WorldWideScience

Sample records for proinsulin

  1. Specific insulin and proinsulin secretion in glucokinase-deficient individuals

    Directory of Open Access Journals (Sweden)

    V.C. Pardini

    1999-04-01

    Full Text Available Glucokinase (GCK is an enzyme that regulates insulin secretion, keeping glucose levels within a narrow range. Mutations in the glucokinase gene cause a rare form of diabetes called maturity-onset diabetes of the young (MODY. An early onset (less than 25 years, autosomal dominant inheritance and low insulin secretion stimulated by glucose characterize MODY patients. Specific insulin and proinsulin were measured in serum by immunofluorimetric assays (IFMA during a 75-g oral glucose tolerance test (OGTT. Two kindreds (SA and LZ were studied and compared to non-diabetic unrelated individuals (control group 1 matched for age and body mass index (BMI. In one kindred, some of these subjects were also obese (BMI >26 kg/m2, and other family members also presented with obesity and/or late-onset NIDDM. The MODY patients were also compared to a group of five of their first-degree relatives with obesity and/or late-onset NIDDM. The proinsulin profile was different in members of the two MODY kindreds. Fasting proinsulin and the proinsulin/insulin ratio were similar in MODY members of kindred LZ and subjects from control group 1, but were significantly lower than in MODY members of kindred SA (P<0.02 and P<0.01, for proinsulin and proinsulin/insulin ratio, respectively. Moreover, MODY members of family SA had higher levels of proinsulin and proinsulin/insulin ratio, although not significantly different, when compared to their first-degree relatives and to subjects from control group 2. In conclusion, we observed variable degrees of proinsulin levels and proinsulin/insulin ratio in MODY members of two different kindreds. The higher values of these parameters found in MODY and non-MODY members of kindred SA is probably related to the obesity and late-onset NIDDM background present in this family.

  2. Mutant INS-gene induced diabetes of youth: proinsulin cysteine residues impose dominant-negative inhibition on wild-type proinsulin transport.

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2010-10-01

    Full Text Available Recently, a syndrome of Mutant INS-gene-induced Diabetes of Youth (MIDY, derived from one of 26 distinct mutations has been identified as a cause of insulin-deficient diabetes, resulting from expression of a misfolded mutant proinsulin protein in the endoplasmic reticulum (ER of insulin-producing pancreatic beta cells. Genetic deletion of one, two, or even three alleles encoding insulin in mice does not necessarily lead to diabetes. Yet MIDY patients are INS-gene heterozygotes; inheritance of even one MIDY allele, causes diabetes. Although a favored explanation for the onset of diabetes is that insurmountable ER stress and ER stress response from the mutant proinsulin causes a net loss of beta cells, in this report we present three surprising and interlinked discoveries. First, in the presence of MIDY mutants, an increased fraction of wild-type proinsulin becomes recruited into nonnative disulfide-linked protein complexes. Second, regardless of whether MIDY mutations result in the loss, or creation, of an extra unpaired cysteine within proinsulin, Cys residues in the mutant protein are nevertheless essential in causing intracellular entrapment of co-expressed wild-type proinsulin, blocking insulin production. Third, while each of the MIDY mutants induces ER stress and ER stress response; ER stress and ER stress response alone appear insufficient to account for blockade of wild-type proinsulin. While there is general agreement that ultimately, as diabetes progresses, a significant loss of beta cell mass occurs, the early events described herein precede cell death and loss of beta cell mass. We conclude that the molecular pathogenesis of MIDY is initiated by perturbation of the disulfide-coupled folding pathway of wild-type proinsulin.

  3. Association of fasting glucagon and proinsulin concentrations with insulin resistance

    DEFF Research Database (Denmark)

    Ferrannini, E; Muscelli, E; Natali, A

    2007-01-01

    AIMS/HYPOTHESIS: Hyperproinsulinaemia and relative hyperglucagonaemia are features of type 2 diabetes. We hypothesised that raised fasting glucagon and proinsulin concentrations may be associated with insulin resistance (IR) in non-diabetic individuals. METHODS: We measured IR [by a euglycaemic......, controlling for known determinants of insulin sensitivity (i.e. sex, age, BMI and glucose tolerance) as well as factors potentially affecting glucagon and proinsulin (i.e. fasting plasma glucose and C-peptide concentrations), glucagon and proinsulin were still positively associated, and adiponectin...

  4. Production of antisera for radioimmunoassay of human proinsulin: preliminary studies

    International Nuclear Information System (INIS)

    Nascimento, M. do; Borghi, V.C.; Bellini, M.H.; Wajchenberg, B.L.

    1990-01-01

    In attempt to the production of anti proinsulin antisera for the radioimmunoassay, five guinea pigs received 50 μg of biosynthetic human proinsulin (Eli Lilly and Company, US) injected subcutaneously. Booster injections were administered at 3 weeks intervals and blood was taken 14 days after the injection. Just after the tenth week, three guinea pigs developed antisera with titers of 1:15.000, 1:1.500 and 1:300 and one of them presented titer lower than 1:300. The evaluation of the specificity of those three antisera showed cross-reactivity only with insulin, which antibodies were not sufficiently sensitive for the assay of endogenous proinsulin from healthy subjects, being only suitable for the measurement of circulating proinsulin in patients with hyper proinsulinemia. Alternative schedules of immunization in order to obtain more sensitive antisera are discussed. (author)

  5. Alternative preparation of inclusion bodies excludes interfering non-protein contaminants and improves the yield of recombinant proinsulin.

    Science.gov (United States)

    Mackin, Robert B

    2014-01-01

    The goal of simple, high-yield expression and purification of recombinant human proinsulin has proven to be a considerable challenge. First, proinsulin forms inclusion bodies during bacterial expression. While this phenomenon can be exploited as a capture step, conventionally prepared inclusion bodies contain significant amounts of non-protein contaminants that interfere with subsequent chromatographic purification. Second, the proinsulin molecules within the inclusion bodies are incorrectly folded, and likely cross-linked to one another, making it difficult to quantify the amount of expressed proinsulin. Third, proinsulin is an intermediate between the initial product of ribosomal translation (preproinsulin) and the final product secreted by pancreatic beta cells (insulin). Therefore, to be efficiently produced in bacteria, it must be produced as an N-terminally extended fusion protein, which has to be converted to authentic proinsulin during the purification scheme. To address all three of these problems, while simultaneously streamlining the procedure and increasing the yield of recombinant proinsulin, we have made three substantive modifications to our previous method for producing proinsulin:.•Conditions for the preparation of inclusion bodies have been altered so contaminants that interfere with semi-preparative reversed-phase chromatography are excluded while the proinsulin fusion protein is retained at high yield.•Aliquots are taken following important steps in the procedure and the quantity of proinsulin-related polypeptide in the sample is compared to the amount present prior to that step.•Final purification is performed using a silica-based reversed-phase matrix in place of a polystyrene-divinylbenzene-based matrix.

  6. Mesenchymal Stem Cell Differentiation into Adipocytes Is Equally Induced by Insulin and Proinsulin In Vitro.

    Science.gov (United States)

    Pfützner, Andreas; Schipper, Dorothee; Pansky, Andreas; Kleinfeld, Claudia; Roitzheim, Barbara; Tobiasch, Edda

    2017-11-30

    In advanced β -cell dysfunction, proinsulin is increasingly replacing insulin as major component of the secretion product. It has been speculated that proinsulin has at least the same adipogenic potency than insulin, leading to an increased tendency of lipid tissue formation in patients with late stage β -cell dysfunction. Mesenchymal stem cells obtained from liposuction material were grown in differentiation media containing insulin (0.01 μmol), proinsulin (0.01 μmol) or insulin+proinsulin (each 0.005 μmol). Cell culture supernatants were taken from these experiments and an untreated control at weeks 1, 2, and 3, and were stored at -80°C until analysis. Cell differentiation was microscopically supervised and adiponectin concentrations were measured as marker for differentiation into mature lipid cells. This experiment was repeated three times. No growth of lipid cells and no change in adiponectin values was observed in the negative control group (after 7/14/12 days: 3.2±0.5/3.3±0.1/4.4±0.5 ng/ml/12 h). A continuous differentiation into mature adipocytes (also confirmed by Red-Oil-staining) and a corresponding increase in adiponectin values was observed in the experiments with insulin (3.6±1.9/5.1±1.4/13.3±1.5 ng/ml/12 h; p<0.05 week 1 vs. week 3) and proinsulin (3.3±1.2/3.5±0.3/12.2±1.2 ng/ml/12 h; p<0.05). Comparable effects were seen with the insulin/proinsulin combination. Proinsulin has the same adipogenic potential than insulin in vitro. Proinsulin has only 10∼20% of the glucose-lowering effect of insulin. It can be speculated that the adipogenic potential of proinsulin may be a large contributor to the increased body weight problems in patients with type 2 diabetes and advanced β -cell dysfunction.

  7. NMR and photo-CIDNP studies of human proinsulin and prohormone processing intermediates with application to endopeptidase recognition

    International Nuclear Information System (INIS)

    Weiss, M.A.; Frank, B.H.; Heiney, R.; Pekar, A.; Khait, I.; Neuringer, L.J.; Shoelson, S.E.

    1990-01-01

    The proinsulin-insulin system provides a general model for the proteolytic processing of polypeptide hormones. Two proinsulin-specific endopeptidases have been defined, a type I activity that cleaves the B-chain/C-peptide junction (Arg 31 -Arg 32 ) and a type II activity that cleaves the C-peptide/A-chain junction (Lys 64 -Arg 65 ). These endopeptidases are specific for their respective dibasic target sites; not all such dibasic sites are cleaved, however, and studies of mutant proinsulins have demonstrated that additional sequence or structural features are involved in determining substrate specificity. To define structural elements required for endopeptidase recognition, the authors have undertaken comparative 1 H NMR and photochemical dynamic nuclear polarization (photo-CIDNP) studies of human proinsulin, insulin, and split proinsulin analogues as models or prohormone processing intermediates. The overall conformation of proinsulin is observed to be similar to that of insulin, and the connecting peptide is largely unstructured. In the 1 H NMR spectrum of proinsulin significant variation is observed in the line widths of insulin-specific amide resonances, reflecting exchange among conformational substrates; similar exchange is observed in insulin and is not damped by the connecting peptide. The aromatic 1 H NMR resonances of proinsulin are assigned by analogy to the spectrum of insulin, and assignments are verified by chemical modification. These results suggest that a stable local structure is formed at the CA junction, which influences insulin-specific packing interactions. They propose that this structure (designated the CA knuckle) provides a recognition element for type II proinsulin endopeptidase

  8. Recombinant human proinsulin from transgenic corn endosperm: solvent screening and extraction studies

    Directory of Open Access Journals (Sweden)

    C. S. Farinas

    2007-09-01

    Full Text Available Recombinant pharmaceutical proteins are being produced in different systems such as bacteria and mammalian cell cultures. The use of transgenic plants as bioreactors has recently arisen as an alternative system offering many practical and economic advantages. However, finding an optimum strategy for the downstream processing (DSP of recombinant proteins from plants still remains a challenge. In this work, we studied the extraction of recombinant human proinsulin (rhProinsulin produced in the endosperm of transgenic corn seeds. An efficient extraction solvent was selected and the effects of temperature, solvent-to-solid ratio, time, and impeller rotational speed on the extraction were evaluated using an experimental design. After an extraction kinetics study, temperature was further evaluated to maximize rhProinsulin concentration in the extracts and to minimize the native corn components carbohydrates, phenolic compounds, and proteins. A high efficiency condition for extracting rhProinsulin with the selected solvent - 50 mM sodium bicarbonate buffer pH 10.0 and 5 mM DTT - was an extraction time of 2 h at a solvent-to-solid ratio of 10:1 and 25º C. The maximum rhProinsulin concentration in the extracts at that condition was 18.87 mg l-1 or 0.42% of the total soluble protein. These values are within the range in which the production of pharmaceutical proteins in plants can be competitive with other expression systems. The results presented provide information for the development of an additional production platform for the hormone insulin.

  9. Proinsulin maturation disorder is a contributor to the defect of subsequent conversion to insulin in {beta}-cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jie, E-mail: jie.wang2@osumc.edu [Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH (United States); Osei, Kwame [Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH (United States)

    2011-07-22

    Highlights: {yields} Primary proinsulin maturation disorder is inherent in Ins2{sup +/Akita} islets/{beta}-cells. {yields} A consequence is the inefficient conversion of proinsulin to insulin. {yields} Post-translational defects occur as well in the involved PC1/3 and PC2 convertases. {yields} Proinsulin maturation chaos results in defects in the following conversion process. {yields} A link of the proinsulin maturation disorder and hyperproinsulinemia is suggested. -- Abstract: Disproportionate hyperproinsulinemia is an indicator of {beta}-cell dysfunction in diabetes and the basis underlying this abnormality remains obscure. Recently, we have found proinsulin is an aggregation-prone molecule inherent with a low relative folding rate and maintains a homeostatic balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO) in normal {beta}-cells as a result of the integration of maturation and disposal processes. PIHO is susceptible to environmental and genetic influences. Perturbation of PIHO produces a number of toxic consequences with known association to {beta}-cell failure in diabetes. To explore whether the perturbation of PIHO has a link to disproportionate hyperproinsulinemia, we investigated proinsulin conversion and the involved prohormone convertase 1/3 (PC1/3) and 2 (PC2) in mouse Ins2{sup +/Akita} islets/{beta}-cells that preserve a primary PIHO disorder due to a mutation (C96Y) in the insulin 2 (Ins2) gene. Our metabolic-labeling studies found an increased ratio of proinsulin to insulin in the cellular or released proteins of Ins2{sup +/Akita} islets. Histological, metabolic-labeling, and RT-PCR analyses revealed decreases of the PC1/3 and PC2 immunoreactivities in the {beta}-cells of Ins2{sup +/Akita} islets in spite of no declines of these two convertases at the transcriptional and translational levels. Immunoblot analyses in cloned Ins2{sup +/Akita} {beta}-cells further confirmed the increased ratio of proinsulin

  10. Proinsulin maturation disorder is a contributor to the defect of subsequent conversion to insulin in β-cells

    International Nuclear Information System (INIS)

    Wang, Jie; Osei, Kwame

    2011-01-01

    Highlights: → Primary proinsulin maturation disorder is inherent in Ins2 +/Akita islets/β-cells. → A consequence is the inefficient conversion of proinsulin to insulin. → Post-translational defects occur as well in the involved PC1/3 and PC2 convertases. → Proinsulin maturation chaos results in defects in the following conversion process. → A link of the proinsulin maturation disorder and hyperproinsulinemia is suggested. -- Abstract: Disproportionate hyperproinsulinemia is an indicator of β-cell dysfunction in diabetes and the basis underlying this abnormality remains obscure. Recently, we have found proinsulin is an aggregation-prone molecule inherent with a low relative folding rate and maintains a homeostatic balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO) in normal β-cells as a result of the integration of maturation and disposal processes. PIHO is susceptible to environmental and genetic influences. Perturbation of PIHO produces a number of toxic consequences with known association to β-cell failure in diabetes. To explore whether the perturbation of PIHO has a link to disproportionate hyperproinsulinemia, we investigated proinsulin conversion and the involved prohormone convertase 1/3 (PC1/3) and 2 (PC2) in mouse Ins2 +/Akita islets/β-cells that preserve a primary PIHO disorder due to a mutation (C96Y) in the insulin 2 (Ins2) gene. Our metabolic-labeling studies found an increased ratio of proinsulin to insulin in the cellular or released proteins of Ins2 +/Akita islets. Histological, metabolic-labeling, and RT-PCR analyses revealed decreases of the PC1/3 and PC2 immunoreactivities in the β-cells of Ins2 +/Akita islets in spite of no declines of these two convertases at the transcriptional and translational levels. Immunoblot analyses in cloned Ins2 +/Akita β-cells further confirmed the increased ratio of proinsulin to insulin despite the levels of PC1/3 and PC2 proteins were not reduced

  11. Fasting proinsulin levels are significantly associated with 20 year cancer mortality rates. The Hoorn Study

    NARCIS (Netherlands)

    Walraven, I.; van 't Riet, E.; Stehouwer, C.D.A.; Polak, B.C.P.; Moll, A.C.; Dekker, J.M.; Nijpels, G.

    2013-01-01

    Aims/hypothesis: Proinsulin is possibly associated with cancer through activation of insulin receptor isoform A. We sought to investigate the associations between proinsulin and 20 year cancer mortality rates. Methods: The study was performed within the Hoorn Study, a population-based study of

  12. Deciphering a molecular mechanism of neonatal diabetes mellitus by the chemical synthesis of a protein diastereomer, [D-AlaB8]human proinsulin.

    Science.gov (United States)

    Avital-Shmilovici, Michal; Whittaker, Jonathan; Weiss, Michael A; Kent, Stephen B H

    2014-08-22

    Misfolding of proinsulin variants in the pancreatic β-cell, a monogenic cause of permanent neonatal-onset diabetes mellitus, provides a model for a disease of protein toxicity. A hot spot for such clinical mutations is found at position B8, conserved as glycine within the vertebrate insulin superfamily. We set out to investigate the molecular basis of the aberrant properties of a proinsulin clinical mutant in which residue Gly(B8) is replaced by Ser(B8). Modular total chemical synthesis was used to prepare the wild-type [Gly(B8)]proinsulin molecule and three analogs: [D-Ala(B8)]proinsulin, [L-Ala(B8)]proinsulin, and the clinical mutant [L-Ser(B8)]proinsulin. The protein diastereomer [D-Ala(B8)]proinsulin produced higher folding yields at all pH values compared with the wild-type proinsulin and the other two analogs, but showed only very weak binding to the insulin receptor. The clinical mutant [L-Ser(B8)]proinsulin impaired folding at pH 7.5 even in the presence of protein-disulfide isomerase. Surprisingly, although [L-Ser(B8)]proinsulin did not fold well under the physiological conditions investigated, once folded the [L-Ser(B8)]proinsulin protein molecule bound to the insulin receptor more effectively than wild-type proinsulin. Such paradoxical gain of function (not pertinent in vivo due to impaired secretion of the mutant insulin) presumably reflects induced fit in the native mechanism of hormone-receptor engagement. This work provides insight into the molecular mechanism of a clinical mutation in the insulin gene associated with diabetes mellitus. These results dramatically illustrate the power of total protein synthesis, as enabled by modern chemical ligation methods, for the investigation of protein folding and misfolding. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Proinsulin-expressing dendritic cells in type 2 neuropathic diabetic patients with and without foot lesions.

    Science.gov (United States)

    Sambataro, Maria; Sambado, Luisa; Trevisiol, Enrica; Cacciatore, Matilde; Furlan, Anna; Stefani, Piero Maria; Seganfreddo, Elena; Durante, Elisabetta; Conte, Stefania; Della Bella, Silvia; Paccagnella, Agostino; Dei Tos, Angelo Paolo

    2018-02-12

    Diabetic neuropathy is the most common complication of diabetes and is frequently associated with foot ischemia and infection, but its pathogenesis is controversial. We hypothesized that proinsulin expression in peripheral blood mononuclear cells is a process relevant to this condition and could represent a link among hyperglycemia, nerve susceptibility, and diabetic foot lesions. We assessed proinsulin expression by using flow cytometry in dendritic cells from control participants and patients with type 2 diabetic with or without peripheral neuropathy or accompanied by diabetic foot. Among 32 non-neuropathic and 120 neuropathic patients with type 2 diabetic, we performed leg electromyography and found average sensory sural nerve conduction velocities of 48 ± 4 and 30 ± 4 m/s, respectively ( P foot lesions, and 39 had neuroischemic foot lesions (allux oximetry diabetic population, but not in nondiabetic participants, a progressively increasing level of peripheral blood dendritic cell proinsulin expression was detected, which directly correlated with circulating TNF-α levels ( P diabetes, proinsulin-expressing blood cells, possibly via their involvement in innate immunity, may play a role in diabetic peripheral neuropathy and foot lesions.-Sambataro, M., Sambado, L., Trevisiol, E., Cacciatore, M., Furlan, A., Stefani, P. M., Seganfreddo, E., Durante, E., Conte, S., Della Bella, S., Paccagnella, A., dei Tos, A. P. Proinsulin-expressing dendritic cells in type 2 neuropathic diabetic patients with and without foot lesions.

  14. Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide.

    Science.gov (United States)

    Boyhan, Diane; Daniell, Henry

    2011-06-01

    Current treatment for type I diabetes includes delivery of insulin via injection or pump, which is highly invasive and expensive. The production of chloroplast-derived proinsulin should reduce cost and facilitate oral delivery. Therefore, tobacco and lettuce chloroplasts were transformed with the cholera toxin B subunit fused with human proinsulin (A, B, C peptides) containing three furin cleavage sites (CTB-PFx3). Transplastomic lines were confirmed for site-specific integration of transgene and homoplasmy. Old tobacco leaves accumulated proinsulin up to 47% of total leaf protein (TLP). Old lettuce leaves accumulated proinsulin up to 53% TLP. Accumulation was so stable that up to ~40% proinsulin in TLP was observed even in senescent and dried lettuce leaves, facilitating their processing and storage in the field. Based on the yield of only monomers and dimers of proinsulin (3 mg/g leaf, a significant underestimation), with a 50% loss of protein during the purification process, one acre of tobacco could yield up to 20 million daily doses of insulin per year. Proinsulin from tobacco leaves was purified up to 98% using metal affinity chromatography without any His-tag. Furin protease cleaved insulin peptides in vitro. Oral delivery of unprocessed proinsulin bioencapsulated in plant cells or injectable delivery into mice showed reduction in blood glucose levels similar to processed commercial insulin. C-peptide should aid in long-term treatment of diabetic complications including stimulation of nerve and renal functions. Hyper-expression of functional proinsulin and exceptional stability in dehydrated leaves offer a low-cost platform for oral and injectable delivery of cleavable proinsulin. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  15. Development and standardization of radioimmunoassay technique for human proinsulin determining and its use in the study of type II diabetes mellitus associated to obesity

    International Nuclear Information System (INIS)

    Nascimento, Martha do

    1996-01-01

    The availability of immunoassay methodology for proinsulin is important to define its physiological and pathophysiological significance in humans. Serum concentration of proinsulin are elevated in patients with type II Diabetes Mellitus (NIDDM) and recently diagnosed Type I, so a raised circulating concentration of proinsulin may serve as an early indicator of β cells dysfunction. recently, in NIDDM the serum concentrations of proinsulin and its B-chain-C-peptide junctional split form, des (31-32), were found to correlate with diastolic blood pressure, a risk factor for cardiovascular disease. The development of a sensitive and specific radioimmunoassay (RIA) methodology for proinsulin has been difficult due to its low concentration in serum and the presence of proinsulin conversion intermediates in fluids and tissues. Also other potentially cross-reactive peptides, including insulin and C-peptide, can interfere in the assay. This work describe a highly specific human proinsulin RIA developed by using biosynthetic human proinsulin (hPI) as immunogen, standard and tracer. (author)

  16. Mutation in the B chain coding region is associated with impaired proinsulin conversion in a family with hyperproinsulinemia

    International Nuclear Information System (INIS)

    Chan, S.J.; Seino, S.; Gruppuso, P.A.; Schwartz, R.; Steiner, D.F.

    1987-01-01

    A family has recently been described in which hyperproinsulinemia is inherited in an autosomal dominant pattern, suggesting a structural abnormality in the proinsulin molecule as the basis for this disorder. However, unlike two previous kindreds with a similar syndrome, the serum proinsulin-like material in this family did not appear to be an intermediate conversion product but instead behaved like normal human proinsulin by several criteria. To further characterize this disorder the authors isolated and sequenced the insulin gene of the propositus. Leukocyte DNA was cloned in λgt-WES and recombinants containing the two insulin alleles, λMD41 and λMD51, were isolated by plaque hybridization. DNA sequencing of λMD51 showed that it contained the normal coding sequence for human preproinsulin. Sequence analysis of λMD41, however, revealed a single nucleotide substitution in the codon for residue 10 of proinsulin (CAC → GAC) that predicts the exchange of aspartic acid for histidine in the insulin B chain region. This mutation was also found in an insulin allele cloned from a second affected family member (propositus's father). These results strongly implicate this mutation as the cause of the hyperproinsulinemia in this family. Inhibition of the conversion of proinsulin to insulin may be related to altered folding and/or self-association properties of the [Asp 10 ]proinsulin

  17. 21 CFR 862.1135 - C-peptides of proinsulin test system.

    Science.gov (United States)

    2010-04-01

    .... Measurements of C-peptides of proinsulin are used in the diagnosis and treatment of patients with abnormal insulin secretion, including diabetes mellitus. (b) Classification. Class I (general controls). The device...

  18. Insulin secretion and glucose uptake by isolated islets of the hamster. Effect of insulin, proinsulin and C-peptide

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, J C; McLaughlin, W J; Walsh, M F.J.; Foa, P P [Sinai Hospital of Detroit, Mich. (USA). Dept. of Research

    1976-01-01

    Isolated pancreatic islets of normal hamsters were perfused either in a closed or in a open system. When the buffer was recirculated and the endogenous insulin was allowed to accumulate, the islets secreted significantly less insulin than when the system was open and the endogenous insulin was washed away. The addition of monocomponent insulin or of proinsulin to the perfusion buffer significantly decreased insulin secretion. The inhibitory action of proinsulin was significantly greater than that of monocomponent insulin. C peptide had no effect. When pancreatic islets were incubated in a fixed volume of stationary buffer containing unlabeled glucose (1.0 mg or 3.0 mg/ml) and glucose-U-/sup 14/C (1.0 ..mu..C/ml), the amount of insulin secreted and the /sup 14/CO/sub 2/ produced by each islet decreased progressively as the number of islets in the sample increased. Under these conditions, the concentration of insulin required to inhibit insulin secretion increased with the concentration of glucose in the medium. Proinsulin did not alter the incorporation of leucine-4.5-/sup 3/H into total extractable insulin (insulin + proinsulin). Thus, insulin and proinsulin appear to inhibit insulin release, but not insulin synthesis.

  19. Proinsulin, adiponectin and hsCRP in reproductive age women with polycystic ovary syndrome (PCOS)--the effect of metformin treatment.

    Science.gov (United States)

    Kruszyńska, Aleksandra; Słowińska-Srzednicka, Jadwiga; Jeske, Wojciech; Zgliczyński, Wojciech

    2014-01-01

    Women with polycystic ovary syndrome (PCOS) often suffer from obesity and insulin resistance. The role of proinsulin, which is known to be an indicator of fertility outcomes in PCOS women, and that of adiponectin, in the pathogenesis of PCOS is not well elucidated. Our objective was to determine proinsulin, adiponectin, hsCRP and other hormonal and metabolic parameters in PCOS women before and after metformin treatment. Two PCOS groups of patients of reproductive age (90 lean and 88 obese or overweight) with two control groups, adjusted for body mass index (BMI), were compared at baseline. 32 PCOS women were studied at baseline, after three and six months of metformin (1,000 mg/day) treatment. Clinical, anthropometric, biochemical and hormonal parameters were assessed. Proinsulin and hsCRP levels were the highest in obese PCOS women and were statistically different than in lean PCOS women (proinsulin: 11.4 v. 6.9 pmol/L; hsCRP 2.46 v. 0.47 mg/L, p treatment only in obese PCOS women. PCOS, when accompanied by obesity, is associated with elevated proinsulin concentrations, which correlates with higher hsCRP and increased FAI. Proinsulin level decreases due to metformin treatment. Our results suggest that obese or overweight PCOS and lean PCOS are characterised by different hormonal and metabolic parameters and have a different response to metformin treatment.

  20. Proinsulin is stable at room temperature for 24 hours in EDTA: A clinical laboratory analysis (adAPT 3.

    Directory of Open Access Journals (Sweden)

    Jane Davidson

    Full Text Available Reference laboratories advise immediate separation and freezing of samples for the assay of proinsulin, which limit its practicability for smaller centres. Following the demonstration that insulin and C-peptide are stable in EDTA at room temperature for at least 24hours, we undertook simple stability studies to establish whether the same might apply to proinsulin.Venous blood samples were drawn from six adult women, some fasting, some not, aliquoted and assayed immediately and after storage at either 4°C or ambient temperature for periods from 2h to 24h.There was no significant variation or difference with storage time or storage condition in either individual or group analysis.Proinsulin appears to be stable at room temperature in EDTA for at least 24h. Immediate separation and storage on ice of samples for proinsulin assay is not necessary, which will simplify sample transport, particularly for multicentre trials.

  1. Analysis of proinsulin and its conversion products by reversed-phase high-performance liquid chromatography

    DEFF Research Database (Denmark)

    Linde, S; Welinder, B S; Nielsen, Jens Høiriis

    1993-01-01

    . Most mammals produce a single insulin, but in rodents two non-allelic insulin genes are expressed. There is an inverse ratio between the two insulins in rats and mice, the reason for this being unknown. It has been suggested that differences in transcription, translation (biosynthesis) and...... PIM (intact proinsulin or its intermediates) has been incompletely determined. Studies of the biosynthesis of proinsulins and their conversion with the purpose of revealing some of these points depend on accessible reversed-phase high-performance liquid chromatographic (RP-HPLC) analyses capable...

  2. The PTPN22 C1858T gene variant is associated with proinsulin in new-onset type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Vanelli Maurizio

    2011-03-01

    Full Text Available Abstract Background The protein tyrosine phosphatase nonreceptor type 2 (PTPN22 has been established as a type 1 diabetes susceptibility gene. A recent study found the C1858T variant of this gene to be associated with lower residual fasting C-peptide levels and poorer glycemic control in patients with type 1 diabetes. We investigated the association of the C1858T variant with residual beta-cell function (as assessed by stimulated C-peptide, proinsulin and insulin dose-adjusted HbA1c, glycemic control, daily insulin requirements, diabetic ketoacidosis (DKA and diabetes-related autoantibodies (IA-2A, GADA, ICA, ZnT8Ab in children during the first year after diagnosis of type 1 diabetes. Methods The C1858T variant was genotyped in an international cohort of children (n = 257 patients with newly diagnosed type 1 diabetes during 12 months after onset. We investigated the association of this variant with liquid-meal stimulated beta-cell function (proinsulin and C-peptide and antibody status 1, 6 and 12 months after onset. In addition HbA1c and daily insulin requirements were determined 1, 3, 6, 9 and 12 months after diagnosis. DKA was defined at disease onset. Results A repeated measurement model of all time points showed the stimulated proinsulin level is significantly higher (22%, p = 0.03 for the T allele carriers the first year after onset. We also found a significant positive association between proinsulin and IA levels (est.: 1.12, p = 0.002, which did not influence the association between PTPN22 and proinsulin (est.: 1.28, p = 0.03. Conclusions The T allele of the C1858T variant is positively associated with proinsulin levels during the first 12 months in newly diagnosed type 1 diabetes children.

  3. The effect of different volumes of high-intensity interval training on proinsulin in participants with the metabolic syndrome: a randomised trial.

    Science.gov (United States)

    Ramos, Joyce S; Dalleck, Lance C; Borrani, Fabio; Mallard, Alistair R; Clark, Bronwyn; Keating, Shelley E; Fassett, Robert G; Coombes, Jeff S

    2016-11-01

    The continuous demand for insulin in the face of insulin resistance, coupled with the glucolipotoxic environment associated with the metabolic syndrome (MetS), adversely affects the quality of insulin produced and secreted by the pancreatic beta cells. This is depicted by increased circulating intact proinsulin concentration, which is associated with increased MetS severity and risk of cardiovascular (CV) mortality. High-intensity interval training (HIIT) has been shown to reduce insulin resistance and other CV disease risk factors to a greater degree than moderate-intensity continuous training (MICT). We therefore aimed to investigate the impact of MICT and different volumes of HIIT on circulating intact proinsulin concentration. This was a substudy of the 'Exercise in prevention of Metabolic Syndrome' (EX-MET) multicentre trial. Sixty-six individuals with MetS were randomised to 16 weeks of: (1) MICT (n = 21, 30 min at 60-70% peak heart rate [HRpeak], five times/week); (2) 4HIIT (n = 22, 4 × 4 min bouts at 85-95% HRpeak, interspersed with 3 min of active recovery at 50-70% HRpeak, three times/week); or (3) 1HIIT (n = 23, 1 × 4 min bout at 85-95% HRpeak, three times/week). A subanalysis investigated the differential impact of these training programmes on intact proinsulin concentration in MetS individuals with type 2 diabetes (MICT, n = 6; 4HIIT, n = 9; 1HIIT, n = 12) and without type 2 diabetes (MICT, n = 15; 4HIIT, n = 13; 1HIIT, n = 11). Intact proinsulin, insulin and C-peptide concentrations were measured in duplicate via ELISA, following a 12 h fast, before and after the exercise programme. Fasting intact proinsulin concentration was also expressed relative to insulin and C-peptide concentrations. Following the exercise training, there were no significant (p > 0.05) changes in fasting intact proinsulin concentration indices in all participants (pre- vs post-programme proinsulin, proinsulin

  4. Effect of interleukin-1 on the biosynthesis of proinsulin and insulin in isolated rat pancreatic islets

    DEFF Research Database (Denmark)

    Hansen, Birgit Sehested; Linde, S; Spinas, G A

    1988-01-01

    Insulin dependent diabetes mellitus (IDDM) is often preceded or associated with lymphocytic infiltration in the islets of Langerhans (insulitis). We recently demonstrated that interleukin-1 (IL-1) produced by activated macrophages exerts a bimodal effect on insulin release and biosynthesis...... in isolated rat islets. In the present study we have further analysed the effect of recombinant human interleukin-1 beta (rIL-1) on the biosynthesis and conversion of proinsulin 1 and 2 in rat islets. By RP-HPLC-analysis of islets labelled with [3H]leucine we found that exposure to 6 ng/ml of IL-1 for 24 h.......1 to 3.4 +/- 0.4, respectively. Pulse-chase experiments with [3H]leucine and [35S]methionine indicated a more marked reduction in the conversion rate of proinsulin-2 compared to that of proinsulin-1. In conclusion these experiments demonstrate that IL-1 inhibits insulin biosynthesis by preferential...

  5. Immunological half-life of porcine proinsulin C-peptide

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, H; Horino, M; Matsumura, S [Kawasaki Medical Coll., Kurashiki (Japan). Div. of Endocrinology; Kobayshi, K; Suetsugu, N [Yamaguchi Univ., Ube (Japan). School of Medicine

    1975-11-01

    Immunological half-lifes of injected porcine C-peptide and insulin with RIA were studied and calculated as 9.8 and 8.0 minutes. Higher circulating levels of C-peptide as compared to insulin in normal young swines lead to speculation about a longer half-life of C-peptide. This hypothesis was verified in this study. Immunological half-lifes of porcine proinsulin and insulin in the pig were 20 and 6 minutes, respectively.

  6. Stimulation by ATP of proinsulin to insulin conversion in isolated rat pancreatic islet secretory granules. Association with the ATP-dependent proton pump

    International Nuclear Information System (INIS)

    Rhodes, C.J.; Lucas, C.A.; Mutkoski, R.L.; Orci, L.; Halban, P.A.

    1987-01-01

    Isolated rat pancreatic islets were pulse-labeled for 5 min with [ 3 H]leucine then chased for 25 min, during which time endogenously labeled [ 3 H]proinsulin becomes predominantly compartmented in immature secretory granules. The islets were then homogenized in isotonic sucrose (pH 7.4) and a beta-granule preparation obtained by differential centrifugation and discontinuous sucrose gradient ultracentrifugation. This preparation was enriched 8-fold in beta-granules. Aside from contamination with mitochondria and a limited number of lysosomes, the beta-granule preparation was essentially free of any other organelles involved in proinsulin synthesis and packaging (i.e. microsomal elements and, more particularly, Golgi complex). Conversion of endogenously labeled [ 3 H]proinsulin was followed in this beta-granule fraction for up to 2 h at 37 degrees C in a buffer (pH 7.3) that mimicked the cationic constituents of B-cell cytosol, during which time 92% of the beta-granules remained intact. Proinsulin conversion was analyzed by high performance liquid chromatography. The rate of proinsulin conversion to insulin was stimulated by 2.2 +/- 0.1-fold (n = 6) (at a 60-min incubation) in the presence of ATP (2 mM) and an ATP regenerating system compared to beta-granule preparations incubated without ATP. This ATP stimulation was abolished in the presence of beta-granule proton pump ATPase inhibitors (tributyltin, 2.5 microM, or 1,3-dicyclohexylcarbodiimide, 50 microM). Inhibitors of mitochondrial proton pump ATPases had no effect on the ATP stimulation of proinsulin conversion. When granules were incubated in a more acidic buffer, proinsulin conversion was increased relative to that at pH 7.3. At pH 5.5, ATP no longer stimulated conversion, and tributyltin and 1,3-dicyclohexylcarbodiimide had no effect

  7. Studies on the regioselectivity and kinetics of the action of trypsin on proinsulin and its derivatives using mass spectrometry.

