Available Case Description. This case report describes the successful management of a left mandibular first molar with a combined periodontic-endodontic lesion in a 35-year-old Caucasian woman with aggressive periodontitis using a concerted approach including endodontic treatment, periodontal therapy, and a periodontal regenerative procedure using an enamel matrix derivate. In spite of anticipated poor prognosis, the tooth lesion healed. This case report also discusses the rationale behind different treatment interventions. Practical Implication. Periodontic-endodontic lesions can be successfully treated if dental professionals follow a concerted treatment protocol that integrates endodontic and periodontic specialties. General dentists can be the gatekeepers in managing these cases.

  10. Stress Distribution Evaluation of the Periodontal Ligament in the Maxillary Canine for Retraction by Different Alveolar Corticotomy Techniques: A Three-dimensional Finite Element Analysis.

    Science.gov (United States)

    Pacheco, Ariel Adriano Reyes; Saga, Armando Yukio; de Lima, Key Fonseca; Paese, Victor Nissen; Tanaka, Orlando M

    2016-01-01

    By using the finite element method (FEM), this study aimed to evaluate the effect of different corticotomy formats on the distribution and magnitude of stress on the periodontal ligament (PDL) during retraction of the maxillary canine. A geometric model of the left hemi-jaw was created from computed tomography scan images of a dry human skull and loads were administered during distalization movement of the canine. Three trials were performed: (1) without corticotomy, (2) box-shaped corticotomy and perforations in the cortical bone of the canine (CVC) and (3) CVC and circular-shaped corticotomy in the cortical bone of the edentulous space of the first premolar. There was no difference in stress distribution among the different corticotomy formats. Different corticotomy formats used to accelerate orthodontic tooth movement did not affect stress distribution in the PDL during canine retraction. From a mechanical perspective, the present study showed that the stress distribution on the PDL during canine retraction was similar in all the corticotomy formats. When using the Andrews T2 bracket, the PDL presented the highest levels of stress in the middle third of the PDL, suggesting that the force was near the center of resistance. Also, as bone weakening by corticotomies did not influence stress distribution, the surgical procedure could be simplified to a less aggressive one, focusing more on inflammatory cellular stimulation than on bone resistance. A simpler surgical act could also be performed by most orthodontists in their practices, enhancing postoperative response and reducing patient costs.

  11. [The clinical study of IgA nephropathy with severe chronic periodontitis and aggressive periodontitis].

    Science.gov (United States)

    Cao, Y L; Qiao, M; Xu, Z H; Zou, G M; Ma, L L; Li, W G; Xu, B H

    2016-01-05

    To explore the clinical characteristics of IgA nephropathy (IgAN) with severe chronic periodontitis and aggressive periodontitis. A total of 436 hospitalized patients who underwent renal needle biopsy in the department of nephrology of China-Japan Friendship Hospital from November 2013 to December 2014 were recruited in the study and blindly had periodontal examination. The patients were divided into IgAN group and non-IgAN group according to the renal pathology. The patients with IgAN were further categorized as non-periodontitis, chronic periodontitis and aggressive peridontitis group by Haas classification. The chronic periodontitis group was continually divided into mild, moderate and severe periodontitis group. The levels of interleukin (IL)-1β and IL-6 in gingival crevicular fluid were analyzed by enzyme-linked immunosorbent assays. The prevalence of periodontitis in the study was 88.3% (385/436). The prevalence of chronic periodontitis and aggressive periodontitis were higher in patients with IgAN than those with non-IgAN (Pchronic periodontitis was correlated with pathologic grading of IgAN (r=0.48, Pperiodontitis, those with severe chronic and aggressive periodontitis had more severe pathology, more frequent recurrent gross hematuria, higher levels of 24 h proteinuria, serum triglyceride and uric acid, higher periodontal probing depth and clinical attatchment level, as well as higer levels of IL-1β and IL-6, but had lower creatinine clearance rate (all Pchronic and aggressive periodontitis was higher in patients with IgAN. Chronic periodontitis is correlated with the onset and development of IgAN. Patients with IgAN have worse condition with the aggravation of periodontitis.

  12. Rupture of the meniscofibular ligament

    Directory of Open Access Journals (Sweden)

    Poyanli Oguz

    2010-05-01

    Full Text Available Abstract The meniscofibular ligament is an anatomically defined ligament of the knee in humans. However, there are no data regarding the prognosis following injury to this ligament. Our case was a 42-year-old man who presented at our clinic with pain of the lateral side of his left knee. MRI of his left knee revealed the rupture of the meniscofibular ligament. The mechanism of injury was consistent with anatomical and mechanical studies of the meniscofibular ligament. The patient was treated conservatively for 1 year, but his pain did not resolve completely. A case series of patients with the same injury is required to establish an effective treatment for this rare injury.

  13. Morphometric assessment of periodontal tissues in relation to periodontal disease in dogs.

    Science.gov (United States)

    Kyllar, Michal; Doskarova, Barbora; Paral, Vaclav

    2013-01-01

    Dimensions of periodontal tissues are thought to predispose to the development of periodontal disease in man and dogs. Several studies have suggested that thin gingiva correlates with an increased incidence of periodontal disease. In this study, we hypothesized that the dimensions of periodontal tissues will vary in different breeds of dogs and could possibly correlate with the incidence of periodontal disease. Forty-two jaws of dogs aged up to 5-years were examined post-mortem and gingival and alveolar bone thickness were measured using methods of transgingival probing and digital calipers, respectively. Dogs were divided into three groups based on their body weight. Group I (dogs compared with small and medium-sized breed dogs. Both gingival and alveolar bone dimensions may be predictors for severity of periodontal disease and influence clinical outcome in certain periodontal surgical procedures.

  14. Role of periodontal pathogenic bacteria in RANKL-mediated bone destruction in periodontal disease.

    Science.gov (United States)

    Kajiya, Mikihito; Giro, Gabriela; Taubman, Martin A; Han, Xiaozhe; Mayer, Marcia P A; Kawai, Toshihisa

    2010-11-08

    Accumulated lines of evidence suggest that hyperimmune responses to periodontal bacteria result in the destruction of periodontal connective tissue and alveolar bone. The etiological roles of periodontal bacteria in the onset and progression of periodontal disease (PD) are well documented. However, the mechanism underlying the engagement of periodontal bacteria in RANKL-mediated alveolar bone resorption remains unclear. Therefore, this review article addresses three critical subjects. First, we discuss earlier studies of immune intervention, ultimately leading to the identification of bacteria-reactive lymphocytes as the cellular source of osteoclast-induction factor lymphokine (now called RANKL) in the context of periodontal bone resorption. Next, we consider (1) the effects of periodontal bacteria on RANKL production from a variety of adaptive immune effector cells, as well as fibroblasts, in inflamed periodontal tissue and (2) the bifunctional roles (upregulation vs. downregulation) of LPS produced from periodontal bacteria in a RANKL-induced osteoclast-signal pathway. Future studies in these two areas could lead to new therapeutic approaches for the management of PD by down-modulating RANKL production and/or RANKL-mediated osteoclastogenesis in the context of host immune responses against periodontal pathogenic bacteria.

  15. Pregnancy and periodontal disease

    OpenAIRE

    Sağlam, Ebru; Saruhan, Nesrin; Çanakçı, Cenk Fatih

    2015-01-01

    Some maternal immunological changes due to pregnancy increases susceptibility to infections. Periodontal disease, the main cause is plaque, is a common disease which is seen multifactorial and varying severity. There are many clinical criteria for diagnosis of periodontal disease. Correlation between pregnancy and periodontal inflammation is known for many years. Periodontal disease affects pregnant’s systemic condition and also has negative effects on fetus. Periodontal disease increases the...

  16. Role of periodontal pathogenic bacteria in RANKL-mediated bone destruction in periodontal disease

    OpenAIRE

    Mikihito Kajiya; Gabriela Giro; Martin A. Taubman; Xiaozhe Han; Marcia P.A. Mayer; Toshihisa Kawai

    2010-01-01

    Accumulated lines of evidence suggest that hyperimmune responses to periodontal bacteria result in the destruction of periodontal connective tissue and alveolar bone. The etiological roles of periodontal bacteria in the onset and progression of periodontal disease (PD) are well documented. However, the mechanism underlying the engagement of periodontal bacteria in RANKL-mediated alveolar bone resorption remains unclear. Therefore, this review article addresses three critical subjects. First, ...

  17. PULP DEMAND IN THE INTERNATIONAL MARKET

    Directory of Open Access Journals (Sweden)

    Edmilson Santos Cruz

    2003-01-01

    Full Text Available This study aimed at analyzing the international pulp market, taking into account themain exporting countries and importing regions, with the objective of estimating, for each market, theown-price and cross-price elasticity in relation to the demand of the pulp, differentiated for country oforigin. The model considers that imports are differentiated by origin; therefore they are not perfect substitutes. The demand from Europe, North America and the Rest of the World for the pulp from theUnited States,Canada, Sweden, Finland, Portugal and Brazil was inelastic. The Asian demand for thissome pulp was elastic. Europe and the Rest of the World showed negative cross-price elasticity, i. e.,and the imported pulp from other countries are complementary products. North America and Asiashowed positive crow-price elasticity, i. e., they consider the pulp produced in other countries assubstitute products. The net effect of the variation on the price of pulp in a country h, over the amountof pulp that goes to the region i depends on the matching of values related to the elasticity ofsubstitution and the price elasticity of the total demand.

  18. Periodontal profile classes predict periodontal disease progression and tooth loss.

    Science.gov (United States)

    Morelli, Thiago; Moss, Kevin L; Preisser, John S; Beck, James D; Divaris, Kimon; Wu, Di; Offenbacher, Steven

    2018-02-01

    Current periodontal disease taxonomies have limited utility for predicting disease progression and tooth loss; in fact, tooth loss itself can undermine precise person-level periodontal disease classifications. To overcome this limitation, the current group recently introduced a novel patient stratification system using latent class analyses of clinical parameters, including patterns of missing teeth. This investigation sought to determine the clinical utility of the Periodontal Profile Classes and Tooth Profile Classes (PPC/TPC) taxonomy for risk assessment, specifically for predicting periodontal disease progression and incident tooth loss. The analytic sample comprised 4,682 adult participants of two prospective cohort studies (Dental Atherosclerosis Risk in Communities Study and Piedmont Dental Study) with information on periodontal disease progression and incident tooth loss. The PPC/TPC taxonomy includes seven distinct PPCs (person-level disease pattern and severity) and seven TPCs (tooth-level disease). Logistic regression modeling was used to estimate relative risks (RR) and 95% confidence intervals (CI) for the association of these latent classes with disease progression and incident tooth loss, adjusting for examination center, race, sex, age, diabetes, and smoking. To obtain personalized outcome propensities, risk estimates associated with each participant's PPC and TPC were combined into person-level composite risk scores (Index of Periodontal Risk [IPR]). Individuals in two PPCs (PPC-G: Severe Disease and PPC-D: Tooth Loss) had the highest tooth loss risk (RR = 3.6; 95% CI = 2.6 to 5.0 and RR = 3.8; 95% CI = 2.9 to 5.1, respectively). PPC-G also had the highest risk for periodontitis progression (RR = 5.7; 95% CI = 2.2 to 14.7). Personalized IPR scores were positively associated with both periodontitis progression and tooth loss. These findings, upon additional validation, suggest that the periodontal/tooth profile classes and the derived

  19. Pulp regeneration: Current approaches and future challenges

    Directory of Open Access Journals (Sweden)

    Jingwen eYANG

    2016-03-01

    Full Text Available Regenerative endodontics aims to replace inflamed/necrotic pulp tissues with regenerated pulp-like tissues to revitalize teeth and improve life quality. Pulp revascularization case reports, which showed successful clinical and radiographic outcomes, indicated the possible clinical application of pulp regeneration via cell homing strategy. From a clinical point of view, functional pulp-like tissues should be regenerated with the characterization of vascularization, re-innervation, and dentin deposition with a regulated rate similar to that of normal pulp. Efficient root canal disinfection and proper size of the apical foramen are the two requisite preconditions for pulp regeneration. Progress has been made on pulp regeneration via cell homing strategies. This review focused on the requisite preconditions and cell homing strategies for pulp regeneration. In addition to the traditionally used mechanical preparation and irrigation, antibiotics, irrigation assisted with EndoVac apical negative-pressure system, and ultrasonic and laser irradiation are now being used in root canal disinfection. In addition, pulp-like tissues could be formed with the apical foramen less than 1 mm, although more studies are needed to determine the appropriate size. Moreover, signaling molecules including stromal cell derived factor (SDF-1α, basic Fibroblast Growth Factor (bFGF, Platelet Derived Growth Factor (PDGF, stem cell factor (SCF, and Granulocyte Colony-Stimulating Factor (G-CSF were used to achieve pulp-like tissue formation via a cell homing strategy. Studies on the cell sources of pulp regeneration might give some indications on the signaling molecular selection. The active recruitment of endogenous cells into root canals to regenerate pulp-like tissues is a novel concept that may offer an unprecedented opportunity for the near-term clinical translation of current biology-based therapies for dental pulp regeneration.

  20. Periodontitis and myocardial hypertrophy.

    Science.gov (United States)

    Suzuki, Jun-Ichi; Sato, Hiroki; Kaneko, Makoto; Yoshida, Asuka; Aoyama, Norio; Akimoto, Shouta; Wakayama, Kouji; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Izumi, Yuichi; Isobe, Mitsuaki; Komuro, Issei

    2017-04-01

    There is a deep relationship between cardiovascular disease and periodontitis. It has been reported that myocardial hypertrophy may be affected by periodontitis in clinical settings. Although these clinical observations had some study limitations, they strongly suggest a direct association between severity of periodontitis and left ventricular hypertrophy. However, the detailed mechanisms between myocardial hypertrophy and periodontitis have not yet been elucidated. Recently, we demonstrated that periodontal bacteria infection is closely related to myocardial hypertrophy. In murine transverse aortic constriction models, a periodontal pathogen, Aggregatibacter actinomycetemcomitans markedly enhanced cardiac hypertrophy with matrix metalloproteinase-2 activation, while another pathogen Porphyromonas gingivalis (P.g.) did not accelerate these pathological changes. In the isoproterenol-induced myocardial hypertrophy model, P.g. induced myocardial hypertrophy through Toll-like receptor-2 signaling. From our results and other reports, regulation of chronic inflammation induced by periodontitis may have a key role in the treatment of myocardial hypertrophy. In this article, we review the pathophysiological mechanism between myocardial hypertrophy and periodontitis.

