WorldWideScience

Sample records for process flow diagram

  1. TEP process flow diagram

    Wilms, R Scott [Los Alamos National Laboratory; Carlson, Bryan [Los Alamos National Laboratory; Coons, James [Los Alamos National Laboratory; Kubic, William [Los Alamos National Laboratory

    2008-01-01

    This presentation describes the development of the proposed Process Flow Diagram (PFD) for the Tokamak Exhaust Processing System (TEP) of ITER. A brief review of design efforts leading up to the PFD is followed by a description of the hydrogen-like, air-like, and waterlike processes. Two new design values are described; the mostcommon and most-demanding design values. The proposed PFD is shown to meet specifications under the most-common and mostdemanding design values.

  2. TEP process flow diagram

    This presentation describes the development of the proposed Process Flow Diagram (PFD) for the Tokamak Exhaust Processing System (TEP) of ITER. A brief review of design efforts leading up to the PFD is followed by a description of the hydrogen-like, air-like, and waterlike processes. Two new design values are described; the mostcommon and most-demanding design values. The proposed PFD is shown to meet specifications under the most-common and mostdemanding design values.

  3. Fuel Retrieval System Process Flow Diagrams Mass Balance Calculations for K West Basin

    REED, A.V.

    2000-01-03

    This calculation justifies the numbers used for the material balance on the process flow diagrams for the KW Basin Fuel Retrieval Subproject. The purpose of these calculations is to develop the material balances that are documented in the Fuel Retrieval System (FRS) Process Flow Diagrams for future reference. The attached mass calculations were prepared in support of revising the fuel retrieval system process flow diagrams for the 105K West Basin. The calculations refer to diagram H-1-81164.

  4. Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB) Process Flow Diagram Mass Balance Calculations

    The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869

  5. Automation of process accountability flow diagrams at Los Alamos National Laboratory's Plutonium Facility

    Many industrial processes (including reprocessing activities; nuclear fuel fabrication; and material storage, measurement and transfer) make use of process flow diagrams. These flows can be used for material accountancy and for data analysis. At Los Alamos National Laboratory (LANL), the Technical Area (TA)-55 Plutonium Facility is home to various research and development activities involving the use of special nuclear material (SNM). A facility conducting research and development (R and D) activities using SNM must satisfy material accountability guidelines. All processes involving SNM or tritium processing, at LANL, require a process accountability flow diagram (PAFD). At LANL a technique was developed to generate PAFDs that can be coupled to a relational database for use in material accountancy. These techniques could also be used for propagation of variance, measurement control, and inventory difference analysis. The PAFD is a graphical representation of the material flow during a specific process. PAFDs are currently stored as PowerPoint files. In the PowerPoint format, the data captured by the PAFD are not easily accessible. Converting the PAFDs to an accessible electronic format is desirable for several reasons. Any program will be able to access the data contained in the PAFD. For the PAFD data to be useful in applications such as an expert system for data checking, SNM accountability, inventory difference evaluation, measurement control, and other kinds of analysis, it is necessary to interface directly with the information contained within the PAFD. The PAFDs can be approved and distributed electronically, eliminating the paper copies of the PAFDs and ensuring that material handlers have the current PAFDs. Modifications to the PAFDs are often global. Storing the data in an accessible format would eliminate the need to manually update each of the PAFDs when a global change has occurred. The goal was to determine a software package that would store the

  6. Business Process Flow Diagrams in Tissue Bank Informatics System Design, and Identification and Communication of Best Practices: The Pharmaceutical Industry Experience.

    McDonald, Sandra A; Velasco, Elizabeth; Ilasi, Nicholas T

    2010-12-01

    Pfizer, Inc.'s Tissue Bank, in conjunction with Pfizer's BioBank (biofluid repository), endeavored to create an overarching internal software package to cover all general functions of both research facilities, including sample receipt, reconciliation, processing, storage, and ordering. Business process flow diagrams were developed by the Tissue Bank and Informatics teams as a way of characterizing best practices both within the Bank and in its interactions with key internal and external stakeholders. Besides serving as a first step for the software development, such formalized process maps greatly assisted the identification and communication of best practices and the optimization of current procedures. The diagrams shared here could assist other biospecimen research repositories (both pharmaceutical and other settings) for comparative purposes or as a guide to successful informatics design. Therefore, it is recommended that biorepositories consider establishing formalized business process flow diagrams for their laboratories, to address these objectives of communication and strategy. PMID:23386924

  7. Business Process Flow Diagrams in Tissue Bank Informatics System Design, and Identification and Communication of Best Practices: The Pharmaceutical Industry Experience

    McDonald, Sandra A.; Velasco, Elizabeth; Ilasi, Nicholas T.

    2010-01-01

    Pfizer, Inc.'s Tissue Bank, in conjunction with Pfizer's BioBank (biofluid repository), endeavored to create an overarching internal software package to cover all general functions of both research facilities, including sample receipt, reconciliation, processing, storage, and ordering. Business process flow diagrams were developed by the Tissue Bank and Informatics teams as a way of characterizing best practices both within the Bank and in its interactions with key internal and external stake...

  8. Empirical Phase Diagram of Congested Traffic Flow

    Lee, H. Y.; Lee, H. -W.; Kim, D.

    1999-01-01

    We present an empirical phase diagram of the congested traffic flow measured on a highway section with one effective on-ramp. Through the analysis of local density-flow relations and global spatial structure of the congested region, four distinct congested traffic states are identified. These states appear at different levels of the upstream flux and the on-ramp flux, thereby generating a phase digram of the congested traffic flow. Observed traffic states are discussed in connection with rece...

  9. Phase diagram for inertial granular flows

    DeGiuli, E.; McElwaine, J. N.; Wyart, M.

    2016-07-01

    Flows of hard granular materials depend strongly on the interparticle friction coefficient μp and on the inertial number I , which characterizes proximity to the jamming transition where flow stops. Guided by numerical simulations, we derive the phase diagram of dense inertial flow of spherical particles, finding three regimes for 10-4≲I ≲10-1 : frictionless, frictional sliding, and rolling. These are distinguished by the dominant means of energy dissipation, changing from collisional to sliding friction, and back to collisional, as μp increases from zero at constant I . The three regimes differ in their kinetics and rheology; in particular, the velocity fluctuations and the stress ratio both display nonmonotonic behavior with μp, corresponding to transitions between the three regimes of flow. We rationalize the phase boundaries between these regimes, show that energy balance yields scaling relations between microscopic properties in each of them, and derive the strain scale at which particles lose memory of their velocity. For the frictional sliding regime most relevant experimentally, we find for I ≥10-2.5 that the growth of the macroscopic friction μ (I ) with I is induced by an increase of collisional dissipation. This implies in that range that μ (I ) -μ (0 ) ˜I1 -2 b , where b ≈0.2 is an exponent that characterizes both the dimensionless velocity fluctuations L ˜I-b and the density of sliding contacts χ ˜Ib .

  10. Semantic Specification and Verification of Data Flow Diagrams

    刘彤; 唐稚松

    1991-01-01

    Data Flow Diagram (DFD) has been widely used in Software Engineering as means of requirement analysis and system specification.However,one defect of DFD approach remains untackled:the lack of formal semantics has brought about a lot of problems.In this paper,we model Data Flow Diagram as networks of concurrent processes.With the use of temporal logic language XYZ/E,the formal basis of the semantic specification of DFD can be ensured,and the system properties such as safety and liveness can be easily characterized.The main part of this paper is devoted to the study of the hierarchical decomposition of semantic specification and its correctness.A verification methodology is proposed and several examples are analyzed.The implementation of the tools which can support the formal specification,verification and simulation of DFD are also briefly described.

  11. The Delunification Process and Minimal Diagrams

    Jablan, Slavik; Kauffman, Louis; Lopes, Pedro

    2014-01-01

    A link diagram is said to be lune-free if, when viewed as a 4-regular plane graph it does not have multiple edges between any pair of nodes. We prove that any colored link diagram is equivalent to a colored lune-free diagram with the same number of colors. Thus any colored link diagram with a minimum number of colors (known as a minimal diagram) is equivalent to a colored lune-free diagram with that same number of colors. We call the passage from a link diagram to an equivalent lune-free diag...

  12. Making Data Flow Diagrams Accessible for Visually Impaired Students Using Excel Tables

    Sauter, Vicki L.

    2015-01-01

    This paper addresses the use of Excel tables to convey information to blind students that would otherwise be presented using graphical tools, such as Data Flow Diagrams. These tables can supplement diagrams in the classroom when introducing their use to understand the scope of a system and its main sub-processes, on exams when answering questions…

  13. The fundamental diagram : a macroscopic traffic flow model.

    Botma, H.

    1976-01-01

    In models of traffic flow, the interactions between vehicles are of prime interest, and are based on characteristics of the drivers, road and vehicles. The fundamental diagram is a representation of a relationship on a macroscopic level in the steady state between the quantity of traffic and a chara

  14. AUTO-LAY: automatic layout generation for procedure flow diagrams

    Nuclear Power Plant Procedures can be seen from essentially two viewpoints: the process and the information management. From the first point of view, it is important to supply the knowledge apt to solve problems connected with the control of the process, from the second one the focus of attention is on the knowledge representation, its structure, elicitation and maintenance, formal quality assurance. These two aspects of procedure representation can be considered and solved separately. In particular, methodological, formal and management issues require long and tedious activities, that in most cases constitute a great barrier for procedures development and upgrade. To solve these problems, Ansaldo is developing DIAM, a wide integrated tool for procedure management to support in procedure writing, updating, usage and documentation. One of the most challenging features of DIAM is AUTO-LAY, a CASE sub-tool that, in a complete automatical way, structures parts or complete flow diagrams. This is a feature that is partially present in some other CASE products, that, anyway, do not allow complex graph handling and isomorphism between video and paper representation AUTO-LAY has the unique prerogative to draw graphs of any complexity, to section them in pages, and to automatically compose a document. This has been recognized in the literature as the most important second-generation CASE improvement. (author). 5 refs., 9 figs

  15. Data Flow Diagramming Skills Acquisition: Impact of Cooperative versus Individual Learning

    Powell, Anne; Bordoloi, Bijoy; Ryan, Sherry D.

    2007-01-01

    Information systems (IS) process modeling using the technique of Data Flow Diagramming (viz., Systems Analysis) can be defined as a complex task for IS designers. This study draws from the domains of educational psychology and organizational behavior in examining the training of novices in conceptual process modeling. Specifically, an experiment…

  16. Microsoft Visio 2013 business process diagramming and validation

    Parker, David

    2013-01-01

    Microsoft Visio 2013 Business Process Diagramming and Validation provides a comprehensive and practical tutorial including example code and demonstrations for creating validation rules, writing ShapeSheet formulae, and much more.If you are a Microsoft Visio 2013 Professional Edition power user or developer who wants to get to grips with both the essential features of Visio 2013 and the validation rules in this edition, then this book is for you. A working knowledge of Microsoft Visio and optionally .NET for the add-on code is required, though previous knowledge of business process diagramming

  17. Feynchois: System For Automating The Process Of Feynman Diagram Generation

    Choi, C

    2004-01-01

    We have developed a DTD (Document Type Definition) for an XML (Extensible Markup Language) document for describing Feynman rules of quantum field theoretical models—the document is called FeynPage. A FeynPage can be any XML document that conforms to the FeynPage DTD. A FeynPage can be understood by a human or a computer program that is aware of the FeynPage DTD. We have also developed a Feynman diagram generator, which has been named FeynChois. It provides a user with a full GUI (Graphical User Interface) environment. More importantly, FeynChois knows how to read FeynPage. When FeynChois is asked by a user to generate diagrams, it will first look up the rules in the FeynPage; then, it will generate diagrams according to the rules for any process specified by the user. If the Feynman rules in a FeynPage are modified, FeynChois will generate diagrams according to the modified rules. What FeynChois generates are actually Java™ objects that represent Feynman diagrams. These objects are graphi...

  18. The Effect of Diagrams on Online Reading Processes and Memory

    McCrudden, Matthew T.; Magliano, Joseph P.; Schraw, Gregory

    2011-01-01

    This work examined how adjunct displays influence college readers' moment-by-moment processing of text and the products of reading, using reading time (Experiments 1 & 2), and think-aloud methodologies (Experiment 3). Participants did or did not study a diagram before reading a text. Overall, the reading time data, think-aloud data, and recall…

  19. Andreas Acrivos Dissertation Prize Lecture: Stability of inviscid flows from bifurcation diagrams exploiting a variational argument

    Luzzatto-Fegiz, Paolo

    2011-11-01

    Steady fluid solutions play a special role in the dynamics of a flow: stable states may be realized in practice, while unstable ones may act as attractors. Unfortunately, determining stability is often a process far more laborious than finding steady states; indeed, even for simple vortex or wave flows, stability properties have often been the subject of debate. We consider here a stability idea originating with Lord Kelvin (1876), which involves using the second variation of the energy, δ2 E , to establish bounds on a perturbation. However, for numerically obtained flows, computing δ2 E explicitly is often not feasible. To circumvent this issue, Saffman & Szeto (1980) proposed an argument linking changes in δ2 E to turning points in a bifurcation diagram, for families of steady flows. Later work has shown that this argument is unreliable; the two key issues are associated with the absence of a formal turning-point theory, and with the inability to detect bifurcations (Dritschel 1995, and references therein). In this work, we build on ideas from bifurcation theory, and link turning points in a velocity-impulse diagram to changes in δ2 E ; in addition, this diagram delivers the direction of the change of δ2 E , thereby providing information as to whether stability is gained or lost. To detect hidden solution branches, we introduce to these fluid problems concepts from imperfection theory. The resulting approach, involving ``imperfect velocity-impulse'' diagrams, leads us to new and surprising results for a wide range of fundamental vortex and wave flows; we mention here the calculation of the first steady vortices without any symmetry, and the uncovering of the complete solution structure for vortex pairs. In addition, we find precise agreement with available results from linear stability analysis. Doctoral work advised by C.H.K. Williamson at Cornell University.

  20. Phase Stability Diagrams for High Temperature Corrosion Processes

    J. J. Ramos-Hernandez

    2013-01-01

    Full Text Available Corrosion phenomena of metals by fused salts depend on chemical composition of the melt and environmental conditions of the system. Detail knowledge of chemistry and thermodynamic of aggressive species formed during the corrosion process is essential for a better understanding of materials degradation exposed to high temperature. When there is a lack of kinetic data for the corrosion processes, an alternative to understand the thermodynamic behavior of chemical species is to utilize phase stability diagrams. Nowadays, there are several specialized software programs to calculate phase stability diagrams. These programs are based on thermodynamics of chemical reactions. Using a thermodynamic data base allows the calculation of different types of phase diagrams. However, sometimes it is difficult to have access to such data bases. In this work, an alternative way to calculate phase stability diagrams is presented. The work is exemplified in the Na-V-S-O and Al-Na-V-S-O systems. This system was chosen because vanadium salts is one of the more aggressive system for all engineering alloys, especially in those processes where fossil fuels are used.

  1. Improving The Decisional Process By Using UML Diagrams

    Udrica Mioara

    2012-06-01

    Full Text Available In the last years, the world has moved from predominantly industrial society to information society, governed by a new set of rules, which allows access to digital technologies, processing, storage and transmission of information. Organizations include in their decisional process Business Intelligence components, which help the decision-makers to establish the conditions of financial equilibrium, to highlight weaknesses and strengths, to make predictions.Particularly, Unified Modelling Language (UML, as a formal and standardized language, allows the control of the system’s complexity, shows different but complementary views of the organization and ensures independence towards the implementation language and the domain of application. This article aims to show the way UML diagrams are used as support in a decisional process for a hotel company. UML diagrams designed help decisionmakers to analysis and discover the causes, to design and simulation of possible scenarios, to implement and measuring the results.

  2. Fundamental Diagram of Traffic Flows on Urban Roads Local Versus Whole-Link Approaches

    Wagner, Peter; Brockfeld, Elmar; Gartner, Nathan; Sohr, Alexander

    2009-01-01

    Fundamental diagrams of traffic flow variables have been quite useful in determining freeway operations quality. However, they are usually not used for that purpose on urban roads. This work is an approach towards utilizing the fundamental diagram on urban roads, too. Based on a host of empirical as well as simulation work, the first steps towards a routine application of the fundamental diagram are sketched. In addition, two approaches are compared, one that uses a traditional fundamental di...

  3. Load flow analysis: Base cases, data, diagrams, and results

    Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P.

    1997-10-01

    This report describes how an electric utility system is modeled by using load flow techniques to establish a validated power flow case suitable for simulating and evaluating alternative system scenarios. Details of the load flow model are supported by additional technical and descriptive information intended to correlate modeled electrical system parameters with the corresponding physical equipment that makes up the system. Pictures and technical specifications of system equipment from the utility, public, or vendor are provided to support this association for many system components. The report summarizes the load flow model construction, simulation, and validation and describes the general capabilities of an information query system designed to access load flow parameters and other electrical system information.

  4. QUERY PROCESSING FOR PROBABILISTIC STATE DIAGRAMS DESCRIBING MULTIPLE ROBOT NAVIGATION IN AN INDOOR ENVIRONMENT

    Bogdan Czejdo

    2011-01-01

    Full Text Available This paper describes the syntax and semantics of multi-level state diagrams to support probabilistic behavior of cooperating robots. The techniques are presented to analyze these diagrams by querying combined robots behaviors. It is shown how to use state abstraction and transition abstraction to create, verify and process large probabilistic state diagrams.

  5. Query Processing for Probabilistic State Diagrams Describing Multiple Robot Navigation in an Indoor Environment

    Czejdo, Bogdan [ORNL; Bhattacharya, Sambit [North Carolina Fayetteville State University; Ferragut, Erik M [ORNL

    2012-01-01

    This paper describes the syntax and semantics of multi-level state diagrams to support probabilistic behavior of cooperating robots. The techniques are presented to analyze these diagrams by querying combined robots behaviors. It is shown how to use state abstraction and transition abstraction to create, verify and process large probabilistic state diagrams.

  6. Students’ Ability to Solve Process-diagram Problems in Secondary Biology Education

    M. Kragten; W. Admiraal; G. Rijlaarsdam

    2015-01-01

    Process diagrams are important tools in biology for explaining processes such as protein synthesis, compound cycles and the like. The aim of the present study was to measure the ability to solve process-diagram problems in biology and its relationship with prior knowledge, spatial ability and workin

  7. 18 CFR 260.8 - System flow diagrams: Format No. FERC 567.

    2010-04-01

    ...: Format No. FERC 567. 260.8 Section 260.8 Conservation of Power and Water Resources FEDERAL ENERGY...) § 260.8 System flow diagrams: Format No. FERC 567. (a) Each Major natural gas pipeline company, having a... takeoff point, (ii) the volumes delivered at each takeoff point on the day of maximum...

  8. Multivalued fundamental diagrams of traffic flow in the kinetic Fokker-Planck limit

    Visconti, Giuseppe; Puppo, Gabriella; Tosin, Andrea

    2016-01-01

    Starting from interaction rules based on two levels of stochasticity we study the influence of the microscopic dynamics on the macroscopic properties of vehicular flow. In particular, we study the qualitative structure of the resulting flux-density and speed-density diagrams for different choices of the desired speeds. We are able to recover multivalued diagrams as a result of the existence of a one-parameter family of stationary distributions, whose expression is analytically found by means of a Fokker-Planck approximation of the initial Boltzmann-type model.

  9. Using Sankey diagrams to map energy flow from primary fuel to end use

    Highlights: • Energy flows from both supply and demand sides shown through Sankey diagrams. • Energy flows from reserves to energy end uses for primary and secondary fuels shown. • Five main energy demand sectors in Alberta are analyzed. • In residential/commercial sectors, highest energy consumption is in space heating. • In the industrial sector, highest energy use is in the mining subsector. - Abstract: The energy sector is the largest contributor to gross domestic product (GDP), income, employment, and government revenue in both developing and developed nations. But the energy sector has a significant environmental footprint due to greenhouse gas (GHG) emissions. Efficient production, conversion, and use of energy resources are key factors for reducing the environmental footprint. Hence it is necessary to understand energy flows from both the supply and the demand sides. Most energy analyses focus on improving energy efficiency broadly without considering the aggregate energy flow. We developed Sankey diagrams that map energy flow for both the demand and supply sides for the province of Alberta, Canada. The diagrams will help policy/decision makers, researchers, and others to understand energy flow from reserves through to final energy end uses for primary and secondary fuels in the five main energy demand sectors in Alberta: residential, commercial, industrial, agricultural, and transportation. The Sankey diagrams created for this study show total energy consumption, useful energy, and energy intensities of various end-use devices. The Long-range Energy Alternatives Planning System (LEAP) model is used in this study. The model showed that Alberta’s total input energy in the five demand sectors was 189 PJ, 186 PJ, 828.5PJ, 398 PJ, and 50.83 PJ, respectively. On the supply side, the total energy input and output were found to be 644.84 PJ and 239 PJ, respectively. These results, along with the associated energy flows were depicted pictorially using

  10. On the effect of stochastic transition in the fundamental diagram of traffic flow

    Siqueira, Adriano Francisco; Wu, Chen; Qian, Wei-Liang

    2014-01-01

    In this work, we propose an alternative stochastic model for the fundamental diagram of traffic flow with minimal number of parameters. Our approach is based on a mesoscopic viewpoint of the traffic system in terms of the dynamics of vehicle velocity transitions. A key feature of the present approach lies in its stochastic nature which makes it possible to describe not only the flow-concentration relation, the so-called fundamental diagram in traffic engineering, but also its variance -- an important ingredient in the observed data of traffic flow. It is shown that the model can be seen as a derivative of the Boltzmann equation when assuming a discrete velocity spectrum. The latter assumption significantly simplifies the mathematics and therefore, facilitates the study of its physical content through the analytic solutions. The model parameters are then adjusted to reproduce the observed traffic flow on the "23 de maio" highway in the Brazilian city of Sao Paulo, where both the fundamental diagram and its var...

  11. Dark energy in six nearby galaxy flows: Synthetic phase diagrams and self-similarity

    Chernin, A. D.; Teerikorpi, P.; Dolgachev, V. P.; Kanter, A. A.; Domozhilova, L. M.; Valtonen, M. J.; Byrd, G. G.

    2012-09-01

    Outward flows of galaxies are observed around groups of galaxies on spatial scales of about 1 Mpc, and around galaxy clusters on scales of 10 Mpc. Using recent data from the Hubble Space Telescope (HST), we have constructed two synthetic velocity-distance phase diagrams: one for four flows on galaxy-group scales and the other for two flows on cluster scales. It has been shown that, in both cases, the antigravity produced by the cosmic dark-energy background is stronger than the gravity produced by the matter in the outflow volume. The antigravity accelerates the flows and introduces a phase attractor that is common to all scales, corresponding to a linear velocity-distance relation (the local Hubble law). As a result, the bundle of outflow trajectories mostly follow the trajectory of the attractor. A comparison of the two diagrams reveals the universal self-similar nature of the outflows: their gross phase structure in dimensionless variables is essentially independent of their physical spatial scales, which differ by approximately a factor of 10 in the two diagrams.