    Science.gov (United States)

    Gardner, Qurra-tul-Ann Afza; Younas, Hooria; Akhtar, Muhammad

    2013-01-01

    Human M-proinsulin was cleaved by trypsin at the R(31)R(32)-E(33) and K(64)R(65)-G(66) bonds (B/C and C/A junctions), showing the same cleavage specificity as exhibited by prohormone convertases 1 and 2 respectively. Buffalo/bovine M-proinsulin was also cleaved by trypsin at the K(59)R(60)-G(61) bond but at the B/C junction cleavage occurred at the R(31)R(32)-E(33) as well as the R(31)-R(32)E(33) bond. Thus, the human isoform in the native state, with a 31 residue connecting C-peptide, seems to have a unique structure around the B/C and C/A junctions and cleavage at these sites is predominantly governed by the structure of the proinsulin itself. In the case of both the proinsulin species the cleavage at the B/C junction was preferred (65%) over that at the C/A junction (35%) supporting the earlier suggestion of the presence of some form of secondary structure at the C/A junction. Proinsulin and its derivatives, as natural substrates for trypsin, were used and mass spectrometric analysis showed that the k(cat.)/K(m) values for the cleavage were most favourable for the scission of the bonds at the two junctions (1.02±0.08×10(5)s(-1)M(-1)) and the cleavage of the K(29)-T(30) bond of M-insulin-RR (1.3±0.07×10(5)s(-1)M(-1)). However, the K(29)-T(30) bond in M-insulin, insulin as well as M-proinsulin was shielded from attack by trypsin (k(cat.)/K(m) values around 1000s(-1)M(-1)). Hence, as the biosynthetic path follows the sequence; proinsulin→insulin-RR→insulin, the K(29)-T(30) bond becomes shielded, exposed then shielded again respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes

    NARCIS (Netherlands)

    R.J. Strawbridge (Rona); J. Dupuis (Josée); I. Prokopenko (Inga); A.M. Barker (Adam); E. Ahlqvist (Emma); D. Rybin (Denis); J.R. Petrie (John); N. Bouatia-Naji (Nabila); A.S. Dimas (Antigone); E. Wheeler (Eleanor); H. Chen (Han); B.F. Voight (Benjamin); J. Taneera (Jalal); S. Kanoni (Stavroula); J. Peden (John); F. Turrini (Fabiola); S. Gustafsson (Stefan); C. Zabena (Carina); P. Almgren (Peter); G.V. Dedoussis (George); D. Barnes (Daniel); E.M. Dennison (Elaine); K. Hagen (Knut); P. Eriksson (Per); E. Eury (Elodie); L. Folkersen (Lasse); C.S. Fox (Caroline); T.M. Frayling (Timothy); A. Goel (Anuj); M. Horikoshi (Momoko); B. Isomaa (Bo); A.U. Jackson (Anne); K. Jameson (Karen); E. Kajantie (Eero); J. Kerr-Conte (Julie); L. Groop (Leif); J. Kuusisto (Johanna); R.J.F. Loos (Ruth); J. Luan; K. Makrilakis (Konstantinos); A.K. Manning (Alisa); M.T. Martinez-Larrad (Maria Teresa); N. Narisu (Narisu); J. Öhrvik (John); C. Osmond (Clive); L. Pascoe (Laura); F. Payne (Felicity); A.A. Sayer; B. Sennblad (Bengt); C. Cooper (Charles); K. Stirrups (Kathy); A.J. Swift (Amy); A.C. Syvänen; T. Tuomi (Tiinamaija); F. van't Hooft (Ferdinand); M. Walker (Mark); M.N. Weedon (Michael); W. Xie (Weijia); B. Zethelius (Björn); L.J. Scott (Laura); V. Steinthorsdottir (Valgerdur); A.P. Morris (Andrew); C. Dina (Christian); R.P. Welch (Ryan); E. Zeggini (Eleftheria); C. Huth (Cornelia); Y.S. Aulchenko (Yurii); G. Thorleifsson (Gudmar); L.J. McCulloch (Laura); T. Ferreira (Teresa); H. Grallert (Harald); N. Amin (Najaf); G. Wu (Guanming); C.J. Willer (Cristen); S. Raychaudhuri (Soumya); S.A. McCarroll (Steven); O.M. Hofmann (Oliver); L. Qi (Lu); A.V. Segrè (Ayellet); M. van Hoek (Mandy); P. Navarro (Pau); K.G. Ardlie (Kristin); B. Balkau (Beverley); N. Narisu (Narisu); A.J. Bennett (Amanda); R. Blagieva (Roza); E.A. Boerwinkle (Eric); L.L. Bonnycastle (Lori); K.B. Boström (Kristina Bengtsson); B. Bravenboer (Bert); S. Bumpstead (Suzannah); N.P. Burtt (Noël); G. Charpentier (Guillaume); P.S. Chines (Peter); M. Cornelis (Marilyn); D.J. Couper (David); G. Crawford (Gabe); A.S.F. Doney (Alex); K.S. Elliott (Katherine); A.L. Elliott (Amanda); M.R. Erdos (Michael); C.S. Franklin (Christopher); M. Ganser (Martha); C. Gieger (Christian); N. Grarup (Niels); T. Green (Todd); S. Griffin (Simon); C.J. Groves (Christopher); C. Guiducci (Candace); S. Hadjadj (Samy); N. Hassanali (Neelam); C. Herder (Christian); T. Jorgensen (Torben); W.H.L. Kao (Wen); N. Klopp (Norman); A. Kong (Augustine); P. Kraft (Peter); T. Lauritzen (Torsten); M. Li (Man); A. Lieverse (Aloysius); M.N. Weedon (Michael); V. Lyssenko (Valeriya); M. Marre (Michel); T. Meitinger (Thomas); K. Midthjell (Kristian); M.A. Morken (Mario); P. Nilsson (Peter); K.R. Owen (Katharine); J.R.B. Perry (John); A.K. Petersen; C. Platou (Carl); C. Proença (Christine); W. Rathmann (Wolfgang); R.R. Frants (Rune); G. Rocheleau (Ghislain); M. Roden (Michael); M.J. Sampson (Michael); R. Saxena (Richa); B.M. Shields (Beverley); P. Shrader (Peter); T. Sparsø (Thomas); K. Strassburger (Klaus); H.M. Stringham (Heather); Q. Sun (Qi); B. Thorand (Barbara); J. Tichet (Jean); T.W. van Haeften (Timon); T.W. van Herpt (Thijs); J.V. van Vliet-Ostaptchouk (Jana); G.B. Walters (Bragi); C. Wijmenga (Cisca); S. Cauchi (Stephane); A.L. Gloyn (Anna); U. Gyllensten (Ulf); T. Hansen (T.); W.A. Hide (Winston); G.A. Hitman (Graham); A. Hofman (Albert); K. Hveem (Kristian); M. Laakso (Markku); K.L. Mohlke (Karen L.); A.D. Morris (Andrew); C.N.A. Palmer (Colin); L.D. Stein (Lincoln); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); R.M. Watanabe (Richard); G.R. Abecasis (Gonçalo); B.O. Boehm (Bernhard); H. Campbell (Harry); M.J. Daly (Mark); A.T. Hattersley (Andrew); F.B. Hu (Frank B.); J.B. Meigs (James); J.S. Pankow (James); O. Pedersen (Oluf); I. Barroso (Inês); L. Groop (Leif); R. Sladek (Rob); U. Thorsteinsdottir (Unnur); J.F. Wilson (James F.); T. Illig (Thomas); P. Froguel (Philippe); C.M. van Duijn (Cock); J-A. Zwart (John-Anker); D. Altshuler (David); M. Boehnke (Michael); M.I. McCarthy (Mark I.); E.K. Speliotes (Elizabeth); S.I. Berndt (Sonja); K.L. Monda (Keri); H.L. Allen; R. Mägi (Reedik); J.C. Randall (Joshua); S. Vedantam (Sailaja); T.W. Winkler (Thomas W.); T. Workalemahu (Tsegaselassie); I.M. Heid (Iris); A.R. Wood (Andrew); R.J. Weyant (Robert); K. Estrada Gil (Karol); L. Liang (Liming); J. Nemesh (James); J.H. Park; T.O. Kilpeläinen (Tuomas); J. Yang (Jian); M.F. Feitosa (Mary Furlan); Z. Kutalik (Zoltán); I. Prokopenko (Inga); W. Rathmann (Wolfgang); A.V. Smith; J.H. Zhao; K.K.H. Aben (Katja); D. Absher (Devin); A.L. Dixon (Anna); B.M. Shields (Beverley); N.L. Glazer (Nicole); N.L. Heard-Costa (Nancy); V. Hoesel (Volker); J.J. Hottenga (Jouke Jan); B. Thorand (Barbara); C. Lamina (Claudia); S. Li (Shengxu); R.M. van Dam (Rob); R.H. Myers (Richard); M.J. Peters (Marjolein); M. Preuss (Michael); S. Ripatti (Samuli); F. Rivadeneira Ramirez (Fernando); C. Sandholt (Camilla); N. Timpson (Nicholas); J.P. Tyrer (Jonathan); S. van Wingerden (Sophie); C.C. White (Charles); F. Wiklund (Fredrik); D.I. Chasman (Daniel); R.W. Lawrence (Robert); N. Pellikka (Niina); J. Shi (Jianxin); E. Thiering (Elisabeth); H. Alavere (Helene); M.T.S. Alibrandi (Maria); A.M. Arnold (Alice); T. Aspelund (Thor); I. Rudan (Igor); E.J.G. Sijbrands (Eric); S.M. Bergmann (Sven); H. Biebermann (Heike); A.I.F. Blakemore (Alexandra); T. Boes (Tanja); S.R. Bornstein (Stefan R.); G.R. Abecasis (Gonçalo); B.O. Boehm (Bernhard); F. Busonero; C. Cavalcanti-Proença (Christine); F.B. Hu (Frank); C.-M. Chen (Chih-Mei); R. Clarke (Robert); J. Connell (John); I.N.M. Day (Ian N.M.); J. Duan (Jubao); R. Elosua (Roberto); G. Eiriksdottir (Gudny); T. Illig (Thomas); S.B. Felix (Stephan); P. Fischer-Posovszky (Pamela); A.R. Folsom (Aaron); N. Friedrich (Nele); M. Fu (Mao); S. Gaget (Stefan); P.V. Gejman (Pablo); E.J. Geus (Eeco); A.P. Gjesing (Anette); P. Goyette (Philippe); J. Gräsler (Jürgen); A.S. Havulinna (Aki); C. Hayward (Caroline); A.C. Heath (Andrew C.); C. Hengstenberg (Christian); A.A. Hicks (Andrew); A. Hinney (Anke); G. Homuth (Georg); J. Hui (Jennie); W. Igl (Wilmar); K.B. Jacobs (Kevin); I. Jarick (Ivonne); E. Jewell (Eelizabeth); U. John (Ulrich); P. Jousilahti (Pekka); A. Jula (Antti); M. Kaakinen (Marika); L. Kaplan (Lee); S. Kathiresan (Sekar); J. Kettunen (Johannes); J. Yang (Joanna); J.W. Knowles (Joshua); T. Esko (Tõnu); I.R. König (Inke); S. Koskinen (Seppo); P. Kovacs (Peter); S. Raychaudhuri (Soumya); J. Laitinen (Jaana); O. Lantieri (Olivier); C. Lanzani (Chiara); L.J. Launer (Lenore); C. Lecoeur (Cécile); T. Lehtimäki (Terho); G. Lettre (Guillaume); J. Liu (Jianjun); M.L. Lokki; M. Lorentzon (Mattias); M.E. Goddard (Michael); B. Ludwig (Barbara); P. Manunta (Paolo); D. Marek (Diana); N.G. Martin (Nicholas); T. Johnson (Toby); B. McKnight (Barbara); O. Melander (Olle); D. Meyre (David); G.W. Montgomery (Grant); R. Mulic (Rosanda); J.S. Ngwa; M. Nelis (Mari); M.J. Neville (Matthew); D.R. Nyholt (Dale); C.J. O'Donnell (Christopher); L.J. Scott (Laura); B.A. Oostra (Ben); G. Pare (Guillame); A.N. Parker (Alex); I. Pichler (Irene); K.H. Pietilainen (Kirsi Hannele); C.P. Platou (Carl); O. Polasek (Ozren); M.N. Cooper (Matthew); S. Rafelt (Suzanne); O.T. Raitakari (Olli T.); N.W. Rayner (Nigel William); M. Ridderstråle (Martin); J. Shi (Jianxin); E. Thiering (Eelisabeth); V. Salomaa (Veikko); M.S. Sandhu (Manjinder); S. Sanna (Serena); J. Saramies (Jouko); M.J. Savolainen (Markku); A. Scherag (Andre); S. Schipf (Sabine); Y. Ben-Shlomo; H. Schunkert (Heribert); K. Silander (Kaisa); J. Sinisalo (Juha); D.S. Siscovick (David); J.H. Smit (Jan); N. Soranzo (Nicole); S.R. Bornstein (Stefan); J. Stephens (Jonathan); T.A. Buchanan (Thomas); M.L. Tammesoo; J.-C. Tardif (Jean-Claude); F.P. Cappuccio (Francesco); T.M. Teslovich (Tanya M.); J.R. Thompson (John); B. Thomson (Brian); A. Tönjes (Anke); R. Clarke; L. Coin (Lachlan); V. Vatin (Vincent); I.N.M. Day (Ian); M. den Heijer (Martin); S. Ebrahim (Shanil); L. Waite (Lindsay); H. Wallaschofski (Henri); E. Widen (Elisabeth); S. Wiegand (Susanna); S.H. Wild (Sarah); G.A.H.M. Willemsen (Gonneke); J.C.M. Witteman (Jacqueline); J. Xu (Jianfeng); L. Zgaga (Lina); J.P. Beilby (John); I.S. Farooqi (I. Sadaf); J. Hebebrand (Johannes); H.V. Huikuri (Heikki); A. James (Alan); M. Kähönen (Mika); F. Macciardi (Fabio); M.S. Nieminen (Markku); C. Ohlsson (Claes); V. Gudnason (Vilmundur); P.M. Ridker (Paul); M. Stumvoll (Michael); J.S. Beckmann (Jacques); D.I. Boomsma (Dorret); M. Caulfield (Mark); S.J. Chanock (Stephen); L.A. Cupples (Adrienne); G.D. Smith; J. Erdmann (Jeanette); H. Grönberg (Henrik); P. Hall (Per); T.B. Harris (Tamara); R.B. Hayes (Richard); J. Heinrich (Joachim); M.-R. Jarvelin (Marjo-Riitta); J. Kaprio (Jaakko); K.T. Khaw; L.A.L.M. Kiemeney (Bart); H. Krude; D.A. Lawlor (Debbie); A. Metspalu (Andres); W.H. Ouwehand (Willem); B.W.J.H. Penninx; A. Peters (Annette); T. Quertermous (Thomas); T. Reinehr (Thomas); A. Rissanen (Aila); N.J. Samani (Nilesh); P.E.H. Schwarz (Peter); A.R. Shuldiner (Alan); T.D. Spector (Timothy); M. Uda (Manuela); Wabitsch, M. (Martin); G. Waeber (Gérard); A.F. Wright (Alan); M.C. Zillikens (Carola); N. Chatterjee (Nilanjan); T. Lehtimäki (Terho); J. Liu (Jianjun); T.L. Assimes (Themistocles); I.B. Borecki (Ingrid); P. Deloukas (Panagiotis); L. Groop (Leif); T. Haritunians (Talin); R.C. Kaplan (Robert); L. Peltonen (Leena Johanna); D.P. Strachan (David); H.E. Wichmann (Heinz Erich); K.E. North (Kari); J.N. Hirschhorn (Joel); E. Ingelsson (Erik); G.W. Montgomery (Grant); L. Parts (Leopold); D. Glass (Daniel); J. Nisbet (James); A. Barrett (Angela); M. Sekowska (Magdalena); M.E. Travers (Mary); S.C. Potter (Simon); E. Grundberg (Elin); S. O'Rahilly (Stephen); A.K. Hedman (Asa); V. Bataille (Veronique); J.T. Bell (Jordana); G. Surdulescu (Gabriela); M. Perola (Markus); F.O. Nestle (Frank); J. Min (Josine); A. Wilk (Alicja); C.J. Hammond (Christopher J.); T.-P. Yang (Tsun-Po); O. Raitakari (Olli); R. Durbin (Richard); K.R. Ahmadi (Kourosh); H. Holm (Hilma); A.F. Stewart (Alexandre F.); M. Barbalic (maja); Z. Aherrahrou (Zouhair); H. Allayee (Hooman); S.S. Anand (Sonia); K. Andersen (Karl); S. Schreiber (Stefan); D. Ardissino (Diego); T.A. Barnes (Timothy); D.M. Becker (Diane); L.C. Becker (Lewis); K. Berger (Klaus); J.C. Bis (Joshua); S.M. Boekholdt (Matthijs); P.S. Braund (Peter); M.S. Burnett; I. Buysschaert (Ian); J.F. Carlquist (John); L. Chen (Li); S. Cichon (Sven); V. Codd (Veryan); R.W. Davies (Robert); G.V. Dedoussis (George); A. Dehghan (Abbas); S. Demissie (Serkalem); P. Diemert (Patrick); R. Do (Ron); A. Doering (Angela); S. Eifert (Sandra); N.E. El Mokhtari (Nour Eddine); S.G. Ellis (Stephen); S.E. Epstein (Stephen); U. de Faire (Ulf); M. Fischer (Marcus); J. Freyer (Jennifer); B. Gigante (Bruna); D. Girelli (Domenico); D.R. Witte (Deniel); J.R. Gulcher (Jeffrey); E. Halperin (Eran); N. Hammond (Naomi); S.L. Hazen (Stanley); A. Ziegler (Andreas); G.T. Jones (Gregory); J.W. Jukema (Jan Wouter); I.S. Farooqi (Sadaf); J.J.P. Kastelein (John); R. Laaksonen (Reijo); D. Lambrechts (Diether); D.F. Levinson (Douglas); X. Li (Xiaohui); W. Lieb (Wolfgang); C. Loley (Christina); A.J. Lotery (Andrew); P.M. Mannucci (Pier); S. Maouche (Seraya); J.S. Beckmann (Jacques); H. Boeing (Heiner); C. Meisinger (Christa); V. Mooser (Vincent); T. Morgan (Thomas); F.S. Collins (Francis); J.B. Muhlestein (Joseph); T. Munzel (Thomas); K. Musunuru (Kiran); J. Nahrstaedt (Janja); C.P. Nelson (Christopher P.); M.M. Nöthen (Markus); R.S. Patel (Riyaz); F. Peyvandi (Flora); R.B. Hayes (Richard); A.A. Quyyumi (Arshed); D.J. Rader (Daniel); L.S. Rallidis (Loukianos); F. Karpe (Fredrik); J. Kaprio (Jaakko); M.L. Sampietro (Maria Lourdes); M.S. Sandhu (Manjinder); E.E. Schadt (Eric); A. Schäfer (Arne); A. Schillert (Arne); S.M. Schwartz (Stephen); P. Munroe (Patricia); S. Sivapalaratnam (Suthesh); A.V. Smith (Albert Vernon); J.D. Snoep (Jaapjan); J.A. Spertus (John); K. Stark (Klaus); M. Stoll (Monika); W. Tang (W.); S. Tennstedt (Stephanie); G. Thorgeirsson (Gudmundur); A.R. Shuldiner (Alan); A.M. van Rij (Andre); N.J. Wareham (Nick); G.A. Wells (George); P.S. Wild (Philipp); C. Willenborg (Christina); B.J. Wright (Benjamin); T. Zeller (Tanja); F. Cambien (François); A.H. Goodall (Alison); W. März (Winfried); S. Blankenberg (Stefan); R. Roberts (Robert); R. McPherson (Ruth); J. Hopewell; P.M. Visscher (Peter); A. Offer (Alison); L. Bowman; P. Sleight (Peter); R. Peto (R.); F.S. Collins (Francis); J.C. Chambers (John C.); N. Ahmed (Nabeel); J.R. O´Connell; P. Donnelly (Peter); J.S. Kooner (Jaspal); N.J. Samani (Nilesh); J. Scott (James); J.S. Sehmi (Joban); W. Zhang (Weihua); R.J. Strawbridge (Rona); Sabater-Lleal, M. (Maria); A. Mälarstig (Anders); M.-L. Hellénius (Mai-Lis); G. Olsson; S. Rust (Stephan); G. Assmann (Gerd); U. Seedorf (Udo); G. Tognoni; M. Franzosi; P. Linksted (Pamela); H. Ongen (Halit); T. Kyriakou (Theodosios); M. Farrall (Martin); A. Rasheed (Asif); M.A. Zaidi (Aghar); N. Shah (Nisha); M. Samuel (Maria); C.B. Mallick (Chandana Basu); M. Azhar (Muhammad); K.S. Zaman (Khan Shah); M. Ishaq (Muhammad); A. Gardezi (Ali); C.J. Hammond (Christopher); R. Frossard; J. Danesh (John); J.C. Chambers (John); J.S. Kooner (Jaspal S.); C.-G. Östenson (Claes-Göran); K.T. Zondervan (Krina); M. Serrano-Ríos (Manuel); E. Ferrannini (Ele); T. Forsen (Tom); M.I. McCarthy (Mark); G.V. Dedoussis (George); C. Langenberg (Claudia); A. Hamsten (Anders); J.C. Florez (Jose)

    2011-01-01

    textabstractOBJECTIVE - Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired b-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new

  9. Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes

    NARCIS (Netherlands)

    Strawbridge, Rona J.; Dupuis, Josee; Prokopenko, Inga; Barker, Adam; Ahlqvist, Emma; Rybin, Denis; Petrie, John R.; Travers, Mary E.; Bouatia-Naji, Nabila; Dimas, Antigone S.; Nica, Alexandra; Wheeler, Eleanor; Chen, Han; Voight, Benjamin F.; Taneera, Jalal; Kanoni, Stavroula; Peden, John F.; Turrini, Fabiola; Gustafsson, Stefan; Zabena, Carina; Almgren, Peter; Barker, David J. P.; Barnes, Daniel; Dennison, Elaine M.; Eriksson, Johan G.; Eriksson, Per; Eury, Elodie; Folkersen, Lasse; Fox, Caroline S.; Frayling, Timothy M.; Goel, Anuj; Gu, Harvest F.; Horikoshi, Momoko; Isomaa, Bo; Jackson, Anne U.; Jameson, Karen A.; Kajantie, Eero; Kerr-Conte, Julie; Kuulasmaa, Teemu; Kuusisto, Johanna; Loos, Ruth J. F.; Luan, Jian'an; Makrilakis, Konstantinos; Manning, Alisa K.; Teresa Martinez-Larrad, Maria; Narisu, Narisu; Mannila, Maria Nastase; Ohrvik, John; Osmond, Clive; Pascoe, Laura

    2011-01-01

    OBJECTIVE-Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired beta-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about

  10. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes

    NARCIS (Netherlands)

    Strawbridge, R.J.; Dupuis, J.; Prokopenko, I.; Barker, A.; Ahlqvist, E.; Rybin, D.; Petrie, J.R.; Travers, M.E.; Bouatia-Naji, N.; Dimas, A.S.; Nica, A.; Wheeler, E.; Chen, H.; Voight, B.F.; Taneera, J.; Kanoni, S.; Peden, J.F.; Turrini, F.; Gustafsson, S.; Zabena, C.; Almgren, P.; Barker, D.J.; Barnes, D.; Dennison, E.M.; Eriksson, J.G.; Eriksson, P.; Eury, E.; Folkersen, L.; Fox, C.S.; Frayling, T.M.; Goel, A.; Gu, H.F.; Horikoshi, M.; Isomaa, B.; Jackson, A.U.; Jameson, K.A.; Kajantie, E.; Kerr-Conte, J.; Kuulasmaa, T.; Kuusisto, J.; Loos, R.J.; Luan, J.; Makrilakis, K.; Manning, A.K.; Martinez-Larrad, M.T.; Narisu, N.; Nastase Mannila, M.; Ohrvik, J.; Osmond, C.; Pascoe, L.; Payne, F.; Sayer, A.A.; Sennblad, B.; Silveira, A.; Stancakova, A.; Stirrups, K.; Swift, A.J.; Syvanen, A.C.; Tuomi, T.; Hooft, F. van 't; Walker, M.; Weedon, M.N.; Xie, W.; Zethelius, B.; Ongen, H.; Malarstig, A.; Hopewell, J.C.; Saleheen, D.; Chambers, J.; Parish, S.; Danesh, J.; Kooner, J.; Ostenson, C.G.; Lind, L.; Cooper, C.C.; Serrano-Rios, M.; Ferrannini, E.; Forsen, T.J.; Clarke, R.; Franzosi, M.G.; Seedorf, U.; Watkins, H.; Froguel, P.; Johnson, P.; Deloukas, P.; Collins, F.S.; Laakso, M.; Dermitzakis, E.T.; Boehnke, M.; McCarthy, M.I.; Wareham, N.J.; Groop, L.; Pattou, F.; Gloyn, A.L.; Dedoussis, G.V.; Lyssenko, V.; Meigs, J.B.; Barroso, I.; Watanabe, R.M.; Heijer, M. den; Kiemeney, L.A.L.M.; et al.,

    2011-01-01

    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired beta-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about

  11. Proinsulin in Healthy Pregnancy, Pregnancy with Gestational Diabetes and after Delivery

    Directory of Open Access Journals (Sweden)

    Genova M. P.

    2014-06-01

    Full Text Available The aim of the present study was to evaluate the levels of pro-insulin and pro-insulin/ insulin ratio (PIR in pregnant with normal glucose tolerance (NGT, pregnant with gestational diabetes mellitus (GDM and women after delivery with GDM history. Normal pregnancy is characterized by progressive insulin resistance, which is physiologically compensated by an increase in insulin secretion. The higher secretion of the insulin precursor pro-insulin has been associated with β-cell dysfunction. A total of 102 pregnant women between 24-28 gestational weeks (53 GDM pregnant, 49 with NGT and 22 postpartum with GDM history, as assessed by a 2h oral glucose tolerance test, were included in the study. Fasting plasma insulin and pro-insulin (PI concentrations at the basal state were measured in all women. The ratio pro-insulin/insulin was calculated. BMI was significantly higher in GDM pregnant compared to NGT weight-matched group (30.56 ± 6.9 vs. 30.56 ± 6.9; p < 0, 011 and compared to the levels after delivery (30.56 ± 6.9vs. 27.9 ± 6, 27; p < 0, 001. Significant differences in the levels of PI between NGT and GDM pregnant (3.94 ± 2.78 vs. 7.59 ± 5.27; p = 0.006, between GDM and postpartum women (7.59 ± 5.27 vs. 4.46 ± 1.14; p = 0.022 were established. No signifi cant difference in the level of PIR between two pregnant groups was observed. Separately NGT and GDM showed signifi cant difference compared to young mothers (0.41 ± 0.14 vs. 0.148 ± 0.031, p < 0.02; 0.46 ± 0.16 vs. 0.148 ± 0.031, p = 0.009. Fasting insulin was statistically higher in GDM pregnant compare to NGT and women after delivery (13.84 ± 8.43 vs. 11.35 ± 7.38, p = 0.02; 13.84 ± 8.43 vs. 10.60 ± 7.53, p < 0.01. The correlation between PIR and BMI in the three groups studied were r = 0.416; r = 0,741; r = 0,556 (with statistical significance p = 0.01 between NGT and GDM pregnancy, p = 0.02 between GDM pregnancy and postpartum, p < 0.0001 between NGT pregnancy and young mother

  12. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes

    NARCIS (Netherlands)

    Strawbridge, Rona J.; Dupuis, Josée; Prokopenko, Inga; Barker, Adam; Ahlqvist, Emma; Rybin, Denis; Petrie, John R.; Travers, Mary E.; Bouatia-Naji, Nabila; Dimas, Antigone S.; Nica, Alexandra; Wheeler, Eleanor; Chen, Han; Voight, Benjamin F.; Taneera, Jalal; Kanoni, Stavroula; Peden, John F.; Turrini, Fabiola; Gustafsson, Stefan; Zabena, Carina; Almgren, Peter; Barker, David J. P.; Barnes, Daniel; Dennison, Elaine M.; Eriksson, Johan G.; Eriksson, Per; Eury, Elodie; Folkersen, Lasse; Fox, Caroline S.; Frayling, Timothy M.; Goel, Anuj; Gu, Harvest F.; Horikoshi, Momoko; Isomaa, Bo; Jackson, Anne U.; Jameson, Karen A.; Kajantie, Eero; Kerr-Conte, Julie; Kuulasmaa, Teemu; Kuusisto, Johanna; Loos, Ruth J. F.; Luan, Jian'an; Makrilakis, Konstantinos; Manning, Alisa K.; Martínez-Larrad, María Teresa; Narisu, Narisu; Nastase Mannila, Maria; Boekholdt, S. Matthijs; Kastelein, John J. P.; Rosendaal, Frits R.

    2011-01-01

    Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D

  13. Intact proinsulin and beta-cell function in lean and obese subjects with and without type 2 diabetes

    DEFF Research Database (Denmark)

    Røder, M E; Dinesen, B; Hartling, S G

    1999-01-01

    , total proinsulin immunoreactivity (PIM), intact insulin, and C-peptide (by radioimmunoassay) by specific enzyme-linked immunosorbent assays in the fasting state and during a 120-min glucagon (1 mg i.v.) stimulation test. Lean (BMI 23.5 +/- 0.3 kg/m2) (LD) and obese (30.1 +/- 0.4 kg/m2) (OD) type 2...... diabetic patients matched for fasting glucose (10.2 +/- 0.6 vs. 10.3 +/- 0.4 mmol/l) were compared with age- and BMI-matched lean (22.4 +/- 0.6 kg/m2) (LC) and obese (30.8 +/- 0.9 kg/m2) (OC) normal control subjects. RESULTS: Diabetic patients (LD vs. LC and OD vs. OC) had elevated fasting levels of intact......, most pronounced in the lean group. The ratio of intact proinsulin to PIM was higher in diabetic patients after stimulation in both LD versus LC: 32 +/- 3 vs. 23 +/- 2%, and OD versus OC: 28 +/- 4 vs. 16 +/- 2%, both P obese normal subjects, intact proinsulin/PIM was lower both in the fasting...

  14. Kinetics of circulating endogenous insulin, C-peptide, and proinsulin in fasting nondiabetic man

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Tronier, B; Bülow, J B

    1987-01-01

    Plasma concentrations of insulin, C-peptide, and proinsulin were measured in different vascular beds in order to determine renal, hepatic, and systemic kinetics of the endogenous peptides in the fasting condition. Nineteen nondiabetic subjects were studied, two were normal, nine had minor vascular...

  15. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes

    OpenAIRE

    Strawbridge, Rona; Dupuis, Josée; Prokopenko, Inga; Barker, Adam; Ahlqvist, Emma; Rybin, Denis; Petrie, John; Bouatia-Naji, Nabila; Dimas, Antigone; Wheeler, Eleanor; Chen, Han; Voight, Benjamin; Taneera, Jalal; Kanoni, Stavroula; Peden, John

    2011-01-01

    textabstractOBJECTIVE - Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired b-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS - We have conducted a meta-analysis of genome-wide association tests of ;2.5 million genotyped or imputed single nucleotide polymorphisms...

  16. Release of immunoreactive and radioactively prelabelled endogenous (pro-)insulin from isolated islets of rat pancreas in the presence of exogenous insulin

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, H [Giessen Univ. (Germany, F.R.). Zentrum fuer Innere Medizin; Pfeiffer, E F

    1977-01-01

    To study the influence of insulin on its secretion, collagenase-isolated islets of rat pancreas were prelabelled with (/sup 3/H)leucine for 2 h. After washing the islets, (pro-)insulin release was stimulated by glucose in the presence or absence of exogenous insulin (up to 2.5 mu./ml. Hormone release was unchanged by the presence of exogenous insulin as judged by determination of both immunoreactive insulin and radioactivity incorporated into the proinsulin and insulin fractions of the medium. No direct feedback mechanism for insulin secretion was apparent from this study.

  17. Sulfatide promotes the folding of proinsulin, preserves insulin crystals, and mediates its monomerization.

    Science.gov (United States)

    Osterbye, T; Jørgensen, K H; Fredman, P; Tranum-Jensen, J; Kaas, A; Brange, J; Whittingham, J L; Buschard, K

    2001-06-01

    Sulfatide is a glycolipid that has been associated with insulin-dependent diabetes mellitus. It is present in the islets of Langerhans and follows the same intracellular route as insulin. However, the role of sulfatide in the beta cell has been unclear. Here we present evidence suggesting that sulfatide promotes the folding of reduced proinsulin, indicating that sulfatide possesses molecular chaperone activity. Sulfatide associates with insulin by binding to the insulin domain A8--A10 and most likely by interacting with the hydrophobic side chains of the dimer-forming part of the insulin B-chain. Sulfatide has a dual effect on insulin. It substantially reduces deterioration of insulin hexamer crystals at pH 5.5, conferring stability comparable to those in beta cell granules. Sulfatide also mediates the conversion of insulin hexamers to the biological active monomers at neutral pH, the pH at the beta-cell surface. Finally, we report that inhibition of sulfatide synthesis with chloroquine and fumonisine B1 leads to inhibition of insulin granule formation in vivo. Our observations suggest that sulfatide plays a key role in the folding of proinsulin, in the maintenance of insulin structure, and in the monomerization process.

  18. Proinsulin, GLP-1, and glucagon are associated with partial remission in children and adolescents with newly diagnosed type 1 diabetes

    DEFF Research Database (Denmark)

    Kaas, A.; Andersen, M. L. M.; Fredheim, Siri

    2012-01-01

    .002) were significantly lower in remitters than in non-remitters at 6 and 12 months. Proinsulin associated positively with GLP-1 at 1 month (p = 0.004) and negatively at 6 (p = 0.002) and 12 months (p = 0.0002). Conclusions: In type 1 diabetes, patients in partial remission have higher levels of proinsulin......1C), glucagon-like peptide-1 (GLP-1), glucagon, and remission status the first year after diagnosis of type 1 diabetes. Methods: Juvenile patients (n = 275) were followed 1, 6, and 12 months after diagnosis. At each visit, partial remission was defined as IDAA1C = 9%. The patients had a liquid meal...

  19. Proinsulin atypical maturation and disposal induces extensive defects in mouse Ins2+/Akita β-cells.

    Directory of Open Access Journals (Sweden)

    Qingxin Yuan

    Full Text Available Because of its low relative folding rate and plentiful manufacture in β-cells, proinsulin maintains a homeostatic balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO through the integration of maturation and disposal processes. PIHO is susceptible to genetic and environmental influences, and its disorder has been critically linked to defects in β-cells in diabetes. To explore this hypothesis, we performed polymerase chain reaction (PCR, metabolic-labeling, immunoblotting, and histological studies to clarify what defects result from primary disorder of PIHO in model Ins2(+/Akita β-cells. We used T antigen-transformed Ins2(+/Akita and control Ins2(+/+ β-cells established from Akita and wild-type littermate mice. In Ins2(+/Akita β-cells, we found no apparent defect at the transcriptional and translational levels to contribute to reduced cellular content of insulin and its precursor and secreted insulin. Glucose response remained normal in proinsulin biosynthesis but was impaired for insulin secretion. The size and number of mature insulin granules were reduced, but the size/number of endoplasmic reticulum, Golgi, mitochondrion, and lysosome organelles and vacuoles were expanded/increased. Moreover, cell death increased, and severe oxidative stress, which manifested as increased reactive oxygen species, thioredoxin-interacting protein, and protein tyrosine nitration, occurred in Ins2(+/Akita β-cells and/or islets. These data show the first clear evidence that primary PIHO imbalance induces severe oxidative stress and impairs glucose-stimulated insulin release and β-cell survival as well as producing other toxic consequences. The defects disclosed/clarified in model Ins2(+/Akita β-cells further support a role of the genetic and stress-susceptible PIHO disorder in β-cell failure and diabetes.

  20. Development and standardization of radioimmunoassay technique for human proinsulin determining and its use in the study of type II diabetes mellitus associated to obesity; Desenvolvimento e padronizacao da tecnica de radioimunoensaio para a determinacao de pro-insulina humana e sua aplicacao no estudo do diabetes mellitus tipo II associado a obesidade

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Martha do

    1996-12-31

    The availability of immunoassay methodology for proinsulin is important to define its physiological and pathophysiological significance in humans. Serum concentration of proinsulin are elevated in patients with type II Diabetes Mellitus (NIDDM) and recently diagnosed Type I, so a raised circulating concentration of proinsulin may serve as an early indicator of {beta} cells dysfunction. recently, in NIDDM the serum concentrations of proinsulin and its B-chain-C-peptide junctional split form, des (31-32), were found to correlate with diastolic blood pressure, a risk factor for cardiovascular disease. The development of a sensitive and specific radioimmunoassay (RIA) methodology for proinsulin has been difficult due to its low concentration in serum and the presence of proinsulin conversion intermediates in fluids and tissues. Also other potentially cross-reactive peptides, including insulin and C-peptide, can interfere in the assay. This work describe a highly specific human proinsulin RIA developed by using biosynthetic human proinsulin (hPI) as immunogen, standard and tracer. (author) 133 refs., 17 figs., 36 tabs.

  1. Development and standardization of radioimmunoassay technique for human proinsulin determining and its use in the study of type II diabetes mellitus associated to obesity; Desenvolvimento e padronizacao da tecnica de radioimunoensaio para a determinacao de pro-insulina humana e sua aplicacao no estudo do diabetes mellitus tipo II associado a obesidade

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Martha do

    1997-12-31

    The availability of immunoassay methodology for proinsulin is important to define its physiological and pathophysiological significance in humans. Serum concentration of proinsulin are elevated in patients with type II Diabetes Mellitus (NIDDM) and recently diagnosed Type I, so a raised circulating concentration of proinsulin may serve as an early indicator of {beta} cells dysfunction. recently, in NIDDM the serum concentrations of proinsulin and its B-chain-C-peptide junctional split form, des (31-32), were found to correlate with diastolic blood pressure, a risk factor for cardiovascular disease. The development of a sensitive and specific radioimmunoassay (RIA) methodology for proinsulin has been difficult due to its low concentration in serum and the presence of proinsulin conversion intermediates in fluids and tissues. Also other potentially cross-reactive peptides, including insulin and C-peptide, can interfere in the assay. This work describe a highly specific human proinsulin RIA developed by using biosynthetic human proinsulin (hPI) as immunogen, standard and tracer. (author) 133 refs., 17 figs., 36 tabs.

  2. Comparative assessment of immunization procedures for development of anti proinsulin antisera for radioimmunoassay

    International Nuclear Information System (INIS)

    Nascimento, M. do; Borghi, V.C.; Bellini, M.H.; Mesquita, C.H.; Wajchenberg, B.L.

    1992-08-01

    Two schedules of immunization were employed for developing anti proinsulin antisera for radioimmunoassay. Biosynthetic human proinsulin-h P I (Elli Lilly. US), was injected subcutaneously in guinea pigs in multiple sites. In the first schedule were used 50 u g of h P I and the booster injections were administered 4 weeks after the primary immunization and then at 3-week intervals. In the second schedule was used 250 u g of h P I and boosters were done 7, 9 and 18 weeks later. As the antisera were not sufficiently specific for h P I they were purified and assessed for kinetic of precipitation and avidity. Both immunization schedules gave comparable responses. The antisera generated by the use of 50 u g of h P I presented higher cross-reactivity with insulin while the reactivity with c p eptide was of the same order in both antiserum groups. The avidity was very variable in the two groups and the three most sensitive antisera required 24 h at 4 o C for achieving maximum binding with the 125 I-h P I. However, only one antiserum (from the first group) was suitable for the radioimmunoassay. This study emphasizes the difficulties of making valid comparisons between different immunization procedures, especially in the cases when highest avidity is required. (author)

  3. Increased seroreactivity to proinsulin and homologous mycobacterial peptides in latent autoimmune diabetes in adults.

    Directory of Open Access Journals (Sweden)

    Magdalena Niegowska

    Full Text Available Latent Autoimmune Diabetes in Adults (LADA is a slowly progressing form of immune-mediated diabetes that combines phenotypical features of type 2 diabetes (T2D with the presence of islet cell antigens detected in type 1 diabetes (T1D. Heterogeneous clinical picture have led to the classification of patients based on the levels of antibodies against glutamic acid decarboxylase 65 (GADA that correlate with clinical phenotypes closer to T1D or T2D when GADA titers are high or low, respectively. To date, LADA etiology remains elusive despite numerous studies investigating on genetic predisposition and environmental risk factors. To our knowledge, this is the first study aimed at evaluation of a putative role played by Mycobacterium avium subsp. paratuberculosis (MAP as an infective agent in LADA pathogenesis. MAP is known to cause chronic enteritis in ruminants and has been associated with autoimmune disorders in humans. We analyzed seroreactivity of 223 Sardinian LADA subjects and 182 healthy volunteers against MAP-derived peptides and their human homologs of proinsulin and zinc transporter 8 protein. A significantly elevated positivity for MAP/proinsulin was detected among patients, with the highest prevalence in the 32-41-year-old T1D-like LADA subgroup, supporting our hypothesis of a possible MAP contribution in the development of autoimmunity.

  4. Prediction of Impending Type 1 Diabetes through Automated Dual-Label Measurement of Proinsulin:C-Peptide Ratio.

    Directory of Open Access Journals (Sweden)

    Annelien Van Dalem

    Full Text Available The hyperglycemic clamp test, the gold standard of beta cell function, predicts impending type 1 diabetes in islet autoantibody-positive individuals, but the latter may benefit from less invasive function tests such as the proinsulin:C-peptide ratio (PI:C. The present study aims to optimize precision of PI:C measurements by automating a dual-label trefoil-type time-resolved fluorescence immunoassay (TT-TRFIA, and to compare its diagnostic performance for predicting type 1 diabetes with that of clamp-derived C-peptide release.Between-day imprecision (n = 20 and split-sample analysis (n = 95 were used to compare TT-TRFIA (AutoDelfia, Perkin-Elmer with separate methods for proinsulin (in-house TRFIA and C-peptide (Elecsys, Roche. High-risk multiple autoantibody-positive first-degree relatives (n = 49; age 5-39 were tested for fasting PI:C, HOMA2-IR and hyperglycemic clamp and followed for 20-57 months (interquartile range.TT-TRFIA values for proinsulin, C-peptide and PI:C correlated significantly (r2 = 0.96-0.99; P<0.001 with results obtained with separate methods. TT-TRFIA achieved better between-day %CV for PI:C at three different levels (4.5-7.1 vs 6.7-9.5 for separate methods. In high-risk relatives fasting PI:C was significantly and inversely correlated (rs = -0.596; P<0.001 with first-phase C-peptide release during clamp (also with second phase release, only available for age 12-39 years; n = 31, but only after normalization for HOMA2-IR. In ROC- and Cox regression analysis, HOMA2-IR-corrected PI:C predicted 2-year progression to diabetes equally well as clamp-derived C-peptide release.The reproducibility of PI:C benefits from the automated simultaneous determination of both hormones. HOMA2-IR-corrected PI:C may serve as a minimally invasive alternative to the more tedious hyperglycemic clamp test.

  5. Automated thermometric enzyme immunoassay of human proinsulin produced by Escherichia coli.

    Science.gov (United States)

    Birnbaum, S; Bülow, L; Hardy, K; Danielsson, B; Mosbach, K

    1986-10-01

    We have determined and monitored the production and release of human proinsulin by genetically engineered Escherichia coli cells. Several M9 media samples were analyzed sequentially after centrifugation with the aid of a rapid automated flow-through thermometric enzyme-linked immunosorbent assay (TELISA) system. The response time was 7 min after sample injection and a single assay was complete after 13 min. Insulin concentrations in the range of 0.1-50 micrograms/ml could be determined. The TELISA method correlated well with conventional radioimmunoassay determinations. Standard curves were reproducible over a period of several days even when the immobilized antibody column was stored at 25 degrees C in the enzyme thermistor unit. Thus, immediate assay start up was possible.