  1. Preparation of the fast setting and degrading Ca–Si–Mg cement with both odontogenesis and angiogenesis differentiation of human periodontal ligament cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yi-Wen [Graduate Institute of Clinical Medical Science, China Medical University, Taichung City, Taiwan (China); 3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan (China); Hsu, Tuan-Ti [Institute of Oral Science, Chung Shan Medical University, Taichung City, Taiwan (China); Wang, Kan [H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Shie, Ming-You, E-mail: eviltacasi@gmail.com [3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan (China)

    2016-03-01

    Develop a fast setting and controllable degrading magnesium–calcium silicate cement (Mg–CS) by sol–gel, and establish a mechanism using Mg ions to stimulate human periodontal ligament cells (hPDLs) are two purposes of this study. We have used the diametral tensile strength measurement to obtain the mechanical strength and stability of Mg–CS cement; in addition, the cement degradation properties is realized by measuring the releasing amount of Si and Mg ions in the simulated body fluid. The other cell characteristics of hPDLs, such as proliferation, differentiation and mineralization were examined while hPDLs were cultured on specimen surfaces. This study found out the degradation rate of Mg–CS cements depends on the Mg content in CS. Regarding in vitro bioactivity; the CS cements were covered with abundant clusters of apatite spherulites after immersion of 24 h, while less apatite spherulites were formatted on the Mg-rich cement surfaces. In addition, the authors also explored the effects of Mg ions on the odontogenesis and angiogenesis differentiation of hPDLs in comparison with CS cement. The proliferation, alkaline phosphatase, odontogenesis-related genes (DSPP and DMP-1), and angiogenesis-related protein (vWF and ang-1) secretion of hPDLs were significantly stimulated when the Mg content of the specimen was increased. The results in this study suggest that Mg–CS materials with this modified composition could stimulate hPDLs behavior and can be good bioceramics for bone substitutes and hard tissue regeneration applications as they stimulate odontogenesis/angiogenesis. - Highlights: • The fast setting and degrading Mg–CS cement was synthesized by sol–gel. • Promoted proliferation of hPDLs on Mg–CS specimens • Mg–CS can degrade and release Si and Mg ions into SBF. • Up-regulation of odontogenic and angiogenic of hPDLs • Mg–CS may be good bone substitutes for hard tissue regeneration applications.

  2. Preparation of the fast setting and degrading Ca–Si–Mg cement with both odontogenesis and angiogenesis differentiation of human periodontal ligament cells

    International Nuclear Information System (INIS)

    Chen, Yi-Wen; Hsu, Tuan-Ti; Wang, Kan; Shie, Ming-You

    2016-01-01

    Develop a fast setting and controllable degrading magnesium–calcium silicate cement (Mg–CS) by sol–gel, and establish a mechanism using Mg ions to stimulate human periodontal ligament cells (hPDLs) are two purposes of this study. We have used the diametral tensile strength measurement to obtain the mechanical strength and stability of Mg–CS cement; in addition, the cement degradation properties is realized by measuring the releasing amount of Si and Mg ions in the simulated body fluid. The other cell characteristics of hPDLs, such as proliferation, differentiation and mineralization were examined while hPDLs were cultured on specimen surfaces. This study found out the degradation rate of Mg–CS cements depends on the Mg content in CS. Regarding in vitro bioactivity; the CS cements were covered with abundant clusters of apatite spherulites after immersion of 24 h, while less apatite spherulites were formatted on the Mg-rich cement surfaces. In addition, the authors also explored the effects of Mg ions on the odontogenesis and angiogenesis differentiation of hPDLs in comparison with CS cement. The proliferation, alkaline phosphatase, odontogenesis-related genes (DSPP and DMP-1), and angiogenesis-related protein (vWF and ang-1) secretion of hPDLs were significantly stimulated when the Mg content of the specimen was increased. The results in this study suggest that Mg–CS materials with this modified composition could stimulate hPDLs behavior and can be good bioceramics for bone substitutes and hard tissue regeneration applications as they stimulate odontogenesis/angiogenesis. - Highlights: • The fast setting and degrading Mg–CS cement was synthesized by sol–gel. • Promoted proliferation of hPDLs on Mg–CS specimens • Mg–CS can degrade and release Si and Mg ions into SBF. • Up-regulation of odontogenic and angiogenic of hPDLs • Mg–CS may be good bone substitutes for hard tissue regeneration applications.

  3. Effects of air polishing and an amino acid buffered hypochlorite solution to dentin surfaces and periodontal ligament cell survival, attachment, and spreading.

    Science.gov (United States)

    Schmidlin, Patrick R; Fujioka-Kobayashi, Masako; Mueller, Heinz-Dieter; Sculean, Anton; Lussi, Adrian; Miron, Richard J

    2017-06-01

    The aim of this study is to examine morphological changes of dentin surfaces following air polishing or amino acid buffered hypochlorite solution application and to assess their influence on periodontal ligament (PDL) cell survival, attachment, and spreading to dentin discs in vitro. Bovine dentin discs were treated with either (i) Classic, (ii) Plus, or (iii) Perio powder (EMS). Furthermore, Perisolv® a hypochlorite solution buffered with various amino acids was investigated. Untreated dentin discs served as controls. Morphological changes to dentin discs were assessed using scanning electron microscopy (SEM). Human PDL cells were seeded onto the respectively treated discs, and samples were then investigated for PDL cell survival, attachment, and spreading using a live/dead assay, adhesion assay, and SEM imaging, respectively. Both control and Perisolv®-rinsed dentin discs demonstrated smooth surfaces at low and high magnifications. The Classic powders demonstrated the thickest coating followed by the Powder Plus. The Perio powder demonstrated marked alterations of dentin discs by revealing the potential to open dentinal tubules even before rinsing. Seeding of PDL cells demonstrated an almost 100 % survival rate on all samples demonstrating very high biocompatibility for all materials. Significantly higher PDL cell numbers were observed on samples treated with the Perio powder and the Perisolv® solution (approximately 40 % more cells; p air polishing or application with Perisolv®. Future in vitro and animal testing is necessary to further characterize the beneficial effects of either system in a clinical setting. The use of air polishing or application with Perisolv amino acid buffered hypochlorite solution was effective in treating root surfaces and allowed for near 100 % PDL cell survival, attachment, and spreading onto all root surfaces.

  4. Proliferation of epithelial rests of Malassez following auto-transplantation of third molars: a case report

    Directory of Open Access Journals (Sweden)

    Schepers Serge

    2010-10-01

    Full Text Available Abstract Introduction Auto-transplantation of third molars is frequently undertaken in order to restore a perfect occlusion and to improve mastication following a substantial loss of molars. However, little is known about the precise role of the periodontal membrane during this procedure. Therefore, we investigated if the epithelial rests of Malassez persist in the periodontal ligament of auto-transplanted teeth and, if so, whether these may show signs of a neuro-epithelial relationship. Case presentation We report a case of a 21-year-old Caucasian woman who underwent an auto-transplantation of two third molars. After two years, renewed progressive caries of the auto-transplanted teeth led to the removal of the auto-transplanted elements. The periodontal ligament was removed and studied with a light and transmission electron microscope. Conclusion In this report we examined the ultrastructure of the periodontal ligament after auto-transplantation in order to see if the periodontal ligament recovers completely from this intervention. We observed fully developed blood vessels and a re-innervation of the epithelial rests of Malassez which were proliferating following auto-transplantation. This proliferation might be critical in the remodelling of the alveolar socket in order to provide a perfect fit for the transplanted tooth. In order to minimalise the damage to the epithelial rests of Malassez, the extraction of the tooth should be as atraumatic as possible in order to provide an optimal conservation of the periodontal ligament which will be beneficial to the healing-process.

  5. CT of the pulmonary ligament

    International Nuclear Information System (INIS)

    Godwin, J.D.; Vock, P.; Osborne, D.R.

    1983-01-01

    Most computed tomographic (CT) scans of the chest show the inferior pulmonary ligament and an associated septum in the lower lobe, although CT descriptions of these structures have not been reported. Conventional radiography of the ligament has relied on indirect signs: the position of the lower lobe in the presence of pneumothorax or pleural effusion, soft-tissue peaks along the upper surface of the diaphragm, and the rare traumatic paramediastinal pneumatocele (attributed to air in the ligament). CT clarifies the anatomic relations of the ligament and alterations caused by pleural effusion and pneumothorax. The ligament is probably responsible for some long linear shadows at the lung bases, and CT helps to distinguish these from scars, walls of bullae, and normal structures such as the phrenic nerve and the interlobar fissures

  6. CT of the pulmonary ligament

    Energy Technology Data Exchange (ETDEWEB)

    Godwin, J.D.; Vock, P.; Osborne, D.R.

    1983-08-01

    Most computed tomographic (CT) scans of the chest show the inferior pulmonary ligament and an associated septum in the lower lobe, although CT descriptions of these structures have not been reported. Conventional radiography of the ligament has relied on indirect signs: the position of the lower lobe in the presence of pneumothorax or pleural effusion, soft-tissue peaks along the upper surface of the diaphragm, and the rare traumatic paramediastinal pneumatocele (attributed to air in the ligament). CT clarifies the anatomic relations of the ligament and alterations caused by pleural effusion and pneumothorax. The ligament is probably responsible for some long linear shadows at the lung bases, and CT helps to distinguish these from scars, walls of bullae, and normal structures such as the phrenic nerve and the interlobar fissures.

  7. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    OpenAIRE

    Hu, Lei; Gao, Zhenhua; Xu, Junji; Zhu, Zhao; Fan, Zhipeng; Zhang, Chunmei; Wang, Jinsong; Wang, Songlin

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental p...

  8. The effect of Emdogain and 24% EDTA root conditioning on periodontal healing of replanted dog's teeth.

    Science.gov (United States)

    Guzmán-Martínez, Nayelli; Silva-Herzog, Flores Daniel; Méndez, González Verónica; Martín-Pérez, Silvia; Cerda-Cristerna, Bernardino Isaac; Cohenca, Nestor

    2009-02-01

    Controversies still exist as for the regenerative role of enamel matrix derivatives and the need for removal of the periodontal ligament in replanted teeth. The purpose of this study was to evaluate the effect of Emdogain and 24% ethylenediamine tetraacetic acid (EDTA) root conditioning on periodontal healing of replanted dog's teeth. Teeth were extracted, endodontically treated and preconditioned as follows: group 1, Emdogain; group 2, Emdogain + EDTA and group 3, EDTA. Teeth were replanted after 30 min extraoral time, splinted for 15 days and animals sacrificed after 8 weeks of observation. Histological evaluation was performed using hematoxylin/eosin and Masson trichrome and results scored based on previously reported criteria for histological evaluation. Replacement root resorption was histologically diagnosed in all groups except in the negative control. A parametric analysis showed no statistically significant differences between experimental groups. Root preconditioning with Emdogain alone or in combination with 24% EDTA showed no evidence of regeneration of collagen fibers and consequently did not prevent the development of replacement root resorption on replanted dog's teeth.

  9. [Finite element analysis of the maxillary central incisor with traditional and modified crown lengthening surgery and post-core restoration in management of crown-root fracture].

    Science.gov (United States)

    Zhen, M; Wei, Y P; Hu, W J; Rong, Q G; Zhang, H

    2016-06-01

    To construct three-dimensional finite element models with modified crown lengthening surgery and post-core restoration in management of various crown-root fracture types, to investigate the intensity and distribution of stressin models mentioned above, and to compare and analyze the indications of traditional and modified crown lengthening surgeries from the mechanic point of view. Nine three-dimensional finite element models with modified crown lengthening surgery and post-core restoration were established and analyzed by micro-CT scanning technique, dental impression scanner, Mimics 10.0, Geomagic studio 9.0 and ANSYS 14.0 software. The von Mises stress of dentin, periodontal ligament, alveolar bone, post and core, as well as the periodontal ligament area and threshold limit value were calculated and compared with the findings of traditional crown lengthening models which had been published earlierby our research group. The von Mises stress intensity of modified crown lengthening models were: dentin>post>core>alveolar bone>periodontal ligament. The maximum von Mises stress of dentin(44.37-80.58 MPa)distributed in lingual central shoulder. The periodontal ligament area of the modified crown lengthening surgery was reduced by 6% to 28%, under the same crown-root fracture conditions, the periodontal ligament area of modified crown lengthening models was larger than that of the traditional crown lengthening models. In modified crown lengthening surgery models, the von Mises stress of periodontal ligament of B3L1m, B3L2m, B3L3m models exceeded their limit values, however, the von Mises stress of periodontal ligament of the B2L2c, B2L3c, B3L1c, B3L2c, B3L3c models exceeded their limit values in traditional crown lengthening surgery models. The modified crown lengthening surgery conserves more periodontal supporting tissues, which facilitates the long-term survival of teeth. The indication of modified crown lengthening surgery is wider than traditional method. The

  10. Ulnar Collateral Ligament Injuries of the Thumb

    Science.gov (United States)

    McKeon, Kathleen E.; Gelberman, Richard H.; Calfee, Ryan P.

    2013-01-01

    Background: The clinical diagnosis of thumb ulnar collateral ligament disruption has been based on joint angulation during valgus stress testing. This report describes a definitive method of distinguishing between complete and partial ulnar collateral ligament injuries by quantifying translation of the proximal phalanx on the metacarpal head during valgus stress testing. Methods: Sixty-two cadaveric thumbs underwent standardized valgus stress testing under fluoroscopy with the ulnar collateral ligament intact, following an isolated release of the proper ulnar collateral ligament, and following a combined release of both the proper and the accessory ulnar collateral ligament (complete ulnar collateral ligament release). Following complete ulnar collateral ligament release, the final thirty-seven thumbs were also analyzed after the application of a valgus force sufficient to cause 45° of valgus angulation at the metacarpophalangeal joint to model more severe soft-tissue injury. Two independent reviewers measured coronal plane joint angulation (in degrees), ulnar joint line gap formation (in millimeters), and radial translation of the proximal phalanx on the metacarpal head (in millimeters) on digital fluoroscopic images that had been randomized. Results: Coronal angulation across the stressed metacarpophalangeal joint progressively increased through the stages of the testing protocol: ulnar collateral ligament intact (average [and standard deviation], 20° ± 8.1°), release of the proper ulnar collateral ligament (average, 23° ± 8.3°), and complete ulnar collateral ligament release (average, 30° ± 8.9°) (p collateral ligament release (5.7 ± 1.5 mm), to that following complete ulnar collateral ligament release (7.2 ± 1.5 mm) (p collateral ligament (1.6 ± 0.8 mm vs. 1.5 ± 0.9 mm in the intact state). There was a significant increase in translation following release of the complete ulnar collateral ligament complex (3.0 ± 0.9 mm; p collateral ligament

  11. Endodontic retreatment of dens invaginatus presenting with gutta-percha overfilling at the attached gingiva and chronic apical periodontitis: unusual clinical report.