  12. State diagram for adhesion dynamics of deformable capsules under shear flow.

    Luo, Zheng Yuan; Bai, Bo Feng

    2016-08-17

    Due to the significance of understanding the underlying mechanisms of cell adhesion in biological processes and cell capture in biomedical applications, we numerically investigate the adhesion dynamics of deformable capsules under shear flow by using a three-dimensional computational fluid dynamic model. This model is based on the coupling of the front tracking-finite element method for elastic mechanics of the capsule membrane and the adhesion kinetics simulation for adhesive interactions between capsules and functionalized surfaces. Using this model, three distinct adhesion dynamic states are predicted, such as detachment, rolling and firm-adhesion. Specifically, the effects of capsule deformability quantified by the capillary number on the transitions of these three dynamic states are investigated by developing an adhesion dynamic state diagram for the first time. At low capillary numbers (e.g. Ca numbers (e.g. 0.0075 number exceeds a critical value (e.g. Ca = 0.0175), the rolling state no longer appears, since capsules exhibit large deviation from the spherical shape. PMID:27492192

  13. Evolution of Near-surface Flows Inferred from High-resolution Ring-diagram Analysis

    Bogart, Richard S; Baldner,; Basu, Sarbani

    2015-01-01

    Ring-diagram analysis of acoustic waves observed at the photosphere can provide a relatively robust determination of the sub-surface flows at a particular time under a particular region. The depth of penetration of the waves is related to the size of the region, hence the depth extent of the measured flows is inversely proportional to the spatial resolution. Most ring-diagram analysis has focused on regions of extent ~15{\\deg} (180 Mm) or more in order to provide reasonable mode sets for inversions. HMI data analysis also provides a set of ring fit parameters on a scale three times smaller. These provide flow estimates for the outer 1% (7 Mm) of the Sun only, with very limited depth resolution, but with spatial resolution adequate to map structures potentially associated with the belts and regions of magnetic activity. There are a number of systematic effects affecting the determination of flows from local helioseismic analysis of regions over different parts of the observable disk, not all well understood. I...

  14. Information Flow in the Launch Vehicle Design/Analysis Process

    Humphries, W. R., Sr.; Holland, W.; Bishop, R.

    1999-01-01

    This paper describes the results of a team effort aimed at defining the information flow between disciplines at the Marshall Space Flight Center (MSFC) engaged in the design of space launch vehicles. The information flow is modeled at a first level and is described using three types of templates: an N x N diagram, discipline flow diagrams, and discipline task descriptions. It is intended to provide engineers with an understanding of the connections between what they do and where it fits in the overall design process of the project. It is also intended to provide design managers with a better understanding of information flow in the launch vehicle design cycle.

  15. Logarithmic mean Divisia index (LMDI) decomposition of coal consumption in China based on the energy allocation diagram of coal flows

    This manuscript attempted to analyze the influencing factors of coal consumption growth in China using the logarithmic mean Divisia index (LMDI) decomposition method developed based on the physical processes of coal utilization from raw coal to the end-use sectors. By mapping the energy allocation diagram of coal flows, we built a method to balance the energy allocation of coal flows and derived several technical influencing factors. These factors were used to develop an LMDI decomposition method suitable for analyzing the coal consumption growth of complex coal-use systems, such as that of China. The method is subsequently applied to analyze the influencing factors of China's coal consumption growth from 2001 to 2011. The results indicate the rapid growth of GDP (gross domestic production) per capita, which heavily relied on the expansion of heavy industry as the dominant factor driving coal consumption growth. Improvement in the energy efficiency of coal power generation and coal end-use combustion were the primary factors reducing coal consumption. - Highlights: • Energy allocation diagrams of China's coal flows from primary energy to end-use. • An LMDI method for analyzing influencing factors of coal consumption growth. • Policy implications for controlling the coal consumption growth in China

  16. FeynChois: System for automating the process of Feynman diagram generation

    Choi, Chul-Woo

    We have developed a DTD (Document Type Definition) for an XML (Extensible Markup Language) document for describing Feynman rules of quantum field theoretical models---the document is called FeynPage. A FeynPage can be any XML document that conforms to the FeynPage DTD. A FeynPage can be understood by a human or a computer program that is aware of the FeynPage DTD. We have also developed a Feynman diagram generator, which has been named FeynChois. It provides a user with a full GUI (Graphical User Interface) environment. More importantly, FeynChois knows how to read FeynPage. When FeynChois is asked by a user to generate diagrams, it will first look up the rules in the FeynPage; then, it will generate diagrams according to the rules for any process specified by the user. If the Feynman rules in a FeynPage are modified, FeynChois will generate diagrams according to the modified rules. What FeynChois generates are actually Java(TM) objects that represent Feynman diagrams. These objects are graphically displayed in the GUI. A user can edit, remove, and/or save the diagrams mostly by mouse operations. The Java classes for Feynman diagram objects together with FeynPage and FeynChois make up the FeynChois system. The dissertation details what the FeynChois system is and how it works.

  17. A rigorous semantics for BPMN 2.0 process diagrams

    Kossak, Felix; Geist, Verena; Kubovy, Jan; Natschläger, Christine; Ziebermayr, Thomas; Kopetzky, Theodorich; Freudenthaler, Bernhard; Schewe, Klaus-Dieter

    2015-01-01

    This book provides the most complete formal specification of the semantics of the Business Process Model and Notation 2.0 standard (BPMN) available to date, in a style that is easily understandable for a wide range of readers - not only for experts in formal methods, but e.g. also for developers of modeling tools, software architects, or graduate students specializing in business process management. BPMN - issued by the Object Management Group - is a widely used standard for business process modeling. However, major drawbacks of BPMN include its limited support for organizational modeling, i

  18. Power diagrams and interaction processes for unions of discs

    Møller, Jesper; Helisova, Katarina

    as the area, perimeter, Euler-Poincar´e characteristic, and number of holes. This includes the quarmass-interaction process and the continuum random cluster model as special cases. Viewing our model as a connected component Markov point process, and thereby establish local and spatial Markov...... properties, becomes useful for handling the problem of edge effects when only U is observed within a bounded observation window. The power tessellation and its dual graph become major tools when establishing inclusion-exclusion formulae, formulae for computing geometric characteristics of U, and stability...

  19. Power diagrams and interaction processes for unions of discs

    Møller, Jesper; Helisova, Katerina

    2008-01-01

    such as the area, perimeter, Euler-Poincaré characteristic, and the number of holes. This includes the quermass-interaction process and the continuum random-cluster model as special cases. Viewing our model as a connected component Markov point process, and thereby establishing local and spatial Markov...... properties, becomes useful for handling the problem of edge effects when only U is observed within a bounded observation window. The power tessellation and its dual graph become major tools when establishing inclusion-exclusion formulae, formulae for computing geometric characteristics of U, and stability...

  20. The Mental Health Outcomes of Drought: A Systematic Review and Causal Process Diagram

    Holly Vins

    2015-10-01

    Full Text Available Little is understood about the long term, indirect health consequences of drought (a period of abnormally dry weather. In particular, the implications of drought for mental health via pathways such as loss of livelihood, diminished social support, and rupture of place bonds have not been extensively studied, leaving a knowledge gap for practitioners and researchers alike. A systematic review of literature was performed to examine the mental health effects of drought. The systematic review results were synthesized to create a causal process diagram that illustrates the pathways linking drought effects to mental health outcomes. Eighty-two articles using a variety of methods in different contexts were gathered from the systematic review. The pathways in the causal process diagram with greatest support in the literature are those focusing on the economic and migratory effects of drought. The diagram highlights the complexity of the relationships between drought and mental health, including the multiple ways that factors can interact and lead to various outcomes. The systematic review and resulting causal process diagram can be used in both practice and theory, including prevention planning, public health programming, vulnerability and risk assessment, and research question guidance. The use of a causal process diagram provides a much needed avenue for integrating the findings of diverse research to further the understanding of the mental health implications of drought.

  1. Horizontal Flows in Active Regions from Ring-diagram and Local Correlation Tracking Methods

    Jain, Kiran; Ravindra, B; Komm, R; Hill, F

    2015-01-01

    Continuous high-cadence and high-spatial resolution Dopplergrams allow us to study sub-surface dynamics that may be further extended to explore precursors of visible solar activity on the surface. Since the p-mode power is absorbed in the regions of high magnetic field, the inferences in these regions are often presumed to have large uncertainties. In this paper, using the Dopplergrams from space-borne Helioseismic Magnetic Imager (HMI), we compare horizontal flows in a shear layer below the surface and the photospheric layer in and around active regions. The photospheric flows are calculated using local correlation tracking (LCT) method while the ring-diagram (RD) technique of helioseismology is used to infer flows in the sub-photospheric shear layer. We find a strong positive correlation between flows from both methods near the surface. This implies that despite the absorption of acoustic power in the regions of strong magnetic field, the flows inferred from the helioseismology are comparable to those from ...

  2. FMEF Electrical single line diagram and panel schedule verification process

    Since the FMEF did not have a mission, a formal drawing verification program was not developed, however, a verification process on essential electrical single line drawings and panel schedules was established to benefit the operations lock and tag program and to enhance the electrical safety culture of the facility. The purpose of this document is to provide a basis by which future landlords and cognizant personnel can understand the degree of verification performed on the electrical single lines and panel schedules. It is the intent that this document be revised or replaced by a more formal requirements document if a mission is identified for the FMEF

  3. Digital analysis and potato tissue image processing at the application of voronofs diagrams*

    A. Guc

    1995-12-01

    Full Text Available In this paper image processing is presented from the point of view of obtaining cell wall image. We also proposed some measurement and analysis methods. Because of non-continuos character of plant structure, the authors applied Voronoi's diagrams. This model allows for application of some point co-ordinates and segment lengths only. Also Voronoi's diagrams make easier obtaining a few parameters important for geometrical properties of cell wall. Color microscope images have been converted from RGB system into HLS system which enabled to obtain information about the space configuration of point of objects being investigated and to identify structural elements.

  4. Flow diagram of the longitudinal and Hall conductivities in ac regime in the disordered graphene quantum Hall system

    We numerically study the behavior of σxy(ω) and σxx (ω) for graphene QHE system in the ac (frequency ω) domain. We interpret these conductivities with the dynamical scaling analysis. We also discuss the temperature flow of σxy(ω) — σxx(ω) diagram for graphene QHE system in the ac region.

  5. Calculating Method for Influence of Material Flow on Energy Consumption in Steel Manufacturing Process

    YU Qing-bo; LU Zhong-wu; CAI Jiu-ju

    2007-01-01

    From the viewpoint of systems energy conservation, the influences of material flow on its energy consumption in a steel manufacturing process is an important subject. The quantitative analysis of the relationship between material flow and the energy intensity is useful to save energy in steel industry. Based on the concept of standard material flow diagram, all possible situations of ferric material flow in steel manufacturing process are analyzed. The expressions of the influence of material flow deviated from standard material flow diagram on energy consumption are put forward.

  6. Development of the web-based site investigation flow diagram in repository development program

    In siting a repository for high level radioactive wastes (HLW), it is essential for consensus building intelligibly and visually present why and how the area is selected as a suitable site. However 'information asymmetry' exists especially between society and an implementation body because various types of investigation, analysis and assessment are implemented in site characterization on the basis of a wide variety of advanced science and technology. Communication between experts (e.g. surveyors and modelers) is also important for efficient and reliable site investigation/ characterization. The Web-based Site Investigation Flow Diagram (SIFD) has been developed as a tool for information sharing among stake holders and society-jointed decision making. To test applicability of the SIFD, virtual site characterization ('dry run') is performed using the existing site investigation data. It is concluded that the web-based SIFD enhance traceability and transparency of the site investigation/ characterization, and therefore it would be a powerful communication tool among experts for efficient and reliable site investigation/characterization and among stake holders for consensus building

  7. Stepwise flow diagram for the development of formulations of non spore-forming bacteria against foliar pathogens: The case of Lysobacter capsici AZ78.

    Segarra, Guillem; Puopolo, Gerardo; Giovannini, Oscar; Pertot, Ilaria

    2015-12-20

    The formulation is a significant step in biopesticide development and is an efficient way to obtain consistency in terms of biological control under field conditions. Nonetheless, there is still a lack of information regarding the processes needed to achieve efficient formulation of non spore-forming bacterial biological control agents. In response to this, we propose a flow diagram made up of six steps including selection of growth parameters, checking of minimum shelf life, selection of protective additives, checking that the additives have no adverse effects, validation of the additive mix under field conditions and choosing whether to use additives as co-formulants or tank mix additives. This diagram is intended to provide guidance and decision-making criteria for the formulation of non spore-forming bacterial biological control agents against foliar pathogens. The diagram was then validated by designing an efficient formulation for a Gram-negative bacterium, Lysobacter capsici AZ78, to control grapevine downy mildew caused by Plasmopara viticola. A harvest of 10(10)L. capsici AZ78cellsml(-1) was obtained in a bench top fermenter. The viability of cells decreased by only one order of magnitude after one year of storage at 4°C. The use of a combination of corn steep liquor, lignosulfonate, and polyethyleneglycol in the formulation improved the survival of L. capsici AZ78 cells living on grapevine leaves under field conditions by one order of magnitude. Furthermore, the use of these additives also guaranteed a reduction of 71% in P. viticola attacks. In conclusion, this work presents a straightforward stepwise flow diagram to help researchers develop formulations for biological control agents that are easy to prepare, stable, not phytotoxic and able to protect the microorganims under field conditions. PMID:26467716

  8. FORM, Diagrams and Topologies

    Herzog, Franz; Ueda, Takahiro; Vermaseren, J A M; Vogt, Andreas

    2016-01-01

    We discuss a number of FORM features that are essential in the automatic processing of very large numbers of diagrams as used in the Forcer program for 4-loop massless propagator diagrams. Most of these features are new.

  9. Flow Logic for Process Calculi

    Nielson, Hanne Riis; Nielson, Flemming; Pilegaard, Henrik

    2012-01-01

    developed for programming languages, this article provides a tutorial development of the approach of Flow Logic for process calculi based on a decade of research. We first develop a simple analysis for the π-calculus; this consists of the specification, semantic soundness (in the form of subject reduction......Flow Logic is an approach to statically determining the behavior of programs and processes. It borrows methods and techniques from Abstract Interpretation, Data Flow Analysis and Constraint Based Analysis while presenting the analysis in a style more reminiscent of Type Systems. Traditionally...... implementation considerations. The electronic supplements present an application of the analysis techniques to a version of the π-calculus incorporating distribution and code mobility; also the proofs of the main results can be found in the electronic supplements....

  10. Preliminary velocity flows inside NOA AR 10720 derived by temporally evolving ring diagram analysis of SOHO/MDI dopplergrams

    Between 13th and 16th January 2005, NOA active region 10720 was the site of several large flares, one of which induced a solar quake. The expanding wave front of the quake was visible across the surface, causing both horizontal and vertical plasma displacements. Using a new temporal scanning technique for ring diagram analysis of SOHO/MDI (Michelson Doppler imager on board the Solar and Heliospheric Observatory) dopplergrams, we have calculated the horizontal and vertical velocity flows within the active region and the surrounding areas to a depth of 15Mm. We have been able to prove that it is possible to determine changes to a steadily varying subsurface flow, over time scales of hours.

  11. Application of Windows Socket Technique to Communication Process of the Train Diagram Network System Based on Client/Server Structure

    2001-01-01

    This paper is focused on the technique for design and realization of the process communications about the computer-aided train diagram network system. The Windows Socket technique is adopted to program for the client and the server to create system applications and solve the problems of data transfer and data sharing in the system.

  12. Solvable phase diagrams and ensemble inequivalence for two-dimensional and geophysical turbulent flows

    Venaille, Antoine

    2010-01-01

    Using explicit analytical computations, generic occurrence of inequivalence between two or more statistical ensembles is obtained for a large class of equilibrium states of two-dimensional and geophysical turbulent flows. The occurrence of statistical ensemble inequivalence is shown to be related to previously observed phase transitions in the equilibrium flow topology. We find in these turbulent flow equilibria, two mechanisms for the appearance of ensemble equivalences, that were not observed in any physical systems before. These mechanisms are associated respectively with second-order azeotropy (simultaneous appearance of two second-order phase transitions), and with bicritical points (bifurcation from a first-order to two second-order phase transition lines). The important roles of domain geometry, of topography, and of a screening length scale (the Rossby radius of deformation) are discussed. It is found that decreasing the screening length scale (making interactions more local) surprisingly widens the r...

  13. Support system for process flow scheduling

    Salomone, Enrique; Chiotti, Omar Juan Alfredo; Lerch, Juan

    2001-01-01

    Process flow scheduling is a concept that refers to the scheduling of flow shop process plants, whose scheduling calculations are guided by the process structure. In a wide variety of high-volume process industries, the process flow scheduling concept implies an integrated structure for planning and scheduling. This integrated vision of the planning function and the very particular characteristics of the process industry production environment challenge the application of the most traditio...

  14. Delta Diagrams

    Jablan, Slavik; Kauffman, Louis H.; Lopes, Pedro

    2015-01-01

    We call a Delta Diagram any diagram of a knot or link whose regions (including the unbounded one) have 3, 4, or 5 sides. We prove that any knot or link admits a delta diagram. We define and estimate combinatorial link invariants stemming from this definition.

  15. Phase diagrams of ionic liquids-based aqueous biphasic systems as a platform for extraction processes

    Highlights: • Novel ABS based in ionic liquids were determined as a platform for distinct extraction processes. • The effect of pH, IL cation core, alkyl side chain length, IL anion nature, and salt nature on the ABS formation was investigated. • The ability to form ABS increases with the pH and alkyl chain length for all systems studied. • The ILs cation core and anion nature effect on the ABS formation is dominated by the IL (hydrophobic/hydrophilic) nature. • The effect of the different salts depends of the ionic liquid nature and salt valency. - Abstract: In the past few years, ionic liquid-based aqueous biphasic systems have become the subject of considerable interest as a promising technique for the extraction and purification of several macro/biomolecules. Aiming at developing guidelines for more benign and efficient extraction processes, phase diagrams for aqueous biphasic systems composed of ionic liquids and inorganic/organic salts are here reported. Several combinations of ionic liquid families (imidazolium, pyridinium, phosphonium, quaternary ammonium and cholinium) and salts [potassium phosphate buffer (KH2PO4/K2HPO4 at pH 7), potassium citrate buffer (C6H5K3O7/C6H8O7 at pH 5, 6, 7 and 8) and potassium carbonate (K2CO3 at pH ∼13)] were evaluated to highlight the influence of the ionic liquid structure (cation core, anion and alkyl chain length), the pH and the salt nature on the formation of aqueous biphasic systems. The binodal curves and respective tie-lines reported for these systems were experimentally determined at (298 ± 1) K. In general, the ability to promote the aqueous biphasic systems formation increases with the pH and alkyl chain length. While the influence of the cation core and anion nature of the ionic liquids on their ability to form aqueous biphasic systems closely correlates with ionic liquids capacity to be hydrated by water, the effect of the different salts depends of the ionic liquid nature and salt valency

  16. ESPC Overview. Cash Flows, Scenarios, and Associated Diagrams for Energy Savings Performance Contracts

    Tetreault, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Regenthal, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-05-01

    This document is meant to inform state and local decision makers about the process of energy savings performance contracts, and how projected savings and allocated energy-related budgets can be impacted by changes in utility prices.

  17. ESPC Overview: Cash Flows, Scenarios, and Associated Diagrams for Energy Savings Performance Contracts

    Tetreault, T.; Regenthal, S.

    2011-05-01

    This document is meant to inform state and local decision makers about the process of energy savings performance contracts, and how projected savings and allocated energy-related budgets can be impacted by changes in utility prices.

  18. Study on the systematic preliminary investigation for high level radioactive waste management. Construction of survey and estimation flow diagram and R and D on element technologies

    The comprehensive survey and estimation flow diagram for the Preliminary Investigation (PI) was constructed by simulating the PI, and the validity of the consideration which is set up in this study was examined. Also, the element technologies were developed for the efficient and upgraded PI. The basic concept of the PI such as how to select the area for PI was set up and proposed as a postulate for this study. By simulating the PI, the survey and estimation flow diagram from the view point of engineering and geological long stability were constructed, then the comprehensive survey and estimation flow diagram was integrated by considering the spatiotemporal relationship of both flow diagrams. The PI in the various geological conditions was simulated and it is examined whether we can collect enough data to check the consideration. This resulted that most data to check the consideration could be collected through the PI. Among the existing technologies making up the PI, some technologies extracted for the efficient and upgraded PI were developed. (author)

  19. On a generalized phase diagram of simultaneous transport processes - a two velocity universal plane of invariance

    Som, A. [General Electric Company, SC (United States)

    2001-07-01

    The problem concerning void fraction as an additional degree of freedom for a discontinuous density continuum e.g., two-phase systems, is theoretically investigated. A generalized phase diagram has been found to signify the evolution of two-phase systems. With due regard to the objective property of motion, the transformation functions and its properties clearly expose the invariance of relative velocity with superficial velocities as the vector quantities. A fundamental one-to-one mapping involving Euclidean point spaces has been derived demonstrating a two-velocity universal plane of invariance as two-phase equation-of-state. The utility of the phase diagram for steady-state operations is doubtless because of the fundamental property of motion. (author)

  20. On a generalized phase diagram of simultaneous transport processes - a two velocity universal plane of invariance

    The problem concerning void fraction as an additional degree of freedom for a discontinuous density continuum e.g., two-phase systems, is theoretically investigated. A generalized phase diagram has been found to signify the evolution of two-phase systems. With due regard to the objective property of motion, the transformation functions and its properties clearly expose the invariance of relative velocity with superficial velocities as the vector quantities. A fundamental one-to-one mapping involving Euclidean point spaces has been derived demonstrating a two-velocity universal plane of invariance as two-phase equation-of-state. The utility of the phase diagram for steady-state operations is doubtless because of the fundamental property of motion. (author)

  1. Exact and grid-free solutions to the Lighthill-Whitham-Richards traffic flow model with bounded acceleration for a class of fundamental diagrams

    Qiu, Shanwen

    2013-09-01

    In this article, we propose a new exact and grid-free numerical scheme for computing solutions associated with an hybrid traffic flow model based on the Lighthill-Whitham-Richards (LWR) partial differential equation, for a class of fundamental diagrams. In this hybrid flow model, the vehicles satisfy the LWR equation whenever possible, and have a constant acceleration otherwise. We first propose a mathematical definition of the solution as a minimization problem. We use this formulation to build a grid-free solution method for this model based on the minimization of component function. We then derive these component functions analytically for triangular fundamental diagrams, which are commonly used to model traffic flow. We also show that the proposed computational method can handle fixed or moving bottlenecks. A toolbox implementation of the resulting algorithm is briefly discussed, and posted at https://dl.dropbox.com/u/1318701/Toolbox.zip. © 2013 Elsevier Ltd.

  2. Cognitive Processes (Probably Stimulated By Using Digital Game "Dynamic Metabolic Diagram Virtual Krebs´ Cycle"

    A. M. P Azevedo

    2006-07-01

    Full Text Available This work describes some of the possible cognitive operations related to the use of an educational game type activity, which  is  part  of  the  software  e-metabolismo,  developed  to  improve  biochemical  learning.  This  interactive  activity, called  DMDV   – Dynamic  Metabolic  Diagram,  allows  participants  to  drag-and-drop  components  of  the  sequence  of chemical  reactions,  which describe  the  metabolic  route  under study.  It  also offers  to the students  quizzes  and texts about  the  subject.  The  suggestion  of  cognitive  processes  possibly  triggered  by  the  software,  which  must  improve effective learning, was based on Jean Piaget’s genetic epistemological ideas to explain the cognitive activity. One of these  processes  is  the  mere  act  of  playing  the  game,  which  Piaget  relates  to  humans  needs  of  learning  rules  of socialization.  It  also  can  be  seen  as  a  first  step  in  cognition  process,  the  so  called  adaptation  function  that  include assimilation and accommodation, interactive processes between intelligent activities and elements from the reality, to became part of the individual´s mental structures. Another example: drag and drop substracts and enzymes pieces in a  virtual  board,  each  one  corresponding  to  an  specific  place  in  a  metabolic  route.  This  operation  can  be  related  to motivation,  an  affective  element  proposed  by  Piaget  to  stimulate  curiosity  and  improve  construction  of  knowledge structures.  Besides  this  issue,  the  act  of  choosing  pieces  is  assumed  to  inform  the  student  previous  knowledge (previous  cognitive  structures,  which,  according  to  Piaget,  must  be  misbalanced  (equilibration  of  new  structures  is supposed to be part of the dynamic

  3. Mollier-I, S-Diagrams for Combustion Gases in Data Processing

    Zacharias, F.

