WorldWideScience

Sample records for potential biomass quantity

  1. MICROMICETES QUANTITY AND BIOMASS IN TECHNOGENIC AND NATURAL SOILS

    Directory of Open Access Journals (Sweden)

    O. N. Korinovskaya

    2014-08-01

    Full Text Available It is shown that in edaphotopes around of freight checkpoint of CJSC «Krivorozhskiy Surikovyy Zavod», ore-enrichment factory and fresh-inwashed pool of tailings dam of PJSC «Northern Iron Ore Enrichment Works» there is an increase of heavy metals mobile forms (which are the most dangerous for microorganisms, plants, animals and human: for iron in 310; for zinc - in 4,3-6,5; for lead - in 3.2-5.7; for cadmium - in 5,6-9,8; for copper – 6,8-66,5 and for nickel - in 9 times as compared to zonal soil. Whereas in soils of CJSC «Krivorozhskiy Surikovyy Zavod» sanitary protection zone number of copper, nickel, lead, cadmium and zinc mobile forms exceeded the control values in 2,4-6,6 times. For the first time the features of soil microscopic fungi seasonal dynamics of quantity in industrial disturbed soils of Kryvorizhzhya compared to zonal soil (chernozem usual were registered. Changes in fungal mycelium length and biomass, its spore’s amount and biomass in edaphotopes of ore-enrichment and chemical enterprises and of common chernozem are also presented. It is shown that in edaphotopes of heavy contamination areas of «Krivorozhskiy Surikovyy Zavod» and of «Northern Iron Ore Enrichment Works» in spring, summer, and autumn there was decrease of microscopic fungi quantity in 4-10 times, moreover in tehnozems of «Northern Iron Ore Enrichment Works» fresh-inwashed pool of tailings dam their amount reduces in more than 100 times, compared with common chernozem. In low contamination area of «Krivorozhskiy Surikovyy Zavod» their quantity decreases in 2 times. Also in heavy contamination areas of chemical and ore-enrichment enterprises there is strong decrease in the length of fungal mycelium in 2.7-4.2 times, its biomass in 2,6-4,5 times, the spores amount - in 4,5-7,7 times and their biomass - in 10,5-21 times compared to the natural soil, which could be explained by high contents of toxicants. While in the sanitary protection zone of the

  2. Renewable energy potential from biomass residues in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Said, N.; Zamorano, M. [Civil Engineering Dept., Univ. of Granada, Campus de Fuentenueva, Granada (Spain); El-Shatoury, S.A. [Botany Dept., Faculty of Sciences, Suez Canal Univ., Ismailia (Egypt)

    2012-11-01

    Egypt has been one of the developing countries following successful programs for the development of renewable energy resources, with special emphasis on solar, wind and biomass. Utilization of biomass as a source of energy is important from energetic as well as environmental viewpoint. Furthermore, Egypt produces millions of biomass waste every year causing pollution and health problems. So, the incorporation of biomass with other renewable energy will increase the impact of solving energy and environmental problem. There is a good potential for the utilization of biomass energy resources in Egypt. Four main types of biomass energy sources are included in this study: agricultural residues, municipal solid wastes, animal wastes and sewage sludge. Analysis of the potential biomass resource quantity and its theoretical energy content has been computed according to literature review. The agriculture crop residue represents the main source of biomass waste with a high considerable amount of the theoretical potential energy in Egypt. Rice straw is considered one of the most important of such residue due to its high amount and its produced energy through different conversion techniques represent a suitable candidate for crop energy production in Egypt.

  3. Development Potentials and Policy Options of Biomass in China

    Science.gov (United States)

    Shen, Lei; Liu, Litao; Yao, Zhijun; Liu, Gang; Lucas, Mario

    2010-10-01

    Biomass, one of the most important renewable energies, is playing and will continue to play an important role in the future energy structure of the world. This article aims to analyze the position and role, assess the resource availability, discuss the geographic distribution, market scale and industry development, and present the policy options of biomass in China. The resource availability and geographical distribution of biomass byproducts are assessed in terms of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater. The position of biomass use for power generation is just next to hydropower among types of renewable energy in China. The potential quantity of all biomass byproducts energy in 2004 is 3511 Mtce (Mtce is the abbreviation of million tons of coal equivalents and 1 Mtce is equal to106 tce.), while the acquirable quantity is 460 Mtce. Biomass energy plays a critical role in rural regions of China. The geographical distribution and quantity of biomass byproducts resources depends mainly on the relationship between ecological zones and climate conditions. Our estimation shows that the total quantity of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater resources are 728, 3926, 2175, 155 and 48240 Mt (million tons), respectively. Crop residues come mainly from the provinces of Henan, Shandong, Heilongjiang, Jilin and Sichuan. All manure is mainly located in the provinces of Henan, Shandong, Sichuan, Hebei and Hunan. Forest and wood biomass byproducts are mainly produced in the provinces or autonomous regions of Tibet, Sichuan, Yunnan, Heilongjiang and Inner Mongolia, while most of municipal waste mainly comes from Guangdong, Shandong, Heilongjiang, Hubei and Jiangsu. Most of wastewater is largely discharged from advanced provinces like Guangdong, Jiangsu, Zhejiang, Shandong and Henan. Biomass byproducts’ energy distribution also varies from province to province in China. Based on