    Science.gov (United States)

    Robazza, Carlos Roberto Colombo; Alves e Motta, Julio Cesar; de Carli, Marina Lara; de Oliveira Pedreira, Fernanda Rafaelly; Hanemann, Joao Adolfo Costa

    2013-05-01

    This work describes the retreatment of an unusual case of dens invaginatus with gutta-percha overfilling at the gingival mucosa and chronic apical periodontitis in a 34-year-old woman. Initial periapical radiograph showed the presence of type II dens invaginatus with poor quality obturation, root perforation and chronic apical periodontitis of tooth 22. Dens invaginatus is a tooth malformation caused by infolding of the dental papilla during tooth development. This anomaly has been associated with increased prevalence of pulpal and periapical diseases. Conventional endodontic retreatment was performed using rotary files and calcium hydroxide paste as intracanal dressing. After 7 days, root canal was filled with guttapercha points and Sealapex® sealer. Obturation was radiographically followed and, after 3 years, absence of fistula and periapical radiolucency was observed, thus conventional endodontic therapy proved to be successful. Conventional endodontic retreatment of type II dens invaginatus has been successful for a 3-year period, showing a better treatment alternative. Conservative endodontic retreatment of dens invaginatus should be considered to promote periapical healing with complete reconstitution of bone and periodontal ligament regeneration without signs of recurrence over a period of 3 years. Moreover, it preserves the entire tooth.

  12. Low Temperature Soda-Oxygen Pulping of Bagasse

    OpenAIRE

    Fengxia Yue; Ke-Li Chen; Fachuang Lu

    2016-01-01

    Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today’s pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum coo...

  13. Bioreactor Design for Tendon/Ligament Engineering

    OpenAIRE

    Wang, Tao; Gardiner, Bruce S.; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B.; Wang, Allan; Xu, Jiake; Smith, David W.; Lloyd, David G.; Zheng, Ming H.

    2012-01-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a s...

  14. Anatomic ligament consolidation of the superior acromioclavicular ligament and the coracoclavicular ligament complex after acute arthroscopically assisted double coracoclavicular bundle stabilization.

    Science.gov (United States)

    Jobmann, S; Buckup, J; Colcuc, C; Roessler, P P; Zimmermann, E; Schüttler, K F; Hoffmann, R; Welsch, F; Stein, T

    2017-09-18

    The consolidation of the acromioclavicular (AC) and coracoclavicular (CC) ligament complex after arthroscopically assisted stabilization of acute acromioclavicular joint (ACJ) separation is still under consideration. Fifty-five consecutive patients after arthroscopically assisted double-CC-bundle stabilization within 14 days after acute high-grade ACJ separation were studied prospectively. All patients were clinically analysed preoperatively (FU0) and post-operatively (FU1 = 6 months; FU2 = 12 months). The structural MRI assessments were performed at FU0 (injured ACJ) and at FU2 bilateral (radiologic control group) and assessed separately the ligament thickness and length at defined regions for the conoid, trapezoid and the superior AC ligament. Thirty-seven patients were assessed after 6.5 months and after 16.0 months. The 16-month MRI analysis revealed for all patients continuous ligament healing for the CC-complex and the superior AC ligament with in the average hypertrophic consolidation compared to the control side. Separate conoid and trapezoid strands (double-strand configuration) were detected in 27 of 37 (73%) patients, and a single-strand configuration was detected in 10 of 37 (27%) patients; both configurations showed similar CCD data. The ligament healing was not influenced by the point of surgery, age at surgery and heterotopic ossification. The clinical outcome was increased (FU0-FU2): Rowe, 47.7-97.0 pts.; TAFT, 3.9-10.6 pts.; NAS pain , 8.9-1.4 pts. (all P < 0.05). The arthroscopically assisted double-CC-bundle stabilization within 14 days after acute high-grade ACJ separation showed 16 months after surgery sufficient consolidations of the AC and double-CC ligament complex in 73%. III, Case series.

  15. Bioreactor design for tendon/ligament engineering.

    Science.gov (United States)

    Wang, Tao; Gardiner, Bruce S; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B; Wang, Allan; Xu, Jiake; Smith, David W; Lloyd, David G; Zheng, Ming H

    2013-04-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments.

  16. Evaluation of Bacteriological Profile in the Apical Root Segment of the Patients with Primary Apical Periodontitis.

    Science.gov (United States)

    Tatikonda, Aravind; Sudheep, N; Biswas, Krishna P; Gowtham, K; Pujari, Sudarshan; Singh, Padam

    2017-01-01

    Apical periodontitis usually results from bacterial accumulation and contamination occurring in the root-canal system, and extending beyond the apical foramen to involve the periapical tissues. Literature has a paucity of the studies that stress on the division and analysis of the pulp canal segments. The reason for this disparity might be the technique used for collecting the samples from the pulp canals. Hence, we carried out the present study to evaluate the microbial flora in the apical part of the roots with necrotic pulp canals. The present study included the assessment of 40 freshly extracted teeth that had necrotized pulpal tissue along with the presence of periapical periodontal lesions. Removal of the soft tissue lesions attached to the root portion of the teeth along with apical periodontal lesions was done with the help of scalpel blade, after rinsing them with a sterile solution of saline. Thorough cleaning of the root surfaces was done with hydrogen peroxide followed by rapid disinfection with the help of sodium hypochlorite at varying concentrations. Sectioning of the root portion of all the specimens with the help of a disk was done perpendicular to the long axis of the teeth at a distance of roughly 5 to 6 mm from the teeth's apicalmost point. Cryotubes were used for transferring the specimens of apical portions containing 1 mL of buffer and were subjected to immediate frozen processing at a temperature of -20°C. A 10 K-type file was used for the initial collection of the samples followed by subsequent incubation of the files and paper pints in the incubation cabinet. Subsequent deoxyribonucleic acid (DNA) extraction from the samples was done following the procedure described by Siqueira et al. Paster et al's modification of the reverse-capture checkerboard assay was used in the present study. Semiquantitative data were used for overcoming the difficulties arising due to obtaining the counts of the polymerase chain reaction (PCR)-based analysis of

  17. Treatment of a Periodontic-Endodontic Lesion in a Patient with Aggressive Periodontitis

    OpenAIRE

    Fahmy, Mina D.; Luepke, Paul G.; Ibrahim, Mohamed S.; Guentsch, Arndt

    2016-01-01

    Case Description. This case report describes the successful management of a left mandibular first molar with a combined periodontic-endodontic lesion in a 35-year-old Caucasian woman with aggressive periodontitis using a concerted approach including endodontic treatment, periodontal therapy, and a periodontal regenerative procedure using an enamel matrix derivate. In spite of anticipated poor prognosis, the tooth lesion healed. This case report also discusses the rationale behind different tr...

  18. The Adaptive Nature of the Bone-Periodontal Ligament-Cementum Complex in a Ligature-Induced Periodontitis Rat Model

    Directory of Open Access Journals (Sweden)

    Ji-Hyun Lee

    2013-01-01

    Full Text Available The novel aspect of this study involves illustrating significant adaptation of a functionally loaded bone-PDL-cementum complex in a ligature-induced periodontitis rat model. Following 4, 8, and 15 days of ligation, proinflammatory cytokines (TNF-α and RANKL, a mineral resorption indicator (TRAP, and a cell migration and adhesion molecule for tissue regeneration (fibronectin within the complex were localized and correlated with changes in PDL-space (functional space. At 4 days of ligation, the functional space of the distal complex was widened compared to controls and was positively correlated with an increased expression of TNF-α. At 8 and 15 days, the number of RANKL(+ cells decreased near the mesial alveolar bone crest (ABC but increased at the distal ABC. TRAP(+ cells on both sides of the complex significantly increased at 8 days. A gradual change in fibronectin expression from the distal PDL-secondary cementum interfaces through precementum layers was observed when compared to increased and abrupt changes at the mesial PDL-cementum and PDL-bone interfaces in ligated and control groups. Based on our results, we hypothesize that compromised strain fields can be created in a diseased periodontium, which in response to prolonged function can significantly alter the original bone and apical cementum formations.

  19. Endodontic-periodontal microsurgery for combined endodontic-periodontal lesions: An overview.

    Science.gov (United States)

    Sharma, Ritu; Hegde, Vivek; Siddharth, M; Hegde, Rashmi; Manchanda, Gunsha; Agarwal, Pratul

    2014-11-01

    Endodontic and periodontal microsurgery has surpassed the success rates for traditional endodontic and periodontal surgical procedures. Excellent healing results are being attributed to both the techniques, when employed, for isolated endodontic or periodontal defects. Combined endodontic-periodontal lesions have been referred to as a true challenge, requiring not only endodontic microsurgical management but also concurrent bone grafting and membrane barriers techniques. The prevention of epithelial downgrowth and regeneration of periodontal cementum, fiber, and bone seals the fate of these cases. Achieving primary closure with submergence of grafts has a positive effect on GTR outcome. New techniques of periodontal microsurgery, such as minimally invasive papilla preserving flaps with passive internal mattress suturing, have managed to obtain 90% primary flap closure over grafted sites. Root surface treatment and conditioning has also shown to be beneficial for GTR. Endodontic microsurgery for the combined lesion has not integrated these advances yet. These advances, along with a recently suggested treatment strategy, are ushering in the level next in management of the combined lesions. This article offers an overview of the combined lesion, the disease, its classification, treatment strategy, regenerative tools, microsurgical recommendations, and outcome studies.

  20. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study.

    Science.gov (United States)

    Nakashima, Misako; Iohara, Koichiro; Murakami, Masashi; Nakamura, Hiroshi; Sato, Yayoi; Ariji, Yoshiko; Matsushita, Kenji

    2017-03-09

    Experiments have previously demonstrated the therapeutic potential of mobilized dental pulp stem cells (MDPSCs) for complete pulp regeneration. The aim of the present pilot clinical study is to assess the safety, potential efficacy, and feasibility of autologous transplantation of MDPSCs in pulpectomized teeth. Five patients with irreversible pulpitis were enrolled and monitored for up to 24 weeks following MDPSC transplantation. The MDPSCs were isolated from discarded teeth and expanded based on good manufacturing practice (GMP). The quality of the MDPSCs at passages 9 or 10 was ascertained by karyotype analyses. The MDPSCs were transplanted with granulocyte colony-stimulating factor (G-CSF) in atelocollagen into pulpectomized teeth. The clinical and laboratory evaluations demonstrated no adverse events or toxicity. The electric pulp test (EPT) of the pulp at 4 weeks demonstrated a robust positive response. The signal intensity of magnetic resonance imaging (MRI) of the regenerated tissue in the root canal after 24 weeks was similar to that of normal dental pulp in the untreated control. Finally, cone beam computed tomography demonstrated functional dentin formation in three of the five patients. Human MDPSCs are safe and efficacious for complete pulp regeneration in humans in this pilot clinical study.

  1. A demographic analysis of vertical root fractures.

    Science.gov (United States)

    Cohen, Stephen; Berman, Louis H; Blanco, Lucia; Bakland, Leif; Kim, Jay S

    2006-12-01

    Teeth with vertical root fractures (VRFs) have complete or incomplete fractures that extends through the enamel, dentin and pulp, down the long axis of the tooth. Several different variables were investigated and statistically evaluated as to their correlation with the presence of VRFs. Specifically analyzed were gender, tooth location, age, radiographic and clinical findings, bruxism, and pulpal status. The data were collected from three different endodontists, from three different geographic locations, comprising a total of 227 teeth. Although VRFs may occur in conjunction with any of the parameters investigated, only certain factors were found to occur in a significant number of cases. The results indicate that VRFs are statistically more prevalent in mandibular molars and maxillary premolars. They are associated with periradicular bone loss, pain to percussion, extensive restorations, and seem to occur more often in females and older patients. However, VRFs are not necessarily related to periapical bone loss, a widening of the periodontal ligament space, associated periodontal pockets, a sinus tract, particular pulpal status, or bruxism.

  2. Antimicrobial photodynamic therapy for the treatment of teeth with apical periodontitis: a histopathological evaluation.

    Science.gov (United States)

    Silva, Lea Assed Bezerra; Novaes, Arthur B; de Oliveira, Rafael R; Nelson-Filho, Paulo; Santamaria, Milton; Silva, Raquel Assed Bezerra

    2012-03-01

    This study evaluated the in vivo response of apical and periapical tissues of dogs' teeth with apical periodontitis after one-session endodontic treatment with and without antimicrobial photodynamic therapy (aPDT). Sixty root canals with experimentally induced apical periodontitis were instrumented and assigned to 4 groups receiving aPDT and root canal filling (RCF) or not: group aPDT+/RCF+ (n = 20): aPDT (photosensitizer phenothiazine chloride at 10 mg/mL for 3 minutes and diode laser [λ = 660 nm, 60 mW/cm(2)] for 1 minute) and RCF in the same session; group aPDT+/RCF- (n = 10); group aPDT-/RCF+ (n = 20), and group aPDT-/RCF- (n = 10). Teeth were restored, and the animals were killed after 90 days. Sections from the maxillas and mandibles were stained with hematoxylin-eosin and Mallory trichrome and examined under light microscopy. Descriptive (ie, newly formed apical mineralized tissue, periapical inflammatory infiltrate, apical periodontal ligament thickness, and mineralized tissue resorption) and quantitative (ie, periapical lesion size and number of inflammatory cells) microscopic analysis was performed. Quantitative data were analyzed by the Kruskal-Wallis and Dunn tests (α = .05). In the aPDT-treated groups, the periapical region was moderately/severely enlarged with no inflammatory cells, moderate neoangiogenesis and fibrogenesis, and the smallest periapical lesions. Although apical closure by mineralized tissue deposition was not achieved, the absence of inflammatory cells, moderate neoangiogenesis, and fibrogenesis in the periapical region in the groups treated with aPDT indicate that this can be a promising adjunct therapy to cleaning and shaping procedures in teeth with apical periodontitis undergoing one-session endodontic treatment. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. In Vitro Osteogenic and Odontogenic Differentiation of Human Dental Pulp Stem Cells Seeded on Carboxymethyl Cellulose-Hydroxyapatite Hybrid Hydrogel.

