WorldWideScience

Sample records for primary atomized process

  1. Simulation of primary fuel atomization processes at subcritical pressures.

    Energy Technology Data Exchange (ETDEWEB)

    Arienti, Marco

    2013-06-01

    This report documents results from an LDRD project for the first-principles simulation of the early stages of spray formation (primary atomization). The first part describes a Cartesian embedded-wall method for the calculation of flow internal to a real injector in a fully coupled primary calculation. The second part describes the extension to an all-velocity formulation by introducing a momentum-conservative semi-Lagrangian advection and by adding a compressible term in the Poissons equation. Accompanying the description of the new algorithms are verification tests for simple two-phase problems in the presence of a solid interface; a validation study for a scaled-up multi-hole Diesel injector; and demonstration calculations for the closing and opening transients of a single-hole injector and for the high-pressure injection of liquid fuel at supersonic velocity.

  2. Primary processes initiated by nuclear transformations in solids

    International Nuclear Information System (INIS)

    Sano, Hirotoshi

    1975-01-01

    Primary processes of hot atom production initiated by nuclear transformation were discussed from past studies using Moessbauer spectroscopy. Many insulators (dielectric substances) showed various effect, such as abnormaly oxdized condition, following nuclear disintegration within the time duration of the life of Moessbauer nuclear excited state. Supposing these hot atom processes belonged to radiochemical processes, radiochemical characteristics of a certain chemical substance could be clarified by placing Moessbauer nuclide in the neighbourhood of the chemical substance to be studied. Chemical effects of disintegrated atom in the first and second composition, chemical substances produced in the surroundings of disintegrated atom, and environmental disturbance of disintegrated atom were studied and discussed. (Tsukamoto, Y.)

  3. Cavitation and primary atomization in real injectors at low injection pressure condition

    Science.gov (United States)

    Dumouchel, Christophe; Leboucher, Nicolas; Lisiecki, Denis

    2013-06-01

    This experimental work investigates the influence of the geometry of GDI devices on primary atomization processes under low injection pressure and reduced back pressure. These pressure conditions ensure cavitating flows and observable atomization processes. Measurements include mass flux, structure velocity from high-speed visualizations and spray characterization with a laser diffraction technique. Super-cavitation regime and cavitation string, which have their own influence on the mass flux, develop independently in different injector regions. These regimes impact the flow pattern in the orifice and the subsequent atomization process. A possible interaction between cavitation string and super-cavitation is found to promote a hydraulic-flip-like regime and to deteriorate atomization quality. As far as the geometry of the injector is concerned, the profile of the orifice inlet and the roughness of the sac volume region are found to be important geometrical characteristics.

  4. High Fidelity Simulation of Primary Atomization in Diesel Engine Sprays

    Science.gov (United States)

    Ivey, Christopher; Bravo, Luis; Kim, Dokyun

    2014-11-01

    A high-fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at ambient conditions has been performed. A full understanding of the primary atomization process in fuel injection of diesel has not been achieved for several reasons including the difficulties accessing the optically dense region. Due to the recent advances in numerical methods and computing resources, high fidelity simulations of atomizing flows are becoming available to provide new insights of the process. In the present study, an unstructured un-split Volume-of-Fluid (VoF) method coupled to a stochastic Lagrangian spray model is employed to simulate the atomization process. A common rail fuel injector is simulated by using a nozzle geometry available through the Engine Combustion Network. The working conditions correspond to a single orifice (90 μm) JP-8 fueled injector operating at an injection pressure of 90 bar, ambient condition at 29 bar, 300 K filled with 100% nitrogen with Rel = 16,071, Wel = 75,334 setting the spray in the full atomization mode. The experimental dataset from Army Research Lab is used for validation in terms of spray global parameters and local droplet distributions. The quantitative comparison will be presented and discussed. Supported by Oak Ridge Associated Universities and the Army Research Laboratory.

  5. Energy spectra of primary knock-on atoms under neutron irradiation

    International Nuclear Information System (INIS)

    Gilbert, M.R.; Marian, J.; Sublet, J.-Ch.

    2015-01-01

    Materials subjected to neutron irradiation will suffer from a build-up of damage caused by the displacement cascades initiated by nuclear reactions. Previously, the main “measure” of this damage accumulation has been through the displacements per atom (dpa) index, which has known limitations. This paper describes a rigorous methodology to calculate the primary atomic recoil events (often called the primary knock-on atoms or PKAs) that lead to cascade damage events as a function of energy and recoiling species. A new processing code SPECTRA-PKA combines a neutron irradiation spectrum with nuclear recoil data obtained from the latest nuclear data libraries to produce PKA spectra for any material composition. Via examples of fusion relevant materials, it is shown that these PKA spectra can be complex, involving many different recoiling species, potentially differing in both proton and neutron number from the original target nuclei, including high energy recoils of light emitted particles such as α-particles and protons. The variations in PKA spectra as a function of time, neutron field, and material are explored. The application of PKA spectra to the quantification of radiation damage is exemplified using two approaches: the binary collision approximation and stochastic cluster dynamics, and the results from these different models are discussed and compared. - Highlights: • Recoil cross-section matrices under neutron irradiation are generated. • Primary knock-on atoms (PKA) spectra are calculated for fusion relevant materials. • Variation in PKA spectra due to changes in geometry are considered. • Inventory simulations to consider time-evolution in PKA spectra. • Damage quantification using damage functions from different approximations.

  6. Symmetric Atom–Atom and Ion–Atom Processes in Stellar Atmospheres

    Directory of Open Access Journals (Sweden)

    Vladimir A. Srećković

    2017-12-01

    Full Text Available We present the results of the influence of two groups of collisional processes (atom–atom and ion–atom on the optical and kinetic properties of weakly ionized stellar atmospheres layers. The first type includes radiative processes of the photodissociation/association and radiative charge exchange, the second one the chemi-ionisation/recombination processes with participation of only hydrogen and helium atoms and ions. The quantitative estimation of the rate coefficients of the mentioned processes were made. The effect of the radiative processes is estimated by comparing their intensities with those of the known concurrent processes in application to the solar photosphere and to the photospheres of DB white dwarfs. The investigated chemi-ionisation/recombination processes are considered from the viewpoint of their influence on the populations of the excited states of the hydrogen atom (the Sun and an M-type red dwarf and helium atom (DB white dwarfs. The effect of these processes on the populations of the excited states of the hydrogen atom has been studied using the general stellar atmosphere code, which generates the model. The presented results demonstrate the undoubted influence of the considered radiative and chemi- ionisation/recombination processes on the optical properties and on the kinetics of the weakly ionized layers in stellar atmospheres.

  7. Multiple primary cancer in cases of atomic bomb survivors

    International Nuclear Information System (INIS)

    Tanaka, Tsuneo; Matsuda, Masahiro; Matsugu, Yasuhiro; Ishimoto, Tatsuro; Nakahara, Hideki; Kagawa, Naoki; Fukuda, Yasuhiko

    2006-01-01

    Multiple primary cancer was investigated in individual atomic bomb survivors more than 50 years after exposure. During the decade from 1995 to 2004, double cancer was detected in 275 individuals visiting our facility. These 275 patients with multiple primary cancer were divided into an atomic bomb-exposed group and a non-exposed group. In terms of age at the time of definite diagnosis of double cancer and age upon onset of the first cancer, there was no significant difference between the atomic bomb-exposed group and the non-exposed group. In both groups, the percentage of males was higher than that of females. However, the percentage of females was higher in the exposed group than in the non-exposed group. Synchronous double cancer (cases where a second cancer develops within one year after onset of the first cancer) was seen in 32 individuals from the exposed group. Triple cancer was seen in 3 cases. In the exposed group, the site affected by cancer was the stomach in 28% and the colon/rectum in 27% of cases. Thus, cancer affected the stomach or colon/rectum in the majority of cases. The most frequent combination of organs affected by double cancer was the stomach+colon/rectum (20 cases, 25%). In a study of multiple primary cancer patients, the percentage of females was higher in the atomic bomb exposed group compared to the non-exposed group. There was no other difference between the two groups. (author)

  8. Atomic processes relevant to polarization plasma spectroscopy

    International Nuclear Information System (INIS)

    Fujimoto, T.; Koike, F.; Sakimoto, K.; Okasaka, R.; Kawasaki, K.; Takiyama, K.; Oda, T.; Kato, T.

    1992-04-01

    When atoms (ions) are excited anisotropically, polarized excited atoms are produced and the radiation emitted by these atoms is polarized. From the standpoint of plasma spectroscopy research, we review the existing data for various atomic processes that are related to the polarization phenomena. These processes are: electron impact excitation, excitation by atomic and ionic collisions, photoexcitation, radiative recombination and bremsstrahlung. Collisional and radiative relaxation processes of atomic polarization follow. Other topics included are: electric-field measurement, self alignment, Lyman doublet intensity ratio, and magnetic-field measurement of the solar prominence. (author)

  9. Cascade Processes in Muonic Hydrogen Atoms

    International Nuclear Information System (INIS)

    Faifman, M. P.; Men'Shikov, L. I.

    2001-01-01

    The QCMC scheme created earlier for cascade calculations in heavy hadronic atoms of hydrogen isotopes has been modified and applied to the study of cascade processes in the μp muonic hydrogen atoms. The distribution of μp atoms over kinetic energies has been obtained and the yields of K-series X-rays per one stopped muon have been calculated.Comparison with experimental data indicated directly that for muonic and pionic atoms new types of non-radiative transitions are essential, while they are negligible for heavy (kaonic, antiprotonic, etc.) atoms. These processes have been considered and their probabilities have been estimated.

  10. Primary processes and ionic reactions in the chemistry of recoiling silicon atoms

    International Nuclear Information System (INIS)

    Gaspar, P.P.; Garmestani, K.; Boo, B.H.; Stewart, G.W.

    1993-01-01

    Hot atom chemistry has permitted the elucidation of the chemistry of free atoms, and these include the polyvalent atoms of refractory group 14 elements, that is, carbon, silicon and germanium. Since no more than two bonds are formed normally in a single reactive collision of free atoms, the study on the chemistry of atoms like C, Si and Ge that require the formation of more than two bonds to saturate their chemical valence necessarily involves the study of reactive intermediates. By the studies on the chemistry of recoiling 31 Si atoms, the mechanistic conclusions reached are reported. The most important unanswered questions concerning the reaction of recoiling 31 Si atoms in the systems are shown, and progress has been made toward the answering. By using tetramethyl silane as a trapping agent for silicon ions, it has been established that the reaction of 31 Si ions contributes significantly to the formation of products in recoil systems. The studies by various researchers on this theme are reported. (K.I.)

  11. Atomization process for metal powder

    International Nuclear Information System (INIS)

    Lagutkin, Stanislav; Achelis, Lydia; Sheikhaliev, Sheikhali; Uhlenwinkel, Volker; Srivastava, Vikas

    2004-01-01

    A new atomization process has been developed, which combines pressure and gas atomization. The melt leaves the pressure nozzle as a hollow thin film cone. After the pre-filming step, the melt is atomized by a gas stream delivered by a ring nozzle. The objectives of this investigation are to achieve a narrow size distribution and low specific gas consumption compared to conventional gas atomization techniques. Both lead to a higher efficiency and low costs. Tin and some alloys have been atomized successfully with this technique. The mass median diameters from different experiments are between 20 and 100 μm. Sieving analysis of the tin powder shows close particle size distributions

  12. Mechanisms and energetics of surface atomic processes

    International Nuclear Information System (INIS)

    Tsong, T.T.

    1991-01-01

    The energies involved in various surface atomic processes such as surface diffusion, the binding of small atomic clusters on the surface, the interaction between two adsorbed atoms, the dissociation of an atom from a small cluster or from a surface layer, the binding of kink size atoms or atoms at different adsorption sites to the surface etc., can be derived from an analysis of atomically resolved field ion microscope images and a kinetic energy measurement of low temperature field desorbed ions using the time-of-flight atom-probe field ion microscope. These energies can be used to compare with theories and to understand the transport of atoms on the surface in atomic reconstructions, epitaxial growth of surface layers and crystal growth, adsorption layer superstructure formation, and also why an atomic ordering or atomic reconstruction at the surface is energetically favored. Mechanisms of some of the surface atomic processes are also clarified from these quantitative, atomic resolution studies. In this paper work in this area is bris briefly reviewed

  13. Atomic processes in matter-antimatter interactions

    International Nuclear Information System (INIS)

    Morgan, D.L.

    1988-01-01

    Atomic processes dominate antiproton stopping in matter at nearly all energies of interest. They significantly influence or determine the antiproton annihilation rate at all energies around or below several MeV. This article reviews what is known about these atomic processes. For stopping above about 10 eV the processes are antiproton-electron collisions, effective at medium keV through high MeV energies, and elastic collisions with atoms and adiabatic ionization of atoms, effective from medium eV through low keB energies. For annihilation above about 10 eV is the enhancement of the antiproton annihilation rate due to the antiproton-nucleus coulomb attraction, effective around and below a few tens of MeV. At about 10 eV and below, the atomic rearrangement/annihilation process determines both the stopping and annihilation rates. Although a fair amount of theoretical and some experimental work relevant to these processes exist, there are a number of energy ranges and material types for which experimental data does not exist and for which the theoretical information is not as well grounded or as accurate as desired. Additional experimental and theoretical work is required for accurate prediction of antiproton stopping and annihilation for energies and material relevant to antiproton experimentation and application

  14. Dynamical processes in atomic and molecular physics

    CERN Document Server

    Ogurtsov, Gennadi

    2012-01-01

    Atomic and molecular physics underlie a basis for our knowledge of fundamental processes in nature and technology and in such applications as solid state physics, chemistry and biology. In recent years, atomic and molecular physics has undergone a revolutionary change due to great achievements in computing and experimental techniques. As a result, it has become possible to obtain information both on atomic and molecular characteristics and on dynamics of atomic and molecular processes. This e-book highlights the present state of investigations in the field of atomic and molecular physics. Rece

  15. The influence of gas phase velocity fluctuations on primary atomization and droplet deformation

    Science.gov (United States)

    Kourmatzis, A.; Masri, A. R.

    2014-02-01

    The effects of grid-generated velocity fluctuations on the primary atomization and subsequent droplet deformation of a range of laminar liquid jets are examined using microscopic high-speed backlit imaging of the break-up zone and laser Doppler anemometry of the gas phase separately. This is done for fixed gas mean flow conditions in a miniature wind tunnel experiment utilizing a selection of fuels, turbulence-generating grids and two syringe sizes. The constant mean flow allows for an isolated study of velocity fluctuation effects on primary atomization in a close approximation to homogeneous decaying turbulence. The qualitative morphology of the primary break-up region is examined over a range of turbulence intensities, and spectral analysis is performed in order to ascertain the break-up frequency which, for a case of no grid, compares well with the existing literature. The addition of velocity fluctuations tends to randomize the break-up process. Slightly downstream of the break-up region, image processing is conducted in order to extract a number of metrics, which do not depend on droplet sphericity, and these include droplet aspect ratio and orientation, the latter quantity being somewhat unconventional in spray characterization. A turbulent Weber number which takes into account gas phase fluctuations is utilized to characterize the resulting droplet shapes, in addition to a mean Weber number . Above a a clear positive relationship exists between the mean aspect ratio of droplets and the turbulent Weber number where is varied by altering all relevant variables including the velocity root mean square, the initial droplet diameter, the surface tension and the density.

  16. R-Matrix Theory of Atomic Collisions Application to Atomic, Molecular and Optical Processes

    CERN Document Server

    Burke, Philip George

    2011-01-01

    Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include electron and photon collisions with atoms, ions and molecules required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technologial importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices.

  17. Multielectron effects in atomic processes

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Chernysheva, L.V.

    1999-01-01

    One demonstrates a prominent role of electron collectivization in atoms and quasi-atomic formations. Paper discusses in detail the approximation of random phases with exchange enabling to take account of these effects. One points out the necessity to go outside the terms of the approximation when studying some processes via combination of the approximation with the theory of disturbances. The results of the recently conducted estimations of cross sections of photoionization of atomic iodine and of its positive and negative ions, Xe + single-electron photoionization, resonance-amplified emission of photons in electron collisions with atoms and quasi-atomic formations, non-dipole corrections to the angular distribution of photoelectrons, probabilities of two electron transitions where the whole amount of energy releases in the form of one photon, illustrate the role of the collective effects [ru

  18. High Resolution Numerical Simulations of Primary Atomization in Diesel Sprays with Single Component Reference Fuels

    Science.gov (United States)

    2015-09-01

    NC. 14. ABSTRACT A high-resolution numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at diesel engine... diesel fuel injector at diesel engine type conditions has been performed. A full understanding of the primary atomization process in diesel fuel... diesel liquid sprays the complexity is further compounded by the physical attributes present including nozzle turbulence, large density ratios

  19. Atom-atom collision cascades localization

    International Nuclear Information System (INIS)

    Kirsanov, V.V.

    1980-01-01

    The presence of an impurity and thermal vibration influence on the atom-atom collision cascade development is analysed by the computer simulation method (the modificated dynamic model). It is discovered that the relatively low energetic cascades are localized with the temperature increase of an irradiated crystal. On the basis of the given effect the mechanism of splitting of the high energetic cascades into subcascades is proposed. It accounts for two factors: the primary knocked atom energy and the irradiated crystal temperature. Introduction of an impurity also localizes the cascades independently from the impurity atom mass. The cascades localization leads to intensification of the process of annealing in the cascades and reduction of the post-cascade vacancy cluster sizes. (author)

  20. Atomic spectroscopy and radiative processes

    CERN Document Server

    Landi Degl'Innocenti, Egidio

    2014-01-01

    This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

  1. 1978 bibliography of atomic and molecular processes

    International Nuclear Information System (INIS)

    1980-03-01

    This annotated bibliography lists 2557 works on atomic and molecular processes reported in publications dated 1978. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors

  2. 1979 bibliography of atomic and molecular processes

    International Nuclear Information System (INIS)

    1980-08-01

    This annotated bibliography lists 2146 works on atomic and molecular processes reported in publications dated 1979. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors

  3. 1980 bibliography of atomic and molecular processes

    International Nuclear Information System (INIS)

    1982-02-01

    This annotated bibliography lists 2866 works on atomic and molecular processes reported in publications dated 1980. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors

  4. Multiple-electron processes in fast ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1989-03-01

    Research in atomic physics at the Lawrence Berkeley Laboratory Super-HILAC and Bevalac accelerators on multiple-electron processes in fast ion-atom collisions is described. Experiments have studied various aspects of the charge-transfer, ionization, and excitation processes. Examples of processes in which electron correlation plays a role are resonant transfer and excitation and Auger-electron emission. Processes in which electron behavior can generally be described as uncorrelated include ionization and charge transfer in high-energy ion-atom collisions. A variety of experiments and results for energies from 1 MeV/u to 420 MeV/u are presented. 20 refs., 15 figs

  5. 1982 bibliography of atomic and molecular processes

    International Nuclear Information System (INIS)

    Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.

    1984-05-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1982. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory

  6. Bibliography of atomic and molecular processes, 1983

    International Nuclear Information System (INIS)

    Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.

    1984-10-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1983. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory

  7. 1985 bibliography of atomic and molecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.; Griffin, P.M.; Havener, C.C.; Howald, A.M.; Kirkpatrick, M.I.; McDaniel, E.W.; Meyer, F.W.; Morgan, T.J. (comps.)

    1986-06-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1985. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  8. 1985 bibliography of atomic and molecular processes

    International Nuclear Information System (INIS)

    Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.

    1986-06-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1985. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory

  9. Bibliography of atomic and molecular processes, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.; Gregory, D.C.; Kirkpatrick, M.I.; McDaniel, E.W.; McKnight, R.H.; Meyer, F.W.; Morgan, T.J.; Phaneuf, R.A. (comps.)

    1984-10-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1983. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  10. 1984 Bibliography of atomic and molecular processes

    International Nuclear Information System (INIS)

    Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.

    1985-04-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1984. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory

  11. 1982 bibliography of atomic and molecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.; Gregory, D.C.; Kirkpatrick, M.I.; McDaniel, E.W.; McKnight, R.H.; Meyer, F.W.; Morgan, T.J.; Phaneuf, R.A. (comps.)

    1984-05-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1982. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  12. Radiations from atomic collision processes

    International Nuclear Information System (INIS)

    Bernyi, D.

    1994-01-01

    The physics of atomic collision phenomena in which only the Coulomb forces have a role is an actual field or the research of the present days. The impact energy range in these collisions is very broad,it extends from the eV or even lower region to the GeV region or higher,i.e. it spans the region of three branches of physics,namely that of the atomic,the nuclear and the particle physics.To describe and explain the collision processes themselves, different models (collision mechanisms) are used and they are surveyed in the presentation. Different electromagnetic radiations and particles are emitted from the collision processes.Their features are shown in details together with the most important methods in their detection and study.Examples are given based on the literature and on the investigations of the author and his coworkers. The applications of the radiation from atomic collisions in other scientific fields and in the solution of different practical problems are also surveyed shortly. 16 figs., 2 tabs., 76 refs. (author)

  13. Analysis of Fuel Injection and Atomization of a Hybrid Air-Blast Atomizer.

    Science.gov (United States)

    Ma, Peter; Esclape, Lucas; Buschhagen, Timo; Naik, Sameer; Gore, Jay; Lucht, Robert; Ihme, Matthias

    2015-11-01

    Fuel injection and atomization are of direct importance to the design of injector systems in aviation gas turbine engines. Primary and secondary breakup processes have significant influence on the drop-size distribution, fuel deposition, and flame stabilization, thereby directly affecting fuel conversion, combustion stability, and emission formation. The lack of predictive modeling capabilities for the reliable characterization of primary and secondary breakup mechanisms is still one of the main issues in improving injector systems. In this study, an unstructured Volume-of-Fluid method was used in conjunction with a Lagrangian-spray framework to conduct high-fidelity simulations of the breakup and atomization processes in a realistic gas turbine hybrid air blast atomizer. Results for injection with JP-8 aviation fuel are presented and compared to available experimental data. Financial support through the FAA National Jet Fuel Combustion Program is gratefully acknowledged.

  14. Challenging the Science Curriculum Paradigm: Teaching Primary Children Atomic-Molecular Theory

    Science.gov (United States)

    Haeusler, Carole; Donovan, Jennifer

    2017-11-01

    Solutions to global issues demand the involvement of scientists, yet concern exists about retention rates in science as students pass through school into University. Young children are curious about science, yet are considered incapable of grappling with abstract and microscopic concepts such as atoms, sub-atomic particles, molecules and DNA. School curricula for primary (elementary) aged children reflect this by their limitation to examining only what phenomena are without providing any explanatory frameworks for how or why they occur. This research challenges the assumption that atomic-molecular theory is too difficult for young children, examining new ways of introducing atomic theory to 9 year olds and seeks to verify their efficacy in producing genuine learning in the participants. Early results in three cases in different schools indicate these novel methods fostered further interest in science, allowed diverse children to engage and learn aspects of atomic theory, and satisfied the children's desire for intellectual challenge. Learning exceeded expectations as demonstrated in the post-interview findings. Learning was also remarkably robust, as demonstrated in two schools 8 weeks after the intervention and, in one school, 1 year after their first exposure to ideas about atoms, elements and molecules.

  15. Concept of APDL, the atomic process description language

    International Nuclear Information System (INIS)

    Sasaki, Akira

    2004-01-01

    The concept of APDL, the Atomic Process Description Language, which provides simple and complete description of atomic model is presented. The syntax to describe electron orbital and configuration is defined for the use in the atomic structure, kinetics and spectral synthesis simulation codes. (author)

  16. The SILVA atomic process

    International Nuclear Information System (INIS)

    Cazalet, J.

    1997-01-01

    The SILVA laser isotope separation process is based on the laser selective photo-ionization of uranium atomic vapour; the process is presently under development by CEA and COGEMA in France, with the aim to reduce by a factor three the cost of uranium enrichment. The two main components of a SILVA process plant are the lasers (copper vapour lasers and dye lasers) and the separator for the vaporization (with a high energy electron beam), ionization and separation operations. Researches on the SILVA process started in 1985 and the technical and economical feasibility is to be demonstrated in 1997. The progresses of similar rival processes and other processes are discussed and the remaining research stages and themes of the SILVA program are presented

  17. The rates of elementary atomic processes and laser spectroscopy

    International Nuclear Information System (INIS)

    Rudzikas, Z.; Sereapinas, P.; Kaulakys, B.

    1989-01-01

    Laser spectroscopy and physics of the atom are closely interrelated. Spectra are the fundamental characteristics of atoms. Modern atomic spectroscopy deals with the structure and properties of any atom of the periodic table as well as of ions of any ionization degree. Therefore, one has to develop fairly universal and, at the same time, exact methods. In this paper briefly analyze the contemporary status of the theory of many-electron atoms and ions, the peculiarities of their structure and spectra, as well as of the processes of their interaction with radiation, interatomic interaction and of the plasma spectroscopy. The attention mainly is paid to the spectroscopy of multiply charged ions and to the processes with highly excited atoms

  18. Cascade processes in kaonic and muonic atoms

    International Nuclear Information System (INIS)

    Faifman, M.P.; Men'shikov, L.I.

    2003-01-01

    Cascade processes in exotic (kaonic and muonic) hydrogen/deuterium have been studied with the quantum-classical Monte Carlo code (QCMC) developed for 'ab initio' - calculations. It has been shown that the majority of kaonic hydrogen atoms during cascade are accelerated to high energies E ∼ 100 eV, which leads to a much lower value for the calculated yields Y of x-rays than predicted by the 'standard cascade model'. The modified QCMC scheme has been applied to the study of the cascade in μp and μd muonic atoms. A comparison of the calculated yields for K-series x-rays with experimental data directly indicates that the molecular structure of the hydrogen target and new types of non-radiative transitions are essential for the light muonic atoms, while they are negligible for heavy (kaonic) atoms. These processes have been considered and estimates of their probabilities are presented. (author)

  19. Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps

    Science.gov (United States)

    Melezhik, Vladimir S.

    2018-02-01

    We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.

  20. Atomic and molecular processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R.K. [International Atomic Energy Agency, Vienna (Austria)

    1997-01-01

    The role of atomic and molecular processes in achieving and maintaining the conditions for thermonuclear burn in a magnetically confined fusion plasma is described. Emphasis is given to the energy balance and power and particle exhaust issues. The most important atomic and molecular processes which affect the radiation losses and impurity transport in the core plasma, the neutral particle transport in the plasma edge and the radiative cooling of divertor plasmas are discussed in greater detail. (author)

  1. 1978 bibliography of atomic and molecular processes. [Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This annotated bibliography lists 2557 works on atomic and molecular processes reported in publications dated 1978. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors.

  2. 1979 bibliography of atomic and molecular processes. [Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    This annotated bibliography lists 2146 works on atomic and molecular processes reported in publications dated 1979. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors.

  3. The SILVA atomic process

    International Nuclear Information System (INIS)

    Cazalet, J.

    1996-01-01

    The SILVA isotopic laser separation process of atomic uranium vapor requires the use of specific high power visible light laser devices and systems for uranium evaporation and management (separation modules). The CEA, in collaboration with industrialists, has developed these components and built some demonstration plants. The scientific and technological challenges raised by this process are now surmounted. The principle of the SILVA process is the selective photo-ionization of uranium isotopes using laser photon beams tuned to the exact excitation frequency of the isotope electron layers. This paper describes the principle of the SILVA process (lasers and separator), the technical feasibility and actual progress of the program and its future steps, its economical stakes, and the results obtained so far. (J.S.). 2 figs., 2 photos

  4. Measuring oxidation processes: Atomic oxygen flux monitor

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Of the existing 95 high-energy accelerators in the world, the Stanford Linear Collider (SLC) at the Stanford Linear Accelerator Center (SLAC) is the only one of the linear-collider type, where electrons and positrons are smashed together at energies of 50 GeV using linear beams instead of beam rings for achieving interactions. Use of a collider eliminates energy losses in the form of x-rays due to the curved trajectory of the rings, a phenomena known as bremsstrauhlung. Because these losses are eliminated, higher interaction energies are reached. Consequently the SLC produced the first Z particle in quantities large enough to allow measurement of its physical properties with some accuracy. SLAC intends to probe still deeper into the structure of matter by next polarizing the electrons in the beam. The surface of the source for these polarized particles, typically gallium arsenide, must be kept clean of contaminants. One method for accomplishing this task requires the oxidation of the surface, from which the oxidized contaminants are later boiled off. The technique requires careful measurement of the oxidation process. SLAC researchers have developed a technique for measuring the atomic oxygen flux in this process. The method uses a silver film on a quartz-crystal, deposition-rate monitor. Measuring the initial oxidation rate of the silver, which is proportional to the atomic oxygen flux, determines a lower limit on that flux in the range of 10 13 to 10 17 atoms per square centimeter per second. Furthermore, the deposition is reversible by exposing the sensor to atomic hydrogen. This technique has wider applications to processes in solid-state and surface physics as well as surface chemistry. In semiconductor manufacturing where a precise thickness of oxide must be deposited, this technique could be used to monitor the critical flux of atomic oxygen in the process

  5. Primary Student Teachers' Ideas of Atoms and Molecules: Using Drawings as a Research Method

    Science.gov (United States)

    Ozden, Mustafa

    2009-01-01

    The purpose of this study is to reveal the primary student teachers' basic knowledge and misconceptions about atoms and molecules by use of a drawing method. Data collected from drawings of 92 primary student teachers at the second term of 2007-2008 educational period in Faculty of Education in Adiyaman University. The analysis of their drawings…

  6. Numerical Analysis of the Primary Breakup Applying the Embedded DNS Approach to a Generic Prefilming Airblast Atomizer

    Directory of Open Access Journals (Sweden)

    Benjamin Sauer

    2014-09-01

    Full Text Available An improved understanding of the breakup processes of two-phase flows is essential to effectively control the fuel atomization for future aircraft engines. A detailed insight into the phenomena of primary breakup is a major limitation in gaining this knowledge. Aircraft engines use airblast atomizers to provide the fuel atomization. The geometries of airblast atomizers are complex, the operating conditions are characterized by high Reynolds- and Weber numbers. Direct Numerical Simulations (DNS of liquid breakup under realistic conditions and geometries are hardly possible. The embedded DNS (eDNS concept aims to fill this gap. The concept consists of three steps: a geometry simplification, the generation of realistic boundary conditions for the DNS and the DNS of the breakup region. The realistic annular airblast atomizer geometry is simplified to a planar geometry. Inside this domain the eDNS is located. The eDNS domain requires the generation of boundary conditions. A zonal Large Eddy Simulation (LES of the turbulent channel flow is performed prior to the DNS. The parameters are stored transiently on the “virtual” DNS inlet planes. These variables are then mapped to the DNS. The Volume of fluid (VOF method is used to solve for the two-phase flow. DNS are performed for a shear-driven liquid wall film and for a generic planar prefilming airblast atomizer. As the Reynolds and Weber number for the first operating point (OP are low (Reair = 5,333/Wefilm = 1.9, the liquid wall film as well as the liquid sheet show no surface waves. For the second case with Reair = 13,333 and We film = 11.9, the surface appears more wrinkled and streamwise waves are transported along the wall for the shear-driven wall film. Instantaneous snapshots in 2–D and 3–D illustrate the qualitative behavior of the liquid sheet in time. Leaving the prefilmer trailing edge, the liquid sheet starts to oscillate in a sinusoidal fashion. This oscillation appears crucial for

  7. Proceedings of the international seminar on atomic processes in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takako; Murakami, Izumi [eds.

    2000-01-01

    The International Seminar on Atomic Processes in Plasmas (ISAPP), a satellite meeting to the ICPEAC was held July 28-29 at the National Institute for Fusion Science in Toki, Gifu, Japan. About 110 scientists attended the ISAPP meeting and discussed atomic processes and atomic data required for fusion research. This Proceedings book includes the papers of the talks, posters and panel discussion given at the meeting. The invited talks described the super configuration array method for complex spectra, near-LTE atomic kinetics, R-matrix calculations, the binary-encounter dipole model for electron-impact ionization of molecules, other calculations of molecular processes, the ADAS project and the NIFS atomic data-base, and a survey of the role of molecular processes in divertor plasmas. On the experimental side crossed-beam ion-ion collision-experiments for charge transfer, and storage-ring and EBIT measurements of ionization, excitation and dielectronic recombination cross-sections were presented, and atomic processes important for x-ray laser experiments and x-ray spectroscopy of astrophysical plasmas were described. The new method of plasma polarization spectroscopy was outlined. There was also a spectroscopic study of particle transport in JT-60U, new results for detached plasmas, and a sketch of the first hot plasma experiments with the Large Helical Device recently completed at NIFS. The 63 of the presented papers are indexed individually. (J.P.N.)

  8. A slow atomic diffusion process in high-entropy glass-forming metallic melts

    Science.gov (United States)

    Chen, Changjiu; Wong, Kaikin; Krishnan, Rithin P.; Embs, Jan P.; Chathoth, Suresh M.

    2018-04-01

    Quasi-elastic neutron scattering has been used to study atomic relaxation processes in high-entropy glass-forming metallic melts with different glass-forming ability (GFA). The momentum transfer dependence of mean relaxation time shows a highly collective atomic transport process in the alloy melts with the highest and lowest GFA. However, a jump diffusion process is the long-range atomic transport process in the intermediate GFA alloy melt. Nevertheless, atomic mobility close to the melting temperature of these alloy melts is quite similar, and the temperature dependence of the diffusion coefficient exhibits a non-Arrhenius behavior. The atomic mobility in these high-entropy melts is much slower than that of the best glass-forming melts at their respective melting temperatures.

  9. 16. Hot dense plasma atomic processes

    International Nuclear Information System (INIS)

    Werner, Dappen; Totsuji, H.; Nishii, Y.

    2002-01-01

    This document gathers 13 articles whose common feature is to deal with atomic processes in hot plasmas. Density functional molecular dynamics method is applied to the hydrogen plasma in the domain of liquid metallic hydrogen. The effects of the density gradient are taken into account in both the electronic kinetic energy and the exchange energy and it is shown that they almost cancel with each other, extending the applicability of the Thomas-Fermi-Dirac approximation to the cases where the density gradient is not negligible. Another article reports about space and time resolved M-shell X-ray measurements of a laser-produced gas jet xenon plasma. Plasma parameters have been measured by ion acoustic and electron plasma waves Thomson scattering. Photo-ionization becomes a dominant atomic process when the density and the temperature of plasmas are relatively low and when the plasma is submitted to intense external radiation. It is shown that 2 plasmas which have a very different density but have the same ionization parameters, are found in a similar ionization state. Most radiation hydrodynamics codes use radiative opacity data from available libraries of atomic data. Several articles are focused on the determination of one group Rosseland and Planck mean analytical formulas for several single elements used in inertial fusion targets. In another paper the plasma density effect on population densities, effective ionization, recombination rate coefficients and on emission lines from carbon and Al ions in hot dense plasma, is studied. The last article is devoted to a new atomic model in plasmas that considers the occupation probability of the bound state and free state density in the presence of the plasma micro-field. (A.C.)

  10. Measurements of scattering processes in negative ion-atom collisions

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1992-01-01

    This Technical Progress Report describes the progress made on the research objectives during the past twelve months. This research project is designed to provide measurements of various scattering processes which occur in H - collisions with atomic (specifically, noble gas and atomic hydrogen) targets at intermediate energies. These processes include: elastic scattering,single- and double-electron detachment, and target excitation/ionization. For the elastic and target inelastic processes where H - is scattered intact, the experimental technique of Ion Energy-Loss Spectroscopy (IELS) will be employed to identify the final target state(s). In most of the above processes, cross sections are unknown both experimentally and theoretically. The measurements in progress will provide either experimentally-determined cross sections or set upper limits to those cross sections. In either case, these measurements will be stringent tests of our understanding in energetic negative ion-atom collisions. This series of experiments required the construction of a new facility and the initial ion beam was accelerated through the apparatus in April 1991

  11. Manipulating cold atoms for quantum information processing

    International Nuclear Information System (INIS)

    Knight, P.

    2005-01-01

    Full text: I will describe how cold atoms can be manipulated to realize arrays of addressable qbits as prototype quantum registers, focussing on how atom chips can be used in combination with cavity qed techniques to form such an array. I will discuss how the array can be generated and steered using optical lattices and the Mott transition, and describe the sources of noise and how these place limits on the use of such chips in quantum information processing. (author)

  12. Flexibility analysis of main primary heat transport system : Narora Atomic Power Project

    International Nuclear Information System (INIS)

    Rastogi, S.K.

    1975-01-01

    The paper presents flexibility analysis problem of main primary heat transport system and the approximate analysis that has been made to estimate the loads coming on major equipments. The primary heat transport system for Narora Atomic Power Project is adopting vertical steam generators and pumps equally divided on either side of the reactor with inter-connecting pipes and feeders. Since the system is mainly spring supported with movement of a few points in certain direction defined but no anchorage, it represents a good problem for flexibility analysis which can only be solved in one step by developing a good computer programme. (author)

  13. The role of atomic and molecular processes in fusion research

    International Nuclear Information System (INIS)

    Harrison, M.F.A.

    1977-01-01

    This paper considers the relevance of atomic and molecular processes to research into controlled nuclear fusion and in particular their effects upon the magnetically confined plasma in Tokamak experiments and conceptual Tokamak reactors. The relative significance of collective phenomena and of single particle collisions to both plasma heating and loss processes are discussed and the pertinent principles of plasma refuelling and plasma diagnostics are outlined. The methods by which atomic and molecular data are applied to these problems, the contributing effects of surface interactions and the consequent implications upon the accuracy and the type of data needed are described in a qualitative manner. Whilst particular atomic and molecular processes are not discussed in detail, sufficient information is given of the physical environments of Tokamak devices for significant processes to be self evident. (author)

  14. Process to produce excited states of atomic nuclei

    International Nuclear Information System (INIS)

    Morita, M.; Morita, R.

    The claims of a patented process which relates to the production of excited states of atomic nuclei are outlined. Among these are (1) production of nuclear excited states by bombarding the atoms with x rays or electrons under given conditions, (2) production of radioactive substances by nuclear excitation with x rays or electrons, (3) separation of specific isotopes from a mixture of isotopes of the same element by means of nuclear excitation followed by chemical treatment. The invention allows production of excited states of atomic nuclei in a relatively simple manner without the need of large apparatus and equipment

  15. Studies on atom deceleration process by using the Zeeman-tuned technique

    International Nuclear Information System (INIS)

    Bagnato, V.S.

    1990-01-01

    The Zeeman-tuned technique to slow an atomic beam of sodium atoms was detailed studied. A new technique to study the deceleration which consists in monitoring the fluorescence along the deceleration path is used. This allows a direct observation of the process and open possibilities to investigate the adiabatic following of atoms in the magnetic field, and others very important aspects of the process. With a single laser and some modification of the magnetic field profile it is possible stop atoms outside the slower solenoid, which make a lot of experiments much simpler. A systematic study of the optical pumping effects and adiabatic following conditions allow to produce a very strong slow motion atomic beam. (author)

  16. Non equilibrium atomic processes and plasma spectroscopy

    International Nuclear Information System (INIS)

    Kato, Takako

    2003-01-01

    Along with the technical progress in plasma spectroscopy, non equilibrium ionization processes have been recently observed. We study non local thermodynamic equilibrium and non ionization equilibrium for various kinds of plasmas. Specifically we discuss non equilibrium atomic processes in magnetically confined plasmas, solar flares and laser produced plasmas using a collisional radiative model based on plasma spectroscopic data. (author)

  17. Atomic Processes in Plasmas: Tenth Topical Conference. Proceedings

    International Nuclear Information System (INIS)

    Osterheld, A.L.; Goldstein, W.H.

    1997-01-01

    These proceedings contain the papers presented at the 10th topical conference on atomic processes in plasmas held in San Francisco, California. This conference series provides a forum for those whose research overlaps atomic and plasma physics. The topics discussed included tokamak plasmas, x-ray sources and x-ray lasers, dense plasmas, laser plasmas, radiative opacity and atomic databases. Among the sponsors of this conference were the Office of Fusion Energy and the Office of Energy Research of the U.S. department of Energy and Lawrence Livermore National Laboratory. There were 30 papers presented and 28 have been abstracted for the Energy Science and Technology database

  18. Chemical effect in nuclear decay processes. Applications in in situ studies in hot atom chemistry

    International Nuclear Information System (INIS)

    Urch, D.S.

    1993-01-01

    In certain cases, secondary processes, such as X-ray or electron emission initiated by the primary event, do show effects which can be correlated with the chemical state of the emitting atom. The most well known is Moessbauer recoil-less γ-emission, but this talk will concentrate on other, more widespread processes that follow either γ-ray internal conversion (γIC) or electron capture (EC). The former leads to electron emission and the latter to X-ray and Auger electron emission. Such emissions have been extensively studied in non-radioactive situations. These studies have shown that changes in photo- or Auger-electron energy can be readily correlated with valency and that the energies, peak shapes and peak intensities of X-rays that are generated by valence-core transitions show chemically related perturbations. γIC has been applied to the determination of changes of 3p and 3d binding energies as a function of technetium valency. The results are comparable with those from conventional X-ray photoelectron spectroscopy. In X-ray emission spectroscopy (XES) it is the Kα and Kβ X-rays from chromium ( 51 Cr) that have been most extensively studied. Studies in non-radioactive systems for chromium and related first row transition elements seem to indicate that the Kβ/Kα intensity ratio increases with valency. This may be rationalized as due to a greater response by 3p than 2p electrons to a reduction in the number of 3d electrons: 3p becomes more contracted and so the 3p → 1s transition probability is enhanced leading to the relative increase in Kβ intensity. Once 'chemical effects' in γIC and EC:XES have been established for a range of recoil elements they may be used to determine the chemical state of a recoil atom in a solid state matrix without recourse to dissolution. Such a non-invasive procedure will yield invalunable data on the primary hot atom chemistry processes. (author)

  19. Bibliography of atomic and molecular processes. Volume 1, 1978-1981

    International Nuclear Information System (INIS)

    Barnett, C.F.; Crandall, D.H.; Farmer, B.J.

    1982-10-01

    This annotated bibliography lists 10,676 works on atomic and molecular processes reported in publications dated 1978-1981. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the county of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory

  20. Bibliography of atomic and molecular processes. Volume 1, 1978-1981

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Crandall, D.H.; Farmer, B.J. (comps.)

    1982-10-01

    This annotated bibliography lists 10,676 works on atomic and molecular processes reported in publications dated 1978-1981. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the county of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  1. An important atomic process in the CVD growth of graphene: Sinking and up-floating of carbon atom on copper surface

    International Nuclear Information System (INIS)

    Li, Yingfeng; Li, Meicheng; Gu, TianSheng; Bai, Fan; Yu, Yue; Trevor, Mwenya; Yu, Yangxin

    2013-01-01

    By density functional theory (DFT) calculations, the early stages of the growth of graphene on copper (1 1 1) surface are investigated. At the very first time of graphene growth, the carbon atom sinks into subsurface. As more carbon atoms are adsorbed nearby the site, the sunken carbon atom will spontaneously form a dimer with one of the newly adsorbed carbon atoms, and the formed dimer will up-float on the top of the surface. We emphasize the role of the co-operative relaxation of the co-adsorbed carbon atoms in facilitating the sinking and up-floating of carbon atoms. In detail: when two carbon atoms are co-adsorbed, their co-operative relaxation will result in different carbon–copper interactions for the co-adsorbed carbon atoms. This difference facilitates the sinking of a single carbon atom into the subsurface. As a third carbon atom is co-adsorbed nearby, it draws the sunken carbon atom on top of the surface, forming a dimer. Co-operative relaxations of the surface involving all adsorbed carbon atoms and their copper neighbors facilitate these sinking and up-floating processes. This investigation is helpful for the deeper understanding of graphene synthesis and the choosing of optimal carbon sources or process.

  2. Quantum information processing with atoms and photons

    International Nuclear Information System (INIS)

    Monroe, C.

    2003-01-01

    Quantum information processors exploit the quantum features of superposition and entanglement for applications not possible in classical devices, offering the potential for significant improvements in the communication and processing of information. Experimental realization of large-scale quantum information processors remains a long term vision, as the required nearly pure quantum behaviour is observed only in exotic hardware such as individual laser-cooled atoms and isolated photons. But recent theoretical and experimental advances suggest that cold atoms and individual photons may lead the way towards bigger and better quantum information processors, effectively building mesoscopic versions of Schroedinger's cat' from the bottom up. (author)

  3. Ultrafast atomic process in X-ray emission by using inner-shell ionization method for sodium and carbon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment

    1998-07-01

    An ultrafast inner-shell ionization process with X-ray emission stimulated by high-intensity short-pulse X-ray is studied. Carbon and sodium atoms are treated as target matter. It is shown that atomic processes of the target determine the necessary X-ray intensity for X-ray laser emission as well as the features of X-ray laser such as wavelength and duration time. The intensity also depends on the density of initial atoms. Furthermore, we show that as the intensity of X-ray source becomes high, the multi-inner-shell ionization predominates, leading to the formation of hollow atoms. As the density of hollow atoms is increased by the pumping X-ray power, the emission of X-rays is not only of significance for high brightness X-ray measurement but also is good for X-ray lasing. New classes of experiments of pump X-ray probe and X-ray laser are suggested. (author)

  4. Laser-assisted atom-atom collisions

    International Nuclear Information System (INIS)

    Roussel, F.

    1984-01-01

    The basic layer-assisted atom-atom collision processes are reviewed in order to get a simpler picture of the main physical facts. The processes can be separated into two groups: optical collisions where only one atom is changing state during the collision, the other acting as a spectator atom, and radiative collisions where the states of the two atoms are changing during the collision. All the processes can be interpreted in terms of photoexcitation of the quasimolecule formed during the collisional process. (author)

  5. Molecular dynamics simulation study of the influence of the lattice atom potential function upon atom ejection processes

    International Nuclear Information System (INIS)

    Harrison, D.E. Jr.; Webb, R.P.

    1982-01-01

    A molecular dynamics simulation has been used to investigate the sensitivity of atom ejection processes from a single-crystal target to changes in the atom-atom potential function. Four functions, three constructed from the Gibson potentials with Anderman's attractive well, and a fouth specifically developed for this investigation, were investigated in the Cu/Ar/sup +/ system over a range of ion energies from 1.0 to 10.0 kev with the KSE-B ion-atom potential. Well depths and widths also were varied. The calculations were done at normal incidence on the fcc (111) crystal orientation. Computed values were compared with experimental data where they exist. Sputtering yields, multimer yield ratios, layer yield ratios, and the ejected atom energy distribution vary systematically with the parameters of the atom-atom potential function. Calculations also were done with the modified Moliere function. Yields and other properties fall exactly into the positions predicted from the Born-Mayer function analysis. Simultaneous analysis of the ejected atom energy distribution and the ion energy dependence of the sputtering yield curve provides information about the parameters of both the wall and well portions of the atom-atom potential function

  6. Atomic processes and application in honour of David R. Bates' 60th birthday

    CERN Document Server

    Burke, P G

    2013-01-01

    Atomic Processes and Applications is a collection of review articles that discusses major atomic and molecular processes and their applications to upper atmospheric physics and to astrophysics. The book also serves as a 60th birthday tribute to Dr. David R. Bates. The coverage of the text includes the overview of stratospheric aeronomy; upper atmosphere of the earth; and problems in atmospheric pollution. The book also deals with technical and highly specialized issues including photoionization of atomic systems; atomic structure and oscillator strengths; and atomic scattering computations. Th

  7. Advanced statistics to improve the physical interpretation of atomization processes

    International Nuclear Information System (INIS)

    Panão, Miguel R.O.; Radu, Lucian

    2013-01-01

    Highlights: ► Finite pdf mixtures improves physical interpretation of sprays. ► Bayesian approach using MCMC algorithm is used to find the best finite mixture. ► Statistical method identifies multiple droplet clusters in a spray. ► Multiple drop clusters eventually associated with multiple atomization mechanisms. ► Spray described by drop size distribution and not only its moments. -- Abstract: This paper reports an analysis of the physics of atomization processes using advanced statistical tools. Namely, finite mixtures of probability density functions, which best fitting is found using a Bayesian approach based on a Markov chain Monte Carlo (MCMC) algorithm. This approach takes into account eventual multimodality and heterogeneities in drop size distributions. Therefore, it provides information about the complete probability density function of multimodal drop size distributions and allows the identification of subgroups in the heterogeneous data. This allows improving the physical interpretation of atomization processes. Moreover, it also overcomes the limitations induced by analyzing the spray droplets characteristics through moments alone, particularly, the hindering of different natures of droplet formation. Finally, the method is applied to physically interpret a case-study based on multijet atomization processes

  8. Hybrid Quantum Information Processing with Superconductors and Neutral Atoms

    Science.gov (United States)

    McDermott, Robert

    Hybrid approaches to quantum information processing (QIP) aim to capitalize on the strengths of disparate quantum technologies to realize a system whose capabilities exceed those of any single experimental platform. At the University of Wisconsin, we are working toward integration of a fast superconducting quantum processor with a stable, long-lived quantum memory based on trapped neutral atoms. Here we describe the development of a quantum interface between superconducting thin-film cavity circuits and trapped Rydberg atoms, the key technological obstacle to realization of superconductor-atom hybrid QIP. Specific accomplishments to date include development of a theoretical protocol for high-fidelity state transfer between the atom and the cavity; fabrication and characterization of high- Q superconducting cavities with integrated trapping electrodes to enhance zero-point microwave fields at a location remote from the chip surface; and trapping and Rydberg excitation of single atoms within 1 mm of the cavity. We discuss the status of experiments to probe the strong coherent coupling of single Rydberg atoms and the superconducting cavity. Supported by ARO under contract W911NF-16-1-0133.

  9. Monte-Carlo study on primary knock-on atom energy spectrum produced by neutron radiation

    International Nuclear Information System (INIS)

    Zhou Wei; Liu Yongkang; Deng Yongjun; Ma Jimin

    2012-01-01

    Computational method on energy distribution of primary knock-on atom (PKA) produced by neutron radiation was built in the paper. Based on the DBCN card in MCNP, reaction position, reaction type and energy transfer between neutrons and atoms were recorded. According to statistic of these data, energy and space distributions of PKAs were obtained. The method resolves preferably randomicity of random number and efficiency of random sampling computation. The results show small statistical fluctuation and well statistical. Three-dimensional figure of energy and space distribution of PKAs were obtained, which would be important to evaluate radiation capability of materials and study radiation damage by neutrons. (authors)

  10. Atomic-process cross section data, 1

    International Nuclear Information System (INIS)

    1974-12-01

    Compiled by the Data Study Group, the data are intended for fusion plasma physics research. Cross sections of the latest experimental and theoretic studies cover the processes involving H,D,T as principal plasma materials as well as photons and electrons: emission and absorption of electromagnetic wave, electron collision, ion collision, recombination, neutral atom mutual collision, etc. Edition is so made to enable the future renewal by users. (J.P.N.)

  11. Radiative processes of two entangled atoms in cosmic string spacetime

    Science.gov (United States)

    Cai, Huabing; Ren, Zhongzhou

    2018-01-01

    We investigate the radiative processes of two static two-level atoms in a maximally entangled state coupled to vacuum electromagnetic field in the cosmic string spacetime. We find that the decay rate from the entangled state to the ground state crucially depends on the atomic separation, the polarization directions of the individual atoms, the atom-string distance and the deficit angle induced by the string. As the atom-string distance increases, the decay rate oscillates around the result in Minkowski spacetime and the amplitude gradually decreases. The oscillation is more severe for larger planar angle deficit. We analyze the decay rate in different circumstances such as near zone and specific polarization cases. Some comparisons between symmetric and antisymmetric states are performed. By contrast with the case in Minkowski spacetime, we can reveal the effects of the cosmic string on the radiative properties of the entangled atoms.

  12. Scalable quantum information processing with atomic ensembles and flying photons

    International Nuclear Information System (INIS)

    Mei Feng; Yu Yafei; Feng Mang; Zhang Zhiming

    2009-01-01

    We present a scheme for scalable quantum information processing with atomic ensembles and flying photons. Using the Rydberg blockade, we encode the qubits in the collective atomic states, which could be manipulated fast and easily due to the enhanced interaction in comparison to the single-atom case. We demonstrate that our proposed gating could be applied to generation of two-dimensional cluster states for measurement-based quantum computation. Moreover, the atomic ensembles also function as quantum repeaters useful for long-distance quantum state transfer. We show the possibility of our scheme to work in bad cavity or in weak coupling regime, which could much relax the experimental requirement. The efficient coherent operations on the ensemble qubits enable our scheme to be switchable between quantum computation and quantum communication using atomic ensembles.

  13. The rate coefficients for the processes of (n - n')-mixing in collisions of Rydberg atoms H*(n) with H(1s) atoms

    International Nuclear Information System (INIS)

    Mihajlov, A A; Ignjatovic, Lj M; Djuric, Z; Ljepojevic, N N

    2004-01-01

    This paper presents the results of semi-classical calculations of rate coefficients of (n - n')-mixing processes in collisions of Rydberg atoms H*(n) with H(1s) atoms. These processes have been modelled by the mechanism of the resonant energy exchange within the electron component of the H*(n) + H collisional system. The calculations of the rate coefficients, based on this model, were performed for the series of principal quantum numbers, n and n', and atomic, T a , and electronic, T e , temperatures. It was shown that these processes can be of significant influence on the populations of Rydberg atoms in weakly ionized plasmas (ionization degree ∼ -4 ), and therefore have to be included in appropriate models of such plasmas

  14. Characterization for coating processes of imidazole powders using an ultrasonic atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Sik; Kim, Jun Ki [Korea Institute of Industrial Technology, Incheon (Korea, Republic of); Kim, Mok Soon [Inha University, Incheon (Korea, Republic of); Lee, Jong Hyun [Seoul National University, Seoul (Korea, Republic of)

    2010-01-15

    Imidazole-curing accelerator powders were coated with stearic acid to increase the pot life of anisotropic conductive adhesive (ACA) formulations. To accomplish an efficient coating process, the coating was tested using an ultrasonic atomizer after mixing imidazole powders with a molten coating agent. Design of experiments analysis was organized to elucidate the effect of process parameters and to determine the most crucial parameter. The final formulation incorporating well-processed imidazole loaded powders indicated longer pot life, higher shear strength, and excellent highly accelerated stress test (HAST) reliability. Results show that the coating process using an ultrasonic atomizer is effective in increasing the pot life of ACA formulations

  15. Dynamical interaction of He atoms with metal surfaces: Charge transfer processes

    International Nuclear Information System (INIS)

    Flores, F.; Garcia Vidal, F.J.; Monreal, R.

    1993-01-01

    A self-consistent Kohn-Sham LCAO method is presented to calculate the charge transfer processes between a He * -atom and metal surfaces. Intra-atomic correlation effects are taken into account by considering independently each single He-orbital and by combining the different charge transfer processes into a set of dynamical rate equations for the different ion charge fractions. Our discussion reproduces qualitatively the experimental evidence and gives strong support to the method presented here. (author). 24 refs, 4 figs

  16. Artificial Atoms: from Quantum Physics to Applications

    International Nuclear Information System (INIS)

    2014-01-01

    The primary objective of this workshop is to survey the most recent advances of technologies enabling single atom- and artificial atom-based devices. These include the assembly of artificial molecular structures with magnetic dipole and optical interactions between engineered atoms embedded in solid-state lattices. The ability to control single atoms in diamond or similar solids under ambient operating conditions opens new perspectives for technologies based on nanoelectronics and nanophotonics. The scope of the workshop is extended towards the physics of strong coupling between atoms and radiation field modes. Beyond the traditional atom-cavity systems, artificial dipoles coupled to microwave radiation in circuit quantum electrodynamics is considered. All these technologies mutually influence each other in developing novel devices for sensing at the quantum level and for quantum information processing.