    1982-01-01

    In order to have all the thermal and caloric states of combustion gases accessible in a computer, closed mathematical approximation equations were established for the real factors, the enthalpy and the entropy of a real combustion gas. The equations approximate the various effects of molecular forces real gas influence and dissociation - at temperatures of 200 K to 6,000 K, pressures of 0.001 to 1,000 bar, and in the range from stoichiometric composition to air. A system of subprograms is listed in FORTRAN, by means of which thermodynamic calculations can be carried out in the same manner as with Mollier I,S diagrams.

  4. Cognitive Processes (Probably) Stimulated By Using Digital Game "Dynamic Metabolic Diagram Virtual Krebs´ Cycle"

    A.M.P. Azevedo; L.C. Fagundes; M. L Zaro; M. I. Timm

    2006-01-01

    This work describes some of the possible cognitive operations related to the use of an educational game type activity, which  is  part  of  the  software  e-metabolismo,  developed  to  improve  biochemical  learning.  This  interactive  activity, called  DMDV   – Dynamic  Metabolic  Diagram,  allows  participants  to  drag-and-drop  components  of  the  sequence  of chemical  reactions,  which describe  the  metabolic  route  under study.  It  also offers  to the students  quizzes  and texts...

  5. Linking attentional processes and conceptual problem solving: Visual cues facilitate the automaticity of extracting relevant information from diagrams

    Amy eRouinfar

    2014-09-01

    Full Text Available This study investigated links between lower-level visual attention processes and higher-level problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants’ attention to relevant areas to facilitate problem solving. Participants (N = 80 individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants’ verbal responses were used to determine their accuracy. The study produced two major findings. First, short duration visual cues can improve problem solving performance on a variety of insight physics problems, including transfer problems not sharing the surface features of the training problems, but instead sharing the underlying solution path. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers’ attention necessarily embodying the solution to the problem. Instead, the cueing effects were caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, these short duration visual cues when administered repeatedly over multiple training problems resulted in participants becoming more efficient at extracting the relevant information on the transfer problem, showing that such cues can improve the automaticity with which solvers extract relevant information from a problem. Both of these results converge on the conclusion that lower-order visual processes driven by attentional cues can influence higher-order cognitive processes

  6. Electronic diagrams

    Colwell, Morris A

    1976-01-01

    Electronic Diagrams is a ready reference and general guide to systems and circuit planning and in the preparation of diagrams for both newcomers and the more experienced. This book presents guidelines and logical procedures that the reader can follow and then be equipped to tackle large complex diagrams by recognition of characteristic 'building blocks' or 'black boxes'. The goal is to break down many of the barriers that often seem to deter students and laymen in learning the art of electronics, especially when they take up electronics as a spare time occupation. This text is comprised of nin

  7. Automation of Feynman diagram evaluations

    A C-program DIANA (DIagram ANAlyser) for the automation of Feynman diagram evaluations is presented. It consists of two parts: the analyzer of diagrams and the interpreter of a special text manipulating language. This language can be used to create a source code for analytical or numerical evaluations and to keep the control of the process in general

  8. Flow, diffusion, and rate processes

    This volume contains recent results obtained for the nonequilibrium thermodynamics of transport and rate processes are reviewed. Kinetic equations, conservation laws, and transport coefficients are obtained for multicomponent mixtures. Thermodynamic principles are used in the design of experiments predicting heat and mass transport coefficients. Highly nonstationary conditions are analyzed in the context of transient heat transfer, nonlocal diffusion in stress fields and thermohydrodynamic oscillatory instabilities. Unification of the dynamics of chemical systems with other sorts of processes (e.g. mechanical) is given. Thermodynamics of reacting surfaces is developed. Admissible reaction paths are studied and a consistency of chemical kinetics with thermodynamics is shown. Oscillatory reactions are analyzed in a unifying approach showing explosive, conservation or damped behavior. A comprehensive review of transport processes in electrolytes and membranes is given. Applications of thermodynamics to thermoelectric systems and ionized gas (plasma) systems are reviewed

  9. Microstructure of Model Emulsion in Process Flow

    Preziosi, V.; Křišťál, Jiří; Simoncelli, A.; Guido, S.

    Napoli : -, 2011, s. 43. ISBN 978-88-89677-22-3. [International Conference on Multiphase Flow in Industrial Plants /12./. Ischia, Napoli (IT), 21.09.2011-23.09.2011] Institutional research plan: CEZ:AV0Z40720504 Keywords : microstructure * emulsion * process flow Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  10. Automatic Test case Generation from UML Activity Diagrams

    V.Mary Sumalatha*1; Dr G.S.V.P.Raju2

    2014-01-01

    Test Case Generation is an important phase in software development. Nowadays much of the research is done on UML diagrams for generating test cases. Activity diagrams are different from flow diagrams in the fact that activity diagrams express parallel behavior which flow diagrams cannot express. This paper concentrates on UML 2.0 Activity Diagram for generating test cases. Fork and join pair in activity diagram are used to represent concurrent activities. A novel method is pro...

  11. Real time acquisition, processing, and archiving of Doublet III diagram data employing table driven software

    This paper describes the diagnostic data acquisition, processing and archiving computer system for the Doublet III fusion research device. This paper's emphasis is mainly on the software, but provides a description of the hardware configuration

  12. Process optimization diagram based on FEM simulation for extrusion of AZ31 profile

    2008-01-01

    The ram speed and the billet temperature are the primary process variables that determine the quality of the extruded magnesium profile and the productivity of the extrusion operation.The optimization of the extrusion process concerns the interplay between these two variables in relation to the extrudate temperature and the peak extrusion pressure The 3D computer simulations were performed to determine the eriects of the ram speed and the billet temperature on the extrudate temperature and the peak extrusion pressure,thereby providing guidelines for the process optimization and minimizing the number of trial extrusion runs needed for the process optimization.A case study on the extrusion of an AZ31 X-shaped profile was conducted.The correlations between the process variables and the response from the deformed material,extrudate temperature and peak extrusion pressure,were established from the 3D FEM simulations and verified by the experiment.The research opens up a way to rational selection of the process variables for ensured quality and maximum productivity of the magnesium extrusion.

  13. Phase diagrams

    The description is presented of binary phase diagrams of titanium alloyed with the following elements: silver, aluminium, arsenic, gold, boron, barium, beryllium, bismuth, carbon, calcium, cadmium, cobalt, chromium, copper, iron, gallium, germanium, hydrogen, hafnium, indium, iridium, potassium, lithium, magnesium, manganese, molybdenum, nitrogen, sodium, niobium, nickel, oxygen, osmium, phosphorus, lead, palladium, platinum, plutonium, rhenium, lanthanium, cerium, preseodymium, neodymium, gadolinium, erbium, terbium, thulium, lutetium, rhodium, ruthenium, scandium, silicon, tin, strontium, tantalum, technetium, thorium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc and zirconium

  14. System studies in PA: Development of process influence diagram (PID) for SFR-1 repository near-field + far-field

    Scenario development is a key component of the performance assessment (PA) process for radioactive waste disposal, the primary objective being to ensure that all relevant factors associated with the future evolution of the repository system are properly considered in PA. As part of scenario development, a list of features, events and processes (FEPs) are identified and assembled, representing the Process System, with interactions/influences between FEPs incorporated in a Process Influence Diagram (PID). This report documents the technical work conducted between 1997 and the end of 1999 under the Systems Studies Project. The overall objective of this project has been the construction of a PID for the SFR-1 repository (final repository for reactor waste), this PID being the first stage in the identification of scenarios to describe future evolution of this repository. The PIDs discussed in this report have been created using two software applications: existing commercial software (Business Modeller, Infotool AB. Stockholm, Sweden) and, more recently, a newly developed software tool SPARTA (Enviros QuantiSci, Henley, U.K.). Although the focus of this report is on the application of SPARTA to PID development, it is important to document the work carried out prior to SPARTA being available, in order to provide a complete record of the entire SFR-1 PID development effort as well as preserving the context of the multi-year project. Following a description of the different disposal sections of the SFR-1 and the various near-field barriers, the sequential development (i.e. near-field of Silo, BMA, BLA, BTF sections; far-field; integrated near-field + far-field) of the PID for SFR-1 repository system using Business Modeller is described. Owing to the complexity of the repository, in terms of number of both different disposal sections (Silo, BLA, BMA, BTF) and barriers associated with each section, the two-dimensional (2D) PID created for SFR-1 using Business Modeller is

  15. System studies in PA: Development of process influence diagram (PID) for SFR-1 repository near-field + far-field

    Stenhouse, M.J. [Monitor Scientific, LLC, Denver, CO (United States); Miller, W.M.; Chapman, N.A. [QuantiSci Ltd., Melton Mowbray (United Kingdom)

    2001-05-01

    Scenario development is a key component of the performance assessment (PA) process for radioactive waste disposal, the primary objective being to ensure that all relevant factors associated with the future evolution of the repository system are properly considered in PA. As part of scenario development, a list of features, events and processes (FEPs) are identified and assembled, representing the Process System, with interactions/influences between FEPs incorporated in a Process Influence Diagram (PID). This report documents the technical work conducted between 1997 and the end of 1999 under the Systems Studies Project. The overall objective of this project has been the construction of a PID for the SFR-1 repository (final repository for reactor waste), this PID being the first stage in the identification of scenarios to describe future evolution of this repository. The PIDs discussed in this report have been created using two software applications: existing commercial software (Business Modeller, Infotool AB. Stockholm, Sweden) and, more recently, a newly developed software tool SPARTA (Enviros QuantiSci, Henley, U.K.). Although the focus of this report is on the application of SPARTA to PID development, it is important to document the work carried out prior to SPARTA being available, in order to provide a complete record of the entire SFR-1 PID development effort as well as preserving the context of the multi-year project. Following a description of the different disposal sections of the SFR-1 and the various near-field barriers, the sequential development (i.e. near-field of Silo, BMA, BLA, BTF sections; far-field; integrated near-field + far-field) of the PID for SFR-1 repository system using Business Modeller is described. Owing to the complexity of the repository, in terms of number of both different disposal sections (Silo, BLA, BMA, BTF) and barriers associated with each section, the two-dimensional (2D) PID created for SFR-1 using Business Modeller is

  16. The perceptual flow of phonetic feature processing

    Greenberg, Steven; Christiansen, Thomas Ulrich

    2008-01-01

    , posterior probabilities associated with phonetic-feature decoding were computed from confusion matrices in order to deduce the temporal flow of phonetic processing. Decoding the feature, Manner-of-Articulation, depends on accurate decoding of the feature Voicing (but not vice-versa), and decoding Place...... asymmetric pattern of feature decoding may provide extra-segmental information of utility for speech processing, particularly in adverse listening conditions....

  17. Examination of participant flow in the CONSORT diagram can improve the understanding of the generalizability of study results.

    Andrade, Chittaranjan

    2015-11-01

    A fundamental principle in research is that the findings of a study can only be generalized to the population from which the sample of the study was drawn. What this population was can be discerned from an examination of the study selection criteria. Additional insights can sometimes be gleaned from the study flowchart or CONSORT diagram, which may show sample attenuation between subject screening and final recruitment. Such sample attenuation, if present, implies further limitation to the generalizability of the study outcomes. Two large, 2-year, randomized controlled maintenance therapy trials are described to illustrate sample attenuation that limits study generalizability, one in the context of mindfulness-based cognitive therapy versus antidepressant drugs for recurrent major depressive disorder and the other in the context of quetiapine versus placebo for bipolar disorder. Readers therefore need to examine both study selection criteria and the CONSORT diagram in order to better understand the extent to which study results apply to the patients whom they see. PMID:26646042

  18. Control of Mixing and Reactive Flow Processes

    Karagozian, A. R.

    1999-01-01

    The interdisciplinary field of reactive flow control is one that holds a great deal of promise for the optimization of complex phenomena occurring in many practical systems, ranging from automobile and gas turbine engines to environmental thermal destruction systems. The fundamental underpinnings of combustion control, however, require a detailed level of understanding of complex reactive flow phenomena, and, in the case of closed-loop active control, require the ability to sense (monitor) and actuate (manipulate) flow processes in a spatially distributed manner in "near real time". Hence the ultimate growth and success of the field of reactive flow control is intimately linked: 1) to advances in the understanding, simulation, and model reduction for complex reactive flows, 2) to the development of experimental diagnostic techniques, in particular, to the development of physically robust sensors, and 3) to the development of a framework or frameworks for generation of closed loop control algorithms suitable for unsteady, nonlinear reactive flow systems. The present paper seeks to outline the potential benefits and technical challenges that exist for mixing and combustion control in fundamental as well as practical systems and to identify promising research directions that could help meet these challenges.

  19. Disjunctive Information Flow for Communicating Processes

    Li, Ximeng; Nielson, Flemming; Nielson, Hanne Riis;

    2016-01-01

    The security validation of practical computer systems calls for the ability to specify and verify information flow policies that are dependent on data content. Such policies play an important role in concurrent, communicating systems: consider a scenario where messages are sent to different...... processes according to their tagging. We devise a security type system that enforces content-dependent information flow policies in the presence of communication and concurrency. The type system soundly guarantees a compositional noninterference property. All theoretical results have been formally proved in...

  20. Program Synthesizes UML Sequence Diagrams

    Barry, Matthew R.; Osborne, Richard N.

    2006-01-01

    A computer program called "Rational Sequence" generates Universal Modeling Language (UML) sequence diagrams of a target Java program running on a Java virtual machine (JVM). Rational Sequence thereby performs a reverse engineering function that aids in the design documentation of the target Java program. Whereas previously, the construction of sequence diagrams was a tedious manual process, Rational Sequence generates UML sequence diagrams automatically from the running Java code.

  1. Process and Data Flow Control in KLOE

    Pasqualucci, E.; KLOE Collaboration

    2001-10-01

    The core of the KLOE distributed event building system is a switched network. The online processes are distributed over a large set of processors in this network. All processes have to change coherently their state of activity as a consequence of local or remote commands. A fast and reliable message system based on the SNMP protocol has been developed. A command server has been implemented as a non privileged daemon able to respond to "set" and "get" queries on private SNMP variables. This process is able to convert remote set operations into local commands and to map automatically an SNMP subtree on a user-defined set of process variables. Process activity can be continuously monitored by remotely accessing their variables by means of the command server. Only the command server is involved in these operations, without disturbing the process flow. Subevents coming from subdetectors are sent to different nodes of a computing farm for the last stage of event building. Based on features of the SNMP protocol and of the KLOE message system, the Data Flow Control System (DFC) is able to rapidly redirect network traffic, keeping in account the dynamics of the whole DAQ system in order to assure coherent subevent addressing in an asynchronous "push" architecture, without introducing dead time. The KLOE DFC is currently working in the KLOE DAQ system. Its main characteristics and performance are discussed.

  2. Construction Method of E-R Model of Data Flow Diagram Baes d on Dirce ted Graph%基于有向图的数据流图的 E-R 模型构建方法

    凡高娟; 侯彦娥; 张倩

    2014-01-01

    Establishing conceptual model is one of the important steps of database design , E-R model is a conceptual model wide-ly used in database design .This paper proposes the use of business analysis process of the formation of the data flow diagram , da-ta flow diagram is a directed graph abstraction to construct methods E-R model .In large systems , database design process , using this method can quickly build E-R model topical application , greatly reduce the design process to build a database E-R model time-consuming.In addition, the paper also gives an example to verify , illustrates the practicality and effectiveness of this method in practical engineering projects .%建立概念模型是数据库设计的重要步骤之一,E-R模型是数据库设计中广泛采用的概念模型。本文提出利用业务分析过程中形成的数据流图,把数据流图抽象为有向图,从而构建E-R模型的方法。在大型系统数据库设计过程中,使用这一方法可以快速构建局部应用的E-R模型,大大缩短数据库设计过程中构建E-R模型所耗费的时间。实例验证了本方法在实际工程项目中的实用性和有效性。

  3. 抽象概念结构图到JAVA过程蓝图的平滑过渡及一致性%Smooth Transition from Abstract Concept Structure Diagram to JAVA Process Blueprint and Their Consistency

    刘建宾; 郝克刚; 龚世生

    2001-01-01

    Abstract Concept Structure Diagram,an Abstract diagrammatized representation for program process logic ,is a concept algorithm description tool independent of program implementing language. In this paper ,a formal model of Abstract Concept Structure Diagram,its graphical notations,and a smooth transition method from Abstract Concept Structure Diagram to JAVA Process Blueprint and mapping rules are presented. The validation and consistency of concept program and logical program is defined,and related theorems and prove procedures are also presented.

  4. Study of the condensation and flow of a simulated uranium-iron alloy in the liquid-solid domain of the phase diagram

    Silver-copper alloys with a composition entering a liquid-solid domain of the phase diagram are condensed on a titled molybdenum substrate, regulated in temperature. Droplets containing nodular crystals, for the most part in contact with the substrate, condense and coalesce to form a film. The film forms more quickly in the solid-liquid than in the fully liquid areas. It indicates that the crystals constitute pinning points for the droplets. A correlation between the condensate thickness and the local solid fraction at the transition between film and droplets is given. In the film areas, the gravity-dependent effect plays an important role. In case of the silver-rich condensate, the solid-phase is expected to be more easily driven by the liquid flow. (authors)

  5. Process Flow and Functional Analysis of the Iter Cryogenic System

    Henry, D.; Chalifour, M.; Forgeas, A.; Kalinin, V.; Monneret, E.; Serio, L.; Vincent, G.; Voigt, T.

    2010-04-01

    The ITER cryogenic system is presently under design by a large international collaboration. It will start commissioning at Cadarache, south of France in 2015. The system is designed to provide an equivalent refrigeration capacity of 65 kW at 4.5 K for the superconducting magnet and 1300 kW at 80 K for the cryoplant pre-cooling stages and the Cryostat Thermal Shields (CTS). The cryoplant consists of three 4.5 K refrigerators and two 80 K helium loops coupled with two LN2 modules. Two 4.5 K modules are dedicated to the magnet system and a small one is devoted to the cryopumps and Pellet Injection System. One Interconnection box interfaces the cryoplant and a complex cryodistribution system which includes 5 Auxiliary Cold Boxes dedicated to each cryogenic subsystem. The ITER cryogenic system will have to cope with various normal and abnormal operational modes including superconducting magnets quench recovery and fast energy discharge. We will present the general Process Flow Diagram of the cryoplant and cryodistribution system and the operation requirements. The functional analysis of the cryogenic system will be performed leading to a proposal of the cryogenic control system architecture. The instrumentation and control requirements will also be outlined.

  6. Application of ISO22000, failure mode, and effect analysis (FMEA) cause and effect diagrams and pareto in conjunction with HACCP and risk assessment for processing of pastry products.

    Varzakas, Theodoros H

    2011-09-01

    The Failure Mode and Effect Analysis (FMEA) model has been applied for the risk assessment of pastry processing. A tentative approach of FMEA application to the pastry industry was attempted in conjunction with ISO22000. Preliminary Hazard Analysis was used to analyze and predict the occurring failure modes in a food chain system (pastry processing plant), based on the functions, characteristics, and/or interactions of the ingredients or the processes, upon which the system depends. Critical Control points have been identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram, and fishbone diagram). In this work a comparison of ISO22000 analysis with HACCP is carried out over pastry processing and packaging. However, the main emphasis was put on the quantification of risk assessment by determining the Risk Priority Number (RPN) per identified processing hazard. Storage of raw materials and storage of final products at -18°C followed by freezing were the processes identified as the ones with the highest RPN (225, 225, and 144 respectively) and corrective actions were undertaken. Following the application of corrective actions, a second calculation of RPN values was carried out leading to considerably lower values (below the upper acceptable limit of 130). It is noteworthy that the application of Ishikawa (Cause and Effect or Tree diagram) led to converging results thus corroborating the validity of conclusions derived from risk assessment and FMEA. Therefore, the incorporation of FMEA analysis within the ISO22000 system of a pastry processing industry is considered imperative. PMID:21838557

  7. Scaffolding Cognitive and Metacognitive Processes in Low Verbal Ability Learners: Use of Diagrams in Computer-Based Training Environments.

    Cuevas, Haydee M.; Fiore, Stephen M.; Oser, Randall L.

    2002-01-01

    This study of undergraduates investigated how scaffolding instructional strategies can support learners' knowledge acquisition and metacomprehension of complex systems in a computer-based training environment. Results showed that incorporating diagrams facilitated performance on measures of integrative knowledge and facilitated the development of…

  8. Flow processes in a radiant tube burner: Combusting flow

    Highlights: → 3D combusting flow in an industrial radiant tube burner is modelled using the ANSYS-CFX CFD code. → Results are validated against data from an industrial furnace (NO emissions within 7%). → The flame is long and narrow with slight asymmetry. Mixing near the fuel injector is very effective. → The recuperator section is reasonably effective, but design improvements are proposed. → The design is vulnerable to eccentricities due to manufacturing or assembly tolerances. -- Abstract: This paper describes a study of the combustion process in an industrial radiant tube burner (RTB), used in heat treating furnaces, as part of an attempt to improve burner performance. A detailed three-dimensional Computational Fluid Dynamics model has been used, validated with experimental test furnace temperature and flue gas composition measurements. Simulations using the Eddy Dissipation combustion model with peak temperature limitation and the Discrete Transfer radiation model showed good agreement with temperature measurements in the inner and outer walls of the burner, as well as with flue gas composition measured at the exhaust (including NO). Other combustion and radiation models were also tested but gave inferior results in various aspects. The effects of certain RTB design features are analysed, and an analysis of the heat transfer processes within the burner is presented.

  9. Human Factors Operability Timeline Analysis to Improve the Processing Flow of the Orion Spacecraft

    Stambolian, Damon B.; Schlierf, Roland; Miller, Darcy; Posada, Juan; Haddock, Mike; Haddad, Mike; Tran, Donald; Henderon, Gena; Barth, Tim

    2011-01-01

    This slide presentation reviews the use of Human factors and timeline analysis to have a more efficient and effective processing flow. The solution involved developing a written timeline of events that included each activity within each functional flow block. Each activity had computer animation videos and pictures of the people involved and the hardware. The Human Factors Engineering Analysis Tool (HFEAT) was improved by modifying it to include the timeline of events. The HFEAT was used to define the human factors requirements and design solutions were developed for these requirements. An example of a functional flow block diagram is shown, and a view from one of the animations (i.e., short stack pallet) is shown and explained.