    Directory of Open Access Journals (Sweden)

    Gabriella eTeti

    2015-10-01

    Full Text Available Stem cells from human dental pulp have been considered as an alternative source of adult stem cells in tissue engineering because of their potential to differentiate into multiple cell lineages.Recently, polysaccharide based hydrogels have become especially attractive as matrices for the repair and regeneration of a wide variety of tissues and organs. The incorporation of inorganic minerals as hydroxyapatite nanoparticles can modulate the performance of the scaffolds with potential applications in tissue engineering. The aim of this study was to verify the osteogenic and odontogenic differentiation of dental pulp stem cells (DPSCs cultured on a carboxymethyl cellulose—hydroxyapatite hybrid hydrogel. Human DPSCs were seeded on carboxymethyl cellulose—hydroxyapatite hybrid hydrogel and on carboxymethyl cellulose hydrogel for 1, 3, 5, 7, 14 and 21 days. Cell viability assay and ultramorphological analysis were carried out to evaluate biocompatibility and cell adhesion. Real Time PCR was carried out to demonstrate the expression of osteogenic and odontogenic markers. Results showed a good adhesion and viability in cells cultured on carboxymethyl cellulose—hydroxyapatite hybrid hydrogel, while a low adhesion and viability was observed in cells cultured on carboxymethyl cellulose hydrogel. Real Time PCR data demonstrated a temporal up-regulation of osteogenic and odontogenic markers in dental pulp stem cells cultured on carboxymethyl cellulose—hydroxyapatite hybrid hydrogel. In conclusion, our in vitro data confirms the ability of DPSCs to differentiate toward osteogenic and odontogenic lineages in presence of a carboxymethyl cellulose—hydroxyapatite hybrid hydrogel. Taken together, our results provide evidence that DPSCs and carboxymethyl cellulose—hydroxyapatite hybrid hydrogel could be considered promising candidates for dental pulp complex and periodontal tissue engineering.

  4. Morphology of the dorsal and lateral calcaneocuboid ligaments.

    Science.gov (United States)

    Dorn-Lange, Nadja V; Nauck, Tanja; Lohrer, Heinz; Arentz, Sabine; Konerding, Moritz A

    2008-09-01

    The dorsolateral calcaneocuboid ligaments have different configurations. In the literature they are only described as either the dorsal or lateral calcaneocuboid ligament. However, recent reconstructive surgical techniques may benefit from a better understanding of the anatomy. The aims of this study were to classify the morphology and attachments of the dorso-lateral calcaneocuboid ligaments and to determine their dimensions. The dorso-lateral aspects of the calcaneocuboid joint of 30 cadaver feet were dissected to expose the associated ligaments. Further, we evaluated possible bony landmarks of the calcaneus that could imply which shape or course the ligament would have in a specific individual. Our findings showed a wide variety of configurations in shape, number, and attachment sites. A constant dorsal ligament and an additional narrower lateral ligament was detectable in half of the cases. The majority of the dorso-lateral calcaneocuboid ligament-complex had an upward course and fanning out from proximal to distal. No bony predictor for the ligaments' shape or course was found. The dorso-lateral ligament-complex of the calcaneocuboid joint revealed a wide variety of configurations. Better understanding of the anatomy of these ligaments may aid in the anatomic reconstruction of these ligaments.

  5. Lateral collateral ligament (image)

    Science.gov (United States)

    The lateral collateral ligament connects the end of the femur (thigh) to the top of the fibula (the thin bone that runs next to the shin bone). The lateral collateral ligament provides stability against varus stress. Varus stress ...

  6. The periodontal abscess: a review.

    Science.gov (United States)

    Herrera, D; Roldán, S; Sanz, M

    2000-06-01

    The periodontal abscess is a frequent periodontal condition in which periodontal tissues may be rapidly destroyed. Its importance is based on the possible need of urgent care, the affectation of tooth prognosis, and the possibility of infection spreading. There is scant information in the scientific literature regarding this condition and most of it has been published as case reports and text books, where conclusions are not evidence-based, but rather empirical observations made by recognised clinicians. The aim of this review was to critically analyse all available information on this subject in the dental and medical literature, including information on its prevalence, proposed etiologies and pathogenesis, diagnosis, microbiology and treatment alternatives. The periodontal abscess is the 3rd most frequent dental emergency, and it is specially prevalent among untreated periodontal patients and periodontal patients during maintenance. Different etiologies have been proposed, and 2 main groups can be distinguished, depending on its relation with periodontal pockets. In the case of a periodontitis-related abscess, the condition may appear as an exacerbation of a non-treated periodontitis or during the course of periodontal therapy. In non-periodontitis related abscesses, impaction of foreign objects, and radicular abnormalities are the 2 main causes. The abscess microflora seems to be similar to that of adult periodontitis, and it is dominated by gram-negative anaerobic rods, including well-known periodontal pathogens. Complications and consequences include tooth loss and the spread of the infection to other body sites. Diagnosis and treatment is mainly based on empiricism, since evidence-based data are not available. The role of systemic antibiotics, in the treatment of periodontal abscesses, is especially controversial.

  7. Viscoelastic Properties of Dental Pulp Tissue and Ramifications on Biomaterial Development for Pulp Regeneration.

    Science.gov (United States)

    Erisken, Cevat; Kalyon, Dilhan M; Zhou, Jian; Kim, Sahng G; Mao, Jeremy J

    2015-10-01

    A critical step in biomaterial selection effort is the determination of material as well as the biological properties of the target tissue. Previously, the selection of biomaterials and carriers for dental pulp regeneration has been solely based on empirical experience. In this study, first, the linear viscoelastic material functions and compressive properties of miniature pig dental pulp were characterized using small-amplitude oscillatory shear and uniaxial compression at a constant rate. They were then compared with the properties of hydrogels (ie, agarose, alginate, and collagen) that are widely used in tissue regeneration. The comparisons of the linear viscoelastic material functions of the native pulp tissue with those of the 3 hydrogels revealed the gel-like behavior of the pulp tissue over a relatively large range of time scales (ie, over the frequency range of 0.1-100 rps). At the constant gelation agent concentration of 2%, the dynamic properties (ie, storage and loss moduli and the tanδ) of the collagen-based gel approached those of the native tissue. Under uniaxial compression, the peak normal stresses and compressive moduli of the agarose gel were similar to those of the native tissue, whereas alginate and collagen exhibited significantly lower compressive properties. The linear viscoelastic and uniaxial compressive properties of the dental pulp tissue reported here should enable the more appropriate selection of biogels for dental pulp regeneration via the better tailoring of gelation agents and their concentrations to better mimic the dynamic and compressive properties of native pulp tissue. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Conservative treatment of immature teeth with apical periodontitis using triple antibiotic paste disinfection

    Directory of Open Access Journals (Sweden)

    Hsin-Ju Wang

    2016-06-01

    Full Text Available The purpose of this report is to present conservative treatment for two immature premolars with apical periodontitis. A triple antibiotic paste was used to disinfect the root canal systems for revascularization. In both cases, residual vital pulp tissue was noted in the root canal system after the opening of each premolar. The canals in both cases were irrigated with copious sodium hypochlorite solution and medicated with a paste consisting of ciprofloxacin, metronidazole, and minocycline. The teeth were sealed with mineral trioxide aggregate and restored with composite resin. There were satisfactory outcomes after 18 months. The patients were asymptomatic, with radiographic evidence of complete resolution of radiolucency, continual thickening of dentinal walls, apical closure, and increased root length.

  9. Biomechanical implications of lumbar spinal ligament transection.

    Science.gov (United States)

    Von Forell, Gregory A; Bowden, Anton E

    2014-11-01

    Many lumbar spine surgeries either intentionally or inadvertently damage or transect spinal ligaments. The purpose of this work was to quantify the previously unknown biomechanical consequences of isolated spinal ligament transection on the remaining spinal ligaments (stress transfer), vertebrae (bone remodelling stimulus) and intervertebral discs (disc pressure) of the lumbar spine. A finite element model of the full lumbar spine was developed and validated against experimental data and tested in the primary modes of spinal motion in the intact condition. Once a ligament was removed, stress increased in the remaining spinal ligaments and changes occurred in vertebral strain energy, but disc pressure remained similar. All major biomechanical changes occurred at the same spinal level as the transected ligament, with minor changes at adjacent levels. This work demonstrates that iatrogenic damage to spinal ligaments disturbs the load sharing within the spinal ligament network and may induce significant clinically relevant changes in the spinal motion segment.

  10. Image-anatomic research of the alar ligament

    International Nuclear Information System (INIS)

    Hao Caixian; Liu Jun; Jin Ying; Wang Jian; Zhong Jin; Wang Jinyue; Zhu Miao; Cheng Jinbao

    2008-01-01

    Objective: To detect position and morphous as well as coursing of the alar ligament, and to further investigate the sectional anatomy and CT and MRI imaging of the alar ligament. Methods: Twelve formalin fixed specimens including head and neck utilized, three of the twelve were observed in gross anatomy, nine of them were dissectioned. Fifty- one healthy volunteers from each group were selected to perform CT and MRI examination respectively. By combining gross and sectional anatomy. CT and MRI manifestations of the alar ligament were analyzed, the alar ligament width was measured. Results: Location and shape, as well as coursing of the alar ligament could be demonstrated clearly in gross and sectional anatomy. The transverse plane across the upper dens and the coronal plane by the middle dens were the optimal planes for demonstrating the alar ligament. The display ratio of the alar ligament was even 100% (51/51) in both images of CT and MRI. MRI had better advantages than CT in respect of demonstrating the alar ligament, PDWI (proton density weighted imaging, PDWI) is the most optimal sequence for the alar ligament. There were no significant differences of the alar ligament width between male and female and between the right and the left side (P>0.05). Conclusion: In combination with gross and sectional anatomy. CT and MRI could both provide an imageo-anatomic basis for diagnosis of the alar ligament trauma and malformation as well as infection. (authors)

  11. Periodontal Diseases

    Science.gov (United States)

    ... diseases. The primary research focus was on oral bacteria. Periodontal diseases were thought to begin when chalky white ... tools to target their treatment specifically to the bacteria that trigger periodontal disease. At the same time, because biofilms form ...

  12. Periodontitis in Chronic Heart Failure.

    Science.gov (United States)

    Fröhlich, Hanna; Herrmann, Kristina; Franke, Jennifer; Karimi, Alamara; Täger, Tobias; Cebola, Rita; Katus, Hugo A; Zugck, Christian; Frankenstein, Lutz

    2016-08-01

    Periodontal disease has been associated with an increased risk of cardiovascular events. The purpose of our study was to investigate whether a correlation between periodontitis and chronic heart failure exists, as well as the nature of the underlying cause. We enrolled 71 patients (mean age, 54 ± 13 yr; 56 men) who had stable chronic heart failure; all underwent complete cardiologic and dental evaluations. The periodontal screening index was used to quantify the degree of periodontal disease. We compared the findings to those in the general population with use of data from the 4th German Dental Health Survey. Gingivitis, moderate periodontitis, and severe periodontitis were present in 17 (24%), 17 (24%), and 37 (52%) patients, respectively. Severe periodontitis was more prevalent among chronic heart failure patients than in the general population. In contrast, moderate periodontitis was more prevalent in the general population (P periodontal disease was not associated with the cause of chronic heart failure or the severity of heart failure symptoms. Six-minute walking distance was the only independent predictor of severe periodontitis. Periodontal disease is highly prevalent in chronic heart failure patients regardless of the cause of heart failure. Prospective trials are warranted to clarify the causal relationship between both diseases.

  13. PRODUCTION OF DISSOLVING GRADE PULP FROM ALFA

    Directory of Open Access Journals (Sweden)

    Baya Bouiri

    2010-02-01

    Full Text Available Alfa, also known as Stipa tenacissimaI or “halfa”, is grown in North Africa and south Spain. Due to its short fiber length, paper made from alfa pulp retains bulk and takes block letters well. In this study alfa was evaluated for bleached pulp production. Two cellulose pulps with different chemical compositions were pulped by a conventional kraft process. One sample was taken from the original alfa material and another from alfa that had been pretreated by diluted acid. The pulp produced from the pretreated alfa was bleached by the elemental-chlorine-free sequences DEPD and DEDP. The yield, Kappa number, brightness, and α- cellulose content of bleached and unbleached pulps were evaluated. The results showed that during the chemical pulping process, treated alfa cooked more easily than the original alfa. The treated alfa pulp also showed very good bleaching, reaching a brightness level of 94.8% ISO with a yield of 93.6% at an α-cellulose content 96.8(% with a DEDP bleaching sequence, compared to 83.2% ISO brightness level, 92.8% yield, and 95.1% α-cellulose content for bleached pulp with a DEPD bleaching sequence. Therefore, this alfa material could be considered as a worthwhile choice for cellulosic fiber supply.