  17. A comprehensive Two-Fluid Model for Cavitation and Primary Atomization Modelling of liquid jets - Application to a large marine Diesel injector

    Science.gov (United States)

    Habchi, Chawki; Bohbot, Julien; Schmid, Andreas; Herrmann, Kai

    2015-12-01

    In this paper, a comprehensive two-fluid model is suggested in order to compute the in-nozzle cavitating flow and the primary atomization of liquid jets, simultaneously. This model has been applied to the computation of a typical large marine Diesel injector. The numerical results have shown a strong correlation between the in-nozzle cavitating flow and the ensuing spray orientation and atomization. Indeed, the results have confirmed the existence of an off-axis liquid core. This asymmetry is likely to be at the origin of the spray deviation observed experimentally. In addition, the primary atomization begins very close to the orifice exit as in the experiments, and the smallest droplets are generated due to cavitation pocket shape oscillations located at the same side, inside the orifice.

  18. Atomic and molecular collision processes

    International Nuclear Information System (INIS)

    Norcross, D.W.

    1991-01-01

    530Accomplishments during the course of a 44-month program of code development and high precision calculations for electron collisions with atoms, atomic ions, and molecules are summarized. In electron-atom and -ion collisions, we were primarily concerned with the fundamental physics of the process that controls excitation in high temperature plasmas. In the molecular work, we pursued the development of techniques for accurate calculations of ro-vibrational excitation of polyatomic molecules, to the modeling of gas-phase laser systems. Highlights from the seven technical paper published as a result of this contract include: The resolution of a long history of unexplained anomalies and experimental/theoretical discrepancies by a demonstration that the Coulomb phase must be included in scattering amplitudes for electron-ion collisions. Definitive close-coupling calculations of cross sections for electron impact excitation of Be + , using a very elaborate expansion for the collision system and inclusion of both one- and two-body terms for the effect of core polarization. Detailed state-of-the-art calculations for electron-impact excitation of the sodium-like ion A ell 2+ that included core-polarization interactions, and which also produced new data on bound-state energy levels for the magnesium-like ion A ell + and oscillator strengths for A ell 2+ . Partial cross sections for excitation of the 3p level of sodium at energies just above threshold calculated using a four-state close-coupling approach, including both total cross sections and those for excitation as a function of the change in the spin and orbital angular momentum projection quantum numbers of the target electron. Generalization of our electron-molecule scattering code to carry out full vibrational close-coupling calculations with an exact treatment of exchange and with a parameter-free representation of correlation and polarization interactions, and application to HF and H 2

  19. Direct observation of atomic-level nucleation and growth processes from an ultrathin metallic glass films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K. Q.; Cao, C. R.; Sun, Y. T.; Li, J.; Bai, H. Y.; Zheng, D. N., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn; Wang, W. H., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Gu, L., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China)

    2016-01-07

    Till date, there have been no direct atomic-level experimental observations of the earliest stages of the nucleation and growth processes of nanocrystals formed by thermally induced crystallization in ultrathin metallic glasses (MGs). Here, we present a study of the crystallization process in atomically thin and highly stable MG films using double spherical aberration-corrected scanning transmission electron microscopy (Cs-TEM). Taking advantage of the stability of MG films with a slow crystallization process and the atomic-level high resolution of Cs-TEM, we observe the formation of the nucleus precursor of nanocrystals formed by atom aggregation followed by concomitant coalescence and stepwise evolution of the shape of the nanocrystals with a monodispersed and separated bimodal size distribution. Molecular dynamics simulation of the atomic motion in the glass film on a rigid amorphous substrate confirms the stepwise evolution processes of atom aggregation, cluster formation, cluster movement on the substrate, and cluster coalescence into larger crystalline particles. Our results might provide a better fundamental understanding of the nucleation and growth processes of nanocrystals in thin MG films.

  20. Three-dimensional imaging of atomic four-body processes

    CERN Document Server

    Schulz, M; Fischer, D; Kollmus, H; Madison, D H; Jones, S; Ullrich, J

    2003-01-01

    To understand the physical processes that occur in nature we need to obtain a solid concept about the 'fundamental' forces acting between pairs of elementary particles. it is also necessary to describe the temporal and spatial evolution of many mutually interacting particles under the influence of these forces. This latter step, known as the few-body problem, remains an important unsolved problem in physics. Experiments involving atomic collisions represent a useful testing ground for studying the few-body problem. For the single ionization of a helium atom by charged particle impact, kinematically complete experiments have been performed since 1969. The theoretical analysis of such experiments was thought to yield a complete picture of the basic features of the collision process, at least for large collision energies. These conclusions are, however, almost exclusively based on studies of restricted electron-emission geometries. We report three- dimensional images of the complete electron emission pattern for...

  1. The rate coefficients for the processes of (n - n')-mixing in collisions of Rydberg atoms H*(n) with H(1s) atoms

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlov, A A [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Ignjatovic, Lj M [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Djuric, Z [Silvaco Data Systems, Compass Point, St Ives PE27 5JL (United Kingdom); Ljepojevic, N N [Silvaco Data Systems, Compass Point, St Ives PE27 5JL (United Kingdom)

    2004-11-28

    This paper presents the results of semi-classical calculations of rate coefficients of (n - n')-mixing processes in collisions of Rydberg atoms H*(n) with H(1s) atoms. These processes have been modelled by the mechanism of the resonant energy exchange within the electron component of the H*(n) + H collisional system. The calculations of the rate coefficients, based on this model, were performed for the series of principal quantum numbers, n and n', and atomic, T{sub a}, and electronic, T{sub e}, temperatures. It was shown that these processes can be of significant influence on the populations of Rydberg atoms in weakly ionized plasmas (ionization degree {approx}<10{sup -4}), and therefore have to be included in appropriate models of such plasmas.

  2. Atomic physics with highly charged ions. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.

    1994-08-01

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.

  3. Kinetic and spectral descriptions of autoionization phenomena associated with atomic processes in plasmas

    Science.gov (United States)

    Jacobs, Verne L.

    2017-06-01

    This investigation has been devoted to the theoretical description and computer modeling of atomic processes giving rise to radiative emission in energetic electron and ion beam interactions and in laboratory plasmas. We are also interested in the effects of directed electron and ion collisions and of anisotropic electric and magnetic fields. In the kinetic-theory description, we treat excitation, de-excitation, ionization, and recombination in electron and ion encounters with partially ionized atomic systems, including the indirect contributions from processes involving autoionizing resonances. These fundamental collisional and electromagnetic interactions also provide particle and photon transport mechanisms. From the spectral perspective, the analysis of atomic radiative emission can reveal detailed information on the physical properties in the plasma environment, such as non-equilibrium electron and charge-state distributions as well as electric and magnetic field distributions. In this investigation, a reduced-density-matrix formulation is developed for the microscopic description of atomic electromagnetic interactions in the presence of environmental (collisional and radiative) relaxation and decoherence processes. Our central objective is a fundamental microscopic description of atomic electromagnetic processes, in which both bound-state and autoionization-resonance phenomena can be treated in a unified and self-consistent manner. The time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations of the reduced-density-matrix approach are developed in a unified and self-consistent manner. This is necessary for our ultimate goal of a systematic and self-consistent treatment of non-equilibrium (possibly coherent) atomic-state kinetics and high-resolution (possibly overlapping) spectral-line shapes. We thereby propose the introduction of a generalized collisional-radiative atomic-state kinetics model based on a reduced

  4. Atomic processes in high temperature plasmas

    International Nuclear Information System (INIS)

    Hahn, Y.

    1990-03-01

    Much theoretical and experimental efforts have been expended in recent years to study those atomic processes which are specially relevant to understanding high temperature laboratory plasmas. For magnetically confined fusion plasmas, the temperature range of interest spans from the hundreds of eV at plasma edges to 10 keV at the center of the plasma, where most of the impurity ions are nearly fully ionized. These highly stripped ions interact strongly with electrons in the plasma, leading to further excitation and ionization of the ions, as well as electron capture. Radiations are emitted during these processes, which easily escape to plasma container walls, thus cooling the plasma. One of the dominant modes of radiation emission has been identified with dielectronic recombination. This paper reviews this work

  5. A comprehensive Two-Fluid Model for Cavitation and Primary Atomization Modelling of liquid jets - Application to a large marine Diesel injector

    International Nuclear Information System (INIS)

    Habchi, Chawki; Bohbot, Julien; Schmid, Andreas; Herrmann, Kai

    2015-01-01

    In this paper, a comprehensive two-fluid model is suggested in order to compute the in-nozzle cavitating flow and the primary atomization of liquid jets, simultaneously. This model has been applied to the computation of a typical large marine Diesel injector. The numerical results have shown a strong correlation between the in-nozzle cavitating flow and the ensuing spray orientation and atomization. Indeed, the results have confirmed the existence of an off-axis liquid core. This asymmetry is likely to be at the origin of the spray deviation observed experimentally. In addition, the primary atomization begins very close to the orifice exit as in the experiments, and the smallest droplets are generated due to cavitation pocket shape oscillations located at the same side, inside the orifice. (paper)

  6. Amplitudes and state parameters from ion- and atom-atom excitation processes

    International Nuclear Information System (INIS)

    Andersen, T.; Horsdal-Pedersen, E.

    1984-01-01

    This chapter examines single collisions between two atomic species, one of which is initially in a 1 S state (there is only one initial spin channel). The collisions are characterized by a definite scattering plane and a definite orientation. Topics considered include an angular correlation between scattered particles and autoionization electrons or polarized photons emitted from states excited in atomic collisions (photon emission, electron emission, selectivity excited target atoms), experimental methods for obtaining information on the alignment and orientation parameters of atoms or ions excited in specific collisions, results of experiments and numerical calculations (quasi-oneelectron systems, He + -He collisions, other collision systems), and future aspects and possible applications of the polarizedphoton, scattered-particle coincidence techniques to atomic spectroscopy

  7. Effect of inelastic energy losses on development of atom-atom collision cascades

    International Nuclear Information System (INIS)

    Marinyuk, V.V.; Remizovich, V.S.

    2001-01-01

    The problem of influence of inelastic energy losses (ionization braking) of particles on the development of atom-atom collision cascades in infinite medium was studied theoretically. Main attention was paid to study of angular and energy distributions of primary ions and cascade atoms in the presence of braking. Analytical calculations were made in the assumption that single scattering of particles occurs by solid balls law, while the value of electron braking ability of a medium is determined by the Lindhard formula. It is shown that account of braking (directly when solving the Boltzmann transport equation) changes in principle the previously obtained angular and energy spectra of ions and cascade atoms. Moreover, it is the braking that is the determining factor responsible for anisotropy of angular distributions of low-energy primary ions and cascade atoms [ru

  8. Specific features of energy and spatial distribution of primary knocked-out atoms in monocrystals

    International Nuclear Information System (INIS)

    Taratin, A.M.; Vorob'ev, S.A.

    1978-01-01

    By simulation trajectories of 0.2 MeV protons in 1 μm thick Al monocrystal, the energy and spatial distributions of primary atoms knocked out by the protons (PKA) have been studied. Different orientations of the incident beam axis relative to the densely packed direction in the case of ''quasichanneling'' and ''chaotic'' scattering of particles by the crystal have been researched. The depth dependence of the number of generated PKA, their distribution in the plane transverse to the preferred direction, and the energy spectrum of PKA have been obtained. It is shown that the PKA volume density is higher than that obtained using evaluations not accounting for the crystalline structure, and the energy spectrum contains more low energy PKAs. A concept of the cross section of the PKA production on an atomic chain is introduced for ipterpretation of the data obtained

  9. Analysis of angular momentum properties of photons emitted in fundamental atomic processes

    Science.gov (United States)

    Zaytsev, V. A.; Surzhykov, A. S.; Shabaev, V. M.; Stöhlker, Th.

    2018-04-01

    Many atomic processes result in the emission of photons. Analysis of the properties of emitted photons, such as energy and angular distribution as well as polarization, is regarded as a powerful tool for gaining more insight into the physics of corresponding processes. Another characteristic of light is the projection of its angular momentum upon propagation direction. This property has attracted a special attention over the past decades due to studies of twisted (or vortex) light beams. Measurements being sensitive to this projection may provide valuable information about the role of angular momentum in the fundamental atomic processes. Here we describe a simple theoretical method for determination of the angular momentum properties of the photons emitted in various atomic processes. This method is based on the evaluation of expectation value of the total angular momentum projection operator. To illustrate the method, we apply it to the textbook examples of plane-wave, spherical-wave, and Bessel light. Moreover, we investigate the projection of angular momentum for the photons emitted in the process of the radiative recombination with ionic targets. It is found that the recombination photons do carry a nonzero projection of the orbital angular momentum.

  10. Quantum-orbit theory of high-order atomic processes in strong fields

    International Nuclear Information System (INIS)

    Milosevic, D.B.

    2005-01-01

    Full text: Atoms submitted to strong laser fields can emit electrons and photons of very high energies. These processes find a highly intuitive and also quantitative explanation in terms of Feynman's path integral and the concept of quantum orbits. The quantum-orbit formalism is particularly useful for high-order atomic processes in strong laser fields. For such multi-step processes there is an intermediate step during which the electron is approximately under the influence of the laser field only and can absorb energy from the field. This leads to the appearance of the plateau structures in the emitted electron or photon spectra. Usual examples of such processes are high-order harmonic generation (HHG) and high-order above threshold ionization (HATI). These structures were also observed in high-order above-threshold detachment, laser-assisted x-ray-atom scattering, laser-assisted electron-ion recombination, and electron-atom scattering. We will present high-order strong-field approximation (SFA) and show how the quantum-orbit formalism follows from it. This will be done for various above-mentioned processes. For HHG a classification of quantum orbits will be given [10) and generalized to the presence of a static field. The low-energy part of the HHG spectra and the enhancement of HHG near the channel closings can be explained taking into account a large number of quantum orbits. For HATI we will concentrate on the case of few-cycle laser pulse. The influence of the carrier-envelope relative phase on the HATI spectrum can easily be explained in terms of quantum orbits. The SFA and the quantum-orbit results will be compared with the results obtained by Dieter Bauer using ab initio solutions of the time-dependent Schroedinger equation. It will be shown that the Coulomb effects are important for low-energy electron spectra. Refs. 11 (author)

  11. A review on laser diagnostics on atomization and evaporation of liquid fuel

    Science.gov (United States)

    Zhang, Yuyin; Li, Shiyan; Lin, Baiyang; Liu, Yang; Wu, Jian; Xu, Bin

    2014-08-01

    To evaluate the atomization and evaporation processes of liquid fuel, there are several laser diagnostics available in present. In this paper, the recent progress in laser diagnostics for atomization and evaporation will be introduced, as two categories: atomization and evaporation. The diagnostics for the former includes the primary breakup from liquid jet to ligaments or droplets and the secondary atomization from a bigger droplet to a smaller one, and the latter includes the droplet evaporation and the vapor distributions in a spray.

  12. Statistical study of defects caused by primary knock-on atoms in fcc Cu and bcc W using molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Warrier, M., E-mail: Manoj.Warrier@gmail.com [Computational Analysis Division, BARC, Visakhapatnam, Andhra Pradesh, 530012 (India); Bhardwaj, U.; Hemani, H. [Computational Analysis Division, BARC, Visakhapatnam, Andhra Pradesh, 530012 (India); Schneider, R. [Computational Science, Ernst-Moritz-Arndt University, D-17489 Greifswald (Germany); Mutzke, A. [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany); Valsakumar, M.C. [School for Engineering Sciences and Technology, University of Hyderabad, Gachibowli, Hyderabad, Telangana State, 500046 (India)

    2015-12-15

    We report on molecular Dynamics (MD) simulations carried out in fcc Cu and bcc W using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code to study (i) the statistical variations in the number of interstitials and vacancies produced by energetic primary knock-on atoms (PKA) (0.1–5 keV) directed in random directions and (ii) the in-cascade cluster size distributions. It is seen that around 60–80 random directions have to be explored for the average number of displaced atoms to become steady in the case of fcc Cu, whereas for bcc W around 50–60 random directions need to be explored. The number of Frenkel pairs produced in the MD simulations are compared with that from the Binary Collision Approximation Monte Carlo (BCA-MC) code SDTRIM-SP and the results from the NRT model. It is seen that a proper choice of the damage energy, i.e. the energy required to create a stable interstitial, is essential for the BCA-MC results to match the MD results. On the computational front it is seen that in-situ processing saves the need to input/output (I/O) atomic position data of several tera-bytes when exploring a large number of random directions and there is no difference in run-time because the extra run-time in processing data is offset by the time saved in I/O. - Highlights: • MD simulations of collision cascades in 200 random directions explored in the energy range of 1–5 keV for fcc Cu and bcc W. • 60–80 random directions must be sampled for the number of displacements produced in a collision cascade to stabilize. • In-cascade clustering of interstitials and vacancies occur. • Direction averaged distribution of interstitials and vacancies around the origin of a PKA is presented. • Comparisons with MD indicate that the recoils produced in BCA-MC simulations be checked for recombination against all vacancies created.

  13. Physicochemical processes behind atomic tritium harnessing for investigation into surface of solids

    International Nuclear Information System (INIS)

    Badun, G.A.; Fedoseev, V.M.

    2000-01-01

    The thermal dissociation of hydrogen molecules on tungsten wire heated up to 1500 - 2000 K is a comfortable method for the atomic hydrogen production. The role of the different physicochemical processes taking place during dissociation of the molecular tritium interaction, atomic tritium transport to the target and its interaction with the molecules of the target is discussed. High selectivity of the atomic tritium interaction with the components of the different chemical nature target allowed such investigations to be made. The examples of atomic tritium use for the investigation into polymeric materials, absorption layers of surfactants, structure of biological macromolecules and hypomolecular formations are demonstrated [ru

  14. Line emission processes in atomic and molecular shocks

    International Nuclear Information System (INIS)

    Shull, J.M.

    1988-01-01

    The review discusses the observations and theoretical models of interstellar shock waves in diffuse and molecular clouds. After summarizing the relevant gas dynamics, atomic, molecular and grain processes, and physics of radiative and magnetic precursors, the author describes observational diagnostics of shocks. This paper concludes with a discussion of two topics: unstable or non-steady shocks and thermal conduction in metal-rich shocks

  15. Fundamental atomic plasma chemistry for semiconductor manufacturing process analysis

    International Nuclear Information System (INIS)

    Ventzek, P.L.G.; Zhang, D.; Stout, P.J.; Rauf, S.; Orlowski, M.; Kudrya, V.; Astapenko, V.; Eletskii, A.

    2002-01-01

    An absence of fundamental atomic plasma chemistry data (e.g. electron impact cross-sections) hinders the application of plasma process models in semiconductor manufacturing. Of particular importance is excited state plasma chemistry data for metallization applications. This paper describes important plasma chemistry processes in the context of high density plasmas for metallization application and methods for the calculation of data for the study of these processes. Also discussed is the development of model data sets that address computational tractability issues. Examples of model electron impact cross-sections for Ni reduced from multiple collision processes are presented

  16. Atomic processes in hydrogen and deuterium negative ion discharges

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1992-01-01

    A knowledge of the atomic processes active in a hydrogen negative ion discharge and their respective rates is an essential component of the interpretation, modeling, and enhancement of negative ion systems. The generation of the cross sections and rate processes appropriate to this problem has been a principal activity at several laboratories. In this paper is discussed those collision processes that are of major importance for the destruction of the vibrationally excited molecules generated in the discharge, processes that are essential to the valuation of the optimization procedure that is to be discussed in this paper

  17. Dynamical Evolution of Properties for Atom and Field in the Process of Two-Photon Absorption and Emission Between Atomic Levels

    Science.gov (United States)

    Wang, Jian-ming; Xu, Xue-xiang

    2018-04-01

    Using dressed state method, we cleverly solve the dynamics of atom-field interaction in the process of two-photon absorption and emission between atomic levels. Here we suppose that the atom is initially in the ground state and the optical field is initially in Fock state, coherent state or thermal state, respectively. The properties of the atom, including the population in excited state and ground state, the atom inversion, and the properties for optical field, including the photon number distribution, the mean photon number, the second-order correlation function and the Wigner function, are discussed in detail. We derive their analytical expressions and then make numerical analysis for them. In contrast with Jaynes-Cummings model, some similar results, such as quantum Rabi oscillation, revival and collapse, are also exhibit in our considered model. Besides, some novel nonclassical states are generated.

  18. Simultaneous multiphoton processes in the interaction of atoms with electromagnetic fields

    International Nuclear Information System (INIS)

    Levine, A.M.; Schreiber, W.M.; Weiszmann, A.N.

    1984-01-01

    It is impossible to obtain an exact description of multiphoton processes in the interaction of electromagnetic fields with atomic systems. Approximate approaches must be used to describe the physically different effects that can occur. One effect is the stepwise absorption/emission of many photons by a N-level system that evolves dynamically in between each absorption/emission. Another effect is described in the theories of Raman processes where the simultaneous absorption/emission of many photons is considered. In this paper, consideration is given to both processes allowing interference between the stepwise and simultaneous absorptions. An approximate Hamiltonian is obtained from the quantum mechanical multipole expansion. An exact solution of an atom-field system subject to this Hamiltonian will be presented. The extension of the method to multiple electromagnetic fields is discussed

  19. Atomic and molecular processes in JT-60U divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Takenaga, H.; Shimizu, K.; Itami, K. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-01-01

    Atomic and molecular data are indispensable for the understanding of the divertor characteristics, because behavior of particles in the divertor plasma is closely related to the atomic and molecular processes. In the divertor configuration, heat and particles escaping from the main plasma flow onto the divertor plate along the magnetic field lines. In the divertor region, helium ash must be effectively exhausted, and radiation must be enhanced for the reduction of the heat load onto the divertor plate. In order to exhaust helium ash effectively, the difference between behavior of neutral hydrogen (including deuterium and tritium) and helium in the divertor plasma should be understood. Radiation from the divertor plasma generally caused by the impurities which produced by the erosion of the divertor plate and/or injected by gas-puffing. Therefore, it is important to understand impurity behavior in the divertor plasma. The ions hitting the divertor plate recycle through the processes of neutralization, reflection, absorption and desorption at the divertor plates and molecular dissociation, charge-exchange reaction and ionization in the divertor plasma. Behavior of hydrogen, helium and impurities in the divertor plasmas can not be understood without the atomic and molecular data. In this report, recent results of the divertor study related to the atomic and molecular processes in JT-60U were summarized. Behavior of neural deuterium and helium was discussed in section 2. In section 3, the comparisons between the modelling of the carbon impurity transport and the measurements of C II and C IV were discussed. In section 4, characteristics of the radiative divertor using Ne puffing were reported. The new diagnostic method for the electron density and temperature in the divertor plasmas using the intensity ratios of He I lines was described in section 5. (author)

  20. Shake-off processes at the electron transitions in atoms

    International Nuclear Information System (INIS)

    Matveev, V.I.; Parilis, Eh.S.

    1982-01-01

    Elementary processes in multielectron atoms - radiative and Auger transitions, photoionization and ionization by an electron impact etc. are usually followed by the relaxation of electron shells. The conditions under which such multielectron problem could be solved in the shake-off approximation are considered. The shake-off processes occurring. as a result of the electron transitions are described from the general point of view. The common characteristics and peculiar features of this type of excitation in comparison with the electron shake-off under nuclear transformations are pointed out. Several electron shake-off processes are considered, namely: radiative Auger effect, the transition ''two electrons-one photon'', dipole ionization, spectral line broadening, post collision interaction, Auger decay stimulated by collision with fast electrons, three-electron Auger transitions: double and half Auger effect. Their classification is given according to the type of the electron transition causing the shake-off process. The experimental data are presented and the methods of theoretical description are reviewed. Other similar effects, which could follow the transitions in electron shells are pointed out. The deduction of shake-off approximation is presented, and it is pointed out that this approach is analogous to the distorted waves approximation in the theory of scattering. It was shown that in atoms the shake-off approximation is a very effective method, which allows to obtain the probability of different electronic effects

  1. System and process for determining the basis weight of a low atomic number material in a mixture with a higher atomic number material

    International Nuclear Information System (INIS)

    Hegland, P.; Dahlquist, J.

    1985-01-01

    A process for determining the relative quantity of low atomic energy material mixed with a higher atomic energy material is carried out by directing a first and second beam of x-rays into the mixture. The process includes transmitting x-rays directly to detectors to set one criterion, shielding the detectors from the x-ray sources to set another criterion and then passing samples of known relative composition to provide data for storage and calibration carrying out the process of mixtures to be measured

  2. Coherence effects in atomic impact processes

    International Nuclear Information System (INIS)

    Blum, K.

    1980-01-01

    The author considers excitation of target atoms by projectile particles and the coincident detection of the scattered projectiles and the photons emitted in the subsequent decay by the target atoms. The observation is restricted to radiation emitted by those atoms only which 'scattered' the projectiles with a given energy in a given direction defined by the particle detector. Thus, a certain subensemble of atoms is selected in the experiment. The author reviews the theoretical scheme used for the description of the excited subensemble with the emphasis on the coherence properties. The author reviews developments of the Fano-Macek theory concerning the description of coherently excited states with different angular momenta and parities. A comprehensive expression for the angular distribution of the emitted radiation, including all possible interference terms is given. (Auth.)

  3. Cross sections for atomic processes, vol. 2

    International Nuclear Information System (INIS)

    Takayanagi, Kazuo; Suzuki, Hiroshi; Otani, Shunsuke

    1977-09-01

    This data collection book contains the data on all processes involving hydrogen and helium isotopes, their ions, electrons and photons, collected systematically and comprehensively, and is compiled subsequently to Vol. 1 as one of the works of the data collection study group in the Institute of Plasma Physics, Nagoya University, Japan. The items of the contents will include energy level, multiplicately excited state, radiation process, electron collision, ionic collision, recombination, collision of neutral atoms, colliding process involving molecules, and other processes. However, the first edition this time contains energy level, radiation process, electron collision and ionic collision, and the data on remaining items are now under collection. Though some criticisms have been heard about Vol. 1, the authors consider that such comprehensive collection based on systematic classification is the foundation of making a generalized data bank expected to become necessary in future. Thus the data collection book includes all relevant processes, and records the experimental data and theoretically calculated results in principle without modification by selecting them systematically. This year, investigation on data evaluation is taken up also as one of the tasks of the study group. (Wakatsuki, Y.)

  4. Atomic processes in high temperature plasmas

    International Nuclear Information System (INIS)

    Hahn, Y.

    1991-07-01

    This is the final report on the project Atomic Processes in High Temperature Plasmas', which has been completed in June 30, 1991. The original contract started in 1978. The dielectronic recombination (DR) rate coefficients were calculated for ions with the number of electrons N = 1, 2, 3, 4, 5, 10, 11, and 12. The result was then used to construct a new and improved rate formula. Other important resonant processes, which are closely related to DR, were also studied to interpret experiments and to test the DR theory. The plasma field and the density effects on the rate coefficients was found to be important, and a consistent correction procedure is being developed. The available data on the DR rates and their accuracy do not yet fully meet the requirement for plasma modeling; there are serious gaps in the available data, and the currently adopted theoretical procedure needs improvements. Critical assessment of the current status of the DR problem is presented, and possible future work needed is summarized

  5. Generalized atomic processes for interaction of intense femtosecond XUV- and X-ray radiation with solids

    International Nuclear Information System (INIS)

    Deschaud, B.; Peyrusse, O.; Rosmej, F.B.

    2014-01-01

    Generalized atomic processes are proposed to establish a consistent description from the free-atom approach to the heated and even up to the cold solid. It is based on a rigorous introduction of the Fermi-Dirac statistics, Pauli blocking factors and on the respect of the principle of detailed balance via the introduction of direct and inverse processes. A probability formalism driven by the degeneracy of the free electrons enables to establish a link of atomic rates valid from the heated atom up to the cold solid. This allows to describe photoionization processes in atomic population kinetics and subsequent solid matter heating on a femtosecond time scale. The Auger effect is linked to the 3-body recombination via a generalized 3-body recombination that is identified as a key mechanism, along with the collisional ionization, that follows energy deposition by photoionization of inner shells when short, intense and high-energy radiation interacts with matter. Detailed simulations are carried out for aluminum that highlight the importance of the generalized approach. (authors)

  6. Atomic and molecular processes with lithium in peripheral plasmas

    International Nuclear Information System (INIS)

    Murakami, I.; Kato, D.; Hirooka, Y.; Sawada, K.

    2010-01-01

    Atomic and molecular processes for Li chemistry are examined for low temperature plasma such as peripheral plasmas in fusion research laboratory devices. Particle abundances of Li, Li ions, LiH and LiH ion are calculated by solving rate equations in which all reactions of the Li chemistry are considered for low temperature plasma.

  7. Effects of Atomization Injection on Nanoparticle Processing in Suspension Plasma Spray

    Directory of Open Access Journals (Sweden)

    Hong-bing Xiong

    2016-05-01

    Full Text Available Liquid atomization is applied in nanostructure dense coating technology to inject suspended nano-size powder materials into a suspension plasma spray (SPS torch. This paper presents the effects of the atomization parameters on the nanoparticle processing. A numerical model was developed to simulate the dynamic behaviors of the suspension droplets, the solid nanoparticles or agglomerates, as well as the interactions between them and the plasma gas. The plasma gas was calculated as compressible, multi-component, turbulent jet flow in Eulerian scheme. The droplets and the solid particles were calculated as discrete Lagrangian entities, being tracked through the spray process. The motion and thermal histories of the particles were given in this paper and their release and melting status were observed. The key parameters of atomization, including droplet size, injection angle and velocity were also analyzed. The study revealed that the nanoparticle processing in SPS preferred small droplets with better atomization and less aggregation from suspension preparation. The injection angle and velocity influenced the nanoparticle release percentage. Small angle and low initial velocity might have more nanoparticles released. Besides, the melting percentage of nanoparticles and agglomerates were studied, and the critical droplet diameter to ensure solid melting was drawn. Results showed that most released nanoparticles were well melted, but the agglomerates might be totally melted, partially melted, or even not melted at all, mainly depending on the agglomerate size. For better coating quality, the suspension droplet size should be limited to a critical droplet diameter, which was inversely proportional to the cubic root of weight content, for given critical agglomerate diameter of being totally melted.

  8. Atomic processes in high-density plasmas

    International Nuclear Information System (INIS)

    More, R.M.

    1982-01-01

    This review covers dense atomic plasmas such as that produced in inertial confinement fusion. The target implosion physics along with the associated atomic physics, i.e., free electron collision phenomena, electron states I, electron states II, and nonequilibrium plasma states are described

  9. Databases and coordinated research projects at the IAEA on atomic processes in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Braams, Bastiaan J.; Chung, Hyun-Kyung [Nuclear Data Section, NAPC Division, International Atomic Energy Agency P. O. Box 100, Vienna International Centre, AT-1400 Vienna (Austria)

    2012-05-25

    The Atomic and Molecular Data Unit at the IAEA works with a network of national data centres to encourage and coordinate production and dissemination of fundamental data for atomic, molecular and plasma-material interaction (A+M/PMI) processes that are relevant to the realization of fusion energy. The Unit maintains numerical and bibliographical databases and has started a Wiki-style knowledge base. The Unit also contributes to A+M database interface standards and provides a search engine that offers a common interface to multiple numerical A+M/PMI databases. Coordinated Research Projects (CRPs) bring together fusion energy researchers and atomic, molecular and surface physicists for joint work towards the development of new data and new methods. The databases and current CRPs on A+M/PMI processes are briefly described here.

  10. Databases and coordinated research projects at the IAEA on atomic processes in plasmas

    Science.gov (United States)

    Braams, Bastiaan J.; Chung, Hyun-Kyung

    2012-05-01

    The Atomic and Molecular Data Unit at the IAEA works with a network of national data centres to encourage and coordinate production and dissemination of fundamental data for atomic, molecular and plasma-material interaction (A+M/PMI) processes that are relevant to the realization of fusion energy. The Unit maintains numerical and bibliographical databases and has started a Wiki-style knowledge base. The Unit also contributes to A+M database interface standards and provides a search engine that offers a common interface to multiple numerical A+M/PMI databases. Coordinated Research Projects (CRPs) bring together fusion energy researchers and atomic, molecular and surface physicists for joint work towards the development of new data and new methods. The databases and current CRPs on A+M/PMI processes are briefly described here.

  11. Databases and coordinated research projects at the IAEA on atomic processes in plasmas

    International Nuclear Information System (INIS)

    Braams, Bastiaan J.; Chung, Hyun-Kyung

    2012-01-01

    The Atomic and Molecular Data Unit at the IAEA works with a network of national data centres to encourage and coordinate production and dissemination of fundamental data for atomic, molecular and plasma-material interaction (A+M/PMI) processes that are relevant to the realization of fusion energy. The Unit maintains numerical and bibliographical databases and has started a Wiki-style knowledge base. The Unit also contributes to A+M database interface standards and provides a search engine that offers a common interface to multiple numerical A+M/PMI databases. Coordinated Research Projects (CRPs) bring together fusion energy researchers and atomic, molecular and surface physicists for joint work towards the development of new data and new methods. The databases and current CRPs on A+M/PMI processes are briefly described here.

  12. A study of atomic interaction between suspended nanoparticles and sodium atoms in liquid sodium

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Ara, Kuniaki

    2010-01-01

    A feasibility study of suppression of the chemical reactivity of sodium itself using an atomic interaction between nanoparticles and sodium atoms has been carried out. We expected that the atomic interaction strengthens when the nanoparticle metal is the transition element which has a major difference in electronegativity from sodium. We also calculated the atomic interaction between nanoparticle and sodium atoms. It became clear that the atomic bond between the nanoparticle atom and the sodium atom is larger than that between sodium atoms, and the charge transfer takes place to the nanoparticle atom from the sodium atom. Using sodium with suspended nanoparticles, the fundamental physical properties related to the atomic interaction were investigated to verify the atomic bond. The surface tension of sodium with suspended nanoparticles increased, and the evaporation rate of sodium with suspended nanoparticles also decreased compared with that of sodium. Therefore the presence of the atomic interaction between nanoparticles and sodium was verified from these experiments. Because the fundamental physical property changes by the atomic interaction, we expected changes in the chemical reactivity characteristics. The chemical reaction properties of sodium with suspended nanoparticles with water were investigated experimentally. The released reaction heat and the reaction rate of sodium with suspended nanoparticles were reduced than those of sodium. The influence of the charge state of nanoparticle on the chemical process with water was theoretically investigated to speculate on the cause of reaction suppression. The potential energy in both primary and side reactions changed by the charge transfer, and the free energy of activation of the reaction with water increased. Accordingly, the reaction barrier also increased. This suggests there is a possibility of the reduction in the reaction of sodium by the suspension of nanoparticles. Consequently the possibility of the

  13. Proposal of flexible atomic and molecular process management for Monte Carlo impurity transport code based on object oriented method

    International Nuclear Information System (INIS)

    Asano, K.; Ohno, N.; Takamura, S.

    2001-01-01

    Monte Carlo simulation code on impurity transport has been developed by several groups to be utilized mainly for fusion related edge plasmas. State of impurity particle is determined by atomic and molecular processes such as ionization, charge exchange in plasma. A lot of atomic and molecular processes have been considered because the edge plasma has not only impurity atoms, but also impurity molecules mainly related to chemical erosion of carbon materials, and their cross sections have been given experimentally and theoretically. We need to reveal which process is essential in a given edge plasma condition. Monte Carlo simulation code, which takes such various atomic and molecular processes into account, is necessary to investigate the behavior of impurity particle in plasmas. Usually, the impurity transport simulation code has been intended for some specific atomic and molecular processes so that the introduction of a new process forces complicated programming work. In order to evaluate various proposed atomic and molecular processes, a flexible management of atomic and molecular reaction should be established. We have developed the impurity transport simulation code based on object-oriented method. By employing object-oriented programming, we can handle each particle as 'object', which enfolds data and procedure function itself. A user (notice, not programmer) can define property of each particle species and the related atomic and molecular processes and then each 'object' is defined by analyzing this information. According to the relation among plasma particle species, objects are connected with each other and change their state by themselves. Dynamic allocation of these objects to program memory is employed to adapt for arbitrary number of species and atomic/molecular reactions. Thus we can treat arbitrary species and process starting from, for instance, methane and acetylene. Such a software procedure would be useful also for industrial application plasmas

  14. Primary oxidation and reduction products in x-irradiated aspartic acid

    International Nuclear Information System (INIS)

    Adams, S.M.; Budzinski, E.E.; Box, H.C.

    1976-01-01

    The primary reduction products identified by ESR--ENDOR spectroscopy in single crystals of DL-aspartic acid hydrochloride irradiated at 4.2degreeK are anions formed by addition of an electron to the carbonyl oxygen atoms of the carboxylic acid groups. The main consequence of the oxidation process is to produce a hole centered mainly on atomic chlorine

  15. Inelastic Processes in the Interaction of an Atom with an Ultrashort Electromagnetic Pulse

    International Nuclear Information System (INIS)

    Matveev, V.I.; Gusarevich, E.S.; Pashev, I.N.

    2005-01-01

    Electron transitions occurring during the interaction of a heavy relativistic atom with a spatially inhomogeneous ultrashort electromagnetic pulse are considered by solving the Dirac equation. The corresponding transition probabilities are expressed in terms of known inelastic atomic form factors, which are widely used in the theory of relativistic collisions between charged particles and atoms. By way of example, the inelastic processes accompanying the interaction of ultrashort pulses with hydrogen-like atoms are considered. The probabilities of ionization and production of a bound-free electron-positron pair on a bare nucleus, which are accompanied by the formation of a hydrogen-like atom in the final state and a positron in the continuum, are calculated. The developed technique makes it possible to take into account exactly not only the spatial inhomogeneity of an ultrashort electromagnetic pulse, but also the magnetic interaction

  16. Collective effects in isolated atoms (many-body aspects of photoionization process)

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1983-01-01

    This chapter examines outer and intermediate many-electron shells and demonstrates that photoionization is of collective nature because in the atomic reaction to the external electromagnetic field at least all electrons of the ionized subshell take part. Performs the calculation of complex atom photoionization using random phase approximation with exchange (RPAE). Explains that in RPAE the ionization amplitude is presented as a sum of two terms, describing the direct knock-out and the induced one which is connected with a variation of the self-consistent field, caused by polarization of atomic shells under the action of the external field. Discusses collective effects in outer shells; deviation from RPAE prediction in outer shells; excitations ''two electrons-two holes'' and autoionizing states; collective effects in inner shells; and bremsstrahlung. Observes a large number of many-particle effects which manifest themselves practically in all atomic processes. Finds that by correcting and improving the one-electron approximation it becomes possible even in its frame to include much of what seems to be many-electron corrections

  17. Systematics of atom-atom collision strengths at high speeds

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Inokuti, M.

    1980-01-01

    The collision strengths for atom-atom collisions at high speeds are calculated in the first Born approximation. We studied four classes of collisions, distinguished depending upon whether each of the collision partners becomes excited or not. The results of numerical calculations of the collision strengths are presented for all neutral atoms with Z< or =18. The calculations are based on atomic form factors and incoherent scattering functions found in the literature. The relative contribution of each class of collision processes to the total collision cross section is examined in detail. In general, inelastic processes dominate for low-Z atoms, while elastic scattering is more important for large Z. Other systematics of the collision strengths are comprehensively discussed. The relevant experimental literature has been surveyed and the results of this work for the three collision systems H-He, He-He, and H-Ar are compared with the data for electron-loss processes. Finally, suggestions are made for future work in measurements of atom-atom and ion-atom collision cross sections

  18. A Review on Atomization and Sprays of Biofuels for IC Engine Applications

    Directory of Open Access Journals (Sweden)

    Prasad Boggavarapu

    2013-06-01

    Full Text Available Ever increasing energy requirements, environmental concerns and energy security needs are strongly influencing engine researchers to consider renewable biofuels as alternatives to fossil fuels. Spray process being important in IC engine combustion, existing literature on various biofuel sprays is reviewed and summarized. Both experimental and computational research findings are reviewed in a detailed manner for compression ignition (CI engine sprays and briefly for spark ignition (SI engine sprays. The physics of basic atomization process of sprays from various injectors is included to highlight the most recent research findings followed by discussion highlighting the effect of physico-chemical properties on spray atomization for both biofuels and fossil fuels. Biodiesel sprays are found to penetrate faster and have narrow spray plume angle and larger droplet sizes compared to diesel. Results of analytical and computational models are shown to be useful in shedding light on the actual process of atomization. However, further studies on understanding primary atomization and the effect of fuel properties on primary atomization are required. As far as secondary atomization is concerned, changes in regimes are observed to occur at higher air-jet velocities for biodiesel compared to those of diesel. Evaporating sprays revealed that the liquid length is longer for biodiesel. Pure plant oil sprays with potential use in CI engines may require alternative injector technology due to slower breakup as compared to diesel. Application of ethanol to gasoline engines may be feasible without any modifications to port fuel injection (PFI engines. More studies are required on the application of alternative fuels to high pressure sprays used in Gasoline Direct Injection (GDI engines.

  19. Significance of fundamental processes of radiation chemistry in hot atom chemical processes: electron thermalization

    International Nuclear Information System (INIS)

    Nishikawa, M.

    1984-01-01

    The author briefly reviews the current understanding of the course of electron thermalization. An outline is given of the physical picture without going into mathematical details. The analogy of electron thermalization with hot atom processes is taken as guiding principle in this paper. Content: secondary electrons (generation, track structure, yields); thermalization (mechanism, time, spatial distribution); behaviour of hot electrons. (Auth.)

  20. Atomic data for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A. (eds.); Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  1. Atomic data for fusion

    International Nuclear Information System (INIS)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A.; Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research

  2. Indistinguishability and interference in the coherent control of atomic and molecular processes

    International Nuclear Information System (INIS)

    Gong Jiangbin; Brumer, Paul

    2010-01-01

    The subtle and fundamental issue of indistinguishability and interference between independent pathways to the same target state is examined in the context of coherent control of atomic and molecular processes, with emphasis placed on possible 'which-way' information due to quantum entanglement established in the quantum dynamics. Because quantum interference between independent pathways to the same target state occurs only when the independent pathways are indistinguishable, it is first shown that creating useful coherence between nondegenerate states of a molecule for subsequent quantum interference manipulation cannot be achieved by collisions between atoms or molecules that are prepared in momentum and energy eigenstates. Coherence can, however, be transferred from light fields to atoms or molecules. Using a particular coherent control scenario, it is shown that this coherence transfer and the subsequent coherent phase control can be readily realized by the most classical states of light, i.e., coherent states of light. It is further demonstrated that quantum states of light may suppress the extent of phase-sensitive coherent control by leaking out some which-way information while 'incoherent interference control' scenarios proposed in the literature have automatically ensured the indistinguishability of multiple excitation pathways. The possibility of quantum coherence in photodissociation product states is also understood in terms of the disentanglement between photodissociation fragments. Results offer deeper insights into quantum coherence generation in atomic and molecular processes.

  3. LSD Increases Primary Process Thinking via Serotonin 2A Receptor Activation

    Directory of Open Access Journals (Sweden)

    Rainer Kraehenmann

    2017-11-01

    Full Text Available Rationale: Stimulation of serotonin 2A (5-HT2A receptors by lysergic acid diethylamide (LSD and related compounds such as psilocybin has previously been shown to increase primary process thinking – an ontologically and evolutionary early, implicit, associative, and automatic mode of thinking which is typically occurring during altered states of consciousness such as dreaming. However, it is still largely unknown whether LSD induces primary process thinking under placebo-controlled, standardized experimental conditions and whether these effects are related to subjective experience and 5-HT2A receptor activation. Therefore, this study aimed to test the hypotheses that LSD increases primary process thinking and that primary process thinking depends on 5-HT2A receptor activation and is related to subjective drug effects.Methods: Twenty-five healthy subjects performed an audio-recorded mental imagery task 7 h after drug administration during three drug conditions: placebo, LSD (100 mcg orally and LSD together with the 5-HT2A receptor antagonist ketanserin (40 mg orally. The main outcome variable in this study was primary index (PI, a formal measure of primary process thinking in the imagery reports. State of consciousness was evaluated using the Altered State of Consciousness (5D-ASC rating scale.Results: LSD, compared with placebo, significantly increased primary index (p < 0.001, Bonferroni-corrected. The LSD-induced increase in primary index was positively correlated with LSD-induced disembodiment (p < 0.05, Bonferroni-corrected, and blissful state (p < 0.05, Bonferroni-corrected on the 5D-ASC. Both LSD-induced increases in primary index and changes in state of consciousness were fully blocked by ketanserin.Conclusion: LSD induces primary process thinking via activation of 5-HT2A receptors and in relation to disembodiment and blissful state. Primary process thinking appears to crucially organize inner experiences during both dreams and

  4. LSD Increases Primary Process Thinking via Serotonin 2A Receptor Activation

    Science.gov (United States)

    Kraehenmann, Rainer; Pokorny, Dan; Aicher, Helena; Preller, Katrin H.; Pokorny, Thomas; Bosch, Oliver G.; Seifritz, Erich; Vollenweider, Franz X.

    2017-01-01

    Rationale: Stimulation of serotonin 2A (5-HT2A) receptors by lysergic acid diethylamide (LSD) and related compounds such as psilocybin has previously been shown to increase primary process thinking – an ontologically and evolutionary early, implicit, associative, and automatic mode of thinking which is typically occurring during altered states of consciousness such as dreaming. However, it is still largely unknown whether LSD induces primary process thinking under placebo-controlled, standardized experimental conditions and whether these effects are related to subjective experience and 5-HT2A receptor activation. Therefore, this study aimed to test the hypotheses that LSD increases primary process thinking and that primary process thinking depends on 5-HT2A receptor activation and is related to subjective drug effects. Methods: Twenty-five healthy subjects performed an audio-recorded mental imagery task 7 h after drug administration during three drug conditions: placebo, LSD (100 mcg orally) and LSD together with the 5-HT2A receptor antagonist ketanserin (40 mg orally). The main outcome variable in this study was primary index (PI), a formal measure of primary process thinking in the imagery reports. State of consciousness was evaluated using the Altered State of Consciousness (5D-ASC) rating scale. Results: LSD, compared with placebo, significantly increased primary index (p LSD-induced increase in primary index was positively correlated with LSD-induced disembodiment (p LSD-induced increases in primary index and changes in state of consciousness were fully blocked by ketanserin. Conclusion: LSD induces primary process thinking via activation of 5-HT2A receptors and in relation to disembodiment and blissful state. Primary process thinking appears to crucially organize inner experiences during both dreams and psychedelic states of consciousness. PMID:29167644

  5. Effect of temperature on atom-atom collision chain length in metals

    International Nuclear Information System (INIS)

    Makarov, A.A.; Demkin, N.A.; Lyashchenko, B.G.

    1981-01-01

    Focused atom-atom collision chain lengths are calculated for fcc-crystals with account of thermal oscillations. The model of solid spheres with the Born-Merier potential has been used in the calculations. The dependence of chain lengths on the temperature, energy and movement direction of the first chain atom for Cu, Au, Ag, Pb, Ni is considered. The plot presented shows that the chain lengths strongly decrease with temperature growth, for example, for the gold at T=100 K the chain length equals up to 37 interatomic spacings, whereas at T=1000 K their length decreases down to 5 interatomic distances. The dependence of the energy loss by the chain atoms on the atom number in the chain is obtained in a wide range of crystal temperature and the primary chain atom energy [ru

  6. Primary processes during water radiolysis

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1980-01-01

    Briefly reviewed are investigations of primary process mechanism taking place during radiolysis of water and similar systems, executed by direct and indirect methods. A conclusion is made on the important role of the water structure during radiolysis of aqueous solutions of some substances. A necessity to take account of this factor during consideration of radiolysis theoretical models is pointed out

  7. Multiphoton processes in isolated atoms and molecules

    International Nuclear Information System (INIS)

    Sudbo, A.S.

    1979-11-01

    The theory of coherent excitation of a multilevel quantum mechanical system is developed. Damping of the system is taken into account by the use of a density matrix formalism. General properties of the wave function and/or the density matrix are discussed. The physical implications for the behavior of the system are described, together with possible applications of the formalism, including the infrared multiphoton excitation of molecules, and optical pumping in alkali atoms. Experimental results are presented on the infrared multiphoton dissociation of molecules, followed by a discussion of the general features of this process. The experimental results were obtained using a crossed laser and molecular beam method, and the emphasis is on determining the properties of the dissociating molecule and the dissociation products. The dissociation process is shown to be described very well by the standard statistical theory (RRKM theory) of unimolecular reactions, a brief presentation of which is also included

  8. Inelastic processes in interaction of an atom with ultrashort pulse of an electromagnetic field

    International Nuclear Information System (INIS)

    Matveev, V.I.; Gusarevich, E.S.; Pashev, I.N.

    2005-01-01

    Electron transitions occurring when a heavy relativistic atom interacts with a spatially inhomogeneous ultrashort electromagnetic pulse are considered. Transition probabilities are expressed in terms of the known inelastic atomic form factors. By way of example, the inelastic processes accompanying the interaction of ultrashort pulses with hydrogen-like atoms are considered. The probabilities of ionization and production of a bound-free electron-positron pair on a bare nucleus, which are accompanied by the formation of a hydrogen-like atom in the final state and a positron in the continuum, are calculated. The developed technique makes it possible to take into exact account magnetic interaction besides spatial inhomogeneity of an ultrashort electromagnetic pulse [ru

  9. Separating uranium by laser: the atomic process

    Energy Technology Data Exchange (ETDEWEB)

    Destro, Marcelo G.; Damiao, Alvaro J.; Neri, Jose W.; Schwab, Carlos; Rodrigues, Nicolau A.S.; Riva, Rudimar [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados

    1996-07-01

    Among the countries around the world that utilizes nuclear energy, several ones are investing significantly in the development of laser techniques applied to isotope separation. In Brazil these studies are concentrated in one research institute, the IEAv (Institute for Advanced Studies), and aim at demonstrating the viability of this process using, as much as possible, resources available in the country. In this paper we briefly describe the laser methods for isotope separation, giving an overview of the present research and development status in this area. We also show some results obtained our laboratories. We focused this report on the atomic route for laser isotope separation, mainly in the areas of laser development and spectroscopy. (author)

  10. Separating uranium by laser: the atomic process

    International Nuclear Information System (INIS)

    Destro, Marcelo G.; Damiao, Alvaro J.; Neri, Jose W.; Schwab, Carlos; Rodrigues, Nicolau A.S.; Riva, Rudimar

    1996-01-01

    Among the countries around the world that utilizes nuclear energy, several ones are investing significantly in the development of laser techniques applied to isotope separation. In Brazil these studies are concentrated in one research institute, the IEAv (Institute for Advanced Studies), and aim at demonstrating the viability of this process using, as much as possible, resources available in the country. In this paper we briefly describe the laser methods for isotope separation, giving an overview of the present research and development status in this area. We also show some results obtained our laboratories. We focused this report on the atomic route for laser isotope separation, mainly in the areas of laser development and spectroscopy. (author)

  11. Silicon Nano fabrication by Atomic Force Microscopy-Based Mechanical Processing

    International Nuclear Information System (INIS)

    Miyake, Sh.; Wang, M.; Kim, J.

    2014-01-01

    This paper reviews silicon nano fabrication processes using atomic force microscopy (AFM). In particular, it summarizes recent results obtained in our research group regarding AFM-based silicon nano fabrication through mechanochemical local oxidation by diamond tip sliding, as well as mechanical, electrical, and electromechanical processing using an electrically conductive diamond tip. Microscopic three-dimensional manufacturing mainly relies on etching, deposition, and lithography. Therefore, a special emphasis was placed on nano mechanical processes, mechanochemical reaction by potassium hydroxide solution etching, and mechanical and electrical approaches. Several important surface characterization techniques consisting of scanning tunneling microscopy and related techniques, such as scanning probe microscopy and AFM, were also discussed.

  12. Atomic data base and the U.K.-U.S. opacity project

    Science.gov (United States)

    Pradhan, A. K.

    1988-08-01

    With the primary aim of calculating stellar envelope opacities, a joint international collaboration is under way for the calculation of basic atomic data for radiative processes: oscillator strengths, photoionization cross sections, energy levels, radiative damping constants (including line broadening). Atomic calculations have been completed for the first ten isoelectronic sequences, H-like to Ne-like, going up to iron, and work is in progress on the third and fourth row atoms and isosequences. The close-coupling approximation is employed throughout using a new version of the R-matrix method. Particular emphasis is placed on the detailed resolution of the autoionization structures in the bound-free continuum.

  13. Research and development prospects for the atomic uranium laser isotope separation process. Research report 442

    International Nuclear Information System (INIS)

    Janes, G.S.; Forsen, H.K.; Levy, R.H.

    1977-06-01

    Research and development activities are being conducted on many aspects of the atomic uranium laser isotope separation process. Extensive laser spectroscopy studies have been made in order to identify attractive multi-step selective ionization schemes. Using low density (10 10 atoms/cm 3 ) apparatus, the excited state spectra of atomic uranium have been investigated via multiple step laser excitation and photoionization studies using two, three and four pulsed lasers. Observation of the spectra was accomplished by observing the yield of 235 U and 238 U ions as a function of the wavelength, intensities and delays of the various lasers. These data yielded information on the photoexcitation and photoionizatin cross sections, and on the location, J values, lifetimes, isotope shifts and hyperfine structure of the various atomic levels of uranium. Experiments on selective ionization of uranium vapor by multiple step laser excitation followed by ion extraction at 10 13 atoms/cm 3 density have produced 6% enriched 235 U. These indicate that this process is well adapted to produce light water reactor fuel but less suitable for highly enriched material. Application has been made for license for a 1979 experimental facility to provide data for a mid-1980 commercial plant

  14. The mechanism of three-body process of energy transfer from excited xenon atoms to molecules

    International Nuclear Information System (INIS)

    Wojciechowski, K.; Forys, M.

    1999-01-01

    The mechanism of energy transfer from Xe(6 s[3/2] 1 ) resonance state (E=8.44 eV) and higher excited Xe(6p, 6p', 6 d) atoms produced in pulse radiolysis to molecules have been discussed. The analysis of the kinetic data for these processes shows that in the sensitized photolysis and radiolysis of Xe-M mixtures the excited atoms decay in 'ordinary' two-body reaction: Xe(6s[3/2] 1 0 )+M→products (r.1) and in fast 'accelerated' third order process: Xe(6s[3/2] 1 0 )+M+Xe→products (r.2) The discussion shows that three-body process occurs via reactions: Xe(6s[3/2] 1 0 )+Xe k w ↔ k d Xe 2 ** (r.2a) Xe 2 **+M k q →[Xe 2 M]*→products (r.2b) It was shown that this mechanism concerns also higher excited Xe atoms and can explain a similar process in He-M mixtures and suggests that it is a general mechanism of energy transfer in all irradiated rare gas-molecule systems

  15. Overview on collision processes of highly charged ions with atoms present status and problems

    International Nuclear Information System (INIS)

    Janev, R.K.

    1983-05-01

    This paper provides a brief discussion on the present status of the collision physics of highly charged ions with atoms. The emphasis is on the main achievements in understanding and describing the most important collision processes, and as charge transfer, ionization and Auger-type processes, and even more on those open problems which, due either to their scientific or practical importance, represent challenges to current research in this field. The paper concentrates on general ideas and problems whose development and solutions have advanced or will advance our basic understanding of the collision dynamics of multiply charged ions with atoms

  16. Signal Processing in Cold Atom Interferometry-Based INS

    Science.gov (United States)

    2014-03-27

    angular rotation. Additionally, because of their particle nature, the atoms may be treated as inertial masses and their movement is used to determine the...G(τ)δβ(τ) = Φ(∆t)xi + wdi where β(t) is a Brownian motion process with dispersion Q, andΦ is the discrete-time state transition matrix [14]. That is...identity matrix, I. βA and βG are 3 × 1 vectors of independent, unity Brownian motions, that is, βA(t) ∼ N (0, t · I) and βG(t) ∼ N (0, t · I). The rate

  17. Atomic and molecular sciences

    International Nuclear Information System (INIS)

    Lane, N.F.