  4. MICROMICETES QUANTITY AND BIOMASS IN TECHNOGENIC AND NATURAL SOILS

    Directory of Open Access Journals (Sweden)

    Korinovskaya Olga Nikolaevna

    2014-08-01

    Full Text Available It is shown that in edaphotopes around of freight checkpoint of CJSC «Krivorozhskiy Surikovyy Zavod», ore-enrichment factory and fresh-inwashed pool of tailings dam of PJSC «Northern Iron Ore Enrichment Works» there is an increase of heavy metals mobile forms (which are the most dangerous for microorganisms, plants, animals and human: for iron in 310; for zinc - in 4,3-6,5; for lead - in 3.2-5.7; for cadmium - in 5,6-9,8; for copper – 6,8-66,5 and for nickel - in 9 times as compared to zonal soil. Whereas in soils of CJSC «Krivorozhskiy Surikovyy Zavod» sanitary protection zone number of copper, nickel, lead, cadmium and zinc mobile forms exceeded the control values in 2,4-6,6 times. For the first time the features of soil microscopic fungi seasonal dynamics of quantity in industrial disturbed soils of Kryvorizhzhya compared to zonal soil (chernozem usual were registered. Changes in fungal mycelium length and biomass, its spore’s amount and biomass in edaphotopes of ore-enrichment and chemical enterprises and of common chernozem are also presented. It is shown that in edaphotopes of heavy contamination areas of «Krivorozhskiy Surikovyy Zavod» and of «Northern Iron Ore Enrichment Works» in spring, summer, and autumn there was decrease of microscopic fungi quantity in 4-10 times, moreover in tehnozems of «Northern Iron Ore Enrichment Works» fresh-inwashed pool of tailings dam their amount reduces in more than 100 times, compared with common chernozem. In low contamination area of «Krivorozhskiy Surikovyy Zavod» their quantity decreases in 2 times. Also in heavy contamination areas of chemical and ore-enrichment enterprises there is strong decrease in the length of fungal mycelium in 2.7-4.2 times, its biomass in 2,6-4,5 times, the spores amount - in 4,5-7,7 times and their biomass - in 10,5-21 times compared to the natural soil, which could be explained by high contents of toxicants. While in the sanitary protection zone of the

  5. Forest Biomass Energy Resources in China: Quantity and Distribution

    Directory of Open Access Journals (Sweden)

    Caixia Zhang

    2015-11-01

    Full Text Available As one of the most important renewable and sustainable energy sources, the forest biomass energy resource has always been the focus of attention of scholars and policy makers. However, its potential is still uncertain in China, especially with respect to its spatial distribution. In this paper, the quantity and distribution of Chinese forest biomass energy resources are explored based mainly on forestry statistics data rather than forest resource inventory data used by most previous studies. The results show that the forest biomass energy resource in China was 169 million tons in 2010, of which wood felling and bucking residue (WFBR,wood processing residue (WPR, bamboo processing residue, fuel wood and firewood used by farmers accounted for 38%, 37%, 6%, 4% and 15%, respectively. The highest resource was located in East China, accounting for nearly 39.0% of the national amount, followed by the Southwest and South China regions, which accounted for 17.4% and 16.3%, respectively. At the provincial scale, Shandong has the highest distribution, accounting for 11.9% of total resources, followed by Guangxi and Fujian accounting for 10.3% and 10.2%, respectively. The actual wood-processing residue (AWPR estimated from the actual production of different wood products (considering the wood transferred between regions showed apparent differences from the local wood processing residue (LWPR, which assumes that no wood has been transferredbetween regions. Due to the large contribution of WPR to total forestry bioenergy resources, the estimation of AWPR will provide a more accurate evaluation of the total amount and the spatial distribution of forest biomass energy resources in China.