  14. Effect of periodontal therapy on pregnancy outcome in women affected by periodontitis.

    Science.gov (United States)

    Tarannum, Fouzia; Faizuddin, Mohamed

    2007-11-01

    There is convincing evidence to suggest that infections affecting the mother during pregnancy may produce alterations in the normal cytokine- and hormone-regulated gestation, which could result in preterm labor, premature rupture of membranes, and preterm birth (PTB). Studies in the late 1990s associated periodontitis with preterm low birth weight (PLBW) deliveries, and this may have similar pathogenic mechanisms as other maternal infections. This study determined the effect of non-surgical periodontal therapy on pregnancy outcome. A total of 200 pregnant women with periodontitis were randomly assigned to treatment and control groups. Detailed data about previous and current pregnancies were obtained. All women received a full-mouth periodontal examination, including oral hygiene index-simplified, bleeding index, and clinical attachment level. The women in the treatment group received non-surgical periodontal therapy during the gestational period, and those in the control group received periodontal treatment after delivery. Periodontal therapy included plaque control instructions and scaling and root planing performed under local anesthesia. The outcome measures assessed were gestational age and birth weight of the infant. PTB was recorded when delivery occurred at PTBs in the treatment group and 68 PTBs in the control group. Twenty-six LBW infants were recorded in the treatment group, and 48 LBW infants were noted in the control group. The mean gestational ages were 33.8+/-2.8 weeks and 32.7+/-2.8 weeks in the treatment and control groups, respectively. The difference was statistically significant at P<0.006. The mean birth weight was 2,565.3+/-331.2 g in the treatment group and 2,459.6+/-380.7 g in the control group, with the difference being statistically significant at P<0.044. A multiple regression model showed a significant effect of periodontal treatment on birth outcomes. Non-surgical periodontal therapy can reduce the risk for preterm births in mothers who

  15. RELATIONSHIP BETWEEN PERIODONTAL DISEASE INDEX AND LOW BIRTH WEIGHT BABIES IN PREGNANT WOMEN WITH PERIODONTITIS

    Directory of Open Access Journals (Sweden)

    Ira Komara

    2016-03-01

    Full Text Available Objective: To identify the relationship between periodontitis in pregnant women through the periodontal disease index (PDI and low birth weight babies. Methods: A case-control study was conducted to determine the relationship between periodontitis in pregnant women through the periodontal disease index (PDI and the low birth weight babies (LBW. The participants were mothers with periodontitis and non-periodontitis mothers aged 20–35 years who gave birth in the Department of Obstetrics and Gynecology-Dr. Hasan Sadikin General Hospital, Bandung in the period of December to January 2005. Results: Based on the chisquare test results a highly significant relationship between periodontitis and low birth weight (p=0.002 was found. The Odd’s ratio showed that the risk of low birth weight in pregnant women with periodontitis was 15.58 times higher compared to those who did not suffer from periodontitis. The periodontal disease index has an accuracy of 88.6% in predicting the incidence of LBW. It strongly influenced the incidence of LBW with a high Odd’s ratio of 28.0. Pregnant women who suffer from periodontitis with a PDI > 3.25, have 19.2 times higher risk for delivering babies with LBW compared to the non-periodontitis mothers. Conclusions: The loss of attachment affects the possibility of delivering LBW babies.

  16. Impact of aggressive periodontitis and chronic periodontitis on oral health-related quality of life.

    Science.gov (United States)

    Llanos, Alexandre Hugo; Silva, Carlos Guillermo Benítez; Ichimura, Karina Tamie; Rebeis, Estela Sanches; Giudicissi, Marcela; Romano, Marcelo Munhóes; Saraiva, Luciana

    2018-01-01

    The purpose of this cross-sectional study was to investigate the effect of different forms of periodontal diseases on Oral Health-Related Quality of Life (OHRQoL). Fifty-two patients with Aggressive Periodontitis (AP) or Chronic Periodontitis (CP) were included: nine patients with Localized Aggressive Periodontitis (LAP), thirty-three patients with Generalized Aggressive Periodontitis (GAP) and ten patients with Generalized Chronic Periodontitis (GCP). Oral Health Impact Profile questionnaires (OHIP-14) were distributed after a clinical examination that measured the following periodontal parameters: tooth loss, bleeding on probing (BoP), probing depth (PD), gingival recession (REC) and clinical attachment level (CAL). The global OHIP-14 score means were 10.6 for LAP, 16.5 for GAP, and 17.5 for GCP. A statistically significant difference (p periodontitis. LAP, GAP and GCP have an impact on patient quality of life when measured using the OHIP-14. Patients with GAP and GCP had poorer OHRQoL than LAP patients.

  17. Alkaline pulping of some eucalypts from Sudan.

    Science.gov (United States)

    Khristova, P; Kordsachia, O; Patt, R; Dafaalla, S

    2006-03-01

    Four eucalypts (Eucalyptus camaldulensis, Eucalyptus microtheca, Eucalyptus tereticornis and Eucalyptus citriodora) grown in Sudan were examined for their suitability for pulping and papermaking with different alkaline methods. Their physical, morphological and chemical characteristics are reported. The pulping trials with E. citriodora and E. tereticornis were carried out using the kraft-AQ, soda-AQ, modified AS/AQ (ASA), ASAM and kraft methods. For the other two species, only the ASAM and the kraft process were applied. ASAM pulping gave the best results in terms of yield, degree of delignification, mechanical and optical pulp properties. The best pulps, obtained in kraft and ASAM cooking of E. citriodora, were bleached to 88% ISO brightness in a totally chlorine free bleaching sequence (OQ1O/PQ2P). The bleached pulps, especially the ASAM pulp, showed good papermaking properties and would be suitable for manufacture of writing and printing grades of paper.

  18. In vitro study on silk fibroin textile structure for anterior cruciate ligament regeneration.

    Science.gov (United States)

    Farè, Silvia; Torricelli, Paola; Giavaresi, Gianluca; Bertoldi, Serena; Alessandrino, Antonio; Villa, Tomaso; Fini, Milena; Tanzi, Maria Cristina; Freddi, Giuliano

    2013-10-01

    A novel hierarchical textile structure made of silk fibroin from Bombyx mori capable of matching the mechanical performance requirements of anterior cruciate ligament (ACL) and in vitro cell ingrowth is described. This sericin-free, Silk Fibroin Knitted Sheath with Braided Core (SF-KSBC) structure was fabricated using available textile technologies. Micro-CT analysis confirmed that the core was highly porous and had a higher degree of interconnectivity than that observed for the sheath. The in vivo cell colonization of the scaffolds is thus expected to penetrate even the internal parts of the structure. Tensile mechanical tests demonstrated a maximum load of 1212.4±56.4 N (under hydrated conditions), confirming the scaffold's suitability for ACL reconstruction. The absence of cytotoxic substances in the extracts of the SF-KSBC structure in culture medium was verified by in vitro tests with L929 fibroblasts. In terms of extracellular matrix production, Human Periodontal Ligament Fibroblasts (HPdLFs) cultured in direct contact with SF-KSBC, compared to control samples, demonstrated an increased secretion of aggrecan (PG) and fibronectin (FBN) at 3 and 7 days of culture, and no change in IL-6 and TNF-α secretion. Altogether, the outcomes of this investigation confirm the significant utility of this novel scaffold for ACL tissue regeneration. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. The Role of a Platelet Lysate-Based Compartmentalized System as a Carrier of Cells and Platelet-Origin Cytokines for Periodontal Tissue Regeneration.

    Science.gov (United States)

    Babo, Pedro S; Cai, Xinjie; Plachokova, Adelina S; Reis, Rui L; Jansen, John A; Gomes, Manuela E; Walboomers, X Frank

    2016-10-01

    Currently available clinical therapies are not capable to regenerate tissues that are lost by periodontitis. Tissue engineering can be applied as a strategy to regenerate reliably the tissues and function of damaged periodontium. A prerequisite for this regeneration is the colonization of the defect with the adequate cell populations. In this study, we proposed a bilayered system composed of (1) a platelet lysate (PL)-based construct produced by crosslinking of PL proteins with genipin (gPL) for the delivery of rat periodontal ligament cells (rat-PDLCs); combined with (2) an injectable composite consisting of calcium phosphate cement incorporated with PL-loaded poly(d, l-lactic-co-glycolic acid) microspheres. This system was expected to promote periodontal regeneration by the delivery of adequate progenitor cells and providing a stable system enriched with adequate cytokines and growth factors for the orchestration of tissue regrowth in periodontal defects. The bilayered system was tested in a three-wall intrabony defect in rats and the healing of periodontal tissue was assessed 6 weeks after surgery. Results showed that the bilayered system was able to promote the regrowth of functional periodontal tissues, both with (cells + gPL) and without the loading of PDLCs (gPL). Significant connective tissue attachment (45.0 ± 15.0% and 64.0 ± 15.0% for gPL and cells + gPL group, respectively) and new bone area (33.8 ± 21% and 21.3 ± 3% for gPL and cells + gPL group, respectively) were observed. Nevertheless, rat PDLCs delivered with gPL construct in the defect area were hardly visible 6 weeks after surgery and did not contribute for the regeneration of new periodontal tissue. Overall, our findings show that the bilayered system promotes the stabilization of PL proteins on the root surface and has a positive effect in the repair of periodontal tissues both in quality and in quantity.

  20. Kinetic modeling of formic acid pulping of bagasse.

    Science.gov (United States)

    Tu, Qiliang; Fu, Shiyu; Zhan, Huaiyu; Chai, Xinsheng; Lucia, Lucian A

    2008-05-14

    Organic solvent or organosolv pulping processes are alternatives to soda or kraft pulping to delignify lignocellulosic materials for the production of paper pulp. Formic acid, a typical organosolv system, has been presently examined under atmospheric pressure to pulp bagasse fibers. It was shown that efficient bagasse pulping was achieved when the formic acid concentration was limited to 90% (v/v). A statistical kinetic model based on the experimental results for the delignification of bagasse during formic acid pulping was developed that can be described as follows: D (delignification) = 0.747 x C(formicacid) (1.688) x (1 - e(-0.05171t)), an equation that can be used to predict the lignin content in formic acid during the pulping process. The delignification of bagasse by 90% formic acid was almost completed after approximately 80 min, while extended pulping did not improve the delignification but tended to degrade the carbohydrates in bagasse, especially the hemicelluloses, which were rapidly hydrolyzed at the onset of pulping.

  1. Unilateral aplasia of both cruciate ligaments

    Directory of Open Access Journals (Sweden)

    Liem Dennis

    2010-02-01

    Full Text Available Abstract Aplasia of both cruciate ligaments is a rare congenital disorder. A 28-year-old male presented with pain and the feeling of instability of his right knee after trauma. The provided MRI and previous arthroscopy reports did not indicate any abnormalities except cruciate ligament tears. He was referred to us for reconstruction of both cruciate ligaments. The patient again underwent arthroscopy which revealed a hypoplasia of the medial trochlea and an extremely narrow intercondylar notch. The tibia revealed a missing anterior cruciate ligament (ACL footprint and a single bump with a complete coverage with articular cartilage. There was no room for an ACL graft. A posterior cruciate ligament could not be identified. The procedure was ended since a ligament reconstruction did not appear reasonable. A significant notch plasty if not a partial resection of the condyles would have been necessary to implant a ligament graft. It is most likely that this would not lead to good knee stability. If the surgeon would have retrieved the contralateral hamstrings at the beginning of the planned ligament reconstruction a significant damage would have occurred to the patient. Even in seemingly clear diagnostic findings the arthroscopic surgeon should take this rare abdnormality into consideration and be familiar with the respective radiological findings. We refer the abnormal finding of only one tibial spine to as the "dromedar-sign" as opposed to the two (medial and a lateral tibial spines in a normal knee. This may be used as a hint for aplasia of the cruciate ligaments.

  2. Resistin: A Potential Biomarker for Periodontitis Influenced Diabetes Mellitus and Diabetes Induced Periodontitis

    Directory of Open Access Journals (Sweden)

    Archana Devanoorkar

    2014-01-01

    Full Text Available Biomarkers are highly specific and sensitive indicators of disease activity. Resistin is a recently discovered adipocytokine, having a potent biomarker quality. Initially resistin was thought to be produced by adipocytes alone; however, emerging evidence suggests that it is also produced in abundance by various cells of the immunoinflammatory system, indicating its role in various chronic inflammatory diseases. Data suggests that resistin plays a role in obesity, insulin resistance, cardiovascular diseases, and periodontitis. Resistin derived its name from the original observation that it induced insulin resistance (resist-in: resist insulin in mice and is downregulated in mature murine adipocytes cultured in the presence of insulin sensitizing drugs like thiazolidinediones. It is well recognized that obesity, is associated with insulin resistance and diabetes. A three-way relationship has been established between diabetes, obesity and periodontitis. Recent evidence also suggests an association between obesity and increased risk for periodontitis. Our previous research showed incremental elevation of resistin with periodontal disease activity and a reduced level of resistin, after periodontal therapy. Thus resistin would be one of the molecular links connecting obesity, periodontitis, and diabetes and may serve as a marker that links periodontal disease with other systemic diseases. A Medline/PubMed search was carried out for keywords “Diabetes Mellitus,” “Periodontitis,” and “Resistin,” and all relevant research papers from 1990 in English were shortlisted and finalized based on their importance. This review provides an insight into the biological action of resistin and its possible role in periodontitis influenced diabetes mellitus and diabetes induced periodontitis.

  3. Chapter 6: Prehydrolysis Pulping with Fermentation Coproducts

    Science.gov (United States)

    T.H. Wegner; C.J. Houtman; A.W. Rudie; B.L. Illman; P.J. Ince; E.M. Bilek; T.W. Jeffries

    2013-01-01

    Although the term “integrateed biorefinery” is new, the concept has long been familiar to the pulp and paper industry, where processes include biomass boilers providing combined heat and power, and byproducts of pulping include turpentine, fatty acids and resin acids. In the dominant kraft (or sulfate) pulping process, dissolved lignin and chemicals from the pulp...

  4. Sacroiliac part of the iliolumbar ligament

    NARCIS (Netherlands)

    Pool-Goudzwaard, A.L.; Kleinrensink, G.J.; Snijders, C.; Stoeckart, R.