    1989-01-01

    The theoretical atomic and molecular physics program at Rice University addresses basic questions about the collision dynamics of electrons, atoms, ions and molecules, emphasizing processes related to possible new energy technologies and other applications. The program focuses on inelastic collision processes that are important in understanding energy and ionization balance in disturbed gases and plasmas. Emphasis is placed on systems and processes where some experimental information is available or where theoretical results may be expected to stimulate new measurements. Examples of current projects include: excitation and charge-transfer processes; orientation and alignment of excited states following collisions; Rydberg atom collisions with atoms and molecules; Penning ionization and ion-pair formation in atom-atom collisions; electron-impact ionization in dense, high-temperature plasmas; electron-molecule collisions; and related topics

  18. Preface: Special Topic on Atomic and Molecular Layer Processing: Deposition, Patterning, and Etching

    Science.gov (United States)

    Engstrom, James R.; Kummel, Andrew C.

    2017-02-01

    Thin film processing technologies that promise atomic and molecular scale control have received increasing interest in the past several years, as traditional methods for fabrication begin to reach their fundamental limits. Many of these technologies involve at their heart phenomena occurring at or near surfaces, including adsorption, gas-surface reactions, diffusion, desorption, and re-organization of near-surface layers. Moreover many of these phenomena involve not just reactions occurring under conditions of local thermodynamic equilibrium but also the action of energetic species including electrons, ions, and hyperthermal neutrals. There is a rich landscape of atomic and molecular scale interactions occurring in these systems that is still not well understood. In this Special Topic Issue of The Journal of Chemical Physics, we have collected recent representative examples of work that is directed at unraveling the mechanistic details concerning atomic and molecular layer processing, which will provide an important framework from which these fields can continue to develop. These studies range from the application of theory and computation to these systems to the use of powerful experimental probes, such as X-ray synchrotron radiation, probe microscopies, and photoelectron and infrared spectroscopies. The work presented here helps in identifying some of the major challenges and direct future activities in this exciting area of research involving atomic and molecular layer manipulation and fabrication.

  19. Interaction of primary cascades with different atomic grain boundaries in α-Zr: An atomic scale study

    Energy Technology Data Exchange (ETDEWEB)

    Hatami, F.; Feghhi, S.A.H., E-mail: a.feghhi@gmail.com; Arjhangmehr, A., E-mail: ms.arjangmehr@gmail.com; Esfandiarpour, A.

    2016-11-15

    In this paper, we investigate interaction of primary cascades with grain boundaries (GBs) in α-Zr using the atomistic-scale simulations, and intend to study the influence of different GB structures on production and evolution of defects on picosecond timescale. We observe that, contrary to the previous results in cubic metals, GBs in α-Zr are not necessarily biased toward interstitials, and can preferentially absorb vacancies. Further, in terms of energetic and kinetic behavior, we find that GBs act as defect sinks due to the substantial reduction of defect formation energies and migration barriers in close vicinity of the GB center, with either a preference toward interstitials or vacancies which depends on the atomic structure of the boundaries. Finally, using continuous ion bombardment, we investigate the stability of GBs in sever irradiation environment. The results indicate that the sink strength and efficiency of boundaries varies with increasing accumulated defects in GB region. - Highlights: • GBs in hcp Zr are not necessarily biased toward interstitials. • Defect content within bulk depends on PKA energy, PKA distance, and GB texture. • Defect formation energies and diffusion barriers decrease in close vicinity of GBs. • GBs become locally unstable due to absorption of excess defects in ion bombardment.

  20. Reemission spectra and inelastic processes at interaction of attosecond and shorter duration electromagnetic pulses with atoms

    International Nuclear Information System (INIS)

    Makarov, D.N.; Matveev, V.I.

    2017-01-01

    Inelastic processes and the reemission of attosecond and shorter electromagnetic pulses by atoms have been considered within the analytical solution of the Schrödinger equation in the sudden perturbation approximation. A method of calculations with the exact inclusion of spatial inhomogeneity of the field of an ultrashort pulse and the momenta of photons in the reemission processes has been developed. The probabilities of inelastic processes and spectra of reemission of ultrashort electromagnetic pulses by one- and many-electron atoms have been calculated. The results have been presented in the form of analytical formulas.

  1. Ultra fast atomic process in X-ray emission by inner-shell ionization

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Tajima, T

    1998-03-01

    An ultra-fast atomic process together with X-ray emission by inner-shell ionization using high intensity (10{sup 18} W/cm{sup 2}) short pulse (20fs) X-ray is studied. A new class of experiment is proposed and a useful pumping source is suggested. In this method, it is found that the gain value of X-ray laser amounts to larger than 1000(1/cm) with use of the density of 10{sup 22}/cm{sup 3} of carbon atom. Electron impact ionization effect and initial density effect as well as intensity of pumping source effect are also discussed. (author)

  2. Theoretical calculations of electron-impact and radiative processes in atoms

    International Nuclear Information System (INIS)

    Pindzola, M.S.

    1975-01-01

    Electron-impact and radiative processes in atoms are investigated with particular attention paid to the effects of electron correlations. Using the optical potential method, the cross section for the elastic scattering of electrons by the neutral argon atom is calculated from 0 to 300 eV. Corrections to the Hartree--Fock cross section are obtained from a many-particle perturbation expansion. The effects of electron correlations are found to be quite significant at low energy. The optical potential results are compared with a polarized orbital calculation, the Born approximation and experiment. The 2s and 2p excitation cross sections for electron scattering on hydrogen are calculated by two similar methods. The distorted wave method is applied and the effect of calculating the outgoing scattered electron in the potential of the initial or final state is investigated. The imaginary part of the optical potential is also calculated in lowest order by the use of many-body diagrams. The subshell photoionization cross sections in argon are calculated using the acceleration, length and velocity forms of the dipole operator. First order electron correlation corrections to the Hartree--Fock approximation are obtained through the use of many-body perturbation theory. Also investigated is the two photon ionization cross section for the neutral argon atom. A double perturbation expansion in the Coulomb correlations and the atom-radiation field interaction is made. Contributions from intermediate states are obtained by direct summation over Hartree--Fock bound and continuum single particle states. The effects of electron correlations and photon radiative corrections are investigated

  3. Study of the Dissociative Processes in O_2 Discharges. Development of an Atomic Oxygen Beam Source

    International Nuclear Information System (INIS)

    Pagnon, Daniel

    1992-01-01

    The first part of this work is devoted to the study of dissociative processes in an oxygen glow discharge at low pressure (0,1-5 Torr, 1-80 mA). The kinetics of oxygen atoms has been determined supported by the measurements of atomic concentrations by VUV absorption spectroscopy and actinometry. The reaction coefficients for dissociative excitation and direct excitation of oxygen atoms have been calculated using the cross sections of the literature and a previously calculated EEDF. It has been demonstrated that dissociative excitation is negligible in respect with direct excitation for dissociation rates smaller than 2,5 %. An upper limit of 20 % for dissociative rates is observed. This limit has been explained by the increase of the atomic recombination at the discharge wall with increasing wall temperature. Using all these results, we have designed and optimized a source of oxygen atoms which has then been adapted on a MBE device. The spatial distribution of the atomic density has been measured in molecular jet by laser induced fluorescence (LIF) and Resonant Multi-Photon Ionization (RMPI). A stimulated emission has been evidenced and the coefficient for this process evaluated. A model for the effusion of atoms has been developed from which the flow of atoms on the sample can be predicted. This source has already been used in industrial MBE devices for in-situ oxidation of copper films, superconductors, and substrates for VLSI high speed applications. The methodology of this work and the diagnostics developed can be applied to other kinds of discharges, of other molecular gases, to design sources of atoms for the treatment of large area samples. (author) [fr

  4. Atomic carbon emission from photodissociation of CO2. [planetary atmospheric chemistry

    Science.gov (United States)

    Wu, C. Y. R.; Phillips, E.; Lee, L. C.; Judge, D. L.

    1978-01-01

    Atomic carbon fluorescence, C I 1561, 1657, and 1931 A, has been observed from photodissociation of CO2, and the production cross sections have been measured. A line emission source provided the primary photons at wavelengths from threshold to 420 A. The present results suggest that the excited carbon atoms are produced by total dissociation of CO2 into three atoms. The cross sections for producing the O I 1304-A fluorescence through photodissociation of CO2 are found to be less than 0.01 Mb in the wavelength region from 420 to 835 A. The present data have implications with respect to photochemical processes in the atmospheres of Mars and Venus.

  5. EFFECT OF TEMPERATURE ON THE PROCESS OF BEER PRIMARY FERMENTATION

    Directory of Open Access Journals (Sweden)

    Miriam Solgajová

    2013-02-01

    Full Text Available Beer is a very popular and widespread drink worldwide. Beer may be defined as a foamy alcoholic drink aerated by carbon dioxide that is formed during fermentation. Sensorial and analytical character of beer is mainly formed during process of primary fermentation. Our work has monitored the influence of temperature of fermentation substrate on the process of primary fermentation during beer production. Obtained values of temperature and apparent extract out of four brews of 10% light hopped wort has been recorded, during the process of primary fermentation carried out in mini brewery of SPU. We have compared our results with theoretical values of primary fermentation process commonly achieved in conditions of industrial breweries. It was found out that our results differ in some ways, moreover they exceed theoretically given values which was caused due to different construction of mini brewery fermentation tank in comparison with industrial brewery technologies. Beer produced in mini brewery of SPU showed in sensorial tests very good quality without any strange odour and any strange taste.

  6. Diabatic and adiabatic representations for atomic collision processes

    International Nuclear Information System (INIS)

    Delos, J.B.; Thorson, W.R.

    1979-01-01

    A consistent general definition of diabatic representations has not previously been given, even though many practical examples of such representations have been constructed for specific problems. Such a definition is provided in this paper. Beginning with a classical trajectory formulation, we describe the form and behavior of velocity-dependent couplings in slow collisions, including the effects of electron-translation factors (ETF's). We compare the couplings arising from atomic representations and atomic ETF's with those arising from molecular representations and ''switching function'' ETF's. We show that a unique set of switching functions makes the two descriptions identical in their effects. We then show that an acceptable general definition of a diabatic representation is provided by the condition P+A=0, where P is the usual nonadiabatic coupling matrix and A represents corrections to it arising from electron translation factors (ETF's). Two distinct types of diabatic representation result, depending on the definition taken for A. States that undergo no deformation are called F diabatic; those that have no velocity-dependent couplings are called M diabatic. Finally, we discuss the properties of representations that are partially diabatic and partially adiabatic, and we give some rules for the construction of representations that should be nearly optimal for describing many types of collision processes

  7. Atomization Performance Predictions of Gas-Centered Swirl-Coaxial Injectors

    National Research Council Canada - National Science Library

    Lightfoot, Malissa D; Danczyk, Stephen A; Talley, Douglas G

    2007-01-01

    .... The theory relates the mass of film lost via atomization to the mass of liquid introduced into the atomizer to predict atomization efficiency and offers some estimations of primary droplet diameter...

  8. Atomic collisions research with excited atomic species

    International Nuclear Information System (INIS)

    Hoogerland, M.D.; Gulley, R.J.; Colla, M.; Lu, W.; Milic, D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Measurements and calculations of fundamental atomic collision and spectroscopic properties such as collision cross sections, reaction rates, transition probabilities etc. underpin the understanding and operation of many plasma and gas-discharge-based devices and phenomena, for example plasma processing and deposition. In almost all cases the complex series of reactions which sustains the discharge or plasma, or produces the reactive species of interest, has a precursor electron impact excitation, attachment, dissociation or ionisation event. These processes have been extensively studied in a wide range of atomic and molecular species and an impressive data base of collision cross sections and reaction rates now exists. However, most of these measurements are for collisions with stable atomic or molecular species which are initially in their ground electronic state. Relatively little information is available for scattering from excited states or for scattering from unstable molecular radicals. Examples of such species would be metastable excited rare gases, which are often used as buffer gases, or CF 2 radicals formed by electron impact dissociation in a CF 4 plasma processing discharge. We are interested in developing experimental techniques which will enable the quantitative study of such exotic atomic and molecular species. In this talk I would like to outline one such facility which is being used for studies of collisions with metastable He(2 3 S) atoms

  9. Atomic collision databases and data services -- A survey

    International Nuclear Information System (INIS)

    Schultz, D.R.

    1997-01-01

    Atomic collision databases and data services constitute an important resource for scientific and engineering applications such as astrophysics, lighting, materials processing, and fusion energy, as well as an important knowledge base for current developments in atomic collision physics. Data centers and research groups provide these resources through a chain of efforts that include producing and collecting primary data, performing evaluation of the existing data, deducing scaling laws and semiempirical formulas to compactly describe and extend the data, producing the recommended sets of data, and providing convenient means of maintaining, updating, and disseminating the results of this process. The latest efforts have utilized modern database, storage, and distribution technologies including the Internet and World Wide Web. Given here is an informal survey of how these resources have developed, how they are currently characterized, and what their likely evolution will lead them to become in the future

  10. Molecular-beam studies of primary photochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.T.

    1982-12-01

    Application of the method of molecular-beam photofragmentation translational spectroscopy to the investigation of primary photochemical processes of polyatomic molecules is described. Examples will be given to illustrate how information concerning the energetics, dynamics, and mechanism of dissociation processes can be obtained from the precise measurements of angular and velocity distributions of products in an experiment in which a well-defined beam of molecules is crossed with a laser.

  11. Molecular-beam studies of primary photochemical processes

    International Nuclear Information System (INIS)

    Lee, Y.T.

    1982-12-01

    Application of the method of molecular-beam photofragmentation translational spectroscopy to the investigation of primary photochemical processes of polyatomic molecules is described. Examples will be given to illustrate how information concerning the energetics, dynamics, and mechanism of dissociation processes can be obtained from the precise measurements of angular and velocity distributions of products in an experiment in which a well-defined beam of molecules is crossed with a laser

  12. Primary photosynthetic processes: from supercomplex to leaf

    NARCIS (Netherlands)

    Broess, K.

    2009-01-01

    This thesis describes fluorescence spectroscopy experiments on photosynthetic complexes that cover the primary photosynthetic processes, from the absorption of light by photosynthetic pigments to a charge separation (CS) in the reaction center (RC). Fluorescence spectroscopy is a useful tool in

  13. Impact parameter sensitive study of inner-shell atomic processes in the experimental storage ring

    Science.gov (United States)

    Gumberidze, A.; Kozhuharov, C.; Zhang, R. T.; Trotsenko, S.; Kozhedub, Y. S.; DuBois, R. D.; Beyer, H. F.; Blumenhagen, K.-H.; Brandau, C.; Bräuning-Demian, A.; Chen, W.; Forstner, O.; Gao, B.; Gassner, T.; Grisenti, R. E.; Hagmann, S.; Hillenbrand, P.-M.; Indelicato, P.; Kumar, A.; Lestinsky, M.; Litvinov, Yu. A.; Petridis, N.; Schury, D.; Spillmann, U.; Trageser, C.; Trassinelli, M.; Tu, X.; Stöhlker, Th.

    2017-10-01

    In this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell atomic processes for low-energy (heavy-) ion-atom collisions. The experiment was performed with bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms, resulting in a symmetric collision system. This choice of the projectile charge states was made in order to compare the effect of a filled K-shell with the empty one. The projectile and target X-rays have been measured at different observation angles for all impact parameters as well as for the impact parameter range of ∼35-70 fm.

  14. Code ATOM for calculation of atomic characteristics

    International Nuclear Information System (INIS)

    Vainshtein, L.A.

    1990-01-01

    In applying atomic physics to problems of plasma diagnostics, it is necessary to determine some atomic characteristics, including energies and transition probabilities, for very many atoms and ions. Development of general codes for calculation of many types of atomic characteristics has been based on general but comparatively simple approximate methods. The program ATOM represents an attempt at effective use of such a general code. This report gives a brief description of the methods used, and the possibilities of and limitations to the code are discussed. Characteristics of the following processes can be calculated by ATOM: radiative transitions between discrete levels, radiative ionization and recombination, collisional excitation and ionization by electron impact, collisional excitation and ionization by point heavy particle (Born approximation only), dielectronic recombination, and autoionization. ATOM explores Born (for z=1) or Coulomb-Born (for z>1) approximations. In both cases exchange and normalization can be included. (N.K.)

  15. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  16. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  17. Atomic data on inelastic processes in low-energy manganese-hydrogen collisions

    Science.gov (United States)

    Belyaev, Andrey K.; Voronov, Yaroslav V.

    2017-10-01

    Aims: The aim of this paper is to calculate cross sections and rate coefficients for inelastic processes in low-energy Mn + H and Mn+ + H- collisions, especially, for processes with high and moderate rate coefficients. These processes are required for non-local thermodynamic equilibrium (non-LTE) modeling of manganese spectra in cool stellar atmospheres, and in particular, for metal-poor stars. Methods: The calculations of the cross sections and the rate coefficients were performed by means of the quantum model approach within the framework of the Born-Oppenheimer formalism, that is, the asymptotic semi-empirical method for the electronic MnH molecular structure calculation followed by the nonadiabatic nuclear dynamical calculation by means of the multichannel analytic formulas. Results: The cross sections and the rate coefficients for low-energy inelastic processes in manganese-hydrogen collisions are calculated for all transitions between 21 low-lying covalent states and one ionic state. We show that the highest values of the cross sections and the rate coefficients correspond to the mutual neutralization processes into the final atomic states Mn(3d54s(7S)5s e 6S), Mn(3d54s(7S)5p y 8P°), Mn(3d54s(7S)5s e 8S), Mn(3d54s(7S)4d e 8D) [the first group], the processes with the rate coefficients (at temperature T = 6000 K) of the values 4.38 × 10-8, 2.72 × 10-8, 1.98 × 10-8, and 1.59 × 10-8 cm3/ s, respectively, that is, with the rate coefficients exceeding 10-8 cm3/ s. The processes with moderate rate coefficients, that is, with values between 10-10 and 10-8 cm3/ s include many excitation, de-excitation, mutual neutralization and ion-pair formation processes. In addition to other processes involving the atomic states from the first group, the processes from the second group include those involving the following atomic states: Mn(3d5(6S)4s4p (1P°) y 6P°), Mn(3d54s(7S)4d e 6D), Mn(3d54s(7S)5p w 6P°), Mn(3d5(4P)4s4p (3P°) y 6D°), Mn(3d5(4G)4s4p (3P°) y 6F

  18. COUPLED ATOMIZATION AND SPRAY MODELLING IN THE SPRAY FORMING PROCESS USING OPENFOAM

    DEFF Research Database (Denmark)

    Gjesing, Rasmus; Hattel, Jesper Henri; Fritsching, Udo

    2009-01-01

    The paper presents a numerical model capable of simulating the atomization, break-up and in-flight spray phenomena in the spray forming process. The model is developed and implemented in the freeware code openFOAM. The focus is on studying the coupling effect of the melt break-up phenomena...

  19. Gas atomization processing of tin and silicon modified LaNi5 for nickel-metal hydride battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Jason [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    Numerous researchers have studied the relevant material properties of so-called AB5 alloys for battery applications. These studies involved LaNi5 substituted alloys which were prepared using conventional cast and crush alloying techniques. While valuable to the understanding of metal hydride effects, the previous work nearly ignored the potential for alternative direct powder production methods, like high pressure gas atomization (HPGA). Thus, there is a need to understand the relationship between gas atomization processes, powder particle solidification phases, and hydrogen absorption properties of ultra fine (< 25 μm) atomized powders with high surface area for enhanced battery performance. Concurrently, development of a gas atomization nozzle that is more efficient than all current designs is needed to increase the yield of ultrafine AB5 alloy powder for further processing advantage. Gas atomization processing of the AB5 alloys was demonstrated to be effective in producing ultrafine spherical powders that were resilient to hydrogen cycling for the benefit of improving corrosion resistance in battery application. These ultrafine powders benefited from the rapid solidification process by having refined solute segregation in the microstructure of the gas atomized powders which enabled a rapid anneal treatment of the powders. The author has demonstrated the ability to produce high yields of ultrafine powder efficiently and cost effectively, using the new HPGA-III technology. Thus, the potential benefits of processing AB5 alloys using the new HPGA technology could reduce manufacturing cost of nickel-metal hydride powder. In the near future, the manufacture of AB5 alloy powders could become a continuous and rapid production process. The economic benefit of an improved AB5 production process may thereby encourage the use of nickel-metal hydride rechargeable batteries in electrical vehicle

  20. MCSAD: Improved algorithm for Monte Carlo Simulation of Atom Displacements in solid materials

    International Nuclear Information System (INIS)

    Correa-Alfonso, C. M.; Pinnera, I.; Cruz, C. M.; Abreu, Y.; Leyva, A.

    2011-01-01

    In order to directly simulate the stochastic occurrence of atom displacements (AD) formation processes during gamma and electron irradiation, an improved Monte Carlo calculation code is presented. In MCSAD, AD processes were considered only on the basis of single elastic scattering interactions among fast primary and/or secondary electrons with matrix atoms. The AD distribution was statistically sampled and simulated in the framework of the Monte Carlo Method to perform discrete single electron scattering processes (ES), particularly those leading to AD events. As study case, the high critical temperature superconducting material YBa 2 Cu 3 O 7-x (YBCO) is presented. The AD in-depth distributions at different incident photons kinetic energies were obtained. Furthermore, the AD contribution from each atomic species to total AD distribution was achieved. In addition the AD energy profiles with the scattered electron kinetic energies were carried out. A comparison with the theoretical expressions proposed by Oen-Holmes-Cahn [1,2] is presented and discussed. (Author)

  1. Primary intracranial tumors among atomic bomb survivors and controls, Hiroshima and Nagasaki, 1961-75

    International Nuclear Information System (INIS)

    Seyama, Shinichi; Ishimaru, Toranosuke; Iijima, Soichi; Mori, Kazuo.

    1980-02-01

    An analysis was made of the relationship of radiation dose to the occurrence of primary intracranial tumors among atomic bomb survivors and nonexposed controls, Hiroshima and Nagasaki, in the fixed cohort of the Life Span Study (LSS) extended sample during the period 1961-75, or 16 to 30 years after the A-bombs. Based on various medical sources, 104 cases of primary intracranial tumors were identified among approximately 99,000 LSS extended sample members who were alive as of 1 January 1961. Of these 104 cases, 45 had manifested clinical signs of brain tumors, but, 59 cases were identified incidentally at postmortem examination. The distributions of morphologic type, age, and size of tumor were quite different for those primary intracranial tumors with and without a clinical sign of brain tumor. Glioma was the most frequent type of tumor with a clinical sign and meningioma was the most frequent type without. In relation to radiation dose the incidence rate of primary intracranial tumors with a clinical sign showed a significant excess risk for males in the high dose group who received 100 rad or more after adjustment for age at the time of the bomb (ATB). The standardized relative risk is around 5 in this group. The data also suggest that the crude relative risk of glioma is greater in the high dose group for younger ages ATB. However, there is no increased risk in females. Among the 5,012 autopsy subjects in the LSS extended sample during 1961-75, there is no relationship between radiation dose and the prevalence rate of primary intracranial tumors in those identified incidentally by autopsy. The relative risk of subclinical adenoma of the pituitary gland between high dose subjects and controls was also examined for a sample of 95 sex- and age-matched pairs using Hiroshima autopsy materials for 1961-74, but no relationship to dose was observed. (author)

  2. Evaluation of Steadiness and Drop Size Distribution in Sprays Generated by Different Twin-Fluid Atomizers

    Directory of Open Access Journals (Sweden)

    Zaremba Matouš

    2015-01-01

    Full Text Available Twin-fluid atomizers underwent a significant development during the last few decades. They are common in many industrial applications such as fuel spraying, melt atomization and food processing. This paper is focused on the evaluation of four different twin-fluid atomizers. The aim is to compare the quality of sprays generated by various atomizers with similar dimensions and in the same operating regimes. A phase- Doppler anemometry (PDA and particle image velocimetry (PIV were used to measure spray characteristics such as velocity and size of the droplets. Measured data were used to compare droplet size distribution and to evaluate steadiness of the spray. Visualisations were made to support measured data and to clarify the principles of primary atomization and its influence on the spray.

  3. Evaluation of Steadiness and Drop Size Distribution in Sprays Generated by Different Twin-Fluid Atomizers

    Science.gov (United States)

    Zaremba, Matouš; Mlkvik, Marek; Malý, Milan; Jedelský, Jan; Jícha, Miroslav

    2015-05-01

    Twin-fluid atomizers underwent a significant development during the last few decades. They are common in many industrial applications such as fuel spraying, melt atomization and food processing. This paper is focused on the evaluation of four different twin-fluid atomizers. The aim is to compare the quality of sprays generated by various atomizers with similar dimensions and in the same operating regimes. A phase- Doppler anemometry (PDA) and particle image velocimetry (PIV) were used to measure spray characteristics such as velocity and size of the droplets. Measured data were used to compare droplet size distribution and to evaluate steadiness of the spray. Visualisations were made to support measured data and to clarify the principles of primary atomization and its influence on the spray.

  4. Atomic process calculations in hot dense plasmas using average atom models

    International Nuclear Information System (INIS)

    Velarde, G.; Aragones, J.M.; Gamez, L.; Honrubia, J.J.; Martinez-Val, J.M.; Minguez, E.; Ocana, J.L.; Perlado, J.M.; Serrano, J.F.

    1987-01-01

    During the past years, an important effort has been devoted in the authors Institute to develop the NORCLA code, which in the first version was characterized by the following features: one-dimensional lagrangian mesh; equilibrium between radiation, ion and electron species; local alpha energy deposition; neutron transport by the discrete ordinates method and analytical equation of state, opacities and conductivities. In the successive versions of NORCLA, EOS and electron conductivities were modified by the pressure ionization and degeneracy corrections; a module was also developed for computing the energy deposition of the incident ion beams coupled to the energy equation, and a code to calculate the alpha particle transport and energy deposition. Recently, a 3T version of the NORCLA code, with tabular EOS, opacities and conductivities, laser ray tracing and suprathermal electrons transport has been produced. In this article, the atomic physic models developed to determine more accurate the atomic data, such as EOS and opacities are explained, giving a brief description and a comparison of them. As a result of this development, a DENIM Atomic Data Library is being generated, taking some data and procedures from the SESAME Library. This library is presented, including a comparison of the opacity data for aluminium and iron at different densities and temperatures. Conclusions about this work are presented, and the ongoing developments summarized

  5. Higher-order processes in x-ray photoionization of atoms

    International Nuclear Information System (INIS)

    Kanter, E. P.; Dunford, R. W.; Krassig, B.; Southworth, S. H.; Young, L.

    2006-01-01

    There are several fourth-generation X-ray light source projects now underway around the world and it is anticipated that by the end of the decade, one or more of these X-ray free-electron lasers will be operational. In this contribution, we describe recent measurements and future plans to study both multielectron and multiphoton atomic photoionization. Although such higher-order processes are rare with present third-generation sources, they will be commonplace in experimental work with the new sources. The topics we discuss here are double K-shell ionization and two-photon X-ray photoionization

  6. To problem of experimental determination of parameters of μ-atom charge-exchange process of hydrogen isotopes on He nuclei

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Stolupin, V.A.

    1990-01-01

    The kinetics of μ-atomic and μ-molecular processes occuring in hydrogen isotopes-helium mixture is observed. The expressions are obtained to determine the parameters of a process of the muon transition from hydrogen isotope μ atoms to helium nuclei with the use of different experimental methods. 18 refs.; 3 figs.; 1 tab

  7. Dislocations and elementary processes of plasticity in FCC metals: atomic scale simulations

    International Nuclear Information System (INIS)

    Rodney, D.

    2000-01-01

    We present atomic-scale simulations of two elementary processes of FCC crystal plasticity. The first study consists in the simulation by molecular dynamics, in a nickel crystal, of the interactions between an edge dislocation and glissile interstitial loops of the type that form under irradiation in displacement cascades. The simulations show various atomic-scale interaction processes leading to the absorption and drag of the loops by the dislocation. These reactions certainly contribute to the formation of the 'clear bands' observed in deformed irradiated materials. The simulations also allow to study quantitatively the role of the glissile loops in irradiation hardening. In particular, dislocation unpinning stresses for certain pinning mechanisms are evaluated from the simulations. The second study consists first in the generalization in three dimensions of the quasi-continuum method (QCM), a multi-scale simulation method which couples atomistic techniques and the finite element method. In the QCM, regions close to dislocation cores are simulated at the atomic-scale while the rest of the crystal is simulated with a lower resolution by means of a discretization of the displacement fields using the finite element method. The QCM is then tested on the simulation of the formation and breaking of dislocation junctions in an aluminum crystal. Comparison of the simulations with an elastic model of dislocation junctions shows that the structure and strength of the junctions are dominated by elastic line tension effects, as is assumed in classical theories. (author)

  8. Measurements of scattering processes in negative ion-atom collisions

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1991-01-01

    This research project is designed to provide measurements of various scattering processes which occur in H - collisions with atomic targets at intermediate energies. The immediate goal is to study elastic scattering, single electron detachment, and target excitation/ionization in H - scattering from noble gas targets. For the target inelastic processes, these cross sections are unknown both experimentally and theoretically. The present measurements will provide either experimentally-determined cross sections or set upper limits to those cross sections. In either case, these measurements will be stringent tests of our understanding in energetic negative ion collisions. This series of experiments required the construction of a new facility, and significant progress toward its operation has been realized during this period. The proposed research is described in this report. The progress on and the status of the apparatus is also detailed in this report

  9. Multiphoton processes for atoms in intense electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Collins, L.A.; Abdallah, J.; Csanak, G.

    1995-12-31

    Lasers from table-top to giant ICF facilities that produce intense electromagnetic fields (10{sup 14}-10{sup 21} W/cm{sup 2}) have become important tools in probing the intricate nature of matter-radiation interactions. At such intensities, the laser field equals or exceeds that which binds electrons to an atom or molecule, and a new realm of physics opens in which perturbation theory may no longer suffice. We are developing several sophisticated techniques for treating atoms in such a regime, concentrating on two-photon X-ray absorption in intermediate-weight atoms and on laser-assisted electron-atom collisions. We perform most calculations in a time-independent frame in which field-free scattering formalisms can be invoked. We also investigate time-dependent methods in order to study transient effects. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  10. Atomic physics

    International Nuclear Information System (INIS)

    Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.

    1984-01-01

    The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)

  11. Process optimization of atomized melt deposition for the production of dispersion strengthened Al-8.5%Fe-1.2%V-1.7%Si alloys

    International Nuclear Information System (INIS)

    Hariprasad, S.; Sastry, S.M.L.; Jerina, K.L.

    1995-01-01

    Atomized melt deposition is a low cost manufacturing process with the microstructural control achieved through rapid solidification. In this process the liquid metal is disintegrated into fine droplets by gas atomization and the droplets are deposited on a substrate producing near net shape products. In the present investigation Al-8.5%Fe-1.2%V-1.7%Si alloy was produced using atomized melt deposition process to study the evolution of microstructure and assess the cooling rates and the undercooling achieved during the process. The size, morphology and the composition of second phase particles in the alloy are strong functions of the cooling rate and the undercooling and hence microstructural changes with the variation in process parameters were quantified. To define optimum conditions for the atomized melt deposition process, a mathematical model was developed. The model determines the temperature distribution of the liquid droplets during gas atomization and during the deposition stages. The model predicts the velocity distribution, cooling rates and the fraction solid, during the flight for different droplet sizes. The solidification heat transfer phenomena taking place during the atomized melt deposition process was analyzed using a finite difference method based on the enthalpy formulation

  12. Development of the Science Data System for the International Space Station Cold Atom Lab

    Science.gov (United States)

    van Harmelen, Chris; Soriano, Melissa A.

    2015-01-01

    Cold Atom Laboratory (CAL) is a facility that will enable scientists to study ultra-cold quantum gases in a microgravity environment on the International Space Station (ISS) beginning in 2016. The primary science data for each experiment consists of two images taken in quick succession. The first image is of the trapped cold atoms and the second image is of the background. The two images are subtracted to obtain optical density. These raw Level 0 atom and background images are processed into the Level 1 optical density data product, and then into the Level 2 data products: atom number, Magneto-Optical Trap (MOT) lifetime, magnetic chip-trap atom lifetime, and condensate fraction. These products can also be used as diagnostics of the instrument health. With experiments being conducted for 8 hours every day, the amount of data being generated poses many technical challenges, such as downlinking and managing the required data volume. A parallel processing design is described, implemented, and benchmarked. In addition to optimizing the data pipeline, accuracy and speed in producing the Level 1 and 2 data products is key. Algorithms for feature recognition are explored, facilitating image cropping and accurate atom number calculations.

  13. Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor

    Science.gov (United States)

    Zhang, Zhaoyang; Wen, Feng; Che, Junling; Zhang, Dan; Li, Changbiao; Zhang, Yanpeng; Xiao, Min

    2015-10-01

    With a forward cone emitting from the strong pump laser in a thermal rubidium atomic vapor, we investigate the non-degenerate parametrically amplified four-wave mixing (PA-FWM) process with dressing effects in a three-level “double-Λ” configuration both theoretically and experimentally. By seeding a weak probe field into the Stokes or anti-Stokes channel of the FWM, the gain processes are generated in the bright twin beams which are called conjugate and probe beams, respectively. However, the strong dressing effect of the pump beam will dramatically affect the gain factors both in the probe and conjugate channels, and can inevitably impose an influence on the quantum effects such as entangled degree and the quantum noise reduction between the two channels. We systematically investigate the intensity evolution of the dressed gain processes by manipulating the atomic density, the Rabi frequency and the frequency detuning. Such dressing effects are also visually evidenced by the observation of Autler-Townes splitting of the gain peaks. The investigation can contribute to the development of quantum information processing and quantum communications.

  14. Study of Near-Cup Droplet Breakup of an Automotive Electrostatic Rotary Bell (ESRB Atomizer Using High-Speed Shadowgraph Imaging

    Directory of Open Access Journals (Sweden)

    Jacob E. Wilson

    2018-05-01

    Full Text Available Electrostatic Rotary bell (ESRB atomizers are used as the dominant means of paint application by the automotive industry. They utilize the high rotational speed of a cup to induce primary atomization of a liquid along with shaping air to provide secondary atomization and transport. In order to better understand the fluid breakup mechanisms involved in this process, high-speed shadowgraph imaging was used to visualize the edge of a serrated rotary bell at speeds varying between 5000 and 12,000 RPM and with a water flow rate of 250 ccm. A multi-step image processing algorithm was developed to differentiate between ligaments and droplets during the primary atomization process. The results from this experiment showed that higher bell speeds resulted in a 26.8% reduction in ligament and 22.3% reduction in droplet Sauter Mean Diameters (SMD. Additionally, the ligament (ranging from 40 to 400 μm diameters formed bimodal distributions, while the droplet (ranging from 40 to 300 μm diameters formed a normal distribution. Velocities were also measured using particle tracking velocimetry, in which size-dependent velocities could then be computed. Droplet velocities were affected more by rotational speed than droplet SMD, while ligaments were affected by other factors than the rotational speed and ligament SMD.

  15. Ubiquitous atom

    International Nuclear Information System (INIS)

    Spruch, G.M.; Spruch, L.

    1974-01-01

    The fundamentals of modern physics, including the basic physics and chemistry of the atom, elementary particles, cosmology, periodicity, and recent advances, are surveyed. The biology and chemistry of the life process is discussed to provide a background for considering the effects of atomic particles on living things. The uses of atomic power in space travel, merchant shipping, food preservation, desalination, and nuclear clocks are explored. (Pollut. Abstr.)

  16. EFFECT OF TEMPERATURE ON THE PROCESS OF BEER PRIMARY FERMENTATION

    OpenAIRE

    Miriam Solgajová; Helena Frančáková; Štefan Dráb; Žigmund Tóth

    2013-01-01

    Beer is a very popular and widespread drink worldwide. Beer may be defined as a foamy alcoholic drink aerated by carbon dioxide that is formed during fermentation. Sensorial and analytical character of beer is mainly formed during process of primary fermentation. Our work has monitored the influence of temperature of fermentation substrate on the process of primary fermentation during beer production. Obtained values of temperature and apparent extract out of four brews of 10% light hopped wo...

  17. Ionization of highly excited atoms by atomic particle impact

    International Nuclear Information System (INIS)

    Smirnov, B.M.

    1976-01-01

    The ionization of a highly excited atom by a collision with an atom or molecule is considered. The theory of these processes is presented and compared with experimental data. Cross sections and ionization potential are discussed. 23 refs

  18. Ionisation of hydrogen-like atoms by a multiphoton absorption process

    International Nuclear Information System (INIS)

    Gontier, Y.; Trahin, M.

    1967-01-01

    The general expression for the amplitude of the probability of ionisation by a multiphoton absorption process is derived. Its non-relativistic limit is taken and the bipolar approximation is used for calculating the ionisation cross-section of hydrogen-like atoms. This latter involves the summation over intermediate virtual states by means of: a) a recursion relationship concerning angular functions, b) a particular technique which when applied to radial functions makes it possible to solve a system of inhomogeneous first-order differential equations. (authors) [fr

  19. Near-threshold photoionization of hydrogenlike uranium studied in ion-atom collisions via the time-reversed process.

    Science.gov (United States)

    Stöhlker, T; Ma, X; Ludziejewski, T; Beyer, H F; Bosch, F; Brinzanescu, O; Dunford, R W; Eichler, J; Hagmann, S; Ichihara, A; Kozhuharov, C; Krämer, A; Liesen, D; Mokler, P H; Stachura, Z; Swiat, P; Warczak, A

    2001-02-05

    Radiative electron capture, the time-reversed photoionization process occurring in ion-atom collisions, provides presently the only access to photoionization studies for very highly charged ions. By applying the deceleration mode of the ESR storage ring, we studied this process in low-energy collisions of bare uranium ions with low- Z target atoms. This technique allows us to extend the current information about photoionization to much lower energies than those accessible for neutral heavy elements in the direct reaction channel. The results prove that for high- Z systems, higher-order multipole contributions and magnetic corrections persist even at energies close to the threshold.

  20. The processing and management of wastes from atomic reactors

    International Nuclear Information System (INIS)

    Cerre, P.; Mestre, E.; Bourdrez, J.

    1964-01-01

    The policy concerning radioactive wastes studied by all Atomic Centres has led to various procedures which, while apparently numerous, come under a few standard headings. Whether the wastes are in the liquid or solid state their management depends on their physical and chemical nature. The procedure adopted is governed by three general principles: - determination of the most economical means possible of storage and processing by volume reduction; - conversion to a solid compact form; - complete acceptance of the accepted standards at all places and all times. In this communication all the standard solutions adopted and used by the various Centres of the Commissariat a l'Energie Atomique will be examined bearing in mind the preceding remarks. Particular mention will be made of the following: - For liquids, physical, chemical and physico-chemical processing - For solids, decontamination, volume reduction and long-term conditioning techniques. The different procedures for collecting and storing solid wastes before and after processing are also discussed. The paper ends with a brief review of the studies, both technical and economic, being pursued on this subject. (authors) [fr

  1. In-situ observation of atomic self-organization processes in Xe nanocrystals embedded in Al

    International Nuclear Information System (INIS)

    Mitsuishi, K.; Song, M.; Furuya, K.; Birtcher, R. C.; Allen, C. W.; Donnelly, S. E.

    1998-01-01

    Self-organization processes in Xe nanocrystals embedded in Al are observed with in-situ high-resolution electron microscopy. Under electron irradiation, stacking fault type defects are produced in Xe nanocrystals. The defects recover in a layer by layer manner. Detailed analysis of the video reveals that the displacement of Xe atoms in the stacking fault was rather small for the Xe atoms at boundary between Xe and Al, suggesting the possibility of the stacking fault in Xe precipitate originating inside of precipitate, not at the Al/Xe interface

  2. Method and apparatus for quantum information processing using entangled neutral-atom qubits

    Science.gov (United States)

    Jau, Yuan Yu; Biedermann, Grant; Deutsch, Ivan

    2018-04-03

    A method for preparing an entangled quantum state of an atomic ensemble is provided. The method includes loading each atom of the atomic ensemble into a respective optical trap; placing each atom of the atomic ensemble into a same first atomic quantum state by impingement of pump radiation; approaching the atoms of the atomic ensemble to within a dipole-dipole interaction length of each other; Rydberg-dressing the atomic ensemble; during the Rydberg-dressing operation, exciting the atomic ensemble with a Raman pulse tuned to stimulate a ground-state hyperfine transition from the first atomic quantum state to a second atomic quantum state; and separating the atoms of the atomic ensemble by more than a dipole-dipole interaction length.

  3. Time-resolved EPR studies of the H atom: A stable heavy isotope of muonium

    International Nuclear Information System (INIS)

    Bartels, D.M.

    1994-01-01

    Muonium physicists and chemists, when they talk about ''primary processes,'' are probably concerned mostly about end-of-track phenomena in the slowing down of a many-MeV charged particle, analogous to the proton. The author's experience is with electron accelerators and radiolysis; hence, he will comment briefly on the differences and relative advantages of electron and proton radiolysis for the study of H atoms, as opposed to muonium. Then, he will take the liberty of defining primary processes to include the recombination reactions that may occur between geminate or quasi-geminate free radicals within radiolysis spurs

  4. Measurement of angular differential cross sections at the SSL Atomic Scattering Facility

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1988-01-01

    The design of the SSL Atomic Scattering Facility (ASF) located at the NASA/Marshall Space Flight Center as well as some of the initial experiments to be performed with it, are covered. The goal is to develop an apparatus capable of measuring angular differential cross sections (ADCS) for the scattering of 2 to 14 eV atomic oxygen from various gaseous targets. At present little is known about atomic oxygen scattering with kinetic energies of a few eV. This apparatus is designed to increase the understanding of collisions in this energy region. Atomic oxygen scattering processes are of vital interest to NASA because the space shuttle as well as other low earth orbit satellites will be subjected to a flux of 5 eV atomic oxygen on the ram surfaces while in orbit. The primary experiments will involve the measurements of ADCS for atomic oxygen scattering from gaseous targets (in particular, molecular nitrogen). These, as well as the related initial experiments involving thermal He scattering from N2 and O2 targets will be described

  5. AtomPy: an open atomic-data curation environment

    Science.gov (United States)

    Bautista, Manuel; Mendoza, Claudio; Boswell, Josiah S; Ajoku, Chukwuemeka

    2014-06-01

    We present a cloud-computing environment for atomic data curation, networking among atomic data providers and users, teaching-and-learning, and interfacing with spectral modeling software. The system is based on Google-Drive Sheets, Pandas (Python Data Analysis Library) DataFrames, and IPython Notebooks for open community-driven curation of atomic data for scientific and technological applications. The atomic model for each ionic species is contained in a multi-sheet Google-Drive workbook, where the atomic parameters from all known public sources are progressively stored. Metadata (provenance, community discussion, etc.) accompanying every entry in the database are stored through Notebooks. Education tools on the physics of atomic processes as well as their relevance to plasma and spectral modeling are based on IPython Notebooks that integrate written material, images, videos, and active computer-tool workflows. Data processing workflows and collaborative software developments are encouraged and managed through the GitHub social network. Relevant issues this platform intends to address are: (i) data quality by allowing open access to both data producers and users in order to attain completeness, accuracy, consistency, provenance and currentness; (ii) comparisons of different datasets to facilitate accuracy assessment; (iii) downloading to local data structures (i.e. Pandas DataFrames) for further manipulation and analysis by prospective users; and (iv) data preservation by avoiding the discard of outdated sets.

  6. The time-energy distribution of atoms in a radiation damage cascade

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    1976-01-01

    The time-energy distribution of atoms in a cascade induced by a primary knock-on is obtained by solving the Boltzmann equation. A more general scattering law is used than has hitherto been possible which is based upon a rational approximation to the Thomas-Fermi model of atomic scattering. The virtue of this scheme is that it remains possible to obtain an exact, closed form solution but allows a more realistic description of the scattering process. Time moments of the distribution are obtained from which the slowing down time and associated variance can be calculated. It is shown that the complete time-energy distribution may be reconstructed from the moments. (author)

  7. The european primary care monitor: structure, process and outcome indicators

    Directory of Open Access Journals (Sweden)

    Wilson Andrew

    2010-10-01

    Full Text Available Abstract Background Scientific research has provided evidence on benefits of well developed primary care systems. The relevance of some of this research for the European situation is limited. There is currently a lack of up to date comprehensive and comparable information on variation in development of primary care, and a lack of knowledge of structures and strategies conducive to strengthening primary care in Europe. The EC funded project Primary Health Care Activity Monitor for Europe (PHAMEU aims to fill this gap by developing a Primary Care Monitoring System (PC Monitor for application in 31 European countries. This article describes the development of the indicators of the PC Monitor, which will make it possible to create an alternative model for holistic analyses of primary care. Methods A systematic review of the primary care literature published between 2003 and July 2008 was carried out. This resulted in an overview of: (1 the dimensions of primary care and their relevance to outcomes at (primary health system level; (2 essential features per dimension; (3 applied indicators to measure the features of primary care dimensions. The indicators were evaluated by the project team against criteria of relevance, precision, flexibility, and discriminating power. The resulting indicator set was evaluated on its suitability for Europe-wide comparison of primary care systems by a panel of primary care experts from various European countries (representing a variety of primary care systems. Results The developed PC Monitor approaches primary care in Europe as a multidimensional concept. It describes the key dimensions of primary care systems at three levels: structure, process, and outcome level. On structure level, it includes indicators for governance, economic conditions, and workforce development. On process level, indicators describe access, comprehensiveness, continuity, and coordination of primary care services. On outcome level, indicators

  8. Atomic Oxygen Treatment as a Method of Recovering Smoke Damaged Paintings

    Science.gov (United States)

    Rutledge, Sharon K.; Banks, Bruce A.; Forkapa, Mark; Stueber, Thomas; Sechkar, Edward; Malinowski, Kevin

    1998-01-01

    Smoke damage, as a result of a fire, can be difficult to remove from some types of painting media without causing swelling, leaching or pigment movement or removal. A non-contact technique has been developed which can remove soot from the surface of a painting by use of a gently flowing gas containing atomic oxygen. The atomic oxygen chemically reacts with the soot on the surface creating gasses such as carbon monoxide and carbon dioxide which can be removed through the use of an exhaust system. The reaction is limited to the surface so that the process can be timed to stop when the paint layer is reached. Atomic oxygen is a primary component of the low Earth orbital environment, but can be generated on Earth through various methods. This paper will discuss the results of atomic oxygen treatment of soot exposed acrylic gesso, ink on paper, and a varnished oil painting. Reflectance measurements were used to characterize the surfaces before and after treatment.

  9. Primary populations of metastable antiprotonic $^{4}He$ and $^{3}He$ atoms

    CERN Document Server

    Hori, Masaki; Hayano, R S; Ishikawa, T; Sakuguchi, J; Tasaki, T; Widmann, E; Yamaguchi, H; Torii, H A; Juhász, B; Horváth, D; Yamazaki, T

    2002-01-01

    Initial population distributions of metastable antiprotonic **4He and **3He atoms over principal and angular momentum quantum numbers were investigated using laser spectroscopy. The total fractions of antiprotons captured into the metastable states of the atoms were deduced. Cascade calculations were performed using the measure populations to reproduce the delayed annihilation time spectrum. Results showed agreement between the simulated and measured spectra. (Edited abstract) 30 Refs.

  10. Piagetian Cognitive Development and Primary Process Thinking in Children

    Science.gov (United States)

    Wulach, James S.

    1977-01-01

    Thirty-seven middle-class white children, ages 5-8, were tested on eight Piagetian tasks and the Rorschach test, and divided into preoperational, transitional, and concrete operational groups. Measures of primary process vs. secondary process thinking were found to be related to the Piagetian stages of development. (GDC)

  11. Basic Instinct Undressed: Early Spatiotemporal Processing for Primary Sexual Characteristics

    Science.gov (United States)

    Legrand, Lore B.; Del Zotto, Marzia; Tyrand, Rémi; Pegna, Alan J.

    2013-01-01

    This study investigates the spatiotemporal dynamics associated with conscious and non-conscious processing of naked and dressed human bodies. To this effect, stimuli of naked men and women with visible primary sexual characteristics, as well as dressed bodies, were presented to 20 heterosexual male and female participants while acquiring high resolution EEG data. The stimuli were either consciously detectable (supraliminal presentations) or were rendered non-conscious through backward masking (subliminal presentations). The N1 event-related potential component was significantly enhanced in participants when they viewed naked compared to dressed bodies under supraliminal viewing conditions. More importantly, naked bodies of the opposite sex produced a significantly greater N1 component compared to dressed bodies during subliminal presentations, when participants were not aware of the stimulus presented. A source localization algorithm computed on the N1 showed that the response for naked bodies in the supraliminal viewing condition was stronger in body processing areas, primary visual areas and additional structures related to emotion processing. By contrast, in the subliminal viewing condition, only visual and body processing areas were found to be activated. These results suggest that naked bodies and primary sexual characteristics are processed early in time (i.e., sexual features benefit from automatic and rapid processing, most likely due to their high relevance for the individual and their importance for the species in terms of reproductive success. PMID:23894532

  12. Phenomenological rate process theory for the storage of atomic H in solid Hsub(2)sup(*)

    International Nuclear Information System (INIS)

    Rosen, G.

    1976-01-01

    A phenomenological rate process theory is developed for the storage and rapid recombination of atomic hydrogen fuel radical in a crystalline molecular hydrogen solid at temperatures in the range o.1K(<=)T(<=K. It is shown that such a theory can account quantitatively for the recently observed dependence of the storage time on the storage temperature, for the maximum concentration of trapped H atom, and for the time duration of the energy release in the tritium decay experiments of Webeler

  13. Section of Atomic Collisions

    International Nuclear Information System (INIS)

    Berenyi, D.; Biri, S.; Gulyas, L.; Juhasz, Z.; Kover, A.; Orban, A.; Palinkas, J.; Papp, T.; Racz, R.; Ricz, S.

    2009-01-01

    The Section of Atomic Collisions is a research unit with extended activity in the field of atomic and molecular physics. Starting from the study of atomic processes at the beamlines of nuclear physics accelerators in the seventies, our research community became one of the centers of fundamental research in Atomki. We also have a strong connection to materials sciences especially along the line of electron and ion spectroscopy methods. Our present activity covers a wide range of topics from atomic collision mechanisms of fundamental interest, to the complex interactions of electrons, ions, photons and antiparticles with atoms, molecules, surfaces, and specific nanostructures. In the last few years, an increasing fraction of our present topics has become relevant for applications, e.g., molecular collision studies for the radiation therapy methods of tumors, or ion-nanostructure interactions for the future construction of small ion-focusing elements. Our section belongs to the Division of Atomic Physics. The other unit of the Division is the Section of Electron Spectroscopy and Materials Sciences. There are traditionally good connections and a strong collaboration between the groups of the two sections in many fields. From the very beginning of our research work in atomic collisions, external collaborations were of vital importance for us. We regularly organize international workshops in the field of fast ion-atom collisions and related small conferences in Debrecen from 1981. Recently, we organized the Conference on Radiation Damage in Biomolecular Systems (RADAM 2008, Debrecen), and coorganized the Conference on Elementary Processes in Atomic Systems (CEPAS 2008, Cluj). We have access to several large scale facilities in Europe within the framework of formal and informal collaborations. The next themes are in this article: Forward electron emission from energetic atomic collisions; Positron-atom collisions; Photon-atom interactions; Interference effects in electron

  14. Atomic-scale processes revealing dynamic twin boundary strengthening mechanisms in face-centered cubic materials

    International Nuclear Information System (INIS)

    Yang, Z.Q.; Chisholm, M.F.; He, L.L.; Pennycook, S.J.; Ye, H.Q.

    2012-01-01

    We report experimental investigations on interactions/reactions between dislocations and twin boundaries in Al. The absorption of screw dislocations via cross-slip and the production of stair-rods via reactions with non-screw dislocations were verified by atomic resolution imaging. Importantly, the resulting partial dislocations moving along twin boundaries can produce secondary sessile defects. These immobile defects act as obstacles to other dislocations and also serve to pin the twin boundaries. These findings show the atomic-level dynamics of the dislocation–twin boundary processes and the unique strengthening mechanism of twin boundaries in face-centered cubic metals.

  15. 5. All-Russian (international) scientific conference. Physicochemical processes during selection of atoms and molecules. Collection of reports

    International Nuclear Information System (INIS)

    Baranov, V.Yu.; Kolesnikov, Yu.A.

    2000-01-01

    The materials of the 5. All-Russian (international) scientific conference: Physicochemical processes during selection of atoms and molecules, are presented. The conference took place in Zvenigorod, 2-6 October, 2000. A wide range of items connected with uranium enrichment, selection of atoms and molecules by isotopic composition: laser methods, ion cyclotron-resonance method, are discussed. The selection of molecules and atoms by rectification and chemical isotopic exchange methods, the selection in the field of centrifugal forces are treated. The questions of search for the new advanced methods for selection of atoms and molecules were discussed at the conference, the problems of radioisotope production were represented. The subject matter of the use of stable isotopes and radionuclides is demonstrated widely. The subjects connected with experimental and engineering equipment for selection of atoms and molecules are embodied in the paper [ru

  16. Experiments with cold hydrogen atoms

    International Nuclear Information System (INIS)

    Leonas, V.B.

    1981-01-01

    Numerous investigations of atomic processes in Waseous phase on the surface with participation of ''cold'' hydrogen atoms, made during the last years, are considered. The term ''cold atom'' means the range of relative collision energies E<10 MeV (respectively 'ultracold ' atoms at E< or approximately 1 MeV) which corresponds to the range of temperatures in tens (units) of K degrees. Three main ranges of investigations where extensive experimental programs are realized are considered: study of collisional processes with hydrogen atom participation, hydrogen atoms being of astrophysical interest; study of elastic atom-molecular scattering at superlow energies and studies on the problem of condensed hydrogen. Hydrogen atoms production is realized at dissociation in non-electrode high-frequency or superhigh-frequency discharge. A method of hydrogen quantum generator and of its modifications appeared to be rather an effective means to study collisional changes of spin state of hydrogen atoms. First important results on storage and stabilization of the gas of polarized hydrogen atoms are received

  17. The entanglement of two moving atoms interacting with a single-mode field via a three-photon process

    International Nuclear Information System (INIS)

    Chao, Wu; Mao-Fa, Fang

    2010-01-01

    In this paper, the entanglement of two moving atoms induced by a single-mode field via a three-photon process is investigated. It is shown that the entanglement is dependent on the category of the field, the average photon number N, the number p of half-wave lengths of the field mode and the atomic initial state. Also, the sudden death and the sudden birth of the entanglement are detected in this model and the results show that the existence of the sudden death and the sudden birth depends on the parameter and the category of the mode field. In addition, the three-photon process is a higher order nonlinear process. (general)

  18. Scalable quantum information processing with photons and atoms

    Science.gov (United States)

    Pan, Jian-Wei

    Over the past three decades, the promises of super-fast quantum computing and secure quantum cryptography have spurred a world-wide interest in quantum information, generating fascinating quantum technologies for coherent manipulation of individual quantum systems. However, the distance of fiber-based quantum communications is limited due to intrinsic fiber loss and decreasing of entanglement quality. Moreover, probabilistic single-photon source and entanglement source demand exponentially increased overheads for scalable quantum information processing. To overcome these problems, we are taking two paths in parallel: quantum repeaters and through satellite. We used the decoy-state QKD protocol to close the loophole of imperfect photon source, and used the measurement-device-independent QKD protocol to close the loophole of imperfect photon detectors--two main loopholes in quantum cryptograph. Based on these techniques, we are now building world's biggest quantum secure communication backbone, from Beijing to Shanghai, with a distance exceeding 2000 km. Meanwhile, we are developing practically useful quantum repeaters that combine entanglement swapping, entanglement purification, and quantum memory for the ultra-long distance quantum communication. The second line is satellite-based global quantum communication, taking advantage of the negligible photon loss and decoherence in the atmosphere. We realized teleportation and entanglement distribution over 100 km, and later on a rapidly moving platform. We are also making efforts toward the generation of multiphoton entanglement and its use in teleportation of multiple properties of a single quantum particle, topological error correction, quantum algorithms for solving systems of linear equations and machine learning. Finally, I will talk about our recent experiments on quantum simulations on ultracold atoms. On the one hand, by applying an optical Raman lattice technique, we realized a two-dimensional spin-obit (SO

  19. Progress in atomic spectroscopy

    International Nuclear Information System (INIS)

    Beyer, H.J.; Kleinpoppen, H.