  10. Concentrated flow erosion processes under planned fire

    Langhans, Christoph; Noske, Phil; Van Der Sant, Rene; Lane, Patrick; Sheridan, Gary

    2016-04-01

    The role of wildfire in accelerating erosion rates for a certain period after fire has been well documented. Much less information is available on the erosion rates and processes after planned fires that typically burn at much lower intensity. Observational evidence, and some studies in southern and southeastern Australia suggest that erosion after planned fire can be significant if rainfall intensities exceed critical intensities and durations. Understanding erosion processes and rates under these event conditions is of critical importance for planning of burn locations away from critical human assets such as water supplies and infrastructure. We conducted concentrated flow experiments with the purpose to understand what critical conditions are required for significant erosion to occur on planned burn hillslopes. Concentrated flow runon was applied on pre-wetted, unbounded plots of 10 m at rates of 0.5, 1, 1.5 and 2 L/s, with three replicates for each rates applied at 1m distance of each other. The experiments were carried out at three sites within one burn perimeter with different burn severities ranging from low to high, with two replicates at each site. Runon was applied until an apparent steady state in runoff was reached at the lower plot boundary, which was typically between 0.7 and 2.5 minutes. The experiments were filmed and erosion depth was measured by survey methods at 1m intervals. Soil surface properties, including potential sediment trapping objects were measured and surveyed near the plots. We found that fire severity increased plot scale average erosion depth significantly even as experiments were typically much shorter on the high severity plots. Unit stream power was a good predictor for average erosion depth. Uncontrolled for variations in soil surface properties explained process behaviour: finer, ash rich surface material was much less likely to be trapped by fallen, charred branches and litter than coarser, ash-depleted material. Furthermore

  11. Protein crystallization as a process step in a novel meso oscillatory flow reactor: study of lysozyme phase behavior

    Castro, Filipa; Ferreira, António; Teixeira, J. A.; Rocha, Fernando

    2016-01-01

    In the present work, it is reported for the first time the study of the applicability of a novel meso oscillatory flow reactor (meso-OFR) for protein crystallization as a process step. Crystallization assays carried out in the designed device enabled to derive a two-dimensional lysozyme phase diagram (lysozyme concentration against sodium chloride concentration). Results evidence the formation of several types of crystals (different size and shape), with a strong influence of salt concentrati...

  12. Process flow measurement based on tracer techniques

    Flow measurement methods based on the tracer techniques are the transit time method as well as methods based on tracer dilution. These methods can be applied to the on-site calibration of flowmeters and to measuring the flowrate where no flowmeter is installed. The accuracy of the tracer methods depends on the prevailing measuring conditions. In this report the accuracy of the transit time method under field conditions is estimated to be 1-2% on the 99,7% confidence level. The accuracy of the isotope dilution method is estimated as slightly better, namely about 0.5% at its best. An even better accuracy, about 0.2%, could be achieved by developing the method and the measuring equipment. Tests were carried out with the transit time method for water and steam flow. While measuring water flow the effect of different measuring parameters upon the repeatability of the method were looked into. Such were the number of the detectors and the distance between the measuring points. Different means of tracer injection were tested, as well. These had less effect than expected. The accuracies achieved in steam flow measurements were of the same order of magnitude as in water flow measurements. The tracers used were 137mBa for water flow and 41Ar for steam flow measurements

  13. Fluid flow for chemical and process engineers

    Holland, F

    1995-01-01

    This major new edition of a popular undergraduate text covers topics of interest to chemical engineers taking courses on fluid flow. These topics include non-Newtonian flow, gas-liquid two-phase flow, pumping and mixing. It expands on the explanations of principles given in the first edition and is more self-contained. Two strong features of the first edition were the extensive derivation of equations and worked examples to illustrate calculation procedures. These have been retained. A new extended introductory chapter has been provided to give the student a thorough basis to understand the methods covered in subsequent chapters.

  14. Hanford Site Treated Effluent Disposal Facility process flow sheet

    This report presents a novel method of using precipitation, destruction and recycle factors to prepare a process flow sheet. The 300 Area Treated Effluent Disposal Facility (TEDF) will treat process sewer waste water from the 300 Area of the Hanford Site, located near Richland, Washington, and discharge a permittable effluent flow into the Columbia River. When completed and operating, the TEDF effluent water flow will meet or exceed water quality standards for the 300 Area process sewer effluents. A preliminary safety analysis document (PSAD), a preconstruction requirement, needed a process flow sheet detailing the concentrations of radionuclides, inorganics and organics throughout the process, including the effluents, and providing estimates of stream flow quantities, activities, composition, and properties (i.e. temperature, pressure, specific gravity, pH and heat transfer rates). As the facility begins to operate, data from process samples can be used to provide better estimates of the factors, the factors can be entered into the flow sheet and the flow sheet will estimate more accurate steady state concentrations for the components. This report shows how the factors were developed and how they were used in developing a flow sheet to estimate component concentrations for the process flows. The report concludes with how TEDF sample data can improve the ability of the flow sheet to accurately predict concentrations of components in the process

  15. Ultrasonic flow measurements for irrigation process monitoring

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  16. Safety- barrier diagrams

    Duijm, Nijs Jan

    2008-01-01

    Safety-barrier diagrams and the related so-called 'bow-tie' diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation of safety-barrier diagrams to other methods such as fault...... trees and Bayesian networks is discussed. A simple method for quantification of safety-barrier diagrams is proposed. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk analysis with operational safety management....

  17. Flow Velocity Measurement by Image Processing of Optically Activated Tracers

    Gharib, M.; Hernan, M. A.; Yavrouian, A. H.; Sarohia, V.

    1985-01-01

    A computerized flow visualization technique capable of quantifying the flow field automatically has been developed. This technique uses afterglowing effect of optically activated phosphorescent particles to retrieve vectorial information on each trace. By using this information, in conjunction with computer image processing, the flow field of a free surface transient vortex was investigated.

  18. Forming Limit Diagrams of Zircaloy-4 and Zirlo Sheets for Stamping Process of Spacer Grids of Nuclear Fuel Rod

    Seo, Yunmi; Hyun, Hong Chul; Lee, Hyungyil; Kim, Naksoo

    2011-08-01

    We investigated the theoretical forming limit models for Zircaloy-4 and Zirlo used for spacer grid of nuclear fuel rods. Tensile tests were performed to obtain stress-strain curves and anisotropic coefficients, such as r-values. The experimental forming limit diagrams (FLD) for two materials were obtained by dome stretching tests following the specification of NUMISHEET 96. Theoretical FLD depends on forming limit model and yield criterion. To obtain the right hand side of FLD, we applied the forming limit models (Swift's diffuse necking, Marciniak-Kuczynski damage defect, Storen-Rice's vertex theory) to Zircaloy-4 and Zirlo sheets. Hill's local necking theory was adopted for the left side of FLD. To consider the anisotropy of sheets, the yield criteria of Hill (1948) and Hosford (1979) were applied. Comparing the predicted curves with the experimental data, we found that the FLD for Zircaloy-4 can be described by the Swift model with the Hill 48 yield criterion, while the FLD for Zirlo can be explained by the Storen-Rice model and the Hosford yield criterion (a = 8).

  19. An active feedback flow control theory of the vortex breakdown process

    Granata, Joshua

    An active feedback flow control theory of the vortex breakdown process in incompressible, axisymmetric swirling flows in a finite-length, straight, circular pipe is developed. Flow injection distributed along the pipe wall is used as the controller. The flow is subjected to non-periodic inlet and outlet conditions. A long-wave asymptotic analysis, which involves a re-scaling of the axial distance and time at near critical swirl ratios, results in a nonlinear model problem for the dynamics and control of both inviscid and high-Reynolds number, Re, flows. The approach provides the bifurcation diagram of steady states and the stability characteristics of these states. Computed examples of the flow dynamics based on the full Euler and Navier-Stokes formulations at various swirl levels demonstrate the evolution to near-steady breakdown states when swirl is above a critical level which depends on Re. Numerical stability and mesh convergence studies performed on the inviscid and high-Re flow simulations ensure the accuracy of the computations and the agreement with the theoretical approaches. In addition, an energy analysis of the nonlinear model problem sheds insight into the mechanisms of the flow dynamics which lead to vortex breakdown and suggests a feedback control law which relates the flow injection and the evolving maximum radial velocity at the inlet. Moreover, applying the proposed feedback control law during flow evolution, shows for the first time the successful and robust elimination of the breakdown states and flow stabilization on an almost columnar state for a wide range of swirl up to 53 percent above the first critical level for the inviscid flow case and for a range of swirl up to 15 percent above the first critical level for viscous flows. The control law can be improved for a lower momentary maximum flux injection through the use of discrete injection regions along the pipe. The feedback control cuts the natural feed-forward mechanism of the breakdown

  20. A multi-phase flow model for electrospinning process

    Xu Lan; Si Na; Lee Eric Wai Ming; Liu Hong-Ying

    2013-01-01

    An electrospinning process is a multi-phase and multi-physicical process with flow, electric and magnetic fields coupled together. This paper deals with establishing a multi-phase model for numerical study and explains how to prepare for nanofibers and nanoporous materials. The model provides with a powerful tool to controlling over electrospinning parameters such as voltage, flow rate, and others.

  1. Progress in modeling of fluid flows in crystal growth processes

    Qisheng Chen; Yanni Jiang; Junyi Yan; Ming Qin

    2008-01-01

    Modeling of fluid flows in crystal growth processes has become an important research area in theoretical and applied mechanics.Most crystal growth processes involve fluid flows,such as flows in the melt,solution or vapor.Theoretical modeling has played an important role in developing technologies used for growing semiconductor crystals for high performance electronic and optoelectronic devices.The application of devices requires large diameter crystals with a high degree of crystallographic perfection,low defect density and uniform dopant distribution.In this article,the flow models developed in modeling of the crystal growth processes such as Czochralski,ammono-thermal and physical vapor transport methods are reviewed.In the Czochralski growth modeling,the flow models for thermocapillary flow,turbulent flow and MHD flow have been developed.In the ammonothermal growth modeling,the buoyancy and porous media flow models have been developed based on a single-domain and continuum approach for the composite fluid-porous layer systems.In the physical vapor transport growth modeling,the Stefan flow model has been proposed based on the flow-kinetics theory for the vapor growth.In addition,perspectives for future studies on crystal growth modeling are proposed.

  2. Safety-barrier diagrams

    Duijm, Nijs Jan

    2007-01-01

    Safety-barrier diagrams and the related so-called "bow-tie" diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation with other methods such as fault trees and Bayesian networks...... are discussed. A simple method for quantification of safety-barrier diagrams is proposed, including situations where safety barriers depend on shared common elements. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information...... from risk analysis with operational safety management....

  3. Safety-barrier diagrams

    Duijm, Nijs Jan

    Safety-barrier diagrams and the related so-called "bow-tie" diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation with other methods such as fault trees and Bayesian networks...... are discussed. A simple method for quantification of safety-barrier diagrams is proposed, including situations where safety barriers depend on shared common elements. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information...... from risk analysis with operational safety management....

  4. Information flow and simulation support in the product development process

    Johansson, Henrik; Larsson, Tobias

    1998-01-01

    This paper consists of a case study of the product development process at Indexator AB, manufacturer of rotators for heavy equipment. The process has been studied concerning the information flow and computer support in the engineering design department and its interacting departments. It is shown that the company has a clear view of how information flows and which computer tools they use in the different parts of the processes. The advantage of using computer tools for analysis and planning i...

  5. Selected topics on the nonrelativistic diagram technique

    The construction of the diagrams describing various processes in the four-particle systems is considered. It is shown that these diagrams, in particular the diagrams corresponding to the simple mechanisms often used in nuclear and atomic reaction theory, are readily obtained from the Faddeev-Yakubovsky equations. The covariant four-dimensional formalism of nonrelativistic Feynman graphs and its connection to the three-dimensional graph technique are briefly discussed

  6. TV Trouble-Shooting Manual. Volumes 3-4. Part 1: Block Diagram of Colour TV Receiver and Signal Flow. Student and Instructor's Manuals.

    Mukai, Masaaki; Kobayashi, Ryozo

    These volumes are, respectively, the self-instructional student manual and the teacher manual that cover the first set of training topics in this course for television repair technicians. Both volumes contain the following two sections: (1) Functional Block Diagram of a Colour TV Receiver, including information on the video reproduction circuit,…

  7. Tracer testing of processes under variable flow and volume

    Continuous flow vessel system of pilot scale was constructed and provided computer control for programmed variation of flow rate and volume of liquid. Radioisotope and chemical tracers pulses were used for determination of residence time distributions (RTDs). It has been shown earlier that the RTDs of such vessels are invariable under variations of flow or volume of flow, if they are presented as a functions of an appropriate, integrated variable, and if the process flow pattern is not affected by the stated variations. The experimental responses of the individual vessels tested were therefore converted to RTD functions of such variable. In turned out that they converged close to each other within a wide range of steady states and dynamic variations of flow and volume. This is considered to indicate the expediency of the integrated variable used and invariance of the vessel flow pattern within the same range. Additional tests with continuous, randomly variable tracer feed support these conclusions. (author)

  8. Recharge and flow processes in a till aquitard

    Schrøder, Thomas Morville; Høgh Jensen, Karsten; Dahl, Mette

    1999-01-01

    Eastern Denmark is primarily covered by clay till. The transformation of the excess rainfall into laterally diverted groundwater flow, drain flow, stream flow, and recharge to the underlying aquifer is governed by complicatedinterrelated processes. Distributed hydrological models provide a...... framework for assessing the individual flow components and forestablishing the overall water balance. Traditionally such models are calibrated against measurements of stream flow, head in the aquiferand perhaps drainage flow. The head in the near surface clay till deposits have generally not been measured...... located near the shallow wells and one in the valley adjacent to the stream. Precipitation and stream flow gauging along with potential evaporation estimates from a nearby weather station provide the basic data for the overall water balance assessment. The geological composition was determined from...

  9. Multilevel Flow Modelling of Process Plant for Diagnosis and Control

    Lind, Morten

    1982-01-01

    The paper describes the multilevel flow modelling methodology which can be used to construct functional models of energy and material processing systems. The models describe mass and energy flow topology on different levels of abstraction and represent the hierarchical functional structure of complex systems. A model of a nuclear power plant (PWR) is presented in the paper for illustration. Due to the consistency of the method, multilevel flow models provide specifications of plant goals and ...

  10. RILL EROSION PROCESS AND RILL FLOW HYDRAULIC PARAMETERS

    Fen-li ZHENG; Pei-qing XIAO; Xue-tian GAO

    2004-01-01

    In the rill erosion process,run-on water and sediment from upslope areas,and rill flow hydraulic parameters have significant effects on sediment detachment and transport.However,there is a lack of data to quantify the effects of run-on water and sediment and rill flow hydraulic parameters on rill erosion process at steep hillslopes,especially in the Loess Plateau of China.A dual-box system,consisting of a 2-m-long feeder box and a 5-m-long test box with 26.8% slope gradient was used to quantify the effects of upslope runoff and sediment,and of rill flow hydraulic parameters on the rill erosion process.The results showed that detachment-transport was dominated in rill erosion processes; upslope runoff always caused the net rill detachment at the downslope rill flow channel,and the net rill detachment caused by upslope runoff increased with a decrease of runoff sediment concentration from the feeder box or an increase of rainfall intensity.Upslope runoff discharging into the rill flow channel or an increase of rainfall intensity caused the rill flow to shift from a stratum flow into a turbulent flow.Upslope runoff had an important effect on rill flow hydraulic parameters,such as rill flow velocity,hydraulic radius,Reynolds number,Froude number and the Darcy-Weisbach resistance coefficient.The net rill detachment caused by upslope runoff increased as the relative increments of rill flow velocity,Reynolds number and Froude number caused by upslope runoff increased.In contrast,the net rill detachment decreased with an increase of the relative decrement of the Darcy-Weisbach resistance coefficient caused by upslope runoff.These findings will help to improve the understanding of the effects of run-on water and sediment on the erosion process and to find control strategies to minimize the impact of run-on water.

  11. Modeling Nonequilibrium Flow and Transport Processes Using HYDRUS

    Accurate process-based modeling of nonequilibrium water flow and solute transport remains a major challenge in vadose zone hydrology. The objective of this paper is to describe a wide range of nonequilibrium flow and transport modeling approaches available within the latest version of the HYDRUS-1D ...

  12. C++ based design flow for reconfigurable image processing systems

    Beun, R.; Karkowski, I.; Ditzel, M.

    2007-01-01

    In this paper a new hardware-software co-design flow for FPGA based image processing systems is described. This flow is fully C++ based and allows specification, verification and semi-automatic generation of all necessary software and hardware components. It allows the involvement of algorithm devel

  13. Exact velocity of dispersive flow in the asymmetric avalanche process

    Ivashkevich, E. V.; Povolotsky, A. M.; Priezzhev, V.B.

    2000-01-01

    Using the Bethe ansatz we obtain the exact solution for the one-dimensional asymmetric avalanche process. We evaluate the velocity of dispersive flow as a function of driving force and the density of particles. The obtained solution shows a dynamical transition from intermittent to continuous flow.

  14. Simulation on flow process of filtered molten metals

    房文斌; 耿耀宏; 魏尊杰; 安阁英; 叶荣茂

    2002-01-01

    Filtration and flow process of molten metals was analyzed by water simulation experiments. Fluid dynamic phenomena of molten metal cells through a foam ceramic filter was described and calculated by ERGOR equation as well. The results show that the filter is most useful for stable molten metals and the filtered flow is laminar, so that inclusions can be removed more effectively.

  15. Documentation of a Conduit Flow Process (CFP) for MODFLOW-2005

    Shoemaker, W. Barclay; Kuniansky, Eve L.; Birk, Steffen; Bauer, Sebastian; Swain, Eric D.

    2007-01-01

    This report documents the Conduit Flow Process (CFP) for the modular finite-difference ground-water flow model, MODFLOW-2005. The CFP has the ability to simulate turbulent ground-water flow conditions by: (1) coupling the traditional ground-water flow equation with formulations for a discrete network of cylindrical pipes (Mode 1), (2) inserting a high-conductivity flow layer that can switch between laminar and turbulent flow (Mode 2), or (3) simultaneously coupling a discrete pipe network while inserting a high-conductivity flow layer that can switch between laminar and turbulent flow (Mode 3). Conduit flow pipes (Mode 1) may represent dissolution or biological burrowing features in carbonate aquifers, voids in fractured rock, and (or) lava tubes in basaltic aquifers and can be fully or partially saturated under laminar or turbulent flow conditions. Preferential flow layers (Mode 2) may represent: (1) a porous media where turbulent flow is suspected to occur under the observed hydraulic gradients; (2) a single secondary porosity subsurface feature, such as a well-defined laterally extensive underground cave; or (3) a horizontal preferential flow layer consisting of many interconnected voids. In this second case, the input data are effective parameters, such as a very high hydraulic conductivity, representing multiple features. Data preparation is more complex for CFP Mode 1 (CFPM1) than for CFP Mode 2 (CFPM2). Specifically for CFPM1, conduit pipe locations, lengths, diameters, tortuosity, internal roughness, critical Reynolds numbers (NRe), and exchange conductances are required. CFPM1, however, solves the pipe network equations in a matrix that is independent of the porous media equation matrix, which may mitigate numerical instability associated with solution of dual flow components within the same matrix. CFPM2 requires less hydraulic information and knowledge about the specific location and hydraulic properties of conduits, and turbulent flow is approximated by

  16. Gravity wave transmission diagram

    Tomikawa, Yoshihiro

    2016-07-01

    A possibility of gravity wave propagation from a source region to the airglow layer around the mesopause has been discussed based on the gravity wave blocking diagram taking into account the critical level filtering alone. This paper proposes a new gravity wave transmission diagram in which both the critical level filtering and turning level reflection of gravity waves are considered. It shows a significantly different distribution of gravity wave transmissivity from the blocking diagram.

  17. 4D flow mri post-processing strategies for neuropathologies

    Schrauben, Eric Mathew

    4D flow MRI allows for the measurement of a dynamic 3D velocity vector field. Blood flow velocities in large vascular territories can be qualitatively visualized with the added benefit of quantitative probing. Within cranial pathologies theorized to have vascular-based contributions or effects, 4D flow MRI provides a unique platform for comprehensive assessment of hemodynamic parameters. Targeted blood flow derived measurements, such as flow rate, pulsatility, retrograde flow, or wall shear stress may provide insight into the onset or characterization of more complex neuropathologies. Therefore, the thorough assessment of each parameter within the context of a given disease has important medical implications. Not surprisingly, the last decade has seen rapid growth in the use of 4D flow MRI. Data acquisition sequences are available to researchers on all major scanner platforms. However, the use has been limited mostly to small research trials. One major reason that has hindered the more widespread use and application in larger clinical trials is the complexity of the post-processing tasks and the lack of adequate tools for these tasks. Post-processing of 4D flow MRI must be semi-automated, fast, user-independent, robust, and reliably consistent for use in a clinical setting, within large patient studies, or across a multicenter trial. Development of proper post-processing methods coupled with systematic investigation in normal and patient populations pushes 4D flow MRI closer to clinical realization while elucidating potential underlying neuropathological origins. Within this framework, the work in this thesis assesses venous flow reproducibility and internal consistency in a healthy population. A preliminary analysis of venous flow parameters in healthy controls and multiple sclerosis patients is performed in a large study employing 4D flow MRI. These studies are performed in the context of the chronic cerebrospinal venous insufficiency hypothesis. Additionally, a

  18. Atomic phase diagram

    LI Shichun

    2004-01-01

    Based on the Thomas-Fermi-Dirac-Cheng model, atomic phase diagram or electron density versus atomic radius diagram describing the interaction properties of atoms of different kinds in equilibrium state is developed. Atomic phase diagram is established based on the two-atoms model. Besides atomic radius, electron density and continuity condition for electron density on interfaces between atoms, the lever law of atomic phase diagram involving other physical parameters is taken into account, such as the binding energy, for the sake of simplicity.

  19. Porthole Extrusion Process Design for Magnesium-Alloy Bumper Back Beam by Using FE Analysis and Extrusion Limit Diagram

    Lee, Sung-Yun; Ko, Dae-Cheol; Lee, Sang-Kon; Lee, In-Kyu; Joeng, Myeong-Sik; Kim, Da Hye; Cho, Yong-Jae

    2014-01-01

    In recent years, several studies with focus on developing state-of-the-art manufacturing technologies have been conducted to produce light vehicles by employing parts made of light materials such as aluminum and magnesium. Of such materials, magnesium has been found to pose numerous issues, because it cannot be deformed (plastic deformation) easily at low temperatures. Furthermore, oxidation on the surface of manganese occurs at high temperatures. This study analyzes the extrusion process for...

  20. A multi-phase flow model for electrospinning process

    Xu Lan

    2013-01-01

    Full Text Available An electrospinning process is a multi-phase and multi-physicical process with flow, electric and magnetic fields coupled together. This paper deals with establishing a multi-phase model for numerical study and explains how to prepare for nanofibers and nanoporous materials. The model provides with a powerful tool to controlling over electrospinning parameters such as voltage, flow rate, and others.