  6. Effects of Fuel Quantity on Soot Formation Process for Biomass-Based Renewable Diesel Fuel Combustion

    KAUST Repository

    Jing, Wei; Wu, Zengyang; Roberts, William L.; Fang, Tiegang

    2016-01-01

    Soot formation process was investigated for biomass-based renewable diesel fuel, such as biomass to liquid (BTL), and conventional diesel combustion under varied fuel quantities injected into a constant volume combustion chamber. Soot measurement

  7. Effects of Fuel Quantity on Soot Formation Process for Biomass-Based Renewable Diesel Fuel Combustion

    KAUST Repository

    Jing, Wei

    2016-12-01

    Soot formation process was investigated for biomass-based renewable diesel fuel, such as biomass to liquid (BTL), and conventional diesel combustion under varied fuel quantities injected into a constant volume combustion chamber. Soot measurement was implemented by two-color pyrometry under quiescent type diesel engine conditions (1000 K and 21% O2 concentration). Different fuel quantities, which correspond to different injection widths from 0.5 ms to 2 ms under constant injection pressure (1000 bar), were used to simulate different loads in engines. For a given fuel, soot temperature and KL factor show a different trend at initial stage for different fuel quantities, where a higher soot temperature can be found in a small fuel quantity case but a higher KL factor is observed in a large fuel quantity case generally. Another difference occurs at the end of combustion due to the termination of fuel injection. Additionally, BTL flame has a lower soot temperature, especially under a larger fuel quantity (2 ms injection width). Meanwhile, average soot level is lower for BTL flame, especially under a lower fuel quantity (0.5 ms injection width). BTL shows an overall low sooting behavior with low soot temperature compared to diesel, however, trade-off between soot level and soot temperature needs to be carefully selected when different loads are used.

  8. Biofertilizer potential of residual biomass of Akk (alotropis procera (Ait.))

    International Nuclear Information System (INIS)

    Ahmad, N.

    2016-01-01

    The biofertilizer potential of residual biomass, derived from two parts that is flowers and leaves of Akk,was investigated in terms of its applications as a substrate for phyto-beneficial bacterial growth and subsequent inorganic phosphate solubilizing agent. The residual biomass was obtained after the extraction of antioxidants from the leaves and flowers of Akk using different solvent systems. The treatment with residual biomass of Akk (RBA) significantly (p<0.05) enhanced the growth of Enterobacter sp. Fs-11 and Rhizobium sp. E-11 as compared to control (without residual biomass). Maximum microbial growth in terms of optical density (0.92-1.22) was observed for residual biomass sample extracted with aqueous acetone against the control (0.58-0.68). On the other hand, maximum phosphate solubilization (589.27-611.32 mu g mL-1) was recorded for aqueous ethanol extracted residual biomass while the minimum (246.31-382.15 micro g) for aqueous acetone extracted residual biomass against the control (576.65 micro g mL-1). The present study revealed that the tested RBA can be explored as an effective bio-inoculant to supplement synthetic inorganic phosphate fertilizers. However, some appropriate in-vitro assays should be conducted to optimize and standardize the quantity and mesh size of residual biomass prior to use in biofertilizer production as carrier material. (author)

  9. Future production and utilisation of biomass in Sweden: potentials and CO2 mitigation

    International Nuclear Information System (INIS)

    Boerjesson, P.; Gustavsson, L.; Christersson, L.; Linder, S.

    1997-01-01

    Swedish biomass production potential could be increased significantly if new production methods, such as optimised fertilisation, were to be used. Optimised fertilisation on 25% of Swedish forest land and the use of stem wood could almost double the biomass potential from forestry compared with no fertilisation, as both logging residues and large quantities of excess stem wood not needed for industrial purposes could be used for energy purposes. Together with energy crops and straw from agriculture, the total Swedish biomass potential would be about 230 TWh/yr or half the current Swedish energy supply if the demand for stem wood for building and industrial purposes were the same as today. The new production methods are assumed not to cause any significant negative impact on the local environment. The cost of utilising stem wood produced with optimised fertilisation for energy purposes has not been analysed and needs further investigation. Besides replacing fossil fuels and, thus, reducing current Swedish CO 2 emissions by about 65%, this amount of biomass is enough to produce electricity equivalent to 20% of current power production. Biomass-based electricity is produced preferably through co-generation using district heating systems in densely populated regions, and pulp industries in forest regions. Alcohols for transportation and stand-alone power production are preferably produced in less densely populated regions with excess biomass. A high intensity in biomass production would reduce biomass transportation demands. There are uncertainties regarding the future demand for stem wood for building and industrial purposes, the amount of arable land available for energy crop production and future yields. These factors will influence Swedish biomass potential and earlier estimates of the potential vary from 15 to 125 TWh/yr. (author)

  10. Quantification of the biocontrol agent Trichoderma harzianum with real-time TaqMan PCR and its potential extrapolation to the hyphal biomass.