    1984-01-01

    This book presents reviews by leading experts in the field covering areas of research at the forefront of atomic spectroscopy. Topics considered include the k ordering of atomic structure, multiconfiguration Hartree-Fock calculations for complex atoms, new methods in high-resolution laser spectroscopy, resonance ionization spectroscopy (inert atom detection), trapped ion spectroscopy, high-magnetic-field atomic physics, the effects of magnetic and electric fields on highly excited atoms, x rays from superheavy collision systems, recoil ion spectroscopy with heavy ions, investigations of superheavy quasi-atoms via spectroscopy of electron rays and positrons, impact ionization by fast projectiles, and amplitudes and state parameters from ion- and atom-atom excitation processes

  20. Interprofessional practice in primary care: development of a tailored process model

    Directory of Open Access Journals (Sweden)

    Stans SEA

    2013-04-01

    Full Text Available Steffy EA Stans, JG Anita Stevens, Anna JHM Beurskens Research Center of Autonomy and Participation for Persons with a Chronic Illness, Zuyd University of Applied Sciences, Heerlen, The Netherlands Purpose: This study investigated the improvement of interprofessional practice in primary care by performing the first three steps of the implementation model described by Grol et al. This article describes the targets for improvement in a setting for children with complex care needs (step 1, the identification of barriers and facilitators influencing interprofessional practice (step 2, and the development of a tailored interprofessional process model (step 3. Methods: In step 2, thirteen qualitative semistructured interviews were held with several stakeholders, including parents of children, an occupational therapist, a speech and language therapist, a physical therapist, the manager of the team, two general practitioners, a psychologist, and a primary school teacher. The data were analyzed using directed content analysis and using the domains of the Chronic Care Model as a framework. In step 3, a project group was formed to develop helpful strategies, including the development of an interprofessional process through process mapping. Results: In step 2, it was found that the most important barriers to implementing interprofessional practice related to the lack of structure in the care process. A process model for interprofessional primary care was developed for the target group. Conclusion: The lack of a shared view of what is involved in the process of interprofessional practice was the most important barrier to its successful implementation. It is suggested that the tailored process developed, supported with the appropriate tools, may provide both professional staff and their clients, in this setting but also in other areas of primary care, with insight to the care process and a clear representation of "who should do what, when, and how." Keywords

  1. Method for atmospheric pressure reactive atom plasma processing for surface modification

    Science.gov (United States)

    Carr, Jeffrey W [Livermore, CA

    2009-09-22

    Reactive atom plasma processing can be used to shape, polish, planarize and clean the surfaces of difficult materials with minimal subsurface damage. The apparatus and methods use a plasma torch, such as a conventional ICP torch. The workpiece and plasma torch are moved with respect to each other, whether by translating and/or rotating the workpiece, the plasma, or both. The plasma discharge from the torch can be used to shape, planarize, polish, and/or clean the surface of the workpiece, as well as to thin the workpiece. The processing may cause minimal or no damage to the workpiece underneath the surface, and may involve removing material from the surface of the workpiece.

  2. Single atom spectroscopy: Decreased scattering delocalization at high energy losses, effects of atomic movement and X-ray fluorescence yield

    International Nuclear Information System (INIS)

    Tizei, Luiz H.G.; Iizumi, Yoko; Okazaki, Toshiya; Nakanishi, Ryo; Kitaura, Ryo; Shinohara, Hisanori; Suenaga, Kazu

    2016-01-01

    Single atom localization and identification is crucial in understanding effects which depend on the specific local environment of atoms. In advanced nanometer scale materials, the characteristics of individual atoms may play an important role. Here, we describe spectroscopic experiments (electron energy loss spectroscopy, EELS, and Energy Dispersed X-ray spectroscopy, EDX) using a low voltage transmission electron microscope designed towards single atom analysis. For EELS, we discuss the advantages of using lower primary electron energy (30 keV and 60 keV) and higher energy losses (above 800 eV). The effect of atomic movement is considered. Finally, we discuss the possibility of using atomically resolved EELS and EDX data to measure the fluorescence yield for X-ray emission.

  3. Semiclassical analysis of long-wavelength multiphoton processes: The Rydberg atom

    International Nuclear Information System (INIS)

    Vela-Arevalo, Luz V.; Fox, Ronald F.

    2004-01-01

    We study the problem of multiphoton processes for intense, long-wavelength irradiation of atomic and molecular electrons. An exact, nonperturbative approach is applied to the standard vector potential coupling Hamiltonian for a three-dimensional hydrogenlike atom in a microwave field treated semiclassically. Multiphoton probability exchange is calculated in both the velocity and the length gauges, by applying the Goeppert-Mayer gauge transformation. The expansion of the time-dependent solution in terms of Floquet states delineates the mechanism of multiphoton transitions. A detailed analysis of the Floquet states and quasienergies as functions of the field parameters allows us to describe the relation between avoided quasienergy crossings and multiphoton probability exchange. We formulate analytical expressions for the variation of quasienergies and Floquet states with respect to the field parameters, and demonstrate that avoided quasienergy crossings are accompanied by dramatic changes in the Floquet states. Analysis of the Floquet states, for small values of the field strength, yields selection rules for the avoided quasienergy crossings. In the case of strong fields, the simultaneous choice of frequency and strength of the field producing an avoided crossing results in improved ionization probability

  4. Controlling the atom: The beginnings of nuclear regulation, 1946-1962

    International Nuclear Information System (INIS)

    Mazuzan, G.T.; Walker, S.

    1985-01-01

    The authors trace the political, legislative, technological, and administrative history of nuclear regulation in this country. Many groups have been involved in the regulatory process, but the Atomic Energy Commission (precursor of the Nuclear Regulatory Commission) had the primary mandate for protecting public health and safety from the nonmilitary uses of nuclear energy. The AEC had other important statutory functions, and the authors examine them in terms of how they influenced the agency's regulatory role

  5. Imaging process in field ion microscopy from the FEM to the atom-probe

    International Nuclear Information System (INIS)

    Mueller, E.W.

    1976-01-01

    The development of the technique and the interpretations of the imaging mechanism, which involve a number of complex phenomena, are traced from the invention of the field emission microscope and the discovery of field desorption to the first field ion microscope. Subsequent introduction of cryogenic operation and utilization of field evaporation led, prior to 1960, to the attainment of high-quality images with full resolution of the atomic lattice and to fundamental applications in the study of lattice defects and other phenomena of physical metallurgy. Extension to the lower-melting metals by imaging with neon was aided by the availability of image intensification technology. The invention of the atom-probe FIM in 1967, permitting surface analysis with ultimate single-atom sensitivity, also brought the discovery of unexpected effects, such as field adsorption of the noble images gases and the abundant formation of metal-noble gas molecular ions. These phenomena, together with recent results of field desorption microcopy, must be included in a refined interpretation of the imaging process. 16 figs., 115 references

  6. Dynamics of atoms-ions transformation processes in the radioactive ion production systems ISOL

    International Nuclear Information System (INIS)

    Jardin, Pascal

    2013-01-01

    The aims of this work were 1)to study the effect of diffusion, effusion and ionization processes in the atom-ion transformation, 2)to better understand the temporal behaviour of ISOL devices and to apply it to the developments of the ISOL production systems. These aims were partially reached: the results obtained with 'ECS ECR' of SPIRAL 1 and SPIRAL 2 and their confrontation have allowed to analytically described their temporal behaviour and to reveal under which conditions it is possible to consider the processes of diffusion, effusion and ionization as separable processes and consequently to consider them as consecutive. (O.M.) [fr

  7. Processing of coke oven gas. Primary gas cooling

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, H [Otto (C.) und Co. G.m.b.H., Bochum (Germany, F.R.)

    1976-11-01

    The primary cooler is an indispensable part of all byproduct processing plants. Its purpose is to cool the raw gas from the coke oven battery and to remove the accompanying water vapor. The greater part of the cooling capacity is utilized for the condensation of water vapor and only a small capacity is needed for the gas cooling. Impurities in the gas, like naphthalene, tar and solid particles, necessitate a special design in view of the inclination to dirt accumulation. Standard types of direct and indirect primary gas coolers are described, with a discussion of their advantages and disadvantages.

  8. Energy considerations in spraying process of a spill-return pressure-swirl atomizer

    International Nuclear Information System (INIS)

    Jedelsky, Jan; Jicha, Miroslav

    2014-01-01

    Graphical abstract: - Highlights: • We analyse energy conversion in simplex and spill-return pressure-swirl atomizer. • Inlet (pressure) energy converts into liquid motion with nozzle efficiency ∼58%. • Kinetic energy of developed spray at closed spill line is ∼33% of the inlet energy. • It consists of energy of droplets (∼2/3) and entrained air (1/3). • Atomization efficiency is <0.3%; it declines with inlet pressure and spill opening. - Abstract: The work focuses on energy conversion during the internal flow, discharge and formation of the spray from a pressure-swirl (PS) atomizer in the simplex as well as spill-return mode. Individual energy forms are described in general and assessed experimentally for a particular PS atomizer and light heating oil as a medium. The PS spray was observed at various loads to investigate the liquid breakup process and the spray characteristics. Spatially resolved diameters and droplet velocities, measured by means of phase-Doppler anemometry, served for estimation of the energy characteristics in the PS spray. The input energy given by the potential energy of the supplied liquid partially converts into the kinetic energy (KE) in the swirling ports with hydraulic loss in per cent scale. Most of the pressure drop is associated with rotational motion in the swirl chamber with total conversion efficiency at the exit orifice ∼58%. The rest of the input energy ends up as friction loss, leaving room for improvement. The overall value (ID 32 ) of the Sauter mean diameter of droplets in the spray, D 32 , varies with pressure drop Δp l powered to −0.1. The radial profiles of D 32 widen with the increase in spill/feed ratio (SFR), but the ID 32 remain almost constant within the studied SFR range. The spray KE at closed spill line covers the droplet KE (21–26%) and that of entrained air (10–13%), both moderately varying with Δp l . The specific KEs of both the liquid and air markedly drop down with the spill line

  9. Direct microscopic image and measurement of the atomization process of a port fuel injector

    International Nuclear Information System (INIS)

    Esmail, Mohamed; Kawahara, Nobuyuki; Tomita, Eiji; Sumida, Mamoru

    2010-01-01

    The main objective of this study is to observe and investigate the phenomena of atomization, i.e. the fuel break-up process very close to the nozzle exit of a practical port fuel injector (PFI). In order to achieve this objective, direct microscopic images of the atomization process were obtained using an ultra-high-speed video camera that could record 102 frames at rates of up to 1 Mfps, coupled with a long-distance microscope and Barlow lens. The experiments were carried out using a PFI in a closed chamber at atmospheric pressure. Time-series images of the spray behaviour were obtained with a high temporal resolution using backlighting. The direct microscopic images of a liquid column break-up were compared with experimental results from laser-induced exciplex fluorescence (LIEF), and the wavelength obtained from the experimental results compared with that predicated from the Kelvin–Helmholtz break-up model. The droplet size diameters from a ligament break-up were compared with results predicated from Weber's analysis. Furthermore, experimental results of the mean droplet diameter from a direct microscopic image were compared with the results obtained from phase Doppler anemometry (PDA) experimental results. Three conclusions were obtained from this study. The atomization processes and detailed characterizations of the break-up of a liquid column were identified; the direct microscopic image results were in good agreement with the results obtained from LIEF, experimental results of the wavelength were in good agreement with those from the Kelvin–Helmholtz break-up model. The break-up process of liquid ligaments into droplets was investigated, and Weber's analysis of the predicated droplet diameter from ligament break-up was found to be applicable only at larger wavelengths. Finally, the direct microscopic image method and PDA method give qualitatively similar trends for droplet size distribution and quantitatively similar values of Sauter mean diameter

  10. Direct microscopic image and measurement of the atomization process of a port fuel injector

    Science.gov (United States)

    Esmail, Mohamed; Kawahara, Nobuyuki; Tomita, Eiji; Sumida, Mamoru

    2010-07-01

    The main objective of this study is to observe and investigate the phenomena of atomization, i.e. the fuel break-up process very close to the nozzle exit of a practical port fuel injector (PFI). In order to achieve this objective, direct microscopic images of the atomization process were obtained using an ultra-high-speed video camera that could record 102 frames at rates of up to 1 Mfps, coupled with a long-distance microscope and Barlow lens. The experiments were carried out using a PFI in a closed chamber at atmospheric pressure. Time-series images of the spray behaviour were obtained with a high temporal resolution using backlighting. The direct microscopic images of a liquid column break-up were compared with experimental results from laser-induced exciplex fluorescence (LIEF), and the wavelength obtained from the experimental results compared with that predicated from the Kelvin-Helmholtz break-up model. The droplet size diameters from a ligament break-up were compared with results predicated from Weber's analysis. Furthermore, experimental results of the mean droplet diameter from a direct microscopic image were compared with the results obtained from phase Doppler anemometry (PDA) experimental results. Three conclusions were obtained from this study. The atomization processes and detailed characterizations of the break-up of a liquid column were identified; the direct microscopic image results were in good agreement with the results obtained from LIEF, experimental results of the wavelength were in good agreement with those from the Kelvin-Helmholtz break-up model. The break-up process of liquid ligaments into droplets was investigated, and Weber's analysis of the predicated droplet diameter from ligament break-up was found to be applicable only at larger wavelengths. Finally, the direct microscopic image method and PDA method give qualitatively similar trends for droplet size distribution and quantitatively similar values of Sauter mean diameter.

  11. On Tour... Primary Hardwood Processing, Products and Recycling Unit

    Science.gov (United States)

    Philip A. Araman; Daniel L. Schmoldt

    1995-01-01

    Housed within the Department of Wood Science and Forest Products at Virginia Polytechnic Institute is a three-person USDA Forest Service research work unit (with one vacancy) devoted to hardwood processing and recycling research. Phil Araman is the project leader of this truly unique and productive unit, titled ãPrimary Hardwood Processing, Products and Recycling.ä The...

  12. Polarizational radiation or 'atomic' bremsstrahlung

    International Nuclear Information System (INIS)

    Ya Amusia, M.

    1992-01-01

    It is demonstrated that a new kind of continuum spectrum radiation exists, where the mechanism of formation is quite different from that of ordinary bremsstrahlung. The latter originates due to slowing down of the charged projectile in the target field, while the former, called polarization radiation or 'atomic' bremsstrahlung, is a result of radiation either of the target or the projectile particles dipolarly polarized during the collision process. Not only general formulae, but also results of concrete calculations are presented. These demonstrate, that for electron-atom collisions the atomic contribution to the total bremsstrahlung spectrum becomes dominant for photon energies near and above the atomic ionization potential. As to atom-atom or ion-atom collisions, the bremsstrahlung spectrum is completely determined by the atomic contribution. The specific features of the case when the incoming particles are relativistic are discussed at length. A number of examples of colliding pairs are considered, for which the atomic bremsstrahlung process is quite essential: A bare nucleus and an atom, pair of atoms, at least one of which is excited, electron, or atom interacting with a molecule. The same mechanism is essential also in formation of radiation in nuclear and elementary particle collisions. (orig.)

  13. Stopping atoms with diode lasers

    International Nuclear Information System (INIS)

    Watts, R.N.; Wieman, C.E.

    1986-01-01

    The use of light pressure to cool and stop neutral atoms has been an area of considerable interest recently. Cooled neutral atoms are needed for a variety of interesting experiments involving neutral atom traps and ultrahigh-resolution spectroscopy. Laser cooling of sodium has previously been demonstrated using elegant but quite elaborate apparatus. These techniques employed stabilized dye lasers and a variety of additional sophisticated hardware. The authors have demonstrated that a frequency chirp technique can be implemented using inexpensive diode lasers and simple electronics. In this technique the atoms in an atomic beam scatter resonant photons from a counterpropagating laser beam. The momentum transfer from the photons slows the atoms. The primary difficulty is that as the atoms slow their Doppler shift changes, and so they are no longer in resonance with the incident photons. In the frequency chirp technique this is solved by rapidly changing the laser frequency so that the atoms remain in resonance. To achieve the necessary frequency sweep with a dye laser one must use an extremely sophisticated high-speed electrooptic modulator. With a diode laser, however, the frequency can be smoothly and rapidly varied over many gigahertz simply by changing the injection current

  14. Bibliography on electron transfer processes in ion-ion/atom/molecule collisions (updated 1993)

    International Nuclear Information System (INIS)

    Tawara, H.

    1993-04-01

    Following our previous compilations [IPPJ-AM-45 (1986), NIFS-DATA-7 (1990)], bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1980-1992 are included. For easy finding references for particular combination of collision partners, a simple list is also provided. (author) 1542 refs

  15. A guide to Internet atomic databases for hot plasmas

    International Nuclear Information System (INIS)

    Ralchenko, Yuri

    2006-01-01

    Internet atomic databases are nowadays considered to be the primary tool for dissemination of atomic data. We present here a review of numerical and bibliographic databases of importance for diagnostics of hot plasmas. Special attention is given to new and emerging trends, such as online calculation of various atomic parameters. The recently updated NIST databases are presented in detail

  16. A guide to Internet atomic databases for hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ralchenko, Yuri [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)]. E-mail: yuri.ralchenko@nist.gov

    2006-05-15

    Internet atomic databases are nowadays considered to be the primary tool for dissemination of atomic data. We present here a review of numerical and bibliographic databases of importance for diagnostics of hot plasmas. Special attention is given to new and emerging trends, such as online calculation of various atomic parameters. The recently updated NIST databases are presented in detail.

  17. Investigating tunneling process of atom exposed in circularly polarized strong-laser field

    Science.gov (United States)

    Yuan, MingHu; Xin, PeiPei; Chu, TianShu; Liu, HongPing

    2017-03-01

    We propose a method for studying the tunneling process by analyzing the instantaneous ionization rate of a circularly polarized laser. A numerical calculation shows that, for an atom exposed to a long laser pulse, if its initial electronic state wave function is non-spherical symmetric, the delayed phase shift of the ionization rate vs the laser cycle period in real time in the region close to the peak intensity of the laser pulse can be used to probe the tunneling time. In this region, an obvious time delay phase shift of more than 190 attoseconds is observed. Further study shows that the atom has a longer tunneling time in the ionization under a shorter wavelength laser pulse. In our method, a Wigner rotation technique is employed to numerically solve the time-dependent Schrödinger equation of a single-active electron in a three-dimensional spherical coordinate system.

  18. Investigating tunneling process of atom exposed in circularly polarized strong-laser field

    International Nuclear Information System (INIS)

    Yuan, MingHu; Xin, PeiPei; Liu, HongPing; Chu, TianShu

    2017-01-01

    We propose a method for studying the tunneling process by analyzing the instantaneous ionization rate of a circularly polarized laser. A numerical calculation shows that, for an atom exposed to a long laser pulse, if its initial electronic state wave function is non-spherical symmetric, the delayed phase shift of the ionization rate vs the laser cycle period in real time in the region close to the peak intensity of the laser pulse can be used to probe the tunneling time. In this region, an obvious time delay phase shift of more than 190 attoseconds is observed. Further study shows that the atom has a longer tunneling time in the ionization under a shorter wavelength laser pulse. In our method, a Wigner rotation technique is employed to numerically solve the time-dependent Schrödinger equation of a single-active electron in a three-dimensional spherical coordinate system. (paper)

  19. Basic instinct undressed: early spatiotemporal processing for primary sexual characteristics.

    Directory of Open Access Journals (Sweden)

    Lore B Legrand

    Full Text Available This study investigates the spatiotemporal dynamics associated with conscious and non-conscious processing of naked and dressed human bodies. To this effect, stimuli of naked men and women with visible primary sexual characteristics, as well as dressed bodies, were presented to 20 heterosexual male and female participants while acquiring high resolution EEG data. The stimuli were either consciously detectable (supraliminal presentations or were rendered non-conscious through backward masking (subliminal presentations. The N1 event-related potential component was significantly enhanced in participants when they viewed naked compared to dressed bodies under supraliminal viewing conditions. More importantly, naked bodies of the opposite sex produced a significantly greater N1 component compared to dressed bodies during subliminal presentations, when participants were not aware of the stimulus presented. A source localization algorithm computed on the N1 showed that the response for naked bodies in the supraliminal viewing condition was stronger in body processing areas, primary visual areas and additional structures related to emotion processing. By contrast, in the subliminal viewing condition, only visual and body processing areas were found to be activated. These results suggest that naked bodies and primary sexual characteristics are processed early in time (i.e., <200 ms and activate key brain structures even when they are not consciously detected. It appears that, similarly to what has been reported for emotional faces, sexual features benefit from automatic and rapid processing, most likely due to their high relevance for the individual and their importance for the species in terms of reproductive success.

  20. Energy flux of hot atoms

    International Nuclear Information System (INIS)

    Wotzak, G.P.; Kostin, M.D.

    1976-01-01

    The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop

  1. Use of pseudopotentials in atom-atom (or molecule) collisions

    International Nuclear Information System (INIS)

    Pascale, J.

    1985-09-01

    Knowledge of interactions between ions, atoms or molecules is fundamental for interpretating or predicting collisional processes which may occur under various circumstances. The aim of this paper is to demonstrate the usefulness of using semiempirical effective interactions (more particularly, emphasis will be put on the pseudopotential approach) in the study of atom-atom (or molecule) collisions. We would like to show that if the semiempirical effective interactions are carefully defined, their use in molecular-structure calculations and in collision problems can give quite accurate results. We will limit our examples to one-electron systems. We consider the M-atom-He systems as a first example. For these systems, recent molecular-structure calculations have been carried out using an 1-dependent semiempirical pseudopotential approach and they have been tested against numerous experimental data in extensive calculations of cross sections for intra-and-inter-doublet transitions in the M-atom in collisions with He. Our second example will concern the M-H 2 systems, for which semiempirical pseudopotential molecular-structure calculations have been performed very recently using an one-electron two-center model. The results of these calculations are quite encouraging and we foresee the use of the pseudopotential approach in future studies of some reactive scattering processes

  2. Metal powder production by gas atomization

    Science.gov (United States)

    Ting, E. Y.; Grant, N. J.

    1986-01-01

    The confined liquid, gas-atomization process was investigated. Results from a two-dimensional water model showed the importance of atomization pressure, as well as delivery tube and atomizer design. The atomization process at the tip of the delivery tube was photographed. Results from the atomization of a modified 7075 aluminum alloy yielded up to 60 wt pct. powders that were finer than 45 microns in diameter. Two different atomizer designs were evaluated. The amount of fine powders produced was correlated to a calculated gas-power term. An optimal gas-power value existed for maximized fine powder production. Atomization at gas-power greater than or less than this optimal value produced coarser powders.

  3. Atomic and close-to-atomic scale manufacturing—A trend in manufacturing development

    Science.gov (United States)

    Fang, Fengzhou

    2016-12-01

    Manufacturing is the foundation of a nation's economy. It is the primary industry to promote economic and social development. To accelerate and upgrade China's manufacturing sector from "precision manufacturing" to "high-performance and high-quality manufacturing", a new breakthrough should be found in terms of achieving a "leap-frog development". Unlike conventional manufacturing, the fundamental theory of "Manufacturing 3.0" is beyond the scope of conventional theory; rather, it is based on new principles and theories at the atomic and/or closeto- atomic scale. Obtaining a dominant role at the international level is a strategic move for China's progress.

  4. Collisional destruction of fast hydrogen Rydberg atoms

    International Nuclear Information System (INIS)

    King, M.R.

    1984-01-01

    A new modulated electric field technique was developed to study Rydberg atom destruction processes in a fast beam. The process of destruction of a band of Rydberg atom destruction of a band of Rydberg atoms through the combined processes of ionization, excitation, and deexcitation was studied for collisions with gas targets. Rydberg atoms of hydrogen were formed by electron capture, and detected by field ionization. The modulated field technique described proved to be an effective technique for producing a large signal for accurate cross section measurements. The independent particle model for Rydberg atom destruction processes was found to hold well for collisions with molecular nitrogen, argon, and carbon dioxide. The resonances in the cross sections for the free electron scattering with these targets were found to also occur in Rydberg destruction. Suggestions for future investigations of Rydberg atom collision processes in the fast beam regime are given

  5. Near threshold electron impact ionization cross section for tellurium atoms

    International Nuclear Information System (INIS)

    Chipev, F.F.; Chernyshova, I.V.; Kontros, J.E.; Shpenik, O.B.

    2004-01-01

    Full text: Up today electron-impact ionization is one of the most intensively investigated processes in atomic and molecular physics [1]. These experiments however, are associated with difficulties: high temperatures and densities are required to produce atomic beams and monochromatic intensive electron beams. A crossed electron and atomic beams scattering geometry was employed to measure the ionization efficiency curve for tellurium atoms. Our electron spectrometer comprises two serially mounted hypocycloidal electron energy analyzers [2], the first being the monochromator and the second - the scattered electron analyzer. The whole spectrometer is immersed into the homogenous magnetic field. Great care was taken in selecting the value of the extracting potential at the electrode, mounted normally to the atomic beam direction. By careful choosing this potential as low as possible (∼1.4 V), its influence on the motion of the monochromatized electrons in the collision region was minimized and the full collection of the formed ions was reached. The atom beam was produced using a compact effusion source made of the stainless steel with a microchannel exit to minimise the angular divergency of the beam. The temperature of the microchannel plate was taken about 50 K higher than that of the metal vapour in the heated reservoir. This atomic beam source enabled to produce an atomic beam with the concentration of two orders of magnitude higher than that in the case of a standard effusion source. A typical value of the electron energy spread was 0.15 eV (FWHM) in the 0.1-15 eV energy range. The primary electron beam current was equal to 10 -7 A. Such values of electron energy spread and beam current for the primary electron beam passing through the collision chamber were chosen to provide identical conditions for carrying out all the measurements. The energy scale was calibrated with the accuracy of ± 0.05 eV. The measured ionization cross-section normalized to the results

  6. Influence of atomization quality on the destruction of hazardous waste compounds

    OpenAIRE

    Kramlich, JC; Seeker, WR; Samuelsen, GS

    1988-01-01

    The correlation between atomization quality and the destruction efficiency of hazardous organic compounds was studied in a turbulent spray flame. The atomization quality was varied by both changing spray nozzle parameters and by inducing disruptive droplet combustion (secondary atomization) within the flame. The primary atomization quality was characterized by laser diagnotic size distribution measurements. The secondary atomization quality was determined from observations of disruptive atomi...

  7. Liver cirrhosis and primary carcinoma of the liver among atomic bomb survivors. Study of autopsy cases

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, T [Hiroshima Atomic Bomb Hospital (Japan)

    1980-11-01

    Liver cirrhosis and primary carcinoma of the liver were investigated in 1699 autopsies of atomic bomb survivors carried out in Hiroshima from 1956 to 1980. Liver cirrhosis, hepatocellular carcinoma and intrahepatic biliary carcinoma were observed in 116, 111, and 17 cases respectively, the ratios of man to woman and were 2.3, 3.9, and 1.8 with a mean age of 56, 60, and 67 years respectively. There was no evidence that exposure to a-bomb increased the risk of these diseases significantly. About 90% of the hepatocellular carcinomas was combined with liver cirrhosis. Weight of liver and spleen, amount of ascites, hemorrhage from the digestive canals, esophageal varix, combination with other diseases, and histologic correlation with the activities of HBs antigen and ..cap alpha..-fetoprotein were discussed with the relation to the exposure.

  8. Algorithm simulating the atom displacement processes induced by the gamma rays on the base of Monte Carlo method

    International Nuclear Information System (INIS)

    Cruz, C. M.; Pinera, I; Abreu, Y.; Leyva, A.

    2007-01-01

    Present work concerns with the implementation of a Monte Carlo based calculation algorithm describing particularly the occurrence of Atom Displacements induced by the Gamma Radiation interactions at a given target material. The Atom Displacement processes were considered only on the basis of single elastic scattering interactions among fast secondary electrons with matrix atoms, which are ejected from their crystalline sites at recoil energies higher than a given threshold energy. The secondary electron transport was described assuming typical approaches on this matter, where consecutive small angle scattering and very low energy transfer events behave as a continuously cuasi-classical electron state changes along a given path length delimited by two discrete high scattering angle and electron energy losses events happening on a random way. A limiting scattering angle was introduced and calculated according Moliere-Bethe-Goudsmit-Saunderson Electron Multiple Scattering, which allows splitting away secondary electrons single scattering processes from multiple one, according which a modified McKinley-Feshbach electron elastic scattering cross section arises. This distribution was statistically sampled and simulated in the framework of the Monte Carlo Method to perform discrete single electron scattering processes, particularly those leading to Atom Displacement events. The possibility of adding this algorithm to present existing open Monte Carlo code systems is analyze, in order to improve their capabilities. (Author)

  9. Measurements of scattering processes in negative ion: Atom collisions. Technical progress report, 1 September 1991--31 December 1994

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1994-01-01

    This report describes the progress made on the research objectives during the past three years of the grant. This research project is designed to study various scattering processes which occur in H - collisions with atomic (specifically, noble gas and atomic hydrogen) targets in the intermediate energy region. These processes include: elastic scattering, single- and double-electron detachment, and target excitation/ionization. For the elastic and target inelastic processes where H - is scattered intact, the experimental technique of Ion Energy-Loss Spectroscopy (IELS) will be employed to identify the final target state(s). In most of the above processes, cross sections are unknown both experimentally and theoretically. The measurements will provide total cross sections (TCS) initially, and once the angular positioning apparatus is installed, will provide angular differential cross sections (ADCS)

  10. The scattering of low energy helium ions and atoms from a copper single crystal, ch. 2

    International Nuclear Information System (INIS)

    Verheij, L.K.; Poelsema, B.; Boers, A.L.

    1976-01-01

    The scattering of 4-10 keV helium ions from a copper surface cannot be completely described with elastic, single collisions. The general behaviour of the measured energy and width of the surface peak can be explained by differences in inelastic energy losses for scattering from an ideal surface and from surface structures (damage). Multiple scattering effects have a minor influence. Additional information about the inelastic processes is obtained from scattering experiments with a primary atom beam. For large angles of incidence, the energy of the reflected ions is reduced about 20 eV if the primary beam consists of atoms instead of ions. An explanation of this effect and an explanation of the different behaviour of small angles is given. In the investigated energy range, the electronic stopping power might depend on the charge state of the primary particles. The experimental results are rather well explained by the Lindhard, Scharff, Schioett theory

  11. Atomic inner-shell physics

    International Nuclear Information System (INIS)

    Crasemann, B.

    1985-01-01

    This book discusses: relativistic and quantum electrodynamic effects on atomic inner shells; relativistic calculation of atomic transition probabilities; many-body effects in energetic atomic transitions; Auger Electron spectrometry of core levels of atoms; experimental evaluation of inner-vacancy level energies for comparison with theory; mechanisms for energy shifts of atomic K-X rays; atomic physics research with synchrotron radiation; investigations of inner-shell states by the electron energy-loss technique at high resolution; coherence effects in electron emission by atoms; inelastic X-ray scattering including resonance phenomena; Rayleigh scattering: elastic photon scattering by bound electrons; electron-atom bremsstrahlung; X-ray and bremsstrahlung production in nuclear reactions; positron production in heavy-ion collisions, and X-ray processes in heavy-ion collisions

  12. Single atom spectroscopy: Decreased scattering delocalization at high energy losses, effects of atomic movement and X-ray fluorescence yield.

    Science.gov (United States)

    Tizei, Luiz H G; Iizumi, Yoko; Okazaki, Toshiya; Nakanishi, Ryo; Kitaura, Ryo; Shinohara, Hisanori; Suenaga, Kazu

    2016-01-01

    Single atom localization and identification is crucial in understanding effects which depend on the specific local environment of atoms. In advanced nanometer scale materials, the characteristics of individual atoms may play an important role. Here, we describe spectroscopic experiments (electron energy loss spectroscopy, EELS, and Energy Dispersed X-ray spectroscopy, EDX) using a low voltage transmission electron microscope designed towards single atom analysis. For EELS, we discuss the advantages of using lower primary electron energy (30 keV and 60 keV) and higher energy losses (above 800 eV). The effect of atomic movement is considered. Finally, we discuss the possibility of using atomically resolved EELS and EDX data to measure the fluorescence yield for X-ray emission. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The Atomic Energy Control Board

    International Nuclear Information System (INIS)

    Doern, G.B.

    1976-01-01

    This study describes and assesses the regulatory and administrative processes and procedures of the Atomic Energy Control Board, the AECB. The Atomic Energy Control Act authorized the AECB to control atomic energy materials and equipment in the national interest and to participate in measures for the international control of atomic energy. The AECB is authorized to make regulations to control atomic energy materials and equipment and to make grants in support of atomic energy research. (author)

  14. Intrinsic electronic defects and multiple-atom processes in the oxidic semiconductor Ga2O3

    Science.gov (United States)

    Schmeißer, Dieter; Henkel, Karsten

    2018-04-01

    We report on the electronic structure of gallium oxide (Ga2O3) single crystals as studied by resonant photoelectron spectroscopy (resPES). We identify intrinsic electronic defects that are formed by mixed-atomic valence states. We differentiate three coexisting defect states that differ in their electronic correlation energy and their spatial localization lengths. Their relative abundance is described by a fractional ionicity with covalent and ionic bonding contributions. For Ga2O3, our analyses of the resPES data enable us to derive two main aspects: first, experimental access is given to determine the ionicity based on the original concepts of Pauling and Phillips. Second, we report on multi-atomic energy loss processes in the Ga2p core level and X-ray absorption data. The two experimental findings can be explained consistently in the same context of mixed-atomic valence states and intrinsic electronic defects.

  15. Bibliography on electron transfer processes in ion-ion/atom/molecule collisions, updated 1990

    International Nuclear Information System (INIS)

    Tawara, H.

    1990-08-01

    Following a previous compilation, new bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1989 are surveyed. For easy finding references for particular combination of collision partners, a simple list is also provided. Furthermore, for convenience, a copy of the previous compilation (IPPJ-AM-45 (1986)) is included. (author) 1363 refs

  16. Experimental Investigation of the Influence of the Laser Beam Waist on Cold Atom Guiding Efficiency.

    Science.gov (United States)

    Song, Ningfang; Hu, Di; Xu, Xiaobin; Li, Wei; Lu, Xiangxiang; Song, Yitong

    2018-02-28

    The primary purpose of this study is to investigate the influence of the vertical guiding laser beam waist on cold atom guiding efficiency. In this study, a double magneto-optical trap (MOT) apparatus is used. With an unbalanced force in the horizontal direction, a cold atomic beam is generated by the first MOT. The cold atoms enter the second chamber and are then re-trapped and cooled by the second MOT. By releasing a second atom cloud, the process of transferring the cold atoms from MOT to the dipole trap, which is formed by a red-detuned converged 1064-nm laser, is experimentally demonstrated. And after releasing for 20 ms, the atom cloud is guided to a distance of approximately 3 mm. As indicated by the results, the guiding efficiency depends strongly on the laser beam waist; the efficiency reaches a maximum when the waist radius ( w ₀) of the laser is in the range of 15 to 25 μm, while the initial atom cloud has a radius of 133 μm. Additionally, the properties of the atoms inside the dipole potential trap, such as the distribution profile and lifetime, are deduced from the fluorescence images.

  17. Atomic orbital-based SOS-MP2 with tensor hypercontraction. II. Local tensor hypercontraction

    Science.gov (United States)

    Song, Chenchen; Martínez, Todd J.

    2017-01-01

    In the first paper of the series [Paper I, C. Song and T. J. Martinez, J. Chem. Phys. 144, 174111 (2016)], we showed how tensor-hypercontracted (THC) SOS-MP2 could be accelerated by exploiting sparsity in the atomic orbitals and using graphical processing units (GPUs). This reduced the formal scaling of the SOS-MP2 energy calculation to cubic with respect to system size. The computational bottleneck then becomes the THC metric matrix inversion, which scales cubically with a large prefactor. In this work, the local THC approximation is proposed to reduce the computational cost of inverting the THC metric matrix to linear scaling with respect to molecular size. By doing so, we have removed the primary bottleneck to THC-SOS-MP2 calculations on large molecules with O(1000) atoms. The errors introduced by the local THC approximation are less than 0.6 kcal/mol for molecules with up to 200 atoms and 3300 basis functions. Together with the graphical processing unit techniques and locality-exploiting approaches introduced in previous work, the scaled opposite spin MP2 (SOS-MP2) calculations exhibit O(N2.5) scaling in practice up to 10 000 basis functions. The new algorithms make it feasible to carry out SOS-MP2 calculations on small proteins like ubiquitin (1231 atoms/10 294 atomic basis functions) on a single node in less than a day.

  18. process for K-shell ionization of atoms

    Indian Academy of Sciences (India)

    Department of Physics, College of Science Campus, M.L.S. University, Udaipur 313 002, ... been expressed as a product of kinematical factors and atomic structure functions. The ..... AL on energy is through two factors in an involved way.

  19. Electron scattering by trapped fermionic atoms

    International Nuclear Information System (INIS)

    Wang Haijun; Jhe, Wonho

    2002-01-01

    Considering the Fermi gases of alkali-metal atoms that are trapped in a harmonic potential, we study theoretically the elastic and inelastic scattering of the electrons by the trapped Fermi atoms and present the corresponding differential cross sections. We also obtain the stopping power for the cases that the electronic state as well as the center-of-mass state are excited both separately and simultaneously. It is shown that the elastic scattering process is no longer coherent in contrast to the electron scattering by the atomic Bose-Einstein condensate (BEC). For the inelastic scattering process, on the other hand, the differential cross section is found to be proportional to the 2/3 power of the number of the trapped atoms. In particular, the trapped fermionic atoms display the effect of ''Fermi surface,'' that is, only the energy levels near the Fermi energy have dominant contributions to the scattering process. Moreover, it is found that the stopping power scales as the 7/6 power of the atomic number. These results are fundamentally different from those of the electron scattering by the atomic BEC, mainly due to the different statistics obeyed by the trapped atomic systems

  20. Atomization of volatile compounds for atomic absorption and atomic fluorescence spectrometry: On the way towards the ideal atomizer

    International Nuclear Information System (INIS)

    Dedina, Jiri

    2007-01-01

    approach, trapping on quartz surfaces in an excess of oxygen with subsequent atomization in multiatomizer or in conventional quartz tubes, is very promising. It requires only simple and cheap equipment. The potential to reach very low detection limits is even better than for in-situ trapping in GF. However, it is a novel method which will have to be tested more extensively before it can considered to be a tool for routine analysis. Almost all the applications of AFS employ a miniature diffusion flame for the atomization. The alternative, the flame-in-gas-shield atomizer, is more complicated but it offers a substantially better signal to noise ratio. The current state-of-the-art of all individual atomizers, including advantages, drawbacks and perspectives, is recapitulated in detail. Also the most recent knowledge of the mechanism of processes taking place in the atomizers is treated

  1. Application of the atomic absorption technical to available the concentration of silver ions incorporated in glass matrix by ionic exchange process

    International Nuclear Information System (INIS)

    Mendes, E.; Silva, K.F.; Teixeira, A.; Silva, L.; Paula, M.M.S.; Angioletto, E.; Riella, H.G.; Fiori, M. A.

    2009-01-01

    Ion specimens can be incorporated in glasses or natural clays by ionic exchange process with different concentrations dependent of matrix's type and of the ionic exchange parameters. In particular, the incorporation of silver ions presents high interest by its biocidal properties. A compound contending ion silver specimens presents bactericidal and fungicidal properties with effect proportional to ion concentration. This work presents results about application of the atomic absorption technical to determine the silver ion concentration incorporated in a glass matrix by ionic exchange process. The ionic exchange experiments were realized with different AgNO 3 concentration and constant temperature. After ionic exchange process, the glass samples were submitted to characterization by Energy Dispersive X-Ray Spectroscopy and Atomic Absorption Techniques. The comparative results between different techniques showed that atomic absorption technical is adequate to determine ion silver concentration incorporated in the glass matrix after ionic exchange process. (author)

  2. Design considerations regarding an atomizer for multi-element electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri A., E-mail: katskovda@tut.ac.za [Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa); Sadagov, Yuri M. [All-Russian Scientific Research Institute of Optical and Physical Measurements (VNIIOFI), Ozernaya St. 46, Moscow 119361 (Russian Federation)

    2011-06-15

    determination in Flame AAS with primary line source that is 50-1000 times higher than the limits obtainable with common ETAAS (Electrothermal Atomic Absorption Spectrometry) instrumentation.

  3. 4. All-Russian (international) scientific conference. Physicochemical processes during selection of atoms and molecules. Collection of reports

    International Nuclear Information System (INIS)

    Baranov, V.Yu.; Kolesnikov, Yu.A.

    1999-01-01

    The reports of the 4. All-Russian (international) scientific conference: Physicochemical processes during selection of atoms and molecules, are presented. The conference took place in Zvenigorod, 4-8 October, 1999. Contents of the reports are the following: laser isotope separation of molecules and atoms; isotopic selection of molecules and atoms in the field of centrifugal forces; selection of molecules by means of rectification and isotopic exchange methods; separation of isotopes by ion cyclotron-resonance method, in electric discharge and electromagnetic field; change in physical properties of substances which variation of their natural isotopic composition; use of isotopes in pharmacy preparation; status of experimental and diagnostic technique; certain promising methods of selection of atoms and molecules. The problems of laser separation of uranium isotopes, separation of carbon isotopes by multi-photon selective dissociation are discussed. The procedures permitting production of isotopes with high concentration and efficiency are developed [ru

  4. Experimental atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The experimental atomic physics program within the physics division is carried out by two groups, whose reports are given in this section. Work of the accelerator atomic physics group is centered around the 6.5-MV EN tandem accelerator; consequently, most of its research is concerned with atomic processes occurring to, or initiated by, few MeV/amu heavy ions. Other activities of this group include higher energy experiments at the Holifield Heavy Ion Research Facility (HHIRF), studies of electron and positron channeling radiation, and collaborative experiments at other institutions. The second experimental group concerns itself with lower energy atomic collision physics in support of the Fusion Energy Program. During the past year, the new Electron Cyclotron Resonance Source has been completed and some of the first data from this facility is presented. In addition to these two activities in experimental atomic physics, other chapters of this report describe progress in theoretical atomic physics, experimental plasma diagnostic development, and atomic data center compilation activities

  5. Theoretical treatment of electron capture and excitation in two-electron system ion-atom, atom-atom collisions at low to intermediate energy

    International Nuclear Information System (INIS)

    Kimura, M.

    1986-01-01

    A review of various theoretical treatments which have been used to study electron-capture and excitation processes in two-electron-system ion-atom, atom-atom collisions at low to intermediate energy is presented. Advantages as well as limitations associated with these theoretical models in application to practical many-electron ion-atom, atom-atom collisions are specifically pointed out. Although a rigorous theoretical study of many-electron systems has just begun so that reports of theoretical calculations are scarce to date in comparison to flourishing experimental activities, some theoretical results are of great interest and provide important information for understanding collision dynamics of the system which contains many electrons. Selected examples are given for electron capture in a multiply charged ion-He collision, ion-pair formation in an atom-atom collision and alignment and orientation in a Li + + He collision. (Auth.)

  6. Ionisation of hydrogen-like atoms by a multiphoton absorption process; Ionisation des atomes hydrogenoides par un processus d'absorption multiphotonique

    Energy Technology Data Exchange (ETDEWEB)

    Gontier, Y; Trahin, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    The general expression for the amplitude of the probability of ionisation by a multiphoton absorption process is derived. Its non-relativistic limit is taken and the bipolar approximation is used for calculating the ionisation cross-section of hydrogen-like atoms. This latter involves the summation over intermediate virtual states by means of: a) a recursion relationship concerning angular functions, b) a particular technique which when applied to radial functions makes it possible to solve a system of inhomogeneous first-order differential equations. (authors) [French] On etablit l'expression generale de l'amplitude de probabilite d'ionisation par un processus d'absorption multiphotonique. On en prend la limite non-relativiste et l'on utilise l'approximation dipolaire avant de calculer la section efficace d'ionisation d'atomes hydrogenoides. Cette derniere fait intervenir des sommations sur des etats virtuels intermediaires effectuees a l'aide: a) d'une relation de recurrence qui concerne les fonctions angulaires, b) d'une technique particuliere qui, appliquee aux fonctions radiales, conduit a resoudre un systeme d'equations differentielles inhomogenes du premier ordre. (auteur)

  7. Cold atoms near superconductors: atomic spin coherence beyond the Johnson noise limit

    International Nuclear Information System (INIS)

    Kasch, B; Hattermann, H; Cano, D; Judd, T E; Zimmermann, C; Kleiner, R; Koelle, D; Fortagh, J; Scheel, S

    2010-01-01

    We report on the measurement of atomic spin coherence near the surface of a superconducting niobium wire. As compared to normal conducting metal surfaces, the atomic spin coherence is maintained for time periods beyond the Johnson noise limit. The result provides experimental evidence that magnetic near-field noise near the superconductor is strongly suppressed. Such long atomic spin coherence times near superconductors open the way towards the development of coherently coupled cold atom/solid state hybrid quantum systems with potential applications in quantum information processing and precision force sensing.

  8. On-line atomic data access

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D.R. [Oak Ridge National Lab., TN (United States); Nash, J.K. [Lawrence Livermore National Lab., CA (United States)

    1996-04-01

    The need for atomic data is one which continues to expand in a wide variety of applications including fusion energy, astrophysics, laser- produced plasma research, and plasma processing. Modern computer database and communications technology nables this data to be placed on-line and obtained by users of the Internet. Presented here is a summary of the observations and conclusions regarding such on-line atomic data access derived from a forum held at the Tenth APS Topical Conference on Atomic Processes in Plasmas.

  9. Bibliography on electron transfer processes in ion-ion/atom/molecule collisions. Updated 1997

    International Nuclear Information System (INIS)

    Tawara, H.

    1997-04-01

    Following our previous compilations (IPPJ-AM-45 (1986), NIFS-DATA-7 (1990), NIFS-DATA-20 (1993)), bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1954-1996 are listed in the order of the publication year. For easy finding of the references for a combination of collision partners, a simple list is provided. (author)

  10. Atom electron scattering

    International Nuclear Information System (INIS)

    Santoso, B.

    1976-01-01

    Green Lippmann-Schwinger functions operator representations, derivation of perturbation method using Green function and atom electron scattering, are discussed. It is concluded that by using complex coordinate places where resonances occur, can be accurately identified. The resonance can be processed further for practical purposes, for example for the separation of atom. (RUW)

  11. Atomic imaging of an InSe single-crystal surface with atomic force microscope

    OpenAIRE

    Uosaki, Kohei; Koinuma, Michio

    1993-01-01

    The atomic force microscope was employed to observed in air the surface atomic structure of InSe, one of III-VI compound semiconductors with layered structures. Atomic arrangements were observed in both n-type and p-type materials. The observed structures are in good agreement with those expected from bulk crystal structures. The atomic images became less clear by repeating the imaging process. Wide area imaging after the imaging of small area clearly showed that a mound was created at the sp...

  12. Nonperturbative theory of single/multiphoton processes in atoms and molecules induced by intense laser fields

    International Nuclear Information System (INIS)

    Lau, A.M.F.

    1975-04-01

    A quantum nonperturbative theory is given for the problem of a general n discrete-level atomic/molecular system interacting with a strong single-mode/multimode radiation field. The atomic/molecular energy-level structures are modified due to interaction with the laser field. These energy level shifts are derived in the rigorous solution to the adiabatic eigenvalue problem of the charge--field system, involving a simple iterative procedure. The task of solution is simplified by recurrence relations between matrices connecting probability amplitudes of successive photon numbers. New formulae for calculating probability of single/multiphoton transitions between three resonant shifted levels and between some cases of two near-resonant shifted levels are derived. This general formalism can be applied to calculate transition probabilities of various atomic/molecular photo processes of interest. Numerical values are obtained for the inelastic cross section of the slow-collisional process Li + H and for dissociation cross section of LiH molecule. The transition probabilities of Na (3s → 5s by absorption of two photon of lambda = 0.60233μ -- 0.602396 μ) and of Li (2s → 3s by absorption of eight photons of lambda = 2.9406 μ -- 2.945 μ) irradiated by a strong pulse are calculated. Finally, a parametric study is carried out for the process where a molecular system is interacting with two intense radiation fields of different wavelengths. Owing to potential barrier shift due to the much more intense field, the molecular system penetrates into an otherwise inaccessible region in the potential level where it is allowed to radiate to a lower level by emitting photons at a second wavelength. (12 figures, 6 tables) (U.S.)

  13. Economical Atomic Layer Deposition

    Science.gov (United States)

    Wyman, Richard; Davis, Robert; Linford, Matthew

    2010-10-01

    Atomic Layer Deposition is a self limiting deposition process that can produce films at a user specified height. At BYU we have designed a low cost and automated atomic layer deposition system. We have used the system to deposit silicon dioxide at room temperature using silicon tetrachloride and tetramethyl orthosilicate. Basics of atomic layer deposition, the system set up, automation techniques and our system's characterization are discussed.

  14. Atomic switches: atomic-movement-controlled nanodevices for new types of computing

    International Nuclear Information System (INIS)

    Hino, Takami; Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Nayak, Alpana; Ohno, Takeo; Aono, Masakazu

    2011-01-01

    Atomic switches are nanoionic devices that control the diffusion of metal cations and their reduction/oxidation processes in the switching operation to form/annihilate a metal atomic bridge, which is a conductive path between two electrodes in the on-state. In contrast to conventional semiconductor devices, atomic switches can provide a highly conductive channel even if their size is of nanometer order. In addition to their small size and low on-resistance, their nonvolatility has enabled the development of new types of programmable devices, which may achieve all the required functions on a single chip. Three-terminal atomic switches have also been developed, in which the formation and annihilation of a metal atomic bridge between a source electrode and a drain electrode are controlled by a third (gate) electrode. Three-terminal atomic switches are expected to enhance the development of new types of logic circuits, such as nonvolatile logic. The recent development of atomic switches that use a metal oxide as the ionic conductive material has enabled the integration of atomic switches with complementary metal-oxide-semiconductor (CMOS) devices, which will facilitate the commercialization of atomic switches. The novel characteristics of atomic switches, such as their learning and photosensing abilities, are also introduced in the latter part of this review. (topical review)

  15. Atomic switch: atom/ion movement controlled devices for beyond von-neumann computers.

    Science.gov (United States)

    Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Aono, Masakazu

    2012-01-10

    An atomic switch is a nanoionic device that controls the diffusion of metal ions/atoms and their reduction/oxidation processes in the switching operation to form/annihilate a conductive path. Since metal atoms can provide a highly conductive channel even if their cluster size is in the nanometer scale, atomic switches may enable downscaling to smaller than the 11 nm technology node, which is a great challenge for semiconductor devices. Atomic switches also possess novel characteristics, such as high on/off ratios, very low power consumption and non-volatility. The unique operating mechanisms of these devices have enabled the development of various types of atomic switch, such as gap-type and gapless-type two-terminal atomic switches and three-terminal atomic switches. Novel functions, such as selective volatile/nonvolatile, synaptic, memristive, and photo-assisted operations have been demonstrated. Such atomic switch characteristics can not only improve the performance of present-day electronic systems, but also enable development of new types of electronic systems, such as beyond von- Neumann computers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Molecular Processes Studied at a Single-Molecule Level Using DNA Origami Nanostructures and Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Ilko Bald

    2014-09-01

    Full Text Available DNA origami nanostructures allow for the arrangement of different functionalities such as proteins, specific DNA structures, nanoparticles, and various chemical modifications with unprecedented precision. The arranged functional entities can be visualized by atomic force microscopy (AFM which enables the study of molecular processes at a single-molecular level. Examples comprise the investigation of chemical reactions, electron-induced bond breaking, enzymatic binding and cleavage events, and conformational transitions in DNA. In this paper, we provide an overview of the advances achieved in the field of single-molecule investigations by applying atomic force microscopy to functionalized DNA origami substrates.

  17. Atomic and molecular physics of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Joachain, C.J.; Post, D.E.

    1983-01-01

    This book attempts to provide a comprehensive introduction to the atomic and molecular physics of controlled thermonuclear fusion, and also a self-contained source from which to start a systematic study of the field. Presents an overview of fusion energy research, general principles of magnetic confinement, and general principles of inertial confinement. Discusses the calculation and measurement of atomic and molecular processes relevant to fusion, and the atomic and molecular physics of controlled thermonuclear research devices. Topics include recent progress in theoretical methods for atomic collisions; current theoretical techniques for electron-atom and electronion scattering; experimental aspects of electron impact ionization and excitation of positive ions; the theory of charge exchange and ionization by heavy particles; experiments on electron capture and ionization by multiply charged ions; Rydberg states; atomic and molecular processes in high temperature, low-density magnetically confined plasmas; atomic processes in high-density plasmas; the plasma boundary region and the role of atomic and molecular processes; neutral particle beam production and injection; spectroscopic plasma diagnostics; and particle diagnostics for magnetic fusion experiments

  18. Reactions of butadiyne. 1: The reaction with hydrogen atoms

    Science.gov (United States)

    Schwanebeck, W.; Warnatz, J.

    1984-01-01

    The reaction of hydrogen (H) atoms with butadiene (C4H2) was studied at room temperature in a pressure range between w mbar and 10 mbar. The primary step was an addition of H to C4H2 which is in its high pressure range at p 1 mbar. Under these conditions the following addition of a second H atom lies in the transition region between low and high pressure range. Vibrationally excited C4H4 can be deactivated to form buten-(1)-yne-(3)(C4H4) or decomposes into two C2H2 molecules. The rate constant at room temperature for primary step is given. The second order rate constant for the consumption of buten-(1)-yne-(3) is an H atom excess at room temperature is given.

  19. Atoms, Molecules, and Compounds

    CERN Document Server

    Manning, Phillip

    2007-01-01

    Explores the atoms that govern chemical processes. This book shows how the interactions between simple substances such as salt and water are crucial to life on Earth and how those interactions are predestined by the atoms that make up the molecules.

  20. A cluster expansion model for predicting activation barrier of atomic processes

    International Nuclear Information System (INIS)

    Rehman, Tafizur; Jaipal, M.; Chatterjee, Abhijit

    2013-01-01

    We introduce a procedure based on cluster expansion models for predicting the activation barrier of atomic processes encountered while studying the dynamics of a material system using the kinetic Monte Carlo (KMC) method. Starting with an interatomic potential description, a mathematical derivation is presented to show that the local environment dependence of the activation barrier can be captured using cluster interaction models. Next, we develop a systematic procedure for training the cluster interaction model on-the-fly, which involves: (i) obtaining activation barriers for handful local environments using nudged elastic band (NEB) calculations, (ii) identifying the local environment by analyzing the NEB results, and (iii) estimating the cluster interaction model parameters from the activation barrier data. Once a cluster expansion model has been trained, it is used to predict activation barriers without requiring any additional NEB calculations. Numerical studies are performed to validate the cluster expansion model by studying hop processes in Ag/Ag(100). We show that the use of cluster expansion model with KMC enables efficient generation of an accurate process rate catalog

  1. The influence of (n-n')-mixing processes in He*(n)+He(1s2) collisions on He*(n) atoms' populations in weakly ionized helium plasmas

    International Nuclear Information System (INIS)

    Mihajlov, A.A.; Ignjatovic, Lj.M.; Sreckovic, V.A.; Djuric, Z.