  6. Automated thermometric enzyme immunoassay of human proinsulin produced by Escherichia coli

    International Nuclear Information System (INIS)

    Birnbaum, S.; Buelow, L.; Hardy, K.; Danielsson, B.; Mosbach, K.

    1986-01-01

    The authors have determined and monitored the production and release of human proinsulin by genetically engineered Escherichia coli cells. Several M9 media samples were analyzed sequentially after centrifugation with the aid of a rapid automated flow-through thermometric enzyme-linked immunosorbent assay (TELISA) system. The response time was 7 min after after sample injection and a single assay was complete after 13 min. Insulin concentrations in the range of 0.1-50 μg/ml could be determined. The TELISA method correlated well with conventional radioimmunoassay determinations. Standard curves were reproducible over a period of several days even when the immobilized antibody column was stored at 25 0 C in the enzyme thermistor unit. Thus, immediate assay start up was possible

  7. Intracellular transport and sorting of mutant human proinsulins that fail to form hexamers.

    Science.gov (United States)

    Quinn, D; Orci, L; Ravazzola, M; Moore, H P

    1991-06-01

    Human proinsulin and insulin oligomerize to form dimers and hexamers. It has been suggested that the ability of prohormones to self associate and form aggregates may be responsible for the sorting process at the trans-Golgi. To examine whether insulin oligomerization is required for proper sorting into regulated storage granules, we have constructed point mutations in human insulin B chain that have been previously shown to prevent formation of insulin hexamers (Brange, J., U. Ribel, J. F. Hansen, G. Dodson, M. T. Hansen, S. Havelund, S. G. Melberg, F. Norris, K. Norris, L. Snel, A. R. Sorensen, and H. O. Voight. 1988. Nature [Lond.]. 333:679-682). One mutant (B10His----Asp) allows formation of dimers but not hexamers and the other (B9Ser----Asp) prevents formation of both dimers and hexamers. The mutants were transfected into the mouse pituitary AtT-20 cells, and their ability to be sorted into regulated secretory granules was compared to wild-type insulin. We found that while B10His----Asp is sorted somewhat less efficiently than wild-type insulin as reported previously (Carroll, R. J., R. E. Hammer, S. J. Chan, H. H. Swift, A. H. Rubenstein, and D. F. Steiner. 1988. Proc. Natl. Acad. Sci. USA. 85:8943-8947; Gross, D. J., P. A. Halban, C. R. Kahn, G. C. Weir, and L. Villa-Kumaroff. 1989. Proc. Natl. Acad. Sci. USA. 86:4107-4111). B9Ser----Asp is targeted to granules as efficiently as wild-type insulin. These results indicate that self association of proinsulin into hexamers is not required for its targeting to the regulated secretory pathway.

  8. Genetic complexity in a Drosophila model of diabetes-associated misfolded human proinsulin.

    Science.gov (United States)

    Park, Soo-Young; Ludwig, Michael Z; Tamarina, Natalia A; He, Bin Z; Carl, Sarah H; Dickerson, Desiree A; Barse, Levi; Arun, Bharath; Williams, Calvin L; Miles, Cecelia M; Philipson, Louis H; Steiner, Donald F; Bell, Graeme I; Kreitman, Martin

    2014-02-01

    Drosophila melanogaster has been widely used as a model of human Mendelian disease, but its value in modeling complex disease has received little attention. Fly models of complex disease would enable high-resolution mapping of disease-modifying loci and the identification of novel targets for therapeutic intervention. Here, we describe a fly model of permanent neonatal diabetes mellitus and explore the complexity of this model. The approach involves the transgenic expression of a misfolded mutant of human preproinsulin, hINS(C96Y), which is a cause of permanent neonatal diabetes. When expressed in fly imaginal discs, hINS(C96Y) causes a reduction of adult structures, including the eye, wing, and notum. Eye imaginal discs exhibit defects in both the structure and the arrangement of ommatidia. In the wing, expression of hINS(C96Y) leads to ectopic expression of veins and mechano-sensory organs, indicating disruption of wild-type signaling processes regulating cell fates. These readily measurable "disease" phenotypes are sensitive to temperature, gene dose, and sex. Mutant (but not wild-type) proinsulin expression in the eye imaginal disc induces IRE1-mediated XBP1 alternative splicing, a signal for endoplasmic reticulum stress response activation, and produces global change in gene expression. Mutant hINS transgene tester strains, when crossed to stocks from the Drosophila Genetic Reference Panel, produce F1 adults with a continuous range of disease phenotypes and large broad-sense heritability. Surprisingly, the severity of mutant hINS-induced disease in the eye is not correlated with that in the notum in these crosses, nor with eye reduction phenotypes caused by the expression of two dominant eye mutants acting in two different eye development pathways, Drop (Dr) or Lobe (L), when crossed into the same genetic backgrounds. The tissue specificity of genetic variability for mutant hINS-induced disease has, therefore, its own distinct signature. The genetic dominance

  9.  Pleiotropic action of proinsulin C-peptid

    Directory of Open Access Journals (Sweden)

    Michał Usarek

    2012-03-01

    Full Text Available  Proinsulin C-peptide, released in equimolar amounts with insulin by pancreatic β cells, since its discovery in 1967 has been thought to be devoid of biological functions apart from correct insulin processing and formation of disulfide bonds between A and B chains. However, in the last two decades research has brought a substantial amount of data indicating a crucial role of C-peptide in regulating various processes in different types of cells and organs. C-peptide acts presumably via either G-protein-coupled receptor or directly inside the cell, after being internalized. However, a receptor binding this peptide has not been identified yet. This peptide ameliorates pathological changes induced by type 1 diabetes mellitus, including glomerular hyperfiltration, vessel endothelium inflammation and neuron demyelinization. In diabetic patients and diabetic animal models, C-peptide substitution in physiological doses improves the functional and structural properties of peripheral neurons and protects against hyperglycemia-induced apoptosis, promoting neuronal development, regeneration and cell survival. Moreover, it affects glycogen synthesis in skeletal muscles. In vitro C-peptide promotes disaggregation of insulin oligomers, thus enhancing its bioavailability and effects on metabolism. There are controversies concerning the biological action of C-peptide, particularly with respect to its effect on Na /K -ATPase activity. Surprisingly, the excess of circulating peptide associated with diabetes type 2 contributes to atherosclerosis development. In view of these observations, long-term, large-scale clinical investigations using C-peptide physiological doses need to be conducted in order to determine safety and health outcomes of long-term administration of C-peptide to diabetic patients.

  10. Proinsulin C-peptide interferes with insulin fibril formation

    International Nuclear Information System (INIS)

    Landreh, Michael; Stukenborg, Jan-Bernd; Willander, Hanna; Söder, Olle; Johansson, Jan; Jörnvall, Hans

    2012-01-01

    Highlights: ► Insulin and C-peptide can interact under insulin fibril forming conditions. ► C-peptide is incorporated into insulin aggregates and alters aggregation lag time. ► C-peptide changes insulin fibril morphology and affects backbone accessibility. ► C-peptide may be a regulator of fibril formation by β-cell granule proteins. -- Abstract: Insulin aggregation can prevent rapid insulin uptake and cause localized amyloidosis in the treatment of type-1 diabetes. In this study, we investigated the effect of C-peptide, the 31-residue peptide cleaved from proinsulin, on insulin fibrillation at optimal conditions for fibrillation. This is at low pH and high concentration, when the fibrils formed are regular and extended. We report that C-peptide then modulates the insulin aggregation lag time and profoundly changes the fibril appearance, to rounded clumps of short fibrils, which, however, still are Thioflavine T-positive. Electrospray ionization mass spectrometry also indicates that C-peptide interacts with aggregating insulin and is incorporated into the aggregates. Hydrogen/deuterium exchange mass spectrometry further reveals reduced backbone accessibility in insulin aggregates formed in the presence of C-peptide. Combined, these effects are similar to those of C-peptide on islet amyloid polypeptide fibrillation and suggest that C-peptide has a general ability to interact with amyloidogenic proteins from pancreatic β-cell granules. Considering the concentrations, these peptide interactions should be relevant also during physiological secretion, and even so at special sites post-secretory or under insulin treatment conditions in vivo.

  11. Proinsulin C-peptide interferes with insulin fibril formation

    Energy Technology Data Exchange (ETDEWEB)

    Landreh, Michael [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm (Sweden); Stukenborg, Jan-Bernd [Department of Women' s and Children' s Health, Astrid Lindgren Children' s Hospital, Pediatric Endocrinology Unit, Karolinska Institutet and University Hospital, S-17176 Stockholm (Sweden); Willander, Hanna [KI-Alzheimer' s Disease Research Center, NVS Department, Karolinska Institutet, S-141 86 Stockholm (Sweden); Soeder, Olle [Department of Women' s and Children' s Health, Astrid Lindgren Children' s Hospital, Pediatric Endocrinology Unit, Karolinska Institutet and University Hospital, S-17176 Stockholm (Sweden); Johansson, Jan [KI-Alzheimer' s Disease Research Center, NVS Department, Karolinska Institutet, S-141 86 Stockholm (Sweden); Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, S-751 23 Uppsala (Sweden); Joernvall, Hans, E-mail: Hans.Jornvall@ki.se [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm (Sweden)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Insulin and C-peptide can interact under insulin fibril forming conditions. Black-Right-Pointing-Pointer C-peptide is incorporated into insulin aggregates and alters aggregation lag time. Black-Right-Pointing-Pointer C-peptide changes insulin fibril morphology and affects backbone accessibility. Black-Right-Pointing-Pointer C-peptide may be a regulator of fibril formation by {beta}-cell granule proteins. -- Abstract: Insulin aggregation can prevent rapid insulin uptake and cause localized amyloidosis in the treatment of type-1 diabetes. In this study, we investigated the effect of C-peptide, the 31-residue peptide cleaved from proinsulin, on insulin fibrillation at optimal conditions for fibrillation. This is at low pH and high concentration, when the fibrils formed are regular and extended. We report that C-peptide then modulates the insulin aggregation lag time and profoundly changes the fibril appearance, to rounded clumps of short fibrils, which, however, still are Thioflavine T-positive. Electrospray ionization mass spectrometry also indicates that C-peptide interacts with aggregating insulin and is incorporated into the aggregates. Hydrogen/deuterium exchange mass spectrometry further reveals reduced backbone accessibility in insulin aggregates formed in the presence of C-peptide. Combined, these effects are similar to those of C-peptide on islet amyloid polypeptide fibrillation and suggest that C-peptide has a general ability to interact with amyloidogenic proteins from pancreatic {beta}-cell granules. Considering the concentrations, these peptide interactions should be relevant also during physiological secretion, and even so at special sites post-secretory or under insulin treatment conditions in vivo.

  12. Purification and characterization of insulin and the C-peptide of proinsulin from Przewalski's horse, zebra, rhino, and tapir (Perissodactyla).

    Science.gov (United States)

    Henry, J S; Lance, V A; Conlon, J M

    1993-02-01

    Within the order Perissodactyla, the primary structure of insulin has been strongly conserved. Insulin from Przewalski's horse and the mountain zebra (suborder Hippomorpha) is the same as that from the domestic horse and differs from insulin from the white rhinoceros and mountain tapir (suborder Ceratomorpha) by a single substitution (Gly-->Ser) at position 9 in the A-chain. A second molecular form of Przewalski's horse insulin isolated in this study was shown to represent the gamma-ethyl ester of the Glu17 residue of the A-chain. This component was probably formed during the extraction of the pancreas with acidified ethanol. The amino acid sequence of the C-peptide of proinsulin has been less well conserved. Zebra C-peptide comprises 31 amino acid residues and differs from Przewalski's horse and domestic horse C-peptide by one substitution (Gln30-->Pro). Rhino C-peptide was isolated only in a truncated form corresponding to residues (1-23) of intact C-peptide. Its amino acid sequence contains three substitutions compared with the corresponding region of horse C-peptide. It is postulated that the substitution (Pro23-->Thr) renders rhino C-peptide more liable to proteolytic cleavage by a chymotrypsin-like enzyme than horse C-peptide. C-peptide could not be identified in the extract of tapir pancreas, suggesting that proteolytic degradation may have been more extensive than in the rhino. In contrast to the ox and pig (order Artiodactyla), there was no evidence for the expression of more than one proinsulin gene in the species of Perissodactyla examined.

  13. Induction of indoleamine 2, 3-dioxygenase in human dendritic cells by a cholera toxin B subunit-proinsulin vaccine.

    Directory of Open Access Journals (Sweden)

    Jacques C Mbongue

    Full Text Available Dendritic cells (DC interact with naïve T cells to regulate the delicate balance between immunity and tolerance required to maintain immunological homeostasis. In this study, immature human dendritic cells (iDC were inoculated with a chimeric fusion protein vaccine containing the pancreatic β-cell auto-antigen proinsulin linked to a mucosal adjuvant the cholera toxin B subunit (CTB-INS. Proteomic analysis of vaccine inoculated DCs revealed strong up-regulation of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1. Increased biosynthesis of the immunosuppressive enzyme was detected in DCs inoculated with the CTB-INS fusion protein but not in DCs inoculated with proinsulin, CTB, or an unlinked combination of the two proteins. Immunoblot and PCR analyses of vaccine treated DCs detected IDO1mRNA by 3 hours and IDO1 protein synthesis by 6 hours after vaccine inoculation. Determination of IDO1 activity in vaccinated DCs by measurement of tryptophan degradation products (kynurenines showed increased tryptophan cleavage into N-formyl kynurenine. Vaccination did not interfere with monocytes differentiation into DC, suggesting the vaccine can function safely in the human immune system. Treatment of vaccinated DCs with pharmacological NF-κB inhibitors ACHP or DHMEQ significantly inhibited IDO1 biosynthesis, suggesting a role for NF-κB signaling in vaccine up-regulation of dendritic cell IDO1. Heat map analysis of the proteomic data revealed an overall down-regulation of vaccinated DC functions, suggesting vaccine suppression of DC maturation. Together, our experimental data indicate that CTB-INS vaccine induction of IDO1 biosynthesis in human DCs may result in the inhibition of DC maturation generating a durable state of immunological tolerance. Understanding how CTB-INS modulates IDO1 activity in human DCs will facilitate vaccine efficacy and safety, moving this immunosuppressive strategy closer to clinical applications for prevention

  14. Partial diversion of a mutant proinsulin (B10 aspartic acid) from the regulated to the constitutive secretory pathway in transfected AtT-20 cells.

    OpenAIRE

    Gross, D J; Halban, P A; Kahn, C R; Weir, G C; Villa-Komaroff, L

    1989-01-01

    A patient with type II diabetes associated with hyperproinsulinemia has been shown to have a point mutation in one insulin gene allele, resulting in replacement of histidine with aspartic acid at position 10 of the B-chain. To investigate the basis of the proinsulin processing defect, we introduced an identical mutation in the rat insulin II gene and expressed both the normal and the mutant genes in the AtT-20 pituitary corticotroph cell line. Cells expressing the mutant gene showed increased...

  15. Expression of cholera toxin B–proinsulin fusion protein in lettuce and tobacco chloroplasts – oral administration protects against development of insulitis in non-obese diabetic mice

    OpenAIRE

    Ruhlman, Tracey; Ahangari, Raheleh; Devine, Andrew; Samsam, Mohtahsem; Daniell, Henry

    2007-01-01

    Lettuce and tobacco chloroplast transgenic lines expressing the cholera toxin B subunit–human proinsulin (CTB-Pins) fusion protein were generated. CTB-Pins accumulated up to ~16% of total soluble protein (TSP) in tobacco and up to ~2.5% of TSP in lettuce. Eight milligrams of powdered tobacco leaf material expressing CTB-Pins or, as negative controls, CTB–green fluorescent protein (CTB-GFP) or interferon–GFP (IFN-GFP), or untransformed leaf, were administered orally, each week for 7 weeks, to ...

  16. Non-alcoholic fatty liver disease and impaired proinsulin conversion as newly identified predictors of the long-term non-response to a lifestyle intervention for diabetes prevention: results from the TULIP study.

    Science.gov (United States)

    Schmid, Vera; Wagner, Robert; Sailer, Corinna; Fritsche, Louise; Kantartzis, Konstantinos; Peter, Andreas; Heni, Martin; Häring, Hans-Ulrich; Stefan, Norbert; Fritsche, Andreas

    2017-12-01

    Lifestyle intervention is effective to prevent type 2 diabetes. However, a considerable long-term non-response occurs to a standard lifestyle intervention. We investigated which risk phenotypes at baseline and their changes during the lifestyle intervention predict long-term glycaemic non-response to the intervention. Of 300 participants at high risk for type 2 diabetes who participated in a 24 month lifestyle intervention with diet modification and increased physical activity, 190 participants could be re-examined after 8.7 ± 1.6 years. All individuals underwent a five-point 75 g OGTT and measurements of body fat compartments and liver fat content with MRI and spectroscopy at baseline, 9 and 24 months during the lifestyle intervention, and at long-term follow-up. Fasting proinsulin to insulin conversion (PI/I ratio) and insulin sensitivity and secretion were calculated from the OGTT. Non-response to lifestyle intervention was defined as no decrease in glycaemia, i.e. no decrease in AUC for glucose at 0-120 min during OGTT (AUCglucose 0-120 min ). Before the lifestyle intervention, 56% of participants had normal glucose regulation and 44% individuals had impaired fasting glucose and/or impaired glucose tolerance. At long-term follow-up, 11% had developed diabetes. Multivariable regression analysis with adjustment for age, sex, BMI and change in BMI during the lifestyle intervention revealed that baseline insulin secretion and insulin sensitivity, as well as change in insulin sensitivity during the lifestyle intervention, predicted long-term glycaemic control after 9 years. In addition, increased hepatic lipid content as well as impaired fasting proinsulin conversion at baseline were newly detected phenotypes that independently predicted long-term glycaemic control. Increased hepatic lipid content and impaired proinsulin conversion are new predictors, independent of change in body weight, for non-response to lifestyle intervention in addition to the

  17. Characterization and Oral Delivery of Proinsulin-Transferrin Fusion Protein Expressed Using ExpressTec

    Directory of Open Access Journals (Sweden)

    Yu-Sheng Chen

    2018-01-01

    Full Text Available Proinsulin-transferrin fusion protein (ProINS-Tf has been designed and successfully expressed from the mammalian HEK293 cells (HEK-ProINS-Tf. It was found that HEK-ProINS-Tf could be converted into an activated form in the liver. Furthermore, HEK-ProINS-Tf was demonstrated as an extra-long acting insulin analogue with liver-specific insulin action in streptozotocin (STZ-induced type 1 diabetic mice. However, due to the low production yield from transfected HEK293 cells, there are other interesting features, including the oral bioavailability, which have not been fully explored and characterized. To improve the protein production yield, an alternative protein expression system, ExpressTec using transgenic rice (Oryza sativa L., was used. The intact and active rice-derived ProINS-Tf (ExpressTec-ProINS-Tf was successfully expressed from the transgenic rice expression system. Our results suggested that, although the insulin-like bioactivity of ExpressTec-ProINS-Tf was slightly lower in vitro, its potency of in vivo blood glucose control was considerably stronger than that of HEK-ProINS-Tf. The oral delivery studies in type 1 diabetic mice demonstrated a prolonged control of blood glucose to near-normal levels after oral administration of ExpressTec-ProINS-Tf. Results in this report suggest that ExpressTec-ProINS-Tf is a promising insulin analog with advantages including low cost, prolonged and liver targeting effects, and most importantly, oral bioactivity.

  18. Carriers of the TCF7L2 rs7903146 TT genotype have elevated levels of plasma glucose, serum proinsulin and plasma gastric inhibitory polypeptide (GIP) during a meal test

    DEFF Research Database (Denmark)

    Gjesing, A P; Kjems, L L; Vestmar, M A

    2011-01-01

    , proinsulin, insulin, C-peptide, glucagon, glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2) and gastric inhibitory polypeptide (GIP) among individuals carrying the high-risk rs7903146 TT genotype and low-risk CC genotype following a meal test. Methods A meal challenge was performed in 31......, 45, 60, 75, 90, 105, 120, 135, 150, 180, 210, and 240 min after ingestion of a standardised breakfast meal. Results An elevated incremental AUC for plasma glucose was observed among TT genotype carriers (CC carriers 21.8¿±¿101.9 mmol/l¿×¿min vs TT carriers 97.9¿±¿89.2 mmol/l¿×¿min, p¿=¿0.001). TT...

  19. Clinical significance of changes of serum true insulin and proinsulin levels in relations of patients with type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Tian Xiaoping; Huang Huijian; Huang Haibo; Wu Yan; He Haoming

    2004-01-01

    Objective: To explore the degree of insulin resistance and β-cell secretory function impairment in close (1st degree) relations of patients with type 2 diabetes (DMII). Methods: Serum true insulin (TI), pro-insulin (PI), immunoreactive insulin (IRI) levels at fasting and after oral 75g glucose loading were determined in: 1) patients with DM 2, n=65 2)relations of DM 2 patients with impaired glucose tolerance (IGT), n=34 3) relations of DM 2 patients with normal glucose tolerance (NGT), n=66 and 4) controls, n=48. HOMA-IR and HOMA-β cell secretory indices were calculated from the data. Results: Fasting serum PI levels were significantly higher in DM 2 patients, relations with IGT and NGT than those in the controls (t=2.38, t=2.16, t=1.95, P 1 C percentages were significantly higher in DM 2 patients and IGT, NGT groups than those in controls (t=3.67, t=2.45, t=1.97, P 1 C percentage, fasting TI and IRI levels. Conclusion: Insulin resistance was already obvious in those relations of DM 2 patients with normal glucose tolerance and β-cell secretory function impairment was also present. Early intervention in these subjects might be beneficial. (authors)

  20. Impaired Cleavage of Preproinsulin Signal Peptide Linked to Autosomal-Dominant Diabetes

    Science.gov (United States)

    Liu, Ming; Lara-Lemus, Roberto; Shan, Shu-ou; Wright, Jordan; Haataja, Leena; Barbetti, Fabrizio; Guo, Huan; Larkin, Dennis; Arvan, Peter

    2012-01-01

    Recently, missense mutations upstream of preproinsulin’s signal peptide (SP) cleavage site were reported to cause mutant INS gene-induced diabetes of youth (MIDY). Our objective was to understand the molecular pathogenesis using metabolic labeling and assays of proinsulin export and insulin and C-peptide production to examine the earliest events of insulin biosynthesis, highlighting molecular mechanisms underlying β-cell failure plus a novel strategy that might ameliorate the MIDY syndrome. We find that whereas preproinsulin-A(SP23)S is efficiently cleaved, producing authentic proinsulin and insulin, preproinsulin-A(SP24)D is inefficiently cleaved at an improper site, producing two subpopulations of molecules. Both show impaired oxidative folding and are retained in the endoplasmic reticulum (ER). Preproinsulin-A(SP24)D also blocks ER exit of coexpressed wild-type proinsulin, accounting for its dominant-negative behavior. Upon increased expression of ER–oxidoreductin-1, preproinsulin-A(SP24)D remains blocked but oxidative folding of wild-type proinsulin improves, accelerating its ER export and increasing wild-type insulin production. We conclude that the efficiency of SP cleavage is linked to the oxidation of (pre)proinsulin. In turn, impaired (pre)proinsulin oxidation affects ER export of the mutant as well as that of coexpressed wild-type proinsulin. Improving oxidative folding of wild-type proinsulin may provide a feasible way to rescue insulin production in patients with MIDY. PMID:22357960

  1. Studies on proinsulin and proglucagon biosynthesis and conversion at the subcellular level: I. Fractionation procedure and characterization of the subcellular fractions

    Science.gov (United States)

    Noe, BD; Baste, CA; Bauer, GE

    1977-01-01

    Anglerfish islets were homogenized in 0.25 M sucrose and separated into seven separate subcellular fractions by differential and discontinuous density gradient centrifugation. The objective was to isolate microsomes and secretory granules in a highly purified state. The fractions were characterized by electron microscopy and chemical analyses. Each fraction was assayed for its content of protein, RNA, DNA, immunoreactive insulin (IRI), and immunoreactive glucagon (IRG). Ultrastructural examination showed that two of the seven subcellular fractions contain primarily mitochondria, and that two others consist almost exclusively of secretory granules. A fifth fraction contains rough and smooth microsomal vesicles. The remaining two fractions are the cell supernate and the nuclei and cell debris. The content of DNA and RNA in all fractions is consistent with the observed ultrastructure. More than 82 percent of the total cellular IRI and 89(percent) of the total cellular IRG are found in the fractions of secretory granules. The combined fractions of secretory granules and microsomes consistently yield >93 percent of the total IRG. These results indicate that the fractionation procedure employed yields fractions of microsomes and secretory granules that contain nearly all the immunoassayable insulin and glucagons found in whole islet tissue. These fractions are thus considered suitable for study of proinsulin and proglucagon biosynthesis and their metabolic conversion at the subcellular level. PMID:328517

  2. Elevations in the Fasting Serum Proinsulin-to-C-Peptide Ratio Precede the Onset of Type 1 Diabetes.

    Science.gov (United States)

    Sims, Emily K; Chaudhry, Zunaira; Watkins, Renecia; Syed, Farooq; Blum, Janice; Ouyang, Fangqian; Perkins, Susan M; Mirmira, Raghavendra G; Sosenko, Jay; DiMeglio, Linda A; Evans-Molina, Carmella

    2016-09-01

    We tested whether an elevation in the serum proinsulin-to-C-peptide ratio (PI:C), a biomarker of β-cell endoplasmic reticulum (ER) dysfunction, was associated with progression to type 1 diabetes. Fasting total PI and C levels were measured in banked serum samples obtained from TrialNet Pathway to Prevention (PTP) participants, a cohort of autoantibody-positive relatives without diabetes of individuals with type 1 diabetes. Samples were obtained ∼12 months before diabetes onset from PTP progressors in whom diabetes developed (n = 60), and were compared with age-, sex-, and BMI-matched nonprogressors who remained normoglycemic (n = 58). PI:C ratios were calculated as molar ratios and were multiplied by 100% to obtain PI levels as a percentage of C levels. Although absolute PI levels did not differ between groups, PI:C ratios were significantly increased in antibody-positive subjects in whom there was progression to diabetes compared with nonprogressors (median 1.81% vs. 1.17%, P = 0.03). The difference between groups was most pronounced in subjects who were ≤10 years old, where the median progressor PI:C ratio was nearly triple that of nonprogressors; 90.0% of subjects in this age group within the upper PI:C quartile progressed to the development of diabetes. Logistic regression analysis, adjusted for age and BMI, demonstrated increased odds of progression for higher natural log PI:C ratio values (odds ratio 1.44, 95% CI 1.02, 2.05). These data suggest that β-cell ER dysfunction precedes type 1 diabetes onset, especially in younger children. Elevations in the serum PI:C ratio may have utility in predicting the onset of type 1 diabetes in the presymptomatic phase. © 2016 by the American Diabetes Association.

  3. Pancreatic beta-cell responses to GLP-1 after near-normalization of blood glucose in patients with type 2 diabetes.

    Science.gov (United States)

    Asmar, Meena; Højberg, Patricia V; Deacon, Carolyn F; Hare, Kristine; Holst, Jens J; Madsbad, Sten

    2010-02-25

    This study investigated the effects of strict glycaemic control on beta-cell function in nine obese subjects with type 2 diabetes (T2DM), using graded glucose infusions together with infusions of saline or GLP-1 before (HbA(1)c: 8.0+/-0.4%) and after four weeks of near-normalization of blood glucose (BG) using insulin (mean diurnal BG: 6.4+/-0.3 mmol/l; HbA(1)c: 6.6+/-0.3%). Nine matched healthy subjects acted as controls. In controls, area-under-curve (AUC) for amylin, C-peptide and proinsulin were higher with GLP-1 than saline (PAUC amylin/C-peptide ratio was similar on both days, while AUC proinsulin/C-peptide ratio was higher with GLP-1 (P=0.02). In the patients, amylin, C-peptide and proinsulin AUCs were unaltered by near-normoglycaemia per se. Proinsulin responses to GLP-1 were unchanged, but amylin and C-peptide AUCs increased (PAUC amylin/C-peptide ratios rose to control levels. Near-normoglycaemia tended to reduce AUC proinsulin/C-peptide ratio, which was significant (P=0.04) with GLP-1, but still higher than with saline (P=0.004). In conclusion, amylin, C-peptide and proinsulin responses to glucose were unaffected by four weeks of near-normoglycaemia, whereas GLP-1 increased amylin and C-peptide secretion and amylin/C-peptide ratio. Near-normoglycaemia reduced proinsulin/C-peptide ratio during stimulation with GLP-1, suggesting that strict glycaemic control might ameliorate some of the disturbances in beta-cell function characterizing T2DM. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Higher fetal insulin resistance in Chinese pregnant women with gestational diabetes mellitus and correlation with maternal insulin resistance.

    Directory of Open Access Journals (Sweden)

    Qiuwei Wang

    Full Text Available OBJECTIVE: The aim of this study was to determine the effect of gestational diabetes mellitus (GDM on fetal insulin resistance or β-cell function in Chinese pregnant women with GDM. MEASUREMENTS: Maternal fasting blood and venous cord blood samples (reflecting fetal condition were collected in 65 well-controlled Chinese GDM mothers (only given dietary intervention and 83 control subjects. The insulin, glucose and proinsulin concentrations of both maternal and cord blood samples were measured, and the homeostasis model assessment of insulin resistance (HOMA-IR and the proinsulin-to-insulin ratios (an indicator of fetal β-cell function were calculated in maternal and cord blood respectively. RESULTS: Both maternal and fetal levels of insulin, proinsulin and HOMA-IR but not proinsulin-to-insulin ratios were significantly higher in the GDM group than in the control group (maternal insulin, 24.8 vs. 15.4 µU/mL, P = 0.004, proinsulin, 23.3 vs. 16.2 pmol/L, P = 0.005, and HOMA-IR, 5.5 vs. 3.5, P = 0.041, respectively; fetal: insulin, 15.1 vs. 7.9 µU/mL, P<0.001, proinsulin, 25.8 vs. 15.1 pmol/L, P = 0.015, and HOMA-IR, 2.8 vs. 1.4, P = 0.017, respectively. Fetal HOMA-IR but not proinsulin-to-insulin ratios was significantly correlated to maternal HOMA-IR (r = 0.307, P = 0.019, in the pregnant women with GDM. CONCLUSIONS: Fetal insulin resistance was higher in Chinese pregnant women with GDM than control subjects, and correlated with maternal insulin resistance.

  5. Dissimilar association of conventional immune-reactive versus specific insulin with cardiovascular risk factors: a consequence of proinsulinaemia?

    NARCIS (Netherlands)

    Grootenhuis, P.A.; Mooy, J.M.; Kostense, P.J.; Popp-Snijders, C.; Bouter, L.M.; Heine, R.J.

    1998-01-01

    In this study involving 365 non-diabetic elderly Caucasians, we examined the relationship of immuno-specific insulin (ISI), total immuno-reactive insulin (IRI), proinsulin (PI) and proinsulin-insulin ratio (PI:ISI) to serum high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), systolic

  6. Dissimilar association of conventional immuno-reactive versus specific insulin with cardiovascular risk factors : a consequence of proinsulinaemia?

    NARCIS (Netherlands)

    Grootenhuis, P A; Mooy, J M; Kostense, P J; Popp-Snijders, C; Bouter, L M; Heine, R J

    In this study involving 365 non-diabetic elderly Caucasians, we examined the relationship of immuno-specific insulin (ISI), total immuno-reactive insulin (IRI), proinsulin (PI) and proinsulin-insulin ratio (PI:ISI) to serum high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), systolic

  7. Higher fetal insulin resistance in Chinese pregnant women with gestational diabetes mellitus and correlation with maternal insulin resistance.

    Science.gov (United States)

    Wang, Qiuwei; Huang, Ruiping; Yu, Bin; Cao, Fang; Wang, Huiyan; Zhang, Ming; Wang, Xinhong; Zhang, Bin; Zhou, Hong; Zhu, Ziqiang

    2013-01-01

    The aim of this study was to determine the effect of gestational diabetes mellitus (GDM) on fetal insulin resistance or β-cell function in Chinese pregnant women with GDM. Maternal fasting blood and venous cord blood samples (reflecting fetal condition) were collected in 65 well-controlled Chinese GDM mothers (only given dietary intervention) and 83 control subjects. The insulin, glucose and proinsulin concentrations of both maternal and cord blood samples were measured, and the homeostasis model assessment of insulin resistance (HOMA-IR) and the proinsulin-to-insulin ratios (an indicator of fetal β-cell function) were calculated in maternal and cord blood respectively. Both maternal and fetal levels of insulin, proinsulin and HOMA-IR but not proinsulin-to-insulin ratios were significantly higher in the GDM group than in the control group (maternal insulin, 24.8 vs. 15.4 µU/mL, P = 0.004, proinsulin, 23.3 vs. 16.2 pmol/L, P = 0.005, and HOMA-IR, 5.5 vs. 3.5, P = 0.041, respectively; fetal: insulin, 15.1 vs. 7.9 µU/mL, Pinsulin ratios was significantly correlated to maternal HOMA-IR (r = 0.307, P = 0.019), in the pregnant women with GDM. Fetal insulin resistance was higher in Chinese pregnant women with GDM than control subjects, and correlated with maternal insulin resistance.

  8. Insulin sensitivity and β-cell function in normoglycemic offspring of individuals with type 2 diabetes mellitus: Impact of line of inheritance

    Directory of Open Access Journals (Sweden)

    Edavan P Praveen

    2012-01-01

    Full Text Available Aims: The aim was to study the effect of family history of type 2 diabetes mellitus (T2DM on insulin sensitivity and b-cell function in normoglycemic offspring. Material and Methods: Offspring of T2DM patients (cases and individuals without family history of T2DM (controls were the subjects for this cross-sectional study. All participants underwent 75 g OGTT and samples were collected for plasma insulin, C-peptide, and proinsulin at 0, 30, 60, and 120 minutes. Results: A total of 271 cases (age 22 ± 10 years; 53% males and 259 controls (28 ± 10 years, 66% males were enrolled for the study. BMI, plasma insulin, C-peptide, proinsulin, HOMA-IR, and insulinogenic index (0-120 were significantly higher and whole-body insulin sensitivity (WBISI and disposition index (0-120 [DI 120] were lower in cases compared to controls. After adjusting for BMI, proinsulin at 120 minutes, area under the curve (AUC of proinsulin (during OGTT and AUC proinsulin/AUC C-peptide were significantly higher in cases. Cases were subdivided into four groups according to inheritance pattern; paternal DM (PDM, maternal DM (MDM, grandparental DM (GPDM, and both parents DM (BPDM. The magnitude of differences varied with relationship (greater when both parents and grandparents were affected. Mean HOMA-IR was higher by 127% and 50% and DI 120 was lower by 33% and 18% (adjusted for age and gender in the BPDM and GPDM groups respectively compared to controls. Conclusions: We observed higher BMI, plasma insulin, C-peptide, and proinsulin and lower insulin sensitivity and b-cell compensation in normoglycemic offspring of T2DM subjects compared to controls. Differences were greater when both parents and grandparents had T2DM.

  9. Hypoglycemia Secondary to Sulfonylurea Ingestion in a Patient with End Stage Renal Disease: Results from a 72-Hour Fast

    Directory of Open Access Journals (Sweden)

    Alice Abraham

    2015-01-01

    Full Text Available Insulin, proinsulin, and C-peptide levels increase with sulfonylurea exposure but the acuity of increase has not been described in dialysis patients. We present a case of a dialysis patient who presented with hypoglycemia and was found to have accidental sulfonylurea ingestion. This is a 73-year-old man with ESRD on peritoneal dialysis, without history of diabetes, who presented with hypoglycemia. Past medical history includes multiple myeloma, congestive heart failure, and hypertension. At initial presentation, his blood glucose was 47 mg/dL, with concomitant elevations in the following: C-peptide 30.5 (nl: 0.8–3.5 ng/mL, insulin 76 (nl: 3–19 μIU/mL, and proinsulin 83.3 (nl: ≤8.0 pmol/L. During the 72-hour fast, which he completed without hypoglycemia, insulin declined to be within normal limits (to 12 μIU/mL; proinsulin (to 12.1 pmol/L and C-peptide (to 7.2 ng/mL levels decreased but remained elevated. The sulfonylurea screen ultimately returned positive for glipizide, clinching the diagnosis. This is the first reported case which characterizes the chronic elevation of proinsulin in a patient with ESRD, as well as its dramatic increase after a presumed solitary exposure to sulfonylurea. The 72-hour fast conducted gives insight into the clearance of insulin, proinsulin, and C-peptide after sulfonylurea ingestion in ESRD.

  10. Low levels of sex hormone-binding globulin and hyperproinsulinemia as markers of increased pancreatic ß-cell demand in men

    Directory of Open Access Journals (Sweden)

    A.F. Reis

    1998-12-01

    Full Text Available Low levels of sex hormone-binding globulin (SHBG are considered to be an indirect index of hyperinsulinemia, predicting the later onset of diabetes mellitus type 2. In the insulin resistance state and in the presence of an increased pancreatic ß-cell demand (e.g. obesity both absolute and relative increases in proinsulin secretion occur. In the present study we investigated the correlation between SHBG and pancreatic ß-cell secretion in men with different body compositions. Eighteen young men (30.0 ± 2.4 years with normal glucose tolerance and body mass indexes (BMI ranging from 22.6 to 43.2 kg/m2 were submitted to an oral glucose tolerance test (75 g and baseline and 120-min blood samples were used to determine insulin, proinsulin and C-peptide by specific immunoassays. Baseline SHBG values were significantly correlated with baseline insulin (r = -0.58, P28 kg/m2, N = 8 and nonobese (BMI £25 kg/m2, N = 10 groups, significantly lower levels of SHBG were found in the obese subjects. The obese group had significantly higher baseline proinsulin, C-peptide and 120-min proinsulin and insulin levels. For the first time using a specific assay for insulin determination, a strong inverse correlation between insulinemia and SHBG levels was confirmed. The finding of a strong negative correlation between SHBG levels and pancreatic ß-cell secretion, mainly for the 120-min post-glucose load proinsulin levels, reinforces the concept that low SHBG levels are a suitable marker of increased pancreatic ß-cell demand.

  11. Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts--oral administration protects against development of insulitis in non-obese diabetic mice.

    Science.gov (United States)

    Ruhlman, Tracey; Ahangari, Raheleh; Devine, Andrew; Samsam, Mohtahsem; Daniell, Henry

    2007-07-01

    Lettuce and tobacco chloroplast transgenic lines expressing the cholera toxin B subunit-human proinsulin (CTB-Pins) fusion protein were generated. CTB-Pins accumulated up to ~16% of total soluble protein (TSP) in tobacco and up to ~2.5% of TSP in lettuce. Eight milligrams of powdered tobacco leaf material expressing CTB-Pins or, as negative controls, CTB-green fluorescent protein (CTB-GFP) or interferon-GFP (IFN-GFP), or untransformed leaf, were administered orally, each week for 7 weeks, to 5-week-old female non-obese diabetic (NOD) mice. The pancreas of CTB-Pins-treated mice showed decreased infiltration of cells characteristic of lymphocytes (insulitis); insulin-producing beta-cells in the pancreatic islets of CTB-Pins-treated mice were significantly preserved, with lower blood or urine glucose levels, by contrast with the few beta-cells remaining in the pancreatic islets of the negative controls. Increased expression of immunosuppressive cytokines, such as interleukin-4 and interleukin-10 (IL-4 and IL-10), was observed in the pancreas of CTB-Pins-treated NOD mice. Serum levels of immunoglobulin G1 (IgG1), but not IgG2a, were elevated in CTB-Pins-treated mice. Taken together, T-helper 2 (Th2) lymphocyte-mediated oral tolerance is a likely mechanism for the prevention of pancreatic insulitis and the preservation of insulin-producing beta-cells. This is the first report of expression of a therapeutic protein in transgenic chloroplasts of an edible crop. Transplastomic lettuce plants expressing CTB-Pins grew normally and transgenes were maternally inherited in T(1) progeny. This opens up the possibility for the low-cost production and delivery of human therapeutic proteins, and a strategy for the treatment of various other autoimmune diseases.