  1. Energy transfer process of anisothermal wall-bounded flows

    Strong temperature gradients introduce a major external agency into the wall-bounded turbulent flows. In these flows, the temperature field and the turbulent velocity field are highly correlated. In fact, standard RANS turbulent models are not able to accurately reproduce these flows. In order to improve the performance of the models, we need to understand how the energy is produced, transferred, and dissipated in a strong anisothermal wall-bounded flow. This letter presents a first detailed investigation on the roles played by each contributor in the energy transfer equation. - Highlights: • Turbulent flows subject to high temperature gradients are considered. • The influence of the “temperature gradients” on the energy transfer process is determined. • Inverse energy cascade in an anisotropic flow is observed

  2. Energy transfer process of anisothermal wall-bounded flows

    Aulery, Frédéric, E-mail: frederic.aulery@gmail.com [PROMES CNRS – UPR 8521, Rambla de la Thermodynamique, Tecnosud, Perpignan (France); Toutant, Adrien [PROMES CNRS – UPR 8521, Rambla de la Thermodynamique, Tecnosud, Perpignan (France); Université de Perpignan Via Domitia, 52 avenue Paul Alduy, 66860 Perpignan Cedex 9 (France); Bataille, Françoise [PROMES CNRS – UPR 8521, Rambla de la Thermodynamique, Tecnosud, Perpignan (France); Florida State University, Department of Mathematics, Tallahassee, FL (United States); Zhou, Ye, E-mail: zhou3@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2015-07-31

    Strong temperature gradients introduce a major external agency into the wall-bounded turbulent flows. In these flows, the temperature field and the turbulent velocity field are highly correlated. In fact, standard RANS turbulent models are not able to accurately reproduce these flows. In order to improve the performance of the models, we need to understand how the energy is produced, transferred, and dissipated in a strong anisothermal wall-bounded flow. This letter presents a first detailed investigation on the roles played by each contributor in the energy transfer equation. - Highlights: • Turbulent flows subject to high temperature gradients are considered. • The influence of the “temperature gradients” on the energy transfer process is determined. • Inverse energy cascade in an anisotropic flow is observed.

  3. Stochastic equations, flows and measure-valued processes

    Dawson, Donald A

    2010-01-01

    We first prove some general results on pathwise uniqueness, comparison property and existence of non-negative strong solutions of stochastic equations driven by white noises and Poisson random measures. The results are then used to prove the strong existence of two classes of stochastic flows associated with coalescents with multiple collisions, that is, generalized Fleming-Viot flows and flows of continuous-state branching processes with immigration. One of them unifies the different treatments of three kinds of flows in Bertoin and Le Gall (2005). Two scaling limit theorems for the generalized Fleming-Viot flows are proved, which lead to sub-critical branching immigration superprocesses. {From} those theorems we derive easily a generalization of the limit theorem for finite point motions of the flows in Bertoin and Le Gall (2006).

  4. XML Schema Modeling through UML Class Diagram

    LUJing-ping; HEYu-lin; LIShang-ping

    2004-01-01

    A three-step XML Schema modeling method is presented, namely first establishing a diagram of conceptual modeling, then transforming it to UML class diagram and finally mapping it to XML Schema. A case study of handling furniture design data is given to illustrate the detail of conversion process.

  5. Accurate, reliable control of process gases by mass flow controllers

    Hardy, J.; McKnight, T.

    1997-02-01

    The thermal mass flow controller, or MFC, has become an instrument of choice for the monitoring and controlling of process gas flow throughout the materials processing industry. These MFCs are used on CVD processes, etching tools, and furnaces and, within the semiconductor industry, are used on 70% of the processing tools. Reliability and accuracy are major concerns for the users of the MFCs. Calibration and characterization technologies for the development and implementation of mass flow devices are described. A test facility is available to industry and universities to test and develop gas floe sensors and controllers and evaluate their performance related to environmental effects, reliability, reproducibility, and accuracy. Additional work has been conducted in the area of accuracy. A gravimetric calibrator was invented that allows flow sensors to be calibrated in corrosive, reactive gases to an accuracy of 0.3% of reading, at least an order of magnitude better than previously possible. Although MFCs are typically specified with accuracies of 1% of full scale, MFCs may often be implemented with unwarranted confidence due to the conventional use of surrogate gas factors. Surrogate gas factors are corrections applied to process flow indications when an MFC has been calibrated on a laboratory-safe surrogate gas, but is actually used on a toxic, or corrosive process gas. Previous studies have indicated that the use of these factors may cause process flow errors of typically 10%, but possibly as great as 40% of full scale. This paper will present possible sources of error in MFC process gas flow monitoring and control, and will present an overview of corrective measures which may be implemented with MFC use to significantly reduce these sources of error.

  6. Difference Decision Diagrams

    Moeller, Jesper; Lichtenberg, Jacob; Andersen, Henrik Reif; Hulgaard, Henrik

    1999-01-01

    This paper describes a new data structure, difference decision diagrams (DDDs), for representing a Boolean logic over inequalities of the form $x-y......This paper describes a new data structure, difference decision diagrams (DDDs), for representing a Boolean logic over inequalities of the form $x-y...

  7. Boolean Expression Diagrams

    Andersen, Henrik Reif; Hulgaard, Henrik

    2002-01-01

    This paper presents a new data structure called boolean expression diagrams (BEDs) for representing and manipulating Boolean functions. BEDs are a generalization of binary decision diagrams (BDDs) which can represent any Boolean circuit in linear space. Two algorithms are described for transforming...

  8. A universal structured-design diagramer

    1981-01-01

    Program (FLOWCHARTER) generates standardized flowcharts and concordances for development and debugging of programs in any language. User describes programming-language grammar, providing syntax rules in Backus-Naur form (BNF), list of semantic rules, and set of concordance rules. Once grammar is described, user supplies only source code of program to be diagrammed. FLOWCHARTER automatically produces flow diagram and concordance. Source code for program is written for PASCAL Release 2 compiler, as distributed by University of Minnesota.

  9. A Conductivity Relationship for Steady-state Unsaturated Flow Processes under Optimal Flow Conditions

    Liu, H. H.

    2010-09-15

    Optimality principles have been used for investigating physical processes in different areas. This work attempts to apply an optimal principle (that water flow resistance is minimized on global scale) to steady-state unsaturated flow processes. Based on the calculus of variations, we show that under optimal conditions, hydraulic conductivity for steady-state unsaturated flow is proportional to a power function of the magnitude of water flux. This relationship is consistent with an intuitive expectation that for an optimal water flow system, locations where relatively large water fluxes occur should correspond to relatively small resistance (or large conductance). Similar results were also obtained for hydraulic structures in river basins and tree leaves, as reported in other studies. Consistence of this theoretical result with observed fingering-flow behavior in unsaturated soils and an existing model is also demonstrated.

  10. Environmental Data Flow Six Sigma Process Improvement Savings Overview

    Paige, Karen S [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-20

    An overview of the Environmental Data Flow Six Sigma improvement project covers LANL’s environmental data processing following receipt from the analytical laboratories. The Six Sigma project identified thirty-three process improvements, many of which focused on cutting costs or reducing the time it took to deliver data to clients.

  11. Modeling Workflow Using UML Activity Diagram

    Wei Yinxing(韦银星); Zhang Shensheng

    2004-01-01

    An enterprise can improve its adaptability in the changing market by means of workflow technologies. In the build time, the main function of Workflow Management System (WFMS) is to model business process. Workflow model is an abstract representation of the real-world business process. The Unified Modeling Language (UML) activity diagram is an important visual process modeling language proposed by the Object Management Group (OMG). The novelty of this paper is representing workflow model by means of UML activity diagram. A translation from UML activity diagram to π-calculus is established. Using π-calculus, the deadlock property of workflow is analyzed.

  12. Rotating thermal flows in natural and industrial processes

    Lappa, Marcello

    2012-01-01

    Rotating Thermal Flows in Natural and Industrial Processes provides the reader with a systematic description of the different types of thermal convection and flow instabilities in rotating systems, as present in materials, crystal growth, thermal engineering, meteorology, oceanography, geophysics and astrophysics. It expressly shows how the isomorphism between small and large scale phenomena becomes beneficial to the definition and ensuing development of an integrated comprehensive framework.  This allows the reader to understand and assimilate the underlying, quintessential mechanisms withou

  13. Subsea flow assurance and process monitoring via gamma radiation

    Condition monitoring and process control with the use of gamma radiation is considered to be the most reliable detection principle for a wide range of applications throughout the oil and gas industries, from measuring mechanical integrity to dynamic process fluid monitoring. The growing numbers of advanced subsea processing projects and pipeline flow assurance studies currently adds an increasing number of subsea applications to the radiation measurement reference list (author) (ml)

  14. POST-PROCESSING TECHNIQUES SUITABILITY FOR MESOLEVEL FREE BOUNDARY FLOWS

    Dimitrovová, Zuzana

    2010-01-01

    Reliable flow simulation software is inevitable to determine an optimal injection strategy in Liquid Composite Molding processes. Several methodologies can be implemented into standard software in order to reduce CPU time. Post-processing techniques might be one of them. Post-processing a finite element solution is a well-known procedure, which consists in a recalculation of the originally obtained quantities such that the rate of convergence increases without the need for expe...

  15. Flows of engineered nanomaterials through the recycling process in Switzerland

    Highlights: • Recycling is one of the likely end-of-life fates of nanoproducts. • We assessed the material flows of four nanomaterials in the Swiss recycling system. • After recycling, most nanomaterials will flow to landfills or incineration plants. • Recycled construction waste, plastics and textiles may contain nanomaterials. - Abstract: The use of engineered nanomaterials (ENMs) in diverse applications has increased during the last years and this will likely continue in the near future. As the number of applications increase, more and more waste with nanomaterials will be generated. A portion of this waste will enter the recycling system, for example, in electronic products, textiles and construction materials. The fate of these materials during and after the waste management and recycling operations is poorly understood. The aim of this work is to model the flows of nano-TiO2, nano-ZnO, nano-Ag and CNT in the recycling system in Switzerland. The basis for this study is published information on the ENMs flows on the Swiss system. We developed a method to assess their flow after recycling. To incorporate the uncertainties inherent to the limited information available, we applied a probabilistic material flow analysis approach. The results show that the recycling processes does not result in significant further propagation of nanomaterials into new products. Instead, the largest proportion will flow as waste that can subsequently be properly handled in incineration plants or landfills. Smaller fractions of ENMs will be eliminated or end up in materials that are sent abroad to undergo further recovery processes. Only a reduced amount of ENMs will flow back to the productive process of the economy in a limited number of sectors. Overall, the results suggest that risk assessment during recycling should focus on occupational exposure, release of ENMs in landfills and incineration plants, and toxicity assessment in a small number of recycled inputs

  16. Flows of engineered nanomaterials through the recycling process in Switzerland

    Caballero-Guzman, Alejandro; Sun, Tianyin; Nowack, Bernd, E-mail: nowack@empa.ch

    2015-02-15

    Highlights: • Recycling is one of the likely end-of-life fates of nanoproducts. • We assessed the material flows of four nanomaterials in the Swiss recycling system. • After recycling, most nanomaterials will flow to landfills or incineration plants. • Recycled construction waste, plastics and textiles may contain nanomaterials. - Abstract: The use of engineered nanomaterials (ENMs) in diverse applications has increased during the last years and this will likely continue in the near future. As the number of applications increase, more and more waste with nanomaterials will be generated. A portion of this waste will enter the recycling system, for example, in electronic products, textiles and construction materials. The fate of these materials during and after the waste management and recycling operations is poorly understood. The aim of this work is to model the flows of nano-TiO{sub 2}, nano-ZnO, nano-Ag and CNT in the recycling system in Switzerland. The basis for this study is published information on the ENMs flows on the Swiss system. We developed a method to assess their flow after recycling. To incorporate the uncertainties inherent to the limited information available, we applied a probabilistic material flow analysis approach. The results show that the recycling processes does not result in significant further propagation of nanomaterials into new products. Instead, the largest proportion will flow as waste that can subsequently be properly handled in incineration plants or landfills. Smaller fractions of ENMs will be eliminated or end up in materials that are sent abroad to undergo further recovery processes. Only a reduced amount of ENMs will flow back to the productive process of the economy in a limited number of sectors. Overall, the results suggest that risk assessment during recycling should focus on occupational exposure, release of ENMs in landfills and incineration plants, and toxicity assessment in a small number of recycled inputs.

  17. Krohne Flow Indicator and High Flow Alarm Local Indicator and High Flow Alarm of Helium Flow from the SCHe Purge Lines C and D to the Process Vent

    MISKA, C.R.

    2000-09-03

    Flow Indicators/alarms FI/FSH-5*52 and -5*72 are located in the process vent lines connected to the 2 psig SCHe purge lines C and D. They monitor the flow from the 2 psig SCHe purge going to the process vent. The switch/alarm is non-safety class GS.

  18. Krohne Flow Indicator and High Flow Alarm - Local Indicator and High Flow Alarm of Helium Flow from the SCHe Purge Lines C and D to the Process Vent

    Flow Indicators/alarms FI/FSH-5*52 and -5*72 are located in the process vent lines connected to the 2 psig SCHe purge lines C and D. They monitor the flow from the 2 psig SCHe purge going to the process vent. The switch/alarm is non-safety class GS

  19. Design build process flow visualization model plant PLTN PWR type

    Scale-down version of nuclear power plant type PWR model and process flow visualization has been design and constructed. This scale-down model includes primary and secondary cooling systems, and transmission line in three dimensional layout with a 1: 33,33 scale. The construction of scale model has been done in five steps that are study literature, field survey, drawing scale design, construction, and test. The results is scale-down model integrated with monitoring system using lab view and interlock system using PLC. The test result shows that process flow has operated as required in design specification. (author)

  20. Square Source Type Diagram

    Aso, N.; Ohta, K.; Ide, S.

    2014-12-01

    Deformation in a small volume of earth interior is expressed by a symmetric moment tensor located on a point source. The tensor contains information of characteristic directions, source amplitude, and source types such as isotropic, double-couple, or compensated-linear-vector-dipole (CLVD). Although we often assume a double couple as the source type of an earthquake, significant non-double-couple component including isotropic component is often reported for induced earthquakes and volcanic earthquakes. For discussions on source types including double-couple and non-double-couple components, it is helpful to display them using some visual diagrams. Since the information of source type has two degrees of freedom, it can be displayed onto a two-dimensional flat plane. Although the diagram developed by Hudson et al. [1989] is popular, the trace corresponding to the mechanism combined by two mechanisms is not always a smooth line. To overcome this problem, Chapman and Leaney [2012] developed a new diagram. This diagram has an advantage that a straight line passing through the center corresponds to the mechanism obtained by a combination of an arbitrary mechanism and a double-couple [Tape and Tape, 2012], but this diagram has some difficulties in use. First, it is slightly difficult to produce the diagram because of its curved shape. Second, it is also difficult to read out the ratios among isotropic, double-couple, and CLVD components, which we want to obtain from the estimated moment tensors, because they do not appear directly on the horizontal or vertical axes. In the present study, we developed another new square diagram that overcomes the difficulties of previous diagrams. This diagram is an orthogonal system of isotropic and deviatoric axes, so it is easy to get the ratios among isotropic, double-couple, and CLVD components. Our diagram has another advantage that the probability density is obtained simply from the area within the diagram if the probability density

  1. Feynman Diagrams for Beginners

    Kumericki, Kresimir

    2016-01-01

    We give a short introduction to Feynman diagrams, with many exercises. Text is targeted at students who had little or no prior exposure to quantum field theory. We present condensed description of single-particle Dirac equation, free quantum fields and construction of Feynman amplitude using Feynman diagrams. As an example, we give a detailed calculation of cross-section for annihilation of electron and positron into a muon pair. We also show how such calculations are done with the aid of computer.

  2. Traffic engineering eye diagram

    Kowalik, Karol; Collier, Martin

    2005-01-01

    It is said that a picture is worth a thousand words - this statement also applies to networking topics. Thus, to effectively monitor network performance we need tools which present the performance metrics in a graphical way which is also clear and informative. We propose a tool for this purpose which we call the traffic engineering eye diagram (TEED). Eye diagrams are used in digital communications to analyse the quality of a digital signal; the TEED can similarly he used in the traffic engin...

  3. Discrete time analysis of batch processes in material flow systems

    Schleyer, Marc

    2007-01-01

    Scope of this work is the development of appropriate models for the evaluation of batch processes in material flow systems. The presented analytical methods support the long range planning in an early planning stage, in which capacities are determined to minimize the facility costs under the condition of cycle time targets.

  4. Coaching, lean processes and the concept of flow

    Skytte Gørtz, Kim Erik

    The chapter takes us inside Nordea Bank to look at how coaching was used to support their leadership development as they underwent a major change effort implementation. Drawing on the literature on Lean processes, flow and coaching, it demonstrates some of the challenges and opportunities of...

  5. Numerical Modeling of Fluid Flow in the Tape Casting Process

    Jabbari, Masoud; Hattel, Jesper Henri

    2011-01-01

    The flow behavior of the fluid in the tape casting process is analyzed. A simple geometry is assumed for running the numerical calculations in ANSYS Fluent and the main parameters are expressed in non-dimensional form. The effect of different values for substrate velocity and pressure force on the...

  6. Digital Image Processing in Investigations of Plasma Flow Structure

    Chumak, Oleksiy; Hrabovský, Milan

    2011-01-01

    Roč. 39, č. 11 (2011), s. 2910-2911. ISSN 0093-3813 R&D Projects: GA TA ČR TA01010300 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma jet * plasma flow fluctuations * image processing Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.174, year: 2011

  7. Multi-phase Flow Modeling applied to Metallurgical Processes

    Stein T. Johansen

    2002-04-01

    Full Text Available Multiphase flow models have been improved significantly during the last two decades. Together with the development of more advanced numerical techniques and faster and cheaper computers we now see that computational fluid dynamics (CFD becomes a powerful tool in predicting the performance of complex industrial processes. In particular the processes faced by the metallurgical industries may serve as examples of such complexity.

  8. Process intensification using a meso-scale oscillatory flow reactor

    Reis, N.; A.A. Vicente; Teixeira, J. A.

    2009-01-01

    Meso-technologies are currently triggering a paradigm change in the design of chemical and biochemical processes. Mass and heat transfer rates can readily be maximised in smaller, sustainable, cheaper and safer plants, whilst virtually reducing the design of (bio) process unit operations to the intrinsic kinetics of the system. A novel meso-scale reactor running with oscillatory flow mixing was recently developed in the University of Minho in collaboration with the University o...

  9. ROLE OF UML SEQUENCE DIAGRAM CONSTRUCTS IN OBJECT LIFECYCLE CONCEPT

    Miroslav Grgec

    2007-06-01

    Full Text Available When modeling systems and using UML concepts, a real system can be viewed in several ways. The RUP (Rational Unified Process defines the "4 + 1 view": 1. Logical view (class diagram (CD, object diagram (OD, sequence diagram (SD, collaboration diagram (COD, state chart diagram (SCD, activity diagram (AD, 2.Process view (use case diagram, CD, OD, SD, COD, SCD, AD, 3. Development view (package diagram, component diagram, 4. Physical view (deployment diagram, and 5. Use case view (use case diagram, OD, SD, COD, SCD, AD which combines the four mentioned above. With sequence diagram constructs we are describing object behavior in scope of one use case and their interaction. Each object in system goes through a so called lifecycle (create, supplement object with data, use object, decommission object. The concept of the object lifecycle is used to understand and formalize the behavior of objects from creation to deletion. With help of sequence diagram concepts our paper will describe the way of interaction modeling between objects through lifeline of each of them, and their importance in software development.

  10. The Classroom as Rhizome: New Strategies for Diagramming Knotted Interactions

    de Freitas, Elizabeth

    2012-01-01

    This article calls attention to the unexamined role of diagrams in educational research and offers examples of alternative diagramming practices or tools that shed light on classroom interaction as a rhizomatic process. Drawing extensively on the work of Latour, Deleuze and Guattari, and Chatelet, this article explores the power of diagramming as…

  11. Impact of flow velocity on biochemical processes - a laboratory experiment

    Boisson, A.; Roubinet, D.; Aquilina, L.; Bour, O.; Davy, P.

    2014-08-01

    Understanding and predicting hydraulic and chemical properties of natural environments are current crucial challenges. It requires considering hydraulic, chemical and biological processes and evaluating how hydrodynamic properties impact on biochemical reactions. In this context, an original laboratory experiment to study the impact of flow velocity on biochemical reactions along a one-dimensional flow streamline has been developed. Based on the example of nitrate reduction, nitrate-rich water passes through plastic tubes at several flow velocities (from 6.2 to 35 mm min-1), while nitrate concentration at the tube outlet is monitored for more than 500 h. This experimental setup allows assessing the biologically controlled reaction between a mobile electron acceptor (nitrate) and an electron donor (carbon) coming from an immobile phase (tube) that produces carbon during its degradation by microorganisms. It results in observing a dynamic of the nitrate transformation associated with biofilm development which is flow-velocity dependent. It is proposed that the main behaviors of the reaction rates are related to phases of biofilm development through a simple analytical model including assimilation. Experiment results and their interpretation demonstrate a significant impact of flow velocity on reaction performance and stability and highlight the relevance of dynamic experiments over static experiments for understanding biogeochemical processes.

  12. Features, Events, and Processes in UZ Flow and Transport

    Unsaturated zone (UZ) flow and radionuclide transport is a component of the natural barriers that affects potential repository performance. The total system performance assessment (TSPA) model, and underlying process models, of this natural barrier component capture some, but not all, of the associated features, events, and processes (FEPs) as identified in the FEPs Database (Freeze, et al. 2001 [154365]). This analysis and model report (AMR) discusses all FEPs identified as associated with UZ flow and radionuclide transport. The purpose of this analysis is to give a comprehensive summary of all UZ flow and radionuclide transport FEPs and their treatment in, or exclusion from, TSPA models. The scope of this analysis is to provide a summary of the FEPs associated with the UZ flow and radionuclide transport and to provide a reference roadmap to other documentation where detailed discussions of these FEPs, treated explicitly in TSPA models, are offered. Other FEPs may be screened out from treatment in TSPA by direct regulatory exclusion or through arguments concerning low probability and/or low consequence of the FEPs on potential repository performance. Arguments for exclusion of FEPs are presented in this analysis. Exclusion of specific FEPs from the UZ flow and transport models does not necessarily imply that the FEP is excluded from the TSPA. Similarly, in the treatment of included FEPs, only the way in which the FEPs are included in the UZ flow and transport models is discussed in this document. This report has been prepared in accordance with the technical work plan for the unsaturated zone subproduct element (CRWMS MandO 2000 [153447]). The purpose of this report is to document that all FEPs are either included in UZ flow and transport models for TSPA, or can be excluded from UZ flow and transport models for TSPA on the basis of low probability or low consequence. Arguments for exclusion are presented in this analysis. Exclusion of specific FEPs from UZ flow

  13. Features, Events, and Processes in UZ Flow and Transport

    J.E. Houseworth

    2001-04-10

    Unsaturated zone (UZ) flow and radionuclide transport is a component of the natural barriers that affects potential repository performance. The total system performance assessment (TSPA) model, and underlying process models, of this natural barrier component capture some, but not all, of the associated features, events, and processes (FEPs) as identified in the FEPs Database (Freeze, et al. 2001 [154365]). This analysis and model report (AMR) discusses all FEPs identified as associated with UZ flow and radionuclide transport. The purpose of this analysis is to give a comprehensive summary of all UZ flow and radionuclide transport FEPs and their treatment in, or exclusion from, TSPA models. The scope of this analysis is to provide a summary of the FEPs associated with the UZ flow and radionuclide transport and to provide a reference roadmap to other documentation where detailed discussions of these FEPs, treated explicitly in TSPA models, are offered. Other FEPs may be screened out from treatment in TSPA by direct regulatory exclusion or through arguments concerning low probability and/or low consequence of the FEPs on potential repository performance. Arguments for exclusion of FEPs are presented in this analysis. Exclusion of specific FEPs from the UZ flow and transport models does not necessarily imply that the FEP is excluded from the TSPA. Similarly, in the treatment of included FEPs, only the way in which the FEPs are included in the UZ flow and transport models is discussed in this document. This report has been prepared in accordance with the technical work plan for the unsaturated zone subproduct element (CRWMS M&O 2000 [153447]). The purpose of this report is to document that all FEPs are either included in UZ flow and transport models for TSPA, or can be excluded from UZ flow and transport models for TSPA on the basis of low probability or low consequence. Arguments for exclusion are presented in this analysis. Exclusion of specific FEPs from UZ flow and

  14. Numerical simulation for thermal flow filling process of casting

    CHEN Ye; ZHAO Yu-hong; HOU Hua

    2006-01-01

    The solution algorithm (SOLA) method was used to solve the velocity and pressure field of the thermal flow filling process, and the volume of fluid (VOF) method for the free surface problem. Since the "donor-acceptor" rule often results in the free interface vague, the explicit difference method was adopted, and a method describing the free surface state at 0<F<1 was proposed to deal with this problem. In order to raise the computation efficiency, such algorithms were investigated and invalidated as: 1) internal and external area separation simplification algorithm; 2) the reducing necessary search area method. With the improved algorithms, the filling processes of the valve cover castings with gravity cast and an up cylinder block casting with low-pressure cast were simulated, the simulation results are believable and the computation efficiency is greatly improved. The SOLA-VOF model and its difference method for thermal fluid flow filling process were introduced.