    2008-01-01

    The results of semi-classical calculations of rate coefficients of (n-n ' )-mixing processes due to collisions of Rydberg atoms He*(n) with He(1s 2 ) atoms are presented. It is assumed that these processes are caused by the resonant energy exchange within the electron component of He*(n)+He collision system. The method is realized through the numerical simulation of the (n-n ' )-mixing processes, and is applied for calculations of the corresponding rate coefficients. The calculations are performed for the principal quantum numbers n,n ' in ranges 4≤n ' ≤10, and the atom and electron temperatures, T a ,T e , in domains 5000K≤T a ≤T e ≤20000K. It is shown that the (n-n ' )-mixing processes can significantly influence the populations of Rydberg atoms in non-equilibrium weakly ionized helium plasmas with ionization degree ∼10 -4 . Therefore, these processes have to be included in the appropriate models of such plasmas

  2. Modeling of thin films growth processes in the early stage for atoms with covalent bonds

    International Nuclear Information System (INIS)

    Tupik, V A; Margolin, V I; Su, Chu Trong

    2017-01-01

    Computer simulation for obtaining thin film’s growth process at an early stage with the proposed model of atoms with isotropic and anisotropic interactions been considered. Carrying out the procedure for analyzing the problem on the basis of the program being implemented, computer simulation of thin film growth processes has been carried out on several examples. The results of computer simulation of the growth process of thin film on a given substrate and an aggregate in a vacuum condition are shown. Some characteristic distributions of the obtained structure have been carried out to evaluate the proposed adequate model and to reflect the high complexity of thin films growth process. (paper)

  3. Atomizing industrial gas-liquid flows – Development of an efficient hybrid VOF-LPT numerical framework

    International Nuclear Information System (INIS)

    Ström, Henrik; Sasic, Srdjan; Holm-Christensen, Olav; Shah, Louise Jivan

    2016-01-01

    Highlights: • Modelling of turbulent atomizing gas-liquid flows in real industrial devices. • A combined VOF-LPT framework with statistical coupling. • Regions of separated and dispersed multiphase flow treated simultaneously. • Statistical model based on a limited amount of highly resolved VOF data. - Abstract: Atomizing gas-liquid flows are used in industrial applications where high interphase heat and mass transfer rates and good mixing are of primary importance. Today, there is no single mathematical framework available to predict the entire liquid breakup process at an acceptable computational cost for a typical problem of industrial size. In this work, we develop a volume-of-fluid (VOF) framework that is combined with Lagrangian particle tracking (LPT) to take advantage of the respective strengths of these two approaches. The two frameworks are coupled via a statistical model that enables a transition from the VOF to the LPT formulation using input data about the primary breakup process obtained from detailed VOF simulations in dedicated switching zones. LPT-to-VOF transitions are handled directly by analyzing the proximity of LPT parcels to larger VOF structures. The combined framework is specifically designed to accommodate situations where atomization occurs in several locations simultaneously and when separated and dispersed turbulent gas-liquid flows co-exist in the same industrial unit. The procedure in which the statistical model is derived is presented and discussed, its performance is verified and the computational efficiency of the combined VOF-LPT model is assessed. Finally, the application of the coupled framework to the simulation of an industrial gas-liquid mixer with four separate atomization regions is presented.

  4. Computer codes for simulating atomic-displacement cascades in solids subject to irradiation

    International Nuclear Information System (INIS)

    Asaoka, Takumi; Taji, Yukichi; Tsutsui, Tsuneo; Nakagawa, Masayuki; Nishida, Takahiko

    1979-03-01

    In order to study atomic displacement cascades originating from primary knock-on atoms in solids subject to incident radiation, the simulation code CASCADE/CLUSTER is adapted for use on FACOM/230-75 computer system. In addition, the code is modified so as to plot the defect patterns in crystalline solids. As other simulation code of the cascade process, MARLOWE is also available for use on the FACOM system. To deal with the thermal annealing of point defects produced in the cascade process, the code DAIQUIRI developed originally for body-centered cubic crystals is modified to be applicable also for face-centered cubic lattices. By combining CASCADE/CLUSTER and DAIQUIRI, we then prepared a computer code system CASCSRB to deal with heavy irradiation or saturation damage state of solids at normal temperature. Furthermore, a code system for the simulation of heavy irradiations CASCMARL is available, in which MARLOWE code is substituted for CASCADE in the CASCSRB system. (author)

  5. Dynamics of gas-surface interactions atomic-level understanding of scattering processes at surfaces

    CERN Document Server

    Díez Muniño, Ricardo

    2013-01-01

    This book gives a representative survey of the state of the art of research on gas-surface interactions. It provides an overview of the current understanding of gas surface dynamics and, in particular, of the reactive and non-reactive processes of atoms and small molecules at surfaces. Leading scientists in the field, both from the theoretical and the experimental sides, write in this book about their most recent advances. Surface science grew as an interdisciplinary research area over the last decades, mostly because of new experimental technologies (ultra-high vacuum, for instance), as well as because of a novel paradigm, the ‘surface science’ approach. The book describes the second transformation which is now taking place pushed by the availability of powerful quantum-mechanical theoretical methods implemented numerically. In the book, experiment and theory progress hand in hand with an unprecedented degree of accuracy and control. The book presents how modern surface science targets the atomic-level u...

  6. An interface between the nuclear physics and the atomic physics; how to measure nuclear times observing atomic transitions

    International Nuclear Information System (INIS)

    Pinho, A.G. de

    1985-01-01

    Recent observations are related in which processes resulting from the ionization in ion-atom collisions are observed in coincidence with nuclear processes (where the incidence ion nucleus hits the target atom nucleus). The delay introduced by the nuclear reaction contaminates the results of the atomic collision and manifest itself either in the X rays (positrons) emitted in the joined atom system or in the X rays (Auger electrons) emitted by separeted atoms, after the collision. Both effects serve to obtain information on the reaction times (in general much less then 10 -16 sec). Following this line, other experimental possibilities are discussed. (L.C.) [pt

  7. Two-photon absorption laser-induced fluorescence of atomic oxygen in the afterglow of pulsed positive corona discharge

    Science.gov (United States)

    Ono, Ryo; Takezawa, Kei; Oda, Tetsuji

    2009-08-01

    Atomic oxygen is measured in the afterglow of pulsed positive corona discharge using time-resolved two-photon absorption laser-induced fluorescence. The discharge occurs in a 14 mm point-to-plane gap in dry air. After the discharge pulse, the atomic oxygen density decreases at a rate of 5×104 s-1. Simultaneously, ozone density increases at almost the same rate, where the ozone density is measured using laser absorption method. This agreement between the increasing rate of atomic oxygen and decreasing rate of ozone proves that ozone is mainly produced by the well-known three-body reaction, O+O2+M→O3+M. No other process for ozone production such as O2(v)+O2→O3+O is observed. The spatial distribution of atomic oxygen density is in agreement with that of the secondary streamer luminous intensity. This agreement indicates that atomic oxygen is mainly produced in the secondary streamer channels, not in the primary streamer channels.

  8. Accelerating solidification process simulation for large-sized system of liquid metal atoms using GPU with CUDA

    Energy Technology Data Exchange (ETDEWEB)

    Jie, Liang [School of Information Science and Engineering, Hunan University, Changshang, 410082 (China); Li, KenLi, E-mail: lkl@hnu.edu.cn [School of Information Science and Engineering, Hunan University, Changshang, 410082 (China); National Supercomputing Center in Changsha, 410082 (China); Shi, Lin [School of Information Science and Engineering, Hunan University, Changshang, 410082 (China); Liu, RangSu [School of Physics and Micro Electronic, Hunan University, Changshang, 410082 (China); Mei, Jing [School of Information Science and Engineering, Hunan University, Changshang, 410082 (China)

    2014-01-15

    Molecular dynamics simulation is a powerful tool to simulate and analyze complex physical processes and phenomena at atomic characteristic for predicting the natural time-evolution of a system of atoms. Precise simulation of physical processes has strong requirements both in the simulation size and computing timescale. Therefore, finding available computing resources is crucial to accelerate computation. However, a tremendous computational resource (GPGPU) are recently being utilized for general purpose computing due to its high performance of floating-point arithmetic operation, wide memory bandwidth and enhanced programmability. As for the most time-consuming component in MD simulation calculation during the case of studying liquid metal solidification processes, this paper presents a fine-grained spatial decomposition method to accelerate the computation of update of neighbor lists and interaction force calculation by take advantage of modern graphics processors units (GPU), enlarging the scale of the simulation system to a simulation system involving 10 000 000 atoms. In addition, a number of evaluations and tests, ranging from executions on different precision enabled-CUDA versions, over various types of GPU (NVIDIA 480GTX, 580GTX and M2050) to CPU clusters with different number of CPU cores are discussed. The experimental results demonstrate that GPU-based calculations are typically 9∼11 times faster than the corresponding sequential execution and approximately 1.5∼2 times faster than 16 CPU cores clusters implementations. On the basis of the simulated results, the comparisons between the theoretical results and the experimental ones are executed, and the good agreement between the two and more complete and larger cluster structures in the actual macroscopic materials are observed. Moreover, different nucleation and evolution mechanism of nano-clusters and nano-crystals formed in the processes of metal solidification is observed with large

  9. The primary processes by impact of ionizing radiations with water

    International Nuclear Information System (INIS)

    Znamirovschi, V.; Mastan, I.; Cozar, O.

    1976-01-01

    The problem concerning primary processes in radiolysis of water is discussed. The results on the excitation and ionization of water molecule, dissociation of the parent-molecular ion of water and dissociation of excited molecule of water are presented. (author)

  10. Nuclear and atomic physics at one gigaflop

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, J.B.

    1989-01-01

    A three-day workshop on problems in atomic and nuclear physics which depend on and are, at present, severely limited by access to supercomputing at effective rates of one gigaflop or more, was held at Oak Ridge, Tennessee, April 14-16, 1988. The participants comprised researchers from universities, industries and laboratories in the United States and Europe. In this volume are presented talks from that meeting on atomic and nuclear physics topics and on modern parallel processing concepts and hardware. The physics topics included strong fields in atomic and nuclear physics, the role of quarks in nuclear physics, the nuclear few-body problem, relativistic descriptions of heavy-ion collisions, nuclear hydrodynamics, Monte Carlo techniques for many-body problems, precision calculation of atomic QED effects, classical simulation of atomic processes, atomic structure, atomic many-body perturbation theory, quantal studies of small and large molecular systems, and multi-photon atomic and molecular problems

  11. Atomic physics issues in fusion

    International Nuclear Information System (INIS)

    Post, D.E.

    1982-01-01

    Atomic physics issues have played a large role in controlled fusion research. A general introduction to the present role of atomic processes in both inertial and magnetic controlled fusion work is presented. (Auth.)

  12. Examining the Mathematical Modeling Processes of Primary School 4th-Grade Students: Shopping Problem

    Science.gov (United States)

    Ulu, Mustafa

    2017-01-01

    The purpose of this study is to identify primary school students' thinking processes within the mathematical modeling process and the challenges they encounter, if any. This is a basic qualitative research study conducted in a primary school in the city of Kütahya in the academic year of 2015-2016. The study group of the research was composed of…

  13. The Use of Atomic-Force Microscopy for Studying the Crystallization Process of Amorphous Alloys

    Science.gov (United States)

    Elmanov, G. N.; Ivanitskaya, E. A.; Dzhumaev, P. S.; Skrytniy, V. I.

    The crystallization process of amorphous alloys is accompanied by the volume changes as a result of structural phase transitions. This leads to changes in the surface topography, which was studied by atomic force microscopy (AFM). The changes of the surface topography, structure and phase composition during multistage crystallization process of the metallic glasses with composition Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 (AWS BNi2) has been investigated. The obtained results on changing of the surface topography in crystallization process are in good agreement with the data of X-ray diffraction analysis (XRD). The nature of redistribution of some alloy components in the crystallization process has been suggested.

  14. Cold experiment of slag centrifugal granulation by rotary atomizer: Effect of atomizer configuration

    International Nuclear Information System (INIS)

    Wu, Jun-Jun; Wang, Hong; Zhu, Xun; Liao, Qiang; Li, Kai

    2017-01-01

    Centrifugal granulation has recently been employed to produce small blast furnace slag particles, so as to recover the waste heat from the high-temperature molten blast furnace slag. An appropriate atomizer enables centrifugal granulation to become a better cost-effective process for particle production. Thus, increasing emphasis has been placed on influence of atomizer configuration on granulation. In present study, three groups of atomizers were specially designed and the granulation performance of each atomizer was experimentally tested during cold experiments. The influences of atomizer configuration on granulation modes and droplet characteristics were investigated visually. Two modified correlations were proposed to predict the granulating droplet size by means of data fitting. The results indicated that the rotary cup atomizers can inhibit the film formation in contrast to rotary disc atomizer. Moreover, atomizers with outer angle of 90° was capable of producing smaller droplets. The revised correlation as well as the newly-developed correlation including the influence of atomizer configurations, presented in good agreement with the experiment data. In addition, an analysis on atomizer design was conducted to provide a good insight for industrialization. It was recommended to adopt cup-like atomizer in granulation for its ability to produce fine particles with smaller atomizer size.

  15. Atomic memory access hardware implementations

    Science.gov (United States)

    Ahn, Jung Ho; Erez, Mattan; Dally, William J

    2015-02-17

    Atomic memory access requests are handled using a variety of systems and methods. According to one example method, a data-processing circuit having an address-request generator that issues requests to a common memory implements a method of processing the requests using a memory-access intervention circuit coupled between the generator and the common memory. The method identifies a current atomic-memory access request from a plurality of memory access requests. A data set is stored that corresponds to the current atomic-memory access request in a data storage circuit within the intervention circuit. It is determined whether the current atomic-memory access request corresponds to at least one previously-stored atomic-memory access request. In response to determining correspondence, the current request is implemented by retrieving data from the common memory. The data is modified in response to the current request and at least one other access request in the memory-access intervention circuit.

  16. Column ratio mapping: a processing technique for atomic resolution high-angle annular dark-field (HAADF) images.

    Science.gov (United States)

    Robb, Paul D; Craven, Alan J

    2008-12-01

    An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [110]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 angstroms-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument.

  17. Column ratio mapping: A processing technique for atomic resolution high-angle annular dark-field (HAADF) images

    International Nuclear Information System (INIS)

    Robb, Paul D.; Craven, Alan J.

    2008-01-01

    An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [1 1 0]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 A-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument.

  18. Atomic collision experiments using pulsed synchrotron radiation

    International Nuclear Information System (INIS)

    Arikawa, Tatsuo; Watanabe, Tsutomu.

    1982-01-01

    High intensity and continuous nature of the synchrotron radiation are the properties that are fundamentally important for studies of some atomic collision experiments, and many processes have been investigated by using these characteristics. However, so far the property that the radiation is highly polarized and pulsed in time has not been exploited significantly in atomic physics. As an example of the atomic processes relevant to such polarized and pulsed features of the synchrotron radiation, collisions involving optically-allowed excited atoms and molecules will be presented. (author)

  19. How to measure atomic diffusion processes in the sub-nanometer range

    International Nuclear Information System (INIS)

    Schmidt, H.; Gupta, M.; Gutberlet, T.; Stahn, J.; Bruns, M.

    2008-01-01

    Self-diffusion of the atomic constituents in the solid state is a fundamental transport process that controls various materials properties. With established methods of diffusivity determination it is only possible to measure diffusion processes on a length scale down to 10 nm at corresponding diffusivities of 10 -23 m 2 s -1 . However, for complex materials like amorphous or nano-structured solids the given values are often not sufficient for a proper characterization. Consequently, it is necessary to detect diffusion length well below 1 nm. Here, we present the method of neutron reflectometry on isotope multilayers. For two model systems, an amorphous semiconductor and an amorphous metallic alloy, the efficiency of this method is demonstrated to detect minimum diffusion lengths of only 0.6-0.7 nm. It is further shown that diffusivities can be derived which are more than two orders of magnitude lower than those obtainable with conventional methods. Prospects of this method in order to solve actual kinetic problems in materials science are given

  20. Atom-by-atom assembly

    International Nuclear Information System (INIS)

    Hla, Saw Wai

    2014-01-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed. (review article)

  1. Fine structures of atomic excited states: precision atomic spectroscopy and electron-ion collision process

    International Nuclear Information System (INIS)

    Gao Xiang; Cheng Cheng; Li Jiaming

    2011-01-01

    Scientific research fields for future energies such as inertial confinement fusion researches and astrophysics studies especially with satellite observatories advance into stages of precision physics. The relevant atomic data are not only enormous but also of accuracy according to requirements, especially for both energy levels and the collision data. The fine structure of high excited states of atoms and ions can be measured by precision spectroscopy. Such precision measurements can provide not only knowledge about detailed dynamics of electron-ion interactions but also a bench mark examination of the accuracy of electron-ion collision data, especially incorporating theoretical computations. We illustrate that by using theoretical calculation methods which can treat the bound states and the adjacent continua on equal footing. The precision spectroscopic measurements of excited fine structures can be served as stringent tests of electron-ion collision data. (authors)

  2. An overview of atomic and molecular processes in critical velocity ionization

    International Nuclear Information System (INIS)

    Lai, S.T.; Murad, E.; McNeil, W.J.

    1989-01-01

    Alfven's critical ionization velocity (CIV) is a multistep process involving plasma physics and plasma chemistry. The authors present an overview of the time development of some atomic and molecular processes in CIV. In the pre-onset stage, metastable states play an important role: They provide an energy pooling mechanism allowing low energy electrons to participate in the ionization processes; they may explain the low energy threshold as well as the fast time scale in the onset of CIV. For a sustaining CIV to occur, Townsend's criterion has to be satisfied. The kinetic energies of the neutrals are transformed to plasma wave energies via beam-plasma instabilities, and the plasma waves that heat the electrons result in a tail formation. Excitation of neutrals with subsequent radiation is an important energy loss mechanism. Finite beam size also limits the instability growth rate. In the propagation of CIV, ion-molecule reactions and molecular dissociative recombination are important. Ion-molecule reactions change the temporal chemical composition in a CIV process and help explain some results in CIV experiments. Molecular dissociative recombination reduces the plasma density, lowers the effective neutral mass, and loses energy via excitation and radiation; it tends to quench the propagation of CIV. Depending on various parameters, oscillatory behavior of CIV may occur

  3. IAEA technical meeting on 'Technical aspects of atomic and molecular data processing and exchange'. Summary report

    International Nuclear Information System (INIS)

    Humbert, Denis

    2004-03-01

    The proceedings of the IAEA Advisory Group Meeting on 'Technical Aspects of Atomic and Molecular Data Processing and Exchange' (17th Meeting of A+M Data Centres and ALADDIN Network), held on 6-7 October, 2003 in Vienna, Austria are briefly described. The meeting conclusions and recommendations on the priorities in A+M data compilation and evaluation, and on the technical aspects of data processing, exchange, and distribution are also presented. (author)

  4. Quantization of Differences Between Atomic and Nuclear Rest Masses and Self-organization of Atoms and Nuclei

    Science.gov (United States)

    Gareev, F. A.; Zhidkova, I. E.

    2007-03-01

    We come to the conclusion that all atomic models based on either the Newton equation and the Kepler laws, or the Maxwell equations, or the Schrodinger and Dirac equations are in reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principle(s) which is (are) not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system nuclei + atoms + condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies than the corresponding ones on free constituents. We were able to quantize phenomenologically the first time the differences between atomic and nuclear rest masses by the formula: δδM =n1/n2 X 0.0076294 (in MeV/ c^2), ni=1,2,3,.... Note that this quantization rule is justified for atoms and nuclei with different A, N and Z and the nuclei and atoms represent a coherent synchronized systems - a complex of coupled oscillators (resonators). The cooperative resonance synchronization mechanisms can explain how electron volt (atomic-) scale processes can induce and control nuclear MeV (nuclear-) scale processes and reactions., F.A. Gareev, I.E. Zhidkova, E-print arXiv Nucl-th/ 0610002 2006.

  5. On the Sustainability and Progress of Energy Neutral Mineral Processing

    Directory of Open Access Journals (Sweden)

    Frederik Reitsma

    2018-01-01

    Full Text Available A number of primary ores such as phosphate rock, gold-, copper- and rare earth ores contain considerable amounts of accompanying uranium and other critical materials. Energy neutral mineral processing is the extraction of unconventional uranium during primary ore processing to use it, after enrichment and fuel production, to generate greenhouse gas lean energy in a nuclear reactor. Energy neutrality is reached if the energy produced from the extracted uranium is equal to or larger than the energy required for primary ore processing, uranium extraction, -conversion, -enrichment and -fuel production. This work discusses the sustainability of energy neutral mineral processing and provides an overview of the current progress of a multinational research project on that topic conducted under the umbrella of the International Atomic Energy Agency.

  6. Universal Four-Boson System: Dimer-Atom-Atom Efimov Effect and Recombination Reactions

    International Nuclear Information System (INIS)

    Deltuva, A.

    2013-01-01

    Recent theoretical developments in the four-boson system with resonant interactions are described. Momentum-space scattering equations for the four-particle transition operators are used. The properties of unstable tetramers with approximate dimer-atom-atom structure are determined. In addition, the three- and four-cluster recombination processes in the four-boson system are studied. (author)

  7. Numerical and Experimental Investigation on the Spray Coating Process Using a Pneumatic Atomizer: Influences of Operating Conditions and Target Geometries

    Directory of Open Access Journals (Sweden)

    Qiaoyan Ye

    2017-01-01

    Full Text Available This paper presents a numerical simulation of the spray painting process using a pneumatic atomizer with the help of a computational fluid dynamics code. The droplet characteristics that are necessary for the droplet trajectory calculation were experimentally investigated using different shaping air flow rates. It was found that the droplet size distribution depends on both the atomizing and the shaping air flow rate. An injection model for creating the initial droplet conditions is necessary for the spray painting simulation. An approach for creating these initial conditions has been proposed, which takes different operating conditions into account and is suitable for practical applications of spray coating simulation using spray guns. Further, tests on complicated targets and complex alignments of the atomizer have been carried out to verify this numerical approach. The results confirm the applicability and reliability of the chosen method for the painting process.

  8. Ultrafast Processes in Atoms and Molecules: Integrated treatment of electronic and nuclear motion in ultrashort XUV pulses

    Energy Technology Data Exchange (ETDEWEB)

    McCurdy, C. William [Univ. of California, Davis, CA (United States). Dept. of

    2017-12-14

    This project made use of Multiconfiguration Time-Dependent Hartree-Fock method developed earlier in the McCurdy group in a series of novel applications of the method to ultrafast spectroscopic processes. MCTDHF treats the dynamics of a molecule or atom under the influence of an external field in manner that has all electrons active. That property distinguishes this method from the more popular (and much less computationally demanding) approaches for treating the electron dynamics of atoms and molecules in fields, such as the time-dependent “Configuration Interaction Singles” approximation or approaches that limit the treatment to either one or two-electron models.

  9. A lecture on nuclear physics in primary school

    International Nuclear Information System (INIS)

    Arh, S.

    2004-01-01

    I am going to propose the contents of a lecture on nuclear physics and radioactivity in primary school. Contemporary technology, medicine and science exploit intensively the discovered knowledge about processes in atoms and in a nucleus. Mankind has gained huge profit from peaceful applications of nuclear reactions and ionizing radiation. We use the products of nuclear industry every day. But about half of the school population never hears a professional explanation about what is going on in nuclear power plants. Only on some secondary schools students learn about nuclear physics. The lack of knowledge about nuclear processes is the main reason why people show great fear when hearing the words: radiation, radioactivity, nuclear, etc. At last it is now time to give some fundamental lessons on nuclear physics and radioactivity also to pupils in primary school. From my four-year teaching experience in primary school I am suggesting a programme of lectures on nuclear physics and radioactivity. At the end of the lessons we would visit the Krsko Nuclear Power Plant or the Nuclear Training Centre Milan Copic. This could be included in the so called natural science day. Pupils come from the eight class (14 years old) of primary school and have no problems following the explanation. (author)

  10. Atomic processes in Inertial Electrostatic Confinement (IEC) devices

    International Nuclear Information System (INIS)

    Nebel, R.A.; Turner, L.; Tiouririne, T.N.; Barnes, D.C.; Nystrom, W.D.; Bussard, R.W.; Miley, G.H.; Javedani, J.; Yamamoto, Y.

    1993-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P. T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2*10 10 neutrons/sec. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. Atomic physics effects strongly influence the performance of all of these systems. Important atomic effects include elastic scattering, ionization, excitation, and charge exchange. This paper discusses how an IEC system is influenced by these effects and how to design around them. Theoretical modeling and experimental results are presented

  11. Atomic displacement distributions for light energetic atoms incident on heavy atom targets

    International Nuclear Information System (INIS)

    Brice, D.K.

    1975-01-01

    The depth distributions of atomic displacements produced by 4 to 100 keV H, D, and He ions incident on Cr, Mo, and W targets have been calculated using a sharp displacement threshold, E/sub d/ = 35 eV, and a previously described calculational procedure. These displacement depth distributions have been compared with the depth distributions of energy deposited into atomic processes to determine if a proportionality (modified Kinchin--Pease relationship) can be established. Such a relationship does exist for He ions and D ions incident on these metals at energies above 4 keV and 20 keV, respectively. For H ions the two distributions have significantly different shapes at all incident energies considered

  12. Accelerated ions as a tool in atomic physics

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1977-01-01

    Some of the aspects of atomic physics which are being brought into focus by the construction and completion of a new generation of heavy-ion accelerators are dealt with. Various types of processes occurring in the overlapping electron clouds are visualised in an elementary way, using among others, some recent observations on the formation of quasi-molecules and quasi-atoms. Phenomena connected with the inner electron shells in superheavy atoms are touched upon, in particular those processes possibly leading to the production of positrons. In such cases the crucial importance of an atomic Coulomb excitation mechanism is stressed. In conclusion the view is emphasized that inner shell ionization phenomena in heavy ion collisions form a bridge between processes originating respectively from nuclear and atomic physics. (Auth.)

  13. Laser method of free atom nuclei orientation

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1987-01-01

    Orientation process of free atom (atoms in beams) nuclei, scattering quanta of circularly polarized laser radiation is considered. A method for the evaluation of nuclei orientation parameters is developed. It is shown that in the process of pumping between the ground and first excited atomic states with electron shell spins J 1 and J 2 , so that J 2 = J 1 + 1, a complete orientation of nuclei can be attained

  14. Performance of Twin-Fluid Atomizers for Atomization of Viscous Solutions

    Directory of Open Access Journals (Sweden)

    Mlkvik Marek

    2015-01-01

    Full Text Available Presented paper deals with a comparison of two internally mixing twin fluid atomizers. The well - known Y- jet atomizer and so called outside-in-liquid effervescent atomizer (OUIL were investigated. The working regimes were defined by the pressure drop (Δp and the gas to the liquid ratio (GLR. The internal and the external two-phase flows of both atomizers were studied. The influence of the mixing mechanism on the internal flow was evaluated by the gas to the liquid momentum ratio (Φ. In advance, the stability of the separated flow (liquid film was examined in term of the critical wavelength of the surface disturbances (λc. The external flow was observed by the high – speed camera. The influence of the basic forces on the deformation of the liquid was determined by a dimensionless criterion w·μ / σ. The values of Φ 3, where the liquid momentum overcomes the gas momentum. The values of w·μ / σ> 20 for both atomizers indicates the dominant influence of the viscosity and the drag force on the breakup process.

  15. Steering neutral atoms in strong laser fields

    International Nuclear Information System (INIS)

    Eilzer, S; Eichmann, U

    2014-01-01

    The seminal strong-field tunnelling theory introduced by L V Keldysh plays a pivotal role. It has shaped our understanding of atomic strong-field processes, where it represents the first step in complex ionisation dynamics and provides reliable tunnelling rates. Tunnelling rates, however, cannot be necessarily equated with ionisation rates. Taking into account the electron dynamics in the Coulomb potential following the tunnelling process, the process of frustrated tunnelling ionisation has been found to lead to excited Rydberg atoms. Here, we excite He atoms in the strong-field tunnelling regime into Rydberg states. A high percentage of these Rydberg atoms survive in high intensity laser fields. We exploit this fact together with their high polarisability to kinematically manipulate the Rydberg atoms with a second elliptically polarised focused strong laser field. By varying the spatial overlap of the two laser foci, we are able to selectively control the deflection of the Rydberg atoms. The results of semi-classical calculations, which are based on the frustrated tunnelling model and on the ponderomotive acceleration, are in accord with our experimental data. (paper)

  16. Input, Process, and Learning in primary and lower secondary schools

    DEFF Research Database (Denmark)

    Larsen, Michael Søgaard; Nordenbo, Sven Erik; Holm, Anders

    What do we want to know? What empirical research has been carried out to examine the relationship between factors in primary and lower secondary schools (inputs and processes) and the learning achieved by primary and lower secondary school pupils (outputs and outcomes)? What are the results...... with weight of evidence of this empirical research? Who wants to know and why? The project was commissioned by the Danish Evaluation Institute (Danmarks Evalueringsinstitut) and was performed on behalf of the Nordic Indicator Workgroup (DNI). DNI is a workgroup nominated by the Nordic Evaluation Network...... and development etc. within the primary and lower secondary school sector. What did we find? From 1990 to 2008, 109 studies were published on malleable school factors within school effectiveness research. Of these studies, 71 are of high or medium weight of evidence. Synthesising these studies establishes that 11...

  17. Mapping of the atomic hydrogen density in combustion processes at atmospheric pressure by two-photon polarization spectroscopy

    International Nuclear Information System (INIS)

    Steiger, A.; Gruetzmacher, K.; Steiger, M.; Gonzalo, A.B.; Rosa, M.I. de la

    2001-01-01

    With laser spectroscopic techniques used so far, quantitative measurements of atomic number densities in flames and other combustion processes at atmospheric pressure yield no satisfying results because high quenching rates remarkably reduce the signal size and the results suffer from large uncertainties. Whereas, two-photon polarization spectroscopy is not limited by quenching, as the polarization signal is a direct measure of the two-photon absorption. This sensitive laser technique with high spatial and temporal resolution has been applied to determine absolute number densities and the kinetic temperatures of atomic hydrogen in flames for the first time. The great potential of this method of measurement comes into its own only in conjunction with laser radiation of highest possible spectral quality, i.e. single-frequency ns-pulses with peak irradiance of up to 1 GW/cm 2 tunable around 243 nm for 1S-2S two-photon transition of atomic hydrogen

  18. The surface characteristics of Al-7%Si aluminum alloy manufactured by thixo/rheoforming process through nanoindentation/atomic force microscopy

    International Nuclear Information System (INIS)

    Cho, S.H.; Kang, C.G.; Lee, S.M.

    2008-01-01

    This study investigated nano/microsturcture and mechanical/tribological properties in the thixo/rheoformed A356 alloy parts using nano/microindentation and nanoscratch, incorporated with optical microscopy and atomic force microscopy (AFM). As a result, thixo-cast sample exhibited higher mechanical properties than rheo-cast, irrespective of grain size. The reason that mechanical properties of thixo-cast part was higher than that of rheo-cast, was interpreted by the effect of the eutectic region surrounded by the primary α phase on the hardness. It was also observed that shape and distribution of Si particles in the adjacent eutectic region to the primary α-Al phase of the thixo/rheo-cast products were different. By scratching surface of thixo/rheo-cast parts using a nanoindentor, friction forces and coefficients for the primary α-Al and eutectic phases in thixo-cast products were resulted to be higher than those in the rheo-cast. Nanoscratch for the thixo-cast product also revealed a rough and irregular surface compared to that for the rheo-cast, providing the evidence for the effect of eutectic entrapped by primary α-Al phase on mechanical properties

  19. Anticipation increases tactile stimulus processing in the ipsilateral primary somatosensory cortex.

    Science.gov (United States)

    van Ede, Freek; de Lange, Floris P; Maris, Eric

    2014-10-01

    Stimulus anticipation improves perception. To account for this improvement, we investigated how stimulus processing is altered by anticipation. In contrast to a large body of previous work, we employed a demanding perceptual task and investigated sensory responses that occur beyond early evoked activity in contralateral primary sensory areas: Stimulus-induced modulations of neural oscillations. For this, we recorded magnetoencephalography in 19 humans while they performed a cued tactile identification task involving the identification of either a proximal or a distal stimulation on the fingertips. We varied the cue-target interval between 0 and 1000 ms such that tactile targets occurred at various degrees of anticipation. This allowed us to investigate the influence of anticipation on stimulus processing in a parametric fashion. We observed that anticipation increases the stimulus-induced response (suppression of beta-band oscillations) originating from the ipsilateral primary somatosensory cortex. This occurs in the period in which the tactile memory trace is analyzed and is correlated with the anticipation-induced improvement in tactile perception. We propose that this ipsilateral response indicates distributed processing across bilateral primary sensory cortices, of which the extent increases with anticipation. This constitutes a new and potentially important mechanism contributing to perception and its improvement following anticipation. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. When apperceptive agnosia is explained by a deficit of primary visual processing.

    Science.gov (United States)

    Serino, Andrea; Cecere, Roberto; Dundon, Neil; Bertini, Caterina; Sanchez-Castaneda, Cristina; Làdavas, Elisabetta

    2014-03-01

    Visual agnosia is a deficit in shape perception, affecting figure, object, face and letter recognition. Agnosia is usually attributed to lesions to high-order modules of the visual system, which combine visual cues to represent the shape of objects. However, most of previously reported agnosia cases presented visual field (VF) defects and poor primary visual processing. The present case-study aims to verify whether form agnosia could be explained by a deficit in basic visual functions, rather that by a deficit in high-order shape recognition. Patient SDV suffered a bilateral lesion of the occipital cortex due to anoxia. When tested, he could navigate, interact with others, and was autonomous in daily life activities. However, he could not recognize objects from drawings and figures, read or recognize familiar faces. He was able to recognize objects by touch and people from their voice. Assessments of visual functions showed blindness at the centre of the VF, up to almost 5°, bilaterally, with better stimulus detection in the periphery. Colour and motion perception was preserved. Psychophysical experiments showed that SDV's visual recognition deficits were not explained by poor spatial acuity or by the crowding effect. Rather a severe deficit in line orientation processing might be a key mechanism explaining SDV's agnosia. Line orientation processing is a basic function of primary visual cortex neurons, necessary for detecting "edges" of visual stimuli to build up a "primal sketch" for object recognition. We propose, therefore, that some forms of visual agnosia may be explained by deficits in basic visual functions due to widespread lesions of the primary visual areas, affecting primary levels of visual processing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The study of multiphoton ionization processes in hydrogen atoms

    International Nuclear Information System (INIS)

    Mohammad, M.A.

    1981-01-01

    In this thesis we investigate theoretically the multiphoton ionization of hydrogen atoms based on perturbation theory.The main problem in the numorical evaluation is the appearance of infinite summation over the matrix element and energy denominators of the intermediate state in the formula for ionization cross section.Our numerical result is in excellent agreement with other workers.In the last part of the thesis we have again calculated the two photon ionization of hydrogen atoms using momentum translation approximation of Reiss.The method in general is in fair agreement with other calculations but dose not show the resonance behaviour.(2 tabs., 1 fig., 45 refs.)

  2. One Photon Can Simultaneously Excite Two or More Atoms.

    Science.gov (United States)

    Garziano, Luigi; Macrì, Vincenzo; Stassi, Roberto; Di Stefano, Omar; Nori, Franco; Savasta, Salvatore

    2016-07-22

    We consider two separate atoms interacting with a single-mode optical or microwave resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between one photon and two atoms, via intermediate virtual states connected by counterrotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with a probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission process can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems.

  3. Unmasking feigned sanity: a neurobiological model of emotion processing in primary psychopathy.

    Science.gov (United States)

    van Honk, Jack; Schutter, Dennis J L G

    2006-05-01

    The neurobiological basis of primary psychopathy, an emotional disorder characterised by a lack of fear and empathy, on the one hand, and extremely violent, antisocial tendencies, on the other, is relatively unknown. Nevertheless, theoretical models that emphasise the role of fearlessness, imbalanced motivation, defective somatic markers, and dysfunctional violence inhibition mechanisms have complementary proposals regarding motivations and brain mechanisms involved. Presently, incorporating the heuristic value of these models and further theorising on the basis of recent data from neuropsychology, neuroendocrinology, neuroimaging, and repetitive transcranial magnetic stimulation (rTMS), an attempt is made to construct a neurobiological framework of emotion processing in primary psychopathy with clinical applicability. According to this framework, defective emotional processing in primary psychopathy results from bottom-up hormone-mediated imbalances at: (1) the subcortical level; (2) in subcortico-cortical "cross-talk"; that end up in an instrumental stance at the cortical level (3). An endocrine dual-system approach for the fine-tuned restoration of these hormone-mediated imbalances is proposed as a possible clinical application. This application may be capable of laying a neurobiological foundation for more successful sociotherapeutic interventions in primary psychopathy.

  4. European atomic (nuclear) law and Austria

    International Nuclear Information System (INIS)

    Heitzinger, R.

    2000-05-01

    The dissertation investigates the question, how the Austrian membership in the European Community works out to the Austrian Atomic Nonproliferation Law, which is a simple federal law. By the day of the Austrian accession to the European Community, the whole law of the European Community became part of the Austrian Legal Order. Also part of the primary right, the constitutional law of the European Community, is the contract for founding the European Atomic Energy Community, which also became part of the Austrian Legal Order. In 1978 Austria decided after the plebiscite of November the 5th against the opening of the nuclear power station in Zwentendorf. The result of this plebiscite was the Austrian Atomic Nonproliferation Law, a simple federal law from December the 15th, BGBl 676/1978. To continue their atomic politics, forbidding the use of nuclear powerstations for producing energy, after becoming a member of the European Community, Austria and the members of the European Community signed the Fourth Common Declaration at September the 23rd in 1993 for the use of the contract for founding the European Atomic Energy Community. This Common Declaration is neither a part of the accession of the contract, nor a part of the accessions to the acts of the contract of the European Community, and also not a part of the primary right of the European Community. It is only an agreement between the signatory states, which can be characterized as a part of the context. The sphere of the context, where the Fourth Common Declaration could be important, restrains to the secondary right of the European Community. This means, that the opinion on the rage of application is a decision of the executive bodies of the European Community. Consequently is to say, that the declaration, that the continuance of the Austrian Atomic Nonproliferation Law is save, can't resist an analysis in the law of nations. (author)

  5. Quantum information with Rydberg atoms

    DEFF Research Database (Denmark)

    Saffman, Mark; Walker, T.G.; Mølmer, Klaus

    2010-01-01

    Rydberg atoms with principal quantum number n»1 have exaggerated atomic properties including dipole-dipole interactions that scale as n4 and radiative lifetimes that scale as n3. It was proposed a decade ago to take advantage of these properties to implement quantum gates between neutral atom...... of multiqubit registers, implementation of robust light-atom quantum interfaces, and the potential for simulating quantum many-body physics. The advances of the last decade are reviewed, covering both theoretical and experimental aspects of Rydberg-mediated quantum information processing....

  6. Population inversion of two atoms under the phase decoherence in the multiphoton process

    International Nuclear Information System (INIS)

    Zhang Dongxia; Sa Chuerfu; Mu Qier

    2011-01-01

    By means of the quantum theory, the population inversion of two atoms in the system of two two-level atoms coupled to a light field in the Binomial Optical Field are investigated in the presence of phase decoherence in the multiphoton Tavis-Cumming Model. The influences of the phase decoherence coefficient, the parameters η of the binomial optical field, the maximum number of photons and the number of the transitional photons on the properties of the population inversion of two atoms have been discussed. The results show that the phase decoherence reduced the oscillation amplitude of the population inversion of two atoms and destroyed the atomic quantum characteristic. Changing the number of the transitional photons, evolved cycle and evolved intensity the population inversion of two atoms can be changed. The phenomena of collapse and revival disappear as photon number increase. When the binomial optical state changes from a coherent state to a Fock state, the oscillation frequency of the atomic population reduces gradually, the phenomena of collapse and revival vanishes gradually. (authors)

  7. Progress of fusion fuel processing system development at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Nishi, Masataka; Yamanishi, Toshihiko; Kawamura, Yoshinori; Iwai, Yasunori; Isobe, Kanetsugu; O'Hira, Shigeru; Hayashi, Takumi; Nakamura, Hirofumi; Kobayashi, Kazuhiro; Suzuki, Takumi; Yamada, Masayuki; Konishi, Satoshi

    2000-01-01

    The Tritium Process Laboratory (TPL) at the Japan Atomic Energy Research Institute has been working on the development of fuel processing technology for fusion reactors as a major activity. A fusion fuel processing loop was installed and is being tested with tritium under reactor relevant conditions. The loop at the TPL consists of ZrCo based tritium storage beds, a plasma exhaust processing system using a palladium diffuser and an electrolytic reactor, cryogenic distillation columns for isotope separation, and analytical systems based on newly developed micro gas chromatographs and Raman Spectroscopy. Several extended demonstration campaigns were performed under realistic reactor conditions to test tritiated impurity processing. A sophisticated control technique of distillation column was performed at the same time, and integrated fuel circulation was successfully demonstrated. Major recent design work on the International Thermonuclear Experimental Reactor (ITER) tritium plant at the TPL is devoted to water detritiation based on liquid phase catalytic exchange for improved tritium removal from waste water

  8. Primary and Secondary Selection Tools in an Optometry Admission Process.

    Science.gov (United States)

    Spafford, Marlee M.

    2000-01-01

    A five-year evaluation of the admissions decision process at the University of Waterloo (Ontario) School of Optometry found that when primary tools (i.e., university grades, Optometry Admission Test scores) did not differentiate candidates, there was an increased emphasis on secondary tools (i.e., interview, autobiographic sketch, prerequisite…

  9. Yields of primary products from chloroethylenes in air under electron beam irradiation

    International Nuclear Information System (INIS)

    Hakoda, Teruyuki; Hashimoto, Shoji; Kojima, Takuji

    2003-01-01

    The quantitative analysis of toxic primary irradiation products was carried out for the development of the purification technology of chloroethylenes/air mixtures using an electron beam (EB). Degradation of chloroethylenes in humid air proceeded through the formation of primary products retaining a carbon-carbon (C-C) bond such as chloroacetyl chlorides and chloroacetyl aldehyde as well as that of primary products of COCl 2 and HCOCl through C-C bond cleavage. Chloroethylenes having one carbon bonded to two Cl atoms was decomposed into the primary products retaining a C-C bond prior to breaking a C-C bond. The number of Cl atoms of a chloroethylene molecule enhanced the formation ratio of primary products retaining a C-C bond. On the other hand, chloroethylene having two carbons bonded to one Cl atom was degraded thought the scission of a C-C bond predominantly C-C bond maintenance. (author)

  10. AtomPy: An Open Atomic Data Curation Environment for Astrophysical Applications

    Directory of Open Access Journals (Sweden)

    Claudio Mendoza

    2014-05-01

    Full Text Available We present a cloud-computing environment, referred to as AtomPy, based on Google-Drive Sheets and Pandas (Python Data Analysis Library DataFrames to promote community-driven curation of atomic data for astrophysical applications, a stage beyond database development. The atomic model for each ionic species is contained in a multi-sheet workbook, tabulating representative sets of energy levels, A-values and electron impact effective collision strengths from different sources. The relevant issues that AtomPy intends to address are: (i data quality by allowing open access to both data producers and users; (ii comparisons of different datasets to facilitate accuracy assessments; (iii downloading to local data structures (i.e., Pandas DataFrames for further manipulation and analysis by prospective users; and (iv data preservation by avoiding the discard of outdated sets. Data processing workflows are implemented by means of IPython Notebooks, and collaborative software developments are encouraged and managed within the GitHub social network. The facilities of AtomPy are illustrated with the critical assessment of the transition probabilities for ions in the hydrogen and helium isoelectronic sequences with atomic number Z ≤ 10.

  11. Computation of Ion Charge State Distributions After Inner-shell Ionization in Ne, Ar and Kr Atoms Using Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Ahmed Ghoneim, Adel Aly; Ghoneim, Adel A.; Al-Zanki, Jasem M.; El-Essawy, Ashraf H.

    2009-01-01

    Atomic reorganization starts by filling the initially inner-shell vacancy by a radiative transition (x-ray) or by a non-radiative transition (Auger and Coster-Kronig processes). New vacancies created during this atomic reorganization may in turn be filled by further radiative and non-radiative transitions until all vacancies reach the outermost occupied shells. The production of inner-shell vacancy in an atom and the de-excitation decays through radiative and non-radiative transitions may result in a change of the atomic potential; this change leads to the emission of an additional electron in the continuum (electron shake-off processes). In the present work, the ion charge state distributions (CSD) and mean atomic charge ions produced from inner shell vacancy de-excitation decay are calculated for neutral Ne , Ar and Kr atoms. The calculations are carried out using Monte Carlo (MC) technique to simulate the cascade development after primary vacancy production. The radiative and non-radiative transitions for each vacancy are calculated in the simulation. In addition, the change of transition energies and transition rates due to multi vacancies produced in the atomic configurations through the cascade development are considered in the present work. It is found that considering the electron shake off process and closing of non-allowed non-radiative channels improves the results of both charge state distributions (CSD) and average charge state. To check the validity of the present calculations, the results obtained are compared with available theoretical and experimental data. The present results are found to agree well with the available theoretical and experimental values. (author)

  12. Atom diffraction with a 'natural' metastable atom nozzle beam

    International Nuclear Information System (INIS)

    Karam, J-C; Wipf, N; Grucker, J; Perales, F; Boustimi, M; Vassilev, G; Bocvarski, V; Mainos, C; Baudon, J; Robert, J

    2005-01-01

    The resonant metastability-exchange process is used to obtain a metastable atom beam with intrinsic properties close to those of a ground-state atom nozzle beam (small angular aperture, narrow velocity distribution). The estimated effective source diameter (15 μm) is small enough to provide at a distance of 597 mm a transverse coherence radius of about 873 nm for argon, 1236 nm for neon and 1660 nm for helium. It is demonstrated both by experiment and numerical calculations with He*, Ne* and Ar* metastable atoms, that this beam gives rise to diffraction effects on the transmitted angular pattern of a silicon-nitride nano-slit grating (period 100 nm). Observed patterns are in good agreement with previous measurements with He* and Ne* metastable atoms. For argon, a calculation taking into account the angular aperture of the beam (0.35 mrad) and the effect of the van der Waals interaction-the van der Waals constant C 3 1.83 +0.1 -0.15 au being derived from spectroscopic data-leads to a good agreement with experiment

  13. Reaction mechanism of oxygen atoms with unsaturated hydrocarbons by the crossed molecular beams method

    Energy Technology Data Exchange (ETDEWEB)

    Buss, R.J.; Baseman, R.J.; Guozhong, H.; Lee, Y.T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  14. Reaction Mechanism of Oxygen Atoms with Unsaturated Hydrocarbons by the Crossed-Molecular-Beams Method

    Science.gov (United States)

    Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  15. Atomic ionization at positron-electron annihilation at β+-decay

    International Nuclear Information System (INIS)

    Fedotkin, S.N.

    2012-01-01

    The role of the nuclear charge screening and corrections to the Born approximation for the flying from atom electron in a process of atomic ionization at annihilation of positron with another electron of daughter's atom at β + - decay is studied. It was considered the processes of ionization of different atomic shells (n = 1, 2, 3, 4) at annihilation of positron, emitted at β'+ - decay with K- electron of daughter's atom. It is shown that the screening effect is important only for shell with n = 4. While corrections to the Born approximation plays the essential role for all shells. It is shown that the most probable process is related with emission of the another K- electron

  16. Combined aerodynamic and electrostatic atomization of dielectric liquid jets

    Science.gov (United States)

    Kourmatzis, Agissilaos; Ergene, Egemen L.; Shrimpton, John S.; Kyritsis, Dimitrios C.; Mashayek, Farzad; Huo, Ming

    2012-07-01

    The electrical and atomization performance of a plane-plane charge injection atomizer using a dielectric liquid, and operating at pump pressures ranging from 15 to 35 bar corresponding to injection velocities of up to 50 m/s, is explored via low current electrical measurements, spray imaging and phase Doppler anemometry. The work is aimed at understanding the contribution of electrostatic charging relevant to typical higher pressure fuel injection systems such as those employed in the aeronautical, automotive and marine sectors. Results show that mean-specific charge increases with injection velocity significantly. The effect of electrostatic charge is advantageous at the 15-35 bar range, and an arithmetic mean diameter D 10 as low as 0.2 d is achievable in the spray core and lower still in the periphery where d is the orifice diameter. Using the data available from this higher pressure system and from previous high Reynolds number systems (Shrimpton and Yule Exp Fluids 26:460-469, 1999), the promotion of primary atomization has been analysed by examining the effect that charge has on liquid jet surface and liquid jet bulk instability. The results suggest that for the low charge density Q v ~ 2 C/m3 cases under consideration here, a significant increase in primary atomization is observed due to a combination of electrical and aerodynamic forces acting on the jet surface, attributed to the significantly higher jet Weber number ( We j) when compared to low injection pressure cases. Analysis of Sauter mean diameter results shows that for jets with elevated specific charge density of the order Q v ~ 6 C/m3, the jet creates droplets that a conventional turbulent jet would, but with a significantly lower power requirement. This suggests that `turbulent' primary atomization, the turbulence being induced by electrical forces, may be achieved under injection pressures that would produce laminar jets.

  17. Synchrotron radiation in atomic physics

    International Nuclear Information System (INIS)

    Crasemann, B.

    1998-01-01

    Much of present understanding of atomic and molecular structure and dynamics was gained through studies of photon-atom interactions. In particular, observations of the emission, absorption, and scattering of X rays have complemented particle-collision experiments in elucidating the physics of atomic inner shells. Grounded on Max von Laue's theoretical insight and the invention of the Bragg spectrometer, the field's potential underwent a step function with the development of synchrotron-radiation sources. Notably current third-generation sources have opened new horizons in atomic and molecular physics by producing radiation of wide tunability and exceedingly high intensity and polarization, narrow energy bandwidth, and sharp time structure. In this review, recent advances in synchrotron-radiation studies in atomic and molecular science are outlined. Some tempting opportunities are surveyed that arise for future studies of atomic processes, including many-body effects, aspects of fundamental photon-atom interactions, and relativistic and quantum-electrodynamic phenomena. (author)

  18. Precision Gravity Tests with Atom Interferometry in Space

    Energy Technology Data Exchange (ETDEWEB)

    Tino, G.M.; Sorrentino, F. [Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy); Aguilera, D. [Institute of Space Systems, German Aerospace Center, Robert-Hooke-Strasse 7, 28359 Bremen (Germany); Battelier, B.; Bertoldi, A. [Laboratoire Photonique, Numérique et Nanosciences, LP2N - UMR5298 - IOGS - CNRS Université Bordeaux 1, Bâtiment A30 351 cours de la Libération F-33405 TALENCE Cedex France (France); Bodart, Q. [Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy); Bongs, K. [Midlands Ultracold Atom Research Centre School of Physics and Astronomy University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Bouyer, P. [Laboratoire Photonique, Numérique et Nanosciences, LP2N - UMR5298 - IOGS - CNRS Université Bordeaux 1, Bâtiment A30 351 cours de la Libération F-33405 TALENCE Cedex France (France); Braxmaier, C. [Institute of Space Systems, German Aerospace Center, Robert-Hooke-Strasse 7, 28359 Bremen (Germany); Cacciapuoti, L. [European Space Agency, Research and Scientific Support Department, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands); Gaaloul, N. [Institute of Quantum Optics, Leibniz Universitaet Hannover, Welfengarten 1, D 30167 Hannover (Germany); Gürlebeck, N. [University of Bremen, Centre of Applied Space Technology and Microgravity (ZARM), Am Fallturm, D - 29359 Bremen (Germany); Hauth, M. [Humboldt-Universität zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); and others

    2013-10-15

    Atom interferometry provides extremely sensitive and accurate tools for the measurement of inertial forces. Operation of atom interferometers in microgravity is expected to enhance the performance of such sensors. This paper presents two possible implementations of a dual {sup 85}Rb-{sup 87}Rb atom interferometer to perform differential gravity measurements in space, with the primary goal to test the Weak Equivalence Principle. The proposed scheme is in the framework of two projects of the European Space Agency, namely Q-WEP and STE-QUEST. The paper describes the baseline experimental configuration, and discusses the technology readiness, noise and error budget for the two proposed experiments.

  19. Time ordering of two-step processes in energetic ion-atom collisions: Basic formalism

    International Nuclear Information System (INIS)

    Stolterfoht, N.

    1993-01-01

    The semiclassical approximation is applied in second order to describe time ordering of two-step processes in energetic ion-atom collisions. Emphasis is given to the conditions for interferences between first- and second-order terms. In systems with two active electrons, time ordering gives rise to a pair of associated paths involving a second-order process and its time-inverted process. Combining these paths within the independent-particle frozen orbital model, time ordering is lost. It is shown that the loss of time ordering modifies the second-order amplitude so that its ability to interfere with the first-order amplitude is essentially reduced. Time ordering and the capability for interference is regained, as one path is blocked by means of the Pauli exclusion principle. The time-ordering formalism is prepared for papers dealing with collision experiments of single excitation [Stolterfoht et al., following paper, Phys. Rev. A 48, 2986 (1993)] and double excitation [Stolterfoht et al. (unpublished)

  20. Dynamics of an atomic wave packet in a standing-wave cavity field: A cavity-assisted single-atom detection

    International Nuclear Information System (INIS)

    Chough, Young-Tak; Nha, Hyunchul; Kim, Sang Wook; An, Kyungwon; Youn, Sun-Hyun

    2002-01-01

    We investigate the single-atom detection system using an optical standing-wave cavity, from the viewpoint of the quantized center-of-mass motion of the atomic wave packet. We show that since the atom-field coupling strength depends upon the overlap integral of the atomic wave packet and the field mode function, the effect of the wave-packet spreading via the momentum exchange process brings about a significant effect in the detection efficiency. We find that, as a result, the detection efficiency is not sensitive to the individual atomic trajectory for reasonably slow atoms. We also address an interesting phenomenon of the atomic wave-packet splitting occurring when an atom passes through a node of the cavity field

  1. Atomic probes of surface structure and dynamics

    International Nuclear Information System (INIS)

    Heller, E.J.; Jonsson, H.

    1992-01-01

    The following were studied: New semiclassical method for scattering calculations, He atom scattering from defective Pt surfaces, He atom scattering from Xe overlayers, thermal dissociation of H 2 on Cu(110), spin flip scattering of atoms from surfaces, and Car-Parrinello simulations of surface processes

  2. A metastable helium trap for atomic collision physics

    International Nuclear Information System (INIS)

    Colla, M.; Gulley, R.; Uhlmann, L.; Hoogerland, M.D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Full text: Metastable helium in the 2 3 S state is an important species for atom optics and atomic collision physics. Because of its large internal energy (20eV), long lifetime (∼8000s) and large collision cross section for a range of processes, metastable helium plays an important role in atmospheric physics, plasma discharges and gas laser physics. We have embarked on a program of studies on atom-atom and electron-atom collision processes involving cold metastable helium. We confine metastable helium atoms in a magneto-optic trap (MOT), which is loaded by a transversely collimated, slowed and 2-D focussed atomic beam. We employ diode laser tuned to the 1083 nm (2 3 S 1 - 2 3 P2 1 ) transition to generate laser cooling forces in both the loading beam and the trap. Approximately 10 million helium atoms are trapped at temperatures of ∼ 1mK. We use phase modulation spectroscopy to measure the trapped atomic density. The cold, trapped atoms can collide to produce either atomic He + or molecular He 2 + ions by Penning Ionisation (PI) or Associative Ionisation (AI). The rate of formation of these ions is dependant upon the detuning of the trapping laser from resonance. A further laser can be used to connect the 2 3 S 1 state to another higher lying excited state, and variation of the probe laser detuning used to measure interatomic collision potential. Electron-atom collision processes are studied using a monochromatic electron beam with a well defined spatial current distribution. The total trap loss due to electron collisions is measured as a function of electron energy. Results will be presented for these atomic collision physics measurements involving cold, trapped metastable helium atoms. Copyright (1999) Australian Optical Society

  3. The production and investigation of cold antihydrogen atoms

    International Nuclear Information System (INIS)

    Pittner, H.