    1999-01-01

    The iliolumbar ligament has been described as the most important ligament for restraining movement at the lumbosacral junction. In addition, it may play an important role in restraining movement in the sacroiliac joints. To help understand its presumed restraining effect, the anatomy of the ligament

  5. Expression of high mobility group box 1 in inflamed dental pulp and its chemotactic effect on dental pulp cells

    International Nuclear Information System (INIS)

    Zhang, Xufang; Jiang, Hongwei; Gong, Qimei; Fan, Chen; Huang, Yihua; Ling, Junqi

    2014-01-01

    Highlights: • HMGB1 translocated from nucleus to cytoplasm during dental pulp inflammation. • HMGB1and its receptor RAGE were up-regulated in hDPCs under LPS stimulation. • HMGB1 enhanced hDPCs migration and induces cytoskeleton reorganization. • HMGB1 may play a critical role in dental pulp repair during inflamed state. - Abstract: High mobility group box 1 protein (HMGB1) is a chromatin protein which can be released extracellularly, eliciting a pro-inflammatory response and promoting tissue repair process. This study aimed to examine the expression and distribution of HMGB1 and its receptor RAGE in inflamed dental pulp tissues, and to assess its effects on proliferation, migration and cytoskeleton of cultured human dental pulp cells (DPCs). Our data demonstrated that cytoplasmic expression of HMGB1 was observed in inflamed pulp tissues, while HMGB1 expression was confined in the nuclei in healthy dental pulp. The mRNA expression of HMGB1 and RAGE were significantly increased in inflamed pulps. In in vitro cultured DPCs, expression of HMGB1 in both protein and mRNA level was up-regulated after treated with lipopolysaccharide (LPS). Exogenous HMGB1 enhanced DPCs migration in a dose-dependent manner and induced the reorganization of f-actin in DPCs. Our results suggests that HMGB1 are not only involved in the process of dental pulp inflammation, but also play an important role in the recruitment of dental pulp stem cells, promoting pulp repair and regeneration

  6. Expression of high mobility group box 1 in inflamed dental pulp and its chemotactic effect on dental pulp cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xufang, E-mail: xufang.zhang@student.qut.edu.au [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059 (Australia); Jiang, Hongwei, E-mail: jianghw@163.com [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Gong, Qimei, E-mail: gongqmei@gmail.com [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Fan, Chen, E-mail: c3.fan@student.qut.edu.au [Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059 (Australia); Huang, Yihua, E-mail: enu0701@163.com [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Ling, Junqi, E-mail: lingjq@mail.sysu.edu.cn [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China)

    2014-08-08

    Highlights: • HMGB1 translocated from nucleus to cytoplasm during dental pulp inflammation. • HMGB1and its receptor RAGE were up-regulated in hDPCs under LPS stimulation. • HMGB1 enhanced hDPCs migration and induces cytoskeleton reorganization. • HMGB1 may play a critical role in dental pulp repair during inflamed state. - Abstract: High mobility group box 1 protein (HMGB1) is a chromatin protein which can be released extracellularly, eliciting a pro-inflammatory response and promoting tissue repair process. This study aimed to examine the expression and distribution of HMGB1 and its receptor RAGE in inflamed dental pulp tissues, and to assess its effects on proliferation, migration and cytoskeleton of cultured human dental pulp cells (DPCs). Our data demonstrated that cytoplasmic expression of HMGB1 was observed in inflamed pulp tissues, while HMGB1 expression was confined in the nuclei in healthy dental pulp. The mRNA expression of HMGB1 and RAGE were significantly increased in inflamed pulps. In in vitro cultured DPCs, expression of HMGB1 in both protein and mRNA level was up-regulated after treated with lipopolysaccharide (LPS). Exogenous HMGB1 enhanced DPCs migration in a dose-dependent manner and induced the reorganization of f-actin in DPCs. Our results suggests that HMGB1 are not only involved in the process of dental pulp inflammation, but also play an important role in the recruitment of dental pulp stem cells, promoting pulp repair and regeneration.

  7. Pulp mill as an energy producer

    International Nuclear Information System (INIS)

    Kaulamo, O.

    1998-01-01

    The recovery boilers of pulp mills are today the most significant producers of wood energy. The power-to-heat ratio of the power plant process, i.e., power yield, is poor in existing applications. In the study, an alternative of improving the power yield of conventional pulp mills significantly was studied by applying solutions used in power plants to a pulp mill. Extensive conversion of wood energy into electricity is possible only in the recovery boiler of the pulp mill and in a large combustion boiler of bark, wood waste and wood chips integrated to this boiler. Hence, the harvest and transports of wood raw materials, i.e. pulp wood and energy wood, are integrated, and the fraction going to cook and the energy wood fraction are separated at the pulp mill. The method guarantees competitive supply of energy wood. As a result a SELLUPOWER mill was designed, where the recovery boiler combusting black liquor and the large power plant boiler combusting energy wood are integrated to one unit and constructed to a power plant process with a high power-to-heat ratio. Necessary technical solutions, project costs and economical feasibility compared to a conventional pulp mill were determined, and the effect of different production-economical parameters was also studied. (orig.)

  8. Evaluating pulp stiffness from fibre bundles by ultrasound

    Science.gov (United States)

    Karppinen, Timo; Montonen, Risto; Määttänen, Marjo; Ekman, Axel; Myllys, Markko; Timonen, Jussi; Hæggström, Edward

    2012-06-01

    A non-destructive ultrasonic tester was developed to measure the stiffness of pulp bundles. The mechanical properties of pulp are important when estimating the behaviour of paper under stress. Currently available pulp tests are tedious and alter the fibres structurally and mechanically. The developed tester employs (933 ± 15) kHz tweezer-like ultrasonic transducers and time-of-flight measurement through (9.0 ± 2.5) mm long and (0.8 ± 0.1) mm thick fibre bundles kept at (19.1 ± 0.4) °C and (62 ± 1)% RH. We determined the stiffness of soft wood pulps produced by three kraft pulping modifications: standard kraft pulp, (5.2 ± 0.4) GPa, prehydrolysis kraft pulp, (4.3 ± 0.4) GPa, and alkali extracted prehydrolysis kraft pulp, (3.3 ± 0.4) GPa. Prehydrolysis and alkali extraction processes mainly lowered the hemicellulose content of the pulps, which essentially decreased the fibre-wall stiffness hence impairing the stiffness of the fibre networks. Our results indicate that the method allows ranking of pulps according to their stiffness determined from bundle-like samples taken at an early phase of the papermaking process.

  9. Diabetes induces metabolic alterations in dental pulp.

    Science.gov (United States)

    Leite, Mariana Ferreira; Ganzerla, Emily; Marques, Márcia Martins; Nicolau, José

    2008-10-01

    Diabetes can interfere in tissue nutrition and can impair dental pulp metabolism. This disease causes oxidative stress in cells and tissues. However, little is known about the antioxidant system in the dental pulp of diabetics. Thus, it would be of importance to study this system in this tissue in order to verify possible alterations indicative of oxidative stress. The aim of this study was to evaluate some parameters of antioxidant system of the dental pulp of healthy (n = 8) and diabetic rats (n = 8). Diabetes was induced by streptozotocin in rats. Six weeks after diabetes induction, a pool of the dental pulp of the 4 incisors of each rat (healthy and diabetic) was used for the determination of total protein and sialic acid concentrations and catalase and peroxidase activities. Data were compared by a Student t test (p pulps from both groups presented similar total protein concentrations and peroxidase activity. Dental pulps of diabetic rats exhibited significantly lower free, conjugated, and total sialic acid concentrations than those of control tissues. Catalase activity in diabetic dental pulps was significantly enhanced in comparison with that of control pulps. The result of the present study is indicative of oxidative stress in the dental pulp caused by diabetes. The increase of catalase activity and the reduction of sialic acid could be resultant of reactive oxygen species production.

  10. Effect of Non-Surgical Periodontal Therapy on Interleukin-29 Levels in Gingival Crevicular Fluid of Chronic Periodontitis and Aggressive Periodontitis Patients

    Directory of Open Access Journals (Sweden)

    B. M. Shivaprasad

    2013-01-01

    Full Text Available Recently discovered interleukin 29 (IL-29 has antiviral properties and its production is induced by herpes viruses. This study was aimed at analyzing the effect of non-surgical periodontal treatment on IL-29 levels in gingival crevicular fluid (GCF of chronic and aggressive periodontitis patients. A total of 60 participants were divided into healthy group (group 1; n = 20, chronic periodontitis group (group 2; n = 20, and aggressive periodontitis group (group 3; n = 20. GCF samples collected from each subject at baseline and 6–8 weeks after scaling and root planing were quantified for IL-29 levels using ELISA. The mean IL-29 concentration in GCF was found to be highest in group 3 (92.37 pg/μl. The mean IL-29 level in group 1 and group 2 was 36.88 pg/μl and 69.35 pg/μl respectively. After scaling and root planing, the mean concentration of IL-29 in GCF was increased to 85.99 pg/μl in group 2 and to 114.64 pg/μl in group 3. Results of the present study indicate that antiviral IL-29 level was highest in GCF of aggressive periodontitis patients and least in subjects with healthy periodontium, while that of chronic periodontitis lying in between. After non-surgical periodontal therapy, IL-29 levels increased both in chronic and aggressive periodontitis patients and deserve further investigation as a potential therapeutic agent in treating periodontitis.

  11. Biogas generation apple pulp.

    Science.gov (United States)

    Llaneza Coalla, H; Blanco Fernández, J M; Morís Morán, M A; López Bobo, M R

    2009-09-01

    In view of the pressing problem that appears in our region (Asturias, north of Spain) with the residues from the cider production, it was decided to test this kind of material as a co-substrate joint with slaughterhouse waste in a laboratory unit. The anaerobic digestion of apple pulp was investigated for biogas production. This paper presents the results where apple pulp was co-digested with slaughterhouse waste (pig intestine and bovine stomach content) in a biogas laboratory unit (10 l CSTR reactor). The production of biogas has reached very satisfactory values during the whole test (0.8m(3)kg(-1)OTS), verifying that the process is kept in stable conditions of pH (near 8.0), and the volatile fatty acids was always underneath 3000 mg/l, when the pulp amount was lower than 100g in mesophilic conditions. The fat concentration into the digester remained always below the value that causes inhibition of the methanogenic bacteria, 500 mg/l. Finally, methane concentration (77-80%) and H(2)S concentration (400 ppm) in the biogas, they were similar to those obtained when the test was run out in the absence of apple pulp. The process efficiency with respect to COD removal was high, near 80% of the total COD. Finally, inhibitory effects of methanogenic bacteria were observed when pulp concentration was around 10% in the input material.

  12. Oral conditions, periodontal status and periodontal treatment need of chronic kidney disease patients

    Directory of Open Access Journals (Sweden)

    Modupeoluwa Omotunde Soroye

    2016-01-01

    Conclusion: Majority of the CKD patients reviewed had poor periodontal status with code 2 TN. We, therefore, recommend nonsurgical periodontal treatment for all CKD patients to improve their oral health and forestall the systemic effects of periodontal pathology.

  13. Non-Surgical Periodontal Therapy Reduces Saliva Adipokine and Matrix Metalloproteinase Levels in Periodontitis.

    Science.gov (United States)

    Özcan, Erkan; Işıl Saygun, N; Serdar, Muhittin A; Umut Bengi, V; Kantarcı, Alpdoğan

    2016-08-01

    Adipokines enhance the synthesis of proinflammatory cytokines and matrix metalloproteinases (MMPs), which play a role in extracellular matrix degeneration. The aim of this study is to determine the levels of some adipokines, proinflammatory cytokines, and MMPs in the saliva of patients with periodontitis and healthy individuals and to evaluate the changes after non-surgical periodontal therapy (NSPT). Of 32 individuals included in the study, 17 had periodontitis and 15 had healthy gingiva. Saliva samples were obtained from all individuals. In patients with periodontitis, samples were recollected 3 and 6 months after NSPT. Visfatin, chemerin, progranulin, interleukin (IL)-1β, IL-8, MMP-8, and MMP-13 levels were measured using enzyme-linked immunosorbent assay. In patients with periodontitis, all of the parameters measured in the saliva were higher than those of healthy individuals. At 3 months, visfatin, progranulin, IL-8, and MMP-8 levels were significantly decreased compared with baseline values. The levels of other biochemical parameters, chemerin and IL-1β, were significantly decreased compared with baseline values at 6 months, and the levels became similar to those in healthy individuals. In the periodontitis group, positive correlations were found among visfatin and IL-8 (r = 0.909, P periodontal tissue in periodontitis by stimulating the expression of proinflammatory cytokines and MMPs.

  14. Periodontal and hematological characteristics associated with aggressive periodontitis, juvenile idiopathic arthritis, and rheumatoid arthritis

    DEFF Research Database (Denmark)

    Poulsen, Anne Havemose; Westergaard, Jytte; Stoltze, Kaj

    2006-01-01

    Periodontitis shares several clinical and pathogenic characteristics with chronic arthritis, and there is some degree of coexistence. The aims of this study were to elucidate whether patients with localized aggressive periodontitis (LAgP), generalized aggressive periodontitis (GAgP), juvenile...... idiopathic arthritis (JIA), and rheumatoid arthritis (RA) share periodontal and hematological characteristics distinguishing them from individuals free of diseases....

  15. Kraft pulping of industrial wood waste

    Science.gov (United States)

    Aziz. Ahmed; Masood. Akhtar; Gary C. Myers; Gary M. Scott

    1998-01-01

    Most of the approximately 25 to 30 million tons of industrial wood waste generated in the United States per year is burned for energy and/or landfilled. In this study, kraft pulp from industrial wood waste was evaluated and compared with softwood (loblolly pine, Douglas-fir) and hardwood (aspen) pulp. Pulp bleachability was also evaluated. Compared to loblolly pine...

  16. Neck ligament strength is decreased following whiplash trauma

    Directory of Open Access Journals (Sweden)

    Rubin Wolfgang

    2006-12-01

    Full Text Available Abstract Background Previous clinical studies have documented successful neck pain relief in whiplash patients using nerve block and radiofrequency ablation of facet joint afferents, including capsular ligament nerves. No previous study has documented injuries to the neck ligaments as determined by altered dynamic mechanical properties due to whiplash. The goal of the present study was to determine the dynamic mechanical properties of whiplash-exposed human cervical spine ligaments. Additionally, the present data were compared to previously reported control data. The ligaments included the anterior and posterior longitudinal, capsular, and interspinous and supraspinous ligaments, middle-third disc, and ligamentum flavum. Methods A total of 98 bone-ligament-bone specimens (C2–C3 to C7-T1 were prepared from six cervical spines following 3.5, 5, 6.5, and 8 g rear impacts and pre- and post-impact flexibility testing. The specimens were elongated to failure at a peak rate of 725 (SD 95 mm/s. Failure force, elongation, and energy absorbed, as well as stiffness were determined. The mechanical properties were statistically compared among ligaments, and to the control data (significance level: P Results For all whiplash-exposed ligaments, the average failure elongation exceeded the average physiological elongation. The highest average failure force of 204.6 N was observed in the ligamentum flavum, significantly greater than in middle-third disc and interspinous and supraspinous ligaments. The highest average failure elongation of 4.9 mm was observed in the interspinous and supraspinous ligaments, significantly greater than in the anterior longitudinal ligament, middle-third disc, and ligamentum flavum. The average energy absorbed ranged from 0.04 J by the middle-third disc to 0.44 J by the capsular ligament. The ligamentum flavum was the stiffest ligament, while the interspinous and supraspinous ligaments were most flexible. The whiplash

  17. Rare Periodontal Ligament Drainage for Periapical Inflammation of an Adjacent Tooth: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Hongmei Guo

    2014-01-01

    Full Text Available Aim. To report a case with an unusual drainage route of periapical inflammation exiting through the gingival sulcus of an adjacent vital tooth and review probable factors determining the diversity of the discharge routes of periapical inflammation. Summary. An 18-year-old male patient presented with periodontal abscess of tooth 46, which was found to be caused by a periapical cyst with an acute abscess of tooth 45. During endodontic surgery, a rarely reported drainage route for periapical inflammation via the gingival sulcus of an adjacent vital tooth was observed for the first time. Complete periodontal healing of the deep pocket of tooth 46 and hiding of the periapical cyst of tooth 45 followed after root canal treatment and periapical surgery with Bio-Oss Collagen implantation on tooth 45. The drainage routes of periapical inflammation are multivariate and the diversity of drainage pathways of periapical inflammation is mainly related to factors such as gravity, barriers against inflammation, and the causative tooth itself.