  15. Analysis of flow processes in homogeneous fluids by decomposition into elementary processes

    A general method for calculation of one-dimensional flows of homogeneous fluids by decomposition into elementary processes is presented. The method, in its more sophisitcated form, finds application in the fields of homogeneous and non-homogeneous flows without work extraction and magneto-hydrodynamic plasma flows, because of its simple calculation procedure without iterations and problems connected to stability and convergence. As an example the procedure was applied to the model of a homogeneous two-phase flow in a boiling saturated fluid. (orig.)

  16. Flow Detection Based on Traffic Video Image Processing

    Peng Shen

    2013-10-01

    Full Text Available Because in the traffic video image processing, the background image gotten from background modeling by traditional k-means clustering algorithm shows a lot of noises, thus the improvement of k-means clustering algorithm is proposed, and has been applied to the vehicle flow detection of traffic video image. By analyzing the vehicle detection method and comparing the flow detection algorithm, the improved k-means clustering algorithm is experimentally tested at last, and carries out software implementation. The experiment shows that the improved algorithm after background modeling is superior to the traditional one in time complexity, it has better adaptivity and robustness, which has increased the effect of vehicle flow detection.

  17. Multilevel flow modelling of process plant for diagnosis and control

    The paper describes the multilevel flow modelling methodology which can be used to construct functional models of energy and material processing systems. The models describe mass and energy flow topology on different levels of abstraction and represent the hierarchical functional structure of complex systems. A model of a nuclear power plant (PWR) is presented in the paper for illustration. Due to the consistency of the method, multilevel flow models provide specifications of plant goals and functions and may be used as a basis for design of computer-based support systems for the plant operator. Plant control requirements can be derived from the models and due to independence of the actual controller implementation the method may be used as basic for design of control strategies and for the allocation of control tasks to the computer and the plant operator. (author)

  18. Multilevel Flow Modelling of Process Plant for Diagnosis and Control

    Lind, Morten

    1982-01-01

    complex systems. A model of a nuclear power plant (PWR) is presented in the paper for illustration. Due to the consistency of the method, multilevel flow models provide specifications of plant goals and functions and may be used as a basis for design of computer-based support systems for the plant...... operator. Plant control requirements can be derived from the models and due to independence of the actual controller implementation the method may be used as a basis for design of control strategies and for the allocation of control tasks to the computer and the plant operator.......The paper describes the multilevel flow modelling methodology which can be used to construct functional models of energy and material processing systems. The models describe mass and energy flow topology on different levels of abstraction and represent the hierarchical functional structure of...

  19. Numerical investigations on dynamic process of muzzle flow

    JIANG Xiao-hai; FAN Bao-chun; LI Hong-zhi

    2008-01-01

    The integrative process of a quiescent projectile accelerated by high-pressure gas to shoot out at a supersonic speed and beyond the range of a precursor flow field Was simulated numerically.The calculation was based on ALE equations and a second-order precision Roe method that adopted chimera grids and a dynamic mesh.From the predicted results,the coupling and interaction among the precursor flow field,propellant gas flow field and high-speed projectile were discussed in detail.The shock-vortex interaction,shockwave reflection,shock-projectile interaction with shock diffraction,and shock focus were clearly demonstrated to explain the effect on the acceleration of the projectile.

  20. Boolean Expression Diagrams

    Andersen, Henrik Reif; Hulgaard, Henrik

    This paper presents a new data structure called Boolean Expression Diagrams (BEDs) for representing and manipulating Boolean functions. BEDs are a generalization of Binary Decision Diagrams (BDDs) which can represent any Boolean circuit in linear space and still maintain many of the desirable...... properties of BDDs. Two algorithms are described for transforming a BED into a reduced ordered BDD. One closely mimics the BDD apply-operator while the other can exploit the structural information of the Boolean expression. The efficacy of the BED representation is demonstrated by verifying that the...

  1. Test Case Generation Based on Use case and Sequence Diagram

    Santosh Kumar Swain; Durga Prasad Mohapatra; Rajib Mall

    2010-01-01

    We present a comprehensive test case generation technique from UML models. We use the features in UML 2.0 sequence diagram including conditions, iterations, asynchronous messages and concurrent components. In our approach, test cases are derived from analysis artifacts such as use cases, their corresponding sequence diagrams and constraints specified across all these artifacts. We construct Use case Dependency Graph (UDG) from use case diagram and Concurrent Control Flow Graph (CCFG) from cor...

  2. Does the butterfly diagram indicate asolar flux-transport dynamo?

    Schuessler, M.; Schmitt, D

    2004-01-01

    We address the question whether the properties of the observed latitude-time diagram of sunspot occurence (the butterfly diagram) provide evidence for the operation of a flux-transport dynamo, which explains the migration of the sunspot zones and the period of the solar cycle in terms of a deep equatorward meridional flow. We show that the properties of the butterfly diagram are equally well reproduced by a conventional dynamo model with migrating dynamo waves, but without transport of magnet...

  3. Processes of Turbulent Liquid Flows in Pipelines and Channels

    R. I. Yesman

    2011-01-01

    Full Text Available The paper proposes a methodology for an analysis and calculation of processes pertaining to turbulent liquid flows in pipes and channels. Various modes of liquid motion in pipelines of thermal power devices and equipment have been considered in the paper.The presented dependences can be used while making practical calculations of losses due to friction in case of transportation of various energy carriers.

  4. FORTES: Forensic Information Flow Analysis of Business Processes

    Accorsi, Rafael; Müller, Günter

    2010-01-01

    Nearly 70% of all business processes in use today rely on automated workflow systems for their execution. Despite the growing expenses in the design of advanced tools for secure and compliant deployment of workflows, an exponential growth of dependability incidents persists. Concepts beyond access control focusing on information flow control offer new paradigms to design security mechanisms for reliable and secure IT-based workflows. This talk presents FORTES, an approach for the forensic...

  5. Cerebral blood flow and mental processes in schizophrenia.

    Liddle, P F; Friston, K.J.; Frith, C D; Frackowiak, R S

    1992-01-01

    The patterns of cerebral blood flow associated with three syndromes of schizophrenic symptoms are compared with the loci of cerebral activation in normal subjects during the performance of mental processes implicated in the three syndromes. The psychomotor poverty syndrome, which has been shown to involve a diminished ability to generate words, is associated with decreased perfusion of the dorsolateral prefrontal cortex at a locus which is activated in normal subjects during the internal gene...

  6. Diagram Study Based on Design Process: Design of Xiaotianchi Hotel in Wuhan%基于设计过程的图解研究——武汉小天池旅馆设计

    翟炳博; 杜小辉

    2011-01-01

    This paper describes the design which overall process focus on diagram study, with the diagram to promote development of design process. Result of the design itself is relegated to the margins.and the occurrence and development of the design process, are chosen by diagram to guide. Design has a clear direction. it becomes a process which is more rational.and the design result is often unpredictable but logical.%该文介绍的设计其整体过程注重图解研究,用图解推动设计过程发展.设计的结果本身被置于次要地位,而设计过程的发生、发展,皆由图解来指导.设计有了明确的方向,其本身成为了一个过程,更加具有理性,而设计结果往往是不可预知但又顺理成章.

  7. Sulfur Flow Analysis for New Generation Steel Manufacturing Process

    HU Chang-qing; ZHANG Chun-xia; HAN Xiao-wei; YIN Rui-yu

    2008-01-01

    Sulfur flow for new generation steel manufacturing process is analyzed by the method of material flow analysis,and measures for SO2 emission reduction are put forward as assessment and target intervention of the results.The results of sulfur flow analysis indicate that 90% of sulfur comes from fuels.Sulfur finally discharges from the steel manufacturing route in various steps,and the main point is BF and BOF slag desulfurization.In sintering process,the sulfur is removed by gasification,and sintering process is the main source of SO2 emission.The sulfur content of coke oven gas (COG) is an important factor affecting SO2 emission.Therefore,SO2 emission reduction should be started from the optimization and integration of steel manufacturing route,sulfur burden should be reduced through energy saving and consumption reduction,and the sulfur content of fuel should be controlled.At the same time,BF and BOF slag desulfurization should be optimized further and coke oven gas and sintering exhausted gas desulfurization should be adopted for SO2 emission reduction and reuse of resource,to achieve harmonic coordination of economic,social,and environmental effects for sustainable development.

  8. Compressing Binary Decision Diagrams

    Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...

  9. Limits of Voronoi Diagrams

    Lindenbergh, R.C.

    2002-01-01

    The classic Voronoi diagram of a configuration of distinct points in the plane associates to each point that part of the plane that is closer to the point than to any other point in the configuration. In this thesis we no longer require all points to be distinct. After the introduction in Chapter

  10. Equational binary decision diagrams

    Groote, J.F.; Pol, J.C. van de

    2000-01-01

    We incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and tautology checkin

  11. Prediction of hygiene in food processing equipment using flow modelling

    Friis, Alan; Jensen, Bo Boye Busk

    Computational fluid dynamics (CFD) has been applied to investigate the design of closed process equipment with respect to cleanability. The CFD simulations were validated using the standardized cleaning test proposed by the European Hygienic Engineering and Design Group. CFD has been proven as a...... tool which can be used by manufacturers to facilitate their equipment design for high hygienic standards before constructing any prototypes. The study of hydrodynamic cleanability of closed processing equipment was discussed based on modelling the flow in a valve house, an up-stand and various...

  12. Prediction of hygiene in food processing equipment using flow modelling

    Friis, Alan; Jensen, Bo Boye Busk

    2002-01-01

    Computational fluid dynamics (CFD) has been applied to investigate the design of closed process equipment with respect to cleanability. The CFD simulations were validated using the standardized cleaning test proposed by the European Hygienic Engineering and Design Group. CFD has been proven as a...... tool which can be used by manufacturers to facilitate their equipment design for high hygienic standards before constructing any prototypes. The study of hydrodynamic cleanability of closed processing equipment was discussed based on modelling the flow in a valve house, an up-stand and various...

  13. Flow effects on benthic stream invertebrates and ecological processes

    Koprivsek, Maja; Brilly, Mitja

    2010-05-01

    Flow is the main abiotic factor in the streams. Flow affects the organisms in many direct and indirect ways. The organisms are directly affected by various hydrodynamic forces and mass transfer processes like drag forces, drift, shear stress, food and gases supply and washing metabolites away. Indirect effects on the organisms are determining and distribution of the particle size and structure of the substrate and determining the morphology of riverbeds. Flow does not affect only on individual organism, but also on many ecological effects. To expose just the most important: dispersal of the organisms, habitat use, resource acquisition, competition and predator-prey interactions. Stream invertebrates are adapted to the various flow conditions in many kinds of way. Some of them are avoiding the high flow with living in a hyporeic zone, while the others are adapted to flow with physical adaptations (the way of feeding, respiration, osmoregulation and resistance to draught), morphological adaptations (dorsoventrally flattened shape of organism, streamlined shape of organism, heterogeneous suckers, silk, claws, swimming hair, bristles and ballast gravel) or with behaviour. As the flow characteristics in a particular stream vary over a broad range of space and time scales, it is necessary to measure accurately the velocity in places where the organisms are present to determine the actual impact of flow on aquatic organisms. By measuring the mean flow at individual vertical in a single cross-section, we cannot get any information about the velocity situation close to the bottom of the riverbed where the stream invertebrates are living. Just measuring the velocity near the bottom is a major problem, as technologies for measuring the velocity and flow of natural watercourses is not adapted to measure so close to the bottom. New researches in the last two decades has shown that the thickness of laminar border layer of stones in the stream is only a few 100 micrometers, what

  14. Investigation of flow and microstructure in rheometric and processing flow conditions for liquid crystalline pitch

    Kundu, Santanu

    The microstructure development within mesophase pitch-based carbon materials depends on the flow history that the pitch is subjected to. Therefore, a fundamental understanding of flow and its influence on the microstructure is required to obtain carbon materials with desired properties. The objective of this research was to investigate the flow and microstructural behavior of a synthetic mesophase pitch (AR-HP) in rheometric and processing flow conditions. In addition, simulation studies were performed to establish a frame work for modeling the flow behavior of this complex material in different flow situations. The steady-shear viscosities obtained from a cone-plate rheometer during increasing rate-sweep experiments exhibited shear-thinning (Region I) and plateau (Region II) responses. However, the slope of the shear-thinning region was only about -0.2, much lower than -0.5 observed in some pitches and liquid-crystalline polymers. This difference could arise from the different molecular constituents of pitches. At higher shear rates, as measured from capillary rheometers, the viscosity values remained almost constant. The transient shear stress responses, as measured from cone-plate rheometer, exhibited nonmonotonic behavior as a function of applied strain at all shear rates and temperatures tested. After rheological experiments, the samples were collected by developing a new experimental protocol for preservation of the sample for microstructural analysis. Microstructural observations obtained from three orthogonal sections, reported for the first time in the literature, indicate that the local maximum in shear stress was due to yielding of initial microstructure. The microstructure became flow oriented with further shearing, and the structure size decreased with increasing shear rates. In addition to high-strain experiments, dynamic experiments were also performed in the linear viscoelastic region where no significant deformation of fluid takes place. The

  15. Dissipation process of binary gas mixtures in thermally relativistic flow

    Yano, Ryosuke

    2016-04-01

    In this paper, dissipation process of binary gas mixtures in thermally relativistic flows is discussed with focus on characteristics of diffusion flux. As an analytical object, we consider the relativistic rarefied-shock layer around a triangular prism. Numerical results for the diffusion flux are compared with the Navier–Stokes–Fourier (NSF) order approximation of the diffusion flux, which is calculated using the diffusion and thermal-diffusion coefficients by Kox et al (1976 Physica A 84 165–74). In the case of uniform flow with small Lorentz contraction, the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is roughly approximated by the NSF order approximation inside the shock wave, whereas the diffusion flux in the vicinity of a wall is markedly different from the NSF order approximation. The magnitude of the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is similar to that of the NSF order approximation inside the shock wave, unlike the pressure deviator, dynamic pressure and heat flux, even when the Lorentz contraction in the uniform flow becomes large, because the diffusion flux does not depend on the generic Knudsen number from its definition in Eckart’s frame. Finally, the author concludes that for accuracy diffusion flux must be calculated using the particle four-flow and averaged four velocity, which are formulated using the four velocity defined by each species of hard spherical particles.

  16. Low resource processing algorithms for laser Doppler blood flow imaging.

    Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; He, Diwei; Morgan, Stephen P

    2011-07-01

    The emergence of full field laser Doppler blood flow imaging systems based on CMOS camera technology means that a large amount of data from each pixel in the image needs to be processed rapidly and system resources need to be used efficiently. Conventional processing algorithms that are utilized in single point or scanning systems are therefore not an ideal solution as they will consume too much system resource. Two processing algorithms that address this problem are described and efficiently implemented in a field programmable gate array. The algorithms are simple enough to use low system resource but effective enough to produce accurate flow measurements. This enables the processing unit to be integrated entirely in an embedded system, such as in an application-specific integrated circuit. The first algorithm uses a short Fourier transformation length (typically 8) but averages the output multiple times (typically 128). The second method utilizes an infinite impulse response filter with a low number of filter coefficients that operates in the time domain and has a frequency-weighted response. The algorithms compare favorably with the reference standard 1024 point fast Fourier transform in terms of both resource usage and accuracy. The number of data words per pixel that need to be stored for the algorithms is 1024 for the reference standard, 8 for the short length Fourier transform algorithm and 5 for the algorithm based on the infinite impulse response filter. Compared to the reference standard the error in the flow calculation is 1.3% for the short length Fourier transform algorithm and 0.7% for the algorithm based on the infinite impulse response filter. PMID:21316289

  17. Post-processing methods of PIV instantaneous flow fields for unsteady flows in turbomachines

    Cavazzini, G; A. Dazin; Pavesi, G; Dupont, P.; Bois, G.

    2012-01-01

    The Particle Image Velocimetry is undoubtedly one of the most important technique in Fluid-dynamics since it allows to obtain a direct and instantaneous visualization of the flow field in a non-intrusive way. This innovative technique spreads in a wide number of research fields, from aerodynamics to medicine, from biology to turbulence researches, from aerodynamics to combustion processes. The book is aimed at presenting the PIV technique and its wide range of possible applications so as to p...

  18. Effects of air flow directions on composting process temperature profile

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO2 and O2 ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2

  19. Analysis of stochastic characteristics of the Benue River flow process

    Martins Y.OTACHE; Mohammad BAKIR; LI Zhijia

    2008-01-01

    Stochastic characteristics of the Benue River streamflow process are examined under conditions of data austerity.The streamflow process is investigated for trend,non-stationarity and seasonality for a time period of 26 years.Results of trend analyses with Mann-Kendall test show that there is no trend in the annual mean discharges.Monthly flow series examined with seasonal Kendall test indicate the presence of positive change in the trend for some months,especially the months of August,January,and February.For the stationarity test,daily and monthly flow series appear to be stationary whereas at 1%,5%,and 10% significant levels,the stationarity alternative hypothesis is rejected for the annual flow series.Though monthly flow appears to be stationary going by this test,because of high seasonality,it could be said to exhibit periodic stationarity based on the seasonality analysis.The following conclusions are drawn:(1) There is seasonality in both the mean and variance with unimodal distribution.(2) Days with high mean also have high variance.(3) Skewness coefficients for the months within the dry season period are greater than those of the wet season period,and seasonal autocorrelations for streamflow during dry season are generally larger than those of the wet season.Precisely,they are significantly different for most of the months.(4) The autocorrelation functions estimated "over time" are greater in the absolute value for data that have not been deseasonalised but were initially normalised by logarithmic transformation only,while autocorrelation functions for i=1,2,…,365 estimated "over realisations" have their coefficients significantly different from other coefficients.

  20. Gravity wave transmission diagram

    Tomikawa, Y.

    2015-01-01

    A new method of obtaining power spectral distribution of gravity waves as a function of ground-based horizontal phase speed and propagation direction from airglow observations has recently been proposed. To explain gravity wave power spectrum anisotropy, a new gravity wave transmission diagram was developed in this study. Gravity wave transmissivity depends on the existence of critical and turning levels for waves that are determined by background horizontal wind distributio...

  1. Compressing Binary Decision Diagrams

    Hansen, Esben Rune; Tiedemann, Peter

    2008-01-01

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1-2 bits per node. Empirical results for our compression technique are presented, including comparisons with previously introduced techniques, showing that the new technique dominate on all tested instances.

  2. Supporting UML Sequence Diagrams with a Processor Net Approach

    Tony Spiteri Staines

    2007-01-01

    UML sequence diagrams focus on the interaction between different classes. For distributed real time transaction processing it is possible to end up with complex sequence diagrams, containing messages related to system processes. It is difficult to examine alternative combinations of message passing. A solution is to translate these diagrams into an executable processor net model. This is based on the ‘actor model’, Petri net concepts and higher order net constructs. A case study taken from a ...

  3. The Massive Thermal Basketball Diagram

    Andersen, J O; Strickland, Michael T; Andersen, Jens O.; Braaten, Eric; Strickland, Michael

    2000-01-01

    The "basketball diagram" is a three-loop vacuum diagram for a scalar fieldtheory that cannot be expressed in terms of one-loop diagrams. We calculatethis diagram for a massive scalar field at nonzero temperature, reducing it toexpressions involving three-dimensional integrals that can be easily evaluatednumerically. We use this result to calculate the free energy for a massivescalar field with a phi^4 interaction to three-loop order.

  4. Wilson Loop diagrams and Positroids

    Agarwala, Susama; Amat, Eloi Marin

    2015-01-01

    In this paper, we study a new application of the positive Grassmanian to Wilson loop diagrams (or MHV diagrams) for scattering amplitudes in N=4 Super Yang-Mill theory ($N=4$ SYM). There has been much interest in studying this theory via the positive Grassmanians using BCFW recursion. This is the first attempt to study MHV diagrams for planar Wilson loop calculations (or planar amplitudes) in terms of positive Grassmannians. We codify Wilson loop diagrams completely in terms of matroids. This...

  5. Which factors, processes and storages influence low flow (Q347)?

    Margreth, Michael; Scherrer, Simon; Smoorenburg, Maarten; Naef, Felix

    2013-04-01

    In Switzerland, estimation of residual water is based on Q347 (flow exceeded during 347 days per year). In ungauged catchments Q347 has to be determined with some simplified approaches. However, these statistical models often provide inaccurate results. The runoff reaction of a river depends on the spatial distribution of the Dominant Runoff Processes (DRP) like Hortonian Overland Flow (HOF), Saturated Overland Flow (SOF), Sub-Surface Flow (SSF) or Deep Percolation (DP) within its catchment area. Low flow is fed by slowly reacting groundwater or deep hillslope storages. These storages are supposed to be located mainly beneath permeable soils in highly permeable bedrock like talus, deposits of debris flows or rock fall, gravel of river deposits, lateral moraines or karst systems, represented in DRP-maps by slowly reacting SOF3-, SSF3- or DP- areas. To better understand these mechanisms, the relation between areas of slowly reacting SOF3, SSF3, DP and the form of the recession curves was analysed in 27 catchments of Swiss Plateau and Jura. Results show, that drainage characteristics and percentage of SOF3-, SSF3- and DP- areas in catchments relate well. The more extended the recharge areas, the smoother and longer the recession curves. For example the recession to Q347 in the Eulach River (Area of SOF3, SSF3, DP = 54%) takes 95 days, in the Töss River only 10 days (Area of SOF3, SSF3, DP = 9%). However, the differences in Q347 cannot be explained with these percentages. The runoff volume from Q347 to Q365 in 14 investigated catchments is only between 0.2 and 14 mm, about 1.5% of the annual precipitation volume. It seems that the storages mentioned above do not contribute significantly any more, when the discharge falls below Q347. It was found that catchments with high Q347 consist mainly of sandstone, conglomerate or large scaled wetlands. It seems that mainly porous and fissured solid rocks contribute to Q347. Very small Q347 are usually caused by seepage loss of

  6. Groundwater flow and sorption processes in fractured rocks (I)

    Kim, Won Young; Woo, Nam Chul; Yum, Byoung Woo; Choi, Young Sub; Chae, Byoung Kon; Kim, Jung Yul; Kim, Yoo Sung; Hyun, Hye Ja; Lee, Kil Yong; Lee, Seung Gu; Youn, Youn Yul; Choon, Sang Ki [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    This study is objected to characterize groundwater flow and sorption processes of the contaminants (ground-water solutes) along the fractured crystalline rocks in Korea. Considering that crystalline rock mass is an essential condition for using underground space cannot be overemphasized the significance of the characterizing fractured crystalline rocks. the behavior of the groundwater contaminants is studied in related to the subsurface structure, and eventually a quantitative technique will be developed to evaluate the impacts of the contaminants on the subsurface environments. The study has been carried at the Samkwang mine area in the Chung-Nam Province. The site has Pre-Cambrian crystalline gneiss as a bedrock and the groundwater flow system through the bedrock fractures seemed to be understandable with the study on the subsurface geologic structure through the mining tunnels. Borehole tests included core logging, televiewer logging, constant pressure fixed interval length tests and tracer tests. The results is summarized as follows; 1) To determine the hydraulic parameters of the fractured rock, the transient flow analysis produce better results than the steady - state flow analysis. 2) Based on the relationship between fracture distribution and transmissivities measured, the shallow part of the system could be considered as a porous and continuous medium due to the well developed fractures and weathering. However, the deeper part shows flow characteristics of the fracture dominant system, satisfying the assumptions of the Cubic law. 3) Transmissivities from the FIL test were averaged to be 6.12 x 10{sup -7}{sub m}{sup 2}{sub /s}. 4) Tracer tests result indicates groundwater flow in the study area is controlled by the connection, extension and geometry of fractures in the bedrock. 5) Hydraulic conductivity of the tracer-test interval was in maximum of 7.2 x 10{sup -6}{sub m/sec}, and the effective porosity of 1.8 %. 6) Composition of the groundwater varies

  7. Traffic dynamics: Its impact on the Macroscopic Fundamental Diagram

    Knoop, Victor L.; van Lint, Hans; Hoogendoorn, Serge P.