    2005-04-01

    This work reports on experiments in which antihydrogen atoms have been produced in cryogenic Penning traps from antiproton and positron plasmas by two different methods and on experiments that have been carried out subsequently in order to investigate the antihydrogen atoms. By the first method antihydrogen atoms have been formed during the process of positron cooling of antiprotons in so called nested Penning traps and detected via a field ionization method. A measurement of the state distribution has revealed that the antihydrogen atoms are formed in highly excited states. This suggests along with the high production rate that the antihydrogen atoms are formed by three-body recombination processes and subsequent collisional deexcitations. However current theory cannot yet account for the measured state distribution. Typical radii of the detected antihydrogen atoms lie in the range between 0.4 μm and 0.15 μm. The deepest bound antihydrogen atoms have radii below 0.1 μm.The kinetic energy of the weakest bound antihydrogen atoms has been measured to about 200 meV. By the second method antihydrogen atoms have been synthesized in charge-exchange processes. Lasers are used to produce a Rydberg cesium beam within the cryogenic Penning trap that collides with trapped positrons so that Rydberg positronium atoms are formed via charge-exchange reactions. The Rydberg positronium atoms that collide with nearby stored antiprotons form antihydrogen atoms in charge-exchange reactions. So far, 14±4 antihydrogen atoms have been detected background-free via a field-ionization method. The antihydrogen atoms produced via the two-step charge-exchange mechanism are expected to have a temperature of 4.2 K, the temperature of the antiprotons from which they are formed

  4. Visualising reacting single atoms under controlled conditions: Advances in atomic resolution in situ Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM)

    Science.gov (United States)

    Boyes, Edward D.; Gai, Pratibha L.

    2014-02-01

    Advances in atomic resolution Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM) for probing gas-solid catalyst reactions in situ at the atomic level under controlled reaction conditions of gas environment and temperature are described. The recent development of the ESTEM extends the capability of the ETEM by providing the direct visualisation of single atoms and the atomic structure of selected solid state heterogeneous catalysts in their working states in real-time. Atomic resolution E(S)TEM provides a deeper understanding of the dynamic atomic processes at the surface of solids and their mechanisms of operation. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes with substantial economic benefits, improved healthcare, reductions in energy needs and the management of environmental waste generation. xml:lang="fr"

  5. A CALCULATION OF SEMI-EMPIRICAL ONE-ELECTRON WAVE FUNCTIONS FOR MULTI-ELECTRON ATOMS USED FOR ELEMENTARY PROCESS SIMULATION IN NONLOCAL PLASMA

    Directory of Open Access Journals (Sweden)

    M. V. Tchernycheva

    2017-01-01

    Full Text Available Subject of Research. The paper deals with development outcomes for creation method of one-electron wave functions of complex atoms, relatively simple, symmetrical for all atom electrons and free from hard computations. The accuracy and resource intensity of the approach are focused on systematic calculations of cross sections and rate constants of elementary processes of inelastic collisions of atoms or molecules with electrons (ionization, excitation, excitation transfer, and others. Method. The method is based on a set of two iterative processes. At the first iteration step the Schrödinger equation was solved numerically for the radial parts of the electron wave functions in the potential of the atomic core self-consistent field. At the second iteration step the new approximationfor the atomic core field is created that uses found solutions for all one-electron wave functions. The solution optimization for described multiparameter problem is achieved by the use of genetic algorithm. The suitability of the developed method was verified by comparing the calculation results with numerous data on the energies of atoms in the ground and excited states. Main Results. We have created the run-time version of the program for creation of sets of one-electron wave functions and calculation of the cross sections and constants of collisional transition rates in the first Born approximation. The priori available information about binding energies of the electrons for any many-particle system for creation of semi-empirical refined solutions for the one-electron wave functions can be considered at any step of this procedure. Practical Relevance. The proposed solution enables a simple and rapid preparation of input data for the numerical simulation of nonlocal gas discharge plasma. The approach is focused on the calculation of discharges in complex gas mixtures requiring inclusion in the model of a large number of elementary collisional and radiation

  6. Impact of alternative fuel rheology on spraying process of small pressure-swirl atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Malý, Milan, E-mail: milan.maly@vutbr.cz; Janáčková, Lada; Jedelský, Jan, E-mail: jedelsky@vutbr.cz; Jícha, Miroslav [Brno University of Technology, Faculty of Mechanical Engineering, Energy Institute, Technická 2896/2, 61669 Brno (Czech Republic)

    2016-06-30

    A systematic investigation was made to analyse the atomizing performance of a small pressure-swirl atomizer with different crude-oil based fuels and water. The atomizer performance is characterized in terms of discharge coefficient, droplet Sauter mean diameter and nozzle efficiency. Phase-Doppler anemometry was used to measure droplets sizes and velocities and to determine the mean structure of the developed spray. A strong dependence of liquid viscosity on the mass flow rate through the atomizer as well as on the spray quality was found and discussed in comparison with relevant literature.

  7. Impact of alternative fuel rheology on spraying process of small pressure-swirl atomizer

    Science.gov (United States)

    Malý, Milan; Janáčková, Lada; Jedelský, Jan; Jícha, Miroslav

    2016-06-01

    A systematic investigation was made to analyse the atomizing performance of a small pressure-swirl atomizer with different crude-oil based fuels and water. The atomizer performance is characterized in terms of discharge coefficient, droplet Sauter mean diameter and nozzle efficiency. Phase-Doppler anemometry was used to measure droplets sizes and velocities and to determine the mean structure of the developed spray. A strong dependence of liquid viscosity on the mass flow rate through the atomizer as well as on the spray quality was found and discussed in comparison with relevant literature.

  8. Impact of alternative fuel rheology on spraying process of small pressure-swirl atomizer

    International Nuclear Information System (INIS)

    Malý, Milan; Janáčková, Lada; Jedelský, Jan; Jícha, Miroslav

    2016-01-01

    A systematic investigation was made to analyse the atomizing performance of a small pressure-swirl atomizer with different crude-oil based fuels and water. The atomizer performance is characterized in terms of discharge coefficient, droplet Sauter mean diameter and nozzle efficiency. Phase-Doppler anemometry was used to measure droplets sizes and velocities and to determine the mean structure of the developed spray. A strong dependence of liquid viscosity on the mass flow rate through the atomizer as well as on the spray quality was found and discussed in comparison with relevant literature.

  9. JSPS-CAS Core University Program seminar. Proceedings of Japan-China joint seminar on atomic and molecular processes in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Fumihiro [Kitasato Univ., Tokyo (Japan); Dong, Chenzhong [Northwest Normal Univ., Lanzhou (China)

    2005-02-01

    As one of the activities of JSPS-CAS Core University Program, Japan-China Joint Seminar on Atomic and Molecular Processes in Plasma was held on March 6 - 11, 2004 in Lanzhou, China. The total number of the officially registered participants was 29, in which 17 from Japan, 10 from China, and 2 from Germany. In the nuclear fusion plasma, there are quite a variety of atomic processes such as ionization, excitation, radiative recombination, non-radiative recombination (di-electronic recombination, collisional electron transfer), cascade radiation, and cascade Auger decay over the wide range of plasma temperature. The knowledge of such the processes is indispensable for the evaluation and improvement of the plasma properties, which is desirable to be investigated by international collaboration groups. The present Japan-China Joint Seminar constitutes one of such the activities to realize the above stated aim. The 21 of the presented papers are indexed individually. (J.P.N.)

  10. Site-selective substitutional doping with atomic precision on stepped Al (111) surface by single-atom manipulation.

    Science.gov (United States)

    Chen, Chang; Zhang, Jinhu; Dong, Guofeng; Shao, Hezhu; Ning, Bo-Yuan; Zhao, Li; Ning, Xi-Jing; Zhuang, Jun

    2014-01-01

    In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method.

  11. Spontaneous emission by moving atoms

    International Nuclear Information System (INIS)

    Meystre, P.; Wilkens, M.

    1994-01-01

    It is well known that spontaneous emission is not an intrinsic atomic property, but rather results from the coupling of the atom to the vacuum modes of the electromagnetic field. As such, it can be modified by tailoring the electromagnetic environment into which the atom can radiate. This was already realized by Purcell, who noted that the spontaneous emission rate can be enhanced if the atom placed inside a cavity is resonant with one of the cavity is resonant with one of the cavity modes, and by Kleppner, who discussed the opposite case of inhibited spontaneous emission. It has also been recognized that spontaneous emission need not be an irreversible process. Indeed, a system consisting of a single atom coupled to a single mode of the electromagnetic field undergoes a periodic exchange of excitation between the atom and the field. This periodic exchange remains dominant as long as the strength of the coupling between the atom and a cavity mode is itself dominant. 23 refs., 6 figs

  12. Collective processes in heavy-ion collisions with atomic nuclei. Dissipation of energy and angular momentum

    International Nuclear Information System (INIS)

    Kuzminski, J.

    1980-01-01

    The collective processes in collision of heavy-ions with atomic nuclei are discussed. Measured data on the S+Ti collision at Esub(LAB)=105, 130 and 144 MeV have been analysed in terms of a ''fission-like'' processes which seem to be a special case of deep inelastic collisions whose total available kinetic energy is completely dissipated. Applying transport theory it was possible to introduce a ''clock'' for measuring the time scale of nuclear processes in collision of heavy-ions by measuring the FWHM of mass distribution of emitted reaction products. Experimental data on continuum gamma spectra from Cu+Au collision at Esub(LAB)=400 MeV are presented and the angular momentum dissipation in this reaction is discussed. (author)

  13. Diagnosis of compliance of health care product processing in Primary Health Care

    Directory of Open Access Journals (Sweden)

    Camila Eugenia Roseira

    Full Text Available ABSTRACT Objective: identify the compliance of health care product processing in Primary Health Care and assess possible differences in the compliance among the services characterized as Primary Health Care Service and Family Health Service. Method: quantitative, observational, descriptive and inferential study with the application of structure, process and outcome indicators of the health care product processing at ten services in an interior city of the State of São Paulo - Brazil. Results: for all indicators, the compliance indices were inferior to the ideal levels. No statistically significant difference was found in the indicators between the two types of services investigated. The health care product cleaning indicators obtained the lowest compliance index, while the indicator technical-operational resources for the preparation, conditioning, disinfection/sterilization, storage and distribution of health care products obtained the best index. Conclusion: the diagnosis of compliance of health care product processing at the services assessed indicates that the quality of the process is jeopardized, as no results close to ideal levels were obtained at any service. In addition, no statistically significant difference in these indicators was found between the two types of services studied.

  14. Positron-atom collisions

    International Nuclear Information System (INIS)

    Drachman, R.J.

    1984-01-01

    The past decade has seen the field of positron-atom collisions mature into an important sub-field of atomic physics. Increasingly intense positron sources are leading towards a situation in which electron and positron collision experiments will be on almost an equal footing, challenging theory to analyze their similarities and differences. The author reviews the advances made in theory, including dispersion theory, resonances, and inelastic processes. A survey of experimental progress and a brief discussion of astrophysical positronics is also included. (Auth.)

  15. Electromagnetic trapping of neutral atoms

    International Nuclear Information System (INIS)

    Metcalf, H.J.

    1986-01-01

    Cooling and trapping of neutral atoms is a new branch of applied physics that has potential for application in many areas. The authors present an introduction to laser cooling and magnetic trapping. Some basic ideas and fundamental limitations are discussed, and the first successful experiments are reviewed. Trapping a neutral object depends on the interaction between an inhomogeneous electromagnetic field and a multiple moment that results in the exchange of kinetic for potential energy. In neutral atom traps, the potential energy must be stored as internal atomic energy, resulting in two immediate and extremely important consequences. First, the atomic energy levels will necessarily shift as the atoms move in the trap, and, second, practical traps for ground state neutral atoms atr necessarily very shallow compared to thermal energy. This small depth also dictates stringent vacuum requirements because a trapped atom cannot survive a single collision with a thermal energy background gas molecule. Neutral trapping, therefore, depends on substantial cooling of a thermal atomic sample and is inextricably connected with the cooling process

  16. Cold atoms in a cryogenic environment

    International Nuclear Information System (INIS)

    Haslinger, S.

    2011-01-01

    The idea of quantum information processing attracts increasingly interest, where a complex collection of quantum objects and quantum bits are employed to find the ideal building blocks for quantum information systems. Hybrid quantum systems are therefore promising objects as they countervail the particular drawbacks of single quantum objects. Based on superconducting resonator technology, microwave coplanar waveguides provide a well suited interconnection for photons and solid-state quantum bits (qubits), extensively investigated in recent years. Since a quantum memory is presently missing in those electrical accessible circuit cavity quantum devices, connecting the fast processing in a solid sate device to the exceptional long coherence times in atomic ensembles, the presented work is focused to establish the technological foundations for the hybridization of such quantum systems. The microwave photons stored in a superconducting high finesse microwave resonator are therefore an ideal connection between the atom and the solid state quantum world. In the last decade, the miniaturization and integration of quantum optics and atomic physics manipulation techniques on to a single chip was successfully established. Such atom chips are capable of detailed quantum manipulation of ultra-cold atoms and provide a versatile platform to combine the manipulation techniques from atomic physics with the capability of nano-fabrication. In recent years several experiments succeeded in realization of superconducting atom chips in cryogenic environments which opens the road for integrating super-conductive microwave resonators to magnetically couple an atomic ensemble to photons stored in the coplanar high finesse cavity. This thesis presents the concept, design and experimental setup of two approaches to establish an atomic ensemble of rubidium atoms inside a cryogenic environment, based on an Electron beam driven alkali metal atom source for loading a magneto optical trap in a

  17. Novel cost controlled materials and processing for primary structures

    Science.gov (United States)

    Dastin, S. J.

    1993-01-01

    Textile laminates, developed a number of years ago, have recently been shown to be applicable to primary aircraft structures for both small and large components. Such structures have the potential to reduce acquisition costs but require advanced automated processing to keep costs controlled while verifying product reliability and assuring structural integrity, durability and affordable life-cycle costs. Recently, resin systems and graphite-reinforced woven shapes have been developed that have the potential for improved RTM processes for aircraft structures. Ciba-Geigy, Brochier Division has registered an RTM prepreg reinforcement called 'Injectex' that has shown effectivity for aircraft components. Other novel approaches discussed are thermotropic resins producing components by injection molding and ceramic polymers for long-duration hot structures. The potential of such materials and processing will be reviewed along with initial information/data available to date.

  18. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.

    1998-01-01

    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  19. Bremsstrahlung in atom-atom collisions

    International Nuclear Information System (INIS)

    Amus'ya, M.Y.; Kuchiev, M.Y.; Solov'ev, A.V.

    1985-01-01

    It is shown that in the collision of a fast atom with a target atom when the frequencies are on the order of the potentials or higher, there arises bremsstrahlung comparable in intensity with the bremsstrahlung emitted by an electron with the same velocity in the field of the target atom. The mechanism by which bremsstrahlung is produced in atom-atom collisions is elucidated. Results of specific calculations of the bremsstrahlung spectra are given for α particles and helium atoms colliding with xenon

  20. Laser-assisted electron-atom collisions

    International Nuclear Information System (INIS)

    Mason, N.J.

    1989-01-01

    New developments in our understanding of the electron-atom collision process have been made possible by combining the use of highly monochromatic electron beams and intense CO 2 lasers. This paper reviews such experiments and discusses possible future progress in what is a new field in atomic collision physics. (author)

  1. Calcification process dynamics in coral primary polyps as observed using a calcein incubation method

    Directory of Open Access Journals (Sweden)

    Yoshikazu Ohno

    2017-03-01

    Full Text Available Calcification processes are largely unknown in scleractinian corals. In this study, live confocal imaging was used to elucidate the spatiotemporal dynamics of the calcification process in aposymbiotic primary polyps of the coral species Acropora digitifera. The fluorophore calcein was used as a calcium deposition marker and a visible indicator of extracellular fluid distribution at the tissue-skeleton interface (subcalicoblastic medium, SCM in primary polyp tissues. Under continuous incubation in calcein-containing seawater, initial crystallization and skeletal growth were visualized among the calicoblastic cells in live primary polyp tissues. Additionally, the distribution of calcein-stained SCM and contraction movements of the pockets of SCM were captured at intervals of a few minutes. Our experimental system provided several new insights into coral calcification, particularly as a first step in monitoring the relationship between cellular dynamics and calcification in vivo. Our study suggests that coral calcification initiates at intercellular spaces, a finding that may contribute to the general understanding of coral calcification processes.

  2. Process development report: 0.40-m primary burner system

    International Nuclear Information System (INIS)

    Young, D.T.

    1978-04-01

    Fluidized bed combustion is required in reprocessing the graphite-based fuel elements from high-temperature gas-cooled reactor (HTGR) cores. This burning process requires combustion of beds containing both large particles and very dense particles, and also of fine graphite particles which elutriate from the bed. This report documents the successful long-term operation of the 0.40-m primary burner in burning crushed fuel elements. The 0.40-m system operation is followed from its first short heatup test in September 1976 to a > 40-h burning campaign that processed 20 LHTGR blocks in September 1977. The 0.40-m perforated conical gas distributor, scaled up from the 0.20-m primary burner, has proven reliable in safely burning even the largest, densest adhered graphite/fuel particle clusters originating from the crushing of loaded fuel elements. Such clusters had never been fed to the 0.20-m system. Efficient combustion of graphite fines using the pressurized recycle technique was demonstrated throughout the long-duration operation required to reduce a high carbon fresh feed bed to a low carbon particle bed. Again, such operation had never been completed on the 0.20-m system from which the 0.40-m burner was scaled. The successful completion of the tests was due, in part, to implementation of significant equipment revisions which were suggested by both the initial 0.40-m system tests and by results of ongoing development work on the 0.2-m primary burner. These revisions included additional penetrations in the burner tube side-wall for above-bed fines recycle, replacement and deletion of several metal bellows with bellows of more reliable design, and improvements in designs for burner alignment and feeder mechanisms. 76 figures, 8 tables

  3. A practical theoretical formalism for atomic multielectron processes: direct multiple ionization by a single auger decay or by impact of a single electron or photon

    Science.gov (United States)

    Liu, Pengfei; Zeng, Jiaolong; Yuan, Jianmin

    2018-04-01

    Multiple electron processes occur widely in atoms, molecules, clusters, and condensed matters when they are interacting with energetic particles or intense laser fields. Direct multielectron processes (DMEP) are the most complicated among the general multiple electron processes and are the most difficult to describe theoretically. In this work, a unified and accurate theoretical formalism is proposed on the DMEP of atoms including the multiple auger decay and multiple ionization by an impact of a single electron or a single photon based on the atomic collision theory described by a correlated many-body Green's function. Such a practical treatment is made possible by taking consideration of the different coherence features of the atoms (matter waves) in the initial and final states. We first explain how the coherence characteristics of the ejected continuum electrons is largely destructed, by taking the electron impact direct double ionization process as an example. The direct double ionization process is completely different from the single ionization where the complete interference can be maintained. The detailed expressions are obtained for the energy correlations among the continuum electrons and energy resolved differential and integral cross sections according to the separation of knock-out (KO) and shake-off (SO) mechanisms for the electron impact direct double ionization, direct double and triple auger decay, and double and triple photoionization (TPI) processes. Extension to higher order DMEP than triple ionization is straight forward by adding contributions of the following KO and SO processes. The approach is applied to investigate the electron impact double ionization processes of C+, N+, and O+, the direct double and triple auger decay of the K-shell excited states of C+ 1s2{s}22{p}2{}2D and {}2P, and the double and TPI of lithium. Comparisons with the experimental and other theoretical investigations wherever available in the literature show that our

  4. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  5. Atomic absorption instrument functional description

    International Nuclear Information System (INIS)

    Bystroff, R.I.; Boyle, W.G. Jr.; Barton, G.W. Jr.

    1976-01-01

    This report describes a proposed system for automating atomic absorption analysis. The system consists of two atomic absorption instruments and an automatic sampler that can be attached to either instrument. A computer program controls the sampling and gathers data. The program then uses the data to perform bookkeeping, data processing, and report writing

  6. Deformation in Metallic Glass: Connecting Atoms to Continua

    Science.gov (United States)

    Hinkle, Adam R.; Falk, Michael L.; Rycroft, Chris H.; Shields, Michael D.

    Metallic glasses like other amorphous solids experience strain localization as the primary mode of failure. However, the development of continuum constitutive laws which provide a quantitative description of disorder and mechanical deformation remains an open challenge. Recent progress has shown the necessity of accurately capturing fluctuations in material structure, in particular the statistical changes in potential energy of the atomic constituents during the non-equilibrium process of applied shear. Here we directly cross-compare molecular dynamics shear simulations of a ZrCu glass with continuum shear transformation zone (STZ) theory representations. We present preliminary results for a methodology to coarse-grain detailed molecular dynamics data with the goal of initializing a continuum representation in the STZ theory. NSF Grants Awards 1107838, 1408685, and 0801471.

  7. Studies in Composing Hydrogen Atom Wavefunctions

    DEFF Research Database (Denmark)

    Putnam, Lance Jonathan; Kuchera-Morin, JoAnn; Peliti, Luca

    2015-01-01

    We present our studies in composing elementary wavefunctions of a hydrogen-like atom and identify several relationships between physical phenomena and musical composition that helped guide the process. The hydrogen-like atom accurately describes some of the fundamental quantum mechanical phenomen...

  8. Atoms as many-body systems

    International Nuclear Information System (INIS)

    Amusia, M Ya

    2011-01-01

    Contrary to common wisdom, not everything is clear and simple in the structure of many-electron atoms. Complexity in atoms is mainly a result of interelectron interaction that leads to rather unusual behaviour. Most transparently this is manifested in photo-ionization processes of many-electron atoms and some multi-atomic objects e.g. endohedrals. Particular attention will be given to the approach describing the interaction of photons with many-electron atoms in the frame of the many-body theory based on the Feynman diagrams technique. As a suitable one-electron approximation the Hartree - Fock (HF) approach will be presented. On its ground we will include the so-called electron correlation effects and discuss the frequently used Random Phase Approximation with Exchange - RPAE. Some results of recent calculations will be presented.

  9. Atoms as many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya, E-mail: amusia@vms.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem (Israel); Ioffe Physical-technical Institute, RAS, St. Petersburg (Russian Federation)

    2011-09-16

    Contrary to common wisdom, not everything is clear and simple in the structure of many-electron atoms. Complexity in atoms is mainly a result of interelectron interaction that leads to rather unusual behaviour. Most transparently this is manifested in photo-ionization processes of many-electron atoms and some multi-atomic objects e.g. endohedrals. Particular attention will be given to the approach describing the interaction of photons with many-electron atoms in the frame of the many-body theory based on the Feynman diagrams technique. As a suitable one-electron approximation the Hartree - Fock (HF) approach will be presented. On its ground we will include the so-called electron correlation effects and discuss the frequently used Random Phase Approximation with Exchange - RPAE. Some results of recent calculations will be presented.

  10. General Template for the FMEA Applications in Primary Food Processing.

    Science.gov (United States)

    Özilgen, Sibel; Özilgen, Mustafa

    Data on the hazards involved in the primary steps of processing cereals, fruit and vegetables, milk and milk products, meat and meat products, and fats and oils are compiled with a wide-ranging literature survey. After determining the common factors from these data, a general FMEA template is offered, and its use is explained with a case study on pasteurized milk production.

  11. Spatial atomic layer deposition: a route towards further industrialization of atomic layer deposition

    NARCIS (Netherlands)

    Poodt, P.; Cameron, D.C.; Dickey, E.; George, S.M.; Kuznetsov, Vladimir; Parsons, G.N.; Roozeboom, F.; Sundaram, G.; Vermeer, A.

    2012-01-01

    Spatial atomic layer deposition can be used as a high-throughput manufacturing technique in functional thin film deposition for applications such as flexible electronics. This; however, requires low-temperature processing and handling of flexible substrates. The authors investigate the process

  12. Quantum Electronics for Atomic Physics

    CERN Document Server

    Nagourney, Warren

    2010-01-01

    Quantum Electronics for Atomic Physics provides a course in quantum electronics for researchers in atomic physics. The book covers the usual topics, such as Gaussian beams, cavities, lasers, nonlinear optics and modulation techniques, but also includes a number of areas not usually found in a textbook on quantum electronics. It includes such practical matters as the enhancement of nonlinear processes in a build-up cavity, impedance matching into a cavity, laser frequencystabilization (including servomechanism theory), astigmatism in ring cavities, and atomic/molecular spectroscopic techniques

  13. Development of the process for production of UO2 powder by atomization of uranyl nitrate

    International Nuclear Information System (INIS)

    Oliveira Lainetti, P.E. de.

    1991-01-01

    A method of direct conversion of uranyl nitrate hexahydrate (UNH) solution to ceramic grade uranium dioxide powders by thermal denitration in a furnace that combines atomization nozzle and a gas stirred bed is described. The main purpose of this work is to show that this alternative process is technically viable, specially if the recovery of the scrap generated in the nuclear fuel pellet production is required, without further generation of new liquid wastes. The steps for the development of the denitration unit as well as the characteristics of the final powders are described. Powder production experiments have been carried out for different atomization gas pressures and furnace upper section temperatures. Determination of impurity content, specific surface area, particle size and pore size distribution, density, U content, and O/U rate of uranium dioxide powders have been done; phase identification and morphology studies have also been performed. Sintered pellets have been studied by hydrostatic density determination and microstructure analyses. (author)

  14. Initial atomic coherences and Ramsey frequency pulling in fountain clocks

    Science.gov (United States)

    Gerginov, Vladislav; Nemitz, Nils; Weyers, Stefan

    2014-09-01

    In the uncertainty budget of primary atomic cesium fountain clocks, evaluations of frequency-pulling shifts of the hyperfine clock transition caused by unintentional excitation of its nearby transitions (Rabi and Ramsey pulling) have been based so far on an approach developed for cesium beam clocks. We re-evaluate this type of frequency pulling in fountain clocks and pay particular attention to the effect of initial coherent atomic states. We find significantly enhanced frequency shifts caused by Ramsey pulling due to sublevel population imbalance and corresponding coherences within the state-selected hyperfine component of the initial atom ground state. Such shifts are experimentally investigated in an atomic fountain clock and quantitative agreement with the predictions of the model is demonstrated.

  15. Investigations in atomic physics by heavy ion projectiles

    International Nuclear Information System (INIS)

    Berenyi, D.

    1983-01-01

    The utilization of heavy ion reactions in atomic physics is surveyed. The basic collision mechanisms and their consequences in atomic physics are summarized. The atomic and electronic processes during and after heavy ion collisions are reviewed as functions of the projectile energy. The main detection and measuring methods are described. Reviews of new information about the structure of electronic cloud and about fundamental processes based on the analysis of heavy ion reaction data are given. (D.Gy.)

  16. Changes of muscarinic cholinergic receptors during aging process of primary cultured neutrons

    International Nuclear Information System (INIS)

    Fan Guohuang; Yi Ningyu; Xia Zongqin

    1996-01-01

    The dynamic changes of muscarinic receptor density and its reactivity during aging process in primary cultured neutrons were studied. Muscarinic receptor density was measured by 3 H-QNB binding assay, and muscarinic receptor reactivity was assessed by carbachol stimulation of cGMP formation, the latter was measured by RIA. After 2 weeks' incubation of neonatal rat brain cells, the nutrients began to rupture and the cell bodies shrank markedly showing senescent feature. The muscarinic receptor density reached peak at the 12th day in vitro (12 DIV), but the muscarinic receptor reactivity reached peak at 9 DIV and declined significantly at 12 DIV. The results demonstrated that during aging process of primary cultured neutrons, the decline of muscarinic receptor reactivity is likely prior to the decrease of receptor density

  17. Legislative Process For National Atomic Energy Laws Various Legal Approaches And Lessons Learned

    International Nuclear Information System (INIS)

    Ali, A.M.

    2008-01-01

    Legislative Process for National Atomic Energy Laws (NAELs) aim at establishing a legal base for the peaceful uses of nuclear energy. Various approaches (partial and comprehensive) to draft the NAELs are studied. The paper also studies some national nuclear energy laws through a comparative legal analysis and the important developments that have taken place in the legislative process for NAELs. There are lessons learned from the legislative process for NAELs. First, each state must develop its own legislative framework based on its own situation. Second, although the NAELs have common features, they vary considerably due to national legal traditions, social, economic circumstances and cultural values. Third, the NAELs have also evolved in time. Fourth, the technical standards, rules and guidelines should not be part of legislation issued by the Parliament because they would also facilitate quick adaption to new technical developments. Fifth, interface between legal and technical issues, requiring legal and technical experts to interact with each other. Sixth, continuing assessment that may lead to amendments to the law over time

  18. Dissolution Processes at Step Edges of Calcite in Water Investigated by High-Speed Frequency Modulation Atomic Force Microscopy and Simulation.

    Science.gov (United States)

    Miyata, Kazuki; Tracey, John; Miyazawa, Keisuke; Haapasilta, Ville; Spijker, Peter; Kawagoe, Yuta; Foster, Adam S; Tsukamoto, Katsuo; Fukuma, Takeshi

    2017-07-12

    The microscopic understanding of the crystal growth and dissolution processes have been greatly advanced by the direct imaging of nanoscale step flows by atomic force microscopy (AFM), optical interferometry, and X-ray microscopy. However, one of the most fundamental events that govern their kinetics, namely, atomistic events at the step edges, have not been well understood. In this study, we have developed high-speed frequency modulation AFM (FM-AFM) and enabled true atomic-resolution imaging in liquid at ∼1 s/frame, which is ∼50 times faster than the conventional FM-AFM. With the developed AFM, we have directly imaged subnanometer-scale surface structures around the moving step edges of calcite during its dissolution in water. The obtained images reveal that the transition region with typical width of a few nanometers is formed along the step edges. Building upon insight in previous studies, our simulations suggest that the transition region is most likely to be a Ca(OH) 2 monolayer formed as an intermediate state in the dissolution process. On the basis of this finding, we improve our understanding of the atomistic dissolution model of calcite in water. These results open up a wide range of future applications of the high-speed FM-AFM to the studies on various dynamic processes at solid-liquid interfaces with true atomic resolution.

  19. Quantum Phases of Atom-Molecule Mixtures of Fermionic Atoms

    Science.gov (United States)

    Lopez, Nicolas; Tsai, Shan-Wen

    2009-11-01

    Cold atom experiments have observed atom-molecule mixtures by tuning the interactions between particles.footnotetextM.L. Olsen, J. D. Perreault, T. D. Cumby, and D. S. Jin, Phys. Rev. A 80, 030701(R) (2009) We study many particle interactions by examaning a simple model that describes the destruction of fermionic atom pairs to form single bosonic molecules and vice versa. A set of functional Renomalization Group equationsfootnotetextR. Shankar, Rev. Mod. Phys., Vol 66 No. 1, January 1994^,footnotetextS.W. Tsai, A.H. Castro Neto, R. Shankar, D.K. Campbell, Phys. Rev. B 72, 054531 (2005) describing these processes are set up and solved numerically. The Self Energy of the fermions are attained as a function of frequency and we search for frequency dependent instabilities that could denote a transition from a disordered liquid to a BCS phase. (Financial support from NSF DMR-084781 and UC-Lab Fees Research Program.)

  20. Laser-excited atomic fluorescence spectrometry in a pressure-controlled electrothermal atomizer.

    Science.gov (United States)

    Lonardo, R F; Yuzefovsky, A I; Irwin, R L; Michel, R G

    1996-02-01

    A theoretical model was developed to describe the loss of analyte atoms in graphite furnaces during atomization. The model was based on two functions, one that described the supply of analyte by vaporization, and another that described the removal of the analyte by diffusion. Variation in working pressure was shown to affect the competition between these two processes. Optimal atomization efficiency was predicted to occur at a pressure where the supply of the analyte was maximized, and gas phase interactions between the analyte and matrix were minimized. Experiments to test the model included the direct determination of phosphorus and tellurium in nickel alloys and of cobalt in glass. In all cases, reduction in working pressure from atmospheric pressure to 7 Pa decreased sensitivity by 2 orders of magnitude, but improved temporal peak shape. For the atomization of tellurium directly from a solid nickel alloy, and the atomization of cobalt from an aqueous solution, no change in sensitivity was observed as the working pressure was reduced from atmospheric pressure to approximately 70 kPa. If a reduction in working pressure affected only the diffusion of the analyte, poorer sensitivity should have been obtained. Only a commensurate increase in analyte vaporization could account for maintained sensitivity at lower working pressures. Overall, analyte vaporization was not dramatically improved at reduced working pressures, and maximum atomization efficiency was found to occur near atmospheric pressure.

  1. On the bosonic atoms

    Science.gov (United States)

    Amusia, M. Ya.; Chernysheva, L. V.

    2018-01-01

    We investigate ground state properties of atoms, in which substitute fermions - electrons by bosons, namely π --mesons. We perform some calculations in the frame of modified Hartree-Fock (HF) equation. The modification takes into account symmetry, instead of anti-symmetry of the pair identical bosons wave function. The modified HF approach thus enhances (doubles) the effect of self-action for the boson case. Therefore, we accordingly modify the HF equations by eliminating the self-action terms "by hand". The contribution of meson-meson and meson-nucleon non-Coulomb interaction is inessential at least for atoms with low and intermediate nuclear charge, which is our main subject. We found that the binding energy of pion negative ions A π - , pion atoms A π , and the number of extra bound pions ΔN π increases with the growth of nuclear charge Z. For e.g. Xe ΔN π = 4. As an example of a simple process with a pion atom, we consider photoionization that differs essentially from that for electron atoms. Namely, it is not monotonic decreasing from the threshold but has instead a prominent maximum above threshold. We study also elastic scattering of pions by pion atoms.

  2. Atomic Force Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  3. Chemical reaction of atomic oxygen with evaporated films of copper, part 4

    Science.gov (United States)

    Fromhold, A. T.; Williams, J. R.

    1990-01-01

    Evaporated copper films were exposed to an atomic oxygen flux of 1.4 x 10(exp 17) atoms/sq cm per sec at temperatures in the range 285 to 375 F (140 to 191 C) for time intervals between 2 and 50 minutes. Rutherford backscattering spectroscopy (RBS) was used to determine the thickness of the oxide layers formed and the ratio of the number of copper to oxygen atoms in the layers. Oxide film thicknesses ranged from 50 to 3000 A (0.005 to 0.3 microns, or equivalently, 5 x 10(exp -9) to 3 x 10(exp -7); it was determined that the primary oxide phase was Cu2O. The growth law was found to be parabolic (L(t) varies as t(exp 1/2)), in which the oxide thickness L(t) increases as the square root of the exposure time t. The analysis of the data is consistent with either of the two parabolic growth laws. (The thin-film parabolic growth law is based on the assumption that the process is diffusion controlled, with the space charge within the growing oxide layer being negligible. The thick-film parabolic growth law is also based on a diffusion controlled process, but space-charge neutrality prevails locally within very thick oxides.) In the absence of a voltage measurement across the growing oxide, a distinction between the two mechanisms cannot be made, nor can growth by the diffusion of neutral atomic oxygen be entirely ruled out. The activation energy for the reaction is on the order of 1.1 eV (1.76 x 10(exp -19) joule, or equivalently, 25.3 kcal/mole).

  4. Modelling atomic scale manipulation with the non-contact atomic force microscope

    International Nuclear Information System (INIS)

    Trevethan, T; Watkins, M; Kantorovich, L N; Shluger, A L; Polesel-Maris, J; Gauthier, S

    2006-01-01

    We present the results of calculations performed to model the process of lateral manipulation of an oxygen vacancy in the MgO(001) surface using the non-contact atomic force microscope (NC-AFM). The potential energy surfaces for the manipulation as a function of tip position are determined from atomistic modelling of the MgO(001) surface interacting with a Mg terminated MgO tip. These energies are then used to model the dynamical evolution of the system as the tip oscillates and at a finite temperature using a kinetic Monte Carlo method. The manipulation process is strongly dependent on the lateral position of the tip and the system temperature. It is also found that the expectation value of the point at which the vacancy jumps depends on the trajectory of the oscillating cantilever as the surface is approached. The effect of the manipulation on the operation of the NC-AFM is modelled with a virtual dynamic AFM, which explicitly simulates the entire experimental instrumentation and control loops. We show how measurable experimental signals can result from a single controlled atomic scale event and suggest the most favourable conditions for achieving successful atomic scale manipulation experimentally

  5. Applied atomic collision physics. Vol. 2

    International Nuclear Information System (INIS)

    Barnett, C.F.; Harrison, M.F.A.

    1984-01-01

    This volume brings together papers on atomic processes that have been important in fusion research during the past 30 years. Topics include: Atomic radiation from low density plasma; Properties of magnetically confined plasmas in tokomaks; Diagnostics and; Heating by energetic particles. Each chapter includes references

  6. Remote atomic clock synchronization via satellites and optical fibers

    OpenAIRE

    Piester, D.; Rost, M.; Fujieda, M.; Feldmann, T.; Bauch, A.

    2011-01-01

    In the global network of institutions engaged with the realization of International Atomic Time (TAI), atomic clocks and time scales are compared by means of the Global Positioning System (GPS) and by employing telecommunication satellites for two-way satellite time and frequency transfer (TWSTFT). The frequencies of the state-of-the-art primary caesium fountain clocks can be compared at the level of 10−15 (relative, 1 day averaging) and time scales can be synchronized...

  7. JSPS-CAS core university program seminar. Proceedings of Japan-China joint seminar on atomic and molecular processes in plasma

    International Nuclear Information System (INIS)

    Koike, Fumihiro; Dong Chenzhong

    2008-03-01

    As one of the activities of JSPS-CAS Core University Program, Japan-China Joint Seminar on Atomic and Molecular Processes in Plasma was held on October 8 - 12, 2007 in Dunhuang, China. The total number of the officially registered participants was 41, in which 12 from Japan, 25 from China, and 4 from EU. And this seminar is an extension of the last seminar that was held on March 6 - 11, 2004 in Lanzhou, China. In the nuclear fusion plasma, there are quite a variety of atomic processes such as ionization, excitation, radiative recombination, non-radiative recombination (di-electronic recombination, collisional electron transfer), cascade radiation, and cascade Auger decay over the wide range of plasma temperature. The knowledge of such processes is indispensable for the evaluation and improvement of the plasma properties, which is desirable to be investigated by international collaboration groups. The present seminar constitutes one of such activities to realize the above stated aim; especially it has given an opportunity for the collaborative workers to illustrate their achievements. The 32 of the presented papers are indexed individually. (J.P.N.)

  8. Atomic Energy Act 1946

    International Nuclear Information System (INIS)

    1946-01-01

    This Act provides for the development of atomic energy in the United Kingdom and for its control. It details the duties and powers of the competent Minister, in particular his powers to obtain information on and to inspect materials, plant and processes, to control production and use of atomic energy and publication of information thereon. Also specified is the power to search for and work minerals and to acquire property. (NEA) [fr

  9. Combined aerodynamic and electrostatic atomization of dielectric liquid jets

    Energy Technology Data Exchange (ETDEWEB)

    Kourmatzis, Agissilaos [University of Sydney, Clean Combustion Research Group, Aerospace, Mechanical and Mechatronic Engineering, Sydney, NSW (Australia); Ergene, Egemen L.; Mashayek, Farzad [University of Illinois at Chicago, Department of Mechanical and Industrial Engineering, Chicago, IL (United States); Shrimpton, John S. [University of Southampton, Energy Technology Research Group, School of Engineering Sciences, Southampton (United Kingdom); Kyritsis, Dimitrios C.; Huo, Ming [University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, Urbana, IL (United States)

    2012-07-15

    The electrical and atomization performance of a plane-plane charge injection atomizer using a dielectric liquid, and operating at pump pressures ranging from 15 to 35 bar corresponding to injection velocities of up to 50 m/s, is explored via low current electrical measurements, spray imaging and phase Doppler anemometry. The work is aimed at understanding the contribution of electrostatic charging relevant to typical higher pressure fuel injection systems such as those employed in the aeronautical, automotive and marine sectors. Results show that mean-specific charge increases with injection velocity significantly. The effect of electrostatic charge is advantageous at the 15-35 bar range, and an arithmetic mean diameter D{sub 10} as low as 0.2d is achievable in the spray core and lower still in the periphery where d is the orifice diameter. Using the data available from this higher pressure system and from previous high Reynolds number systems (Shrimpton and Yule Exp Fluids 26:460-469, 1999), the promotion of primary atomization has been analysed by examining the effect that charge has on liquid jet surface and liquid jet bulk instability. The results suggest that for the low charge density Q{sub v}{proportional_to} 2 C/m{sup 3} cases under consideration here, a significant increase in primary atomization is observed due to a combination of electrical and aerodynamic forces acting on the jet surface, attributed to the significantly higher jet Weber number (We{sub j}) when compared to low injection pressure cases. Analysis of Sauter mean diameter results shows that for jets with elevated specific charge density of the order Q{sub v}{proportional_to} 6 C/m{sup 3}, the jet creates droplets that a conventional turbulent jet would, but with a significantly lower power requirement. This suggests that 'turbulent' primary atomization, the turbulence being induced by electrical forces, may be achieved under injection pressures that would produce laminar jets

  10. Current ideas on ion-atom collisions

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1975-09-01

    A survey is given of recent developments in the understanding of ion-atom collisions, with particular emphasis on processes leading to ion-induced X-rays. The inner-shell Coulomb ionization phenomena are discussed at some length, with stress on the near-quantitative picture that appears to emerge from simple-minded models. The phenomenon of Pauli excitations and the formation of quasi-molecules leading to united atom phenomena are qualitatively reviewed together with a brief mention of target recoil effects and electron capture processes. Selected background phenomena of importance in interpreting experiments are touched upon, such as various types of bremsstrahlung production. Implications of the recently-discovered interplay between Coulomb-induced processes and united atom phenomena are especially mentioned. It is suggested that this branch of collision physics is now (1975) reaching a point where new notions and more advanced and unifying models are greatly needed. (auth)

  11. Laser spectroscopy and laser isotope separation of atomic gadolinium

    International Nuclear Information System (INIS)

    Chen, Y. W.; Yamanaka, C.; Nomaru, K.; Kou, K.; Niki, H.; Izawa, Y.; Nakai, S.

    1994-01-01

    Atomic vapor laser isotope separation (AVLIS) is a process which uses intense pulsed lasers to selectively photoionize one isotopic species of a chemical element, after which these ions are extracted electromagnetically. The AVLIS has several advantages over the traditional methods based on the mass difference, such as high selectivity, low energy consumption, short starting time and versatility to any atoms. The efforts for atomic vapor laser isotope separation at ILT and ILE, Osaka University have been concentrated into the following items: 1) studies on laser spectroscopy and laser isotope separation of atomic gadolinium, 2) studies on interaction processes including coherent dynamics, propagation effects and atom-ion collision in AVLIS system, 3) development of laser systems for AVLIS. In this paper, we present experimental results on the laser spectroscopy and laser isotope separation of atomic gadolinium.

  12. The self-splitting atom

    International Nuclear Information System (INIS)

    Trenn, T.J.

    1977-01-01

    The book describes the collaboration between Ernest Rutherford and Frederick Soddy at McGill University on the study of radioactivity. Their hypothesis of spontaneous atomic disintegration, which represented the first case of an atomic process completely specified in its time relationships by a probability constant, was extremely fruitful. This concept became the paradigm of a host of other quantized processes in high-energy or elementary particle physics involving a single system in isolation. This achievement did not emerge in a single moment of inspiration but passed dialectically through several, not always coherent, stages of experiment and theory. Hitherto unpublished material has been incorporated in the account, including evidence from the original laboratory notebooks. (U.K.)

  13. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  14. Lasers, light-atom interaction

    International Nuclear Information System (INIS)

    Cagnac, B.; Faroux, J.P.

    2002-01-01

    This book has a double purpose: first to explain in a way as simple as possible the interaction processes occurring between atoms and light waves, and secondly to help any scientist that needs further information to improve his knowledge of lasers. The content of this book has been parted into 3 more or less independent sections: 1) effect of an electromagnetic field on a 2-quantum state system, 2) operating mode of lasers in the framework of transition probabilities, and 3) calculation of the emitted wave. Einstein's phenomenological hypothesis has led to probability equations called rate equations, these equations do not give a true representation of the interaction process at the scale of the atom but this representation appears to be true on an average over a large population of atoms. Only quantum mechanics can describe accurately the light-atom interaction but at the cost of a far higher complexity. In the first part of the book quantum mechanics is introduced and applied under 2 simplifying hypothesis: -) the atom system has only 2 non-degenerate states and -) the intensity of the light wave is high enough to involve a large population of photons. Under these hypothesis, Rabi oscillations, Ramsey pattern and the splitting of Autler-Townes levels are explained. The second part is dedicated to the phenomenological model of Einstein that gives good results collectively. In the third part of the book, Maxwell equations are used to compute field spatial distribution that are currently found in experiments involving lasers. (A.C.)

  15. High efficiency atomic hydrogen source

    International Nuclear Information System (INIS)

    Lagomarsino, V.; Bassi, D.; Bertok, E.; De Paz, M.; Tommasini, F.

    1974-01-01

    This work presents preliminary results of research intended to produce a M.W. discharge atomic hydrogen source with good dissociation at pressures larger than 10 torr. Analysis of the recombination process at these pressures shows that the volume recombination by three body collisions may be more important than wall recombination or loss of atoms by diffusion and flow outside the discharge region

  16. Secondary laser cooling of strontium-88 atoms

    Energy Technology Data Exchange (ETDEWEB)

    Strelkin, S. A.; Khabarova, K. Yu., E-mail: kseniakhabarova@gmail.com; Galyshev, A. A.; Berdasov, O. I.; Gribov, A. Yu.; Kolachevsky, N. N.; Slyusarev, S. N. [Federal State Unitary Enterprise “All-Russia Research Institute for Physicotechnical and Radio Engineering Measurements” (VNIIFTRI) (Russian Federation)

    2015-07-15

    The secondary laser cooling of a cloud of strontium-88 atoms on the {sup 1}S{sub 0}–{sup 3}P{sub 1} (689 nm) intercombination transition captured into a magneto-optical trap has been demonstrated. We describe in detail the recapture of atoms from the primary trap operating on the strong {sup 1}S{sub 0}–{sup 1}P{sub 1} (461 nm) transition and determine the recapture coefficient κ, the number of atoms, and their temperature in the secondary trap as a function of experimental parameters. A temperature of 2 µK has been reached in the secondary trap at the recapture coefficient κ = 6%, which confirms the secondary cooling efficiency and is sufficient to perform metrological measurements of the {sup 1}S{sub 0}–{sup 3}P{sub 1} (698 nm) clock transition in an optical lattice.

  17. High-speed cinematography of gas-metal atomization

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Jason [ALCOA Specialty Metals Division, 100 Technical Drive, Alcoa Center, PA 15069 (United States)]. E-mail: jason.ting@alcoa.com; Connor, Jeffery [Material Science Engineering Department, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Ridder, Stephen [Metallurgical Processing Group, NIST, 100 Bureau Dr. Stop 8556, Gaithersburg, MD 20899 (United States)

    2005-01-15

    A high-speed cinematographic footage of a 304L stainless steel gas atomization, recorded at the National Institute of Standard and Technology (NIST), was analyzed using a discrete Fourier transform (DFT) algorithm. The analysis showed the gas atomization process possesses two prominent frequency ranges of melt oscillation (pulsation). A low-frequency oscillation in the melt flow occurring between 5.41 and 123 Hz, with a dominant frequency at 9.93 Hz, was seen in the recirculation zone adjacent to the melt orifice. A high-frequency melt oscillation range was observed above 123 Hz, and was more prominent one melt-tip-diameter downstream in the melt atomization image than upstream near the melt tip. This high-frequency range may reflect the melt atomization frequency used to produce finely atomized powder. This range also included a prominent high frequency at 1273 Hz, which dominated in the image further away downstream from the melt tip. This discrete high-frequency oscillation is most probably caused by the aeroacoustic ''screech'' phenomenon, intrasound (<20 kHz), a result of the atomizing gas jets undergoing flow resonance. It is hypothesized that this discrete intrinsic aeroacoustic tone may enhance melt breakup in the atomization process with evidence of this fact in the melt images.

  18. High-speed cinematography of gas-metal atomization

    International Nuclear Information System (INIS)

    Ting, Jason; Connor, Jeffery; Ridder, Stephen

    2005-01-01

    A high-speed cinematographic footage of a 304L stainless steel gas atomization, recorded at the National Institute of Standard and Technology (NIST), was analyzed using a discrete Fourier transform (DFT) algorithm. The analysis showed the gas atomization process possesses two prominent frequency ranges of melt oscillation (pulsation). A low-frequency oscillation in the melt flow occurring between 5.41 and 123 Hz, with a dominant frequency at 9.93 Hz, was seen in the recirculation zone adjacent to the melt orifice. A high-frequency melt oscillation range was observed above 123 Hz, and was more prominent one melt-tip-diameter downstream in the melt atomization image than upstream near the melt tip. This high-frequency range may reflect the melt atomization frequency used to produce finely atomized powder. This range also included a prominent high frequency at 1273 Hz, which dominated in the image further away downstream from the melt tip. This discrete high-frequency oscillation is most probably caused by the aeroacoustic ''screech'' phenomenon, intrasound (<20 kHz), a result of the atomizing gas jets undergoing flow resonance. It is hypothesized that this discrete intrinsic aeroacoustic tone may enhance melt breakup in the atomization process with evidence of this fact in the melt images

  19. Proposed Atomic Energy of Canada Ltd. 99Mo waste calcination process

    International Nuclear Information System (INIS)

    Ramey, D.W.; Haas, P.A.; Malkemus, D.W.; McGinnis, C.P.; Meyers, E.S.; Patton, B.D.; Birdwell, J.F.; Jubin, R.T.; Coltharp, K.A.

    1994-10-01

    Atomic Energy of Canada Limited (AECL), at its Chalk River Laboratory, generates from 3000 to 5000 L/year of high-level fissile waste solution from the production of 99 Mo. In this Mo process, highly enriched uranium (93 wt % 235 U, total uranium basis) contained in uranium-aluminum alloy target rods is irradiated to produce the 99 Mo product. The targets are removed from the reactor and dissolved in a mercury nitrate-catalyzed reaction with nitric acid. The 99 Mo product is then recovered by passing the solution through an alumina (Al 2 O 3 ) column. During discussions with personnel from the Oak Ridge National Laboratory (ORNL) on September 10, 1992, the ORNL-developed technology formerly applied to the solidification of aqueous uranium waste (Consolidated Edison Uranium Solidification Program or CEUSP) was judged potentially applicable to the AECL 99 Mo waste. Under a Work-for-Others contract (no. ERD-92-1132), which began May 24, 1993, ORNL was tasked to determine the feasibility of applying the CEUSP (or a similar) calcination process to solidify AECL's 99 Mo waste for > 30 years of safe dry storage. This study was to provide sufficient detailed information on the applicability of a CEUSP-type waste solidification process to allow AECL to select the process which best suited its needs. As with the CEUSP process, evaporation of the waste and a simultaneously partial destruction of acid by reaction with formaldehyde followed by in situ waste can thermal denitration waste was chosen as the best means of solidification. Unlike the CEUSP material, the 99 Mo waste has a considerable number of problem volatile and semivolatile constituents which must be recovered in the off-gas treatment system. Mercury removal before calcination was seen as the best option

  20. Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields

    International Nuclear Information System (INIS)

    Chu, S.-I.; Telnov, D.A.

    2004-01-01

    The advancement of high-power and short-pulse laser technology in the past two decades has generated considerable interest in the study of multiphoton and very high-order nonlinear optical processes of atomic and molecular systems in intense and superintense laser fields, leading to the discovery of a host of novel strong-field phenomena which cannot be understood by the conventional perturbation theory. The Floquet theorem and the time-independent Floquet Hamiltonian method are powerful theoretical framework for the study of bound-bound multiphoton transitions driven by periodically time-dependent fields. However, there are a number of significant strong-field processes cannot be directly treated by the conventional Floquet methods. In this review article, we discuss several recent developments of generalized Floquet theorems, formalisms, and quasienergy methods, beyond the conventional Floquet theorem, for accurate nonperturbative treatment of a broad range of strong-field atomic and molecular processes and phenomena of current interests. Topics covered include (a) artificial intelligence (AI)-most-probable-path approach (MPPA) for effective treatment of ultralarge Floquet matrix problem; (b) non-Hermitian Floquet formalisms and complex quasienergy methods for nonperturbative treatment of bound-free and free-free processes such as multiphoton ionization (MPI) and above-threshold ionization (ATI) of atoms and molecules, multiphoton dissociation (MPD) and above-threshold dissociation (ATD) of molecules, chemical bond softening and hardening, charge-resonance enhanced ionization (CREI) of molecular ions, and multiple high-order harmonic generation (HHG), etc.; (c) many-mode Floquet theorem (MMFT) for exact treatment of multiphoton processes in multi-color laser fields with nonperiodic time-dependent Hamiltonian; (d) Floquet-Liouville supermatrix (FLSM) formalism for exact nonperturbative treatment of time-dependent Liouville equation (allowing for relaxations and

  1. Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields

    Science.gov (United States)

    Chu, Shih-I.; Telnov, Dmitry A.

    2004-02-01

    The advancement of high-power and short-pulse laser technology in the past two decades has generated considerable interest in the study of multiphoton and very high-order nonlinear optical processes of atomic and molecular systems in intense and superintense laser fields, leading to the discovery of a host of novel strong-field phenomena which cannot be understood by the conventional perturbation theory. The Floquet theorem and the time-independent Floquet Hamiltonian method are powerful theoretical framework for the study of bound-bound multiphoton transitions driven by periodically time-dependent fields. However, there are a number of significant strong-field processes cannot be directly treated by the conventional Floquet methods. In this review article, we discuss several recent developments of generalized Floquet theorems, formalisms, and quasienergy methods, beyond the conventional Floquet theorem, for accurate nonperturbative treatment of a broad range of strong-field atomic and molecular processes and phenomena of current interests. Topics covered include (a) artificial intelligence (AI)-most-probable-path approach (MPPA) for effective treatment of ultralarge Floquet matrix problem; (b) non-Hermitian Floquet formalisms and complex quasienergy methods for nonperturbative treatment of bound-free and free-free processes such as multiphoton ionization (MPI) and above-threshold ionization (ATI) of atoms and molecules, multiphoton dissociation (MPD) and above-threshold dissociation (ATD) of molecules, chemical bond softening and hardening, charge-resonance enhanced ionization (CREI) of molecular ions, and multiple high-order harmonic generation (HHG), etc.; (c) many-mode Floquet theorem (MMFT) for exact treatment of multiphoton processes in multi-color laser fields with nonperiodic time-dependent Hamiltonian; (d) Floquet-Liouville supermatrix (FLSM) formalism for exact nonperturbative treatment of time-dependent Liouville equation (allowing for relaxations and

  2. Inner-shell excitation of alkali-metal atoms

    International Nuclear Information System (INIS)

    Tiwary, S.N.