  12. Expression of cholera toxin B–proinsulin fusion protein in lettuce and tobacco chloroplasts – oral administration protects against development of insulitis in non-obese diabetic mice

    Science.gov (United States)

    Ruhlman, Tracey; Ahangari, Raheleh; Devine, Andrew; Samsam, Mohtahsem; Daniell, Henry

    2008-01-01

    Summary Lettuce and tobacco chloroplast transgenic lines expressing the cholera toxin B subunit–human proinsulin (CTB-Pins) fusion protein were generated. CTB-Pins accumulated up to ~16% of total soluble protein (TSP) in tobacco and up to ~2.5% of TSP in lettuce. Eight milligrams of powdered tobacco leaf material expressing CTB-Pins or, as negative controls, CTB–green fluorescent protein (CTB-GFP) or interferon–GFP (IFN-GFP), or untransformed leaf, were administered orally, each week for 7 weeks, to 5-week-old female non-obese diabetic (NOD) mice. The pancreas of CTB-Pins-treated mice showed decreased infiltration of cells characteristic of lymphocytes (insulitis); insulin-producing β-cells in the pancreatic islets of CTB-Pins-treated mice were significantly preserved, with lower blood or urine glucose levels, by contrast with the few β-cells remaining in the pancreatic islets of the negative controls. Increased expression of immunosuppressive cytokines, such as interleukin-4 and interleukin-10 (IL-4 and IL-10), was observed in the pancreas of CTB-Pins-treated NOD mice. Serum levels of immunoglobulin G1 (IgG1), but not IgG2a, were elevated in CTB-Pins-treated mice. Taken together, T-helper 2 (Th2) lymphocyte-mediated oral tolerance is a likely mechanism for the prevention of pancreatic insulitis and the preservation of insulin-producing β-cells. This is the first report of expression of a therapeutic protein in transgenic chloroplasts of an edible crop. Transplastomic lettuce plants expressing CTB-Pins grew normally and transgenes were maternally inherited in T1 progeny. This opens up the possibility for the low-cost production and delivery of human therapeutic proteins, and a strategy for the treatment of various other autoimmune diseases. PMID:17490448

  13. Pancreatic beta-cell responses to GLP-1 after near-normalization of blood glucose in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Asmar, Meena; Højberg, Patricia V; Deacon, Carolyn F

    2010-01-01

    glucose (BG) using insulin (mean diurnal BG: 6.4+/-0.3 mmol/l; HbA(1)c: 6.6+/-0.3%). Nine matched healthy subjects acted as controls. In controls, area-under-curve (AUC) for amylin, C-peptide and proinsulin were higher with GLP-1 than saline (PAUC amylin/C-peptide ratio was similar on both......This study investigated the effects of strict glycaemic control on beta-cell function in nine obese subjects with type 2 diabetes (T2DM), using graded glucose infusions together with infusions of saline or GLP-1 before (HbA(1)c: 8.0+/-0.4%) and after four weeks of near-normalization of blood...... amylin/C-peptide ratios rose to control levels. Near-normoglycaemia tended to reduce AUC proinsulin/C-peptide ratio, which was significant (P=0.04) with GLP-1, but still higher than with saline (P=0.004). In conclusion, amylin, C-peptide and proinsulin responses to glucose were unaffected by four weeks...

  14. Pancreatic ß-cell responses to GLP-1 after near-normalization of blood glucose in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Asmar, Meena; Højberg, Patricia; Deacon, Carolyn F.

    2010-01-01

    glucose (BG) using insulin (mean diurnal BG: 6.4+/-0.3 mmol/l; HbA(1)c: 6.6+/-0.3%). Nine matched healthy subjects acted as controls. In controls, area-under-curve (AUC) for amylin, C-peptide and proinsulin were higher with GLP-1 than saline (PAUC amylin/C-peptide ratio was similar on both......This study investigated the effects of strict glycaemic control on beta-cell function in nine obese subjects with type 2 diabetes (T2DM), using graded glucose infusions together with infusions of saline or GLP-1 before (HbA(1)c: 8.0+/-0.4%) and after four weeks of near-normalization of blood...... amylin/C-peptide ratios rose to control levels. Near-normoglycaemia tended to reduce AUC proinsulin/C-peptide ratio, which was significant (P=0.04) with GLP-1, but still higher than with saline (P=0.004). In conclusion, amylin, C-peptide and proinsulin responses to glucose were unaffected by four weeks...

  15. Quantitative variation in obesity-related traits and insulin precursors linked to the OB gene region on human chromosome 7

    Energy Technology Data Exchange (ETDEWEB)

    Duggirala, R.; Stern, M.P.; Reinhart, L.J. [Univ. of Texas Health Science Center, San Antonio, TX (United States)] [and others

    1996-09-01

    Despite the evidence that human obesity has strong genetic determinants, efforts at identifying specific genes that influence human obesity have largely been unsuccessful. Using the sibship data obtained from 32 low-income Mexican American pedigrees ascertained on a type II diabetic proband and a multipoint variance-components method, we tested for linkage between various obesity-related traits plus associated metabolic traits and 15 markers on human chromosome 7. We found evidence for linkage between markers in the OB gene region and various traits, as follows: D7S514 and extremity skinfolds (LOD = 3.1), human carboxypeptidase A1 (HCPA1) and 32,33-split proinsulin level (LOD = 4.2), and HCPA1 and proinsulin level (LOD = 3.2). A putative susceptibility locus linked to the marker D7S514 explained 56% of the total phenotypic variation in extremity skinfolds. Variation at the HCPA1 locus explained 64% of phenotypic variation in proinsulin level and {approximately}73% of phenotypic variation in split proinsulin concentration, respectively. Weaker evidence for linkage to several other obesity-related traits (e.g., waist circumference, body-mass index, fat mass by bioimpedance, etc.) was observed for a genetic location, which is {approximately}15 cM telomeric to OB. In conclusion, our study reveals that the OB region plays a significant role in determining the phenotypic variation of both insulin precursors and obesity-related traits, at least in Mexican Americans. 66 refs., 3 figs., 4 tabs.

  16. Two-dimensional NMR and photo-CIDNP studies of the insulin monomer: Assignment of aromatic resonances with application to protein folding, structure, and dynamics

    International Nuclear Information System (INIS)

    Weiss, M.A.; Shoelson, S.E.; Nguyen, D.T.; O'Shea, E.; Karplus, M.; Khait, I.; Neuringer, L.J.; Inouye, K.; Frank, B.H.; Beckage, M.

    1989-01-01

    The aromatic 1 H NMR resonances of the insulin monomer are assigned at 500 MHz by comparative studies of chemically modified and genetically altered variants, including a mutant insulin (PheB25 → Leu) associated with diabetes mellitus. The two histidines, three phenylalanines, and four tyrosines are observed to be in distinct local environments; their assignment provides sensitive markers for studies of tertiary structure, protein dynamics, and protein folding. The environments of the tyrosine residues have also been investigated by photochemically induced dynamic nuclear polarization (photo-CIDNP) and analyzed in relation to packing constrains in the crystal structures of insulin. Dimerization involving specific B-chain interactions is observed with increasing protein concentration and is shown to depend on temperature, pH, and solvent composition. The differences between proinsulin and mini-proinsulin suggest a structural mechanism for the observation that the fully reduced B29-A1 analogue folds more efficiently than proinsulin to form the correct pattern of disulfide bonds. These results are discussed in relation to molecular mechanics calculations of insulin based on the available crystal structures

  17. COPII-Dependent ER Export: A Critical Component of Insulin Biogenesis and β-Cell ER Homeostasis.

    Science.gov (United States)

    Fang, Jingye; Liu, Ming; Zhang, Xuebao; Sakamoto, Takeshi; Taatjes, Douglas J; Jena, Bhanu P; Sun, Fei; Woods, James; Bryson, Tim; Kowluru, Anjaneyulu; Zhang, Kezhong; Chen, Xuequn

    2015-08-01

    Pancreatic β-cells possess a highly active protein synthetic and export machinery in the endoplasmic reticulum (ER) to accommodate the massive production of proinsulin. ER homeostasis is vital for β-cell functions and is maintained by the delicate balance between protein synthesis, folding, export, and degradation. Disruption of ER homeostasis by diabetes-causing factors leads to β-cell death. Among the 4 components to maintain ER homeostasis in β-cells, the role of ER export in insulin biogenesis is the least understood. To address this knowledge gap, the present study investigated the molecular mechanism of proinsulin ER export in MIN6 cells and primary islets. Two inhibitory mutants of the secretion-associated RAS-related protein (Sar)1 small GTPase, known to specifically block coat protein complex II (COPII)-dependent ER export, were overexpressed in β-cells using recombinant adenoviruses. Results from this approach, as well as small interfering RNA-mediated Sar1 knockdown, demonstrated that defective Sar1 function blocked proinsulin ER export and abolished its conversion to mature insulin in MIN6 cells, isolated mouse, and human islets. It is further revealed, using an in vitro vesicle formation assay, that proinsulin was packaged into COPII vesicles in a GTP- and Sar1-dependent manner. Blockage of COPII-dependent ER exit by Sar1 mutants strongly induced ER morphology change, ER stress response, and β-cell apoptosis. These responses were mediated by the PKR (double-stranded RNA-dependent kinase)-like ER kinase (PERK)/eukaryotic translation initiation factor 2α (p-eIF2α) and inositol-requiring protein 1 (IRE1)/x-box binding protein 1 (Xbp1) pathways but not via activating transcription factor 6 (ATF6). Collectively, results from the study demonstrate that COPII-dependent ER export plays a vital role in insulin biogenesis, ER homeostasis, and β-cell survival.

  18. JPRS Report: Science and Technology, Central Eurasia: Life Sciences

    National Research Council Canada - National Science Library

    1993-01-01

    ... on Ultrastructure of Parallel Fiber-Purkinje Cell Synapses in Frog Cerebellum, Cloning and Expression of Human Proinsulin Gene in Bacillus Amyloliquefaciens Selected for Low Exoprotease Activity, Potato Cell...

  19. Markers of Oxidative Stress and Antioxidant Defense in Romanian Patients with Type 2 Diabetes Mellitus and Obesity.

    Science.gov (United States)

    Picu, Ariana; Petcu, Laura; Ştefan, Simona; Mitu, Manuela; Lixandru, Daniela; Ionescu-Tîrgovişte, Constantin; Pîrcălăbioru, Grațiela Grădișteanu; Ciulu-Costinescu, Felicia; Bubulica, Maria-Viorica; Chifiriuc, Mariana Carmen

    2017-05-01

    Type 2 diabetes mellitus (T2DM) is strongly associated with obesity. The adipose tissue secretes bioactive adipokines leading to low grade inflammation, amplified by oxidative stress, which promotes the formation of advanced glycation end products and eventually leads to dyslipidemia and vascular complications. The aim of this study was to correlate anthropometric, biochemical and oxidative stress parameters in newly diagnosed (ND) T2DM patients and to investigate the role of oxidative stress in T2DM associated with obesity. A group of 115 ND- T2DM patients was compared to a group of 32 healthy subjects in terms of clinical, anthropometric, biochemical and oxidative stress parameters. ND-T2DM patients had significantly lower adiponectin, glutathione (GSH) and gluthatione peroxidase (GPx) and elevated insulin, proinsulin, HOMA-IR index, proinsulin/insulin (P/I) and proinsulin/adiponectin (P/A) ratio, fructosamine, and total oxidant status (TOS). The total body fat mass was positively correlated with total oxidant status (TOS). Positive correlations were found between TOS and glycated hemoglobin (HbA1c), and between TOS and glycaemia. Negative correlations were identified between: GPx and glycaemia, GPx and HbA1c, and also between GSH and fructosamine. The total antioxidant status was negatively correlated with the respiratory burst. The identified correlations suggest the existence of a complex interplay between diabetes, obesity and oxidative stress.

  20. Genetics Home Reference: Wolfram syndrome

    Science.gov (United States)

    ... important in the pancreas , where the protein is thought to help process a protein called proinsulin into the mature hormone ... individuals. The death of cells in other body systems likely causes the various signs and symptoms of ...

  1. Measurement of plasma canine C peptide by radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Besch, W; Woltanski, K P; Fischer, U; Kohnert, K D; Ziegler, M

    1985-12-01

    A sensitive radioimmunoassay for canine C peptide (CCP) was established using synthetic CCP, a specific antiserum, and rabbit anti-guinea pig serum. Radioiodination was performed according to a modified chloramine T method. Tracer preparations have been used for 6 weeks after iodination. The standard curve ranges from 0.028 to 3.0 nmol/l. The intra-assay coefficient of variation (CV) was 3-5% and the inter-assay CV was 6-9% in the optimal range between 0.3 and 0.8 nmol/l. The average recovery of CCP added to plasma samples was 100.6% (n = 9). Canine insulin, porcine proinsulin, bovine proinsulin, and human C peptide exhibited no cross-reactivity. The mean fasting plasma CCP concentration was 0.089 +- 0.021 nmol/l in normal dogs and -0.005 +- 0.007 nmol/l (mean +- SEM) in diabetic dogs, respectively.

  2. insulin

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... dimensional structure of camel proinsulin was deduced for molecule homology studies with ... in 100~200 µl of DEPC-treated water and incubated on ice for 15 ..... Image collection and PDB-Browser on the World-Wide Web.

  3. Limitations of the HOMA-B score for assessment of beta-cell functionality in interventional trials-results from the PIOglim study.

    Science.gov (United States)

    Pfützner, Andreas; Derwahl, Michael; Jacob, Stephan; Hohberg, Cloth; Blümner, Ernst; Lehmann, Ute; Fuchs, Winfried; Forst, Thomas

    2010-08-01

    Drugs with unspecific stimulating effects on beta-cell secretion increase the homeostasis model assessment (HOMA)-B score, indicating improved beta-cell "function." We investigated whether the beta-cell protection provided by adding pioglitazone (PIO) to glimepiride (GLIM) in comparison to up-titrating the GLIM dose alone is reflected by appropriate changes in several measures of beta-cell function, including HOMA-B score. This double-blind, parallel prospective 6-month study was performed with 82 patients (47 men, 35 women; age, 61 +/- 9 years; duration of disease, 5.3 +/- 4.4 years; body mass index, 32.6 +/- 6.0 kg/m(2); hemoglobin A1c [HbA1c], 7.3 +/- 0.7%) with GLIM monotherapy (1-3 mg). They were randomized to receive a GLIM + PIO combination with up-titration (2 mg + 30 mg/4 mg + 30 mg/4 mg + 4 mg) or to remain on GLIM (up-titration 4/5/6 mg). Observation parameters determined at baseline and end point included HOMA-B, HOMA-IR, HbA1c, glucose, insulin, and intact proinsulin. There was a slight increase in the HOMA-B score in the GLIM group but not in the GLIM + PIO arm (baseline/end point: for GLIM, 71 +/- 48/88 +/- 64; for PIO + GLIM, 74 +/- 56/69 +/- 52). Improvements in the other observation parameters were predominantly detected in the PIO + GLIM group (HbA1c, 7.20 +/- 0.61%/6.36 +/- 0.90%; HOMA-IR, 7.0 +/- 4.5/4.1 +/- 2.1; intact proinsulin, 12.4 +/- 10.3/7.6 +/- 4.8 pmol/L [all P HOMA-IR, 7.4 +/- 4.5/7.5 +/- 4.3 [not significant]; intact proinsulin, 17.3 +/- 21.6/16.3 +/- 15.5 pmol/L [not significant]). The PIO + GLIM combination led to overall improvement of laboratory biomarkers for beta-cell function, except for HOMA-B. Glimepiride up-titration had no such effects but increased the HOMA-B score. HOMA-B seems to provide misleading results when used as a diagnostic tool in patients treated with sulfonylurea drugs. A corrective term for consideration of proinsulin in the HOMA-B equation may address this limitation.

  4. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity

    DEFF Research Database (Denmark)

    Dimas, Antigone S; Lagou, Vasiliki; Barker, Adam

    2013-01-01

    Patients with established type 2 diabetes display both beta-cell dysfunction and insulin resistance. To define fundamental processes leading to the diabetic state, we examined the relationship between type 2 diabetes risk variants at 37 established susceptibility loci and indices of proinsulin pr...

  5. Genetic markers of insulin resistance in gestational diabetes

    Directory of Open Access Journals (Sweden)

    Tatiana Vasil'evna Sebko

    2009-12-01

    Full Text Available Aim. To search for genetic markers of insulin resistance and impaired insulin secretion in pregnant women with gestational diabetes mellitus (GDM. Materials and methods. A total of 100 healthy pregnant women and 185 patients with GDM were available for examination. 80 patients developedGDM during current pregnancy, in 105 it was diagnosed 4-19 years ago. 25 of the 105 GDM patients had a history of type 2 DM. The following parameterswere measured: beta-cell secretory activity (proinsulin, ITI, C-peptide, total cholesterol (CH, HDL and LDL CH, triglycerides, HbA1c,fasting glycemia. Molecular-genetic DNA testing using PCR included studies of KCNJ 11, TCF7L2, PPARG2, ADIPOQ, ADIPOR1, ADIPOR2gene polymorphism. These genes were chosen based on the published data associating them with disturbed insulin secretion and sensitivity in DM2patient. Results. Pregnant women with GDM and obesity showed elevated IRI and leptin levels compared with controls. This rise was accompanied bymarked insulin resistance in 75% of these patients. In 50% of the healthy women proinsulin and insulin secretion decreased. Obesity in pregnantpatients was associated with significant elevation of proinsulin, IRI, and C-peptyide levels and GDM with Lys/Lys genotype of polymorphous markerGlu23k of KCNJ11 gene, pro and ala allele of polymorphous marker A219T of ADIPOR2 gene. These associations suggest specific genetic featuresof GDM related to impaired insulin secretion and sensitivity. Conclusion. Studies of common genetic nature of GDM and DM2 permit to identify risk groups at the preclinical stage, plan prevention and treatmentof these disorders.

  6. β-cell specific T-lymphocyte response has a distinct inflammatory phenotype in children with Type 1 diabetes compared with adults.

    Science.gov (United States)

    Arif, S; Gibson, V B; Nguyen, V; Bingley, P J; Todd, J A; Guy, C; Dunger, D B; Dayan, C M; Powrie, J; Lorenc, A; Peakman, M

    2017-03-01

    To examine the hypothesis that the quality, magnitude and breadth of helper T-lymphocyte responses to β cells differ in Type 1 diabetes according to diagnosis in childhood or adulthood. We studied helper T-lymphocyte reactivity against β-cell autoantigens by measuring production of the pro-inflammatory cytokine interferon-γ and the anti-inflammatory cytokine interleukin-10, using enzyme-linked immunospot assays in 61 people with Type 1 diabetes (within 3 months of diagnosis, positive for HLA DRB1*0301 and/or *0401), of whom 33 were children/adolescents, and a further 91 were unaffected siblings. Interferon-γ responses were significantly more frequent in children with Type 1 diabetes compared with adults (85 vs 61%; P = 0.04). Insulin and proinsulin peptides were preferentially targeted in children (P = 0.0001 and P = 0.04, respectively) and the breadth of the interferon-γ response was also greater, with 70% of children having an interferon-γ response to three or more peptides compared with 14% of adults (P children and adults in terms of frequency, breadth and magnitude, with the exception of responses to glutamic acid decarboxylase 65, which were significantly less frequent in adults. At diagnosis of Type 1 diabetes, pro-inflammatory autoreactivity is significantly more prevalent, focuses on a wider range of targets, and is more focused on insulin/proinsulin in children than adults. We interpret this as indicating a more aggressive immunological response in the younger age group that is especially characterized by loss of tolerance to proinsulin. These findings highlight the existence of age-related heterogeneity in Type 1 diabetes pathogenesis that could have relevance to the development of immune-based therapies. © 2016 Diabetes UK.

  7. Connecting peptide (c-peptide) and the duration of diabetes mellitus ...

    African Journals Online (AJOL)

    Objective: C-peptide is derived from proinsulin and it is secreted in equimolar concentration with insulin. Plasma C-peptide is more stable than insulin and it provides an indirect measure of insulin secretory reserve and beta cell function. To determine relationship between C-peptide and duration of diabetes mellitus, age, ...

  8. Dgroup: DG01800 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available ulin human zinc (USP) D04543 ... Insulin human zinc, extended (USP) D05622 ... Proinsulin human (USAN) Antidiabetic... agent ... DG01636 ... Insulin and analogue ... DG01802 ... Human insulin ATC code: A10AE Antidiabetics INSR (CD220) [HSA:3643] [KO:K04527] ... CYP induction: CYP1A2 [HSA:1544

  9. Association of genetic variants of the incretin-related genes with quantitative traits and occurrence of type 2 diabetes in Japanese

    Directory of Open Access Journals (Sweden)

    Mayumi Enya

    2014-01-01

    Conclusion: Rare variants of GIPR may contribute to the development of type 2 diabetes, possibly through insulin secretory defects. Furthermore, the genetic variant of PCSK1 might influence glucose homeostasis by altered insulin resistance independently of BMI, incretin level or proinsulin conversion, and may be associated with the occurrence of type 2 diabetes in Japanese.

  10. Will acarbose improve the metabolic abnormalities of insulin-resistant type 2 diabetes mellitus?

    Science.gov (United States)

    Scott, R; Lintott, C J; Zimmet, P; Campbell, L; Bowen, K; Welborn, T

    1999-03-01

    Individuals with type 2 diabetes mellitus (n = 105; age 36-71 years) on diet therapy alone, and with quite good glycaemic control (mean HbA1c approximately 7.0%) were randomized to receive acarbose (100 mg three times daily) or placebo for 16 weeks, and changes in clinical and metabolic parameters indicative of Syndrome X were monitored. Fasting levels of glucose, glycosylated haemoglobin (HbA1c), true insulin, proinsulin, fibrinogen and lipids were measured four times weekly, and glucose, insulin, proinsulin and triglyceride responses to a standardized 1.6 MJ breakfast were determined at 0, 1 and 2 h post meal. Analysis was on an intention-to-treat basis. Fasting levels of glucose (P fasting glucose and triglyceride levels, lowers HbA1c and limits the glycaemic and insulin response to food in individuals with type 2 diabetes mellitus with Syndrome X. Pharmacological agents that improve the metabolic environment and reduce insulin resistance have the potential to limit the progression of atherogenesis associated with type 2 diabetes mellitus.

  11. Heterogeneity of human plasma insulin: techniques for separating immunoreactive components and their determination by radioimmunoassay

    International Nuclear Information System (INIS)

    Souza, Iracelia Torres de Toledo e

    1977-01-01

    When human plasma is filtered on Sephadex G-SO fine, insulin immunoreactivity is recovered in two peaks: 'big insulin', the higher molecular weight component and 'little insulin', the lower molecular component, having elution volumes that correspond to those of porcine proinsulin 125 I and porcine insulin 125 I respectively. The presence of another form of immunoreactive insulin 'big big insulin' was detected from an insuloma suspect and its elution pattern corresponding to serum albumin. The eluates correspondent to 'big' and 'little' insulin as well as 'big big' component were assayed by radioimmunoassay using crystalline human insulin as a standard, porcine insulin 125 tracer and anti insulin serum. The antibody, raised in guinea-pigs, was sensitive and potent being adequate for the assay. The reactivity of insulin and proinsulin was tested against the antibody. The relative proportions of several components of total immunoreactive insulin in plasma were studied in basal conditions in five normal subjects and in the patient JSC with pancreatic insulin-secreting tumor as well as after glucose stimuli in all tolbutamide in JSC. (author)

  12. Electrophoretic analysis of proteinases in sodium dodecyl sulfate-polyacrylamide gels containing copolymerized radiolabeled protein substrates: Application to proenkephalin processing enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, J.W.; Roberts, S.F.; Lindberg, I. (Louisiana State Univ. Medical Center, New Orleans (USA))

    1990-10-01

    A novel method is described for the zymographic analysis of proteinases in sodium dodecyl sulfate-polyacrylamide gels containing copolymerized radiolabeled protein substrates such as ({sup 35}S)methionine-labeled proenkephalin or {sup 125}I-labeled proinsulin. After electrophoresis the enzyme is reactivated and cleaves the radiolabeled in situ substrate into smaller peptides. These small peptides are able to diffuse out of the gel, leaving clear areas against a dark background when visualized by autoradiography. The technique can be used to detect as little as 200 fg of trypsin using only 50 ng (1.25 microCi) of ({sup 35}S)proenkephalin. Soluble- and membrane-bound adrenal trypsin-like enzyme were isolated from bovine adrenal chromaffin granules. Both proteinases cleaved ({sup 35}S)methionine-labeled proenkephalin but not {sup 125}I-labeled proinsulin. Moreover, both had a Mr of approximately 30,000. The potential of this technique for general use is discussed. An additional method using the synthetic fluorogenic substrate t-butoxycarbonyl Glu-Lys-Lys aminomethylcoumarin is also described.

  13. Expression and characterization of recombinant human serum ...

    African Journals Online (AJOL)

    C-peptide (CP), connecting the A and B chains in proinsulin, has been considered to possess physiological effects in diabetes. In order to prolong the half-life of CP in vivo, a long acting CP analog [human serum albumin (HSA-CP)] was obtained by direct gene fusion of a single-chain CP to HSA and expressed in host ...

  14. Expression and characterization of recombinant human serum ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-14

    Nov 14, 2011 ... C-peptide (CP), connecting the A and B chains in proinsulin, has been considered to possess physiological effects in diabetes. In order to prolong the half-life of CP in vivo, a long acting CP analog. [human serum albumin (HSA-CP)] was obtained by direct gene fusion of a single-chain CP to HSA and.

  15. PREDICTORS OF PREGNANCY IN WOMEN WITH POLYCYSTIC OVARY SYNDROME

    Directory of Open Access Journals (Sweden)

    Bindu Philip

    2017-08-01

    Full Text Available BACKGROUND The most common cause of anovulatory infertility is Polycystic Ovary Syndrome. It affects approximately 6.6% of women who are reproductive aged. The aim of the study was to clinically predict the parameters which result in live births in pregnant women with polycystic ovary syndrome. MATERIALS AND METHODS This was a double blinded, randomised clinical study. 500 infertile women patients with PCOS were divided into three groups namely Group A: (n=167 Placebo plus Clomiphene citrate, Group B (n=166 Placebo plus metformin and Group C: (n=167 Combination of Clomiphene citrate and Metformin. RESULTS Among the three groups, there was no significant difference in the baseline characteristics. In all three groups, baseline free androgen index, proinsulin levels, treatment interaction with body mass index, duration of conception were predictors significantly. A modified hirsutism score of less than 8 was also predictive in conception, live births and pregnancy. Age was another predictive factor in ovulation, age less than 34 was predictive factor in pregnancy and live births. CONCLUSION To counsel and select treatments for infertile women with PCOS, body mass index, proinsulin levels, hirsutism, duration of conception can be used as predictive factors.

  16. The IRE1α/XBP1s Pathway Is Essential for the Glucose Response and Protection of β Cells.

    Directory of Open Access Journals (Sweden)

    Justin R Hassler

    2015-10-01

    Full Text Available Although glucose uniquely stimulates proinsulin biosynthesis in β cells, surprisingly little is known of the underlying mechanism(s. Here, we demonstrate that glucose activates the unfolded protein response transducer inositol-requiring enzyme 1 alpha (IRE1α to initiate X-box-binding protein 1 (Xbp1 mRNA splicing in adult primary β cells. Using mRNA sequencing (mRNA-Seq, we show that unconventional Xbp1 mRNA splicing is required to increase and decrease the expression of several hundred mRNAs encoding functions that expand the protein secretory capacity for increased insulin production and protect from oxidative damage, respectively. At 2 wk after tamoxifen-mediated Ire1α deletion, mice develop hyperglycemia and hypoinsulinemia, due to defective β cell function that was exacerbated upon feeding and glucose stimulation. Although previous reports suggest IRE1α degrades insulin mRNAs, Ire1α deletion did not alter insulin mRNA expression either in the presence or absence of glucose stimulation. Instead, β cell failure upon Ire1α deletion was primarily due to reduced proinsulin mRNA translation primarily because of defective glucose-stimulated induction of a dozen genes required for the signal recognition particle (SRP, SRP receptors, the translocon, the signal peptidase complex, and over 100 other genes with many other intracellular functions. In contrast, Ire1α deletion in β cells increased the expression of over 300 mRNAs encoding functions that cause inflammation and oxidative stress, yet only a few of these accumulated during high glucose. Antioxidant treatment significantly reduced glucose intolerance and markers of inflammation and oxidative stress in mice with β cell-specific Ire1α deletion. The results demonstrate that glucose activates IRE1α-mediated Xbp1 splicing to expand the secretory capacity of the β cell for increased proinsulin synthesis and to limit oxidative stress that leads to β cell failure.

  17. Downregulation of cathepsin G reduces the activation of CD4+ T cells in murine autoimmune diabetes.

    Science.gov (United States)

    Zou, Fang; Lai, Xiaoyang; Li, Jing; Lei, Shuihong; Hu, Lei

    2017-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease due to progressive injury of islet cells mediated by T lymphocytes (T cells). Our previous studies have shown that only cathepsin G (CatG), not other proteases, is involved in the antigen presentation of proinsulin, and if the presentation is inhibited, the activation of CD4+ T cells induced by proinsulin is alleviated in T1DM patients, and CatG-specific inhibitor reduces the activation of CD4+ cells induced by proinsulin in T1DM patients. Therefore, we hypothesize that CatG may play an important role in the activation of CD4+ T cells in T1DM. To this end, mouse studies were conducted to demonstrate that CatG impacts the activation of CD4+ T cells in non-obese diabetic (NOD) mice. CatG gene expression and the activation of CD4+ T cells were examined in NOD mice. The effect of CatG inhibitor was investigated in NOD mice on the activation of CD4+ T cells, islet β cell function, islet inflammation and β-cell apoptosis. Furthermore, NOD mice were injected with CatG siRNA in early stage to observe the effect of CatG knockdown on the activation status of CD4+ T cells and the progression of diabetes. During the pathogenesis of diabetes, the expression level of CatG in NOD mice gradually increased and the CD4+ T cells were gradually activated, resulting in more TH1 cells and less TH2 and Treg cells. Treatment with CatG-specific inhibitor reduced the blood glucose level, improved the function of islet β cells and reduced the activation of CD4+ T cells. Early application of CatG siRNA improved the function of islet β cells, reduced islet inflammation and β cell apoptosis, and lowered the activation level of CD4+ T cells, thus slowing down the progression of diabetes.

  18. Circulating docosahexaenoic acid levels are associated with fetal insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Jin-Ping Zhao

    Full Text Available Arachidonic acid (AA; C20∶4 n-6 and docosahexaenoic acid (DHA; C22∶6 n-3 are important long-chain polyunsaturated fatty acids (LC-PUFA in maintaining pancreatic beta-cell structure and function. Newborns of gestational diabetic mothers are more susceptible to the development of type 2 diabetes in adulthood. It is not known whether low circulating AA or DHA is involved in perinatally "programming" this susceptibility. This study aimed to assess whether circulating concentrations of AA, DHA and other fatty acids are associated with fetal insulin sensitivity or beta-cell function, and whether low circulating concentrations of AA or DHA are involved in compromised fetal insulin sensitivity in gestational diabetic pregnancies.In a prospective singleton pregnancy cohort, maternal (32-35 weeks gestation and cord plasma fatty acids were assessed in relation to surrogate indicators of fetal insulin sensitivity (cord plasma glucose-to-insulin ratio, proinsulin concentration and beta-cell function (proinsulin-to-insulin ratio in 108 mother-newborn pairs. Cord plasma DHA levels (in percentage of total fatty acids were lower comparing newborns of gestational diabetic (n = 24 vs. non-diabetic pregnancies (2.9% vs. 3.5%, P = 0.01. Adjusting for gestational age at blood sampling, lower cord plasma DHA levels were associated with lower fetal insulin sensitivity (lower glucose-to-insulin ratio, r = 0.20, P = 0.036; higher proinsulin concentration, r = -0.37, P <0.0001. The associations remained after adjustment for maternal and newborn characteristics. Cord plasma saturated fatty acids C18∶0 and C20∶0 were negatively correlated with fetal insulin sensitivity, but their levels were not different between gestational diabetic and non-diabetic pregnancies. Cord plasma AA levels were not correlated with fetal insulin sensitivity.Low circulating DHA levels are associated with compromised fetal insulin sensitivity, and may be involved in

  19. Higher Fetal Insulin Resistance in Chinese Pregnant Women with Gestational Diabetes Mellitus and Correlation with Maternal Insulin Resistance

    OpenAIRE

    Wang, Qiuwei; Huang, Ruiping; Yu, Bin; Cao, Fang; Wang, Huiyan; Zhang, Ming; Wang, Xinhong; Zhang, Bin; Zhou, Hong; Zhu, Ziqiang

    2013-01-01

    OBJECTIVE: The aim of this study was to determine the effect of gestational diabetes mellitus (GDM) on fetal insulin resistance or β-cell function in Chinese pregnant women with GDM. MEASUREMENTS: Maternal fasting blood and venous cord blood samples (reflecting fetal condition) were collected in 65 well-controlled Chinese GDM mothers (only given dietary intervention) and 83 control subjects. The insulin, glucose and proinsulin concentrations of both maternal and cord blood samples were measur...

  20. Identification and characterization of insulin receptors on foetal-mouse brain-cortical cells.

    OpenAIRE

    Van Schravendijk, C F; Hooghe-Peters, E L; De Meyts, P; Pipeleers, D G

    1984-01-01

    The occurrence of insulin receptors was investigated in freshly dissociated brain-cortical cells from mouse embryos. By analogy with classical insulin-binding cell types, binding of 125I-insulin to foetal brain-cortical cells was time- and pH-dependent, only partially reversible, and competed for by unlabelled insulin and closely related peptides. Desalanine-desasparagine-insulin, pig proinsulin, hagfish insulin and turkey insulin were respectively 2%, 4%, 2% and 200% as potent as bovine insu...

  1. Reference intervals for glucose, beta-cell polypeptides and counterregulatory factors during prolonged fasting

    DEFF Research Database (Denmark)

    Højlund, Kurt; Wildner-Christensen, M; Eshøj, O

    2001-01-01

    To establish reference intervals for the pancreatic beta-cell response and the counterregulatory hormone response to prolonged fasting, we studied 33 healthy subjects (16 males, 17 females) during a 72-h fast. Glucose, insulin, C-peptide, and proinsulin levels decreased (P ... of counterregulatory factors increased during the fast [P fasting (P ... decreased from the second to third day of fasting (P = 0.03). Males had higher glucose and glucagon levels and lower FFA levels during the fast (P

  2. Plant-based vaccines for oral delivery of type 1 diabetes-related autoantigens: Evaluating oral tolerance mechanisms and disease prevention in NOD mice.

    Science.gov (United States)

    Posgai, Amanda L; Wasserfall, Clive H; Kwon, Kwang-Chul; Daniell, Henry; Schatz, Desmond A; Atkinson, Mark A

    2017-02-13

    Autoantigen-specific immunological tolerance represents a central objective for prevention of type 1 diabetes (T1D). Previous studies demonstrated mucosal antigen administration results in expansion of Foxp3 + and LAP + regulatory T cells (Tregs), suggesting oral delivery of self-antigens might represent an effective means for modulating autoimmune disease. Early preclinical experiments using the non-obese diabetic (NOD) mouse model reported mucosal administration of T1D-related autoantigens [proinsulin or glutamic acid decarboxylase 65 (GAD)] delayed T1D onset, but published data are conflicting regarding dose, treatment duration, requirement for combinatorial agents, and extent of efficacy. Recently, dogma was challenged in a report demonstrating oral insulin does not prevent T1D in NOD mice, possibly due to antigen digestion prior to mucosal immune exposure. We used transplastomic plants expressing proinsulin and GAD to protect the autoantigens from degradation in an oral vaccine and tested the optimal combination, dose, and treatment duration for the prevention of T1D in NOD mice. Our data suggest oral autoantigen therapy alone does not effectively influence disease incidence or result in antigen-specific tolerance assessed by IL-10 measurement and Treg frequency. A more aggressive approach involving tolerogenic cytokine administration and/or lymphocyte depletion prior to oral antigen-specific immunotherapy will likely be required to impart durable therapeutic efficacy.

  3. Dietary toxins, endoplasmic reticulum (ER) stress and diabetes.

    Science.gov (United States)

    Hettiarachchi, Kalindi D; Zimmet, Paul Z; Myers, Mark A

    2008-05-01

    The incidence of Type 1 diabetes has been increasing at a rate too rapid to be due to changes in genetic risk. Instead changes in environmental factors are the likely culprit. The endoplasmic reticulum (ER) plays an important role in the production of newly synthesized proteins and interference with these processes leads to ER stress. The insulin-producing beta cells are particularly prone to ER stress as a result of their heavy engagement in insulin production. Increasing evidence suggests ER stress is central to initiation and progression of Type 1 diabetes. An early environmental exposure, such as toxins and viral infections, can impart a significant physiological load on beta cells to initiate abnormal processing of proinsulin, ER stress and insulin secretory defects. Release of altered proinsulin from the beta cells early in life may trigger autoimmunity in those with genetic susceptibility leading to cytokine-induced nitric oxide production and so exacerbating ER stress in beta cells, ultimately leading to apoptosis of beta cells and diabetes. Here we suggest that ER stress is an inherent cause of beta cell dysfunction and environmental factors, in particular dietary toxins derived from Streptomyces in infected root vegetables, can impart additional stress that aggravates beta cell death and progression to diabetes. Furthermore, we propose that the increasing incidence of Type 1 diabetes may be accounted for by increased dietary exposure to ER-stress-inducing Streptomyces toxins.

  4. Serum chromogranin A concentration in hyperthyroidism before and after medical treatment.

    Science.gov (United States)

    Al-Shoumer, Kamal A S; Vasanthy, Bagavathy A

    2009-07-01

    The aim was to evaluate changes in chromogranin A (CgA) concentration in hyperthyroidism and to assess its metabolic correlations. We studied CgA levels in hyperthyroidism. First, 38 hyperthyroid patients matched with 86 normal controls were studied after an overnight fast. Second, 30 if the 38 patients were followed up for 6 months with medical antithyroid drug therapy (carbimazole). In the first study, after 10-12 h overnight fasting, blood was collected for measurement of CgA, glucose, insulin, intact proinsulin, and thyroid function. These variables were remeasured in the second study for the patients after attainment of euthyroidism with the antithyroid drug carbimazole for 6 months. Pretreatment CgA level was significantly higher in patients compared with controls. CgA levels dropped significantly to levels similar to those of controls after antithyroid therapy. Although baseline and follow-up fasting glucose, insulin, and intact proinsulin demonstrated similar pattern of CgA changes before and after medical treatment, CgA did not correlate with any of them. However, CgA levels demonstrated a significant positive correlation with free T(3) and free T(4) only. These studies demonstrate that untreated hyperthyroidism is associated with elevated CgA level that changes in parallel to thyroid status. It is therefore possible to use CgA concentration as a potential marker of disease activity in hyperthyroidism.

  5. Behandling af insulinom med alkoholsklerosering

    DEFF Research Database (Denmark)

    Schnack, Christina; Christensen, Carina Ørts; Beck-Nielsen, Henning

    2012-01-01

    The efficacy and safety of endoscopic ultrasound (EUS)-guided alcohol ablation of an insulinoma in a patient not candidate for surgery is being evaluated. A 89 year-old male patient with insulinoma and serious cardiac disease was treated with EUS-guided alcohol ablation. The only complication...... was a slight degree of pancreatitis. Two months after the ablation values of plasma glucose and serum pro-insulin were normalized. EUS-guided alcohol ablation is a safe and efficient alternative to surgical resection of insulinomas in poor surgical candidates....

  6. Elevated plasma SPARC levels are associated with insulin resistance, dyslipidemia, and inflammation in gestational diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Lu Xu

    Full Text Available OBJECTIVE: Recent studies suggested that secreted protein acidic and rich in cysteine (SPARC, a novel adipokine, is a key player in the pathology of obesity and type 2 diabetes. We aimed to determine whether concentrations of SPARC were altered in patients with gestational diabetes mellitus (GDM compared to normal glucose tolerance (NGT controls and to investigate the relationships between SPARC and metabolic parameters in pregnant women. DESIGN/METHODS: Cross-sectional study of 120 pregnant women with GDM and 60 controls with NGT, in a university hospital setting. Plasma levels of SPARC, adiponectin, fibroblast growth factor 21 (FGF21, insulin and proinsulin were determined by ELISA. RESULTS: GDM women had higher SPARC and lower adiponectin than NGT subjects; no difference was found in FGF21. SPARC levels were the lowest in subjects in the third tertile of insulin sensitivity index (ISIOGTT and correlated positively with pre-pregnant BMI, insulin and 3 h glucose during 100-g OGTT, HOMA-IR, fasting proinsulin, hsCRP and white blood cells count, and negatively with ISIOGTT, when adjusting for gestational age. Triglyceride (TG, Apolipoprotein A1, apolipoprotein B and lipoprotein (a correlated with SPARC in partial Pearson correlation. Correlations between SPARC with adiponectin, systolic blood pressure and TG were marginally significant in partial Spearman correlation analysis. In multivariate regression analysis, SPARC was an independent negative indicator of ISIOGTT. CONCLUSIONS: SPARC levels are correlated significantly with inflammation and may also be correlated with dyslipidemia and represent an independent determinant of insulin resistance in late pregnancy, indicating a potential role of SPARC in the pathophysiology of GDM.