    2015-11-01

    Literature shows that-under specific conditions-the Macroscopic Fundamental Diagram (MFD) describes a crisp relationship between the average flow (production) and the average density in an entire network. The limiting condition is that traffic conditions must be homogeneous over the whole network. Recent works describe hysteresis effects: systematic deviations from the MFD as a result of loading and unloading. This article proposes a two dimensional generalization of the MFD, the so-called Generalized Macroscopic Fundamental Diagram (GMFD), which relates the average flow to both the average density and the (spatial) inhomogeneity of density. The most important contribution is that we show this is a continuous function, of which the MFD is a projection. Using the GMFD, we can describe the mentioned hysteresis patterns in the MFD. The underlying traffic phenomenon explaining the two dimensional surface described by the GMFD is that congestion concentrates (and subsequently spreads out) around the bottlenecks that oversaturate first. We call this the nucleation effect. Due to this effect, the network flow is not constant for a fixed number of vehicles as predicted by the MFD, but decreases due to local queueing and spill back processes around the congestion "nuclei". During this build up of congestion, the production hence decreases, which gives the hysteresis effects.

  8. Features, Events and Processes in UZ Flow and Transport

    P. Persoff

    2005-08-04

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA.

  9. Features, Events, and Processes in UZ Flow and Transport

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA

  10. Features, Events and Processes in UZ Flow and Transport

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA

  11. The process flow and structure of an integrated stroke strategy

    Emma F. van Bussel

    2013-06-01

    Full Text Available Introduction: In the Canadian province of Alberta access and quality of stroke care were suboptimal, especially in remote areas. The government introduced the Alberta Provincial Stroke Strategy (APSS in 2005, an integrated strategy to improve access to stroke care, quality and efficiency which utilizes telehealth. Research question: What is the process flow and the structure of the care pathways of the APSS? Methodology: Information for this article was obtained using documentation, archival APSS records, interviews with experts, direct observation and participant observation. Results: The process flow is described. The APSS integrated evidence-based practice, multidisciplinary communication, and telestroke services. It includes regular quality evaluation and improvement. Conclusion: Access, efficiency and quality of care improved since the start of the APSS across many domains, through improvement of expertise and equipment in small hospitals, accessible consultation of stroke specialists using telestroke, enhancing preventive care, enhancing multidisciplinary collaboration, introducing uniform best practice protocols and bypass-protocols for the emergency medical services. Discussion: The APSS overcame substantial obstacles to decrease discrepancies and to deliver integrated higher quality care. Telestroke has proven itself to be safe and feasible. The APSS works efficiently, which is in line to other projects worldwide, and is, based on limited results, cost effective. Further research on cost-effectiveness is necessary.

  12. The process flow and structure of an integrated stroke strategy

    Emma F. van Bussel

    2013-06-01

    Full Text Available Introduction: In the Canadian province of Alberta access and quality of stroke care were suboptimal, especially in remote areas. The government introduced the Alberta Provincial Stroke Strategy (APSS in 2005, an integrated strategy to improve access to stroke care, quality and efficiency which utilizes telehealth. Research question: What is the process flow and the structure of the care pathways of the APSS?Methodology: Information for this article was obtained using documentation, archival APSS records, interviews with experts, direct observation and participant observation.Results: The process flow is described. The APSS integrated evidence-based practice, multidisciplinary communication, and telestroke services. It includes regular quality evaluation and improvement.Conclusion: Access, efficiency and quality of care improved since the start of the APSS across many domains, through improvement of expertise and equipment in small hospitals, accessible consultation of stroke specialists using telestroke, enhancing preventive care, enhancing multidisciplinary collaboration, introducing uniform best practice protocols and bypass-protocols for the emergency medical services.Discussion: The APSS overcame substantial obstacles to decrease discrepancies and to deliver integrated higher quality care. Telestroke has proven itself to be safe and feasible. The APSS works efficiently, which is in line to other projects worldwide, and is, based on limited results, cost effective. Further research on cost-effectiveness is necessary.

  13. Soil Heat Flow. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Simpson, James R.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Soil heat flow and the resulting soil temperature distributions have ecological consequences…

  14. Does the butterfly diagram indicate asolar flux-transport dynamo?

    Schüssler, M

    2004-01-01

    We address the question whether the properties of the observed latitude-time diagram of sunspot occurence (the butterfly diagram) provide evidence for the operation of a flux-transport dynamo, which explains the migration of the sunspot zones and the period of the solar cycle in terms of a deep equatorward meridional flow. We show that the properties of the butterfly diagram are equally well reproduced by a conventional dynamo model with migrating dynamo waves, but without transport of magnetic flux by a flow. These properties seem to be generic for an oscillatory and migratory field of dipole parity and thus do not permit an observational distinction between different dynamo approaches.

  15. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  16. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R

    Boutros Paul C

    2011-01-01

    Full Text Available Abstract Background Visualization of orthogonal (disjoint or overlapping datasets is a common task in bioinformatics. Few tools exist to automate the generation of extensively-customizable, high-resolution Venn and Euler diagrams in the R statistical environment. To fill this gap we introduce VennDiagram, an R package that enables the automated generation of highly-customizable, high-resolution Venn diagrams with up to four sets and Euler diagrams with up to three sets. Results The VennDiagram package offers the user the ability to customize essentially all aspects of the generated diagrams, including font sizes, label styles and locations, and the overall rotation of the diagram. We have implemented scaled Venn and Euler diagrams, which increase graphical accuracy and visual appeal. Diagrams are generated as high-definition TIFF files, simplifying the process of creating publication-quality figures and easing integration with established analysis pipelines. Conclusions The VennDiagram package allows the creation of high quality Venn and Euler diagrams in the R statistical environment.

  17. Wilson Loop Diagrams and Positroids

    Agarwala, Susama; Marin-Amat, Eloi

    2016-07-01

    In this paper, we study a new application of the positive Grassmannian to Wilson loop diagrams (or MHV diagrams) for scattering amplitudes in N= 4 Super Yang-Mill theory (N = 4 SYM). There has been much interest in studying this theory via the positive Grassmannians using BCFW recursion. This is the first attempt to study MHV diagrams for planar Wilson loop calculations (or planar amplitudes) in terms of positive Grassmannians. We codify Wilson loop diagrams completely in terms of matroids. This allows us to apply the combinatorial tools in matroid theory used to identify positroids (non-negative Grassmannians) to Wilson loop diagrams. In doing so, we find that certain non-planar Wilson loop diagrams define positive Grassmannians. While non-planar diagrams do not have physical meaning, this finding suggests that they may have value as an algebraic tool, and deserve further investigation.

  18. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  19. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II)

  20. Influence diagram in evaluating the subjective judgment

    The author developed the idea of the subjective influence diagrams to evaluate subjective judgment. The subjective judgment of a stake holder is a primary decision making proposition. It involves a basic decision process an the individual attitude of the stake holder for his decision purpose. The subjective judgment dominates the some final decisions. A complex decision process may include the subjective judgment. An influence diagram framework is a simplest tool for analyzing subjective judgment process. In the framework, the characters of influence diagrams generate the describing the analyzing, and the evaluating of the subjective judgment. The relationship between the information and the decision, such as independent character between them, is the main issue. Then utility function is the calculating tool to evaluation, the stake holder can make optimal decision. Through the analysis about the decision process and relationship, the building process of the influence diagram identically describes the subjective judgment. Some examples are given to explain the property of subjective judgment and the analysis process

  1. Dissipation process of binary mixture gas in thermally relativistic flow

    Yano, Ryosuke

    2016-01-01

    In this paper, we discuss dissipation process of the binary mixture gas in the thermally relativistic flow \\textcolor{red}{by focusing on the characteristics of the diffusion flux}. As an analytical object, we consider the relativistic rarefied-shock layer problem around the triangle prism. Numerical results of the diffusion flux are compared with the Navier-Stokes-Fourier (NSF) order approximation of the diffusion flux, which is calculated using the diffusion and thermal-diffusion coefficients by Kox \\textit{et al}. [Physica A, 84, 1, pp.165-174 (1976)]. In the case of the uniform flow with the small Lorentz contraction, the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is roughly approximated by the NSF order approximation inside the shock wave, whereas the diffusion flux in the vicinity of the wall is markedly different from the NSF order approximation. The magnitude of the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is simil...

  2. Features, Events, and Processes in SZ Flow and Transport

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), (f) (DIRS 156605). This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded)

  3. Features, Events, and Processes in SZ Flow and Transport

    K. Economy

    2004-11-16

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), (f) (DIRS 156605). This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  4. Features, Events, and Processes in SZ Flow and Transport

    S. Kuzio

    2005-08-20

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.11(d), (e), (f) [DIRS 173273]. This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  5. Features, Events, and Processes in SZ Flow and Transport

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.11(d), (e), (f) [DIRS 173273]. This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded)

  6. Coded ultrasound for blood flow estimation using subband processing

    Gran, Fredrik; Udesen, Jesper; Nielsen, Michael bachmann; Jensen, Jørgen Arendt

    2007-01-01

    coded signals are used to increase SNR, followed by sub-band processing. The received broadband signal, is filtered using a set of narrow-band filters. Estimating the velocity in each of the bands and averaging the results yields better performance compared to what would be possible when transmitting a......This paper further investigates the use of coded excitation for blood flow estimation in medical ultrasound. Traditional autocorrelation estimators use narrow-band excitation signals to provide sufficient signal-to-noise-ratio (SNR) and velocity estimation performance. In this paper, broadband...... excitation signal is broadband and has good spatial resolution after pulse compression. Two different codin-schemes are used in this paper, Barker codes and Golay codes. The performance of the codes for velocity estimation is compared to a conventional approach transmitting a narrow-band pulse. The study was...

  7. Handling geophysical flows: Numerical modelling using Graphical Processing Units

    Garcia-Navarro, Pilar; Lacasta, Asier; Juez, Carmelo; Morales-Hernandez, Mario

    2016-04-01

    Computational tools may help engineers in the assessment of sediment transport during the decision-making processes. The main requirements are that the numerical results have to be accurate and simulation models must be fast. The present work is based on the 2D shallow water equations in combination with the 2D Exner equation [1]. The resulting numerical model accuracy was already discussed in previous work. Regarding the speed of the computation, the Exner equation slows down the already costly 2D shallow water model as the number of variables to solve is increased and the numerical stability is more restrictive. On the other hand, the movement of poorly sorted material over steep areas constitutes a hazardous environmental problem. Computational tools help in the predictions of such landslides [2]. In order to overcome this problem, this work proposes the use of Graphical Processing Units (GPUs) for decreasing significantly the simulation time [3, 4]. The numerical scheme implemented in GPU is based on a finite volume scheme. The mathematical model and the numerical implementation are compared against experimental and field data. In addition, the computational times obtained with the Graphical Hardware technology are compared against Single-Core (sequential) and Multi-Core (parallel) CPU implementations. References [Juez et al.(2014)] Juez, C., Murillo, J., & Garca-Navarro, P. (2014) A 2D weakly-coupled and efficient numerical model for transient shallow flow and movable bed. Advances in Water Resources. 71 93-109. [Juez et al.(2013)] Juez, C., Murillo, J., & Garca-Navarro, P. (2013) . 2D simulation of granular flow over irregular steep slopes using global and local coordinates. Journal of Computational Physics. 225 166-204. [Lacasta et al.(2014)] Lacasta, A., Morales-Hernndez, M., Murillo, J., & Garca-Navarro, P. (2014) An optimized GPU implementation of a 2D free surface simulation model on unstructured meshes Advances in Engineering Software. 78 1-15. [Lacasta

  8. Energy Tracking Diagrams

    Scherr, Rachel E.; Harrer, Benedikt W.; Close, Hunter G.; Daane, Abigail R.; DeWater, Lezlie S.; Robertson, Amy D.; Seeley, Lane; Vokos, Stamatis

    2016-02-01

    Energy is a crosscutting concept in science and features prominently in national science education documents. In the Next Generation Science Standards, the primary conceptual learning goal is for learners to conserve energy as they track the transfers and transformations of energy within, into, or out of the system of interest in complex physical processes. As part of tracking energy transfers among objects, learners should (i) distinguish energy from matter, including recognizing that energy flow does not uniformly align with the movement of matter, and should (ii) identify specific mechanisms by which energy is transferred among objects, such as mechanical work and thermal conduction. As part of tracking energy transformations within objects, learners should (iii) associate specific forms with specific models and indicators (e.g., kinetic energy with speed and/or coordinated motion of molecules, thermal energy with random molecular motion and/or temperature) and (iv) identify specific mechanisms by which energy is converted from one form to another, such as incandescence and metabolism. Eventually, we may hope for learners to be able to optimize systems to maximize some energy transfers and transformations and minimize others, subject to constraints based in both imputed mechanism (e.g., objects must have motion energy in order for gravitational energy to change) and the second law of thermodynamics (e.g., heating is irreversible). We hypothesize that a subsequent goal of energy learning—innovating to meet socially relevant needs—depends crucially on the extent to which these goals have been met.

  9. Parallel Computation of Feynman diagrams with DIANA

    Tentyukov, M.; Fleischer, J.

    2003-01-01

    Co-operation of the Feynman DIagram ANAlyzer (DIANA) with the underlying operational system (UNIX) is presented. We discuss operators to run external commands and a recent development of parallel processing facilities and an extension in the spirit of a component model.

  10. Self Cleaning HEPA Filtration without Interrupting Process Flow

    The strategy of protecting the traditional glass fibre HEPA filtration train from it's blinding contamination and the recovery of dust by the means of self cleaning, pre-filtration is a proven means in the reduction of ultimate disposal volumes and has been used within the Fuel Production Industry. However, there is an increasing demand in nuclear applications requiring elevated operating temperatures, fire resistance, moisture resistance and chemical composition that the existing glass fibre HEPA filtration cannot accommodate, which can be remedied by the use of a metallic HEPA filter media. Previous research (Bergman et al 1997, Moore et al 1992) suggests that the then costs to the DOE, based on a five year life cycle, was $29.5 million for the installation, testing, removal and disposal of glass fibre HEPA filtration trains. Within these costs, $300 was the value given to the filter and $4,450 was given to the peripheral activity. Development of a low cost, cleanable, metallic, direct replacement of the traditional filter train will the clear solution. The Bergman et al work has suggested that a 1000 ft3/min, cleanable, stainless HEPA could be commercially available for $5,000 each, whereas the industry has determined that the truer cost of such an item in isolation would be closer to $15,000. This results in a conflict within the requirement between 'low cost' and 'stainless HEPA'. By proposing a system that combines metallic HEPA filtration with the ability to self clean without interrupting the process flow, the need for a tradition HEPA filtration train will be eliminated and this dramatically reduces the resources required for cleaning or disposal, thus presenting a route to reducing ultimate costs. The paper will examine the performance characteristics, filtration efficiency, flow verses differential pressure and cleanability of a self cleaning HEPA grade sintered metal filter element, together with data to prove the contention. (authors)

  11. Engineering Holographic Superconductor Phase Diagrams

    Chen, Jiunn-Wei; Dai, Shou-Huang; Maity, Debaprasad; Zhang, Yun-Long(State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China)

    2016-01-01

    We study how to engineer holographic models with features of a high temperature superconductor phase diagram. We introduce a field in the bulk which provides a tunable "doping" parameter in the boundary theory. By designing how this field changes the effective masses of other order parameter fields, desired phase diagrams can be engineered. We give examples of generating phase diagrams with phase boundaries similar to a superconducting dome and an anti-ferromagnetic phase by including two ord...

  12. An Automated Approach to Transform Use Cases into Activity Diagrams

    Yue, Tao; Briand, Lionel C.; Labiche, Yvan

    Use cases are commonly used to structure and document requirements while UML activity diagrams are often used to visualize and formalize use cases, for example to support automated test case generation. Therefore the automated support for the transition from use cases to activity diagrams would provide significant, practical help. Additionally, traceability could be established through automated transformation, which could then be used for instance to relate requirements to design decisions and test cases. In this paper, we propose an approach to automatically generate activity diagrams from use cases while establishing traceability links. Data flow information can also be generated and added to these activity diagrams. Our approach is implemented in a tool, which we used to perform five case studies. The results show that high quality activity diagrams can be generated. Our analysis also shows that our approach outperforms existing academic approaches and commercial tools.

  13. Feynman Diagrams and Rooted Maps

    Prunotto, A; Czerski, P

    2013-01-01

    The {\\em Rooted Maps Theory}, a branch of the Theory of Homology, is shown to be a powerful tool for investigating the topological properties of Feynman diagrams, related to the single particle propagator in the quantum many-body systems. The numerical correspondence between the number of this class of Feynman diagrams as a function of perturbative order and the number of rooted maps as a function of the number of edges is studied. A graphical procedure to associate Feynman diagrams and rooted maps is then stated. Finally, starting from rooted maps principles, an original definition of the {\\em genus of a Feynman diagram}, which totally differs from the usual one, is given.

  14. Prediction of the decay process in turbulent swirl flow

    Algifri, A. H.; Bhardwaj, R. K.; Rao, Y. V. N.

    The paper describes a numerical procedure for predicting the decay of a swirl flow by computing the swirl intensity and tangential and axial velocity distributions at any downstream section of the pipe from the flow parameters at the inlet of the test pipe. The predictions were compared with experimental results obtained on a flow in a test pipe of 74-mm-diameter and 7400-mm-length. Air was used as the working fluid; its stream was given a swirling motion by means of a radial cascade with adjustable blades installed at the inlet. The flow in this set-up was created by a blower, and the rate of flow was regulated by means of a throttling disk. Data obtained on four different flows on the variation of the swirl number along the axis of the test pipe agreed with theoretical predictions within the range of experimental errors. A flow chart for the computational procedure is included.

  15. Equivalent Temperature-Enthalpy Diagram for the Study of Ejector Refrigeration Systems

    Mohammed Khennich

    2014-05-01

    Full Text Available The Carnot factor versus enthalpy variation (heat diagram has been used extensively for the second law analysis of heat transfer processes. With enthalpy variation (heat as the abscissa and the Carnot factor as the ordinate the area between the curves representing the heat exchanging media on this diagram illustrates the exergy losses due to the transfer. It is also possible to draw the paths of working fluids in steady-state, steady-flow thermodynamic cycles on this diagram using the definition of “the equivalent temperature” as the ratio between the variations of enthalpy and entropy in an analyzed process. Despite the usefulness of this approach two important shortcomings should be emphasized. First, the approach is not applicable for the processes of expansion and compression particularly for the isenthalpic processes taking place in expansion valves. Second, from the point of view of rigorous thermodynamics, the proposed ratio gives the temperature dimension for the isobaric processes only. The present paper proposes to overcome these shortcomings by replacing the actual processes of expansion and compression by combinations of two thermodynamic paths: isentropic and isobaric. As a result the actual (not ideal refrigeration and power cycles can be presented on equivalent temperature versus enthalpy variation diagrams. All the exergy losses, taking place in different equipments like pumps, turbines, compressors, expansion valves, condensers and evaporators are then clearly visualized. Moreover the exergies consumed and produced in each component of these cycles are also presented. The latter give the opportunity to also analyze the exergy efficiencies of the components. The proposed diagram is finally applied for the second law analysis of an ejector based refrigeration system.

  16. Extended sequence diagram for human system interaction

    Unified Modeling Language (UML) is a modeling language in the field of object oriented software engineering. The sequence diagram is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a message sequence chart. It depicts the objects and classes involved in the scenario and the sequence of messages exchanged between the objects needed to carry out the functionality of the scenario. This paper proposes the Extended Sequence Diagram (ESD), which is capable of depicting human system interaction for nuclear power plants, as well as cognitive process of operators analysis. In the conventional sequence diagram, there is a limit to only identify the activities of human and systems interactions. The ESD is extended to describe operators' cognitive process in more detail. The ESD is expected to be used as a task analysis method for describing human system interaction. The ESD can also present key steps causing abnormal operations or failures and diverse human errors based on cognitive condition

  17. Averaging processes in granular flows driven by gravity

    Rossi, Giulia; Armanini, Aronne

    2016-04-01

    One of the more promising theoretical frames to analyse the two-phase granular flows is offered by the similarity of their rheology with the kinetic theory of gases [1]. Granular flows can be considered a macroscopic equivalent of the molecular case: the collisions among molecules are compared to the collisions among grains at a macroscopic scale [2,3]. However there are important statistical differences in dealing with the two applications. In the two-phase fluid mechanics, there are two main types of average: the phasic average and the mass weighed average [4]. The kinetic theories assume that the size of atoms is so small, that the number of molecules in a control volume is infinite. With this assumption, the concentration (number of particles n) doesn't change during the averaging process and the two definitions of average coincide. This hypothesis is no more true in granular flows: contrary to gases, the dimension of a single particle becomes comparable to that of the control volume. For this reason, in a single realization the number of grain is constant and the two averages coincide; on the contrary, for more than one realization, n is no more constant and the two types of average lead to different results. Therefore, the ensamble average used in the standard kinetic theory (which usually is the phasic average) is suitable for the single realization, but not for several realization, as already pointed out in [5,6]. In the literature, three main length scales have been identified [7]: the smallest is the particles size, the intermediate consists in the local averaging (in order to describe some instability phenomena or secondary circulation) and the largest arises from phenomena such as large eddies in turbulence. Our aim is to solve the intermediate scale, by applying the mass weighted average, when dealing with more than one realizations. This statistical approach leads to additional diffusive terms in the continuity equation: starting from experimental

  18. Evaluation of biomass gasification in a ternary diagram

    The present paper addresses the development of an alternative approach to illustrate biomass gasification in a ternary diagram which is constructed using data from thermodynamic equilibrium modeling of air-blown atmospheric wood gasification. It allows the location of operation domains of slagging entrained-flow, fluidized-bed/dry-ash entrained-flow and fixed/moving-bed gasification systems depending on technical limitations mainly due to ash melting behavior. Performance parameters, e.g. cold gas efficiency or specific syngas production, and process parameters such as temperature and carbon conversion are displayed in the diagram depending on the three independent mass flows representing (1) the gasifying agent, (2) the dry biomass and (3) the moisture content of the biomass. The graphical approach indicates the existence of maxima for cold gas efficiency (84.9%), syngas yield (1.35 m3 (H2 + CO STP)/kg (waf)) and conversion of carbon to CO (81.1%) under dry air-blown conditions. The fluidized-bed/dry-ash entrained-flow processes have the potential to reach these global maxima since they can operate in the identified temperature range from 700 to 950 °C. Although using air as a gasifying agent, the same temperature range posses a potential of H2/CO ratios up to 2.0 at specific syngas productions of 1.15 m3 (H2 + CO STP)/kg (waf). Fixed/moving-bed and fluidized-bed systems can approach a dry product gas LHV from 3.0 to 5.5 MJ/m3 (dry STP). The ternary diagram was also used to study the increase of gasifying agent oxygen fraction from 21 to 99 vol.%. While the dry gas LHV can be increased significantly, the maxima of cold gas efficiency (+6.5%) and syngas yield (+7.4%) are elevated only slightly. - Highlights: • Novel graphical approach for comprehensive assessment of biomass gasification. • Parameters fields for temperature, conversion, cold gas efficiency, syngas yield etc. • Identification of operation ranges for entrained, fluid and moving

  19. DIAGEN-generator of inelastic nucleus-nucleus interaction diagrams

    Description of the program code generating inelastic nucleus-nucleus interaction diagrams is given. Probabilities of various diagram appearance are determined within the framework of Glauber approximation. The code allows one to determine cross sections of any processes and the number of spectator nucleons. 12 refs.; 2 figs

  20. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    Yorstos, Yannis C.