  18. Comorbidity of periodontal disease

    DEFF Research Database (Denmark)

    Holmstrup, Palle; Damgaard, Christian; Olsen, Ingar

    2017-01-01

    Increasing evidence has suggested an independent association between periodontitis and a range of comorbidities, for example cardiovascular disease, type 2 diabetes, rheumatoid arthritis, osteoporosis, Parkinson's disease, Alzheimer's disease, psoriasis, and respiratory infections. Shared....... The present article presents an overview of the evidence linking periodontitis with selected systemic diseases and calls for increased cooperation between dentists and medical doctors to provide optimal screening, treatment, and prevention of both periodontitis and its comorbidities....... inflammatory pathways are likely to contribute to this association, but distinct causal mechanisms remain to be defined. Some of these comorbid conditions may improve by periodontal treatment, and a bidirectional relationship may exist, where, for example, treatment of diabetes can improve periodontal status...

  19. Potassium hydroxide pulping of rice straw in biorefinery initiatives.

    Science.gov (United States)

    Jahan, M Sarwar; Haris, Fahmida; Rahman, M Mostafizur; Samaddar, Purabi Rani; Sutradhar, Shrikanta

    2016-11-01

    Rice straw is supposed to be one of the most important lignocellulosic raw materials for pulp mill in Asian countries. The major problem in rice straw pulping is silica. The present research is focused on the separation of silica from the black liquor of rice straw pulping by potassium hydroxide (KOH) and pulp evaluation. Optimum KOH pulping conditions of rice straw were alkali charge 12% as NaOH, cooking temperature 150°C for 2h and material to liquor ratio, 1:6. At this condition pulp yield was 42.4% with kappa number 10.3. KOH pulp bleached to 85% brightness by D0EpD1 bleaching sequences with ClO2 consumption of 25kg/ton of pulp. Silica and lignin were separated from the black liquor of KOH pulping. The amount of recovered silica, lignin and hemicelluloses were 10.4%, 8.4% and 13.0%. The papermaking properties of KOH pulp from rice straw were slightly better than those of corresponding NaOH pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. High-yield pulping effluent treatment technologies

    International Nuclear Information System (INIS)

    Su, W.X.; Hsieh, J.S.

    1993-03-01

    The objective of this report is to examine the high-yield (mechanical) pulp processes with respect to environmental issues affected by the discharge of their waste streams. Various statistics are given that support the view that high-yield pulping processes will have major growth in the US regions where pulp mills are located, and sites for projects in the development phase are indicated. Conventional and innovative effluent-treatment technologies applicable to these processes are reviewed. The different types of mechanical pulping or high-yield processes are explained, and the chemical additives are discussed. The important relationship between pulp yield and measure of BOD in the effluent is graphically presented. Effluent contaminants are identified, along with other important characteristics of the streams. Current and proposed environmental limitations specifically related to mechanical pulp production are reviewed. Conventional and innovative effluent-treatment technologies are discussed, along with their principle applications, uses, advantages, and disadvantages. Sludge management and disposal techniques become an intimate part of the treatment of waste streams. The conclusion is made that conventional technologies can successfully treat effluent streams under current waste-water discharge limitations, but these systems may not be adequate when stricter standards are imposed. At present, the most important issue in the treatment of pulp-mill waste is the management and disposal of the resultant sludge

  1. MR imaging of posttraumatic spinal ligament injury

    International Nuclear Information System (INIS)

    Pathria, M.N.; Emery, S.; Masaryk, T.J.; Wilber, R.G.; Bohlman, H.

    1988-01-01

    The accuracy of MR imaging in the detection of ligamentous injury was evaluated in 29 patients (24 male, five female) with spinal injury resulting in fractures (n=27), evidence of instability (n=11), or neurologic deficit (n=2). MR examinations were performed acutely (average, 7.5 days posttrauma) with T1- and T2-weighted imaging and were blindly evaluated. Subsequently, plain films (n=27), tomograms (n=10), and CT scans (n=22) were evaluated. Eighteen patients underwent surgery. Fourteen patients had torn ligaments as indicated by clinical and surgical findings. MR imaging demonstrated ligament damage in 13. One case imaged 40 days following trauma was not detected. No patients with intact ligaments had evidence of ligamentous damage on MR images. MR imaging demonstrated retropulsed fractures in six patients in whom the posterior longitudinal ligament was intact but displaced from the vertebra. MR imaging was more reliable than radiography and CT for detection of ligamentous injury, and T2- weighted sequences are essential in such cases

  2. Hydrothermal carbonization of autoclaved municipal solid waste pulp and anaerobically treated pulp digestate

    Science.gov (United States)

    In this study, the autoclaved organic fraction of municipal solid waste pulp (OFMSW) and the digestate from OFMSW pulp after anaerobic digestion (AD) were processed by hydrothermal carbonization (HTC) at 200, 250, and 300 °C for 30 min and 2 h. The focus of this work was to evaluate the potential fo...

  3. MR imaging of alar and transverse atlantal ligament injuries

    Energy Technology Data Exchange (ETDEWEB)

    Echigoya, Naoki; Harata, Seiko; Ueyama, Kazumasa (Hirosaki Univ., Aomori (Japan). School of Medicine); Nakano, Keisuke

    1992-06-01

    Autopsy findings of ligaments of the upper cervical spine were compared with magnetic resonance imaging (MRI) findings. Ligaments were clearly shown as hypointensity on T1-weighted images and proton density images. Transverse images were useful in diagnosing alar and transverse atlantal ligament injuries. When there is a bilateral difference in the alar ligaments, ruptured ligament is suspected. Transverse ligament rupture was shown on interrupted hypointensity and as hyperintensity. MRI was capable of diagnosing alar ligament rupture in 8 of 11 patients, and transverse ligament rupture in all 3 patients. In 2 patients having Jefferson's fracture and injuried atlanoaxial subluxation encountered in the clinical practice, transverse ligament rupture was similarly observed as that in autopsy cases on MR images. Hyperintensity in the transverse ligament rupture area was seen even one year after injury. Injured transverse ligament was seen as swollen hyperintensity on sagittal images; and the hyperintensity was gradually decreased with the process of healing. (N.K.).

  4. Deltoid ligament in acute ankle injury: MR imaging analysis

    International Nuclear Information System (INIS)

    Jeong, Min Sun; Choi, Yun Sun; Kim, Yun Jung; Jung, Yoon Young; Kim, Jin Su; Young, Ki Won

    2014-01-01

    To identify the pattern of deltoid ligament injury after acute ankle injury and the relationship between ankle fracture and deltoid ligament tear by magnetic resonance imaging (MRI). Thirty-six patients (32 male, and 4 female; mean age, 29.8 years) with acute deltoid ligament injury who had undergone MRI participated in this study. The deltoid ligament was classified as having 3 superficial and 2 deep components. An image analysis included the integrity and tear site of the deltoid ligament, and other associated injuries. Association between ankle fracture and deltoid ligament tear was assessed using Fisher's exact test (P < 0.05). Of the 36 patients, 21 (58.3 %) had tears in the superficial and deep deltoid ligaments, 6 (16.7 %) in the superficial ligaments only, and 4 (11.1 %) in the deep ligaments only. The most common tear site of the three components of the superficial deltoid and deep anterior tibiotalar ligaments was their proximal attachments (94 % and 91.7 % respectively), and that of the deep posterior tibiotalar ligament (pTTL) was its distal attachment (82.6 %). The common associated injuries were ankle fracture (63.9 %), syndesmosis tear (55.6 %), and lateral collateral ligament complex tear (44.4 %). All the components of the deltoid ligament were frequently torn in patients with ankle fractures (tibionavicular ligament, P = 0.009). The observed injury pattern of the deltoid ligament was complex and frequently associated with concomitant ankle pathology. The most common tear site of the superficial deltoid ligament was the medial malleolar attachment, whereas that of the deep pTTL was near its medial talar insertion. (orig.)

  5. Pulp stem cells: implication in reparative dentin formation.

    Science.gov (United States)

    Dimitrova-Nakov, Sasha; Baudry, Anne; Harichane, Yassine; Kellermann, Odile; Goldberg, Michel

    2014-04-01

    Many dental pulp stem cells are neural crest derivatives essential for lifelong maintenance of tooth functions and homeostasis as well as tooth repair. These cells may be directly implicated in the healing process or indirectly involved in cell-to-cell diffusion of paracrine messages to resident (pulpoblasts) or nonresident cells (migrating mesenchymal cells). The identity of the pulp progenitors and the mechanisms sustaining their regenerative capacity remain largely unknown. Taking advantage of the A4 cell line, a multipotent stem cell derived from the molar pulp of mouse embryo, we investigated the capacity of these pulp-derived precursors to induce in vivo the formation of a reparative dentin-like structure upon implantation within the pulp of a rodent incisor or a first maxillary molar after surgical exposure. One month after the pulp injury alone, a nonmineralized fibrous matrix filled the mesial part of the coronal pulp chamber. Upon A4 cell implantation, a mineralized osteodentin was formed in the implantation site without affecting the structure and vitality of the residual pulp in the central and distal parts of the pulp chamber. These results show that dental pulp stem cells can induce the formation of reparative dentin and therefore constitute a useful tool for pulp therapies. Finally, reparative dentin was also built up when A4 progenitors were performed by alginate beads, suggesting that alginate is a suitable carrier for cell implantation in teeth. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. 16S rDNA analysis of periodontal plaque in chronic obstructive pulmonary disease and periodontitis patients.

    Science.gov (United States)

    Wu, Xingwen; Chen, Jiazhen; Xu, Meng; Zhu, Danting; Wang, Xuyang; Chen, Yulin; Wu, Jing; Cui, Chenghao; Zhang, Wenhong; Yu, Liying

    2017-01-01

    This study investigated if chronic obstructive pulmonary disease (COPD) is correlated with periodontitis via periodontal microbiota and if certain bacteria affect periodontitis as well as COPD. Moreover, the study investigated whether suffering from COPD is associated with a decrease in the richness and diversity of periodontal microbiota. Subgingival plaque was obtained from 105 patients. Bacterial DNA was isolated from 55 COPD and 50 non-COPD participants (either with or without periodontitis). 16S rRNA gene metagenomic sequencing was used to characterize the microbiota and to determine taxonomic classification. In the non-periodontitis patients, suffering from COPD resulted in a decrease in bacteria richness and diversity in the periodontal microenvironment. An increase in the genera Dysgonomonas , Desulfobulbus , and Catonella and in four species ( Porphyromonas endodontalis , Dysgonomonas wimpennyi , Catonella morbi , and Prevotella intermedia ) in both COPD and periodontitis patients suggests that an increase in these periodontitis-associated microbiota may be related to COPD. Three genera ( Johnsonella , Campylobacter , and Oribacterium ) were associated with COPD but not with periodontitis. The decrease in the genera Arcanobacterium , Oribacterium , and Streptomyces in COPD patients implies that these genera may be health-associated genera, and the decrease in these genera may be related to disease. These data support the hypothesis that COPD is correlated with periodontitis via these significantly changed specific bacteria.

  7. Ozone therapy in periodontics.

    Science.gov (United States)

    Gupta, G; Mansi, B

    2012-02-22

    Gingival and Periodontal diseases represent a major concern both in dentistry and medicine. The majority of the contributing factors and causes in the etiology of these diseases are reduced or treated with ozone in all its application forms (gas, water, oil). The beneficial biological effects of ozone, its anti-microbial activity, oxidation of bio-molecules precursors and microbial toxins implicated in periodontal diseases and its healing and tissue regeneration properties, make the use of ozone well indicated in all stages of gingival and periodontal diseases. The primary objective of this article is to provide a general review about the clinical applications of ozone in periodontics. The secondary objective is to summarize the available in vitro and in vivo studies in Periodontics in which ozone has been used. This objective would be of importance to future researchers in terms of what has been tried and what the potentials are for the clinical application of ozone in Periodontics.

  8. Functional tissue engineering of ligament healing

    Directory of Open Access Journals (Sweden)

    Hsu Shan-Ling

    2010-05-01

    Full Text Available Abstract Ligaments and tendons are dense connective tissues that are important in transmitting forces and facilitate joint articulation in the musculoskeletal system. Their injury frequency is high especially for those that are functional important, like the anterior cruciate ligament (ACL and medial collateral ligament (MCL of the knee as well as the glenohumeral ligaments and the rotator cuff tendons of the shoulder. Because the healing responses are different in these ligaments and tendons after injury, the consequences and treatments are tissue- and site-specific. In this review, we will elaborate on the injuries of the knee ligaments as well as using functional tissue engineering (FTE approaches to improve their healing. Specifically, the ACL of knee has limited capability to heal, and results of non-surgical management of its midsubstance rupture have been poor. Consequently, surgical reconstruction of the ACL is regularly performed to gain knee stability. However, the long-term results are not satisfactory besides the numerous complications accompanied with the surgeries. With the rapid development of FTE, there is a renewed interest in revisiting ACL healing. Approaches such as using growth factors, stem cells and scaffolds have been widely investigated. In this article, the biology of normal and healing ligaments is first reviewed, followed by a discussion on the issues related to the treatment of ACL injuries. Afterwards, current promising FTE methods are presented for the treatment of ligament injuries, including the use of growth factors, gene delivery, and cell therapy with a particular emphasis on the use of ECM bioscaffolds. The challenging areas are listed in the future direction that suggests where collection of energy could be placed in order to restore the injured ligaments and tendons structurally and functionally.