  7. Elevated plasma SPARC levels are associated with insulin resistance, dyslipidemia, and inflammation in gestational diabetes mellitus.

    Science.gov (United States)

    Xu, Lu; Ping, Fan; Yin, Jinhua; Xiao, Xinhua; Xiang, Hongding; Ballantyne, Christie M; Wu, Huaizhu; Li, Ming

    2013-01-01

    Recent studies suggested that secreted protein acidic and rich in cysteine (SPARC), a novel adipokine, is a key player in the pathology of obesity and type 2 diabetes. We aimed to determine whether concentrations of SPARC were altered in patients with gestational diabetes mellitus (GDM) compared to normal glucose tolerance (NGT) controls and to investigate the relationships between SPARC and metabolic parameters in pregnant women. Cross-sectional study of 120 pregnant women with GDM and 60 controls with NGT, in a university hospital setting. Plasma levels of SPARC, adiponectin, fibroblast growth factor 21 (FGF21), insulin and proinsulin were determined by ELISA. GDM women had higher SPARC and lower adiponectin than NGT subjects; no difference was found in FGF21. SPARC levels were the lowest in subjects in the third tertile of insulin sensitivity index (ISIOGTT) and correlated positively with pre-pregnant BMI, insulin and 3 h glucose during 100-g OGTT, HOMA-IR, fasting proinsulin, hsCRP and white blood cells count, and negatively with ISIOGTT, when adjusting for gestational age. Triglyceride (TG), Apolipoprotein A1, apolipoprotein B and lipoprotein (a) correlated with SPARC in partial Pearson correlation. Correlations between SPARC with adiponectin, systolic blood pressure and TG were marginally significant in partial Spearman correlation analysis. In multivariate regression analysis, SPARC was an independent negative indicator of ISIOGTT. SPARC levels are correlated significantly with inflammation and may also be correlated with dyslipidemia and represent an independent determinant of insulin resistance in late pregnancy, indicating a potential role of SPARC in the pathophysiology of GDM.

  8. Lack of stimulation of 24-hour growth hormone release by hypocaloric diet in obesity

    DEFF Research Database (Denmark)

    Rasmussen, M H; Juul, A; Kjems, L L

    1995-01-01

    . This suggests a reversible defect in GH release, rather than a persistent preexisting disorder. It is hypothesized that enhanced bioavailability of IGF-I, acting in concert with elevated proinsulin and insulin levels, may account for the lack of stimulation of 24-hr GH release by the hypocaloric diet in obese...... subjects. We conclude that the increase in 24-h spontaneous GH release and IGFBP-1 levels observed in normal subjects during the last 24 h of a 96-h VLCD is abolished in obese subjects. The lack of short term hypocaloric stimulation of spontaneous GH release may promote the retention of body fat...

  9. Metabolic profile and cardiovascular risk patterns of an Indian tribe living in the Amazon Region of Brazil.

    Science.gov (United States)

    Tavares, Edelweiss F; Vieira-Filho, João P B; Andriolo, Adagmar; Sañudo, Adriana; Gimeno, Suely G A; Franco, Laércio J

    2003-02-01

    The Parkatêjê Indians, belonging to the Jê group and inhabiting the Mãe Maria Reservation in the southeast of the state of Pará in the Amazon Region of Brazil, have suffered rapid and intensive cultural changes in recent years. This survey was designed to characterize the metabolic profile and the frequency of cardiovascular risk factors in this community. Ninety subjects (90.0% of the adult population without admixture) were investigated. Anthropometric measurements were performed and the following clinical characteristics measured: glycemia, serum insulin and proinsulin (fasting and 2-hr post 75 g of glucose load), beta-cell function (%B) and insulin sensitivity (%S) estimated by HOMA, HbA1c, GAD65 antibody, serum lipids, uric acid, creatinine, leptin, and blood pressure. Information about alcohol use, smoking, and medical history was obtained through individual interviews. The prevalences were: overweight, 67.8%; obesity, 14.4%; central obesity, 72.2%; hypertension, 4.4%; dyslipidemia, 44.4%; hyperuricemia, 5.6%; GAD65 antibody positivity, 4.4%; smoking, 25.6%; chronic alcohol use, 0.0%. One case of impaired glucose tolerance (1.1%) and one case of impaired fasting glycemia (1.1%) were diagnosed during this study and one case of diabetes (1.1%) was diagnosed previously. The diabetic woman was excluded from the analyses involving HbA1c, glycemia, insulin, proinsulin, %B, and %S. All creatinine values were normal. Blood pressure did not correlate with age, anthropometric measurements, insulin, proinsulin, and natural logarithm (ln) transformed %S. After adjustment for age and sex, there were positive correlations between total cholesterol and body mass index (BMI; r = 0.24), triglycerides and BMI (r = 0.44), triglycerides and waist-to-hip ratio (WHR; r = 0.52), In leptin and BMI (r = 0.41), In leptin and WHR (r = 0.29), uric acid and systolic blood pressure (r = 0.34), uric acid and triglycerides (r = 0.22). Systolic (r = 0.04; r = 0.70) and diastolic (r = 0

  10. Serum leptin and its relationship with metabolic variables in Arabs with type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Al-Shoumer, Kamal A.; Doi, Suhail A.; Vasanthy, Bagavathy A.; Al-Asousi, Adnan A.

    2008-01-01

    Most studies on serum leptin in type 2 diabetes mellitus have focused on white populations. We studied serum leptin concentrations and parameters related to glycemic control and the association between leptin levels and anthropometric and metabolic factors in Arab patients with type 2 diabetes and in Arab control subjects. Ninety-two patients (65 females and 27 males) with type 2 diabetes and 69 matched normal and control subjects (48 females and 21 males) were included. Anthropometric measures (including body mass index (BMI) and waist: hip ratio) were assessed in all subjects. After an overnight fast, blood was collected for serum leptin assay. Other metabolic parameters include glucose, insulin, C-peptide, intact proinsulin, insulin resistance index (HOMA-IR), insulin-like growth factor 1 (IGF-1), lipids and hemoglobin A 1c (HbA) were determined. Fasting serum leptin levels, IGF-1 and high-density lipoprotein (HDL) cholesterol were similar in patients with type 2 diabetes and control subjects. When obese subjects (BMI>-30kg/m2) were analyzed separately, serum levels of leptin were significantly lower in patients compared to controls. In contrast, patients had higher fasting glucose, insulin, C-peptide, intact proinsulin, insulin resistance, total cholesterol, triglycerides, HbA, and a larger waist circumference and waist-to-hip ratio than controls. Serum leptin correlated positively with BM, negatively with waist-to-hip ratio, and demonstrated no relationship to other parameters. Patients with type 2 diabetes in an Arab ethnic population showed evidence of an unfavorable metabolic profile despite having leptin levels similar to controls. Obesity influences serum leptin levels more significantly in type 2 diabetes, in which leptin levels tends to be low. (author)

  11. Association of genetic variants of the incretin-related genes with quantitative traits and occurrence of type 2 diabetes in Japanese.

    Science.gov (United States)

    Enya, Mayumi; Horikawa, Yukio; Iizuka, Katsumi; Takeda, Jun

    2014-01-01

    None of the high frequency variants of the incretin-related genes has been found by genome-wide association study (GWAS) for association with occurrence of type 2 diabetes in Japanese. However, low frequency and rare and/or high frequency variants affecting glucose metabolic traits remain to be investigated. We screened all exons of the incretin-related genes ( GCG , GLP1R , DPP4 , PCSK1 , GIP , and GIPR ) in 96 patients with type 2 diabetes and investigated for association of genetic variants of these genes with quantitative metabolic traits upon test meal with 38 young healthy volunteers and with the occurrence of type 2 diabetes in Japanese subjects comprising 1303 patients with type 2 diabetes and 1014 controls. Two mutations of GIPR , p.Thr3Alafsx21 and Arg183Gln, were found only in patients with type 2 diabetes, and both of them were treated with insulin. Of ten tagSNPs, we found that risk allele C of SNP393 (rs6235) of PCSK1 was nominally associated with higher fasting insulin and HOMA-R ( P  = 0.034 and P  = 0.030), but not with proinsulin level, incretin level or BMI. The variant showed significant association with occurrence of type 2 diabetes after adjustment for age, sex, and BMI ( P  = 0.0043). Rare variants of GIPR may contribute to the development of type 2 diabetes, possibly through insulin secretory defects. Furthermore, the genetic variant of PCSK1 might influence glucose homeostasis by altered insulin resistance independently of BMI, incretin level or proinsulin conversion, and may be associated with the occurrence of type 2 diabetes in Japanese.

  12. Wolfram syndrome 1 gene (WFS1) product localizes to secretory granules and determines granule acidification in pancreatic beta-cells.

    Science.gov (United States)

    Hatanaka, Masayuki; Tanabe, Katsuya; Yanai, Akie; Ohta, Yasuharu; Kondo, Manabu; Akiyama, Masaru; Shinoda, Koh; Oka, Yoshitomo; Tanizawa, Yukio

    2011-04-01

    Wolfram syndrome is an autosomal recessive disorder characterized by juvenile-onset insulin-dependent diabetes mellitus and optic atrophy. The gene responsible for the syndrome (WFS1) encodes an endoplasmic reticulum (ER) resident transmembrane protein. The Wfs1-null mouse exhibits progressive insulin deficiency causing diabetes. Previous work suggested that the function of the WFS1 protein is connected to unfolded protein response and to intracellular Ca(2+) homeostasis. However, its precise molecular function in pancreatic β-cells remains elusive. In our present study, immunofluorescent and electron-microscopic analyses revealed that WFS1 localizes not only to ER but also to secretory granules in pancreatic β-cells. Intragranular acidification was assessed by measuring intracellular fluorescence intensity raised by the acidotrophic agent, 3-[2,4-dinitroanilino]-3'-amino-N-methyldipropyramine. Compared with wild-type β-cells, there was a 32% reduction in the intensity in WFS1-deficient β-cells, indicating the impairment of granular acidification. This phenotype may, at least partly, account for the evidence that Wfs1-null islets have impaired proinsulin processing, resulting in an increased circulating proinsulin level. Morphometric analysis using electron microscopy evidenced that the density of secretory granules attached to the plasma membrane was significantly reduced in Wfs1-null β-cells relative to that in wild-type β-cells. This may be relevant to the recent finding that granular acidification is required for the priming of secretory granules preceding exocytosis and may partly explain the fact that glucose-induced insulin secretion is profoundly impaired in young prediabetic Wfs1-null mice. These results thus provide new insights into the molecular mechanisms of β-cell dysfunction in patients with Wolfram syndrome.

  13. Heterogeneity and compartmental properties of insulin storage and secretion in rat islets

    International Nuclear Information System (INIS)

    Gold, G.; Landahl, H.D.; Gishizky, M.L.; Grodsky, G.M.

    1982-01-01

    To investigate compartmental properties of insulin storage and secretion, isolated rat islets were used for pulse-labeling experiments, after which proinsulin and insulin were purified rigorously. Processing of proinsulin to insulin neared completion by 3 h without additional loss of either radioactive peptide by cellular or extracellular proteolysis. The amount of labeled hormone rapidly diminished in islets; it was secreted at a higher fractional rate than immunoreactive insulin, resulting in secreted insulin's having a higher specific activity than the average cellular insulin. Newly synthesized insulin, therefore, was secreted preferentially. Changes in the specific activity of secreted and cellular insulin with time were consistent with changes predicted for islets containing 33% of their total insulin in a glucose-labile compartment. Predictions were based on steady-state analysis of a simple storage-limited representation of B cell function. Islets from either the dorsal or ventral part of the pancreas also contained 33% of their total insulin in a glucose-labile compartment. The same compartment was mobilized by 20 mM glucose, 50 mM potassium + 2 mM glucose, or 20 MM glucose + 1 mM 3-isobutylmethylxanthine as indicated by the specific activity ratio of secreted vs. cellular insulin, even though average secretion rates with these stimuli differed by more than threefold. In the absence of calcium, the effectiveness of 20 mM glucose as a secretagogue declined markedly, and the older stored insulin was preferentially mobilized because secreted insulin had a lower rather than a higher specific activity than cellular insulin. Results provide insight into the mechanisms of nonrandom mobilization and secretion of insulin form the B cell

  14. Severe deterioration of psoriasis due to an insulinoma.

    LENUS (Irish Health Repository)

    Field, S

    2008-03-01

    We report a case of a 56-year-old woman who presented with a severe exacerbation of psoriasis with concurrent hypoglycaemic episodes. Methotrexate 17.5 mg weekly was required to control her psoriasis. Investigation of her hypoglycaemia showed raised levels of insulin, C-peptide and proinsulin. Radiological investigation showed a tumour at the tail of the pancreas and the diagnosis was insulinoma. A spleen-preserving distal pancreatectomy was performed and the hypoglycaemic symptoms resolved. Immediately following the pancreatectomy, methotrexate was stopped and the patient\\'s psoriasis went into remission. During a 2-year follow-up, she has required only minimal topical treatment for her skin.

  15. Studies on the different forms of material reacting with antiinsulin antibodies in the fetal and adult rat

    International Nuclear Information System (INIS)

    Felix, J.M.; Sutter-Dub, M.T.; Legrele, C.; Reims Univ., 51

    1975-01-01

    The nature of peak B (MW = 10-12,000, proinsulin) and peak C (MW = 50-100,000, 'big big' insulin) materials detected by the double antibody (DA) procedure in elution profiles of rat sera after Sephadex G 50 or G 100 chromatography (cf. preceding companion paper) is further investigated. Peak B is converted by mild tryptic digestion in an immunoreactive material behaving in rechromatography exactly like insulin monomer. Peak C is less easily detected by the dextran coated charcoal (DCC) method; it resists 8 M urea 37 0 C for 1 hr, is not an artifact due to the complement system; its relative importance is very much reduced in pancreatic extracts or perifusates. Incubation of biologically active 125 I labelled insulin in rat sera results in appearance of labelled material behaving on chromatography like peak C natural material, having the electrophoretic mobility of rat α 1 globulins and albumin, and resisting 8 M urea, acidic pHs and 0.5 M NaCl. Similar incubation in buffer supplemented with bovine albumin results in appearance of a labelled material having the electrophoretic mobility of beef albumin; N-ethyl-maleimide provides against this binding, which might result from (S-S)-(SH) interchanges. Rat α globulins and albumin (but not beef albumin) cross-react with the DA procedure; they do not react with the DCC method. Insulin bound to plasma proteins react with both methods. It is suggested that peak C material, as detected by the DA method in rat serum, consists both of insulin covalently bound to plasma proteins and of certain plasma proteins; the DCC method detects only bound insulin. In streptozotocin treated rats, peak C material persists after the complete disappearance of insulin and proinsulin when detected by the (DA) procedure, but disappears when detected by the DCC procedure. (orig.) [de

  16. Fully convergent chemical synthesis of ester insulin: determination of the high resolution X-ray structure by racemic protein crystallography.

    Science.gov (United States)

    Avital-Shmilovici, Michal; Mandal, Kalyaneswar; Gates, Zachary P; Phillips, Nelson B; Weiss, Michael A; Kent, Stephen B H

    2013-02-27

    Efficient total synthesis of insulin is important to enable the application of medicinal chemistry to the optimization of the properties of this important protein molecule. Recently we described "ester insulin"--a novel form of insulin in which the function of the 35 residue C-peptide of proinsulin is replaced by a single covalent bond--as a key intermediate for the efficient total synthesis of insulin. Here we describe a fully convergent synthetic route to the ester insulin molecule from three unprotected peptide segments of approximately equal size. The synthetic ester insulin polypeptide chain folded much more rapidly than proinsulin, and at physiological pH. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin (i.e., [Asp(B10), Lys(B28), Pro(B29)]ester insulin) were prepared by total chemical synthesis. The atomic structure of the synthetic ester insulin molecule was determined by racemic protein X-ray crystallography to a resolution of 1.6 Å. Diffraction quality crystals were readily obtained from the racemic mixture of {D-DKP ester insulin + L-DKP ester insulin}, whereas crystals were not obtained from the L-ester insulin alone even after extensive trials. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin were assayed for receptor binding and in diabetic rats, before and after conversion by saponification to the corresponding DKP insulin enantiomers. L-DKP ester insulin bound weakly to the insulin receptor, while synthetic L-DKP insulin derived from the L-DKP ester insulin intermediate was fully active in binding to the insulin receptor. The D- and L-DKP ester insulins and D-DKP insulin were inactive in lowering blood glucose in diabetic rats, while synthetic L-DKP insulin was fully active in this biological assay. The structural basis of the lack of biological activity of ester insulin is discussed.

  17. GLUT2 in pancreatic islets: crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice.

    Science.gov (United States)

    Wang, Z; Gleichmann, H

    1998-01-01

    In mice, diabetes can be induced by multiple low doses of streptozotocin (MLD-STZ), i.e., 40 mg/kg body wt on each of 5 consecutive days. In this model, diabetes develops only when STZ induces both beta-cell toxicity and T-cell-dependent immune reactions. The target molecule(s) of MLD-STZ-induced beta-cell toxicity are not known, however. In this study, we report that GLUT2 is a target molecule for MLD-STZ toxicity. Ex vivo, a gradual decrement of both GLUT2 protein and mRNA expression was found in pancreatic islets isolated from MLD-STZ-treated C57BL/6 male mice, whereas mRNA expression of beta-actin, glucokinase, and proinsulin remained unaffected. Significant reduction of both GLUT2 protein and mRNA expression was first noted 1 day after the third STZ injection, clearly preceding the onset of hyperglycemia. The extent of reduction increased with the number of STZ injections administered and increased over time, after the last, i.e., fifth, STZ injection. The STZ-induced reduction of GLUT2 protein and mRNA was not due to an essential loss of beta-cells, because ex vivo, not only the total RNA yield and protein content in isolated islets, but also proinsulin mRNA expression, failed to differ significantly in the differently treated groups. Furthermore, islets isolated from MLD-STZ-treated donors responded to the nonglucose secretagogue arginine in a pattern similar to that of solvent-treated donors. Interestingly, the MLD-STZ-induced reduction of both GLUT2 protein and mRNA was prevented by preinjecting mice with 5-thio-D-glucose before each STZ injection. Apparently, GLUT2 is a crucial target molecule of MLD-STZ toxicity, and this toxicity seems to precede the immune reactions against beta-cells.

  18. Studies on the different forms of material reacting with antiinsulin antibodies in the fetal and adult rat

    Energy Technology Data Exchange (ETDEWEB)

    Felix, J M; Sutter-Dub, M T; Legrele, C [Reims Univ., 51 (France). Lab. de Physiologie Animale; Reims Univ., 51 (France). Centre de Biologie et de Biochimie du Developpement)

    1975-09-01

    The nature of peak B (MW = 10-12,000, proinsulin) and peak C (MW = 50-100,000, 'big big' insulin) materials detected by the double antibody (DA) procedure in elution profiles of rat sera after Sephadex G 50 or G 100 chromatography (cf. preceding companion paper) is further investigated. Peak B is converted by mild tryptic digestion in an immunoreactive material behaving in rechromatography exactly like insulin monomer. Peak C is less easily detected by the dextran coated charcoal (DCC) method; it resists 8 M urea 37/sup 0/C for 1 hr, is not an artifact due to the complement system; its relative importance is very much reduced in pancreatic extracts or perifusates. Incubation of biologically active /sup 125/I labelled insulin in rat sera results in appearance of labelled material behaving on chromatography like peak C natural material, having the electrophoretic mobility of rat ..cap alpha../sub 1/ globulins and albumin, and resisting 8 M urea, acidic pHs and 0.5 M NaCl. Similar incubation in buffer supplemented with bovine albumin results in appearance of a labelled material having the electrophoretic mobility of beef albumin; N-ethyl-maleimide provides against this binding, which might result from (S-S)-(SH) interchanges. Rat ..cap alpha.. globulins and albumin (but not beef albumin) cross-react with the DA procedure; they do not react with the DCC method. Insulin bound to plasma proteins react with both methods. It is suggested that peak C material, as detected by the DA method in rat serum, consists both of insulin covalently bound to plasma proteins and of certain plasma proteins; the DCC method detects only bound insulin. In streptozotocin treated rats, peak C material persists after the complete disappearance of insulin and proinsulin when detected by the (DA) procedure, but disappears when detected by the DCC procedure.

  19. suPAR associates to glucose metabolic aberration during glucose stimulation in HIV-infected patients on HAART

    DEFF Research Database (Denmark)

    Andersen, Ove; Eugen-Olsen, Jesper; Kofoed, Kristian

    2008-01-01

    extend these findings by investigating the association of suPAR to glucose metabolic insufficiency during an oral glucose challenge (OGTT). METHODS: In 16 HIV-infected patients with lipodystrophy and 15 HIV-infected patients without lipodystrophy, glucose tolerance, insulin sensitivity (ISI......PAR correlated inversely with ISI(composite) and positively with 2h plasma glucose, fasting insulin secretion, fasting intact proinsulin and FFA level during the OGTT (all P...-RNA, duration of HIV infection), and dyslipidemia (plasma total cholesterol, triglyceride and free fatty acid level during the OGTT) were included, suPAR remained a significant marker of glucose tolerance and insulin sensitivity. Plasma suPAR exhibited a small CV (11%) during the 3h OGTT. CONCLUSIONS: su...

  20. Insulin gene mutations resulting in early-onset diabetes: marked differences in clinical presentation, metabolic status, and pathogenic effect through endoplasmic reticulum retention

    DEFF Research Database (Denmark)

    Meur, Gargi; Simon, Albane; Harun, Nasret

    2009-01-01

    OBJECTIVE: Heterozygous mutations in the human preproinsulin (INS) gene are a cause of nonsyndromic neonatal or early-infancy diabetes. Here, we sought to identify INS mutations associated with maturity-onset diabetes of the young (MODY) or nonautoimmune diabetes in mid-adult life, and to explore...... the molecular mechanisms involved. RESEARCH DESIGN AND METHODS: The INS gene was sequenced in 16 French probands with unexplained MODY, 95 patients with nonautoimmune early-onset diabetes (diagnosed at ... with early-onset diabetes whose clinical presentation is compatible with MODY. These led to the production of (pre)proinsulin molecules with markedly different trafficking properties and effects on ER stress, demonstrating a range of molecular defects in the beta-cell....

  1. Production of peptide antisera specific for mouse and rat proinsulin C-peptide 2

    DEFF Research Database (Denmark)

    Blume, N; Madsen, O D; Kofod, Hans

    1990-01-01

    for antibody binding to the immunizing antigen. Antisera to C-peptide 2, stained islet beta-cells on mouse and rat, but not monkey pancreas sections in immunocytochemical analysis. Preabsorption to the synthetic C-peptide 2, but not the synthetic mouse and rat C-peptide 1 abolished staining. In conclusion we......Mice and rats have two functional non-allelic insulin genes. By using a synthetic peptide representing a common sequence in mouse and rat C-peptide 2 as antigen, we have produced rabbit antisera specific for an epitope which is not present in mouse or rat C-peptide 1. Long-term immunization did...... not seem to increase the end point titre as tested in direct ELISA. The specificity of the antiserum was determined by competitive ELISA and histochemistry on pancreas sections. Only the synthetic C-peptide 2, but not the homologous synthetic C-peptide 1 from mouse and rat competed efficiently in ELISA...

  2. Direct radioimmunoassay of proinsulin and insulin in human plasma by the chromatographic technique

    Energy Technology Data Exchange (ETDEWEB)

    Megahed, Y M; Abdel-Wahab, M F; El-Shawarbie, K; Sadek, S; Amer, M S [Atomic Energy Establishment, Cairo (Egypt). Radioisotope Department; Ain Shams Univ., Cairo (Egypt). Faculty of Medicine)

    1976-04-01

    Specific method for direct radioimmunoassay of IRP and IRI separately in human plasma has been described. The method is used for extraction of total insulin and separation of IRP from IRI by paper chromatography to be assayed separately. The separation of the two components is identified and confirmed by column chromatography, paper chromatography and ultraviolet spectral analysis in comparison with the standard compounds. 134 plasma samples of different cases were investigated for the determination of IRI, IRP and IRT. Out of these 39 were normals, 16 normal obes, 21 juvinil diabetes, 18 overt adult diabetes, 10 recent adult diabetes, 12 hypothyroidism and 18 bilharzial hepatosplenomegaly. They were used to evaluate the test levels in comparison with blood sugar concentration.

  3. A randomized lifestyle intervention with 5-year follow-up in subjects with impaired glucose tolerance: pronounced short-term impact but long-term adherence problems

    DEFF Research Database (Denmark)

    Lindahl, Bernt; Nilssön, Torbjörn K; Borch-Johnsen, Knut

    2009-01-01

    AIMS: To compare data on cardiovascular risk factor changes in lipids, insulin, proinsulin, fibrinolysis, leptin and C-reactive protein, and on diabetes incidence, in relation to changes in lifestyle. METHODS: The study was a randomized lifestyle intervention trial conducted in northern Sweden......, and reduced the risk for type 2 diabetes, but the effects persisted only as long as the new lifestyle was maintained. Increased physical activity seemed to be the behaviour that was most easy to preserve....... between 1995 and 2000, in 168 individuals with impaired glucose tolerance (IGT) and body mass index above 27 at start. The intensive intervention group (n = 83) was subjected to a 1-month residential lifestyle programme. The usual care group (n = 85) participated in a health examination ending...

  4. Structural and functional study of the GlnB22-insulin mutant responsible for maturity-onset diabetes of the young.

    Directory of Open Access Journals (Sweden)

    Květoslava Křížková

    Full Text Available The insulin gene mutation c.137G>A (R46Q, which changes an arginine at the B22 position of the mature hormone to glutamine, causes the monogenic diabetes variant maturity-onset diabetes of the young (MODY. In MODY patients, this mutation is heterozygous, and both mutant and wild-type (WT human insulin are produced simultaneously. However, the patients often depend on administration of exogenous insulin. In this study, we chemically synthesized the MODY mutant [GlnB22]-insulin and characterized its biological and structural properties. The chemical synthesis of this insulin analogue revealed that its folding ability is severely impaired. In vitro and in vivo tests showed that its binding affinity and biological activity are reduced (both approximately 20% that of human insulin. Comparison of the solution structure of [GlnB22]-insulin with the solution structure of native human insulin revealed that the most significant structural effect of the mutation is distortion of the B20-B23 β-turn, leading to liberation of the B chain C-terminus from the protein core. The distortion of the B20-B23 β-turn is caused by the extended conformational freedom of the GlnB22 side chain, which is no longer anchored in a hydrogen bonding network like the native ArgB22. The partially disordered [GlnB22]-insulin structure appears to be one reason for the reduced binding potency of this mutant and may also be responsible for its low folding efficiency in vivo. The altered orientation and flexibility of the B20-B23 β-turn may interfere with the formation of disulfide bonds in proinsulin bearing the R46Q (GlnB22 mutation. This may also have a negative effect on the WT proinsulin simultaneously biosynthesized in β-cells and therefore play a major role in the development of MODY in patients producing [GlnB22]-insulin.

  5. Phenotypic and gene expression changes between low (glucose-responsive) and High (glucose non-responsive) MIN-6 beta cells

    DEFF Research Database (Denmark)

    O´Driscoll, L.; Gammell, p.; McKierman, E.

    2006-01-01

    The long-term potential to routinely use replacement beta cells/islets as cell therapy for type 1 diabetes relies on our ability to culture such cells/islets, in vitro, while maintaining their functional status. Previous beta cell studies, by ourselves and other researchers, have indicated...... that the glucose-stimulated insulin secretion (GSIS) phenotype is relatively unstable, in long-term culture. This study aimed to investigate phenotypic and gene expression changes associated with this loss of GSIS, using the MIN-6 cell line as model. Phenotypic differences between MIN-6(L, low passage) and MIN-6(H......, high passage) were determined by ELISA (assessing GSIS and cellular (pro)insulin content), proliferation assays, phase contrast light microscopy and analysis of alkaline phosphatase expression. Differential mRNA expression was investigated using microarray, bioinformatics and real-time PCR technologies...

  6. Effect of genetic variation in a Drosophila model of diabetes-associated misfolded human proinsulin.

    Science.gov (United States)

    He, Bin Z; Ludwig, Michael Z; Dickerson, Desiree A; Barse, Levi; Arun, Bharath; Vilhjálmsson, Bjarni J; Jiang, Pengyao; Park, Soo-Young; Tamarina, Natalia A; Selleck, Scott B; Wittkopp, Patricia J; Bell, Graeme I; Kreitman, Martin

    2014-02-01

    The identification and validation of gene-gene interactions is a major challenge in human studies. Here, we explore an approach for studying epistasis in humans using a Drosophila melanogaster model of neonatal diabetes mellitus. Expression of the mutant preproinsulin (hINS(C96Y)) in the eye imaginal disc mimics the human disease: it activates conserved stress-response pathways and leads to cell death (reduction in eye area). Dominant-acting variants in wild-derived inbred lines from the Drosophila Genetics Reference Panel produce a continuous, highly heritable distribution of eye-degeneration phenotypes in a hINS(C96Y) background. A genome-wide association study (GWAS) in 154 sequenced lines identified a sharp peak on chromosome 3L, which mapped to a 400-bp linkage block within an intron of the gene sulfateless (sfl). RNAi knockdown of sfl enhanced the eye-degeneration phenotype in a mutant-hINS-dependent manner. RNAi against two additional genes in the heparan sulfate (HS) biosynthetic pathway (ttv and botv), in which sfl acts, also modified the eye phenotype in a hINS(C96Y)-dependent manner, strongly suggesting a novel link between HS-modified proteins and cellular responses to misfolded proteins. Finally, we evaluated allele-specific expression difference between the two major sfl-intronic haplotypes in heterozygtes. The results showed significant heterogeneity in marker-associated gene expression, thereby leaving the causal mutation(s) and its mechanism unidentified. In conclusion, the ability to create a model of human genetic disease, map a QTL by GWAS to a specific gene, and validate its contribution to disease with available genetic resources and the potential to experimentally link the variant to a molecular mechanism demonstrate the many advantages Drosophila holds in determining the genetic underpinnings of human disease.

  7. Photochemical (PUVA) treatment of isolated rat islets

    International Nuclear Information System (INIS)

    Schmidt, S.; Wilke, B.; Kloeting, I.

    1984-01-01

    Isolated rat islets were irradiated with long-wave ultraviolet light alone or in combination with the photosensitizer 8-methoxypsoralen. The influence on specific beta cell functions was determined with the aim to find out experimental conditions which allow the use of such islets for transplantation. Short-term effects: Ultraviolet light affected [ 3 H]leucine incorporation into (pro)insulin (5 J/cm 2 : 53.8 %, 10 J/cm 2 : 41.0 % of the controls) and insulin release was slightly reduced. 8-methoxypsoralen enhanced the irradiation effect. Long-term effects: A restoration of irradiation-affected beta cell function was detected after 5 days of culture unless the dose exceeded 2 J/cm 2 (0.1 μM 8-methoxypsoralen) or 1 J/cm 2 (1 μM 8-methoxypsoralen). After functional restoration islets were used for transplantation experiments. (author)

  8. GLP-1 Restores Altered Insulin and Glucagon Secretion in Posttransplantation Diabetes

    DEFF Research Database (Denmark)

    Halden, Thea A S; Egeland, Erlend J; Åsberg, Anders

    2016-01-01

    OBJECTIVE: Development of posttransplantation diabetes (PTDM) is characterized by reduced insulin secretion and sensitivity. We aimed to investigate whether hyperglucagonemia could play a role in PTDM and to examine the insulinotropic and glucagonostatic effects of the incretin hormone glucagon...... h of infusion, a 2-h hyperglycemic clamp (fasting plasma glucose + 5 mmol/L) was established. Five grams of arginine was given as an intravenous bolus 10 min before termination of the clamp. RESULTS: Fasting concentrations of glucagon (P = 0.92) and insulin (P = 0.23) were similar between the groups...... to arginine (P = 0.01) but similar glucagon and proinsulin responses compared with control subjects. In the preclamp phase, GLP-1 lowered fasting plasma glucose to the same extent in both groups but reduced glucagon only in PTDM patients. During hyperglycemic clamp, GLP-1 reduced glucagon concentrations...

  9. Abnormal islet sphingolipid metabolism in type 1 diabetes

    DEFF Research Database (Denmark)

    Holm, Laurits J; Krogvold, Lars; Hasselby, Jane P

    2018-01-01

    AIMS/HYPOTHESIS: Sphingolipids play important roles in beta cell physiology, by regulating proinsulin folding and insulin secretion and in controlling apoptosis, as studied in animal models and cell cultures. Here we investigate whether sphingolipid metabolism may contribute to the pathogenesis....... Transcriptional analysis was used to evaluate expression of sphingolipid-related genes in isolated human islets. Genome-wide association studies (GWAS) and a T cell proliferation assay were used to identify type 1 diabetes related polymorphisms and test how these affect cellular islet autoimmunity. Finally, we...... diabetes, which were associated with reduced expression of enzymes involved in sphingolipid metabolism. Next, we discovered eight gene polymorphisms (ORMDL3, SPHK2, B4GALNT1, SLC1A5, GALC, PPARD, PPARG and B4GALT1) involved in sphingolipid metabolism that contribute to the genetic predisposition to type 1...

  10. Photochemical (PUVA) treatment of isolated rat islets

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, S; Wilke, B; Kloeting, I [Zentralinstitut fuer Diabetes, Karlsburg (German Democratic Republic)

    1984-05-01

    Isolated rat islets were irradiated with long-wave ultraviolet light alone or in combination with the photosensitizer 8-methoxypsoralen. The influence on specific beta cell functions was determined with the aim to find out experimental conditions which allow the use of such islets for transplantation. Short-term effects: Ultraviolet light affected (/sup 3/H)leucine incorporation into (pro)insulin (5 J/cm/sup 2/ : 53.8 %, 10 J/cm/sup 2/ : 41.0 % of the controls) and insulin release was slightly reduced. 8-methoxypsoralen enhanced the irradiation effect. Long-term effects: A restoration of irradiation-affected beta cell function was detected after 5 days of culture unless the dose exceeded 2 J/cm/sup 2/ (0.1 ..mu..M 8-methoxypsoralen) or 1 J/cm/sup 2/ (1 ..mu..M 8-methoxypsoralen). After functional restoration islets were used for transplantation experiments.

  11. Insulin-like immunoreactive substances in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Felix, J -M; Sutter-Dub, M -T; Legrele, C; Billaudel, B; Sutter, B C.J.; Jacquot, R [Reims Univ., 51 (France). Lab. de Physiologie Animale

    1975-12-01

    Chromatography on G/sub 50/ or G/sub 100/ sephadex column of rat plasma or serum divides up the insulin-like immunoreactive material into three peaks: monomere insulin, proinsulin and a fraction of molecular weight between 50 and 100,000. This fraction is virtually absent (less than 1%) from immunoreactive material extracted from the pancreas. Comparison of the results obtained by methods using double or simple antibodies (charcoal dextran) and study of fixation in vitro of labelled insulin, taken up by various plasma proteins, suggest that the high molecular weight material includes insulin more or less broken down and linked to proteins. Furthermore, when a double antibody method is used, the alpha globulins and albumin in the rat present also an insulin-like reactivity. This disadvantage does not occur with the charcoal dextran method which is more specific.

  12. Mice deficient for ERAD machinery component Sel1L develop central diabetes insipidus.

    Science.gov (United States)

    Bichet, Daniel G; Lussier, Yoann

    2017-10-02

    Deficiency of the antidiuretic hormone arginine vasopressin (AVP) underlies diabetes insipidus, which is characterized by the excretion of abnormally large volumes of dilute urine and persistent thirst. In this issue of the JCI, Shi et al. report that Sel1L-Hrd1 ER-associated degradation (ERAD) is responsible for the clearance of misfolded pro-arginine vasopressin (proAVP) in the ER. Additionally, mice with Sel1L deficiency, either globally or specifically within AVP-expressing neurons, developed central diabetes insipidus. The results of this study demonstrate a role for ERAD in neuroendocrine cells and serve as a clinical example of the effect of misfolded ER proteins retrotranslocated through the membrane into the cytosol, where they are polyubiquitinated, extracted from the ER membrane, and degraded by the proteasome. Moreover, proAVP misfolding in hereditary central diabetes insipidus likely shares common physiopathological mechanisms with proinsulin misfolding in hereditary diabetes mellitus of youth.

  13. Enzymatic amplification of a flow-injected thermometric enzyme-linked immunoassay for human insulin.

    Science.gov (United States)

    Mecklenburg, M; Lindbladh, C; Li, H; Mosbach, K; Danielsson, B

    1993-08-01

    A flow-injected thermometric enzyme linked immunoassay for human insulin which employs the lactate dehydrogenase/lactate oxidase (LDH/LOD) substrate recycling system for signal amplification is described. The system is composed of two columns, an immunosorbent column containing immobilized anti-insulin antibodies for sensing and a recycling column containing immobilized LDH/LOD/Catalase for detection. The effect of flow rates, conjugate concentrations, and chromatographic support material upon the sensitivity of the assay are investigated. The assay has a detection limit of 0.025 microgram/ml and a linear range from 0.05 to 2 micrograms/ml. This corresponds to a 10-fold increase in sensitivity over the unamplified system. A recombinant human insulin-proinsulin conjugate was also tested. The results show that enzymatic amplification can be employed to increase the sensitivity and reproducibility of flow injection assay-based biosensors. The implications of these results upon on-line analysis are discussed.

  14. Intracellular Signalling by C-Peptide

    Directory of Open Access Journals (Sweden)

    Claire E. Hills

    2008-01-01

    Full Text Available C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na+/K+ ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes.

  15. The Prohormone VGF Regulates β Cell Function via Insulin Secretory Granule Biogenesis

    Directory of Open Access Journals (Sweden)

    Samuel B. Stephens

    2017-09-01

    Full Text Available The prohormone VGF is expressed in neuroendocrine and endocrine tissues and regulates nutrient and energy status both centrally and peripherally. We and others have shown that VGF-derived peptides have direct action on the islet β cell as secretagogues and cytoprotective agents; however, the endogenous function of VGF in the β cell has not been described. Here, we demonstrate that VGF regulates secretory granule formation. VGF loss-of-function studies in both isolated islets and conditional knockout mice reveal a profound decrease in stimulus-coupled insulin secretion. Moreover, VGF is necessary to facilitate efficient exit of granule cargo from the trans-Golgi network and proinsulin processing. It also functions to replenish insulin granule stores following nutrient stimulation. Our data support a model in which VGF operates at a critical node of granule biogenesis in the islet β cell to coordinate insulin biosynthesis with β cell secretory capacity.

  16. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    Science.gov (United States)

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  17. Serum growth hormone-binding protein in obesity: effect of a short-term, very low calorie diet and diet-induced weight loss

    DEFF Research Database (Denmark)

    Rasmussen, M H; Ho, K K; Kjems, L

    1996-01-01

    +/-SEM)] before and after an average weight loss of 30.3 +/- 4.6 kg and in 18 age- and sex matched normal subjects (BMI, 23.0 +/- 0.4 kg/m2) and studied the effects of a very low calorie diet over 4 days in 5 normal subjects and a subgroup of obese subjects before (n = 6) and after (n = 5) weight loss...... was positively correlated to insulin as well as proinsulin levels (r = 0.60; P diet-induced massive weight loss, GHBP levels were restored to normal in obese subjects (BMI, 27.8 +/- 1.4 kg/m2). Multiple stepwise regression analysis revealed that changes...... days of a very low calorie diet, although mean insulin levels fell significantly in the normal subgroup as well as in the obese subgroup studied after weight loss. In summary, GHBP levels are elevated in obesity, are restored to normal by massive weight loss, and are unaffected by short term...

  18. Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells.