    2003-03-19

    The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress.

  1. Perturbations to the Hubble diagram

    Schucker, Thomas; Zouzou, Ilhem

    2005-01-01

    We compute the linear responses of the Hubble diagram to small scalar perturbations in the Robertson-Walker metric and to small peculiar velocities of emitter and receiver. We discuss the monotonicity constraint of the Hubble diagram in the light of these responses.

  2. Diagrams and Proofs in Analysis

    Carter, Jessica M H Grund

    2010-01-01

    The article discusses the role of diagrams in mathematical reasoning based on a case study in analysis.   In the presented example certain combinatorial expressions were first found by using diagrams. In the published proofs the pictures are replaced by reasoning about permutation groups. This...

  3. Simulation of fluid flow system in process industries

    Khamkham, Nasser E

    2000-01-01

    A comprehensive and integrated suite of computer software has been developed to simulate the steady, one-dimensional, incompressible fluid flow in pipeline networks. The computer program accommodates Newtonian liquids, but does not generally apply to gas flow unless the assumption of constant density is acceptable. The computer program is written in C language, to solve the basic pipe system equations using the linear theory method. This computer program is written to analyse steady state...

  4. Para-equilibrium phase diagrams

    Highlights: • A rapidly cooled system may attain a state of para-equilibrium. • In this state rapidly diffusing elements reach equilibrium but others are immobile. • Application of the Phase Rule to para-equilibrium phase diagrams is discussed. • A general algorithm to calculate para-equilibrium phase diagrams is described. - Abstract: If an initially homogeneous system at high temperature is rapidly cooled, a temporary para-equilibrium state may result in which rapidly diffusing elements have reached equilibrium but more slowly diffusing elements have remained essentially immobile. The best known example occurs when homogeneous austenite is quenched. A para-equilibrium phase assemblage may be calculated thermodynamically by Gibbs free energy minimization under the constraint that the ratios of the slowly diffusing elements are the same in all phases. Several examples of calculated para-equilibrium phase diagram sections are presented and the application of the Phase Rule is discussed. Although the rules governing the geometry of these diagrams may appear at first to be somewhat different from those for full equilibrium phase diagrams, it is shown that in fact they obey exactly the same rules with the following provision. Since the molar ratios of non-diffusing elements are the same in all phases at para-equilibrium, these ratios act, as far as the geometry of the diagram is concerned, like “potential” variables (such as T, pressure or chemical potentials) rather than like “normal” composition variables which need not be the same in all phases. A general algorithm to calculate para-equilibrium phase diagrams is presented. In the limit, if a para-equilibrium calculation is performed under the constraint that no elements diffuse, then the resultant phase diagram shows the single phase with the minimum Gibbs free energy at any point on the diagram; such calculations are of interest in physical vapor deposition when deposition is so rapid that phase

  5. Spin wave Feynman diagram vertex computation package

    Price, Alexander; Javernick, Philip; Datta, Trinanjan

    Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.

  6. The Genesis of Feynman Diagrams

    Wuthrich, Adrian

    2011-01-01

    In a detailed reconstruction of the genesis of Feynman diagrams the author reveals that their development was constantly driven by the attempt to resolve fundamental problems concerning the uninterpretable infinities that arose in quantum as well as classical theories of electrodynamic phenomena. Accordingly, as a comparison with the graphical representations that were in use before Feynman diagrams shows, the resulting theory of quantum electrodynamics, featuring Feynman diagrams, differed significantly from earlier versions of the theory in the way in which the relevant phenomena were concep

  7. Pedagogical and curricular thinking of professional astronomers teaching the Hertzsprung-Russell diagram in introductory astronomy courses for non-science majors

    Brogt, Erik

    2009-06-01

    This qualitative study explores the pedagogical and curricular thinking of five professional astronomers, faculty at a university, about teaching the Hertzsprung-Russell diagram in introductory astronomy courses for non-science majors. Data sources for this study included two semi-structured interviews per participant, in which they were asked about teaching the Hertzsprung-Russell diagram, as well as about the introductory course in general. In addition, participants were asked to complete four cognitive tasks; the creation of a lesson plan, a concept map on how they would like their students to think about the Hertzsprung-Russell diagram at the end of the course, a Pathfinder network rating task, and responding to stereotypical student statements regarding the Hertzsprung-Russell diagram. The data was analyzed using a case study approach, followed by a discussion of themes that emerged from the data. Results indicate that participants had primarily affect and process goals for the course, rather than content goals. In addition, they wanted students to view the HR diagram as a part of a flow chart, where input physics (both observed and inferred properties of stars) leads to the construction of the HR diagram, which in turn is used to make inferences about stellar evolution. Participants identified several student difficulties with the HR diagram, among which interpreting a graph was the most pertinent. In several stereotypical student statements, participants responded using the exact same analogies to explain the concepts to the students. This may be indicative of some underlying pedagogical content knowledge.

  8. Effect of deformation diagram on molybdenum structure and properties

    Effect of deformation diagram on a tendency to lamination and mechanical properties of disks made of molybdenum alloy is studied. Investigated samples were subjected to hot rolling or forging. X-ray structural analysis of texture is carried out along with estimation of the level of mechanical properties across item cross section. Sample mechanical bending tests were conducted. Sample microstructure is also studied. It is shown that rolled molybdenum has a tendency to lamination, but forged molybdenum is free of such a tendency. Forged sample ductility is practically equal in all directionse but rolled sample ductility in a surface layer is high and decreases with depth. A conclusion is drawn that forged sample grains in a setting surface are equiaxial, but distinct deformation texture is observed for rolled samples and their grains are elongated in the direction of rolling. A conclusion is made that a flow diagram of the process of disk fabrication by forging or stamping ppovides a necessary complex of physicomechanical properties of metal as compared to polling, and metal discharge coefficient decreases sharply in this case

  9. Recent results in Ring Diagram analysis

    Rabello-Soares, M Cristina

    2013-01-01

    The ring-diagram technique was developed by Frank Hill 25 years ago and developed quickly during the late 1990s. It is nowadays one of the most commonly used techniques in local helioseismology. The method consists in the power spectral analysis of solar acoustic oscillations on small regions (2 to 30 degrees) of the solar surface. The power spectrum resembles a set of trumpets nested inside each other and, for a given frequency, it looks like a ring, hence the technique's name. It provides information on the horizontal flow field and thermodynamic structure in the layers immediately below the photosphere. With data regularly provided by MDI (on board SOHO), GONG+ network and more recently HMI (on SDO), many important results have been achieved. In recently years, these results include estimations of the meridional circulation and its evolution with solar cycle; flows associated with active regions, as well as, flow divergence and vorticity; and thermal structure beneath and around active regions. Much progre...

  10. Improvement of image processing algorithms for annular flow

    Annular flow occurs in a wide range of industrial heat-transfer equipment, including the top of a BWR core, in the steam generator of a PWR, and in postulated accident scenarios including critical heat flux (CHF) by dryout. The modeling of annular flow often requires information regarding the average thickness of liquid film at the periphery of the flow channel as a measurement of film roughness (film roughness concept). More recently, two-region modeling efforts require wave intermittency as a measurement of disturbance wave (as opposed to base film thickness) contribution to gas-to-liquid momentum transfer and pressure loss. The present work focuses on the characterization of film behaviors in annular flow using quantitative visualization. The data reduction codes for planar laser-induced flourescence (PLIF) imaging and back-lit quartz tube imaging have been further developed to improve measurement accuracy. Film thickness distribution (base film and wave), disturbance wave length, and wave intermittency estimates have been updated and applied to a recent two-region annular flow model. Outputs of average film thickness, pressure gradient, and average wave velocity have been modeled with mean absolute errors of 8.70%, 17.42%, and 19.14%, respectively. (author)

  11. Stochastic Modelling of Shiroro River Stream flow Process

    Musa, J. J

    2013-01-01

    Full Text Available Economists, social scientists and engineers provide insights into the drivers of anthropogenic climate change and the options for adaptation and mitigation, and yet other scientists, including geographers and biologists, study the impacts of climate change. This project concentrates mainly on the discharge from the Shiroro River. A stochastic approach is presented for modeling a time series by an Autoregressive Moving Average model (ARMA. The development and use of a stochastic stream flow model involves some basic steps such as obtain stream flow record and other information, Selecting models that best describes the marginal probability distribution of flows. The flow discharge of about 22 years (1990-2011 was gotten from the Meteorological Station at Shiroro and analyzed with three different models namely; Autoregressive (AR model, Autoregressive Moving Average (ARMA model and Autoregressive Integrated Moving Average (ARIMA model. The initial model identification is done by using the autocorrelation function (ACF and partial autocorrelation function (PACF. Based on the model analysis and evaluations, proper predictions for the effective usage of the flow from the river for farming activities and generation of power for both industrial and domestic us were made. It also highlights some recommendations to be made to utilize the possible potentials of the river effectively

  12. Engineering Holographic Superconductor Phase Diagrams

    Chen, Jiunn-Wei; Maity, Debaprasad; Zhang, Yun-Long

    2016-01-01

    We study how to engineer holographic models with features of a high temperature superconductor phase diagram. We introduce a field in the bulk which provides a tunable "doping" parameter in the boundary theory. By designing how this field changes the effective masses of other order parameter fields, desired phase diagrams can be engineered. We give examples of generating phase diagrams with phase boundaries similar to a superconducting dome and an anti-ferromagnetic phase by including two order parameter fields. We also explore whether the pseudo gap phase can be described without adding another order parameter field and discuss the potential scaling symmetry associated with a quantum critical point hidden under the superconducting dome in this phase diagram.

  13. Flow-Injection Responses of Diffusion Processes and Chemical Reactions

    Andersen, Jens Enevold Thaulov

    2000-01-01

    The technique of Flow-injection Analysis (FIA), now aged 25 years, offers unique analytical methods that are fast, reliable and consuming an absolute minimum of chemicals. These advantages together with its inherent feasibility for automation warrant the future applications of FIA as an attractive...... tool of automated analytical chemistry. The need for an even lower consumption of chemicals and for computer analysis has motivated a study of the FIA peak itself, that is, a theoretical model was developed, that provides detailed knowledge of the FIA profile. It was shown that the flow in a FIA...

  14. Aerodynamic structures and processes in rotationally augmented flow fields

    Schreck, S.J.; Sørensen, Niels N.; Robinson, M.C.

    2007-01-01

    reliably identify and track pertinent features in the rotating blade boundary layer topology as they evolved in response to varying wind speed. Subsequently, boundary layer state was linked to above-surface flow field structure and used to deduce mechanisms; underlying augmented aerodynamic force....... Experimental measurements consisted of surface pressure data statistics used to infer sectional boundary layer state and to quantify normal force levels. Computed predictions included high-resolution boundary layer topologies and detailed above-surface flow field structures. This synergy was exploited to...

  15. Bayesian Networks and Influence Diagrams

    Kjærulff, Uffe Bro; Madsen, Anders Læsø

     Probabilistic networks, also known as Bayesian networks and influence diagrams, have become one of the most promising technologies in the area of applied artificial intelligence, offering intuitive, efficient, and reliable methods for diagnosis, prediction, decision making, classification......, troubleshooting, and data mining under uncertainty. Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended...

  16. Impersonal parameters from Hertzsprung-Russell diagrams

    Wilson, R. E.; Hurley, Jarrod R.

    2003-10-01

    An objective process for estimation of star cluster parameters from Hertzsprung-Russell (HR) diagrams is introduced, with direct inclusion of multiple stars, a least-squares fitting criterion, and standard error estimates. No role is played by conventional isochrones. Instead the quantity compared between observation and theory is the density of points (areal ) as it varies over the diagram. With as the effective observable quantity, standard parameter adjustment theory can be brought to bear on HR diagram analysis. Here we use the method of differential corrections with a least-squares fitting criterion, but any of the many known fitting methods should be applicable to comparison of observed and theoretical distributions. Diverse numerical schemes were developed to make the overall algorithm workable, including two that improve differentiability of by rendering point distributions effectively equivalent to continuous distributions in certain respects. Statistics of distributions are handled not via Monte Carlo methods but by the Functional Statistics Algorithm (hereafter FSA), a statistical algorithm that has been developed for HR diagram fitting but should serve as an alternative to Monte Carlo in many other applications. FSA accomplishes the aims of Monte Carlo with orders of magnitude less computation. Analysis of luminosity functions is included within the HR diagram algorithm as a special case. Areal density analysis of HR diagrams is acceptably fast because we handle stellar evolution via approximation functions, whose output also is more precisely differentiable than that of a full stellar evolution program. Evolution by approximation functions is roughly a million times as fast as full evolution and has virtually no numerical noise. The algorithmic ideas that lead to objective solutions can be applied to many kinds of HR diagram analysis that are now done subjectively. The present solution program is limited by speed considerations to use of one evolution

  17. Interpreter Chart Diagram N-S

    Mac Gaul de Jorge, Marcia; Aballay, Patricia; Zamora, Rodrigo Gabriel; Soria, Marcelo A.

    2009-01-01

    The team of researchers develops and implements technological resources focused on a methodological strategy that supports its use. Our investigation deals with the analysis beginner students’ competences attending the Analisis de Sistema career at the UNSa, in order to solve different computing problems such as the analysis of the design if the diagram N-S and the desktop test. This work describes the process undertaken by the educational software design called Diagramar. Its development and...

  18. Do students use and understand free-body diagrams?

    David Rosengrant

    2009-06-01

    Full Text Available Physics education literature recommends using multiple representations to help students understand concepts and solve problems. However, there is little research concerning why students use the representations and whether those who use them are more successful. This study addresses these questions using free-body diagrams (diagrammatic representations used in problems involving forces as a type of representation. We conducted a two-year quantitative and qualitative study of students’ use of free-body diagrams while solving physics problems. We found that when students are in a course that consistently emphasizes the use of free-body diagrams, the majority of them do use diagrams on their own to help solve exam problems even when they receive no credit for drawing the diagrams. We also found that students who draw diagrams correctly are significantly more successful in obtaining the right answer for the problem. Lastly, we interviewed students to uncover their reasons for using free-body diagrams. We found that high achieving students used the diagrams to help solve the problems and as a tool to evaluate their work while low achieving students only used representations as aids in the problem-solving process.

  19. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented

  20. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    Handayani, Gunawan [The Earth Physics and Complex Systems Research Group (Jl. Ganesa 10 Bandung Indonesia) gunawanhandayani@gmail.com (Indonesia)

    2015-04-16

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  1. Laminar Flow Processes of Fluid Energy Carries in Pipe Lines

    R. Еsman

    2012-01-01

    Full Text Available The paper proposes methodology for analysis and calculation of laminar fluid flows in pipes and channels.  Various regimes of fluid motion in pipelines of heat-power units and equipment are considered in the paper.The presented dependencies can be used for practical calculations while transporting energy carriers for various application.

  2. Aeolian processes across transverse dunes. I: Modelling the air flow

    J.H. van Boxel; S.M. Arens; P.M. van Dijk

    1999-01-01

    This paper discusses a two-dimensional second-order closure model simulating air flow and turbulence across transverse dunes. Input parameters are upwind wind speed, topography of the dune ridge and surface roughness distribution over the ridge. The most important output is the distribution of the f

  3. Modeling field scale unsaturated flow and transport processes

    The scales of concern in subsurface transport of contaminants from low-level radioactive waste disposal facilities are in the range of 1 to 1,000 m. Natural geologic materials generally show very substantial spatial variability in hydraulic properties over this range of scales. Such heterogeneity can significantly influence the migration of contaminants. It is also envisioned that complex earth structures will be constructed to isolate the waste and minimize infiltration of water into the facility. The flow of water and gases through such facilities must also be a concern. A stochastic theory describing unsaturated flow and contamination transport in naturally heterogeneous soils has been enhanced by adopting a more realistic characterization of soil variability. The enhanced theory is used to predict field-scale effective properties and variances of tension and moisture content. Applications illustrate the important effects of small-scale heterogeneity on large-scale anisotropy and hysteresis and demonstrate the feasibility of simulating two-dimensional flow systems at time and space scales of interest in radioactive waste disposal investigations. Numerical algorithms for predicting field scale unsaturated flow and contaminant transport have been improved by requiring them to respect fundamental physical principles such as mass conservation. These algorithms are able to provide realistic simulations of systems with very dry initial conditions and high degrees of heterogeneity. Numerical simulation of the movement of water and air in unsaturated soils has demonstrated the importance of air pathways for contaminant transport. The stochastic flow and transport theory has been used to develop a systematic approach to performance assessment and site characterization. Hypothesis-testing techniques have been used to determine whether model predictions are consistent with observed data

  4. Mixing and Demixing Processes in Multiphase Flows With Application to Propulsion Systems

    Decker, Rand (Editor); Schafer, Charles F. (Editor)

    1988-01-01

    A workshop on transport processes in multiphase flow was held at the Marshall Space Flight Center on February 25 and 26, 1988. The program, abstracts and text of the presentations at this workshop are presented. The objective of the workshop was to enhance our understanding of mass, momentum, and energy transport processes in laminar and turbulent multiphase shear flows in combustion and propulsion environments.

  5. Penguin-like diagrams from the standard model

    Ping, Chia Swee [High Impact Research, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    The Standard Model is highly successful in describing the interactions of leptons and quarks. There are, however, rare processes that involve higher order effects in electroweak interactions. One specific class of processes is the penguin-like diagram. Such class of diagrams involves the neutral change of quark flavours accompanied by the emission of a gluon (gluon penguin), a photon (photon penguin), a gluon and a photon (gluon-photon penguin), a Z-boson (Z penguin), or a Higgs-boson (Higgs penguin). Such diagrams do not arise at the tree level in the Standard Model. They are, however, induced by one-loop effects. In this paper, we present an exact calculation of the penguin diagram vertices in the ‘tHooft-Feynman gauge. Renormalization of the vertex is effected by a prescription by Chia and Chong which gives an expression for the counter term identical to that obtained by employing Ward-Takahashi identity. The on-shell vertex functions for the penguin diagram vertices are obtained. The various penguin diagram vertex functions are related to one another via Ward-Takahashi identity. From these, a set of relations is obtained connecting the vertex form factors of various penguin diagrams. Explicit expressions for the gluon-photon penguin vertex form factors are obtained, and their contributions to the flavor changing processes estimated.

  6. Hierarchical Communication Diagrams

    Marcin Szpyrka; Piotr Matyasik; Jerzy Biernacki; Agnieszka Biernacka; Michał Wypych; Leszek Kotulski

    2016-01-01

    Formal modelling languages range from strictly textual ones like process algebra scripts to visual modelling languages based on hierarchical graphs like coloured Petri nets. Approaches equipped with visual modelling capabilities make developing process easier and help users to cope with more complex systems. Alvis is a modelling language that combines possibilities of formal models verification with flexibility and simplicity of practical programming languages. The paper deals with hierarchic...

  7. Transformation of Debris Flows Into Turbidity Currents: a key Process for Hazard Prediction

    Felix, M.; Peakall, J.

    2002-12-01

    Although landslides start as a dense mass of sediment, flow transformation into more dilute flows can alter flow properties and thus associated hazards. A good understanding of the transformation process is therefore critical for accurately predicting hazard potential. To improve understanding of flow transformations in gravity currents, three series of lock exchange laboratory experiments were undertaken, for cohesive flows, non-cohesive flows and mixed flows containing both cohesive and non-cohesive material. These experiments had a flow volume of 120 litres and initial volumetric concentrations ranging from 4 % to 40 %. Flows travelled along a 5.5 m long, 0.2 m wide channel, within a larger (6 m by 0.5 m by 1.5 m) glass-walled flume. Velocity was measured using a vertical array of ten 2 MHz Ultrasonic Velocity Probes and concentration was measured using an Ultrasonic High Concentration Meter in conjunction with siphon sampling. Video cameras were used at several positions along the flume to track flow behaviour. A full suite of flows was observed, from flows that underwent rapid transformation to flows that underwent almost no dilution and transformation. These experiments enable the effects of sediment type (e.g., cohesive, non-cohesive), velocity and concentration on flow transformation to be quantified for the first time.

  8. The diagram development for Computer Added Control and Monitoring system of drilling

    Epikhin, A. V.; Mikhalev, R. S.; Anisimov, A. V.; Ulyanova, O. S.

    2015-11-01

    The paper is concerned with the first stage of the extensive research aimed at developing design-automation system and well drilling process control. The proposed system is going to have some advantages over modern analogues, such as economic analysis at all levels, active engineering staff feedback, precedent-related principle for recommendations, etc. It will essentially reduce the risk of human errors and also optimize the well construction process from design to commissioning. The paper considers the results of the first design stage in a form of flow diagrams.

  9. Flow-Injection Responses of Diffusion Processes and Chemical Reactions

    Andersen, Jens Enevold Thaulov

    2000-01-01

    manifold may be characterised by a diffusion coefficient that depends on flow rate, denoted as the kinematic diffusion coefficient. The description was applied to systems involving species of chromium, both in the case of simple diffusion and in the case of chemical reactions. It is suggested that it may...... be used in the resolution of FIA profiles to obtain information about the content of interference’s, in the study of chemical reaction kinetics and to measure absolute concentrations within the FIA-detector cell.......The technique of Flow-injection Analysis (FIA), now aged 25 years, offers unique analytical methods that are fast, reliable and consuming an absolute minimum of chemicals. These advantages together with its inherent feasibility for automation warrant the future applications of FIA as an attractive...

  10. Microfluidic-SANS: flow processing of complex fluids

    Lopez, Carlos G; Takaichi Watanabe; Anne Martel; Lionel Porcar; João T. Cabral

    2015-01-01

    Understanding and engineering the flow-response of complex and non-Newtonian fluids at a molecular level is a key challenge for their practical utilisation. Here we demonstrate the coupling of microfluidics with small angle neutron scattering (SANS). Microdevices with high neutron transmission (up to 98%), low scattering background ( ), broad solvent compatibility and high pressure tolerance (≈3–15 bar) are rapidly prototyped via frontal photo polymerisation. Scattering from single microchann...