  9. MicroRNAs and Periodontal Homeostasis.

    Science.gov (United States)

    Luan, X; Zhou, X; Trombetta-eSilva, J; Francis, M; Gaharwar, A K; Atsawasuwan, P; Diekwisch, T G H

    2017-05-01

    MicroRNAs (miRNAs) are a group of small RNAs that control gene expression in all aspects of eukaryotic life, primarily through RNA silencing mechanisms. The purpose of the present review is to introduce key miRNAs involved in periodontal homeostasis, summarize the mechanisms by which they affect downstream genes and tissues, and provide an introduction into the therapeutic potential of periodontal miRNAs. In general, miRNAs function synergistically to fine-tune the regulation of biological processes and to remove expression noise rather than by causing drastic changes in expression levels. In the periodontium, miRNAs play key roles in development and periodontal homeostasis and during the loss of periodontal tissue integrity as a result of periodontal disease. As part of the anabolic phase of periodontal homeostasis and periodontal development, miRNAs direct periodontal fibroblasts toward alveolar bone lineage differentiation and new bone formation through WNT, bone morphogenetic protein, and Notch signaling pathways. miRNAs contribute equally to the catabolic aspect of periodontal homeostasis as they affect osteoclastogenesis and osteoclast function, either by directly promoting osteoclast activity or by inhibiting osteoclast signaling intermediaries or through negative feedback loops. Their small size and ability to target multiple regulatory networks of related sets of genes have predisposed miRNAs to become ideal candidates for drug delivery and tissue regeneration. To address the immense therapeutic potential of miRNAs and their antagomirs, an ever growing number of delivery approaches toward clinical applications have been developed, including nanoparticle carriers and secondary structure interference inhibitor systems. However, only a fraction of the miRNAs involved in periodontal health and disease are known today. It is anticipated that continued research will lead to a more comprehensive understanding of the periodontal miRNA world, and a systematic

  10. Pulping Variables, Storage Time and Pitch Deposit | Ogunwusi ...

    African Journals Online (AJOL)

    Pulp resin is also influenced by effective alkali concentration of the pulping medium. With increase in effective alkali concentration from 13% to 15%, pulp pitch is reduced. The interaction effect of storage and effective alkali concentration was not significant indicating that reduction in pulp pitch caused by effective alkali ...

  11. Menyikat Gigi, Konsumsi Buah Dan Sayur, Aktivitas Fisik, Diabetes Mellitus Dengan Jaringan Periodontal Gigi di Indonesia, Tahun 2013

    Directory of Open Access Journals (Sweden)

    Indirawati Tjahja Notohartojo

    2017-06-01

    Full Text Available If dental and oral hygiene are not maintained properly, the balance of bacteria plaque will be disrupted. By brushing teeth properly after breakfast and before sleep at night, the dental and oral hygiene are well preserved. Physical activity is important can increase blood circulation throughout the body. Periodontal tissues are supporting teeth consisting of gums, periodontal ligament, cementum and alveolar bone. The study aimed to determine association of tooth brushing, eating fruits and vegetables, physical activity and Diabetes Mellitus to Periodontal tissues. It was a further analysis of Riskesdas 2013. The Riskesdas was a survey of observational and with a cross sectional design. It was carried out in 33 provinces and 497 districts year 2013. The population were all Indonesians. Samples were household members aged 15 years and above and of a total 722 329 people. Variable dependent was periodontal tissue health, whereas the independent variables were brush teeth properly, eat fruits and vegetables, physical activity, Diabetes Mellitus. Data were analyzed bivariately x2 test. Brushing teeth properly was signifi cantly associated to periodontal tissues health, as well as enough physical activity. Meanwhile, eat fruits and vegetables (p = 0.117 and also diabetes mellitus (p = 0.647 were not signifi cantly associated to periodontal tissues health. Diabetes mellitus did not infl uence the periodontal tissues health possibly because it was assessed by interview and was not followed by blood examination. It suggests to maintain dental and oral hygiene by brushing teeth properly twice a day after breakfast and before sleep. Besides, it needs to promote enough physical activity associated with healthy periodontal tissues. Abstrak Bila kebersihan gigi mulut tidak dijaga dengan baik, maka keseimbangan bakteri plak akan terganggu. Dengan menyikat gigi secara benar setelah makan pagi dan sebelum tidur malam, kebersihan gigi dan mulut terjaga dengan

  12. Deltoid ligament in acute ankle injury: MR imaging analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Min Sun; Choi, Yun Sun; Kim, Yun Jung; Jung, Yoon Young [Eulji University, Department of Radiology, Eulji Hospital, Seoul (Korea, Republic of); Kim, Jin Su; Young, Ki Won [Eulji University, Department of Orthopedic Surgery, Eulji Hospital, Seoul (Korea, Republic of)

    2014-05-15

    To identify the pattern of deltoid ligament injury after acute ankle injury and the relationship between ankle fracture and deltoid ligament tear by magnetic resonance imaging (MRI). Thirty-six patients (32 male, and 4 female; mean age, 29.8 years) with acute deltoid ligament injury who had undergone MRI participated in this study. The deltoid ligament was classified as having 3 superficial and 2 deep components. An image analysis included the integrity and tear site of the deltoid ligament, and other associated injuries. Association between ankle fracture and deltoid ligament tear was assessed using Fisher's exact test (P < 0.05). Of the 36 patients, 21 (58.3 %) had tears in the superficial and deep deltoid ligaments, 6 (16.7 %) in the superficial ligaments only, and 4 (11.1 %) in the deep ligaments only. The most common tear site of the three components of the superficial deltoid and deep anterior tibiotalar ligaments was their proximal attachments (94 % and 91.7 % respectively), and that of the deep posterior tibiotalar ligament (pTTL) was its distal attachment (82.6 %). The common associated injuries were ankle fracture (63.9 %), syndesmosis tear (55.6 %), and lateral collateral ligament complex tear (44.4 %). All the components of the deltoid ligament were frequently torn in patients with ankle fractures (tibionavicular ligament, P = 0.009). The observed injury pattern of the deltoid ligament was complex and frequently associated with concomitant ankle pathology. The most common tear site of the superficial deltoid ligament was the medial malleolar attachment, whereas that of the deep pTTL was near its medial talar insertion. (orig.)

  13. Periodontal Emergencies in General Practice.

    Science.gov (United States)

    Wadia, Reena; Ide, Mark

    2017-05-01

    Diagnosing and managing periodontal emergencies is a common part of general dental practice. This article summarises the presentation, aetiology and management of the key periodontal emergencies, including gingival abscess, periodontal abscess, peri-coronitis/peri-coronal abscess, perio-endo lesion/ abscess, necrotising gingivitis and periodontitis, acute herpetic gingivostomatitis, acute physical/chemical/thermal injury and subgingival root fracture.

  14. Immediate overdenture for improving aesthetic of anterior teeth with periodontal problem

    Directory of Open Access Journals (Sweden)

    FX. Ady Soesetijo

    2012-03-01

    Full Text Available Background: The construction of overdenture is often applied because endodontic treatment usualy give very promising results and patient has high motivation to maintain their natural teeth. Overdenture is a removable partial or complete denture that covers and rests on one or more remaining natural teeth, roots and/or dental implants. The presence of retained teeth can maximize retention, stabilization and prevent trauma to the oral mucosa. Meanwhile, the presence of root in the bone can delay resorption of the alveolar process. The role of proprioceptor in the periodontal ligament abutment teeth remains effective. Thus, it can be said the overdenture treatment is a preventive prosthodontic treatment. Purpose: The purpose of this case report was to present a case of maxillary and mandibullary anterior teeth with periodontal disease, through endodontic and prosthodontic treatments for recovering its function of phonetic and aesthetic. Case: The 25 years old female with periodontal problems (protrusive, wiggly °1–°2 and along with gingival retraction on 12, 11, 21, 22 and 32, 31, 41, 42. The patient felt bad about his performance and affect his self confidence. The patient visited tthe dental hospital to restore her teeth and recovering aesthetic and phonetic functions. Case management: The overdenture inserted immediately after one visit endodontic treatment and cutting off the clinical crown of the teeth. The adaptation of the denture is needed by relining using self cured acrylic resin. The patient was quite satisfied with the treatment. Conclusion: In conclusion, the maxillary and mandibullary anterior teeth with periodontal problem could be managed through conservative and prosthotontic approach of treatment to recover of its performance and function.Latar belakang: Konstruksi overdenture sering diaplikasikan pada pasien, karena perawatan endodontik memberikan hasil perawatan yang sangat menjanjikan dan pasien memiliki motivasi tinggi

  15. Periodontal disease and systemic complications

    Directory of Open Access Journals (Sweden)

    Rui Vicente Oppermann

    2012-01-01

    Full Text Available Periodontal diseases comprise a number of infectious and inflammatory conditions brought about by the interaction between supragingival and subgingival biofilms and the host inflammatory response. Periodontal diseases should be considered systemic conditions. This means that they are both modulated by the body's systems and play a role as a risk factor for systemic derangements. The current evidence supports some of these interactions, such as smoking as a risk factor for periodontal disease and diabetes mellitus, as both influenced by and influencing inflammatory changes in the periodontal tissue. Other potential associations are still being researched, such as obesity, hormonal changes, cardiovascular disease, and adverse outcomes in pregnancy. These, and others, still require further investigation before the repercussions of periodontal disease can be fully elucidated. Nevertheless, at the present time, the treatment of periodontal diseases-and, most importantly, their prevention-enables adequate intervention as a means of ensuring periodontal health.

  16. Radio sterilized human ligaments and their clinical application

    International Nuclear Information System (INIS)

    Luna Z, D.; Reyes F, M. L.; Diaz M, I.; Hernandez R, G.

    2009-10-01

    The ligaments are human tissues that are used in the transplantation area. A ligament is an anatomical structure in band form, composed by resistant fibers that connect the tissues that unite the bones with the articulations. In an articulation, the ligaments allow and facilitate the movement inside the natural anatomical directions, while it restricts those movements that are anatomically abnormal, impeding lesions that could arise of this type of movements. The kneecap ligament is a very important tissue in the knee mobility and of walking in the human beings. This ligament can injure it because of automobile accidents, for sport lesions or illnesses, and in many cases the only form of recovering the knee movement is carried out a transplant with the purpose of replacing the damage ligament by allo gen kneecap ligament processed in specialized Tissue Banks where the tissue is sterilized with gamma radiation of 60 Co at very low temperatures, obtaining high quality ligaments for clinical application in injured patients. The kneecap ligaments are processed in the Tissue Banks with a segment of kneecap bone, a segment of tibial bone, the contained ligament between both bones and in some cases a fraction of the quadriceps tendon. In this work is given a description of the selection method of the tissue that includes the donor's serologic control, the kneecap ligament processing in the Radio Sterilized Tissues Bank, its sterilization with gamma radiation of 60 Co, also it is indicated like the clinical application of the allo gen ligament was realized in a hasty patient and whose previous crossed ligament was injured. Finally the results are presented from the tissue obtaining until the clinical application of it is, and in this case is observed a favorable initial evolution of the transplantation patient. (Author)

  17. Systemic antibiotics in periodontics.

    Science.gov (United States)

    Slots, Jørgen

    2004-11-01

    This position paper addresses the role of systemic antibiotics in the treatment of periodontal disease. Topical antibiotic therapy is not discussed here. The paper was prepared by the Research, Science and Therapy Committee of the American Academy of Periodontology. The document consists of three sections: 1) concept of antibiotic periodontal therapy; 2) efficacy of antibiotic periodontal therapy; and 3) practical aspects of antibiotic periodontal therapy. The conclusions drawn in this paper represent the position of the American Academy of Periodontology and are intended for the information of the dental profession.

  18. Chronic injuries of the cruciate ligaments

    International Nuclear Information System (INIS)

    Pricca, P.; Cecchini, A.; Vecchioni, G.; Mariani, P.M.; Tansini, A.; Ferrario, A.

    1988-01-01

    The high incidence of cruciate ligament injuries as a result of acute knee trauma with hemartrosis and abuse of diagnostic arthroscopies call for a suitable radiological imaging of the central pivot. Computed Arthrotomography (CAT) was used to examine the knee joint in 20 cases of clinically suspected chronic cruciate ligament injury. The images were correlated with arthroscopic and/or arthrotomic findings. Thirteen lesions of the anterior cruciate ligament (ACL) (65%) were found, plus 1 lesion of the posterior cruciate ligament (PCL) (5%), 2 associated lesions of ACL + PCL (10%), and 4 normal cases. Confirmation of pathology was available in all cases but one by arthroscopy and/or surgery. The central pivot diseases were classified as follows: absence, detachement, partial or complete tear. CAT findings of cruciate ligament injuries are emphasized and the role of the technique as compared to arthroscopy is discussed. CAT is useful in 3-D evaluation of central pivot and detection of different cruciate ligament injuries, with high sensitivity-specifity for ACL and high specifity-moderate sensitivity for PCL. In the evaluation of the chronic unstable knee, CAT is highly accurate and gives the surgeon useful information towards the planning of therapeutic procedures. CAT is almost non-invasive, well tolerated and easy to perform in out-patients, which make it a first-choice procedure in the screening of chronic ligament injuries

  19. Anatomy of the ankle ligaments: a pictorial essay

    NARCIS (Netherlands)

    Golanó, Pau; Vega, Jordi; de Leeuw, Peter A. J.; Malagelada, Francesc; Manzanares, M. Cristina; Götzens, Víctor; van Dijk, C. Niek

    2010-01-01

    Understanding the anatomy of the ankle ligaments is important for correct diagnosis and treatment. Ankle ligament injury is the most frequent cause of acute ankle pain. Chronic ankle pain often finds its cause in laxity of one of the ankle ligaments. In this pictorial essay, the ligaments around the

  20. Anatomy of the ankle ligaments: a pictorial essay

    NARCIS (Netherlands)

    Golanó, Pau; Vega, Jordi; de Leeuw, Peter A. J.; Malagelada, Francesc; Manzanares, M. Cristina; Götzens, Víctor; van Dijk, C. Niek

    2016-01-01

    Understanding the anatomy of the ankle ligaments is important for correct diagnosis and treatment. Ankle ligament injury is the most frequent cause of acute ankle pain. Chronic ankle pain often finds its cause in laxity of one of the ankle ligaments. In this pictorial essay, the ligaments around the