    Science.gov (United States)

    Kwon, Kwang-Chul; Verma, Dheeraj; Singh, Nameirakpam D; Herzog, Roland; Daniell, Henry

    2013-06-15

    Among 12billion injections administered annually, unsafe delivery leads to >20million infections and >100million reactions. In an emerging new concept, freeze-dried plant cells (lettuce) expressing vaccine antigens/biopharmaceuticals are protected in the stomach from acids/enzymes but are released to the immune or blood circulatory system when plant cell walls are digested by microbes that colonize the gut. Vaccine antigens bioencapsulated in plant cells upon oral delivery after priming, conferred both mucosal and systemic immunity and protection against bacterial, viral or protozoan pathogens or toxin challenge. Oral delivery of autoantigens was effective against complications of type 1 diabetes and hemophilia, by developing tolerance. Oral delivery of proinsulin or exendin-4 expressed in plant cells regulated blood glucose levels similar to injections. Therefore, this new platform offers a low cost alternative to deliver different therapeutic proteins to combat infectious or inherited diseases by eliminating inactivated pathogens, expensive purification, cold storage/transportation and sterile injections. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Short- and long-term metabolic effects of recombinant human IGF-I treatment in patients with severe insulin resistance and diabetes mellitus

    DEFF Research Database (Denmark)

    Vestergaard, H; Rossen, M; Urhammer, S A

    1997-01-01

    In patients suffering from the genetic syndromes of severe insulin resistance it appears that diabetes develops when the adaptive hypersecretion of insulin fails and often these forms of diabetes will be insensitive to insulin treatment. The objective of the present study was to examine......-resistant diabetes mellitus and (b) during a long-term (10 weeks) period with rhIGF-I given once a day in a low dose (40 micrograms/kg body weight) in three of the four patients. Two siblings had known mutations in the tyrosine kinase domain of the insulin receptor and a deletion of exon 17 in part of their insulin......-50%), proinsulin (40-50%) and C-peptide (10-65%) and an improvement in glycaemic control as evaluated by decreased glycosylated haemoglobin and serum fructosamine. During the long-term study period blood glucose-lowering effects of rhIGF-I were seen after 2 weeks of treatment and fasting plasma glucose and serum...

  20. Metastatic Insulinoma Following Resection of Nonsecreting Pancreatic Islet Cell Tumor

    Directory of Open Access Journals (Sweden)

    Anoopa A. Koshy MD

    2013-01-01

    Full Text Available A 56-year-old woman presented to our clinic for recurrent hypoglycemia after undergoing resection of an incidentally discovered nonfunctional pancreatic endocrine tumor 6 years ago. She underwent a distal pancreatectomy and splenectomy, after which she developed diabetes and was placed on an insulin pump. Pathology showed a pancreatic endocrine neoplasm with negative islet hormone immunostains. Two years later, computed tomography scan of the abdomen showed multiple liver lesions. Biopsy of a liver lesion showed a well-differentiated neuroendocrine neoplasm, consistent with pancreatic origin. Six years later, she presented to clinic with 1.5 years of recurrent hypoglycemia. Laboratory results showed elevated proinsulin, insulin levels, and c-peptide levels during a hypoglycemic episode. Computed tomography scan of the abdomen redemonstrated multiple liver lesions. Repeated transarterial catheter chemoembolization and microwave thermal ablation controlled hypoglycemia. The unusual features of interest of this case include the transformation of nonfunctioning pancreatic endocrine tumor to a metastatic insulinoma and the occurrence of atrial flutter after octreotide for treatment.

  1. The physiology of a local renin-angiotensin system in the pancreas.

    Science.gov (United States)

    Leung, Po Sing

    2007-04-01

    The systemic renin-angiotensin system (RAS) plays an important role in regulating blood pressure, electrolyte and fluid homeostasis. However, local RASs also exist in diverse tissues and organs, where they play a multitude of autocrine, paracrine and intracrine physiological roles. The existence of a local RAS is now recognized in pancreatic acinar, islet, duct, endothelial and stellate cells, the expression of which is modulated in response to physiological and pathophysiological stimuli such as hypoxia, pancreatitis, islet transplantation, hyperglycaemia, and diabetes mellitus. This pancreatic RAS has been proposed to have important endocrine and exocrine roles in the pancreas, regulating local blood flow, duct cell sodium bicarbonate secretion, acinar cell digestive enzyme secretion, islet beta-cell (pro)insulin biosynthesis, and thus, glucose-stimulated insulin release, delta-cell somatostatin secretion, and pancreatic cell proliferation and differentiation. It may further mediate oxidative stress-induced cell inflammation, apoptosis and fibrosis. Further exploration of this system would probably offer new insights into the pathogenesis of pancreatitis, diabetes, cystic fibrosis and pancreatic cancer formation. New therapeutic targets and strategies might thus be suggested.

  2. The physiology of a local renin–angiotensin system in the pancreas

    Science.gov (United States)

    Leung, Po Sing

    2007-01-01

    The systemic renin–angiotensin system (RAS) plays an important role in regulating blood pressure, electrolyte and fluid homeostasis. However, local RASs also exist in diverse tissues and organs, where they play a multitude of autocrine, paracrine and intracrine physiological roles. The existence of a local RAS is now recognized in pancreatic acinar, islet, duct, endothelial and stellate cells, the expression of which is modulated in response to physiological and pathophysiological stimuli such as hypoxia, pancreatitis, islet transplantation, hyperglycaemia, and diabetes mellitus. This pancreatic RAS has been proposed to have important endocrine and exocrine roles in the pancreas, regulating local blood flow, duct cell sodium bicarbonate secretion, acinar cell digestive enzyme secretion, islet beta-cell (pro)insulin biosynthesis, and thus, glucose-stimulated insulin release, delta-cell somatostatin secretion, and pancreatic cell proliferation and differentiation. It may further mediate oxidative stress-induced cell inflammation, apoptosis and fibrosis. Further exploration of this system would probably offer new insights into the pathogenesis of pancreatitis, diabetes, cystic fibrosis and pancreatic cancer formation. New therapeutic targets and strategies might thus be suggested. PMID:17218353

  3. The Impact of Genetic Variants for Different Physiological Characterization of Type 2 Diabetes Loci on Gestational Insulin Signaling in Nondiabetic Pregnant Chinese Women.

    Science.gov (United States)

    Liao, Shunyao; Liu, Yunqiang; Chen, Xiaojuan; Tan, Yuande; Mei, Jie; Song, Wenzhong; Gan, Lu; Wang, Hailian; Yin, Shi; Dong, Xianjue; Chi, Shu; Deng, Shaoping

    2015-11-01

    We investigate the impact of genetic variants on transiently upregulated gestational insulin signaling. We recruited 1152 unrelated nondiabetic pregnant Han Chinese women (age 28.5 ± 4.1 years; body mass index [BMI] 21.4 ± 2.6 kg/m(2)) and gave them oral glucose tolerance tests. Matsuda index of insulin sensitivity, homeostatic model assessment of insulin resistance, indices of insulin disposition, early-phase insulin release, fasting state, and 0 to 120 minute's proinsulin to insulin conversion were used to dissect insulin physiological characterization. Several variants related to β-cell function were genotyped. The genetic impacts were analyzed using logistic regression under an additive model. By adjusting for maternal age, BMI, and the related interactions, the genetic variants in ABCC8, CDKAL1, CDKN2A, HNF1B, KCNJ11, and MTNR1B were detected to impact gestational insulin signaling through heterogeneous mechanisms; however, compared with that in nonpregnant metabolism, the genetic effects seem to be eminently and heavily influenced by maternal age and BMI, indicating possible particular mechanisms underlying gestational metabolism and diabetic pathogenesis. © The Author(s) 2015.

  4. Protective effect of C-peptide on experimentally induced diabetic nephropathy and the possible link between C-peptide and nitric oxide.

    Science.gov (United States)

    Elbassuoni, Eman A; Aziz, Neven M; El-Tahawy, Nashwa F

    2018-06-01

    Diabetic nephropathy one of the major microvascular diabetic complications. Besides hyperglycemia, other factors contribute to the development of diabetic complications as the proinsulin connecting peptide, C-peptide. We described the role of C-peptide replacement therapy on experimentally induced diabetic nephropathy, and its potential mechanisms of action by studying the role of nitric oxide (NO) as a mediator of C-peptide effects by in vivo modulating its production by N G -nitro-l-arginine methyl ester (L-NAME). Renal injury markers measured were serum urea, creatinine, tumor necrosis factor alpha, and angiotensin II, and malondialdehyde, total antioxidant, Bcl-2, and NO in renal tissue. In conclusion, diabetic induction resulted in islet degenerations and decreased insulin secretion with its metabolic consequences and subsequent renal complications. C-Peptide deficiencies in diabetes might have contributed to the metabolic and renal error, since C-peptide treatment to the diabetic rats completely corrected these errors. The beneficial effects of C-peptide are partially antagonized by L-NAME coadministration, indicating that NO partially mediates C-peptide effects.

  5. Human C-peptide. Pt. 1

    International Nuclear Information System (INIS)

    Beischer, W.; Keller, L.; Maas, M.; Schiefer, E.; Pfeiffer, E.F.

    1976-01-01

    Synthetic human C-peptide bearing a tyrosine group at its amino end is labelled with 125 iodine using chloramin T or hydrogen peroxide and lactoperoxidase. The results of the two methods are compared. Antiserum to synthetic human C-peptide (without tyrosine), which was partially coupled to rabbit albumin, is raised in guinea pigs and goats. Goats show to be superior to guinea pips concerning antibody production. The so-called 'hook effect' phenomenon is observed when setting up the standard curves for the radioimmunoassay. Monotonically decreasing standard curves are obtained on dilution of antiserum with a high antibody titer which was produced by repeated immunization in goats. Free C-peptide and C-peptide bound to antiserum are separated using the anion exchange resin amberlite. Using this separation technique we excluded unspecific binding of labelled C-peptide to protein fractions in serum of diabetics. The sensitivity of our radioimmunoassay is approx. 0.3 ng C-peptide/ml serum. Intra- and interassay variability are below 10%. Human proinsulin is the only substance found to crossreact with the antiserum. (orig.) [de

  6. Human C-peptide. Pt. 1. Radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Beischer, W; Keller, L; Maas, M; Schiefer, E; Pfeiffer, E F [Ulm Univ. (Germany, F.R.). Abt. Innere Medizin, Endokrinologie und Stoffwechsel

    1976-08-01

    Synthetic human C-peptide bearing a tyrosine group at its amino end is labelled with /sup 125/iodine using chloramin T or hydrogen peroxide and lactoperoxidase. The results of the two methods are compared. Antiserum to synthetic human C-peptide (without tyrosine), which was partially coupled to rabbit albumin, is raised in guinea pigs and goats. Goats show to be superior to guinea pips concerning antibody production. The so-called 'hook effect' phenomenon is observed when setting up the standard curves for the radioimmunoassay. Monotonically decreasing standard curves are obtained on dilution of antiserum with a high antibody titer which was produced by repeated immunization in goats. Free C-peptide and C-peptide bound to antiserum are separated using the anion exchange resin amberlite. Using this separation technique we excluded unspecific binding of labelled C-peptide to protein fractions in serum of diabetics. The sensitivity of our radioimmunoassay is approx. 0.3 ng C-peptide/ml serum. Intra- and interassay variability are below 10%. Human proinsulin is the only substance found to crossreact with the antiserum.

  7. Evaluation of MicroRNA375 as a Novel Biomarker for Graft Damage in Clinical Islet Transplantation.

    Science.gov (United States)

    Kanak, Mazhar A; Takita, Morihito; Shahbazov, Rauf; Lawrence, Michael C; Chung, Wen Yuan; Dennison, Ashley R; Levy, Marlon F; Naziruddin, Bashoo

    2015-08-01

    Early and sensitive detection of islet graft damage is essential for improving posttransplant outcomes. MicroRNA 375 (miR375) has been reported as a biomarker of pancreatic β-cell death in small animal models. The miR375 levels were measured in purified human islets, sera from patients with autologous and allogeneic islet transplantation as well as total pancreatectomy alone (nontransplanted group). The miR375 levels were also determined in a miniaturized in vitro tube model comprising human islets and autologous blood. The miR375 expression level in islets was dose-dependent (P islet damage in plasma in the in vitro model (P = 0.003). Clinical analysis revealed that circulating miR375 levels in both autologous and allogeneic islet recipients were significantly elevated for 7 days after islet infusion, compared with the nontransplanted group (P = 0.005 and islet graft damage among 3 different anti-inflammatory protocols for clinical autologous transplantation (P islet transplantation because serum C-peptide and proinsulin levels are difficult to interpret due to the influence of multiple factors, such as β-cell stress and physiological response.

  8. Functional and histological findings of the islets of Langerhans in mice after fractioned telecobalt irradiations with tumor doses

    International Nuclear Information System (INIS)

    Konermann, G.; Petersen, K.G.; Slanina, J.; Blachnitzky, E.O.; Kraft, C.; Freiburg Univ.

    1979-01-01

    After a local radiation exposure of the pancreas of mice to a total dose of 5000 rd ( 60 Co gamma radiation over five weeks with 5 x 200 rd per week), there is no demonstrable alteration, even at long term, of the glucose tolerance and the insulin secretion of isolated islets of Langerhans in vitro and of the density of a histochemically prepared islet secretion. However, the proinsuline synthesis under glucose loading is reduced by about 40%. A radiogenic reduction of the total insulin content in the islet tissue of 27,6% is accompanied by a diminution of the body weight of 10% and a reduction of the organ weight of pancreas, liver and spleen of 20%, 13% and 47%. In view of these findings and taking into account a cellular death rate in the islet tissue of 21% immediately after the radiotherapy and of 5,8% eight weeks post irradiationem, the authors suppose a compensating secretion by the remaining islet cells which is sufficient under normal conditions. Signs of a tissue degeneration near the vessels are clearer in the exocrine pancreas than in the islet tissue. (orig.) 891 MG/orig. 892 RKD [de

  9. Evidence for disturbed insulin and growth hormone signaling as potential risk factors in the development of schizophrenia.

    Science.gov (United States)

    van Beveren, N J M; Schwarz, E; Noll, R; Guest, P C; Meijer, C; de Haan, L; Bahn, S

    2014-08-26

    Molecular abnormalities in metabolic, hormonal and immune pathways are present in peripheral body fluids of a significant subgroup of schizophrenia patients. The authors have tested whether such disturbances also occur in psychiatrically ill and unaffected siblings of schizophrenia patients with the aim of identifying potential contributing factors to disease vulnerability. The subjects were recruited as part of the Genetic Risk and OUtcome of Psychosis (GROUP) study. The authors used multiplexed immunoassays to measure the levels of 184 molecules in serum from 112 schizophrenia patients, 133 siblings and 87 unrelated controls. Consistent with the findings of previous studies, serum from schizophrenia patients contained higher levels of insulin, C-peptide and proinsulin, decreased levels of growth hormone and altered concentrations of molecules involved in inflammation. In addition, significant differences were found in the levels of some of these proteins in siblings diagnosed with mood disorders (n=16) and in unaffected siblings (n=117). Most significantly, the insulin/growth hormone ratio was higher across all groups compared with the controls. Taken together, these findings suggest the presence of a molecular endophenotype involving disruption of insulin and growth factor signaling pathways as an increased risk factor for schizophrenia.

  10. Monomeric insulins obtained by protein engineering and their medical implications.

    Science.gov (United States)

    Brange, J; Ribel, U; Hansen, J F; Dodson, G; Hansen, M T; Havelund, S; Melberg, S G; Norris, F; Norris, K; Snel, L

    1988-06-16

    The use of insulin as an injected therapeutic agent for the treatment of diabetes has been one of the outstanding successes of modern medicine. The therapy has, however, had its associated problems, not least because injection of insulin does not lead to normal diurnal concentrations of insulin in the blood. This is especially true at meal times when absorption from subcutaneous tissue is too slow to mimic the normal rapid increments of insulin in the blood. In the neutral solutions used for therapy, insulin is mostly assembled as zinc-containing hexamers and this self-association, which under normal physiological circumstances functions to facilitate proinsulin transport, conversion and intracellular storage, may limit the rate of absorption. We now report that it is possible, by single amino-acid substitutions, to make insulins which are essentially monomeric at pharmaceutical concentrations (0.6 mM) and which have largely preserved their biological activity. These monomeric insulins are absorbed two to three times faster after subcutaneous injection than the present rapid-acting insulins. They are therefore capable of giving diabetic patients a more physiological plasma insulin profile at the time of meal consumption.

  11. Immunogold staining procedure for the localisation of regulatory peptides.

    Science.gov (United States)

    Varndell, I M; Tapia, F J; Probert, L; Buchan, A M; Gu, J; De Mey, J; Bloom, S R; Polak, J M

    1982-01-01

    The use of protein A- and IgG-conjugated colloidal gold staining methods for the immuno-localisation of peptide hormones and neurotransmitters at light- and electron microscope level are described and discussed. Bright-field and dark-ground illumination modes have been used to visualise the gold-labelled antigenic sites at the light microscope level. Immunogold staining procedures at the ultrastructural level using region-specific antisera have been adopted to localise specific molecular forms of peptides including gastrin (G17 and G34), glucagon and pro-glucagon, insulin and pro-insulin, in normal tissue and in tumours of the gastroenteropancreatic system. Similar methods have been used to demonstrate the heterogeneity of p-type nerves in the enteric nervous system. Vasoactive intestinal polypeptide (VIP) has been localised to granular sites (mean +/- S.D. granule diameter = 98 +/- 19 nm) in nerve terminals of the enteric plexuses and in tumour cells of diarrhoeogenic VIP-producing neoplasias (mean +/- S.D. granule diameter = 126 +/- 37 nm) using immunogold procedures applied to ultraviolet-cured ultrathin sections. Co-localisation of amines and peptides in carotid body type I cells and in chromaffin cells of normal adrenal medulla and phaeochromocytomas has also been demonstrated. Advantages of the immunogold procedures over alternative immunocytochemical techniques are discussed.

  12. Generation of high-yield insulin producing cells from human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Jafarian, Arefeh; Taghikhani, Mohammad; Abroun, Saeid; Pourpak, Zahra; Allahverdi, Amir; Soleimani, Masoud

    2014-07-01

    Allogenic islet transplantation is a most efficient approach for treatment of diabetes mellitus. However, the scarcity of islets and long term need for an immunosuppressant limits its application. Recently, cell replacement therapies that generate of unlimited sources of β cells have been developed to overcome these limitations. In this study we have described a stage specific differentiation protocol for the generation of insulin producing islet-like clusters from human bone marrow mesenchymal stem cells (hBM-MSCs). This specific stepwise protocol induced differentiation of hMSCs into definitive endoderm, pancreatic endoderm and pancreatic endocrine cells that expressed of sox17, foxa2, pdx1, ngn3, nkx2.2, insulin, glucagon, somatostatin, pancreatic polypeptide, and glut2 transcripts respectively. In addition, immunocytochemical analysis confirmed protein expression of the above mentioned genes. Western blot analysis discriminated insulin from proinsulin in the final differentiated cells. In derived insulin producing cells (IPCs), secreted insulin and C-peptide was in a glucose dependent manner. We have developed a protocol that generates effective high-yield human IPCs from hBM-MSCs in vitro. These finding suggest that functional IPCs generated by this procedure can be used as a cell-based approach for insulin dependent diabetes mellitus.

  13. Generation of Functional Beta-Like Cells from Human Exocrine Pancreas.

    Directory of Open Access Journals (Sweden)

    Maria J Lima

    Full Text Available Transcription factor mediated lineage reprogramming of human pancreatic exocrine tissue could conceivably provide an unlimited supply of islets for transplantation in the treatment of diabetes. Exocrine tissue can be efficiently reprogrammed to islet-like cells using a cocktail of transcription factors: Pdx1, Ngn3, MafA and Pax4 in combination with growth factors. We show here that overexpression of exogenous Pax4 in combination with suppression of the endogenous transcription factor ARX considerably enhances the production of functional insulin-secreting β-like cells with concomitant suppression of α-cells. The efficiency was further increased by culture on laminin-coated plates in media containing low glucose concentrations. Immunocytochemistry revealed that reprogrammed cultures were composed of ~45% islet-like clusters comprising >80% monohormonal insulin+ cells. The resultant β-like cells expressed insulin protein levels at ~15-30% of that in adult human islets, efficiently processed proinsulin and packaged insulin into secretory granules, exhibited glucose responsive insulin secretion, and had an immediate and prolonged effect in normalising blood glucose levels upon transplantation into diabetic mice. We estimate that approximately 3 billion of these cells would have an immediate therapeutic effect following engraftment in type 1 diabetes patients and that one pancreas would provide sufficient tissue for numerous transplants.

  14. Fibronectin and laminin promote differentiation of human mesenchymal stem cells into insulin producing cells through activating Akt and ERK

    Directory of Open Access Journals (Sweden)

    Chiou Shih-Hwa

    2010-07-01

    Full Text Available Abstract Background Islet transplantation provides a promising cure for Type 1 diabetes; however it is limited by a shortage of pancreas donors. Bone marrow-derived multipotent mesenchymal stem cells (MSCs offer renewable cells for generating insulin-producing cells (IPCs. Methods We used a four-stage differentiation protocol, containing neuronal differentiation and IPC-conversion stages, and combined with pellet suspension culture to induce IPC differentiation. Results Here, we report adding extracellular matrix proteins (ECM such as fibronectin (FN or laminin (LAM enhances pancreatic differentiation with increases in insulin and Glut2 gene expressions, proinsulin and insulin protein levels, and insulin release in response to elevated glucose concentration. Adding FN or LAM induced activation of Akt and ERK. Blocking Akt or ERK by adding LY294002 (PI3K specific inhibitor, PD98059 (MEK specific inhibitor or knocking down Akt or ERK failed to abrogate FN or LAM-induced enhancement of IPC differentiation. Only blocking both of Akt and ERK or knocking down Akt and ERK inhibited the enhancement of IPC differentiation by adding ECM. Conclusions These data prove IPC differentiation by MSCs can be modulated by adding ECM, and these stimulatory effects were mediated through activation of Akt and ERK pathways.

  15. The role of insulin C-peptide in the coevolution analyses of the insulin signaling pathway: a hint for its functions.

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    Full Text Available As the linker between the A chain and B chain of proinsulin, C-peptide displays high variability in length and amino acid composition, and has been considered as an inert byproduct of insulin synthesis and processing for many years. Recent studies have suggested that C-peptide can act as a bioactive hormone, exerting various biological effects on the pathophysiology and treatment of diabetes. In this study, we analyzed the coevolution of insulin molecules among vertebrates, aiming at exploring the evolutionary characteristics of insulin molecule, especially the C-peptide. We also calculated the correlations of evolutionary rates between the insulin and the insulin receptor (IR sequences as well as the domain-domain pairs of the ligand and receptor by the mirrortree method. The results revealed distinctive features of C-peptide in insulin intramolecular coevolution and correlated residue substitutions, which partly supported the idea that C-peptide can act as a bioactive hormone, with significant sequence features, as well as a linker assisting the formation of mature insulin during synthesis. Interestingly, the evolution of C-peptide exerted the highest correlation with that of the insulin receptor and its ligand binding domain (LBD, implying a potential relationship with the insulin signaling pathway.

  16. Chimeric Vaccine Stimulation of Human Dendritic Cell Indoleamine 2, 3-Dioxygenase Occurs via the Non-Canonical NF-κB Pathway.

    Directory of Open Access Journals (Sweden)

    Nan-Sun Kim

    Full Text Available A chimeric protein vaccine composed of the cholera toxin B subunit fused to proinsulin (CTB-INS was shown to suppress type 1 diabetes onset in NOD mice and upregulate biosynthesis of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1 in human dendritic cells (DCs. Here we demonstrate siRNA inhibition of the NF-κB-inducing kinase (NIK suppresses vaccine-induced IDO1 biosynthesis as well as IKKα phosphorylation. Chromatin immunoprecipitation (ChIP analysis of CTB-INS inoculated DCs showed that RelB bound to NF-κB consensus sequences in the IDO1 promoter, suggesting vaccine stimulation of the non-canonical NF-κB pathway activates IDO1 expression in vivo. The addition of Tumor Necrosis Factor Associated Factors (TRAF TRAF 2, 3 and TRAF6 blocking peptides to vaccine inoculated DCs was shown to inhibit IDO1 biosynthesis. This experimental outcome suggests vaccine activation of the TNFR super-family receptor pathway leads to upregulation of IDO1 biosynthesis in CTB-INS inoculated dendritic cells. Together, our experimental data suggest the CTB-INS vaccine uses a TNFR-dependent signaling pathway of the non-canonical NF-κB signaling pathway resulting in suppression of dendritic cell mediated type 1 diabetes autoimmunity.

  17. Characterization of beta cell and incretin function in patients with MODY1 (HNF4A MODY) and MODY3 (HNF1A MODY) in a Swedish patient collection

    DEFF Research Database (Denmark)

    Ekholm, E; Shaat, N; Holst, Jens Juul

    2012-01-01

    eight different families. BMI-matched T2D and healthy subjects were used as two separate control groups. The early phase of insulin secretion was attenuated in HNF4A, HNF1A MODY and T2D (AUC0-30 controls: 558.2 ± 101.2, HNF4A MODY: 93.8 ± 57.0, HNF1A MODY: 170.2 ± 64.5, T2D: 211.2 ± 65.3, P ....01). Markedly reduced levels of proinsulin were found in HNF4A MODY compared to T2D and that tended to be so also in HNF1A MODY (HNF4A MODY: 3.7 ± 1.2, HNF1A MODY: 8.3 ± 3.8 vs. T2D: 26.6 ± 14.3). Patients with HNF4A MODY had similar total GLP-1 and GIP responses as controls (GLP-1 AUC: (control: 823.9 ± 703.......8, T2D: 556.4 ± 698.2, HNF4A MODY: 1,257.0 ± 999.3, HNF1A MODY: 697.1 ± 818.4) but with a different secretion pattern. The AUC insulin during the test meal was strongly correlated with the GIP secretion (Correlation coefficient 1.0, P

  18. A modified method of insulin producing cells' generation from bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Czubak, Paweł; Bojarska-Junak, Agnieszka; Tabarkiewicz, Jacek; Putowski, Lechosław

    2014-01-01

    Type 1 diabetes mellitus is a result of autoimmune destruction of pancreatic insulin producing β-cells and so far it can be cured only by insulin injection, by pancreas transplantation, or by pancreatic islet cells' transplantation. The methods are, however, imperfect and have a lot of disadvantages. Therefore new solutions are needed. The best one would be the use of differentiated mesenchymal stem cells (MSCs). In the present study, we investigated the potential of the bone marrow-derived MSCs line for in vitro differentiation into insulin producing cells (IPSs). We applied an 18-day protocol to differentiate MSCs. Differentiating cells formed cell clusters some of which resembled pancreatic islet-like cells. Using dithizone we confirmed the presence of insulin in the cells. What is more, the expression of proinsulin C-peptide in differentiated IPCs was analyzed by flow cytometry. For the first time, we investigated the influence of growth factors' concentration on IPCs differentiation efficiency. We have found that an increase in the concentration of growth factors up to 60 ng/mL of β-FGF/EGF and 30 ng/mL of activin A/β-cellulin increases the percentage of IPCs. Further increase of growth factors does not show any increase of the percentage of differentiated cells. Our findings suggest that the presented protocol can be adapted for differentiation of insulin producing cells from stem cells.

  19. Lipid droplets hypertrophy: a crucial determining factor in insulin regulation by adipocytes

    Science.gov (United States)

    Sanjabi, Bahram; Dashty, Monireh; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Rahimi, Mehran; Vinciguerra, Manlio; van Rooij, Felix; Al-Lahham, Saad; Sheedfar, Fareeba; van Kooten, Theo G.; Spek, C. Arnold; Rowshani, Ajda T.; van der Want, Johannes; Klaassen, Rene; Sijbrands, Eric; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2015-03-01

    Lipid droplets (LDs) hypertrophy in adipocytes is the main cause of energy metabolic system dysfunction, obesity and its afflictions such as T2D. However, the role of adipocytes in linking energy metabolic disorders with insulin regulation is unknown in humans. Human adipocytes constitutively synthesize and secrete insulin, which is biologically functional. Insulin concentrations and release are fat mass- and LDs-dependent respectively. Fat reduction mediated by bariatric surgery repairs obesity-associated T2D. The expression of genes, like PCSK1 (proinsulin conversion enzyme), GCG (Glucagon), GPLD1, CD38 and NNAT, involved in insulin regulation/release were differentially expressed in pancreas and adipose tissue (AT). INS (insulin) and GCG expression reduced in human AT-T2D as compared to AT-control, but remained unchanged in pancreas in either state. Insulin levels (mRNA/protein) were higher in AT derived from prediabetes BB rats with destructed pancreatic β-cells and controls than pancreas derived from the same rats respectively. Insulin expression in 10 human primary cell types including adipocytes and macrophages is an evidence for extrapancreatic insulin-producing cells. The data suggest a crosstalk between AT and pancreas to fine-tune energy metabolic system or may minimize the metabolic damage during diabetes. This study opens new avenues towards T2D therapy with a great impact on public health.

  20. Expression and Purification of C-Peptide Containing Insulin Using Pichia pastoris Expression System

    Directory of Open Access Journals (Sweden)

    Mohammed N. Baeshen

    2016-01-01

    Full Text Available Increase in the incidence of Insulin Dependent Diabetes Mellitus (IDDM among people from developed and developing countries has created a large global market for insulin. Moreover, exploration of new methods for insulin delivery including oral or inhalation route which require very high doses would further increase the demand of cost-effective recombinant insulin. Various bacterial and yeast strains have been optimized to overproduce important biopharmaceuticals. One of the approaches we have taken is the production of recombinant human insulin along with C-peptide in yeast Pichia pastoris. We procured a cDNA clone of insulin from Origene Inc., USA. Insulin cDNA was PCR amplified and cloned into yeast vector pPICZ-α. Cloned insulin cDNA was confirmed by restriction analysis and DNA sequencing. pPICZ-α-insulin clone was transformed into Pichia pastoris SuperMan5 strain. Several Zeocin resistant clones were obtained and integration of insulin cDNA in Pichia genome was confirmed by PCR using insulin specific primers. Expression of insulin in Pichia clones was confirmed by ELISA, SDS-PAGE, and Western blot analysis. In vivo efficacy studies in streptozotocin induced diabetic mice confirmed the activity of recombinant insulin. In conclusion, a biologically active human proinsulin along with C-peptide was expressed at high level using Pichia pastoris expression system.

  1. New peptides players in metabolic disorders

    Directory of Open Access Journals (Sweden)

    Agata Mierzwicka

    2016-08-01

    Full Text Available Among new peptides responsible for the pathogenesis of metabolic disorders and carbohydrate metabolism, adipokines are of great importance. Adipokines are substances of hormonal character, secreted by adipose tissue. Apart from the well-known adipokines, adropin and preptin are relatively newly discovered, hence their function is not fully understood. They are peptides not secreted by adipose tissue but their role in the metabolic regulations seems to be significant. Preptin is a 34-amino acid peptide, a derivative of proinsulin growth factor II (pro-IGF-II, secreted by pancreatic β cells, considered to be a physiological enhancer of insulin secretion. Additionally, preptin has a stimulating effect on osteoblasts, inducing their proliferation, differentiation and survival. Adropin is a 76-amino acid peptide, encoded by the energy homeostasis associated gene (Enho, mainly in liver and brain, and its expression is dependent on a diet. Adropin is believed to play an important role in metabolic homeostasis, fatty acids metabolism control, insulin resistance prevention, dyslipidemia, and impaired glucose tolerance. The results of studies conducted so far show that the diseases resulting from metabolic syndrome, such as obesity, type 2 diabetes mellitus, polycystic ovary syndrome, non-alcoholic fatty liver disease, or cardiovascular disease are accompanied by significant changes in the concentration of these peptides. It is also important to note that preptin has an anabolic effect on bone tissue, which might be preventive in osteoporosis.

  2. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes.

    Science.gov (United States)

    Flannick, Jason; Thorleifsson, Gudmar; Beer, Nicola L; Jacobs, Suzanne B R; Grarup, Niels; Burtt, Noël P; Mahajan, Anubha; Fuchsberger, Christian; Atzmon, Gil; Benediktsson, Rafn; Blangero, John; Bowden, Don W; Brandslund, Ivan; Brosnan, Julia; Burslem, Frank; Chambers, John; Cho, Yoon Shin; Christensen, Cramer; Douglas, Desirée A; Duggirala, Ravindranath; Dymek, Zachary; Farjoun, Yossi; Fennell, Timothy; Fontanillas, Pierre; Forsén, Tom; Gabriel, Stacey; Glaser, Benjamin; Gudbjartsson, Daniel F; Hanis, Craig; Hansen, Torben; Hreidarsson, Astradur B; Hveem, Kristian; Ingelsson, Erik; Isomaa, Bo; Johansson, Stefan; Jørgensen, Torben; Jørgensen, Marit Eika; Kathiresan, Sekar; Kong, Augustine; Kooner, Jaspal; Kravic, Jasmina; Laakso, Markku; Lee, Jong-Young; Lind, Lars; Lindgren, Cecilia M; Linneberg, Allan; Masson, Gisli; Meitinger, Thomas; Mohlke, Karen L; Molven, Anders; Morris, Andrew P; Potluri, Shobha; Rauramaa, Rainer; Ribel-Madsen, Rasmus; Richard, Ann-Marie; Rolph, Tim; Salomaa, Veikko; Segrè, Ayellet V; Skärstrand, Hanna; Steinthorsdottir, Valgerdur; Stringham, Heather M; Sulem, Patrick; Tai, E Shyong; Teo, Yik Ying; Teslovich, Tanya; Thorsteinsdottir, Unnur; Trimmer, Jeff K; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Vaziri-Sani, Fariba; Voight, Benjamin F; Wilson, James G; Boehnke, Michael; McCarthy, Mark I; Njølstad, Pål R; Pedersen, Oluf; Groop, Leif; Cox, David R; Stefansson, Kari; Altshuler, David

    2014-04-01

    Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ~150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10(-6)), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (-0.17 s.d., P = 4.6 × 10(-4)). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.

  3. Chloroplast-Derived Vaccine Antigens and Biopharmaceuticals: Expression, Folding, Assembly and Functionality

    Science.gov (United States)

    Chebolu, S.; Daniell, H.

    2009-01-01

    Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance, and multi-gene expression in a single transformation event. Oral delivery is facilitated by hyperexpression of vaccine antigens against cholera, tetanus, anthrax, plague, or canine parvovirus (4%–31% of total soluble protein, TSP) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato) as well as the availability of antibiotic free selectable markers or the ability to excise selectable marker genes. Hyperexpression of several therapeutic proteins, including human serum albumin (11.1% TSP), somatotropin (7% TSP), interferon-alpha (19% TSP), interferon-gamma (6% TSP), and antimicrobial peptide (21.5% TSP), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitates assembly of complex multisubunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLA cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Purification of human proinsulin has been achieved using novel purification strategies (inverse temperature transition property) that do not require expensive column chromatography techniques. Thus, transgenic chloroplasts are ideal bioreactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner. PMID:19401820

  4. Vildagliptin compared to glimepiride on post-prandial lipemia and on insulin resistance in type 2 diabetic patients.

    Science.gov (United States)

    Derosa, Giuseppe; Bonaventura, Aldo; Bianchi, Lucio; Romano, Davide; Fogari, Elena; D'Angelo, Angela; Maffioli, Pamela

    2014-07-01

    To evaluate the effects of vildagliptin compared to glimepiride on glycemic control, insulin resistance and post-prandial lipemia. 167 type 2 diabetic patients, not adequately controlled by metformin, were randomized to vildagliptin 50 mg twice a day or glimepiride 2 mg three times a day for 6 months, in a double blind, randomized clinical trial. We evaluated: body mass index (BMI), glycemic control, fasting plasma insulin (FPI), homeostasis model assessment insulin resistance index (HOMA-IR), fasting plasma proinsulin (FPPr), glucagon, lipid profile, resistin, retinol binding protein-4 (RBP-4), visfatin and vaspin. Furthermore, at the randomization and at the end of the study all patients underwent an euglycemic hyperinsulinemic clamp to evaluate M value and an oral fat load. Despite a similar decrease of glycated hemoglobin, there were an increase of body weight with glimepiride + metformin and a decrease with vildagliptin + metformin. Fasting plasma insulin increased with glimepiride + metformin, while it did not change with vildagliptin + metformin. Vildagliptin + metformin improved lipid profile. Regarding insulin sensitivity, vildagliptin + metformin increased M value. Resistin, RBP-4, vaspin and visfatin were decreased by vildagliptin + metformin, but in group to group comparison, only vaspin reduction resulted statistically significant. Vildagliptin + metformin reduced post-prandial lipemia and insulinemia compared to glimepiride + metformin. Vildagliptin, in addition to metformin, was more effective than glimepiride + metformin in reducing insulin resistance and post-prandial lipemia. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Insulin regulation of Na/K pump activity in rat hepatoma cells

    International Nuclear Information System (INIS)

    Gelehrter, T.D.; Shreve, P.D.; Dilworth, V.M.

    1984-01-01

    Insulin rapidly increases Na/K pump activity in HTC rat hepatoma cells in tissue culture, as measured by the ouabain-sensitive influx of the potassium analogue 86Rb+. Increased influx is observed within minutes and is maximal (70% above control) within 1-2 h. The effect appears to be mediated by the insulin receptors, as: the concentration dependence on insulin is identical to that for insulin induction of tyrosine aminotransferase and stimulation of 2-aminoisobutyric acid transport, proinsulin is 6% as potent as insulin, and the effect is blocked by anti-receptor antibodies. The early stimulation of potassium influx is not blocked by cycloheximide and is not associated with an increased number of pump sites as measured by 3 H-ouabain binding. The insulin effect is blocked by amiloride, which blocks sodium influx, and is mimicked by the sodium ionophore monensin, which increases sodium influx and intracellular accumulation. Insulin also rapidly increases the initial rate of 22 Na+ influx, suggesting that insulin may enhance Na/K pump activity, in part, by increasing intracellular sodium concentration. Incubation of HTC cells with insulin for 24 h causes complete unresponsiveness to the insulin induction of transaminase and stimulation of amino acid transport, a phenomenon mediated by postbinding mechanisms. In contrast, similar incubation with insulin does not cause unresponsiveness to the insulin stimulation of Na/K pump activity. Therefore, the site of regulation of responsiveness to insulin must be distal to, or separate from, those events causing stimulation of ion fluxes

  6. Position statement executive summary: guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus.

    Science.gov (United States)

    Sacks, David B; Arnold, Mark; Bakris, George L; Bruns, David E; Horvath, Andrea Rita; Kirkman, M Sue; Lernmark, Ake; Metzger, Boyd E; Nathan, David M

    2011-06-01

    Multiple laboratory tests are used in the diagnosis and management of patients with diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. An expert committee compiled evidence-based recommendations for the use of laboratory analysis in patients with diabetes. A new system was developed to grade the overall quality of the evidence and the strength of the recommendations. A draft of the guidelines was posted on the Internet, and the document was modified in response to comments. The guidelines were reviewed by the joint Evidence-Based Laboratory Medicine Committee of the AACC and the National Academy of Clinical Biochemistry and were accepted after revisions by the Professional Practice Committee and subsequent approval by the Executive Committee of the American Diabetes Association. In addition to the long-standing criteria based on measurement of venous plasma glucose, diabetes can be diagnosed by demonstrating increased hemoglobin A(1c) (HbA(1c)) concentrations in the blood. Monitoring of glycemic control is performed by the patients measuring their own plasma or blood glucose with meters and by laboratory analysis of HbA(1c). The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of autoantibodies, urine albumin, insulin, proinsulin, C-peptide, and other analytes are addressed. The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.