    1987-06-01

    Inner-shell excitation of alkali-metal atoms, which leads to auto-ionization, is reviewed. The validity of quantum mechanical approximation is analyzed and the importance of exchange and correlation is demonstrated. Basic difficulties in making accurate calculations for inner-shell excitation process are discussed. Suggestions are made for further study of inner-shell process in atoms and ions. (author). 26 refs, 4 figs, 1 tab

  3. Designing high performance precursors for atomic layer deposition of silicon oxide

    Energy Technology Data Exchange (ETDEWEB)

    Mallikarjunan, Anupama, E-mail: mallika@airproducts.com; Chandra, Haripin; Xiao, Manchao; Lei, Xinjian; Pearlstein, Ronald M.; Bowen, Heather R.; O' Neill, Mark L. [Air Products and Chemicals, Inc., 1969 Palomar Oaks Way, Carlsbad, California 92011 (United States); Derecskei-Kovacs, Agnes [Air Products and Chemicals, Inc., 7201 Hamilton Blvd., Allentown, Pennsylvania 18195 (United States); Han, Bing [Air Products and Chemicals, Inc., 2 Dongsanhuan North Road, Chaoyang District, Beijing 100027 (China)

    2015-01-15

    Conformal and continuous silicon oxide films produced by atomic layer deposition (ALD) are enabling novel processing schemes and integrated device structures. The increasing drive toward lower temperature processing requires new precursors with even higher reactivity. The aminosilane family of precursors has advantages due to their reactive nature and relative ease of use. In this paper, the authors present the experimental results that reveal the uniqueness of the monoaminosilane structure [(R{sub 2}N)SiH{sub 3}] in providing ultralow temperature silicon oxide depositions. Disubstituted aminosilanes with primary amines such as in bis(t-butylamino)silane and with secondary amines such as in bis(diethylamino)silane were compared with a representative monoaminosilane: di-sec-butylaminosilane (DSBAS). DSBAS showed the highest growth per cycle in both thermal and plasma enhanced ALD. These findings show the importance of the arrangement of the precursor's organic groups in an ALD silicon oxide process.

  4. The influence of (n-n{sup '})-mixing processes in He*(n)+He(1s{sup 2}) collisions on He*(n) atoms' populations in weakly ionized helium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlov, A.A. [Institute of Physics, P.O. Box 57, 11001 Belgrade (Serbia and Montenegro); Ignjatovic, Lj.M. [Institute of Physics, P.O. Box 57, 11001 Belgrade (Serbia)], E-mail: ljuba@phy.bg.ac.yu; Sreckovic, V.A. [Institute of Physics, P.O. Box 57, 11001 Belgrade (Serbia); Djuric, Z. [Silvaco Data Systems, Compass Point, St Ives PE27 5JL (United Kingdom)

    2008-03-15

    The results of semi-classical calculations of rate coefficients of (n-n{sup '})-mixing processes due to collisions of Rydberg atoms He*(n) with He(1s{sup 2}) atoms are presented. It is assumed that these processes are caused by the resonant energy exchange within the electron component of He*(n)+He collision system. The method is realized through the numerical simulation of the (n-n{sup '})-mixing processes, and is applied for calculations of the corresponding rate coefficients. The calculations are performed for the principal quantum numbers n,n{sup '} in ranges 4{<=}natom and electron temperatures, T{sub a},T{sub e}, in domains 5000K{<=}T{sub a}{<=}T{sub e}{<=}20000K. It is shown that the (n-n{sup '})-mixing processes can significantly influence the populations of Rydberg atoms in non-equilibrium weakly ionized helium plasmas with ionization degree {approx}10{sup -4}. Therefore, these processes have to be included in the appropriate models of such plasmas.

  5. Physically representative atomistic modeling of atomic-scale friction

    Science.gov (United States)

    Dong, Yalin

    Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the

  6. Study of autoradiolytic processes in tritium labelled polymers by quantum mechanical methods

    International Nuclear Information System (INIS)

    Postolache, Cristian; Fugaru, Viorel

    1999-01-01

    Autoradiolysis is a decomposition process of radionuclide labelled compounds. The process is similar to radiolytic degradation and is due to the autoirradiation following the decay of radioactive elements chemically bound to labelled molecules. In this work, an evaluating model of autoradiolysis behavior of tritium labelled polymers is presented. Polymeric structures of relevance for radioluminescent source industry, namely: polyethyl, polyethyl-phenyl, polypropyl, polypropyl-phenyl siloxanes, hydrogenated (tritiated) polyacetylenes with 1,4-diphenylbutane, 1,4-diphenyl-2-butene and 1,4-diphenylbutadiene structures have been investigated. Modelling of autoradiolytic processes was carried out with HYPERCHEM 4 software and its CHEMPLUS extension. Internal and external primary effects have been analyzed. External primary effects (EPE) were assessed by a procedure used in the study of radiolytic processes of solid polymers. A three step model was proposed for the assessment of internal primary effects (IPE): (a) tritium atom decay inducing a cationic radical in the molecular structure; (b) geometric re-optimization of cationic radical; (c) electron capture from environment and rapid breaking of the chemical bond of LUMO orbital distribution zone. The analysis of autoradiolytic processes in labelled polysiloxanes makes clear the dominant degradation function of EPE. The presence of phenyl groups in the polymeric structure improves the stability to autoradiolysis. The most resistant structures are obtained in the case of ethyl(propyl) and phenyl radicals positioned at different Si atoms. The hydrogenated oligomeric phenylacetylene structures present a high stability to autoradiolysis. In these cases, IPE in benzilic position have a major destructive function in the autoradiolytic process. (authors)

  7. Influence of Na, K, Ca and Mg on lead atomization by tungsten coil atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Oliveira Pedro V. de

    2000-01-01

    Full Text Available The atomization of lead in an electrothermal tungsten coil atomizer in the presence and absence of Na+, K+, Ca2+ and Mg2+ was investigated with the objective of understanding the interference processes. The lead atomization was less affected by Ca2+ and Mg2+ than by Na+ and K+. In the absence of concomitants, lead atomization efficiency was improved by the presence of H2 (10% v/v in the purge gas composition, during pyrolysis and atomization steps. The interference caused by Na+ and Ca2+ was negligible when the pyrolysis step was accomplished without H2 in the purge gas composition. The results showed that Na+, K+, Ca2+ and Mg2+ are directly involved in competition reactions for H2 in condensed phase.

  8. Atomic physics of strongly correlated systems

    International Nuclear Information System (INIS)

    Lin, C.D.

    1986-01-01

    This abstract summarizes the progress made in the last year and the future plans of our research in the study of strongly correlated atomic systems. In atomic structure and atomic spectroscopy we are investigating the classification and supermultiplet structure of doubly excited states. We are also beginning the systematic study of triply excited states. In ion-atom collisions, we are exploring an AO-MO matching method for treating multi-electron collision systems to extract detailed information such as subshell cross sections, alignment and orientation parameters, etc. We are also beginning ab initio calculations on the angular distributions for electron transfer processes in low-energy (about 10-100eV/amu) ion-atom collisions in a full quantum mechanical treatment of the motion of heavy particles

  9. Atomic physics with highly charged ions

    International Nuclear Information System (INIS)

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations

  10. Experiments with Highly-Ionized Atoms in Unitary Penning Traps

    Directory of Open Access Journals (Sweden)

    Shannon Fogwell Hoogerheide

    2015-08-01

    Full Text Available Highly-ionized atoms with special properties have been proposed for interesting applications, including potential candidates for a new generation of optical atomic clocks at the one part in 1019 level of precision, quantum information processing and tests of fundamental theory. The proposed atomic systems are largely unexplored. Recent developments at NIST are described, including the isolation of highly-ionized atoms at low energy in unitary Penning traps and the use of these traps for the precise measurement of radiative decay lifetimes (demonstrated with a forbidden transition in Kr17+, as well as for studying electron capture processes.

  11. Light exotic atoms in liquid and gaseous hydrogen and deuterium. Atom anti pp, theory and experiment

    International Nuclear Information System (INIS)

    Markushin, V.E.

    1980-01-01

    Considered are the de-eXcitation, absorption and Stark mixing processes in light exotic atoms formed in liquid and gaseous hydrogen (deuteriUm) and presented is the new method of the cascade calculations. Atom anti pp is studied in detail, calculated are: the populations of atomic levels, the absorption probabilities, and the X-rays yields. The present-day experimental data are discussed and it is concluded that all of them (but one result), can be easily reconciled with each other and with the theory

  12. Droplet Breakup Mechanisms in Air-blast Atomizers

    Science.gov (United States)

    Aliabadi, Amir Abbas; Taghavi, Seyed Mohammad; Lim, Kelly

    2011-11-01

    Atomization processes are encountered in many natural and man-made phenomena. Examples are pollen release by plants, human cough or sneeze, engine fuel injectors, spray paint and many more. The physics governing the atomization of liquids is important in understanding and utilizing atomization processes in both natural and industrial processes. We have observed the governing physics of droplet breakup in an air-blast water atomizer using a high magnification, high speed, and high resolution LASER imaging technique. The droplet breakup mechanisms are investigated in three major categories. First, the liquid drops are flattened to form an oblate ellipsoid (lenticular deformation). Subsequent deformation depends on the magnitude of the internal forces relative to external forces. The ellipsoid is converted into a torus that becomes stretched and disintegrates into smaller drops. Second, the drops become elongated to form a long cylindrical thread or ligament that break up into smaller drops (Cigar-shaped deformation). Third, local deformation on the drop surface creates bulges and protuberances that eventually detach themselves from the parent drop to form smaller drops.

  13. Observation of relativistic antihydrogen atoms

    International Nuclear Information System (INIS)

    Blanford, Glenn DelFosse

    1998-01-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 0 production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e + e - pair creation near a nucleus with the e + being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure

  14. Energy-enhanced atomic layer deposition : offering more processing freedom

    NARCIS (Netherlands)

    Potts, S.E.; Kessels, W.M.M.

    2013-01-01

    Atomic layer deposition (ALD) is a popular deposition technique comprising two or more sequential, self-limiting surface reactions, which make up an ALD cycle. Energy-enhanced ALD is an evolution of traditional thermal ALD methods, whereby energy is supplied to a gas in situ in order to convert a

  15. Work Process in Primary Health Care: action research with Community Health Workers.

    Science.gov (United States)

    Cordeiro, Luciana; Soares, Cassia Baldini

    2015-11-01

    The aim of this article was to describe and analyze the work of community health workers (CHW). The main objective of study was to analyze the development process of primary health care practices related to drug consumption. The study is based on the Marxist theoretical orientation and the action research methodology, which resulted in the performance of 15 emancipatory workshops. The category work process spawned the content analysis. It exposed the social abandonment of the environment in which the CHWs work is performed. The latter had an essential impact on the identification of the causes of drug-related problems. These findings made it possible to criticize the reiterative, stressful actions that are being undertaken there. Such an act resulted in raising of the awareness and creating the means for political action. The CHWs motivated themselves to recognize the object of the work process in primary health care, which they found to be the disease or addiction in the case of drug users. They have criticized this categorization as well as discussed the social division of work and the work itself whilst recognizing themselves as mere instruments in the work process. The latter has inspired the CHW to become subjects, or co-producers of transformations of social needs.

  16. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  17. PREFACE: Fourth International Symposium on Atomic Technology

    Science.gov (United States)

    Okada, Shigefumi

    2010-04-01

    The International Symposium on Atomic Technology (ISAT) is held every year. The 4th Symposium (ISAT-4) was held on November 18-19, 2009 at the Seaside Hotel MAIKO VILLA KOBE, Kobe City, Japan presided by the "Atomic Technology Project". The ISAT-4 symposium was intended to offer a forum for the discussion on the latest progress in the atomic technologies. The symposium was attended by 107 delegates. There were 10 invited and 6 oral presentations. The number of poster presentations was 69. From all the contributions, 22 papers selected through review process are contained in this volume. The "Atomic Technology Project" was started in 2006 as a joint project of three institutions; (1) the Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University (CAMT), (2) the Tsukuba Research Center for Interdisciplinary Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba (TIMS) and (3) the Polyscale Technology Research Center, Research Institute for Science and Technology, Tokyo University of Science (PTRC), each of which were independently pursuing nano-technologies and was developing atomic scale operation and diagnostics, functional materials, micro processing and device. The project is funded by the Ministry of Education, Culture, Sports, Science and Technology of Japan. The goal of the project is to contribute to the development of atomic-scale science and technologies such as functional molecules, biomaterials, and quantum functions of atomic-scale structures. Shigefumi Okada Conference Chair Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita-city, Osaka 565-0871, Japan. Conference photograph Kobe photograph

  18. Specific Adaptation of Gas Atomization Processing for Al-Based Alloy Powder for Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver [Ames Lab., Ames, IA (United States); Siemon, John [Alcoa Inc., Pittsburgh, PA (United States)

    2017-06-30

    The charge for each gas atomization experiment was provided by Alcoa and consisted of cast blocks cut into 1 inch by 1 inch square rods of the chosen aluminum alloys. The atmosphere in the melting chamber and connected atomization system was evacuated with a mechanical pump prior to backfilling with ultrahigh purity (UHP grade) Ar. The melt was contained in a bottom tapped alumina crucible with an alumina stopper rod to seal the exit while heating to a pouring temperature of 1000 – 1400°C. When the desired superheat was reached, the stopper rod was lifted and melt flowed through pour tube and was atomized with Ar from a 45-22-052-409 gas atomization nozzle (or atomization die), having a jet apex angle of 45 degrees with 22 cylindrical gas jets (each with diameter of 1.32 mm or 0.052 inches) arrayed around the axis of a 10.4 mm central bore. The Ar atomization gas supply regulator pressure was set to produce nozzle manifold pressures for the series of runs at pressures of 250-650 psi. Secondary gas halos of Ar+O2 and He also were added to the interior of the spray chamber at various downstream locations for additional cooling of the atomized droplets, surface passivation, and to prevent coalescence of the resulting powder.

  19. A simplified numerical model for atomic processes of the low and medium Z-ions in the laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Takashi; Kato, Susumu; Mima, Kunioki (Osaka Univ., Suita (Japan). Inst. of Laser Engineering); Nishiguchi, Akio

    1992-11-01

    To calculate the ion fractional abundance of every charge state with the short computation time, we tried to build a suitable model for describing atomic processes. In 1982, Busquet proposed a mixed model, where he introduced two superlevels. They are related to a ground state and a ionized state, respectively, and the local-thermodynamic equilibrium (LET) is assumed over the excited states with the ionized state. In order to treat the atomic processes more accurately, we introduce the three superlevels which are the ground state, the first excited state and ionized state. The transition rates between them are evaluated by using Burguess formula which is used in the rate equations. The present model (Extended Mixed Model; EMM) gives results closer to the collisional-radiative model (CRM) than the original mixed model. The emissivity calculated by average-ion model (AIM) is compared with the one by EMM. The x-ray spectra are also obtained by using the EMM together with the hydrodynamic implosion code HIMICO. (author).

  20. A simplified numerical model for atomic processes of the low and medium Z-ions in the laser-produced plasmas

    International Nuclear Information System (INIS)

    Inoue, Takashi; Kato, Susumu; Mima, Kunioki; Nishiguchi, Akio.

    1992-01-01

    To calculate the ion fractional abundance of every charge state with the short computation time, we tried to build a suitable model for describing atomic processes. In 1982, Busquet proposed a mixed model, where he introduced two superlevels. They are related to a ground state and a ionized state, respectively, and the local-thermodynamic equilibrium (LET) is assumed over the excited states with the ionized state. In order to treat the atomic processes more accurately, we introduce the three superlevels which are the ground state, the first excited state and ionized state. The transition rates between them are evaluated by using Burguess formula which is used in the rate equations. The present model (Extended Mixed Model; EMM) gives results closer to the collisional-radiative model (CRM) than the original mixed model. The emissivity calculated by average-ion model (AIM) is compared with the one by EMM. The x-ray spectra are also obtained by using the EMM together with the hydrodynamic implosion code HIMICO. (author)

  1. Atomic and Molecular Data and their Applications★

    Science.gov (United States)

    Drake, Gordon W. F.; Yoon, Jung-Sik; Kato, Daiji; Karwasz, Grzegorz

    2018-03-01

    This topical issue on Atomic and molecular data and their applications was motivated by the 10th International Conference on Atomic and Molecular Data (ICAMDATA 2016), which was held from September 26 to 29, 2016 in Gunsan, Republic of Korea. The topics of this issue reflect those of the conference program. The scientific papers in the topical issue cover the fields of atomic and molecular structure, radiative transitions, scattering processes, data base development, and the applications of atomic and molecular data to plasma modeling. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, and Grzegorz Karwasz.

  2. Experimental investigation about attachment processes of atoms and ions in the size range < 0.1 μm

    International Nuclear Information System (INIS)

    Porstendoerfer, J.; Mercer, T.T.

    1977-01-01

    Results of an investigation of the attachment process of atoms and ion in the size range between 0.009 to 4 μm on a particle or droplet surface are presented. It is again shown that the experimental values are adequately predicted by the diffusion attachment theory under gas kinetic consideration, if the sticking probability of Rn and Tn decay products is S = 1. 12 references

  3. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  4. Atomic-vapor-laser isotope separation

    International Nuclear Information System (INIS)

    Davis, J.I.

    1982-10-01

    This paper gives a brief history of the scientific considerations leading to the development of laser isotope separation (LIS) processes. The close relationship of LIS to the broader field of laser-induced chemical processes is evaluated in terms of physical criteria to achieve an efficient production process. Atomic-vapor LIS processes under development at Livermore are reviwed. 8 figures

  5. Determination of silicon in biomass and products of pyrolysis process via high-resolution continuum source atomic absorption spectrometry.

    Science.gov (United States)

    Nakadi, Flávio V; Prodanov, Caroline; Boschetti, Wiliam; Vale, Maria Goreti R; Welz, Bernhard; de Andrade, Jailson B

    2018-03-01

    Thermochemical processes can convert the biomass into fuels, such as bio-oil. The biomass submitted to pyrolysis process, such as fibers, are generally rich in silicon, an element that can lead to damages in an engine when there is high concentration in a fuel. High-resolution continuum source atomic absorption spectrometry (HR-CS AAS) is an interesting alternative for Si determination in the products and byproducts of the pyrolysis process because, besides the flame (F) and graphite furnace (GF) atomizers, it has enhanced the application of direct analysis of solid samples (SS) within GF. This study aimed the development of methods to determine Si in biomass samples, their products and byproducts using HR-CS AAS. A high-resolution continuum source atomic absorption spectrometer contrAA 700 equipped with F and GF atomizers was used throughout the study. HR-CS F AAS (λ = 251.611nm, 1 detection pixel, N 2 O/C 2 H 2 flame) was used to evaluate Si content in biomass and ash, after a microwave-assisted acid digestion with HNO 3 and HF. HR-CS GF AAS (T pyr = 1400°C, T atom = 2650°C) has evaluated Si in pyrolysis water and bio-oil at 251.611nm, and in peach pit biomass and ash at 221.174nm using SS, both wavelengths with 1 detection pixel. Rhodium (300μg) was applied as permanent modifier and 10μgPd + 6μg Mg were pipetted onto the standards/samples at each analysis. Three different biomass samples were studied: palm tree fiber, coconut fiber and peach pit, and three certified reference materials (CRM) were used to verify the accuracy of the methods. The figures of merit were LOD 0.09-20mgkg -1 , and LOQ 0.3-20mgkg -1 , considering all the methods. There were no significant differences between the CRM certified values and the determined ones, using a Student t-test with a confidence interval of 95% (n = 5). Si concentration ranged from 0.11-0.92% mm -1 , 1.1-1.7mgkg -1 , 3.3-13mgkg -1 , and 0.41-1.4%mm -1 , in biomass, bio-oil, pyrolysis water and ash, respectively

  6. Process development report: 0.20-m primary burner system

    International Nuclear Information System (INIS)

    Rickman, W.S.

    1978-09-01

    HTGR reprocessing consists of crushing the spent fuel elements to a size suitable for burning in a fluidized bed to remove excess graphite, separating the fissile and fertile particles, crushing and burning the SiC-coated fuel particles to remove the remainder of the carbon, dissolution and separation of the particles from insoluble materials, and solvent extraction separation of the dissolved uranium and thorium. Burning the crushed fuel elements is accomplished in a primary burner. This is a batch-continuous, fluidized-bed process utilizing above-bed gravity fines recycle. In gas-solid separation, a combination of a cyclone and porous metal filters is used. This report documents operational tests performed on a 0.20-m primary burner using crushed fuel representative of both Fort St. Vrain and large high-temperature gas-cooled reactor cores. The burner was reconstructed to a gravity fines recycle mode prior to beginning these tests. Results of two separate and successful 48-hour burner runs and several short-term runs have indicated the operability of this concept. Recommendations are made for future work

  7. Fifty years of atomic time-keeping at VNIIFTRI

    Science.gov (United States)

    Domnin, Yu; Gaigerov, B.; Koshelyaevsky, N.; Poushkin, S.; Rusin, F.; Tatarenkov, V.; Yolkin, G.

    2005-06-01

    Time metrology in Russia in the second half of the twentieth century has been marked, as in other advanced countries, by the rapid development of time and frequency quantum standards and the beginning of atomic time-keeping. This brief review presents the main developments and studies in time and frequency measurement, and the improvement of accuracy and atomic time-keeping at the VNIIFTRI—the National Metrology Institute keeping primary time and frequency standards and ensuring unification of measurement. The milestones along the way have been the ammonia and hydrogen masers, primary caesium beam and fountain standards and laser frequency standards. For many years, VNIIFTRI was the only world laboratory that applied hydrogen-maser clock ensembles for time-keeping. VNIIFTRI's work on international laser standard frequency comparisons and absolute frequency measurements contributed greatly to the adoption by the CIPM of a highly accurate value for the He-Ne/CH4 laser frequency. VNIIFTRI and the VNIIM were the first to establish a united time, frequency and length standard.

  8. Remote Preparation of an Atomic Quantum Memory

    International Nuclear Information System (INIS)

    Rosenfeld, Wenjamin; Berner, Stefan; Volz, Juergen; Weber, Markus; Weinfurter, Harald

    2007-01-01

    Storage and distribution of quantum information are key elements of quantum information processing and future quantum communication networks. Here, using atom-photon entanglement as the main physical resource, we experimentally demonstrate the preparation of a distant atomic quantum memory. Applying a quantum teleportation protocol on a locally prepared state of a photonic qubit, we realized this so-called remote state preparation on a single, optically trapped 87 Rb atom. We evaluated the performance of this scheme by the full tomography of the prepared atomic state, reaching an average fidelity of 82%

  9. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Berman, Paul R; Arimondo, Ennio

    2006-01-01

    Volume 54 of the Advances Series contains ten contributions, covering a diversity of subject areas in atomic, molecular and optical physics. The article by Regal and Jin reviews the properties of a Fermi degenerate gas of cold potassium atoms in the crossover regime between the Bose-Einstein condensation of molecules and the condensation of fermionic atom pairs. The transition between the two regions can be probed by varying an external magnetic field. Sherson, Julsgaard and Polzik explore the manner in which light and atoms can be entangled, with applications to quantum information processing

  10. Atomic and molecular physics of plasma-based environmental technologies for abatement of volatile organic compounds

    International Nuclear Information System (INIS)

    Penetrante, B.M.; Hsiao, M.C.; Bardsley, J.N.; Merrit, B.T.; Vogtlin, G.E.; Kuthi, A.; Burkhart, C.P.; Bayless, J.R.

    1996-01-01

    Non-thermal plasma techniques represent a new generation of air emission control technology that potentially could treat large-volume emissions containing dilute concentrations of volatile organic compounds (VOCs). In order to apply non-thermal in an industrial scale, it is important to establish the electrical power requirements and byproducts of the process. There is a need for reliable data concerning the primary decomposition mechanisms and subsequent chemical kinetics associated with non-thermal plasma processing of VOCs. There are many basic atomic and molecular physics issues that are essential in evaluating the economic performance of non-thermal plasma reactor. These studies are important in understanding how the input electrical power is dissipated in the plasma and how efficiency it is converted to the production of the plasma species (radicals, ions or electrons) responsible for the decomposition of the VOCs. This paper presents results from basic experimental and theoretical studied aimed at identifying the reaction mechanisms responsible for the primary decomposition of various types of VOCs. (Authors)

  11. A study on thyroid disorder of Sjoegren's disease in atomic bomb survivors in Hiroshima

    International Nuclear Information System (INIS)

    Noma, Koji; Sasaki, Hideo; Ito, Chikako; Hasegawa, Kazuyo.

    1984-01-01

    Thyroid disorders were seen in eight of 25 atomic bomb survivors with Sjoegren's disease -- simple goiter in 2, chronic thyroiditis in 4, and primary hypothyroidism probably arising from chronic thyroiditis in 2. Thyroid disorders associated with Sjoegren's disease seemed to occur frequently in survivors exposed near the explosion. One of the two survivors with primary hypothyroidism had been exposed to atomic bomb 1.7 km from the explosion. As for the other clinical laboratory findings, there was no significant difference between the group with thyroid disorders and the group without them. (Namekawa, K.)

  12. Toward the Atomic-Level Mass Analysis of Biomolecules by the Scanning Atom Probe.

    Science.gov (United States)

    Nishikawa, Osamu; Taniguchi, Masahiro

    2017-04-01

    In 1994, a new type of atom probe instrument, named the scanning atom probe (SAP), was proposed. The unique feature of the SAP is the introduction of a small extraction electrode, which scans over a specimen surface and confines the high field, required for field evaporation of surface atoms in a small space, between the specimen and the electrode. Thus, the SAP does not require a sharp specimen tip. This indicates that the SAP can mass analyze the specimens which are difficult to form in a sharp tip, such as organic materials and biomolecules. Clean single wall carbon nanotubes (CNT), made by high-pressure carbon monoxide process are found to be the best substrates for biomolecules. Various amino acids and dipeptide biomolecules were successfully mass analyzed, revealing characteristic clusters formed by strongly bound atoms in the specimens. The mass analysis indicates that SAP analysis of biomolecules is not only qualitative, but also quantitative.

  13. Spray drying for preservation of erythrocytes: effect of atomization on hemolysis.

    Science.gov (United States)

    McLean, Mary; Han, Xiao-Yue; Higgins, Adam Z

    2013-04-01

    Spray drying has the potential to enable storage of erythrocytes at room temperature in the dry state. The spray drying process involves atomization of a liquid into small droplets and drying of the droplets in a gas stream. In this short report, we focus on the atomization process. To decouple atomization from drying, erythrocyte suspensions were sprayed with a two-fluid atomizer nozzle using humid nitrogen as the atomizing gas. The median droplet size was less than 100 μm for all of the spray conditions investigated, indicating that the suspensions were successfully atomized. Hemolysis was significantly affected by the hematocrit of the erythrocyte suspension, the suspension flow rate, and the atomizing gas flow rate (pspray drying may be a feasible option for erythrocyte biopreservation.

  14. On-line system for investigation of atomic structure

    International Nuclear Information System (INIS)

    Amus'ya, M.Ya.; Chernysheva, L.V.

    1983-01-01

    A description of the on-line ATOM system is presented that enables to investigate the structure of atomic electron shells and their interactions with different scattering particles-electrons, positronse photons, mesons - with the use of computerized numerical solutions. The problem is stated along with mathematical description of atomic properties including theoretical and numerical models for each investigated physical process. The ATOM system structure is considered. The Hartree-Fock method is used to determine the wave functions of the ground and excited atomic states. The programs are written in the ALGOL langauge. Different atomic characteristics were possible to be calculated for the first time with an accuracy exceeding an experimental one

  15. Application of two-dimensional crystallography and image processing to atomic resolution Z-contrast images.

    Science.gov (United States)

    Morgan, David G; Ramasse, Quentin M; Browning, Nigel D

    2009-06-01

    Zone axis images recorded using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM or Z-contrast imaging) reveal the atomic structure with a resolution that is defined by the probe size of the microscope. In most cases, the full images contain many sub-images of the crystal unit cell and/or interface structure. Thanks to the repetitive nature of these images, it is possible to apply standard image processing techniques that have been developed for the electron crystallography of biological macromolecules and have been used widely in other fields of electron microscopy for both organic and inorganic materials. These methods can be used to enhance the signal-to-noise present in the original images, to remove distortions in the images that arise from either the instrumentation or the specimen itself and to quantify properties of the material in ways that are difficult without such data processing. In this paper, we describe briefly the theory behind these image processing techniques and demonstrate them for aberration-corrected, high-resolution HAADF-STEM images of Si(46) clathrates developed for hydrogen storage.

  16. Quantum Spin Lenses in Atomic Arrays

    Directory of Open Access Journals (Sweden)

    A. W. Glaetzle

    2017-09-01

    Full Text Available We propose and discuss quantum spin lenses, where quantum states of delocalized spin excitations in an atomic medium are focused in space in a coherent quantum process down to (essentially single atoms. These can be employed to create controlled interactions in a quantum light-matter interface, where photonic qubits stored in an atomic ensemble are mapped to a quantum register represented by single atoms. We propose Hamiltonians for quantum spin lenses as inhomogeneous spin models on lattices, which can be realized with Rydberg atoms in 1D, 2D, and 3D, and with strings of trapped ions. We discuss both linear and nonlinear quantum spin lenses: in a nonlinear lens, repulsive spin-spin interactions lead to focusing dynamics conditional to the number of spin excitations. This allows the mapping of quantum superpositions of delocalized spin excitations to superpositions of spatial spin patterns, which can be addressed by light fields and manipulated. Finally, we propose multifocal quantum spin lenses as a way to generate and distribute entanglement between distant atoms in an atomic lattice array.

  17. Single-atom lasing induced atomic self-trapping

    International Nuclear Information System (INIS)

    Salzburger, T.; Ritsch, H.

    2004-01-01

    We study atomic center of mass motion and field dynamics of a single-atom laser consisting of a single incoherently pumped free atom moving in an optical high-Q resonator. For sufficient pumping, the system starts lasing whenever the atom is close to a field antinode. If the field mode eigenfrequency is larger than the atomic transition frequency, the generated laser light attracts the atom to the field antinode and cools its motion. Using quantum Monte Carlo wave function simulations, we investigate this coupled atom-field dynamics including photon recoil and cavity decay. In the regime of strong coupling, the generated field shows strong nonclassical features like photon antibunching, and the atom is spatially confined and cooled to sub-Doppler temperatures. (author)

  18. Distribution of quantum information between an atom and two photons

    International Nuclear Information System (INIS)

    Weber, Bernhard

    2008-01-01

    The construction of networks consisting of optically interconnected processing units is a promising way to scale up quantum information processing systems. To store quantum information, single trapped atoms are among the most proven candidates. By placing them in high finesse optical resonators, a bidirectional information exchange between the atoms and photons becomes possible with, in principle, unit efficiency. Such an interface between stationary and ying qubits constitutes a possible node of a future quantum network. The results presented in this thesis demonstrate the prospects of a quantum interface consisting of a single atom trapped within the mode of a high-finesse optical cavity. In a two-step process, we distribute entanglement between the stored atom and two subsequently emitted single photons. The long atom trapping times achieved in the system together with the high photon collection efficiency of the cavity make the applied protocol in principle deterministic, allowing for the creation of an entangled state at the push of a button. Running the protocol on this quasi-stationary quantum interface, the internal state of the atom is entangled with the polarization state of a single emitted photon. The entanglement is generated by driving a vacuum-stimulated Raman adiabatic passage between states of the coupled atom-cavity system. In a second process, the atomic part of the entangled state is mapped onto a second emitted photon using a similar technique and resulting in a polarization-entangled two-photon state. To verify and characterize the photon-photon entanglement, we measured a violation of a Bell inequality and performed a full quantum state tomography. The results prove the prior atom-photon entanglement and demonstrate a quantum information transfer between the atom and the two emitted photons. This reflects the advantages of a high-finesse cavity as a quantum interface in future quantum networks. (orig.)

  19. Distribution of quantum information between an atom and two photons

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Bernhard

    2008-11-03

    The construction of networks consisting of optically interconnected processing units is a promising way to scale up quantum information processing systems. To store quantum information, single trapped atoms are among the most proven candidates. By placing them in high finesse optical resonators, a bidirectional information exchange between the atoms and photons becomes possible with, in principle, unit efficiency. Such an interface between stationary and ying qubits constitutes a possible node of a future quantum network. The results presented in this thesis demonstrate the prospects of a quantum interface consisting of a single atom trapped within the mode of a high-finesse optical cavity. In a two-step process, we distribute entanglement between the stored atom and two subsequently emitted single photons. The long atom trapping times achieved in the system together with the high photon collection efficiency of the cavity make the applied protocol in principle deterministic, allowing for the creation of an entangled state at the push of a button. Running the protocol on this quasi-stationary quantum interface, the internal state of the atom is entangled with the polarization state of a single emitted photon. The entanglement is generated by driving a vacuum-stimulated Raman adiabatic passage between states of the coupled atom-cavity system. In a second process, the atomic part of the entangled state is mapped onto a second emitted photon using a similar technique and resulting in a polarization-entangled two-photon state. To verify and characterize the photon-photon entanglement, we measured a violation of a Bell inequality and performed a full quantum state tomography. The results prove the prior atom-photon entanglement and demonstrate a quantum information transfer between the atom and the two emitted photons. This reflects the advantages of a high-finesse cavity as a quantum interface in future quantum networks. (orig.)

  20. Atomic vapor laser isotope separation

    International Nuclear Information System (INIS)

    Stern, R.C.; Paisner, J.A.

    1985-01-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements

  1. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  2. Potential of Transition Metal Atoms Embedded in Buckled Monolayer g-C3N4 as Single-Atom Catalysts

    KAUST Repository

    Li, Shu-Long; Kan, Xiang; Yin, Hui; Gan, Li-Yong; Schwingenschlö gl, Udo; Zhao, Yong

    2017-01-01

    We use first-principles calculations to systematically explore the potential of transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) embedded in buckled monolayer g-C3N4 as single-atom catalysts. We show that clustering of Sc and Ti on g-C3N4 is thermodynamically impeded and that V, Cr, Mn, and Cu are much less susceptible to clustering than the other TM atoms under investigation. Strong bonding of the transition metal atoms in the cavities of g-C3N4 and high diffusion barriers together are responsible for single-atom fixation. Analysis of the CO oxidation process indicates that embedding of Cr and Mn in g-C3N4 gives rise to promising single-atom catalysts at low temperature.

  3. Potential of Transition Metal Atoms Embedded in Buckled Monolayer g-C3N4 as Single-Atom Catalysts

    KAUST Repository

    Li, Shu-Long

    2017-10-27

    We use first-principles calculations to systematically explore the potential of transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) embedded in buckled monolayer g-C3N4 as single-atom catalysts. We show that clustering of Sc and Ti on g-C3N4 is thermodynamically impeded and that V, Cr, Mn, and Cu are much less susceptible to clustering than the other TM atoms under investigation. Strong bonding of the transition metal atoms in the cavities of g-C3N4 and high diffusion barriers together are responsible for single-atom fixation. Analysis of the CO oxidation process indicates that embedding of Cr and Mn in g-C3N4 gives rise to promising single-atom catalysts at low temperature.

  4. Cold atomic beams of high brightness

    International Nuclear Information System (INIS)

    Rozhdestvensky, Yu V

    2004-01-01

    The possibility is studied for obtaining intense cold atomic beams by using the Renyi entropy to optimise the laser cooling process. It is shown in the case of a Gaussian velocity distribution of atoms, the Renyi entropy coincides with the density of particles in the phase space. The optimisation procedure for cooling atoms by resonance optical radiation is described, which is based on the thermodynamic law of increasing the Renyi entropy in time. Our method is compared with the known methods for increasing the laser cooling efficiency such as the tuning of a laser frequency in time and a change of the atomic transition frequency in an inhomogeneous transverse field of a magnetic solenoid. (laser cooling)

  5. Plasma enhanced atomic layer batch processing of aluminum doped titanium dioxide

    International Nuclear Information System (INIS)

    Lehnert, Wolfgang; Ruhl, Guenther; Gschwandtner, Alexander

    2012-01-01

    Among many promising high-k dielectrics, TiO 2 is an interesting candidate because of its relatively high k value of over 40 and its easy integration into existing semiconductor manufacturing schemes. The most critical issues of TiO 2 are its low electrical stability and its high leakage current density. However, doping TiO 2 with Al has shown to yield significant improvement of layer quality on Ru electrodes [S. K. Kim et al., Adv. Mater. 20, 1429 (2008)]. In this work we investigated if atomic layer deposition (ALD) of Al doped TiO 2 is feasible in a batch system. Electrical characterizations were done using common electrode materials like TiN, TaN, or W. Additionally, the effect of plasma enhanced processing in this reactor was studied. For this investigation a production batch ALD furnace has been retrofitted with a plasma source which can be used for post deposition anneals with oxygen radicals as well as for directly plasma enhanced ALD. After evaluation of several Ti precursors a deposition process for AlTiO x with excellent film thickness and composition uniformity was developed. The effects of post deposition anneals, Al 2 O 3 interlayers between electrode and TiO 2 , Al doping concentration, plasma enhanced deposition and electrode material type on leakage current density are shown. An optimized AlTiO x deposition process on TaN electrodes yields to leakage current density of 5 x 10 -7 A/cm 2 at 2 V and k values of about 35. Thus, it could be demonstrated that a plasma enhanced batch ALD process for Al doped TiO 2 is feasible with acceptable leakage current density on a standard electrode material.

  6. Tunable atom-light beam splitter using electromagnetically induced transparency

    Science.gov (United States)

    Zhu, Xinyu; Wen, Rong; Chen, J. F.

    2018-06-01

    With electromagnetically induced transmission (EIT), an optical field can be converted into collective atomic excitation and stored in the atomic medium through switching off the strong-coupling field adiabatically. By varying the power of the coupling pulse, we can control the ratio between the transmitted optical field and the stored atomic mode. We use a cloud of cold 85Rb atoms prepared in magneto-optical trap as the experimental platform. Based on a model of EIT dark-state polariton, we consider the real case where the atomic medium has a finite length. The theoretical calculation gives numerical results that agree well with the experimental data. The results show that the ratio can be changed approximately from 0 to 100%, when the maximum power of the coupling pulse (the pulse length is 100 ns) varies from 0 to 20 mW, in the cold atomic ensemble with an optical depth of 40. This process can be used to achieve an atom-light hybrid beam splitter with tunable splitting ratio and thus find potential application in interferometric measurement and quantum information processing.

  7. Natural and artificial atoms for quantum computation

    Energy Technology Data Exchange (ETDEWEB)

    Buluta, Iulia; Ashhab, Sahel; Nori, Franco, E-mail: fnori@riken.jp [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan)

    2011-10-15

    Remarkable progress towards realizing quantum computation has been achieved using natural and artificial atoms as qubits. This paper presents a brief overview of the current status of different types of qubits. On the one hand, natural atoms (such as neutral atoms and ions) have long coherence times, and could be stored in large arrays, providing ideal 'quantum memories'. On the other hand, artificial atoms (such as superconducting circuits or semiconductor quantum dots) have the advantage of custom-designed features and could be used as 'quantum processing units'. Natural and artificial atoms can be coupled with each other and can also be interfaced with photons for long-distance communications. Hybrid devices made of natural/artificial atoms and photons may provide the next-generation design for quantum computers.

  8. Atoms and cavities: Explorations of quantum entanglement

    International Nuclear Information System (INIS)

    Raimond, J. M.; Hagley, E.; Maitre, X.; Nogues, G.; Wunderlich, C.; Brune, M.; Haroche, S.

    1999-01-01

    The interaction of circular Rydberg atoms with a high-quality microwave cavity makes it possible to realize complex quantum state manipulations. The state of an atom can be 'copied' onto the cavity. Reversing this operation at a later time with a second atom, we realize an elementary 'quantum memory' holding an atomic quantum coherence for a while in a cavity mode. We have also generated two-atom entangled states of the Einstein-Podolsky-Rosen type. At variance with previous experiments, this one implies massive particles in a completely controlled process. These entanglement manipulations can be generalized to more complex or to mesoscopic systems and open the way to new tests of fundamental aspects of the quantum world

  9. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges

    Science.gov (United States)

    Zhao, Jiong; Deng, Qingming; Avdoshenko, Stanislav M.; Fu, Lei; Eckert, Jürgen; Rümmeli, Mark H.

    2014-01-01

    Single-atom catalysts are of great interest because of their high efficiency. In the case of chemically deposited sp2 carbon, the implementation of a single transition metal atom for growth can provide crucial insight into the formation mechanisms of graphene and carbon nanotubes. This knowledge is particularly important if we are to overcome fabrication difficulties in these materials and fully take advantage of their distinct band structures and physical properties. In this work, we present atomically resolved transmission EM in situ investigations of single Fe atoms at graphene edges. Our in situ observations show individual iron atoms diffusing along an edge either removing or adding carbon atoms (viz., catalytic action). The experimental observations of the catalytic behavior of a single Fe atom are in excellent agreement with supporting theoretical studies. In addition, the kinetics of Fe atoms at graphene edges are shown to exhibit anomalous diffusion, which again, is in agreement with our theoretical investigations. PMID:25331874

  10. Muon, positron and antiproton interactions with atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Armour, Edward A G, E-mail: edward.armour@nottingham.ac.u [School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2010-04-01

    In this paper, a description is given of some interesting processes involving the interaction of a muon, a positron, or an antiproton with atoms and molecules. The process involving a muon is the resonant formation of the muonic molecular ion, dt{mu}, in the muon catalyzed fusion cycle. In the case of a positron, the process considered is positron annihilation in low-energy positron scattering by the hydrogen molecule. The antiproton is considered as the nucleus of an antihydrogen atom interacting with simple atoms. Attention is given to antiproton annihilation through the strong interaction. An outline is given of proposed tests of fundamental physics to be carried out using antihydrogen.

  11. Taming light with cold atoms

    International Nuclear Information System (INIS)

    Vestergaard Hau, Lene

    2002-01-01

    Much of the extraordinary progress of developments in communication (e-mail, and/or internet) has been achieved due to improvements in optical communication. This paper describes a new approach which could improve the speed of communication. The ability to stop light in its tracks by passing it through a cloud of ultracold atoms could lead to new techniques for optical storage. The described slow-light experiments have triggered new physics both on the experimental and theoretical fronts. The cold atom system allows the steepest possible refractive index profiles, and therefore the most dramatic effects, as Doppler effects are eliminated. Furthermore, cold atoms provide maximum flexibility in the choice of beam geometry. This is important for the storage and retrieval of multiple pulses of optical information in an atomic medium, as it would allow individual pulses to be selectively addressed. Slow and stopped light have many potential applications in optical communication and processing, including optical information storage, ultra-sensitive optical switches, and optical delay lines. It could also be used in quantum-information processing, in which quantum-mechanical information is used for computing and communication purposes. On a very different front, slow light provides us with a totally new way of probing the unusual properties of Bose-Einstein condensates

  12. Insights inot the atomic many-particle dynamics of scattering processes by ab-initio calculations

    International Nuclear Information System (INIS)

    Zapukhlyak, Myroslav

    2008-01-01

    The present thesis gives a theoretical contribution to the understanding of the many-particle dynamics in inelastic ion-atom collisions. Many-electron dynamics in ion-helium collisions and proton-sodium collisions was theoretically studied. The description is based on the semiclassical approximation with the straight orbit for the projectile motion. The ion-atom collision problem is by this reduced to a time-dependent many-electron problem and in the non-relativistic approximation described by the time-dependent Schroedinger equation. The solution of the many-electron problem pursues in the framework of the time-dependent density functional theory. The time-dependent Schroedinger equation for the interacting many-electron problem is transformed to the system of the time-dependent Kohn-Sham equations and solved by the two-center-basis generator method. The unknown time-dependent exchange-correlation one-particle potential forces different approximation int he time-dependent Kohn-Shan scheme. In this thesis the model of the independent electrons was applied as basis model, in which the electron-electron correlation is consistently neglected in all parts and in all steps. Differential cross sections for different one- and two-electron processes were calculated in the so-called eikonal approximation for the collisional systems p-He, He 2+ -He, and Ar q+ -He (q=15-18) [de

  13. Study of the Dissociative Processes in O{sub 2} Discharges. Development of an Atomic Oxygen Beam Source; Etude de la dissociation de O{sub 2} dans les decharges d'oxygene. Application a la realisation de sources d'atomes

    Energy Technology Data Exchange (ETDEWEB)

    Pagnon, Daniel

    1992-09-24

    The first part of this work is devoted to the study of dissociative processes in an oxygen glow discharge at low pressure (0,1-5 Torr, 1-80 mA). The kinetics of oxygen atoms has been determined supported by the measurements of atomic concentrations by VUV absorption spectroscopy and actinometry. The reaction coefficients for dissociative excitation and direct excitation of oxygen atoms have been calculated using the cross sections of the literature and a previously calculated EEDF. It has been demonstrated that dissociative excitation is negligible in respect with direct excitation for dissociation rates smaller than 2,5 %. An upper limit of 20 % for dissociative rates is observed. This limit has been explained by the increase of the atomic recombination at the discharge wall with increasing wall temperature. Using all these results, we have designed and optimized a source of oxygen atoms which has then been adapted on a MBE device. The spatial distribution of the atomic density has been measured in molecular jet by laser induced fluorescence (LIF) and Resonant Multi-Photon Ionization (RMPI). A stimulated emission has been evidenced and the coefficient for this process evaluated. A model for the effusion of atoms has been developed from which the flow of atoms on the sample can be predicted. This source has already been used in industrial MBE devices for in-situ oxidation of copper films, superconductors, and substrates for VLSI high speed applications. The methodology of this work and the diagnostics developed can be applied to other kinds of discharges, of other molecular gases, to design sources of atoms for the treatment of large area samples. (author) [French] Ce travail debute par l'etude de la dissociation dans une decharge luminescente d'oxygene a basse pression (0,1-5 torr, 1-80 ma). La cinetique des atomes d'oxygene a ete etablie a partir de la mesure des concentrations atomiques par spectroscopie d'absorption vuv et par actinometrie. Les coefficients de

  14. Electron loss process and cross section of multiply charged ions by neutral atoms

    International Nuclear Information System (INIS)

    Karashima, S.; Watanabe, T.

    1985-01-01

    The significance of experimental and theoretical results on the electron loss and capture of ions in matter plays an important role in the charge equilibrium problems of fusion plasma physics and of accelerator physics. In the report, we calculate electron stripping cross section by using the binary encounter approximation (BEA). Our treatment of the electron loss process is based on BEA, in which the nucleus of B screened by the surrounding electrons collides with electrons in the ion A sup(q+). The basic approximation in EBA is that the ion interacts with only one electron or nucleus of the target atom at a time. In the calculation for Li sup(2+) + H, we have found that EBA will give approximately reliable results. (Mori, K.)

  15. Atom Tunneling in the Hydroxylation Process of Taurine/α-Ketoglutarate Dioxygenase Identified by Quantum Mechanics/Molecular Mechanics Simulations.

    Science.gov (United States)

    Álvarez-Barcia, Sonia; Kästner, Johannes

    2017-06-01

    Taurine/α-ketoglutarate dioxygenase is one of the most studied α-ketoglutarate-dependent dioxygenases (αKGDs), involved in several biotechnological applications. We investigated the key step in the catalytic cycle of the αKGDs, the hydrogen transfer process, by a quantum mechanics/molecular mechanics approach (B3LYP/CHARMM22). Analysis of the charge and spin densities during the reaction demonstrates that a concerted mechanism takes place, where the H atom transfer happens simultaneously with the electron transfer from taurine to the Fe═O cofactor. We found the quantum tunneling of the hydrogen atom to increase the rate constant by a factor of 40 at 5 °C. As a consequence, a quite high kinetic isotope effect close to 60 is obtained, which is consistent with the experimental value.

  16. Reaction studies of hot silicon, germanium and carbon atoms

    International Nuclear Information System (INIS)

    Gaspar, P.P.

    1990-01-01

    The goal of this project was to increase the authors understanding of the interplay between the kinetic and electronic energy of free atoms and their chemical reactivity by answering the following questions: (1) what is the chemistry of high-energy carbon silicon and germanium atoms recoiling from nuclear transformations; (2) how do the reactions of recoiling carbon, silicon and germanium atoms take place - what are the operative reaction mechanisms; (3) how does the reactivity of free carbon, silicon and germanium atoms vary with energy and electronic state, and what are the differences in the chemistry of these three isoelectronic atoms? This research program consisted of a coordinated set of experiments capable of achieving these goals by defining the structures, the kinetic and internal energy, and the charge states of the intermediates formed in the gas-phase reactions of recoiling silicon and germanium atoms with silane, germane, and unsaturated organic molecules, and of recoiling carbon atoms with aromatic molecules. The reactions of high energy silicon, germanium, and carbon atoms created by nuclear recoil were studied with substrates chosen so that their products illuminated the mechanism of the recoil reactions. Information about the energy and electronic state of the recoiling atoms at reaction was obtained from the variation in end product yields and the extent of decomposition and rearrangement of primary products (usually reactive intermediates) as a function of total pressure and the concentration of inert moderator molecules that remove kinetic energy from the recoiling atoms and can induce transitions between electronic spin states. 29 refs

  17. Atomic effects of electrons and protons at low energies

    International Nuclear Information System (INIS)

    Hippler, R.

    1985-01-01

    Some aspects of electronic and atomic collisions are discussed. Impact ionization by electrons and protons, and electron bremsstrahlung processes are considered in some detail. Emphasis is also given to (uncorrelated and correlated) many-electron processes, which are of particular importance in collisions of highly-charged ions with atoms. 84 refs., 15 figs

  18. Sheet, ligament and droplet formation in swirling primary atomization

    Directory of Open Access Journals (Sweden)

    Changxiao Shao

    2018-04-01

    Full Text Available We report direct numerical simulations of swirling liquid atomization to understand the physical mechanism underlying the sheet breakup of a non-turbulent liquid swirling jet which lacks in-depth investigation. The volume-of-fluid (VOF method coupled with adapted mesh refinement (AMR technique in GERRIS code is employed in the present simulation. The mechanisms of sheet, ligament and droplet formation are investigated. It is observed that the olive-shape sheet structure is similar to the experimental result qualitatively. The numerical results show that surface tension, pressure difference and swirling effect contribute to the contraction and extension of liquid sheet. The ligament formation is partially at the sheet rim or attributed to the extension of liquid hole. Especially, the movement of hairpin vortex exerts by an anti-radial direction force to the sheet surface and leads to the sheet thinness. In addition, droplet formation is attributed to breakup of ligament and central sheet.

  19. Sheet, ligament and droplet formation in swirling primary atomization

    Science.gov (United States)

    Shao, Changxiao; Luo, Kun; Chai, Min; Fan, Jianren

    2018-04-01

    We report direct numerical simulations of swirling liquid atomization to understand the physical mechanism underlying the sheet breakup of a non-turbulent liquid swirling jet which lacks in-depth investigation. The volume-of-fluid (VOF) method coupled with adapted mesh refinement (AMR) technique in GERRIS code is employed in the present simulation. The mechanisms of sheet, ligament and droplet formation are investigated. It is observed that the olive-shape sheet structure is similar to the experimental result qualitatively. The numerical results show that surface tension, pressure difference and swirling effect contribute to the contraction and extension of liquid sheet. The ligament formation is partially at the sheet rim or attributed to the extension of liquid hole. Especially, the movement of hairpin vortex exerts by an anti-radial direction force to the sheet surface and leads to the sheet thinness. In addition, droplet formation is attributed to breakup of ligament and central sheet.

  20. Primary School Pupils' Response to Audio-Visual Learning Process in Port-Harcourt

    Science.gov (United States)

    Olube, Friday K.

    2015-01-01

    The purpose of this study is to examine primary school children's response on the use of audio-visual learning processes--a case study of Chokhmah International Academy, Port-Harcourt (owned by Salvation Ministries). It looked at the elements that enhance pupils' response to educational television programmes and their hindrances to these…

  1. Force modulation for improved conductive-mode atomic force microscopy

    NARCIS (Netherlands)

    Koelmans, W.W.; Sebastian, Abu; Despont, Michel; Pozidis, Haris

    We present an improved conductive-mode atomic force microscopy (C-AFM) method by modulating the applied loading force on the tip. Unreliable electrical contact and tip wear are the primary challenges for electrical characterization at the nanometer scale. The experiments show that force modulation

  2. Some time dependent aspects of fast neutron induced atomic cascades

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    1976-01-01

    Analytical results are obtained for the time-energy distribution of neutrons and the associated displaced atoms slowing down in an amorphous medium according to a general force law. Explicit results are given for the inverse power law, and applications to hard-sphere and Coulomb scattering are discussed. Complete results are obtained for the steady state energy distribution of particles arising from a primary knock-on, and from a neutron initiated cascade. The speed of the slowing down process is assessed by calculating the slowing down time of particles. Two different concepts of slowing down time are discussed, one based upon a density average and the other on a slowing down density average. It is shown that the latter definition is physically more realistic and mathematically simpler. (author)

  3. Specific Adaptation of Gas Atomization Processing for Al-Based Alloy Powder for Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver [Ames Lab., Ames, IA (United States); Siemon, John [Alcoa, Inc, Pittsburgh, PA (United States)

    2017-06-30

    The initial three atomization attempts resulted in “freeze-outs” within the pour tubes in the pilot-scale system and yielded no powder. Re-evaluation of the alloy liquidus temperatures and melting characteristics, in collaboration with Alcoa, showed further superheat to be necessary to allow the liquid metal to flow through the pour tube to the atomization nozzle. A subsequent smaller run on the experimental atomization system verified these parameters and was successful, as were all successive runs on the larger pilot scale system. One alloy composition froze-out part way through the atomization on both pilot scale runs. SEM images showed needle formation and phase segregations within the microstructure. Analysis of the pour tube freeze-out microstructures showed that large needles formed within the pour tube during the atomization experiment, which eventually blocked the melt stream. Alcoa verified the needle formation in this alloy using theoretical modeling of phase solidification. Sufficient powder of this composition was still generated to allow powder characterization and additive manufacturing trials at Alcoa.

  4. Theoretical aspects of the stabilization of atomic hydrogen

    International Nuclear Information System (INIS)

    Eijnde, J.P.H.W. van den.

    1984-01-01

    This thesis describes a theoretical study of processes leading to recombination of hydrogen atoms into molecular form. A relaxation process, due to the transition among the lowest two hyperfine levels of atomic hydrogen, turns out to be of fundamental importance for the recombination rate. Models have been formulated to calculate the relaxation rate by means of quantum mechanical scattering theory. For processes in the bulk of the gas the results of an almost exact coupled-channels calculation have been compared with approximate models. In these models first-order approximations are applied, as well as approximations connected with the large distance of closest approach of the colliding hydrogen atoms. The assumptions turned out to be correct to the promille level, except for the so-called high-temperature limit. (Auth.)

  5. Formation of fast exotic atoms by radiative Coulomb capture

    International Nuclear Information System (INIS)

    Chatterjee, L.; Das, G.; Chakravorty, A.; Goswami, R.; Mondal, S.K.

    1993-01-01

    Interesting surprises in some exotic atom kinetics have been reported recently. These involve muonic atom transfer cross sections, nuclear pion capture and the q 1s effect in μCF. These can be explained if the exotic atom population contains a contributing fast component. Such fast atoms can be formed by radiative continuum to bound transitions of fast (keV) muons or pions. Cross sections for formation of such fast pionic and muonic atoms and their velocity distributions are reported. The possibility of these processes competing with the thermalisation channels and contributing effectively to the exotic atom population discussed. (orig.)