  7. Fibrinolytic dysfunction in insulin-resistant women with previous gestational diabetes.

    Science.gov (United States)

    Farhan, S; Winzer, C; Tura, A; Quehenberger, P; Bieglmaier, C; Wagner, O F; Huber, K; Waldhäusl, W; Pacini, G; Kautzky-Willer, A

    2006-05-01

    Women with a history of gestational diabetes (p-GDM) are at increased risk of developing type 2 diabetes mellitus (DM2) later in life, and therefore at increased risk for future cardiovascular disease. Three months after delivery we investigated the plasma levels of plasminogen activator inhibitor type 1 (PAI-1), tissue plasminogen activator (t-PA), fibrinogen and von Willebrand factor (vWF) in 74 women with p-GDM and 20 healthy females with normal glucose tolerance during and after pregnancy, as well as the relation of fibrinolytic parameters to insulin resistance and glycaemic control. All women underwent an oral (OGTT) as well as an intravenous glucose tolerance test (FSIGT). Mathematical model analysis disclosed that 50% (n=37 each) of the p-GDM subjects had normal (NIS) or impaired (IIS) insulin sensitivity. Parameters of interest were determined using commercially available test systems. Women with p-GDM and IIS had significantly increased body fat mass (BFM) (Pwomen with p-GDM and NIS and controls, whereas the waist to hip ratio (WHR) was similar in both p-GDM groups but was higher compared with the controls (Pwomen with p-GDM and IIS compared with women with p-GDM and NIS and the controls (Pwomen with IIS had higher PAI-1 levels than lean women with IIS (Pwomen with IIS (Pwomen with IIS independently of their glucose tolerance status (Pwomen with IIS and depends on plasma proinsulin and abdominal obesity. An increase of the PAI-1/SI ratio further characterizes obese insulin-resistant p-GDM women who may be at risk for diabetes and angiopathy.

  8. Insulin radioimmunoassay kit (125I) using polyethyleneglycol (PEG) and a double antibody separation method

    International Nuclear Information System (INIS)

    Borza, Virginia; Chariton, Delfina; Neacsu, Elena

    1997-01-01

    Insulin is a polypeptide hormone formed from proinsulin in the b-cells of the islets of Langerhans in the pancreas. It has a widespread effect on carbohydrate, lipid and protein metabolism. Diabetes mellitus is the result of an insulin deficiency brought about either by insufficient insulin secretion or by rapid insulin catabolism. The determination of the insulin level is important for differential etiologic diagnosis and subsequent therapy and prognosis. Insulin radioimmunoassay kit provides a sensitive, precise and specific assay for insulin concentration in serum. Standard and insulin in the patient sample compete with tracer for binding sites on an insulin antibody. The antigen-antibody combination, which forms during incubation time, will be separated from free insulin by different methods. The separation technique using the double antibody technique combined with Polyethyleneglycol (PEG) is presented. The results are compared with the separation method using PEG alone and with double antibody technique. Antiserum to insulin was produced in rats immunized with porcine insulin, while rabbits immunized with rat-g globulin were used as a source for the second antibody.The tested PEG was PEG 6000. The best results were obtained using the double antibody at a 1/50 dilution combined with 7.5 PEG solutions. The time for precipitating the antibody bound fraction by this technique was established to be 30 minutes. The results obtained using this method as separation technique for insulin - antibody complex were better than those obtained using the double antibody techniques or PEG as precipitating agent alone. (authors)

  9. L-cysteine reversibly inhibits glucose-induced biphasic insulin secretion and ATP production by inactivating PKM2.

    Science.gov (United States)

    Nakatsu, Daiki; Horiuchi, Yuta; Kano, Fumi; Noguchi, Yoshiyuki; Sugawara, Taichi; Takamoto, Iseki; Kubota, Naoto; Kadowaki, Takashi; Murata, Masayuki

    2015-03-10

    Increase in the concentration of plasma L-cysteine is closely associated with defective insulin secretion from pancreatic β-cells, which results in type 2 diabetes (T2D). In this study, we investigated the effects of prolonged L-cysteine treatment on glucose-stimulated insulin secretion (GSIS) from mouse insulinoma 6 (MIN6) cells and from mouse pancreatic islets, and found that the treatment reversibly inhibited glucose-induced ATP production and resulting GSIS without affecting proinsulin and insulin synthesis. Comprehensive metabolic analyses using capillary electrophoresis time-of-flight mass spectrometry showed that prolonged L-cysteine treatment decreased the levels of pyruvate and its downstream metabolites. In addition, methyl pyruvate, a membrane-permeable form of pyruvate, rescued L-cysteine-induced inhibition of GSIS. Based on these results, we found that both in vitro and in MIN6 cells, L-cysteine specifically inhibited the activity of pyruvate kinase muscle isoform 2 (PKM2), an isoform of pyruvate kinases that catalyze the conversion of phosphoenolpyruvate to pyruvate. L-cysteine also induced PKM2 subunit dissociation (tetramers to dimers/monomers) in cells, which resulted in impaired glucose-induced ATP production for GSIS. DASA-10 (NCGC00181061, a substituted N,N'-diarylsulfonamide), a specific activator for PKM2, restored the tetramer formation and the activity of PKM2, glucose-induced ATP production, and biphasic insulin secretion in L-cysteine-treated cells. Collectively, our results demonstrate that impaired insulin secretion due to exposure to L-cysteine resulted from its direct binding and inactivation of PKM2 and suggest that PKM2 is a potential therapeutic target for T2D.

  10. Somatomedins.

    Science.gov (United States)

    Stuart, M C; Lazarus, L

    1975-06-28

    An intact pituitary gland capable of secreting growth hormone has long been considered the prime requirement for the achievement of skeletal growth potential in man. Recent studies have revealed that the growth-promoting action of growth hormone is an in-vivo phenomenon which cannot be mimicked by the addition of the hormone to skeletal tissue in vitro. The humoral agent responsible for skeletal growth has now been identified as somatomedin, a peptide produced in the liver under the stimulus of pituitary growth hormone. Serum levels of somatomedin are measured in a bioassay system by monitoring the stimulation of uptake of labelled sulphate by cartilage. Low levels of somatomedin activity are detected in the serum of children with growth hormone deficiency and short stature; the levels are high in acromegalics and low in patients with cirrhosis of the liver or chronic renal failure. Undernourished children also have low levels despite reaised serum levels of growth hormone; this suggests the presence of an inhibitor which lowers the growth-promoting activity of the somatomedin molecule. Adequate nutrition in these children results in the restoration of serum somatomedin levels to normal. Attempts to isolate and purify somatomedin have led to the identification of a group of substances sharing similar actions on skeletal tissue. Insulin has also been demonstrated to share some of these growth-promoting activities but varies in its organ specificity. Nerve growth factor, epidermal growth factor and proinsulin are other molecules which form a large group of growth promoting peptides which may all be related to the somatomedins.

  11. Glucagon-like peptide-1 counteracts the detrimental effects of Advanced Glycation End-Products in the pancreatic beta cell line HIT-T 15

    International Nuclear Information System (INIS)

    Puddu, A.; Storace, D.; Durante, A.; Odetti, P.; Viviani, G.L.

    2010-01-01

    Research highlights: → GLP-1 prevents AGEs-induced cell death. → GLP-1 prevents AGEs-induced oxidative stress. → GLP-1 ameliorated AGEs-induced cell dysfunction. → GLP-1 attenuates AGEs-induced RAGE increment. → GLP-1 counteracts AGEs-induced pancreatic cell death and dysfunction. -- Abstract: Advanced Glycation End-Products (AGEs), a group of compounds resulting from the non-enzymatic reaction of reducing sugars with the free amino group of proteins, are implicated in diabetic complications. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T 15 to high concentrations of AGEs significantly decreases cell proliferation and insulin secretion, and affects transcription factors regulating insulin gene transcription. The glucagon-like peptide-1 (GLP-1) is an incretin hormone that increases proinsulin biosynthesis, stimulates insulin secretion, and improves pancreatic beta-cell viability. The aim of this work was to investigate the effects of GLP-1 on the function and viability of HIT-T 15 cells cultured with AGEs. HIT-T 15 cells were cultured for 5 days in presence of AGEs alone, or supplemented with 10 nmol/l GLP-1. Cell viability, insulin secretion, redox balance, and expression of the AGEs receptor (RAGE) were then determined. The results showed that GLP-1 protected beta cell against AGEs-induced cell death preventing both apoptosis and necrosis. Moreover, addition of GLP-1 to the AGEs culture medium restored the redox balance, improved the responsiveness to glucose, and attenuated AGEs-induced RAGE expression. These findings provide evidence that GLP-1 protects beta cells from the dangerous effects of AGEs.

  12. Identification and characterization of insulin receptors in basolateral membranes of dog intestinal mucosa

    International Nuclear Information System (INIS)

    Gingerich, R.L.; Gilbert, W.R.; Comens, P.G.; Gavin, J.R. III

    1987-01-01

    Little is known about hormonal regulation of substrate transport and metabolism in the mucosal lining of the small intestine. Because insulin regulates these functions in other tissues by binding to its receptor, we have investigated the presence of insulin receptors in canine small intestinal mucosa with basolateral membranes (BLM) and brush border membranes (BBM) prepared by sorbitol density centrifugation. A14-[ 125 I]iodoinsulin was used to study binding and structural characteristics of specific insulin receptors in BLM. Analysis of receptors in BLM identified binding sites with high affinity (Kd 88 pM) and low capacity (0.4 pmol/mg protein) as well as with low affinity (Kd 36 nM) and high capacity (4.7 pmol/mg protein). Binding was time, temperature, and pH dependent, and 125 I-labeled insulin dissociation was enhanced in the presence of unlabeled insulin. Cross-reactivity of these receptors to proinsulin, IGF-II, and IGF-I was 4, 1.8, and less than 1%, respectively. Covalent cross-linking of labeled insulin to BLM insulin receptors with disuccinimidyl suberate revealed a single 135,000-Mr band that was completely inhibited by unlabeled insulin. There was a 16-fold greater specific binding of insulin to BLM (39.0 +/- 2.4%) than to BBM (2.5 +/- 0.6%). These results demonstrate the presence of a highly specific receptor for insulin on the vascular, but not the luminal, surface of the small intestinal mucosa in dogs, and suggest that insulin may play an important role in the regulation of gastrointestinal physiology

  13. Composition and function of macroencapsulated human embryonic stem cell-derived implants: comparison with clinical human islet cell grafts.

    Science.gov (United States)

    Motté, Evi; Szepessy, Edit; Suenens, Krista; Stangé, Geert; Bomans, Myriam; Jacobs-Tulleneers-Thevissen, Daniel; Ling, Zhidong; Kroon, Evert; Pipeleers, Daniel

    2014-11-01

    β-Cells generated from large-scale sources can overcome current shortages in clinical islet cell grafts provided that they adequately respond to metabolic variations. Pancreatic (non)endocrine cells can develop from human embryonic stem (huES) cells following in vitro derivation to pancreatic endoderm (PE) that is subsequently implanted in immune-incompetent mice for further differentiation. Encapsulation of PE increases the proportion of endocrine cells in subcutaneous implants, with enrichment in β-cells when they are placed in TheraCyte-macrodevices and predominantly α-cells when they are alginate-microencapsulated. At posttransplant (PT) weeks 20-30, macroencapsulated huES implants presented higher glucose-responsive plasma C-peptide levels and a lower proinsulin-over-C-peptide ratio than human islet cell implants under the kidney capsule. Their ex vivo analysis showed the presence of single-hormone-positive α- and β-cells that exhibited rapid secretory responses to increasing and decreasing glucose concentrations, similar to isolated human islet cells. However, their insulin secretory amplitude was lower, which was attributed in part to a lower cellular hormone content; it was associated with a lower glucose-induced insulin biosynthesis, but not with lower glucagon-induced stimulation, which together is compatible with an immature functional state of the huES-derived β-cells at PT weeks 20-30. These data support the therapeutic potential of macroencapsulated huES implants but indicate the need for further functional analysis. Their comparison with clinical-grade human islet cell grafts sets references for future development and clinical translation. Copyright © 2014 the American Physiological Society.

  14. Circulating levels of perfluoroalkyl substances and prevalent diabetes in the elderly.

    Science.gov (United States)

    Lind, Lars; Zethelius, Björn; Salihovic, Samira; van Bavel, Bert; Lind, P Monica

    2014-03-01

    Several environmental contaminants, such as polychlorinated biphenyls, dioxins, bisphenol A and phthalates, have been linked to diabetes. We therefore investigated whether other kinds of contaminants, perfluoroalkyl substances (PFAS), also called perfluorinated compounds (PFCs), are also associated with diabetes. The Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study investigated 1,016 men and women aged 70 years. Seven PFAS were detected in almost all participant sera by ultra-high performance liquid chromatograph/tandem mass spectrometry. Diabetes was defined as use of hypoglycaemic agents or fasting glucose >7.0 mmol/l. 114 people had diabetes. In the linear analysis, no significant relationships were seen between the seven PFAS and prevalent diabetes. However, inclusion of the quadratic terms of the PFAS revealed a significant non-linear relationship between perfluorononanoic acid (PFNA) and diabetes, even after adjusting for multiple confounders (OR 1.96, 95% CI 1.19, 3.22, p = 0.008 for the linear term and OR 1.25, 95% CI 1.08, 1.44, p = 0.002 for the quadratic term). Perfluorooctanoic acid (PFOA) also showed such a relationship (p = 0.01). PFOA was related to the proinsulin/insulin ratio (a marker of insulin secretion), but none of the PFAS was related to the HOMA-IR (a marker of insulin resistance) following adjustment for multiple confounders. PFNA was related to prevalent diabetes in a non-monotonic fashion in this cross-sectional study, supporting the view that this perfluoroalkyl substance might influence glucose metabolism in humans at the level of exposure seen in the general elderly population.

  15. Relation of circulating concentrations of chemokine receptor CCR5 ligands to C-peptide, proinsulin and HbA1c and disease progression in type 1 diabetes

    DEFF Research Database (Denmark)

    Pfleger, C.; Kaas, A.; Hansen, L.

    2008-01-01

    Th1 related chemokines CCL3 and CCL5 and Th2 related CCL4 as ligands of the receptor CCR5 contribute to disease development in animal models of type 1 diabetes. In humans, no data are available addressing the role of these chemokines regarding disease progression and remission. We investigated...... longitudinally circulating concentrations of CCR5 ligands of 256 newly diagnosed patients with type 1 diabetes. CCR5 ligands were differentially associated with beta-cell function and clinical remission. CCL5 was decreased in remitters and positively associated with HbA1c suggestive of a Th1 associated...... of CCR5 by therapeutic agents such as maraviroc may provide a new therapeutic target to ameliorate disease progression in type 1 diabetes. (C) 2008 Elsevier Inc. All rights reserved Udgivelsesdato: 2008/7...

  16. Relation of circulating concentrations of chemokine receptor CCR5 ligands to C-peptide, proinsulin and HbA1c and disease progression in type 1 diabetes

    DEFF Research Database (Denmark)

    Pfleger, C; Kaas, A; Hansen, L

    2008-01-01

    Th1 related chemokines CCL3 and CCL5 and Th2 related CCL4 as ligands of the receptor CCR5 contribute to disease development in animal models of type 1 diabetes. In humans, no data are available addressing the role of these chemokines regarding disease progression and remission. We investigated lo...

  17. Adult-onset hyperinsulinaemic hypoglycaemia in clinical practice: diagnosis, aetiology and management.

    Science.gov (United States)

    Challis, Benjamin G; Powlson, Andrew S; Casey, Ruth T; Pearson, Carla; Lam, Brian Y; Ma, Marcella; Pitfield, Deborah; Yeo, Giles S H; Godfrey, Edmund; Cheow, Heok K; Chatterjee, V Krishna; Carroll, Nicholas R; Shaw, Ashley; Buscombe, John R; Simpson, Helen L

    2017-10-01

    In adults with hyperinsulinaemic hypoglycaemia (HH), in particular those with insulinoma, the optimal diagnostic and management strategies remain uncertain. Here, we sought to characterise the biochemical and radiological assessment, and clinical management of adults with HH at a tertiary centre over a thirteen-year period. Clinical, biochemical, radiological and histological data were reviewed from all confirmed cases of adult-onset hyperinsulinaemic hypoglycaemia at our centre between 2003 and 2016. In a subset of patients with stage I insulinoma, whole-exome sequencing of tumour DNA was performed. Twenty-nine patients were identified (27 insulinoma, including 6 subjects with metastatic disease; 1 pro-insulin/GLP-1 co-secreting tumour; 1 activating glucokinase mutation). In all cases, hypoglycaemia (glucose ≤2.2 mmol/L) was achieved within 48 h of a supervised fast. At fast termination, subjects with stage IV insulinoma had significantly higher insulin, C-peptide and pro-insulin compared to those with insulinoma staged I-IIIB. Preoperative localisation of insulinoma was most successfully achieved with EUS. In two patients with inoperable, metastatic insulinoma, peptide receptor radionuclide therapy (PRRT) with 177 Lu-DOTATATE rapidly restored euglycaemia and lowered fasting insulin. Finally, in a subset of stage I insulinoma, whole-exome sequencing of tumour DNA identified the pathogenic Ying Yang-1 ( YY1 ) somatic mutation (c.C1115G/p.T372R) in one tumour, with all tumours exhibiting a low somatic mutation burden. Our study highlights, in particular, the utility of the 48-h fast in the diagnosis of insulinoma, EUS for tumour localisation and the value of PRRT therapy in the treatment of metastatic disease. © 2017 The authors.

  18. I-123-insulin: A new marker for hepatoma

    International Nuclear Information System (INIS)

    Sodoyez, J.C.; Goffaux, F.S.; Fallais, C.; Bourgeois, P.

    1984-01-01

    Previous studies have demonstrated that carrier-free I-123-Tyr Al4 insulin was taken up by the liver (by a saturable mechanism) and by the kidneys (by a non saturable mechanism). Autoradiographs of rat liver after injection of I-125-insulin showed that binding specifically occurred at the plasma membrane of the hepatocytes. I-123-Insulin binding to the hepatocyte plasma membrane appeared mediated by specific receptors. Indeed it was blocked by antibodies to the insulin receptors and by an excess of native insulin. Futhermore insulin derivatives with low biological potency (proinsulin and desoctapeptide insulin) did not inhibit I-123-insulin binding to the hepatocytes. I-123-Insulin (1.3 mCi) was I.V. injected into a patient in whom the right liver lobe was normal (normal uptake of Tc-99m-colloid sulfur) but the left liver lobe was occupied by a voluminous hepatoma (no uptake of Tc-99m-colloid sulfur). Liver blood supply was also studied by Tc-99m-pyrophosphate-labeled red cells. Computer analysis of the data revealed that compared to the normal liver lobe, binding of I-123-insulin to the hepatoma was more precocious (vascularization through the hepatic artery and not the portal vein), more intense and more prolonged (half-lives were 6 min in the normal liver and 14 min in the hepatoma). These results are consistent with characteristics of hepatoma cells in culture in which high insulin binding capacity contrasts with a markedly decreased insulin degrading activity. It is concluded that I-123-insulin may be used as a specific marker of hepatoma in man

  19. Glucometabolic hormones and cardiovascular risk markers in antipsychotic-treated patients.

    Science.gov (United States)

    Ebdrup, Bjørn H; Knop, Filip K; Madsen, Anna; Mortensen, Henrik B; Søgaard, Birgitte; Holst, Jens J; Szecsi, Pal B; Lublin, Henrik

    2014-09-01

    Treatment with antipsychotic drugs is widely associated with metabolic side effects such as weight gain and disturbed glucose metabolism, but the pathophysiologic mechanisms are unclear. Fifty nondiabetic (fasting plasma glucose ≤ 7.0 mmol/L), antipsychotic-treated male patients (ICD-10 diagnosis code F20, F21, F22, F25, F28, or F60; mean ± SD age = 33.0 ± 6.7 years; body mass index [BMI; kg/m²] = 26.0 ± 4.7; waist circumference = 95.9 ± 13.3 cm; glycated hemoglobin A1c [HbA1c] = 5.7% ± 0.3%) and 93 age- and waist circumference-matched healthy male controls (age = 33 ± 7.3 years; BMI = 26.1 ± 3.9; waist circumference = 94.6 ± 11.9 cm; HbA1c = 5.7% ± 0.3%) participated in this cross-sectional study. Blood was sampled in the fasting state and 90 minutes after ingestion of a standardized liquid meal (2,268 kJ). The primary outcomes were glucometabolic hormones and cardiovascular risk markers. Data were collected between March 2008 and February 2010. Compared to healthy controls, patients were characterized by elevated fasting levels of proinsulin, C-peptide, and glucose-dependent insulinotropic polypeptide (GIP) (P risk profile. The appetite-regulating hormones GLP-1 and ghrelin appear not to be influenced by antipsychotic treatment. Our findings provide new clinical insight into the pathophysiology associated with metabolic side effects of antipsychotic treatment and put emphasis on the importance of implementing metabolic screening into psychiatric practice. ClinicalTrials.gov identifier NCT00627757. © Copyright 2014 Physicians Postgraduate Press, Inc.

  20. Obesity and Cardiovascular Risk: Variations in Visfatin Gene Can Modify the Obesity Associated Cardiovascular Risk. Results from the Segovia Population Based-Study. Spain.

    Directory of Open Access Journals (Sweden)

    María Teresa Martínez Larrad

    Full Text Available Our aim was to investigate if genetic variations in the visfatin gene (SNPs rs7789066/ rs11977021/rs4730153 could modify the cardiovascular-risk (CV-risk despite the metabolic phenotype (obesity and glucose tolerance. In addition, we investigated the relationship between insulin sensitivity and variations in visfatin gene.A population-based study in rural and urban areas of the Province of Segovia, Spain, was carried out in the period of 2001-2003 years. A total of 587 individuals were included, 25.4% subjects were defined as obese (BMI ≥30 Kg/m2.Plasma visfatin levels were significantly higher in obese subjects with DM2 than in other categories of glucose tolerance. The genotype AA of the rs4730153 SNP was significantly associated with fasting glucose, fasting insulin and HOMA-IR (Homeostasis model assessment-insulin resistance after adjustment for gender, age, BMI and waist circumference. The obese individuals carrying the CC genotype of the rs11977021 SNP showed higher circulating levels of fasting proinsulin after adjustment for the same variables. The genotype AA of the rs4730153 SNP seems to be protective from CV-risk either estimated by Framingham or SCORE charts in general population; and in obese and non-obese individuals. No associations with CV-risk were observed for other studied SNPs (rs11977021/rs7789066.In summary, this is the first study which concludes that the genotype AA of the rs4730153 SNP appear to protect against CV-risk in obese and non-obese individuals, estimated by Framingham and SCORE charts. Our results confirm that the different polymorphisms in the visfatin gene might be influencing the glucose homeostasis in obese individuals.

  1. Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus

    Science.gov (United States)

    Arnold, Mark; Bakris, George L.; Bruns, David E.; Horvath, Andrea Rita; Kirkman, M. Sue; Lernmark, Ake; Metzger, Boyd E.; Nathan, David M.

    2011-01-01

    BACKGROUND Multiple laboratory tests are used to diagnose and manage patients with diabetes mellitus. The quality of the scientific evidence supporting the use of these tests varies substantially. APPROACH An expert committee compiled evidence-based recommendations for the use of laboratory testing for patients with diabetes. A new system was developed to grade the overall quality of the evidence and the strength of the recommendations. Draft guidelines were posted on the Internet and presented at the 2007 Arnold O. Beckman Conference. The document was modified in response to oral and written comments, and a revised draft was posted in 2010 and again modified in response to written comments. The National Academy of Clinical Biochemistry and the Evidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry jointly reviewed the guidelines, which were accepted after revisions by the Professional Practice Committee and subsequently approved by the Executive Committee of the American Diabetes Association. CONTENT In addition to long-standing criteria based on measurement of plasma glucose, diabetes can be diagnosed by demonstrating increased blood hemoglobin A1c (HbA1c) concentrations. Monitoring of glycemic control is performed by self-monitoring of plasma or blood glucose with meters and by laboratory analysis of HbA1c. The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of autoantibodies, urine albumin, insulin, proinsulin, C-peptide, and other analytes are addressed. SUMMARY The guidelines provide specific recommendations that are based on published data or derived from expert consensus. Several analytes have minimal clinical value at present, and their measurement is not recommended. PMID:21617108

  2. Metformin, but not glimepiride, improves carotid artery diameter and blood flow in patients with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Helena Atroch Machado

    2012-07-01

    Full Text Available OBJECTIVE: To compare the effects of glimepiride and metformin on vascular reactivity, hemostatic factors and glucose and lipid profiles in patients with type 2 diabetes. METHODS: A prospective study was performed in 16 uncontrolled patients with diabetes previously treated with dietary intervention. The participants were randomized into metformin or glimepiride therapy groups. After four months, the patients were crossed over with no washout period to the alternative treatment for an additional four-month period on similar dosage schedules. The following variables were assessed before and after four months of each treatment: 1 fasting glycemia, insulin, catecholamines, lipid profiles and HbA1 levels; 2 t-PA and PAI-1 (antigen and activity, platelet aggregation and fibrinogen and plasminogen levels; and 3 the flow indices of the carotid and brachial arteries. In addition, at the end of each period, a 12-hour metabolic profile was obtained after fasting and every 2 hours thereafter. RESULTS: Both therapies resulted in similar decreases in fasting glucose, triglyceride and norepinephrine levels, and they increased the fibrinolytic factor plasminogen but decreased t-PA activity. Metformin caused lower insulin and pro-insulin levels and higher glucagon levels and increased systolic carotid diameter and blood flow. Neither metformin nor glimepiride affected endothelial-dependent or endothelial-independent vasodilation of the brachial artery. CONCLUSIONS: Glimepiride and metformin were effective in improving glucose and lipid profiles and norepinephrine levels. Metformin afforded more protection against macrovascular diabetes complications, increased systolic carotid artery diameter and total and systolic blood flow, and decreased insulin levels. As both therapies increased plasminogen levels but reduced t-PA activity, a coagulation process was likely still ongoing.

  3. Insulin receptors mediate growth effects in cultured fetal neurons. I. Rapid stimulation of protein synthesis

    International Nuclear Information System (INIS)

    Heidenreich, K.A.; Toledo, S.P.

    1989-01-01

    In this study we have examined the effects of insulin on protein synthesis in cultured fetal chick neurons. Protein synthesis was monitored by measuring the incorporation of [3H]leucine (3H-leu) into trichloroacetic acid (TCA)-precipitable protein. Upon addition of 3H-leu, there was a 5-min lag before radioactivity occurred in protein. During this period cell-associated radioactivity reached equilibrium and was totally recovered in the TCA-soluble fraction. After 5 min, the incorporation of 3H-leu into protein was linear for 2 h and was inhibited (98%) by the inclusion of 10 micrograms/ml cycloheximide. After 24 h of serum deprivation, insulin increased 3H-leu incorporation into protein by approximately 2-fold. The stimulation of protein synthesis by insulin was dose dependent (ED50 = 70 pM) and seen within 30 min. Proinsulin was approximately 10-fold less potent than insulin on a molar basis in stimulating neuronal protein synthesis. Insulin had no effect on the TCA-soluble fraction of 3H-leu at any time and did not influence the uptake of [3H]aminoisobutyric acid into neurons. The isotope ratio of 3H-leu/14C-leu in the leucyl tRNA pool was the same in control and insulin-treated neurons. Analysis of newly synthesized proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that insulin uniformly increased the incorporation of 14C-leu into all of the resolved neuronal proteins. We conclude from these data that (1) insulin rapidly stimulates overall protein synthesis in fetal neurons independent of amino acid uptake and aminoacyl tRNA precursor pools; (2) stimulation of protein synthesis is mediated by the brain subtype of insulin receptor; and (3) insulin is potentially an important in vivo growth factor for fetal central nervous system neurons

  4. Characterization of beta cell and incretin function in patients with MODY1 (HNF4A MODY) and MODY3 (HNF1A MODY) in a Swedish patient collection.

    Science.gov (United States)

    Ekholm, E; Shaat, N; Holst, J J

    2012-10-01

    The aim of this study was to evaluate the beta cell and incretin function in patients with HNF4A and HNF1A MODY during a test meal. Clinical characteristics and biochemical data (glucose, proinsulin, insulin, C-peptide, GLP-1 and GIP) during a test meal were compared between MODY patients from eight different families. BMI-matched T2D and healthy subjects were used as two separate control groups. The early phase of insulin secretion was attenuated in HNF4A, HNF1A MODY and T2D (AUC0-30 controls: 558.2 ± 101.2, HNF4A MODY: 93.8 ± 57.0, HNF1A MODY: 170.2 ± 64.5, T2D: 211.2 ± 65.3, P MODY compared to T2D and that tended to be so also in HNF1A MODY (HNF4A MODY: 3.7 ± 1.2, HNF1A MODY: 8.3 ± 3.8 vs. T2D: 26.6 ± 14.3). Patients with HNF4A MODY had similar total GLP-1 and GIP responses as controls (GLP-1 AUC: (control: 823.9 ± 703.8, T2D: 556.4 ± 698.2, HNF4A MODY: 1,257.0 ± 999.3, HNF1A MODY: 697.1 ± 818.4) but with a different secretion pattern. The AUC insulin during the test meal was strongly correlated with the GIP secretion (Correlation coefficient 1.0, P MODY showed an attenuated early phase of insulin secretion similar to T2Ds. AUC insulin during the test meal was strongly correlated with GIP secretion, whereas no such correlation was seen for insulin and GLP-1. Thus, GIP may be a more important factor for insulin secretion than GLP-1 in MODY patients.

  5. Further evidence that mutations in INS can be a rare cause of Maturity-Onset Diabetes of the Young (MODY

    Directory of Open Access Journals (Sweden)

    Pisinger Charlotta

    2010-03-01

    Full Text Available Abstract Background Insulin gene (INS mutations have recently been described as a common cause of permanent neonatal diabetes (PNDM and a rare cause of diabetes diagnosed in childhood or adulthood. Methods INS was sequenced in 116 maturity-onset diabetes of the young (MODYX patients (n = 48 Danish and n = 68 Czech, 83 patients with gestational diabetes mellitus (GDM, 34 type 1 diabetic patients screened negative for glutamic acid decarboxylase (GAD, and 96 glucose tolerant individuals. The control group was randomly selected from the population-based sampled Inter99 study. Results One novel heterozygous mutation c.17G>A, R6H, was identified in the pre-proinsulin gene (INS in a Danish MODYX family. The proband was diagnosed at 20 years of age with mild diabetes and treated with diet and oral hypoglycaemic agent. Two other family members who carried the INS R6H were diagnosed with diabetes when 51 years old and with GDM when 27 years old, respectively. A fourth mutation carrier had normal glucose tolerance when 20 years old. Two carriers of INS R6H were also examined twice with an oral glucose tolerance test (OGTT with 5 years interval. They both had a ~30% reduction in beta-cell function measured as insulinogenic index. In a Czech MODYX family a previously described R46Q mutation was found. The proband was diagnosed at 13 years of age and had been treated with insulin since onset of diabetes. Her mother and grandmother were diagnosed at 14 and 35 years of age, respectively, and were treated with oral hypoglycaemic agents and/or insulin. Conclusion Mutations in INS can be a rare cause of MODY and we conclude that screening for mutations in INS should be recommended in MODYX patients.

  6. The Role of Heterologous Chloroplast Sequence Elements in Transgene Integration and Expression1[W][OA

    Science.gov (United States)

    Ruhlman, Tracey; Verma, Dheeraj; Samson, Nalapalli; Daniell, Henry

    2010-01-01

    Heterologous regulatory elements and flanking sequences have been used in chloroplast transformation of several crop species, but their roles and mechanisms have not yet been investigated. Nucleotide sequence identity in the photosystem II protein D1 (psbA) upstream region is 59% across all taxa; similar variation was consistent across all genes and taxa examined. Secondary structure and predicted Gibbs free energy values of the psbA 5′ untranslated region (UTR) among different families reflected this variation. Therefore, chloroplast transformation vectors were made for tobacco (Nicotiana tabacum) and lettuce (Lactuca sativa), with endogenous (Nt-Nt, Ls-Ls) or heterologous (Nt-Ls, Ls-Nt) psbA promoter, 5′ UTR and 3′ UTR, regulating expression of the anthrax protective antigen (PA) or human proinsulin (Pins) fused with the cholera toxin B-subunit (CTB). Unique lettuce flanking sequences were completely eliminated during homologous recombination in the transplastomic tobacco genomes but not unique tobacco sequences. Nt-Ls or Ls-Nt transplastomic lines showed reduction of 80% PA and 97% CTB-Pins expression when compared with endogenous psbA regulatory elements, which accumulated up to 29.6% total soluble protein PA and 72.0% total leaf protein CTB-Pins, 2-fold higher than Rubisco. Transgene transcripts were reduced by 84% in Ls-Nt-CTB-Pins and by 72% in Nt-Ls-PA lines. Transcripts containing endogenous 5′ UTR were stabilized in nonpolysomal fractions. Stromal RNA-binding proteins were preferentially associated with endogenous psbA 5′ UTR. A rapid and reproducible regeneration system was developed for lettuce commercial cultivars by optimizing plant growth regulators. These findings underscore the need for sequencing complete crop chloroplast genomes, utilization of endogenous regulatory elements and flanking sequences, as well as optimization of plant growth regulators for efficient chloroplast transformation. PMID:20130101

  7. The role of heterologous chloroplast sequence elements in transgene integration and expression.

    Science.gov (United States)

    Ruhlman, Tracey; Verma, Dheeraj; Samson, Nalapalli; Daniell, Henry

    2010-04-01

    Heterologous regulatory elements and flanking sequences have been used in chloroplast transformation of several crop species, but their roles and mechanisms have not yet been investigated. Nucleotide sequence identity in the photosystem II protein D1 (psbA) upstream region is 59% across all taxa; similar variation was consistent across all genes and taxa examined. Secondary structure and predicted Gibbs free energy values of the psbA 5' untranslated region (UTR) among different families reflected this variation. Therefore, chloroplast transformation vectors were made for tobacco (Nicotiana tabacum) and lettuce (Lactuca sativa), with endogenous (Nt-Nt, Ls-Ls) or heterologous (Nt-Ls, Ls-Nt) psbA promoter, 5' UTR and 3' UTR, regulating expression of the anthrax protective antigen (PA) or human proinsulin (Pins) fused with the cholera toxin B-subunit (CTB). Unique lettuce flanking sequences were completely eliminated during homologous recombination in the transplastomic tobacco genomes but not unique tobacco sequences. Nt-Ls or Ls-Nt transplastomic lines showed reduction of 80% PA and 97% CTB-Pins expression when compared with endogenous psbA regulatory elements, which accumulated up to 29.6% total soluble protein PA and 72.0% total leaf protein CTB-Pins, 2-fold higher than Rubisco. Transgene transcripts were reduced by 84% in Ls-Nt-CTB-Pins and by 72% in Nt-Ls-PA lines. Transcripts containing endogenous 5' UTR were stabilized in nonpolysomal fractions. Stromal RNA-binding proteins were preferentially associated with endogenous psbA 5' UTR. A rapid and reproducible regeneration system was developed for lettuce commercial cultivars by optimizing plant growth regulators. These findings underscore the need for sequencing complete crop chloroplast genomes, utilization of endogenous regulatory elements and flanking sequences, as well as optimization of plant growth regulators for efficient chloroplast transformation.

  8. Effects of genetic variants previously associated with fasting glucose and insulin in the Diabetes Prevention Program.

    Directory of Open Access Journals (Sweden)

    Jose C Florez

    Full Text Available Common genetic variants have been recently associated with fasting glucose and insulin levels in white populations. Whether these associations replicate in pre-diabetes is not known. We extended these findings to the Diabetes Prevention Program, a clinical trial in which participants at high risk for diabetes were randomized to placebo, lifestyle modification or metformin for diabetes prevention. We genotyped previously reported polymorphisms (or their proxies in/near G6PC2, MTNR1B, GCK, DGKB, GCKR, ADCY5, MADD, CRY2, ADRA2A, FADS1, PROX1, SLC2A2, GLIS3, C2CD4B, IGF1, and IRS1 in 3,548 Diabetes Prevention Program participants. We analyzed variants for association with baseline glycemic traits, incident diabetes and their interaction with response to metformin or lifestyle intervention. We replicated associations with fasting glucose at MTNR1B (P<0.001, G6PC2 (P = 0.002 and GCKR (P = 0.001. We noted impaired β-cell function in carriers of glucose-raising alleles at MTNR1B (P<0.001, and an increase in the insulinogenic index for the glucose-raising allele at G6PC2 (P<0.001. The association of MTNR1B with fasting glucose and impaired β-cell function persisted at 1 year despite adjustment for the baseline trait, indicating a sustained deleterious effect at this locus. We also replicated the association of MADD with fasting proinsulin levels (P<0.001. We detected no significant impact of these variants on diabetes incidence or interaction with preventive interventions. The association of several polymorphisms with quantitative glycemic traits is replicated in a cohort of high-risk persons. These variants do not have a detectable impact on diabetes incidence or response to metformin or lifestyle modification in the Diabetes Prevention Program.

  9. Study on the relationship between blood glucose level and insulin resistance as pancreatic β-cell function in patients with type 2 diabetes mellitus (DM2)

    International Nuclear Information System (INIS)

    Tian Xiaoping; Huang Huijian; Xu Ning; Huang Haibo; Zhuang Huiqin; Su Cainu; Hao Zhiqiang; He Haoming

    2005-01-01

    Objective: To investigate the relationship between serum immuno-reactive peptide (IR-CP) and true insulin (TI), pro-insulin (PI), immuno-reactive insulin (IR-I) contents and to calculate the insulin resistance (Home-IR), β-cell function (Homa-β) from these data in DM2 patients with different levels of fasting blood sugar (FBG<8.8 and ≥8.8 mmol/L). Methods: Fasting and 2h post- prandial serum TI, PI (with ELISA), IR-I, IR-CP (with RIA) contents were measured in 73 patients with DM2 and Homa-IR, Homa-β were calculated with Homa-model from these data, The 73 DM2 patients were of two groups: Group A, FBG≥8.8 mmol/L, n=46; Group B, FBG<8.8 mmol/L, n=27. Results: The Homa-β calculated from either TI or IR-I was significantly different in Group A and Group B patients. Homa-IR calculated from IR-I was also significantly different in the two groups of patients; however, Homa-IR calculated from TI was about the same in the two groups. relationship between C peptide and TI, PI, IR-I was less obvious in Group A than that in Group B. Both fasting and 2h TI in Group B were significantly higher than those in Group A; the other parameters tested were not much different. Conclusion: The higher FBG levels developed in Group A patients were mostly due to deterioration of β-cell function rather than increase of insulin resistance, as Homa-IR calculated from TI was not much different in the two groups. Further study on the management of diabetes should lay more emphasis on the change of β-cell function. (authors)

  10. TriPer, an optical probe tuned to the endoplasmic reticulum tracks changes in luminal H2O2.

    Science.gov (United States)

    Melo, Eduardo Pinho; Lopes, Carlos; Gollwitzer, Peter; Lortz, Stephan; Lenzen, Sigurd; Mehmeti, Ilir; Kaminski, Clemens F; Ron, David; Avezov, Edward

    2017-03-27

    The fate of hydrogen peroxide (H 2 O 2 ) in the endoplasmic reticulum (ER) has been inferred indirectly from the activity of ER-localized thiol oxidases and peroxiredoxins, in vitro, and the consequences of their genetic manipulation, in vivo. Over the years hints have suggested that glutathione, puzzlingly abundant in the ER lumen, might have a role in reducing the heavy burden of H 2 O 2 produced by the luminal enzymatic machinery for disulfide bond formation. However, limitations in existing organelle-targeted H 2 O 2 probes have rendered them inert in the thiol-oxidizing ER, precluding experimental follow-up of glutathione's role in ER H 2 O 2 metabolism. Here we report on the development of TriPer, a vital optical probe sensitive to changes in the concentration of H 2 O 2 in the thiol-oxidizing environment of the ER. Consistent with the hypothesized contribution of oxidative protein folding to H 2 O 2 production, ER-localized TriPer detected an increase in the luminal H 2 O 2 signal upon induction of pro-insulin (a disulfide-bonded protein of pancreatic β-cells), which was attenuated by the ectopic expression of catalase in the ER lumen. Interfering with glutathione production in the cytosol by buthionine sulfoximine (BSO) or enhancing its localized destruction by expression of the glutathione-degrading enzyme ChaC1 in the lumen of the ER further enhanced the luminal H 2 O 2 signal and eroded β-cell viability. A tri-cysteine system with a single peroxidatic thiol enables H 2 O 2 detection in oxidizing milieux such as that of the ER. Tracking ER H 2 O 2 in live pancreatic β-cells points to a role for glutathione in H 2 O 2 turnover.

  11. Prediction of the effect on antihyperglycaemic action of sitagliptin by plasma active form glucagon-like peptide-1.

    Science.gov (United States)

    Kushiyama, Akifumi; Kikuchi, Takako; Tanaka, Kentaro; Tahara, Tazu; Takao, Toshiko; Onishi, Yukiko; Yoshida, Yoko; Kawazu, Shoji; Iwamoto, Yasuhiko

    2016-06-10

    To investigate whether active glucagon-like peptide-1 (GLP-1) is a prediction Factor of Effect of sitagliptin on patients with type 2 diabetes mellitus (GLP-1 FEST:UMIN000010645). Seventy-six patients with type 2 diabetes, who had insufficient glycemic control [Hemoglobin A1c (HbA1c) ≥ 7%] in spite of treatment with metformin and/or sulfonylurea, were included in the investigation. Patients were divided into three groups by tertiles of fasting plasma active GLP-1 level, before the administration of 50 mg sitagliptin. At baseline, body mass index, serum UA, insulin and HOMA-IR were higher in the high active GLP-1 group than in the other two groups. The high active GLP-1 group did not show any decline of HbA1c (7.6% ± 1.4% to 7.5% ± 1.5%), whereas the middle and low groups indicated significant decline of HbA1c (7.4 ± 0.7 to 6.8 ± 0.6 and 7.4 ± 1.2 to 6.9 ± 1.3, respectively) during six months. Only the low and middle groups showed a significant increment of active GLP-1, C-peptide level, a decreased log and proinsulin/insulin ratio after administration. In logistic analysis, the low or middle group is a significant explanatory variable for an HbA1c decrease of ≥ 0.5%, and its odds ratio is 4.5 (1.40-17.6) (P = 0.01) against the high active GLP-1 group. This remains independent when adjusted for HbA1c level before administration, patients' medical history, medications, insulin secretion and insulin resistance. Plasma fasting active GLP-1 is an independent predictive marker for the efficacy of dipeptidyl peptidase 4 inhibitor sitagliptin.

  12. Induction of mitosis in the cultured rabbit lens initiated by the addition of insulin to medium KEI-4

    Energy Technology Data Exchange (ETDEWEB)

    Reddan, J R; Unakar, N J; Harding, C V; Bagchi, M; Saldana, G

    1975-01-01

    The epithelium of lenses cultured in KEI-4, a completely defined medium formulated with specific reference to the biochemistry and physiology of the rabbit lens, exhibits a pattern of cell division similar to that noted for the organ in situ. Initial fluctuations in mitotic activity occurred in the area of the germinative zone during the first 24 hr of culture. Mitosis decreased at 1 hr, was extremely low at 3 hr and returned to values comparable for lens in vivo by 22 hr. The precipitous drop in mitosis noted at 3 hr is in part attributable to the isolation of the lens from adjoining tissue. The addition of insulin to KEI-4 triggers a parasynchronous burst of DNA synthesis throughout the central lens epithelium. The activation requires the intact hormone; neither proinsulin nor the A and/or B chains of insulin, nor glucagon nor zinc chloride can initiate mitosis. The gamma-globulin-rich fraction of rabbit serum can also stimulate mitosis. The addition of dibutyryl adenosine 3':5' cyclic monophosphate (DBeAMP) plus theophylline to KEI-4-insulin inhibits mitosis and prevents the cells from entering the synthetic phase of the cell cycle. Theophylline alone or DBeAMP alone brings about a 90 percent reduction in the insulin-induced mitotic responses. Lenses exposed to insulin show a marked increase in RNA synthesis and also exhibit an increased binding of tritiated actinomycin D at 1 and 3 hr of culture relative to KEI-4 controls. The hormone apparently activates the genome including those genes governing cell division. The system is amenable for long-term culture of the mammalian lens and since the constituents of the medium are known it should be possible to determine the factor(s) in the medium which, in conjunction with insulin, are needed for the induction of cell division.

  13. Prediction of Glucose Tolerance without an Oral Glucose Tolerance Test

    Directory of Open Access Journals (Sweden)

    Rohit Babbar

    2018-03-01

    Full Text Available IntroductionImpaired glucose tolerance (IGT is diagnosed by a standardized oral glucose tolerance test (OGTT. However, the OGTT is laborious, and when not performed, glucose tolerance cannot be determined from fasting samples retrospectively. We tested if glucose tolerance status is reasonably predictable from a combination of demographic, anthropometric, and laboratory data assessed at one time point in a fasting state.MethodsGiven a set of 22 variables selected upon clinical feasibility such as sex, age, height, weight, waist circumference, blood pressure, fasting glucose, HbA1c, hemoglobin, mean corpuscular volume, serum potassium, fasting levels of insulin, C-peptide, triglyceride, non-esterified fatty acids (NEFA, proinsulin, prolactin, cholesterol, low-density lipoprotein, HDL, uric acid, liver transaminases, and ferritin, we used supervised machine learning to estimate glucose tolerance status in 2,337 participants of the TUEF study who were recruited before 2012. We tested the performance of 10 different machine learning classifiers on data from 929 participants in the test set who were recruited after 2012. In addition, reproducibility of IGT was analyzed in 78 participants who had 2 repeated OGTTs within 1 year.ResultsThe most accurate prediction of IGT was reached with the recursive partitioning method (accuracy = 0.78. For all classifiers, mean accuracy was 0.73 ± 0.04. The most important model variable was fasting glucose in all models. Using mean variable importance across all models, fasting glucose was followed by NEFA, triglycerides, HbA1c, and C-peptide. The accuracy of predicting IGT from a previous OGTT was 0.77.ConclusionMachine learning methods yield moderate accuracy in predicting glucose tolerance from a wide set of clinical and laboratory variables. A substitution of OGTT does not currently seem to be feasible. An important constraint could be the limited reproducibility of glucose tolerance status during a

  14. Comparison of vildagliptin and glimepiride: effects on glycaemic control, fat tolerance and inflammatory markers in people with type 2 diabetes.

    Science.gov (United States)

    Derosa, G; Bonaventura, A; Bianchi, L; Romano, D; Fogari, E; D'Angelo, A; Maffioli, P

    2014-12-01

    To compare the effects of vildagliptin with those of glimepiride on glycaemic control, fat tolerance and inflammatory markers in people with Type 2 diabetes mellitus receiving metformin treatment. A total of 167 participants were randomized to vildagliptin 50 mg twice a day or glimepiride 2 mg three times a day, for 6 months. We evaluated the following variables: BMI; glycaemic control; fasting plasma insulin; homeostatic model assessment of insulin resistance index; fasting plasma proinsulin; glucagon; lipid profile; adiponectin; high-sensitivity C-reactive protein; interleukin-6; and tumour necrosis factor-α. A euglycaemic-hyperinsulinaemic clamp procedure and an oral fat load test were also performed. Despite a similar decrease in HbA1c levels (P = 0.009, and P = 0.008, respectively), body weight increased with glimepiride (P = 0.048 vs baseline) and decreased with vildagliptin (P = 0.041 vs baseline and vs glimepiride). Fasting plasma insulin and homeostatic model assessment of insulin resistance index were significantly lower with vildagliptin compared with glimepiride (P = 0.035 and 0.047). M value, an index of insulin sensitivity, increased with vildagliptin, both compared with baseline and with glimepiride (P = 0.028 and 0.039, respectively). Vildagliptin improved all post-oral fat load peaks of lipid profile compared with glimepiride. Adiponectin levels were higher (P = 0.035) and high-sensitivity C-reactive protein levels were lower (P = 0.038) with vildagliptin vs glimepiride. During the oral fat load test, interleukin-6, high-sensitivity C-reactive protein and tumour necrosis factor-α peaks were lower and adiponectin peak was higher in the vildagliptin group than in the glimepiride group. There was a higher dropout rate as a result of hypoglycaemia in the glimepiride group than in the vildagliptin group. Vildagliptin was more effective than glimepiride in reducing post-oral fat load peaks of lipid-trafficking adipocytokines and

  15. Combined lipidomic and proteomic analysis of isolated human islets exposed to palmitate reveals time-dependent changes in insulin secretion and lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Kirsten Roomp

    Full Text Available Studies on the pathophysiology of type 2 diabetes mellitus (T2DM have linked the accumulation of lipid metabolites to the development of beta-cell dysfunction and impaired insulin secretion. In most in vitro models of T2DM, rodent islets or beta-cell lines are used and typically focus is on specific cellular pathways or organs. Our aim was to, firstly, develop a combined lipidomics and proteomics approach for lipotoxicity in isolated human islets and, secondly, investigate if the approach could delineate novel and/ or confirm reported mechanisms of lipotoxicity. To this end isolated human pancreatic islets, exposed to chronically elevated palmitate concentrations for 0, 2 and 7 days, were functionally characterized and their levels of multiple targeted lipid and untargeted protein species determined. Glucose-stimulated insulin secretion from the islets increased on day 2 and decreased on day 7. At day 7 islet insulin content decreased and the proinsulin to insulin content ratio doubled. Amounts of cholesterol, stearic acid, C16 dihydroceramide and C24:1 sphingomyelin, obtained from the lipidomic screen, increased time-dependently in the palmitate-exposed islets. The proteomic screen identified matching changes in proteins involved in lipid biosynthesis indicating up-regulated cholesterol and lipid biosynthesis in the islets. Furthermore, proteins associated with immature secretory granules were decreased when palmitate exposure time was increased despite their high affinity for cholesterol. Proteins associated with mature secretory granules remained unchanged. Pathway analysis based on the protein and lipid expression profiles implicated autocrine effects of insulin in lipotoxicity. Taken together the study demonstrates that combining different omics approaches has potential in mapping of multiple simultaneous cellular events. However, it also shows that challenges exist for effectively combining lipidomics and proteomics in primary cells. Our

  16. Antigen Loading (e.g., Glutamic Acid Decarboxylase 65 of Tolerogenic DCs (tolDCs Reduces Their Capacity to Prevent Diabetes in the Non-Obese Diabetes (NOD-Severe Combined Immunodeficiency Model of Adoptive Cotransfer of Diabetes As Well As in NOD Mice

    Directory of Open Access Journals (Sweden)

    David P. Funda

    2018-02-01

    Full Text Available Tolerogenic DCs (tolDCs are being researched as a promising intervention strategy also in autoimmune diseases including type 1 diabetes (T1D. T1D is a T-cell-mediated, organ-specific disease with several well-defined and rather specific autoantigens, i.e., proinsulin, insulin, glutamic acid decarboxylase 65 (GAD65, that have been used in animal as well as human intervention trials in attempts to achieve a more efficient, specific immunotherapy. In this study, we have tested tolerogenic DCs for their effectiveness to prevent adoptive transfer of diabetes by diabetogenic splenocytes into non-obese diabetes (NOD-severe combined immunodeficiency (NOD-SCID recipients. While i.p. application of tolDCs prepared from bone marrow of prediabetic NOD mice by vitamin D2 and dexamethasone significantly reduced diabetes transfer into the NOD-SCID females, this effect was completely abolished when tolDCs were loaded with the mouse recombinant GAD65, but also with a control protein—ovalbumin (OVA. The effect was not dependent on the presence of serum in the tolDC culture. Similar results were observed in NOD mice. Removal of possible bystander antigen-presenting cells within the diabetogenic splenocytes by negative magnetic sorting of T cells did not alter this surprising effect. Tolerogenic DCs loaded with an immunodominant mouse GAD65 peptide also displayed diminished diabetes-preventive effect. Tolerogenic DCs were characterized by surface maturation markers (CD40, CD80, CD86, MHC II and the lipopolysaccharide stability test. Data from alloreactive T cell proliferation and cytokine induction assays (IFN-γ did not reveal the differences observed in the diabetes incidence. Migration of tolDCs, tolDCs-GAD65 and tolDCs-OVA to spleen, mesenteric- and pancreatic lymph nodes displayed similar, mucosal pattern with highest accumulation in pancreatic lymph nodes present up to 9 days after the i.p. application. These data document that mechanisms by which tol

  17. Functional high-intensity training improves pancreatic β-cell function in adults with type 2 diabetes.

    Science.gov (United States)

    Nieuwoudt, Stephan; Fealy, Ciarán E; Foucher, Julie A; Scelsi, Amanda R; Malin, Steven K; Pagadala, Mangesh; Rocco, Michael; Burguera, Bartolome; Kirwan, John P

    2017-09-01

    Type 2 diabetes (T2D) is characterized by reductions in β-cell function and insulin secretion on the background of elevated insulin resistance. Aerobic exercise has been shown to improve β-cell function, despite a subset of T2D patients displaying "exercise resistance." Further investigations into the effectiveness of alternate forms of exercise on β-cell function in the T2D patient population are needed. We examined the effect of a novel, 6-wk CrossFit functional high-intensity training (F-HIT) intervention on β-cell function in 12 sedentary adults with clinically diagnosed T2D (54 ± 2 yr, 166 ± 16 mg/dl fasting glucose). Supervised training was completed 3 days/wk, comprising functional movements performed at a high intensity in a variety of 10- to 20-min sessions. All subjects completed an oral glucose tolerance test and anthropometric measures at baseline and following the intervention. The mean disposition index, a validated measure of β-cell function, was significantly increased (PRE: 8.4 ± 3.1, POST: 11.5 ± 3.5, P = 0.02) after the intervention. Insulin processing inefficiency in the β-cell, expressed as the fasting proinsulin-to-insulin ratio, was also reduced (PRE: 2.40 ± 0.37, POST: 1.78 ± 0.30, P = 0.04). Increased β-cell function during the early-phase response to glucose correlated significantly with reductions in abdominal body fat ( R 2 = 0.56, P = 0.005) and fasting plasma alkaline phosphatase ( R 2 = 0.55, P = 0.006). Mean total body-fat percentage decreased significantly (Δ: -1.17 0.30%, P = 0.003), whereas lean body mass was preserved (Δ: +0.05 ± 0.68 kg, P = 0.94). We conclude that F-HIT is an effective exercise strategy for improving β-cell function in adults with T2D. Copyright © 2017 the American Physiological Society.

  18. Functional and clinical relevance of novel and known PCSK1 variants for childhood obesity and glucose metabolism

    Directory of Open Access Journals (Sweden)

    Dennis Löffler

    2017-03-01

    Full Text Available Objective: Variants in Proprotein Convertase Subtilisin/Kexin Type 1 (PCSK1 may be causative for obesity as suggested by monogenic cases and association studies. Here we assessed the functional relevance in experimental studies and the clinical relevance through detailed metabolic phenotyping of newly identified and known PCSK1 variants in children. Results: In 52 obese children selected for elevated proinsulin levels and/or impaired glucose tolerance, we found eight known variants and two novel heterozygous variants (c.1095 + 1G > A and p.S24C by sequencing the PCSK1 gene. Patients with the new variants presented with extreme obesity, impaired glucose tolerance, and PCOS. Functionally, c.1095 + 1G > A caused skipping of exon8 translation and a complete loss of enzymatic activity. The protein was retained within the endoplasmic reticulum (ER causing ER stress. The p.S24C variant had no functional effect on protein size, cell trafficking, or enzymatic activity. The known variants rs6230, rs35753085, and rs725522 in the 5′ end did not affect PCSK1 promoter activity.In clinical association studies in 1673 lean and obese children, we confirmed associations of rs6232 and rs6234 with BMI-SDS and of rs725522 with glucose stimulated insulin secretion and Matsuda index. We did not find the new variants in any other subjects. Conclusions: We identified and functionally characterized two rare novel PCSK1 variants of which c.1095 + 1G > A caused complete loss of protein function. In addition to confirming rs6232 and rs6234 in PCSK1 as polygenic risk variants for childhood obesity, we describe an association of rs725522 with insulin metabolism. Our results support the contribution of PCSK1 variants to obesity predisposition in children. Keywords: PCSK1, PC1/3, Obesity, Children, Prohormone convertase 1/3

  19. Plasma Concentrations of Per- and Polyfluoroalkyl Substances at Baseline and Associations with Glycemic Indicators and Diabetes Incidence among High-Risk Adults in the Diabetes Prevention Program Trial.

    Science.gov (United States)

    Cardenas, Andres; Gold, Diane R; Hauser, Russ; Kleinman, Ken P; Hivert, Marie-France; Calafat, Antonia M; Ye, Xiaoyun; Webster, Thomas F; Horton, Edward S; Oken, Emily

    2017-10-02

    Several per- and polyfluoroalkyl substances (PFAS) are ubiquitous anthropogenic pollutants almost universally detected in humans. Experimental evidence indicates that PFAS alter glucose metabolism and insulin secretion. However, epidemiological studies have yielded inconsistent results. We sought to examine associations between plasma PFAS concentrations, glycemic indicators, and diabetes incidence among high-risk adults. Within the Diabetes Prevention Program (DPP), a trial for the prevention of type 2 diabetes among high-risk individuals, we quantified baseline plasma concentrations of nine PFAS among 957 participants randomized to a lifestyle intervention or placebo. We evaluated adjusted associations for plasma PFAS concentrations with diabetes incidence and key glycemic indicators measured at baseline and annually over up to 4.6 y. Plasma PFAS concentrations were similar to those reported in the U.S. population in 1999-2000. At baseline, in cross-sectional analysis, a doubling in plasma perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) concentrations was associated with higher homeostatic model assessment of insulin resistance (HOMA-IR) [β PFOS =0.39; 95% confidence interval (CI): 0.13, 0.66; β PFOA =0.64; 95% CI: 0.34, 0.94], β-cell function (HOMA-β) (β PFOS =9.62; 95% CI: 1.55, 17.70; β PFOA =15.93; 95% CI: 6.78, 25.08), fasting proinsulin (β PFOS =1.37 pM; 95% CI: 0.50, 2.25; β PFOA =1.71 pM; 95% CI: 0.72, 2.71), and glycated hemoglobin (HbA 1c ) (β PFOS =0.03%; 95% CI: 0.002, 0.07; β PFOA =0.04%; 95% CI: 0.001, 0.07). There was no strong evidence of associations between plasma PFAS concentrations and diabetes incidence or prospective changes in glycemic indicators during the follow-up period. At baseline, several PFAS were cross-sectionally associated with small differences in markers of insulin secretion and β-cell function. However, there was limited evidence suggesting that PFAS concentrations are associated with

  20. Efficient and simple production of insulin-producing cells from embryonal carcinoma stem cells using mouse neonate pancreas extract, as a natural inducer.

    Directory of Open Access Journals (Sweden)

    Marzieh Ebrahimie

    Full Text Available An attractive approach to replace the destroyed insulin-producing cells (IPCs is the generation of functional β cells from stem cells. Embryonal carcinoma (EC stem cells are pluripotent cells which can differentiate into all cell types. The present study was carried out to establish a simple nonselective inductive culture system for generation of IPCs from P19 EC cells by 1-2 weeks old mouse pancreas extract (MPE. Since, mouse pancreatic islets undergo further remodeling and maturation for 2-3 weeks after birth, we hypothesized that the mouse neonatal MPE contains essential factors to induce in vitro differentiation of pancreatic lineages. Pluripotency of P19 cells were first confirmed by expression analysis of stem cell markers, Oct3/4, Sox-2 and Nanog. In order to induce differentiation, the cells were cultured in a medium supplemented by different concentrations of MPE (50, 100, 200 and 300 µg/ml. The results showed that P19 cells could differentiate into IPCs and form dithizone-positive cell clusters. The generated P19-derived IPCs were immunoreactive to proinsulin, insulin and insulin receptor beta. The expression of pancreatic β cell genes including, PDX-1, INS1 and INS2 were also confirmed. The peak response at the 100 µg/ml MPE used for investigation of EP300 and CREB1 gene expression. When stimulated with glucose, these cells synthesized and secreted insulin. Network analysis of the key transcription factors (PDX-1, EP300, CREB1 during the generation of IPCs resulted in introduction of novel regulatory candidates such as MIR17, and VEZF1 transcription factors, as well as MORN1, DKFZp761P0212, and WAC proteins. Altogether, we demonstrated the possibility of generating IPCs from undifferentiated EC cells, with the characteristics of pancreatic β cells. The derivation of pancreatic cells from EC cells which are ES cell siblings would provide a valuable experimental tool in study of pancreatic development and function as well as rapid

  1. Influence of dexamethasone and weight loss on the regulation of serum leptin levels in obese individuals

    Directory of Open Access Journals (Sweden)

    D.D.G. Lerario

    2001-04-01

    Full Text Available The adipocyte hormone leptin is thought to serve as a signal to the central nervous system reflecting the status of fat stores. Serum leptin levels and adipocyte leptin messenger RNA levels are clearly increased in obesity. Nevertheless, the factors regulating leptin production are not fully understood. The aim of this study was to determine the effects of in vivo administration of the synthetic glucocorticoid dexamethasone and weight loss on serum leptin levels in two independent protocols. Twenty-five obese subjects were studied (18 women and 7 men, mean age 26.6 ± 6 years, BMI 31.1 ± 2.5 kg/m², %fat 40.3 ± 8.3 and compared at baseline to 22 healthy individuals. Serum levels of leptin, insulin, proinsulin and glucose were assessed at baseline and after ingestion of dexamethasone, 4 mg per day (2 mg, twice daily for two consecutive days. To study the effects of weight loss on serum leptin, 17 of the obese subjects were submitted to a low-calorie dietary intervention trial for 8 weeks and again blood samples were collected. Serum leptin levels were significantly higher in the obese group compared to the control group and a high positive correlation between leptinemia and the magnitude of fat mass was found (r = 0.88, P<0.0001. After dexamethasone, there was a significant increase in serum leptin levels (22.9 ± 12.3 vs 51.4 ± 23.3 ng/ml, P<0.05. Weight loss (86.1 ± 15.1 vs 80.6 ± 14.2 kg, P<0.05 led to a reduction in leptin levels (25.13 ± 12.8 vs 15.9 ± 9.1 ng/ml, P<0.05. We conclude that serum leptin levels are primordially dependent on fat mass magnitude. Glucocorticoids at supraphysiologic levels are potent secretagogues of leptin in obese subjects and a mild fat mass reduction leads to a disproportionate decrease in serum leptin levels. This suggests that, in addition to the changes in fat mass, complex nutritional and hormonal interactions may also play an important role in the regulation of leptin levels.

  2. Abnormal islet sphingolipid metabolism in type 1 diabetes.

    Science.gov (United States)

    Holm, Laurits J; Krogvold, Lars; Hasselby, Jane P; Kaur, Simranjeet; Claessens, Laura A; Russell, Mark A; Mathews, Clayton E; Hanssen, Kristian F; Morgan, Noel G; Koeleman, Bobby P C; Roep, Bart O; Gerling, Ivan C; Pociot, Flemming; Dahl-Jørgensen, Knut; Buschard, Karsten

    2018-04-18

    Sphingolipids play important roles in beta cell physiology, by regulating proinsulin folding and insulin secretion and in controlling apoptosis, as studied in animal models and cell cultures. Here we investigate whether sphingolipid metabolism may contribute to the pathogenesis of human type 1 diabetes and whether increasing the levels of the sphingolipid sulfatide would prevent models of diabetes in NOD mice. We examined the amount and distribution of sulfatide in human pancreatic islets by immunohistochemistry, immunofluorescence and electron microscopy. Transcriptional analysis was used to evaluate expression of sphingolipid-related genes in isolated human islets. Genome-wide association studies (GWAS) and a T cell proliferation assay were used to identify type 1 diabetes related polymorphisms and test how these affect cellular islet autoimmunity. Finally, we treated NOD mice with fenofibrate, a known activator of sulfatide biosynthesis, to evaluate the effect on experimental autoimmune diabetes development. We found reduced amounts of sulfatide, 23% of the levels in control participants, in pancreatic islets of individuals with newly diagnosed type 1 diabetes, which were associated with reduced expression of enzymes involved in sphingolipid metabolism. Next, we discovered eight gene polymorphisms (ORMDL3, SPHK2, B4GALNT1, SLC1A5, GALC, PPARD, PPARG and B4GALT1) involved in sphingolipid metabolism that contribute to the genetic predisposition to type 1 diabetes. These gene polymorphisms correlated with the degree of cellular islet autoimmunity in a cohort of individuals with type 1 diabetes. Finally, using fenofibrate, which activates sulfatide biosynthesis, we completely prevented diabetes in NOD mice and even reversed the disease in half of otherwise diabetic animals. These results indicate that islet sphingolipid metabolism is abnormal in type 1 diabetes and suggest that modulation may represent a novel therapeutic approach. The RNA expression data is

  3. C-peptide increases Na,K-ATPase expression via PKC- and MAP kinase-dependent activation of transcription factor ZEB in human renal tubular cells.

    Directory of Open Access Journals (Sweden)

    Dana Galuska

    Full Text Available Replacement of proinsulin C-peptide in type 1 diabetes ameliorates nerve and kidney dysfunction, conditions which are associated with a decrease in Na,K-ATPase activity. We determined the molecular mechanism by which long term exposure to C-peptide stimulates Na,K-ATPase expression and activity in primary human renal tubular cells (HRTC in control and hyperglycemic conditions.HRTC were cultured from the outer cortex obtained from patients undergoing elective nephrectomy. Ouabain-sensitive rubidium ((86Rb(+ uptake and Na,K-ATPase activity were determined. Abundance of Na,K-ATPase was determined by Western blotting in intact cells or isolated basolateral membranes (BLM. DNA binding activity was determined by electrical mobility shift assay (EMSA. Culturing of HRTCs for 5 days with 1 nM, but not 10 nM of human C-peptide leads to increase in Na,K-ATPase α(1-subunit protein expression, accompanied with increase in (86Rb(+ uptake, both in normal- and hyperglycemic conditions. Na,K-ATPase α(1-subunit expression and Na,K-ATPase activity were reduced in BLM isolated from cells cultured in presence of high glucose. Exposure to1 nM, but not 10 nM of C-peptide increased PKCε phosphorylation as well as phosphorylation and abundance of nuclear ERK1/2 regardless of glucose concentration. Exposure to 1 nM of C-peptide increased DNA binding activity of transcription factor ZEB (AREB6, concomitant with Na,K-ATPase α(1-subunit mRNA expression. Effects of 1 nM C-peptide on Na,K-ATPase α(1-subunit expression and/or ZEB DNA binding activity in HRTC were abolished by incubation with PKC or MEK1/2 inhibitors and ZEB siRNA silencing.Despite activation of ERK1/2 and PKC by hyperglycemia, a distinct pool of PKCs and ERK1/2 is involved in regulation of Na,K-ATPase expression and activity by C-peptide. Most likely C-peptide stimulates sodium pump expression via activation of ZEB, a transcription factor that has not been previously implicated in C

  4. Association of cardiovascular complications with circulating levels of tribbles 3 human homolog and matrix metalloproteinases in Indian type 2 diabetic patients, with or without hypertension

    Directory of Open Access Journals (Sweden)

    Prashant Shirish Ratnaparkhi

    2018-01-01

    Full Text Available Aim and Objective: Matrix metalloproteinases (MMPs and Tribbles 3 (Trb3 human homologue have been reported to induce atherosclerosis. We wanted to evaluate the association of circulating levels of Trb3 human homologue and MMPs (MMP2 and MMP9, with possible cardiovascular complications in Indian type 2 diabetic patients (type 2 diabetes mellitus [T2DM], with or without hypertension (HT. Materials and Methods: Serum from 144 individuals, classified as follows: Group A1= (DM + HT; T2DM> 5 years + HT (n = 55; Group A2 = DM; T2DM <2 years, (n = 28; Group B1 = HT; (n = 31 and Group B2 = HC; (n = 30 age- and sex-matched healthy controls. Anthropometric measurements, biochemical profiles of sugar and lipids were established using auto analyser. MMP2, MMP9, Trb3, oxidised low-density lipoprotein cholesterol, and proinsulin were measured in the serum using ELISA. Results: Using Bonferroni correction, we found that MMP2 levels were increased in (DM + HT, when compared to individuals with DM and HT (P = 0.006 and 0.000. HT group had reduced levels of MMP2, as compared to HC, (P = 0.000. The Mann–Whitney U-test for MMP9 revealed that DM group had elevated levels of MMP9 compared to (DM + HT, HT and HC group, (P = 0.011, 0.000, and 0.001. (DM + HT had elevated levels of MMP9 when compared to HT group, (P = 0.012.. Levels of MMP9 in HT were lower than the HC group, although not significant. Levels of Trb3 were found to be elevated in (DM + HT when compared to DM, (P = 0.032. The levels of Trb3 were higher in the HT, when compared to HC group, although not statistically significant. Multiple linear regression model for Framingham Risk Score, weighted with post prandial blood sugar yielded R2 = 0.338; F = 7.602 (df = 9, P = 0.000. Trb3 (β = −0.179, P = 0.019; MMP2 (β =0.021, P = 0.787 and MMP9 (β = −0.03, P = 0.684. Conclusion: Trb3 is a useful marker for evaluating the association of cardiovascular risk in diabetic patients.

  5. Blockage of both the extrinsic and intrinsic pathways of diazinon-induced apoptosis in PaTu cells by magnesium oxide and selenium nanoparticles

    Directory of Open Access Journals (Sweden)

    Shiri M

    2016-11-01

    Full Text Available Mahdi Shiri,1,2,* Mona Navaei-Nigjeh,1,3,* Maryam Baeeri,1 Mahban Rahimifard,1 Hossein Mahboudi,4 Ahmad Reza Shahverdi,5 Abbas Kebriaeezadeh,1 Mohammad Abdollahi1,6,7 1Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, 2School of Medicine, Artesh University of Medical Sciences, 3Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; 4Department of Biotechnology, Faculty of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 5Department of Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, 6Toxicology Interest Group, USERN, 7Endocrinology & Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran *These authors contributed equally to this work Abstract: Diazinon (DZ is an organophosphorus insecticide that acts as an acetylcholinesterase inhibitor. It is important to note that it can induce oxidative stress, lipid peroxidation, diabetic disorders, and cytotoxicity. Magnesium oxide (MgO and selenium nanoparticles (Se NPs showed promising protection against oxidative stress, lipid peroxidation, cytotoxicity, and diabetic disorders. Therefore, this study was conducted to explore the possible protective mechanisms of MgO and Se NPs against DZ-induced cytotoxicity in PaTu cell line. Cytotoxicity of DZ, in the presence or absence of effective doses of MgO and Se NPs, was determined in human pancreatic cancer cell line (PaTu cells after 24 hours of exposure by using mitochondrial activity and mitochondrial membrane potential assays. Then, the insulin, proinsulin, and C-peptide release; caspase-3 and -9 activities; and total thiol molecule levels were assessed. Determination of cell viability, including apoptotic and necrotic cells, was assessed via acridine orange/ethidium bromide double

  6. The role of dipeptidyl peptidase 4 inhibitors in fat metabolism in patients with type 2 diabetes and obesity

    Directory of Open Access Journals (Sweden)

    Aleksander Sergeevich Ametov

    2015-07-01

    Full Text Available Objective. To evaluate the influence of combined therapy of sitagliptin and metformin on fat metabolism in patients with type 2 diabetes mellitus.Methods. The study included 82 patients (age, 55.3±9.1 years with obesity and lipid metabolism disorders. None of the patients had reached their target glycated haemoglobin levels after metformin and diet therapy. Patients in group 1 (n=42 received 1.5–2-g metformin daily before the study and were switched to a formulation of 100-mg sitagliptin and 2-g metformin once a day. Patients in group 2 (n=40 were on a diet therapy before inclusion and were started on 2-g metformin/day. The following were evaluated at baseline and after 6 months of therapy: fasting glucose levels, postprandial glucose levels, glycated haemoglobin, weight, body mass index, waist circumference and lipid profile; insulin, proinsulin, leptin and adiponectin levels; insulin resistance using the homeostatic model assessment (HOMA of β-cell function (HOMA-β and insulin resistance (HOMA-IR. In addition, magnetic resonance imaging was performed to assess the amount of visceral fat for the total cohort.Results. After 6 months, glycated haemoglobin decreased by 18.52% (p <0.001 in group 1 and by 8.17% (p <0.001 in group 2. Fasting plasma glucose and postprandial glucose levels in group 1 were reduced by 21% (p <0.001 and 26.35% (p <0.001, respectively; the corresponding reductions in group 2 were 1.45% (p >0.05 and 5.31% (p <0.05, respectively. HOMA-β increased by 33% in group 1 (p <0.001 and by 11% in group 2 (p >0.05. Adiponectin levels increased by 27.06% (p <0.001 in group 1 and by 7.16% in group 2 (p <0.001. Leptin levels were reduced by 30.47% (p <0.001 in group 1 and by 5.41% in group 2 (p <0.001. Magnetic resonance imaging showed a 7.52% reduction in visceral fat for group 1 (p <0.001 and a 1.76% reduction for group 2 (p <0.01. The comparison of subcutaneous fat dynamics did not show statistically significant differences

  7. Exercise Increases Insulin Sensitivity and Skeletal Muscle AMPK Expression in Systemic Lupus Erythematosus: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Fabiana B. Benatti

    2018-04-01

    Full Text Available Systemic lupus erythematosus (SLE patients may show increased insulin resistance (IR when compared with their healthy peers. Exercise training has been shown to improve insulin sensitivity in other insulin-resistant populations, but it has never been tested in SLE. Therefore, the aim of the present study was to assess the efficacy of a moderate-intensity exercise training program on insulin sensitivity and potential underlying mechanisms in SLE patients with mild/inactive disease. A 12-week, randomized controlled trial was conducted. Nineteen SLE patients were randomly assigned into two groups: trained (SLE-TR, n = 9 and non-trained (SLE-NT, n = 10. Before and after 12 weeks of the exercise training program, patients underwent a meal test (MT, from which surrogates of insulin sensitivity and beta-cell function were determined. Muscle biopsies were performed after the MT for the assessment of total and membrane GLUT4 and proteins related to insulin signaling [Akt and AMP-activated protein kinase (AMPK]. SLE-TR showed, when compared with SLE-NT, significant decreases in fasting insulin [−39 vs. +14%, p = 0.009, effect size (ES = −1.0] and in the insulin response to MT (−23 vs. +21%, p = 0.007, ES = −1.1, homeostasis model assessment IR (−30 vs. +15%, p = 0.005, ES = −1.1, a tendency toward decreased proinsulin response to MT (−19 vs. +6%, p = 0.07, ES = −0.9 and increased glucagon response to MT (+3 vs. −3%, p = 0.09, ES = 0.6, and significant increases in the Matsuda index (+66 vs. −31%, p = 0.004, ES = 0.9 and fasting glucagon (+4 vs. −8%, p = 0.03, ES = 0.7. No significant differences between SLT-TR and SLT-NT were observed in fasting glucose, glucose response to MT, and insulinogenic index (all p > 0.05. SLE-TR showed a significant increase in AMPK Thr 172 phosphorylation when compared to SLE-NT (+73 vs. −12%, p = 0.014, ES = 1.3, whereas no

  8. Frequency Of Pancreatic Beta-Cell Autoimmunity Markers In Patients With Autoimmune Thyroid Disease Frecuencia de marcadores de autoinmunidad beta pancreática en pacientes con enfermedad tiroidea autoinmune

    Directory of Open Access Journals (Sweden)

    María E. Primo

    2008-02-01

    Full Text Available A total of 305 ambulatory patients recruited at the Division of Endocrinology, Hospital de Clínicas, University of Buenos Aires, with autoimmune thyroid disease (AITD were studied to search for associations between autoimmune thyroid disease and presence of serum markers of autoimmune diabetes mellitus. Screening for markers of pancreatic beta-cell autoimmunity was performed by radioligand binding assays (RBA as follows: autoantibodies to glutamic acid decarboxylase (GADA and proinsulin (PAA were determined in all sera, whereas autoantibodies to protein tyrosine phosphatase (IA-2A and insulin (IAA were additionally measured in 200 sera randomly selected from the total collection. In addition, every GADA positive serum among the remaining 105 sera was systematically tested for the presence of IA-2A and IAA. In the cohort of 305 AITD patients 22 (7.2% were previously diagnosed as type 1, type 2 or insulin-requiring type 2 diabetics. Ten of these patients presented serum marker positivity specific for β-cell autoantigens and 12 were marker negative. On the other hand, considering the majority of non-diabetic AITD patients (n=283, β-cell marker positivity was detected in 17 individuals (6.0%. The prevalence of autoimmune diabetes markers was much higher in the studied population than in the general population utilized as a control group, and GADA was the most frequent marker.Se investigó la asociación entre enfermedad tiroidea autoinmune y la presencia de marcadores séricos de diabetes mellitus en 305 pacientes ambulatorios con enfermedad tiroidea autoinmune reclutados en la División Endocrinología. La búsqueda de marcadores de autoinmunidad contra las células beta pancreáticas se realizó por la técnica de unión de radioligandos (RBA como se detalla a continuación: se determinaron autoanticuerpos contra la decarboxilasa del ácido glutámico (GADA y proinsulina (PAA en todos los sueros, mientras que los anticuerpos contra la prote

  9. The relationship between the connecting peptide of recombined single chain insulin and its biological function

    Institute of Scientific and Technical Information of China (English)

    HUANG; Yiding; (

    2001-01-01

    [1]Straus, D. S., Growth-stimulatory of insulin in vitro and in vivo, Endocr. Rev., 1984, 5(2): 356-369.[2]Svenningsen, A. F., Kanje, M., Insulin and the insulin-like growth factors I and II are mitogenic to cultured rat sciatic nerve segments and stimulate [3H] thuymidine incorporation through their respective receptors, Glia, 1996, 18(1): 68-72.[3]Ogihara, S., Yamada, M., Saito, T. et al., Insulin potentiates mitogenic effect of epidermal growth factor on cultured guinea pig gastric mucous cells, Am. J. Physiol., 1996, 271(1 Pt 1): G104-121.[4]Steiner, D. F., Oyer, P. E., The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma, Proc. Nalt. Acad. Sci. USA, 1967, 57(2): 473-480.[5]King, G. L., Kahn, C. R., The growth-promoting effects of insulin, in Growth and Maturation Factors(ed. Guroff, G.), New York: John Wiley & Sons, 1984, 223-265.[6]Peavy, D. E., Brunner, M. R., Duckworth, W. C. et al., Receptor binding and biological potency of several split forms (conversion intermediates) of human proinsulin, Studies in cultured IM-9 lymphocytes and in vivo and in vitro in rats, J. Biol. Chem., 1985, 260: 13989-13994.[7]Derewenda, U., Derewenda, Z., Dodson, E. J. et al., X-ray analysis of the single chain B29-A1 peptide-linked insulin molecule. A completely inactive analogue, J. Mol. Biol., 1991, 220: 425-433.[8]Hua, Q. X., Shoelson, S. E., Kochoyan, M. et al., Receptor binding redefined by a structural switch in a mutant human insulin, Nature, 1991, 354: 238-241.[9]Hua, Q. X., Gozani, S. N., Chance, R. E. et al., Structure of a protein in a kinetic trap, Nat. Struc. Boil, 1995, 2: 129-138.[10]Kristensen, C., Andersen, A. S., Hach, M., A single-chain insulin-like growth factor I/insulin hybrid binds with high affinity to the insulin receptor, Biochem. J., 1995, 305: 981-986.[11]Humbel, R. E., Insulin-like growth factors I and II, Euro. J. Biochem., 1990, 190: 445-462.[12]Cooke, R. M

  10. Inflammation markers are associated with metabolic syndrome and ventricular arrhythmia in patients with coronary artery disease

    Directory of Open Access Journals (Sweden)

    Krzysztof Safranow

    2016-02-01

    that CRP levels and WBC count were strongly related to components of the insulin resistance syndrome, such as BMI, waist circumference, insulin sensitivity, fasting insulin and proinsulin [26]. Elevated WBC levels have been associated with elevated serum triglyceride and cholesterol levels, fasting glucose levels, and diastolic blood pressure [13]. Leukocytosis is also associated with several disorders that characterize the metabolic syndrome and with micro- and macrovascular complications in patients with diabetes [41,42,56]. The association of AMPD1 34T allele with higher CRP observed in multivariate analysis should be treated with extreme caution, since it was not observed in the univariate analysis and it lost significance when BMI, LDL or HDL cholesterol was excluded from the multivariate model. Lack of a univariate association between C34T genotype and CRP in patients with past myocardial infarction was reported previously [1]. The multivariate relation observed in our study is not consistent with potential anti-inflammatory action of higher adenosine concentrations in 34T carriers [16]. This phenomenon may be related to the association between metabolic syndrome and C34T polymorphism. In our previous study we found that the polymorphism is associated with a reduced frequency of obesity in CAD patients and of hyperglycemia and diabetes in both CAD and heart failure patients [47]. Taken together, these results suggest that intercorrelations between inflammation, metabolic syndrome and the common functional AMPD1 polymorphism need further research. Our study revealed a strong association of the inflammation markers, particularly IL-6 and CRP, with past severe ventricular arrhythmia episodes. The strength of the association was similar to that of LVEDV, which is a potent marker of structural heart damage, with a proven prognostic role for the risk of cardiovascular events [21], and these factors were independent of each other in the multivariate model. Many