  6. Measurements of scattering processes in negative ion-atom collisions: Progress report, 1 September 1988--31 August 1989

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1989-01-01

    The main emphasis of this research effort is the simultaneous study of several of the scattering processes that occur in negative ion-atom collisions. These include: elastic scattering, target excitation/ionization, single electron detachment, and double electron detachment. The measurements will provide absolute total and differential cross sections for the aforementioned processes. These are extremely valuable in providing stringent tests of the approximations used in the various theoretical calculations. This period covers the first year of the grant and the vast majority of the activity was directed toward construction of the apparatus needed to carry out the proposed measurements. Progress toward these goals are summarized. 2 refs., 1 fig

  7. Quantum state preparation using multi-level-atom optics

    International Nuclear Information System (INIS)

    Busch, Th; Deasy, K; Chormaic, S Nic

    2007-01-01

    One of the most important characteristics for controlling processes on the quantum scale is the fidelity or robustness of the techniques being used. In the case of single atoms localized in micro-traps, it was recently shown that the use of time-dependent tunnelling interactions in a multi-trap setup can be viewed as analogous to the area of multi-level optics. The atom's centre-of-mass can then be controlled with a high fidelity, using a STIRAP-type process. Here, we review previous work that led to the development of multi-level atom optics and present two examples of our most recent work on quantum state preparation

  8. A dynamical atomic simulation for the Ni-Al Wulff nanoparticle

    International Nuclear Information System (INIS)

    Tang, Jianfeng; Yang, Jianyu

    2013-01-01

    Ni-Al bimetallic nanoparticle structures are studied from a kinetic point of view. The diffusion and growth of Ni (or Al) atoms on Al (or Ni) cores with the Wulff structure are simulated by molecular dynamics and nudged elastic band methods. An analytic embedded atom model is applied to the two metals. The energy barriers of several typical diffusion processes of the adatoms on the nanoparticle surface are calculated. Results show that the incorporation of the Ni atoms into the Al core easily occurs, and the reverse process does not readily proceed. The growth simulations reveal that a better core-shell nanoparticle is obtained when the Al atoms are deposited on the Ni core at lower temperatures, and the deposition of the Ni atoms on the Al core leads to an amorphous surface. - Highlights: • The diffusion barrier of Ni (or Al) on Al (or Ni) Wulff nanoparticle is studied. • Ni atom can diffuse easily into Al core, and Al atom generally segregate on surface. • A core-shell nanoparticle is obtained for the deposition of Al atoms on Ni core. • Amorphous nanoparticle surface is obtained by depositing Ni atoms on Al core

  9. Fast light in atomic media

    International Nuclear Information System (INIS)

    Akulshin, Alexander M; McLean, Russell J

    2010-01-01

    Atomic media have played a major role in studies of fast light. One of their attractive features is the ability to manipulate experimental parameters to control the dispersive properties that determine the group velocity of a propagating light pulse. We give an overview of the experimental methods, based on both linear and nonlinear atom–light interaction, that have produced superluminal propagation in atomic media, and discuss some of the significant theoretical contributions to the issues of pulse preservation and reconciling faster-than-light propagation and the principle of causality. The comparison of storage of light, enhanced Kerr nonlinearity and efficient wave mixing processes in slow and fast light atomic media illustrates their common and distinct features. (review article)

  10. Controlling the formation process and atomic structures of single pyrazine molecular junction by tuning the strength of the metal-molecule interaction.

    Science.gov (United States)

    Kaneko, Satoshi; Takahashi, Ryoji; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2017-04-12

    The formation process and atomic structures were investigated for single pyrazine molecular junctions sandwiched by three different Au, Ag, and Cu electrodes using a mechanically controllable break junction technique in ultrahigh vacuum conditions at 300 K. We demonstrated that the formation process of the single-molecule junction crucially depended on the choice of the metal electrodes. While single-molecule junction showing two distinct conductance states were found for the Au electrodes, only the single conductance state was evident for the Ag electrodes, and there was no junction formation for the Cu electrodes. These results suggested that metal-molecule interaction dominates the formation process and probability of the single-molecule junction. In addition to the metal-molecule interaction, temperature affected the formation process of the single-molecule junction. The single pyrazine molecular junction formed between Au electrodes exhibited significant temperature dependence where the junction-formation probability was about 8% at 300 K, while there was no junction-formation at 100 K. Instead of the junction formation, an Au atomic wire was formed at the low temperature. This study provides insight into the tuning of the junction-forming process for single-molecule junctions, which is needed to construct device structures on a single molecule scale.

  11. The Instrumental Genesis Process in Future Primary Teachers Using Dynamic Geometry Software

    Science.gov (United States)

    Ruiz-López, Natalia

    2018-01-01

    This paper, which describes a study undertaken with pairs of future primary teachers using GeoGebra software to solve geometry problems, includes a brief literature review, the theoretical framework and methodology used. An analysis of the instrumental genesis process for a pair participating in the case study is also provided. This analysis…

  12. Atomic and plasma-material interaction data for fusion. V. 2

    International Nuclear Information System (INIS)

    1992-01-01

    This issues of the Atomic and Plasma-Material Interaction Data for Fusion contains 9 papers on atomic and molecular processes in the edge region of magnetically confined fusion plasmas, including spectroscopic data for fusion edge plasmas; electron collision processes with plasma edge neutrals; electron-ion collisions in the plasma edge; cross-section data for collisions of electrons with hydrocarbon molecules; dissociative and energy transfer reactions involving vibrationally excited hydrogen or deuterium molecules; an assessment of ion-atom collision data for magnetic fusion plasma edge modeling; an extended scaling of cross sections for the ionization of atomic and molecular hydrogen as well as helium by multiply-charged ions; ion-molecule collision processes relevant to fusion edge plasmas; and radiative losses and electron cooling rates for carbon and oxygen plasma impurities. Refs, figs and tabs

  13. JSPS-CAS Core University Program seminar. Proceedings of Japan-China joint seminar on atomic and molecular processes in plasma

    International Nuclear Information System (INIS)

    Koike, Fumihiro; Dong Chenzhong

    2010-02-01

    As one of the activities of JSPS-CAS Core University Program, Japan-China Joint Seminar on Atomic and Molecular Processes in Plasma was held on October 26 - 31, 2009 in Xi'an, China. The total number of the officially registered participants was 54, in which 18 from Japan, 35 from China, and 1 from USA. And this seminar is an extension of the last two seminars that were held on March 6 - 11, 2004 in Lanzhou, China, and on October 6 - 12, 2007 in Dunhuang, China. In the nuclear fusion plasma, there are quite a variety of atomic processes such as ionization, excitation, radiative recombination, non-radiative recombination (di-electronic recombination, collisional electron transfer), cascade radiation, and cascade Auger decay over the wide range of plasma temperature. The knowledge of those processes is indispensable for the evaluation and improvement of the plasma properties. Because of the diversity of the subject, it is desirable to investigate them by international collaboration groups. The present seminar may contribute to realize the above stated aim; especially it has given an opportunity for the collaborative workers to illustrate their achievements. This seminar summarizes the collaborative researches for the last decade and propose the issues for the future prospect. The 30 of the presented papers are indexed individually. (J.P.N.)

  14. Heralded entanglement of two remote atoms

    Science.gov (United States)

    Krug, Michael; Hofmann, Julian; Ortegel, Norbert; Gerard, Lea; Redeker, Kai; Henkel, Florian; Rosenfeld, Wenjamin; Weber, Markus; Weinfurter, Harald

    2012-06-01

    Entanglement between atomic quantum memories at remote locations will be a key resource for future applications in quantum communication. One possibility to generate such entanglement over large distances is entanglement swapping starting from two quantum memories each entangled with a photon. The photons can be transported to a Bell-state measurement where after the atomic quantum memories are projected onto an entangled state. We have set up two independently operated single atom experiments separated by 20 m. Via a spontaneous decay process each quantum memory, in our case a single Rb-87 atom, emits a single photon whose polarization is entangled with the atomic spin. The photons one emitted from each atom are collected into single-mode optical fibers guided to a non-polarizing 50-50 beam-splitter and detected by avalanche photodetectors. Bunching of indistinguishable photons allows to perform a Bell-state measurement on the photons. Conditioned on the registration of particular two-photon coincidences the spin states of both atoms are measured. The observed correlations clearly prove the entanglement of the two atoms. This is a first step towards creating a basic node of a quantum network as well as a key prerequisite for a future loophole-free test of Bell's inequality.

  15. Quantum Repeaters and Atomic Ensembles

    DEFF Research Database (Denmark)

    Borregaard, Johannes

    a previous protocol, thereby enabling fast local processing, which greatly enhances the distribution rate. We then move on to describe our work on improving the stability of atomic clocks using entanglement. Entanglement can potentially push the stability of atomic clocks to the so-called Heisenberg limit...... and allows for near-Heisenberg limited stability of atomic clocks. Furthermore, we describe how the operation of a clock can be altered to gain an exponential improvement of the stability even without entanglement. In the next part of the thesis, we describe our work on a novel type of heralded quantum gates...... temperature quantum memories and single photon sources. We have introduced a novel concept of motional averaging, which can be used in room-temperature systems, where fluctuations due to thermal motion is an issue. In particular, we have considered a system based on microcells filled with Cs-atoms, which can...

  16. Atomic collisions related to atomic laser isotope separation

    International Nuclear Information System (INIS)

    Shibata, Takemasa

    1995-01-01

    Atomic collisions are important in various places in atomic vapor laser isotope separation (AVLIS). At a vaporization zone, many atomic collisions due to high density have influence on the atomic beam characteristics such as velocity distribution and metastable states' populations at a separation zone. In the separation zone, a symmetric charge transfer between the produced ions and the neutral atoms may degrade selectivity. We have measured atomic excitation temperatures of atomic beams and symmetric charge transfer cross sections for gadolinium and neodymium. Gadolinium and neodymium are both lanthanides. Nevertheless, results for gadolinium and neodymium are very different. The gadolinium atom has one 5d electron and neodymium atom has no 5d electron. It is considered that the differences are due to existence of 5d electron. (author)

  17. Generating a picokelvin ultracold atomic ensemble in microgravity

    International Nuclear Information System (INIS)

    Wang, Lu; Ma, Zhao-Yuan; Zhang, Peng; Chen, Xu-Zong

    2013-01-01

    Applying the direct Monte Carlo simulation (DSMC) method developed for a cold atom system, we study the evaporative cooling process in tilted optical dipole traps with a magnetic field gradient-induced over-levitation or merely a gravitational force. We propose a two-stage decomposed evaporative cooling process in a microgravity environment, and suggest that quantum degeneracy can be obtained at a few picokelvins with several thousand atoms. (paper)

  18. Superradiators created atom by atom

    Science.gov (United States)

    Meschede, Dieter

    2018-02-01

    High radiation rates are usually associated with macroscopic lasers. Laser radiation is “coherent”—its amplitude and phase are well-defined—but its generation requires energy inputs to overcome loss. Excited atoms spontaneously emit in a random and incoherent fashion, and for N such atoms, the emission rate simply increases as N. However, if these atoms are in close proximity and coherently coupled by a radiation field, this microscopic ensemble acts as a single emitter whose emission rate increases as N2 and becomes “superradiant,” to use Dicke's terminology (1). On page 662 of this issue, Kim et al. (2) show the buildup of coherent light fields through collective emission from atomic radiators injected one by one into a resonator field. There is only one atom ever in the cavity, but the emission is still collective and superradiant. These results suggest another route toward thresholdless lasing.

  19. The relationship between vacuum and atomic collisions in solids

    International Nuclear Information System (INIS)

    Carter, G.; Armour, D.G.

    1980-01-01

    Atomic collision events in solids are frequently stimulated by external irradiation with energetic heavy ions. This requires production, acceleration and manipulation of ion beams in vacuum system with ensuing problems arising in perturbations to ion beam quality from gas phase collisions. In addition the dynamic interaction between the gas phase and any surfaces at which atomic collisions are under investigation can lead to perturbation to the collision events by adsorbed contaminant. This review discusses both gas phase requirements for ion accelerators to minimize deleterious effects and outlines some of the processes which occur in atomic collisions due to the presence of adsorbed impurities. Finally it is shown how certain atomic collision processes involving elastic scattering may be employed to investigate surface adsorption and related effects. (author)

  20. Infrared studies of ortho-para conversion at Cl-atom and H-atom impurity centers in cryogenic solid hydrogen

    International Nuclear Information System (INIS)

    Raston, P.L.; Kettwich, S.C.; Anderson, D.T.

    2010-01-01

    We report infrared spectroscopic studies of H 2 ortho-para (o/p) conversion in solid hydrogen doped with Cl-atoms at 2 K while the Cl + H 2 (υ = 1) → HCl + H infrared-induced chemical reaction is occurring. The Cl-atom doped hydrogen crystals are synthesized using 355 nm in situ photodissociation of Cl 2 precursor molecules. For hydrogen solids with high ortho-H 2 fractional concentrations (X o = 0.55), the o/p conversion kinetics is dominated by Cl-atom catalyzed conversion with a catalyzed conversion rate constant K cc = 1.16(11) min -1 and the process is rate-limited by ortho-H 2 quantum diffusion. For hydrogen crystals with low ortho-H2 concentrations (X o = 0.03), single-exponential decay of the ortho-H 2 concentration with time is observed which is attributed to H-atom catalyzed o/p conversion by the H-atoms produced during the infrared-induced Cl + H 2 reaction. The measured H-atom catalyzed o/p conversion kinetics indicates the H-atoms are mobile under these conditions in agreement with previous ESR measurements.

  1. Assistance in chemistry and chemical processes related to primary, secondary and ancillary systems of nuclear power plants

    International Nuclear Information System (INIS)

    Chocron, Mauricio A.; Becquart, Elena T.; Iglesias, Alberto M.; La Gamma, Ana M.; Villegas, Marina

    2003-01-01

    Argentina is currently running two nuclear power plants: Atucha I (CNA I) and Embalse (CNE) operated by Nucleoelectrica Argentina (NASA) whereas the National Atomic Energy Commission (CNEA), among other activities, is responsible for research and development in the nuclear field, operates research reactors and carries out projects related to them. In particular, the Reactor Chemistry Section personnel (currently part of the Chemistry Dept.) has been working on the field of reactor water chemistry for more than 25 years, on research and support to the NPPs chemistry department. Though the most relevant tasks have been connected to primary and secondary circuits chemistry, ancillary systems show along the time unexpected problems or feasible improvements originated in the undergoing operating time as well as in phenomena not foreseen by the constructors. In the present paper are presented the tasks performed in relation to the following systems of Embalse NPP: 1) Heavy water upgrade column preliminary water treatment; 2) Liquid waste system preliminary water treatment; and 3) Primary heat transport system coolant crud composition. (author)

  2. Short wavelength sources and atoms and ions

    International Nuclear Information System (INIS)

    Kennedy, E.T.

    2008-01-01

    The interaction of ionizing radiation with atoms and ions is a key fundamental process. Experimental progress has depended in particular on the development of short wavelength light sources. Laser-plasma and synchrotron sources have been exploited for several decades and most recently the development of short wavelength Free Electron Laser (FEL) sources is revolutionizing the field. This paper introduces laser plasma and synchrotron sources through examples of their use in studies of the interaction of ionizing radiation with atoms and ions, ranging from few-electron atomic and ionic systems to the many-electron high atomic number actinides. The new FEL source (FLASH) at DESY is introduced. (author)

  3. Light-induced atomic desorption and related phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Burchianti, A; Bogi, A; Marinelli, C; Mariotti, E; Moi, L [CNISM and Physics Department, University of Siena, 53100 Siena (Italy)], E-mail: burchianti@unisi.it

    2009-07-15

    We review some recent studies on light-induced atomic desorption (LIAD) from dielectric surfaces. Alkali-metal atoms adsorbed either on organic films or on porous glass are released into the vapor phase under illumination. The measurements were performed in Pyrex resonance cells either coated with siloxane films or containing a porous glass sample. In both cases, the experimental results show that LIAD can be used to produce atomic densities suitable for most atomic physics experiments. Moreover, we find that photoinduced effects, correlated with LIAD, produce reversible formation and evaporation of alkali-metal clusters in porous glass. These processes depend on the light frequency, making the porous glass transmittance controllable by light.

  4. New sources of cold atoms for atomic clocks

    International Nuclear Information System (INIS)

    Aucouturier, E.

    1997-01-01

    The purpose of this doctoral work is the realisation of new sources of cold cesium atoms that could be useful for the conception of a compact and high-performance atomic clock. It is based on experiences of atomic physics using light induced atomic manipulation. We present here the experiences of radiative cooling of atoms that have been realised at the Laboratoire de l'Horloge Atomique from 1993 to 1996. Firstly, we applied the techniques of radiative cooling and trapping of atoms in order to create a three-dimensional magneto-optical trap. For this first experience, we developed high quality laser sources, that were used for other experiments. We imagined a new configuration of trapping (two-dimensional magneto-optical trap) that was the basis for a cold atom source. This design gives the atoms a possibility to escape towards one particular direction. Then, we have extracted the atoms from this anisotropic trap in order to create a continuous beam of cold atoms. We have applied three methods of extraction. Firstly, the launching of atoms was performed by reducing the intensity of one of the cooling laser beams in the desired launching direction. Secondly, a frequency detuning between the two laser laser beams produced the launching of atoms by a so-called 'moving molasses'. The third method consisted in applying a static magnetic field that induced the launching of atoms in the direction of this magnetic field. At the same time, another research on cold atoms was initiated at the I.H.A. It consisted in cooling a large volume of atoms from a cell, using an isotropic light. This offers an interesting alternative to the traditional optical molasses. (author)

  5. Atomic bonding of precipitate and phase transformation of Al-Cu-Mg alloy

    International Nuclear Information System (INIS)

    Gao Yingjun; Hou Xianhua; Mo Qifeng; Wei Chengyang; Qin Xiaobing

    2007-01-01

    Atomic bonding of the GPB zone and S'' phase of Al-Cu-Mg alloys in early aging stage are calculated using the empirical electron theory (EET) in solid. The results show that not only the covalence bond-network is very strong in GPB zone, but the whole covalence bond energy of S'' phase is also very large, and all the primary bond-net framework of these precipitates can consolidate the matrix of alloy. Phase transformation from GPB zone to S'' phase is explained reasonably based on atomic bonding and total binding capacity of Al and Cu atoms in these precipitates

  6. New discovery: quantization of atomic and nuclear rest mass differences and self-organization of atoms and nuclei

    International Nuclear Information System (INIS)

    Gareev, F.A.; Zhidkova, I.E.; )

    2007-01-01

    Full text: We come to the conclusion that all atomic models based on either the Newton equation and the Kepler laws, or the Maxwell equations, or the Schroedinger and Dirac equations are in reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principles which are not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system - nuclei + atoms + condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies than the corresponding ones on free constituents. We were able to quantize phenomenologically the first time the differences between atomic and nuclear rest masses by the formula: ΔΔM = n 1 /n 2 ·0.0076294 (in MeV/ ), n i =1,.2,3... Note that this quantization rule is justified for atoms and nuclei with different A, N and Z and the nuclei and atoms represent a coherent synchronized open systems - a complex of coupled oscillators (resonators). The cooperative resonance synchronization mechanisms are responsible for explanation of how the electron volt world can influence on the nuclear mega electron volt world. It means that we created new possibilities for inducing and controlling nuclear reactions by atomic processes grounded on the fundamental low of physics - conservation law of energy. The results of these research field can provide new ecologically pure mobile sources of energy independent from oil, gas and coal, new substances, and technologies. For example, this discovery gives us a simple and cheep method for utilization of nuclear waste

  7. Production processes of multiply charged ions by electron impact

    International Nuclear Information System (INIS)

    Oda, Nobuo

    1980-02-01

    First, are compared the foil or gas stripper and the ion sources utilizing electron-atom ionizing collisions, which are practically used or are under development to produce multiply charged ions. A review is made of the fundamental physical parameters such as successive ionization potentials and various ionization cross sections by electron impact, as well as the primary processes in multiply charged ion production. Multiply charged ion production processes are described for the different existing ion sources such as high temperature plasma type, ion-trapping type and discharge type. (author)

  8. Measurement tools and process indicators of patient safety culture in primary care. A mixed methods study by the LINNEAUS collaboration on patient safety in primary care

    Science.gov (United States)

    Parker, Dianne; Wensing, Michel; Esmail, Aneez; Valderas, Jose M

    2015-01-01

    ABSTRACT Background: There is little guidance available to healthcare practitioners about what tools they might use to assess the patient safety culture. Objective: To identify useful tools for assessing patient safety culture in primary care organizations in Europe; to identify those aspects of performance that should be assessed when investigating the relationship between safety culture and performance in primary care. Methods: Two consensus-based studies were carried out, in which subject matter experts and primary healthcare professionals from several EU states rated (a) the applicability to their healthcare system of several existing safety culture assessment tools and (b) the appropriateness and usefulness of a range of potential indicators of a positive patient safety culture to primary care settings. The safety culture tools were field-tested in four countries to ascertain any challenges and issues arising when used in primary care. Results: The two existing tools that received the most favourable ratings were the Manchester patient safety framework (MaPsAF primary care version) and the Agency for healthcare research and quality survey (medical office version). Several potential safety culture process indicators were identified. The one that emerged as offering the best combination of appropriateness and usefulness related to the collection of data on adverse patient events. Conclusion: Two tools, one quantitative and one qualitative, were identified as applicable and useful in assessing patient safety culture in primary care settings in Europe. Safety culture indicators in primary care should focus on the processes rather than the outcomes of care. PMID:26339832

  9. Atomic and plasma-material interaction data for fusion. V. 6

    International Nuclear Information System (INIS)

    1995-01-01

    Volume 6 of the supplement ''atomic and plasma-material interaction data for fusion'' to the journal ''Nuclear Fusion'' includes critical assessments and results of original experimental and theoretical studies on inelastic collision processes among the basic and dominant impurity constituents of fusion plasmas. Processes considered in the 15 papers constituting this volume are: electron impact excitation of excited Helium atoms, electron impact excitation and ionization of plasma impurity ions and atoms, electron-impurity-ion recombination and excitation, ionization and electron capture in collisions of plasma protons and impurity ions with the main fusion plasma neutral components helium and atomic and molecular hydrogen. Refs, figs, tabs

  10. Atomic emission spectroscopy for the on-line monitoring of incineration processes

    International Nuclear Information System (INIS)

    Timmermans, E.A.H.; Groote, F.P.J. de; Jonkers, J.; Gamero, A.; Sola, A.; Mullen, J.J.A.M. van der

    2003-01-01

    A diagnostic measurement system based on atomic emission spectroscopy has been developed for the purpose of on-line monitoring of hazardous elements in industrial combustion gases. The aim was to construct a setup with a high durability for rough and variable experimental conditions, e.g. a strongly fluctuating gas composition, a high gas temperature and the presence of fly ash and corrosive effluents. Since the setup is primarily intended for the analysis of combustion gases with extremely high concentrations of pollutants, not much effort has been made to achieve low detection limits. It was found that an inductively coupled argon plasma was too sensitive to molecular gas introduction. Therefore, a microwave induced plasma torch, compromising both the demands of a high durability and an effective evaporation and excitation of the analyte was used as excitation source. The analysis system has been installed at an industrial hazardous waste incinerator and successfully tested on combustion gases present above the incineration process. Abundant elements as zinc, lead and sodium could be easily monitored

  11. LWR primary coolant pipe rupture test rig

    International Nuclear Information System (INIS)

    Yoshitoshi, Shyoji

    1978-01-01

    The rupture test rig for primary coolant pipes is constructed in the Japan Atomic Energy Research Institute to verify the reliability of the primary coolant pipes for both PWRs and BWRs. The planned test items consisted of reaction force test, restraint test, whip test, jet test and continuous release test. A pressure vessel of about 4 m 3 volume, a circulating pump, a pressurizer, a heater, an air cooler and the related instrumentation and control system are included in this test rig. The coolant test condition is 160 kg/cm 2 g, 325 deg C for PWR test, and 70 kg/cm 2 g, saturated water and steam for BWR test, 100 ton of test load for the ruptured pipe bore of 8B Schedule 160, and 20 lit/min. discharge during 20 h for continuous release of coolant. The maximum pit internal pressure was estimated for various pipe diameters and time under the PWR and BWR conditions. The spark rupturing device was adopted for the rupture mechanics in this test rig. The computer PANAFACOM U-300 is used for the data processing. This test rig is expected to operate in 1978 effectively for the improvement of reliability of LWR primary coolant pipes. (Nakai, Y.)

  12. The site selection law and the anti-atom movement; Das Standortauswahlgesetz und die Anti-Atom-Bewegung

    Energy Technology Data Exchange (ETDEWEB)

    Haefner, Daniel

    2015-07-01

    The anti atom movement has reached many of their political claims with the German nuclear power phaseout. At the same time the government has regained the interpretive dominance with the in radioactive waste management with the new search for possible final repository sites. He anti-atom movement refuses most parts of the actual law but cannot abdicate from the responsibility of the process of site selection. The contribution shows using three actual research approaches that such a convergence is probable to occur in the future. A cooperation of anti-atom movement and the government is of high probability in the long term, but is not necessarily identical to a political acceptance.

  13. Electron-atom collisions in a laser field

    International Nuclear Information System (INIS)

    Ehlotzky, F.

    1998-01-01

    The present work is a report on recent progress made in our understanding of electron-atom collisions in a laser field. To some extent it is a continuation of a previous review covering a somewhat larger subject (Can. J. Phys. 63 (1985)). We shall discuss the present status of investigations in this field from the theoretical as well as experimental point of view but most of the report will be devoted to an analysis of the various approximation schemes used at present in this field to describe the different aspects of laser-assisted electron-atom interactions. As the table of contents shows, most of the work done so far is treating the atom as a spectator, described by a potential and only very little has been achieved over the years to include the atomic structure into consideration since the inclusion of these structure effects poses considerable computational problems. Since, for example, multiphoton ionization and its inverse process laser-assisted recombination may be considered as one half of a scattering process, it is quite natural that some of the theoretical techniques described here are also of interest for the treatment of other multiphoton processes not considered here since there are several other recent reviews available on these topics. (orig.)

  14. Fifty years of atomic time-keeping at VNIIFTRI

    International Nuclear Information System (INIS)

    Domnin, Y.; Gaigerov, B.; Koshelyaevsky, N.; Poushkin, S.; Rusin, F.; Tatarenkov, V.; Yolkin, G.

    2005-01-01

    Time metrology in Russia in the second half of the twentieth century has been marked, as in other advanced countries, by the rapid development of time and frequency quantum standards and the beginning of atomic time-keeping. This brief review presents the main developments and studies in time and frequency measurement, and the improvement of accuracy and atomic time-keeping at the VNIIFTRI-the National Metrology Institute keeping primary time and frequency standards and ensuring unification of measurement. The milestones along the way have been the ammonia and hydrogen masers, primary caesium beam and fountain standards and laser frequency standards. For many years, VNIIFTRI was the only world laboratory that applied hydrogen-maser clock ensembles for time-keeping. VNIIFTRI's work on international laser standard frequency comparisons and absolute frequency measurements contributed greatly to the adoption by the CIPM of a highly accurate value for the He-Ne/CH 4 laser frequency. VNIIFTRI and the VNIIM were the first to establish a united time, frequency and length standard. (authors)

  15. Fifty years of atomic time-keeping at VNIIFTRI

    Energy Technology Data Exchange (ETDEWEB)

    Domnin, Y.; Gaigerov, B.; Koshelyaevsky, N.; Poushkin, S.; Rusin, F.; Tatarenkov, V.; Yolkin, G. [VNIIFTRI (Russian Federation)

    2005-06-01

    Time metrology in Russia in the second half of the twentieth century has been marked, as in other advanced countries, by the rapid development of time and frequency quantum standards and the beginning of atomic time-keeping. This brief review presents the main developments and studies in time and frequency measurement, and the improvement of accuracy and atomic time-keeping at the VNIIFTRI-the National Metrology Institute keeping primary time and frequency standards and ensuring unification of measurement. The milestones along the way have been the ammonia and hydrogen masers, primary caesium beam and fountain standards and laser frequency standards. For many years, VNIIFTRI was the only world laboratory that applied hydrogen-maser clock ensembles for time-keeping. VNIIFTRI's work on international laser standard frequency comparisons and absolute frequency measurements contributed greatly to the adoption by the CIPM of a highly accurate value for the He-Ne/CH{sub 4} laser frequency. VNIIFTRI and the VNIIM were the first to establish a united time, frequency and length standard. (authors)

  16. Storage ring to investigate cold unidimensional atomic collisions

    International Nuclear Information System (INIS)

    Marcassa, L. G.; Caires, A. R. L.; Nascimento, V. A.; Dulieu, O.; Weiner, J.; Bagnato, V. S.

    2005-01-01

    In this paper we employ a circulating ring of trapped atoms, that we have named the atomotron, to study cold collisions. The atomotron is obtained from a conventional magneto-optical trap when the two pairs of normally retroreflecting Gaussian laser beams in the x-y plane are slightly offset. Circulating stable atomic orbits then form a racetrack geometry in this plane. The circulating atom flux behaves similarly to an atomic beam with an average tangential velocity much greater than the transverse components, and is therefore suitable for one-dimensional atomic collision studies. Using the atomotron, we have investigated the polarization dependence of ultracold photoassociation collisions between Rb atoms circulating in the racetrack. The ability to investigate collisions in ultracold circulating atomic rings reveals alignment and orientation properties that are averaged away in ordinary three-dimensional magneto-optical trap collision processes

  17. Sensor-based atomic layer deposition for rapid process learning and enhanced manufacturability

    Science.gov (United States)

    Lei, Wei

    In the search for sensor based atomic layer deposition (ALD) process to accelerate process learning and enhance manufacturability, we have explored new reactor designs and applied in-situ process sensing to W and HfO 2 ALD processes. A novel wafer scale ALD reactor, which features fast gas switching, good process sensing compatibility and significant similarity to the real manufacturing environment, is constructed. The reactor has a unique movable reactor cap design that allows two possible operation modes: (1) steady-state flow with alternating gas species; or (2) fill-and-pump-out cycling of each gas, accelerating the pump-out by lifting the cap to employ the large chamber volume as ballast. Downstream quadrupole mass spectrometry (QMS) sampling is applied for in-situ process sensing of tungsten ALD process. The QMS reveals essential surface reaction dynamics through real-time signals associated with byproduct generation as well as precursor introduction and depletion for each ALD half cycle, which are then used for process learning and optimization. More subtle interactions such as imperfect surface saturation and reactant dose interaction are also directly observed by QMS, indicating that ALD process is more complicated than the suggested layer-by-layer growth. By integrating in real-time the byproduct QMS signals over each exposure and plotting it against process cycle number, the deposition kinetics on the wafer is directly measured. For continuous ALD runs, the total integrated byproduct QMS signal in each ALD run is also linear to ALD film thickness, and therefore can be used for ALD film thickness metrology. The in-situ process sensing is also applied to HfO2 ALD process that is carried out in a furnace type ALD reactor. Precursor dose end-point control is applied to precisely control the precursor dose in each half cycle. Multiple process sensors, including quartz crystal microbalance (QCM) and QMS are used to provide real time process information. The

  18. Comprehensive process model of clinical information interaction in primary care: results of a "best-fit" framework synthesis.

    Science.gov (United States)

    Veinot, Tiffany C; Senteio, Charles R; Hanauer, David; Lowery, Julie C

    2018-06-01

    To describe a new, comprehensive process model of clinical information interaction in primary care (Clinical Information Interaction Model, or CIIM) based on a systematic synthesis of published research. We used the "best fit" framework synthesis approach. Searches were performed in PubMed, Embase, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), PsycINFO, Library and Information Science Abstracts, Library, Information Science and Technology Abstracts, and Engineering Village. Two authors reviewed articles according to inclusion and exclusion criteria. Data abstraction and content analysis of 443 published papers were used to create a model in which every element was supported by empirical research. The CIIM documents how primary care clinicians interact with information as they make point-of-care clinical decisions. The model highlights 3 major process components: (1) context, (2) activity (usual and contingent), and (3) influence. Usual activities include information processing, source-user interaction, information evaluation, selection of information, information use, clinical reasoning, and clinical decisions. Clinician characteristics, patient behaviors, and other professionals influence the process. The CIIM depicts the complete process of information interaction, enabling a grasp of relationships previously difficult to discern. The CIIM suggests potentially helpful functionality for clinical decision support systems (CDSSs) to support primary care, including a greater focus on information processing and use. The CIIM also documents the role of influence in clinical information interaction; influencers may affect the success of CDSS implementations. The CIIM offers a new framework for achieving CDSS workflow integration and new directions for CDSS design that can support the work of diverse primary care clinicians.

  19. Atom interferometry with trapped Bose-Einstein condensates: impact of atom-atom interactions

    International Nuclear Information System (INIS)

    Grond, Julian; Hohenester, Ulrich; Mazets, Igor; Schmiedmayer, Joerg

    2010-01-01

    Interferometry with ultracold atoms promises the possibility of ultraprecise and ultrasensitive measurements in many fields of physics, and is the basis of our most precise atomic clocks. Key to a high sensitivity is the possibility to achieve long measurement times and precise readout. Ultracold atoms can be precisely manipulated at the quantum level and can be held for very long times in traps; they would therefore be an ideal setting for interferometry. In this paper, we discuss how the nonlinearities from atom-atom interactions, on the one hand, allow us to efficiently produce squeezed states for enhanced readout and, on the other hand, result in phase diffusion that limits the phase accumulation time. We find that low-dimensional geometries are favorable, with two-dimensional (2D) settings giving the smallest contribution of phase diffusion caused by atom-atom interactions. Even for time sequences generated by optimal control, the achievable minimal detectable interaction energy ΔE min is of the order of 10 -4 μ, where μ is the chemical potential of the Bose-Einstein condensate (BEC) in the trap. From these we have to conclude that for more precise measurements with atom interferometers, more sophisticated strategies, or turning off the interaction-induced dephasing during the phase accumulation stage, will be necessary.

  20. Optical perturbation of atoms in weak localization

    Science.gov (United States)

    Yedjour, A.

    2018-01-01

    We determine the microscopic transport parameters that are necessary to describe the diffusion process of the atomic gas in optical speckle. We use the self-consistent theory to calculate the self-energy of the atomic gas. We compute the spectral function numerically by an average over disorder realizations in terms of the Greens function. We focus mainly on the behaviour of the energy distribution of the atoms to estimate a correction to the mobility edge. Our results show that the energy distribution of the atoms locates the mobility edge position under the disorder amplitude. This behaviour changes for each disorder parameter. We conclude that the disorder amplitude potential induced modification of the energy distribution of the atoms that plays a major role for the prediction of the mobility edge.

  1. Atom-to-continuum methods for gaining a fundamental understanding of fracture.

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, David Lynn (Georgia Institute of Technology, Atlanta, GA); Reedy, Earl David, Jr.; Templeton, Jeremy Alan; Jones, Reese E.; Moody, Neville Reid; Zimmerman, Jonathan A.; Belytschko, Ted. (Northwestern University, Evanston, IL); Zhou, Xiao Wang; Lloyd, Jeffrey T. (Georgia Institute of Technology, Atlanta, GA); Oswald, Jay (Northwestern University, Evanston, IL); Delph, Terry J. (Lehigh University, Bethlehem, PA); Kimmer, Christopher J. (Indiana University Southeast, New Albany, IN)

    2011-08-01

    This report describes an Engineering Sciences Research Foundation (ESRF) project to characterize and understand fracture processes via molecular dynamics modeling and atom-to-continuum methods. Under this aegis we developed new theory and a number of novel techniques to describe the fracture process at the atomic scale. These developments ranged from a material-frame connection between molecular dynamics and continuum mechanics to an atomic level J integral. Each of the developments build upon each other and culminated in a cohesive zone model derived from atomic information and verified at the continuum scale. This report describes an Engineering Sciences Research Foundation (ESRF) project to characterize and understand fracture processes via molecular dynamics modeling and atom-to-continuum methods. The effort is predicated on the idea that processes and information at the atomic level are missing in engineering scale simulations of fracture, and, moreover, are necessary for these simulations to be predictive. In this project we developed considerable new theory and a number of novel techniques in order to describe the fracture process at the atomic scale. Chapter 2 gives a detailed account of the material-frame connection between molecular dynamics and continuum mechanics we constructed in order to best use atomic information from solid systems. With this framework, in Chapter 3, we were able to make a direct and elegant extension of the classical J down to simulations on the scale of nanometers with a discrete atomic lattice. The technique was applied to cracks and dislocations with equal success and displayed high fidelity with expectations from continuum theory. Then, as a prelude to extension of the atomic J to finite temperatures, we explored the quasi-harmonic models as efficient and accurate surrogates of atomic lattices undergoing thermo-elastic processes (Chapter 4). With this in hand, in Chapter 5 we provide evidence that, by using the appropriate

  2. Atomic collisions in fusion plasmas involving multiply charged ions

    International Nuclear Information System (INIS)

    Salzborn, E.

    1980-01-01

    A short survey is given on atomic collisions involving multiply charged ions. The basic features of charge transfer processes in ion-ion and ion-atom collisions relevant to fusion plasmas are discussed. (author)

  3. International bulletin on atomic and molecular data for fusion. No. 46

    International Nuclear Information System (INIS)

    Botero, J.

    1993-06-01

    The bulletin is published by the International Atomic Energy Agency to provide atomic and molecular data relevant to fusion research and technology. In Part I the indexed papers are listed separately for (i) structure and spectra (energy levels, wavelengths; transition probabilities, oscillator strengths; interatomic potentials); (ii) atomic and molecular collisions (photon collisions; electron collisions; heavy-particle collisions; homonuclear sequences; isoelectronic sequences), and (iii) surface interactions (sputtering; chemical reactions; trapping and detrapping; surface damage; blistering, flaking; secondary electron emission). Part II contains the bibliographic data for the above listed topics and for high energy laser- and beam-matter interaction; interaction of atomic particles with fields. The atomic and molecular data needs in fusion research, as identified during the IAEA Consultants' Meeting on 'Atomic and Molecular Database for Hydrogen Recycling and Helium Exhaust from Fusion Reactors', June 1992, Vienna, are listed, covering (i) atomic and molecular collision processes, (ii) particle-surface interaction processes, and (iii) the status of data bases on atomic and molecular data and plasma-surface interactions. News on the ALADDIN (A labelled Atomic Data INterface) system is provided. Finally, a list of evaluated atomic and molecular data bases is provided

  4. Atom ionization in a nonclassical intense electromagnetic field

    International Nuclear Information System (INIS)

    Popov, A.M.; Tikhonova, O.V.

    2002-01-01

    The atoms ionization process in the intense nonclassical electromagnetic field is considered. It is shown that depending on the field quantum state the probability of ionization may essentially change even by one and the same average quantum number in the radiation mode, whereby the difference in the ionization rates is especially significant in the case, when the ionization process is of a multiphoton character. It is demonstrates in particular, that the nonclassical field may be considerably more intensive from the viewpoint of the atoms ionization, than the classical field with the same intensity. The peculiarities of the decay, related to the atomic system state in the strong nonclassical field beyond the perturbation theory frames are studied [ru

  5. Process cost and facility considerations in the selection of primary cell culture clarification technology.

    Science.gov (United States)

    Felo, Michael; Christensen, Brandon; Higgins, John

    2013-01-01

    The bioreactor volume delineating the selection of primary clarification technology is not always easily defined. Development of a commercial scale process for the manufacture of therapeutic proteins requires scale-up from a few liters to thousands of liters. While the separation techniques used for protein purification are largely conserved across scales, the separation techniques for primary cell culture clarification vary with scale. Process models were developed to compare monoclonal antibody production costs using two cell culture clarification technologies. One process model was created for cell culture clarification by disc stack centrifugation with depth filtration. A second process model was created for clarification by multi-stage depth filtration. Analyses were performed to examine the influence of bioreactor volume, product titer, depth filter capacity, and facility utilization on overall operating costs. At bioreactor volumes 5,000 L, clarification using centrifugation followed by depth filtration offers significant cost savings. For bioreactor volumes of ∼ 2,000 L, clarification costs are similar between depth filtration and centrifugation. At this scale, factors including facility utilization, available capital, ease of process development, implementation timelines, and process performance characterization play an important role in clarification technology selection. In the case study presented, a multi-product facility selected multi-stage depth filtration for cell culture clarification at the 500 and 2,000 L scales of operation. Facility implementation timelines, process development activities, equipment commissioning and validation, scale-up effects, and process robustness are examined. © 2013 American Institute of Chemical Engineers.

  6. Beams made of twisted atoms: A theoretical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hayrapetyan, Armen [Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg, 69120 Heidelberg (Germany); Matula, Oliver [Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg, 69120 Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Surzhykov, Andrey [Helmholtz-Institut Jena, 07743 Jena (Germany); Fritzsche, Stephan [Helmholtz-Institut Jena, 07743 Jena (Germany); Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universitaet Jena, 07743 Jena (Germany)

    2014-07-01

    We have analyzed Bessel beams of two-level atoms that are driven by a linearly polarized laser light. Based on the Schroedinger equation for two-level systems, we first determine the states of two-level atoms in a plane-wave field by taking into account propagation directions both of the atom and the field. For such laser-driven two-level atoms, we construct Bessel beams by going beyond the typical paraxial approximation. In particular, we show that the probability density of these atomic beams exhibits a non-trivial, Bessel-squared-type behavior. The profile of such twisted atoms is affected by atom and laser parameters, such as the nuclear charge, atom velocity, laser frequency, and propagation geometry of the atom and laser beams. Moreover, we spatially and temporally characterize the beam of hydrogen and selected (neutral) alkali-metal atoms that carry non-zero orbital angular momentum (OAM). The proposed spatiotemporal Bessel states (i) are able to describe twisted states of any two-level system which is driven by the radiation field and (ii) have potential applications in atomic and nuclear processes as well as in quantum communication.

  7. Multimode quantum model of a cw atom laser

    International Nuclear Information System (INIS)

    Hope, J.J.; Haine, S.A.; Savage, C.M.

    2002-01-01

    Full text: Laser cooling allows dilute atomic gases to be cooled to within K of absolute zero. Ultracold gases were first achieved twenty years ago and have since found applications in areas such as spectroscopy, time standards, frequency standards, quantum information processing and atom optics. The atomic analogue of the lasing mode in optical lasers is Bose-Einstein Condensation (BEC), in which a cooled sample of atoms condense into the lowest energy quantum state. This new state of matter was recently achieved in dilute Bose gases in 1995. Atoms coupled out of a BEC exhibit long-range spatial coherence, and provide the coldest atomic source currently available. These atomic sources are called 'atom lasers' because the BEC is analogous to the lasing mode of an optical laser. The high spectral flux from optical lasers is caused by a process called gain-narrowing, which requires continuous wave (cw) operation. Coupling a BEC quickly into an untrapped state forms a coherent atomic beam but it has a spread in momentum as large as the trapped BEC. Coupling the atoms out more slowly reduces the output linewidth at the expense of reducing the overall flux. These atom lasers are equivalent to Q-switched optical lasers. A cw atom laser with gain-narrowing would produce an increasingly monoenergetic output as the flux increased, dramatically improving the spectral flux. A cw atom laser is therefore a major goal of the atom optics community, but there are several theoretical and practical obstacles to understanding the complexities of such a system. The main obstacle to the production of a cw atom laser is the technical difficulties involved in continuously pumping the lasing mode. No complete theory exists which describes a cw atom laser. Complete cw atom laser models require a quantum field description due to their non-Markovian dynamics, significant spatial effects and the dependence of the output on the quantum statistics of the lasing mode. The extreme dimensionality

  8. Atom interferometry with lithium atoms: theoretical analysis and design of an interferometer, applications; Interferometrie atomique avec l'atome de lithium: analyse theorique et construction d'un interferometre, applications

    Energy Technology Data Exchange (ETDEWEB)

    Champenois, C

    1999-12-01

    This thesis is devoted to studies which prepared the construction of an atom Mach-Zehnder interferometer. In such an interferometer, the propagating waves are spatially separated, and the internal state of the atom is not modified. The beam-splitters are diffraction gratings, consisting of standing optical waves near-resonant with an atomic transition. We use the Bloch functions to define the atom wave inside the standing wave grating and thus explain the diffraction process in different cases. We developed a nearly all-analytical model for the propagation of an atom wave inside a Mach-Zehnder interferometer. The contrast of the signal is studied for many cases: phase or amplitude gratings, effects of extra paths, effects of the main mismatches, monochromatic or lightly polychromatic sources. Finally, we discuss three interferometric measurements we think very interesting. The first, the index of refraction of gas for atomic waves, is studied in detail, with numerical simulations. The other measures we propose deal with the electrical properties of lithium. We discuss the ultimate limit for the measure of the static electric polarizability of lithium by atomic interferometry. Then, we discuss how one could measure the possible charge of the lithium atom. We conclude that an optically cooled and collimated atom beam would improve precision. (author)

  9. Tungsten deposition by hydrogen-atom reaction with tungsten hexafluoride

    International Nuclear Information System (INIS)

    Lee, W.W.

    1991-01-01

    Using gaseous hydrogen atoms with WF 6 , tungsten atoms can be produced in a gas-phase reaction. The atoms then deposit in a near-room temperature process, which results in the formation of tungsten films. The W atoms (10 10 -10 11 /cm 3 ) were measured in situ by atomic absorption spectroscopy during the CVD process. Deposited W films were characterized by Auger electron spectroscopy, Rutherford backscattering, and X-ray diffraction. The surface morphology of the deposited films and filled holes was studied using scanning electron microscopy. The deposited films were highly adherent to different substrates, such as Si, SiO 2 , Ti/Si, TiN/Si and Teflon. The reaction mechanism and kinetics were studied. The experimental results indicated that this method has three advantages compared to conventional CVD or PECVD: (1) film growth occurs at low temperatures; (2) deposition takes place in a plasma-free environment; and (3) a low level of impurities results in high-quality adherent films

  10. Correlated charge-changing ion-atom collisions

    International Nuclear Information System (INIS)

    Tanis, J.A.

    1992-04-01

    This report summarizes the progress and accomplishments in accelerator atomic physics research supported by DOE grant DE-FG02-87ER13778 from March 16, 1991 through March 15, 1992. This work involves the experimental investigation of fundamental atomic processes in collisions of charged projectiles with neutral targets or electrons, with particular emphasis on two-electron interactions and electron correlation effects. Processes involving combinations of excitation, ionization, and charge transfer are investigated utilizing coincidence techniques in which projectiles charge-changing events are associated with x-ray emission, target recoil ions, or electron emission. New results have been obtained for studies involving (1) resonant recombination of atomic ions, (2) double ionization of helium, and (3) continuum electron emission. Experiments were conducted using accelerators at the Lawrence Berkeley Laboratory, Argonne National Laboratory, Michigan State University, Western Michigan University, and the Institute of Nuclear Research, Debrecen, Hungary. Brief summaries of work completed and work in progress are given in this report

  11. Yttrium recovery from primary and secondary sources: A review of main hydrometallurgical processes

    Energy Technology Data Exchange (ETDEWEB)

    Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it [Department of Industrial Engineering, of Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, Zona industriale di Pile, 67100 L’Aquila (Italy); De Michelis, Ida [Department of Industrial Engineering, of Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, Zona industriale di Pile, 67100 L’Aquila (Italy); Kopacek, Bernd [SAT, Austrian Society for Systems Engineering and Automation, Gurkasse 43/2, A-1140 Vienna (Austria); Vegliò, Francesco [Department of Industrial Engineering, of Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, Zona industriale di Pile, 67100 L’Aquila (Italy)

    2014-07-15

    Highlights: • Review of the main hydrometallurgical processes to recover yttrium. • Recovery of yttrium from primary sources. • Recovery of yttrium from e-waste and other types of waste. - Abstract: Yttrium is important rare earths (REs) used in numerous fields, mainly in the phosphor powders for low-energy lighting. The uses of these elements, especially for high-tech products are increased in recent years and combined with the scarcity of the resources and the environmental impact of the technologies to extract them from ores make the recycling waste, that contain Y and other RE, a priority. The present review summarized the main hydrometallurgical technologies to extract Y from ores, contaminated solutions, WEEE and generic wastes. Before to discuss the works about the treatment of wastes, the processes to retrieval Y from ores are discussed, since the processes are similar and derived from those already developed for the extraction from primary sources. Particular attention was given to the recovery of Y from WEEE because the recycle of them is important not only for economical point of view, considering its value, but also for environmental impact that this could be generated if not properly disposal.

  12. Third Meeting of the IFRC Subcommittee on Atomic and Molecular (A+M) Data for Fusion. Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, A.; Hughes, J. [International Atomic Energy Agency, Nuclear Data Section, Vienna (Austria)

    1984-11-15

    The Subcommittee reaffirmed its earlier position that the primary function of the IAEA A+M Data Unit is to assemble a file of evaluated atomic collision data which had been recommended by atomic physicists and disseminate these data to the fusion research community.

  13. High U-density nuclear fuel development with application of centrifugal atomization technology

    International Nuclear Information System (INIS)

    Kim, Chang Kyu; Kim, Ki Hwan; Lee, Don Bae

    1997-01-01

    In order to simplify the preparation process and improve the properties of uranium silicide fuels prepared by mechanical comminution, a fuel fabrication process applying rotating-disk centrifugal atomization technology was invented in KAERI in 1989. The major characteristic of atomized U 3 Si and U 3 Si 2 powders have been examined. The out-pile properties, including the thermal compatibility between atomized particle and aluminum matrix in uranium silicide dispersion fuels, have generally showed a superiority to the comminuted fuels. Moreover, the RERTR (reduced enrichment for research and test reactors) program, which recently begins to develop very-high-density uranium alloy fuels, including U-Mo fuels, requires the centrifugal atomization process to overcome the contaminations of impurities and the difficulties of the comminution process. In addition, a cooperation with ANL in the U.S. has been performed to develop high-density fuels with an application of atomization technology since December 1996. If the microplate and miniplate irradiation tests of atomized fuels, which have been performed with ANL, demonstrated the stability and improvement of in-reactor behaviors, nuclear fuel fabrication technology by centrifugal atomization could be most-promising to the production method of very-high-uranium-loading fuels. (author). 22 refs., 2 tabs., 12 figs

  14. Transfer of energy in an atom

    International Nuclear Information System (INIS)

    Chemin, J.F.

    2001-01-01

    In most cases the nucleus does not interact with the electron cloud because its energy range is far higher, but in some rare cases electrons from the electron cloud and the nucleus may exchange energy: an electron may de-excite by transferring a part of its energy to the nucleus that becomes itself excited (nuclear excitation by electronic transfer or NEET), conversely electrons can receive energy from the nucleus (bound internal conversion or BIC). For the first time both energy transfers have been observed: a BIC process on a tellurium-125 atom by a French team and a NEET process on a gold-197 atom by a Japanese team. (A.C.)

  15. ATOMIC CARBON IN THE UPPER ATMOSPHERE OF TITAN

    International Nuclear Information System (INIS)

    Zhang, X.; Yung, Y. L.; Ajello, J. M.

    2010-01-01

    The atomic carbon emission C I line feature at 1657 A ( 3 P 0 J - 3 P J ) in the upper atmosphere of Titan is first identified from the airglow spectra obtained by the Cassini Ultra-violet Imaging Spectrograph. A one-dimensional photochemical model of Titan is used to study the photochemistry of atomic carbon on Titan. Reaction between CH and atomic hydrogen is the major source of atomic carbon, and reactions with hydrocarbons (C 2 H 2 and C 2 H 4 ) are the most important loss processes. Resonance scattering of sunlight by atomic carbon is the dominant emission mechanism. The emission intensity calculations based on model results show good agreement with the observations.

  16. Role Clarification Processes for Better Integration of Nurse Practitioners into Primary Healthcare Teams: A Multiple-Case Study

    Directory of Open Access Journals (Sweden)

    Isabelle Brault

    2014-01-01

    Full Text Available Role clarity is a crucial issue for effective interprofessional collaboration. Poorly defined roles can become a source of conflict in clinical teams and reduce the effectiveness of care and services delivered to the population. Our objective in this paper is to outline processes for clarifying professional roles when a new role is introduced into clinical teams, that of the primary healthcare nurse practitioner (PHCNP. To support our empirical analysis we used the Canadian National Interprofessional Competency Framework, which defines the essential components for role clarification among professionals. A qualitative multiple-case study was conducted on six cases in which the PHCNP role was introduced into primary care teams. Data collection included 34 semistructured interviews with key informants involved in the implementation of the PHCNP role. Our results revealed that the best performing primary care teams were those that used a variety of organizational and individual strategies to carry out role clarification processes. From this study, we conclude that role clarification is both an organizational process to be developed and a competency that each member of the primary care team must mobilize to ensure effective interprofessional collaboration.

  17. Role clarification processes for better integration of nurse practitioners into primary healthcare teams: a multiple-case study.

    Science.gov (United States)

    Brault, Isabelle; Kilpatrick, Kelley; D'Amour, Danielle; Contandriopoulos, Damien; Chouinard, Véronique; Dubois, Carl-Ardy; Perroux, Mélanie; Beaulieu, Marie-Dominique

    2014-01-01

    Role clarity is a crucial issue for effective interprofessional collaboration. Poorly defined roles can become a source of conflict in clinical teams and reduce the effectiveness of care and services delivered to the population. Our objective in this paper is to outline processes for clarifying professional roles when a new role is introduced into clinical teams, that of the primary healthcare nurse practitioner (PHCNP). To support our empirical analysis we used the Canadian National Interprofessional Competency Framework, which defines the essential components for role clarification among professionals. A qualitative multiple-case study was conducted on six cases in which the PHCNP role was introduced into primary care teams. Data collection included 34 semistructured interviews with key informants involved in the implementation of the PHCNP role. Our results revealed that the best performing primary care teams were those that used a variety of organizational and individual strategies to carry out role clarification processes. From this study, we conclude that role clarification is both an organizational process to be developed and a competency that each member of the primary care team must mobilize to ensure effective interprofessional collaboration.

  18. Improvement Design of an Existing Atomized Kerosene Stove for ...

    African Journals Online (AJOL)

    The existing atomized kerosene stove being used in some households in Nigeria does not give room for primary air fuel mixture but secondary one before combustion. This in turn leads to higher specific fuel consumption and ultimately lower thermal efficiency (resulting from low combustion efficiency) of the stove. In order ...

  19. Atomic and molecular physics of plasma-based environmental technologies for abatement of volatile organic compounds

    International Nuclear Information System (INIS)

    Penetrante, B. M.; Hsiao, M. C.; Bardsley, J. N.; Merritt, B. T.; Vogtin, G. E.; Kuthi, A.; Burkhart, C. P.; Bayless, J. R.

    1997-01-01

    Non-thermal plasma techniques represent a new generation of air emission control technology that potentially could treat large-volume emissions containing dilute concentrations of volatile organic compounds. In order to apply non-thermal plasmas in an industrial scale, it is important to establish the electrical power requirements and byproducts of the process.There is a need for reliable data concerning the primary decomposition mechanisms and subsequent chemical kinetics associated with non- thermal plasma processing of volatile organic compounds. There are many basic atomic and molecular physics issues that are essential in evaluating the economic performance of non-thermal plasma reactors. These studies are important in understanding how the input electrical power is dissipated in the plasma and how efficiently it is converted to the production of the plasma species (radicals, ions or electrons) responsible for the decomposition of the volatile organic compounds. This paper will present results from basic experimental and theoretical studies aimed at identifying the reaction mechanisms responsible for the primary decomposition of various types of volatile organic compounds. (authors)

  20. Outer-shell transitions in collisions between multiply charged ions and atoms

    International Nuclear Information System (INIS)

    Bloemen, E.W.P.

    1980-01-01

    The study of collisions between multiply charged ions and atoms (molecules) is of importance in different areas of research. Usually, the most important process is capture of an electron from the target atom into the projectile ion. In most cases the electron goes to an excited state of the projectile ion. These electron capture processes are studied. The author also studied direct excitation of the target atom and of the projectile ion. (Auth.)