    Science.gov (United States)

    López-Mondéjar, Rubén; Antón, Anabel; Raidl, Stefan; Ros, Margarita; Pascual, José Antonio

    2010-04-01

    The species of the genus Trichoderma are used successfully as biocontrol agents against a wide range of phytopathogenic fungi. Among them, Trichoderma harzianum is especially effective. However, to develop more effective fungal biocontrol strategies in organic substrates and soil, tools for monitoring the control agents are required. Real-time PCR is potentially an effective tool for the quantification of fungi in environmental samples. The aim of this study consisted of the development and application of a real-time PCR-based method to the quantification of T. harzianum, and the extrapolation of these data to fungal biomass values. A set of primers and a TaqMan probe for the ITS region of the fungal genome were designed and tested, and amplification was correlated to biomass measurements obtained with optical microscopy and image analysis, of the hyphal length of the mycelium of the colony. A correlation of 0.76 between ITS copies and biomass was obtained. The extrapolation of the quantity of ITS copies, calculated based on real-time PCR data, into quantities of fungal biomass provides potentially a more accurate value of the quantity of soil fungi. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Estimating grass nutrients and biomass as an indicator of rangeland (forage) quality and quantity using remote sensing in Savanna ecosystems

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2012-10-01

    Full Text Available and grass quantity, respectively. The objective of the study is to estimate and map leaf N and biomass as an indicator of rangeland quality and quantity using vegetation indices derived from one RapidEye image taken at peak productivity. The study...

  12. Methods for producing and using densified biomass products containing pretreated biomass fibers

    Science.gov (United States)

    Dale, Bruce E.; Ritchie, Bryan; Marshall, Derek

    2015-05-26

    A process is provided comprising subjecting a quantity of plant biomass fibers to a pretreatment to cause at least a portion of lignin contained within each fiber to move to an outer surface of said fiber, wherein a quantity of pretreated tacky plant biomass fibers is produced; and densifying the quantity of pretreated tacky plant biomass fibers to produce one or more densified biomass particulates, wherein said biomass fibers are densified without using added binder.

  13. Potentials for forest woody biomass production in Serbia

    Directory of Open Access Journals (Sweden)

    Vasiljević Aleksandar Lj.

    2015-01-01

    Full Text Available The paper presents the analysis of possible potentials for the production of forest biomass in Serbia taking into consideration the condition of forests, present organizational and technical capacities as well as the needs and situation on the firewood market. Starting point for the estimation of production potentials for forest biomass is the condition of forests which is analyzed based on the available planning documents on all levels. Potentials for biomass production and use refer to initial periods in the production and use of forest biomass in Serbia.

  14. The availability of biomass for energy production

    International Nuclear Information System (INIS)

    Zeevalkink, J.A.; Borsboom, N.W.J.; Sikkema, R.

    1997-12-01

    The Dutch energy policy aims at 75 PJ energy production from biomass in the Netherlands by the year 2020. This requires the development of a biomass market for biomass fuels so that suppliers as well as users can sell and buy biomass, respectively. The study concentrates on the contribution that information about biomass supply and demand can make to the realization of such a market for biomass fuels and stimulating its functioning. During the study, an inventory was made of public information on biomass quantities that are expected to become available for energy production in the short term. It was proposed to set up a database that contains information about the supply and suppliers of forest wood (specifically thinnings), (clean) waste wood from wood-processing industries, used timber and green wood waste from public parks. On the basis of rough estimates it can be concluded that these biomass flows account for an approximate annual quantity of 900,000 tonnes of dry biomass, or an annual 16,000 W energy production. This quantity would cover 66% of the goal set for the year 2000 and 20% of the goal set for 2020. Various database models were described and discussed during a workshop which was organized for potentially interested parties so as to find out their interest in and potential support for such an information system. Though the results of the survey conducted earlier suggested otherwise, it turned out that there was only minor interest in an information system, i.e. there was an interest in a survey of the companies involved in biomass supply and demand. In addition, most parties preferred bilateral confidential contacts to contract biomass. The opinion of many parties was that Novem's major tasks were to characterize biomass quality, and to give support to the discussions about the legal framework for using (waste) wood for energy production. It was concluded that at this moment a database must not be set up; in the future, however, there could be a

  15. A comprehensive review of biomass resources and biofuel production in Nigeria: potential and prospects.

    Science.gov (United States)

    Sokan-Adeaga, Adewale Allen; Ana, Godson R E E

    2015-01-01

    The quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria's primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria's development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the

  16. Biochar from Biomass and its Potential Agronomic and Environmental Use in Washington: A Promising Alternative to Drawdown Carbon from the Atmosphere and Develop a New Industry

    Energy Technology Data Exchange (ETDEWEB)

    Amonette, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Garcia-Perez, Manuel [Washington State Univ., Pullman, WA (United States); Sjoding, David [Washington State Energy Program Office, Olympia, WA (United States); Fuchs, Mark R. [Washington Dept. of Ecology, Spokane, WA (United States)

    2016-03-04

    Climate change is one of the most serious issues facing the world today. Increasing concentrations of carbon dioxide (CO2) and other long-lived greenhouse gases (GHGs) in the atmosphere continue to warm the planet and destabilize the climate. It has been estimated that the impact from this warming could cost the state 10 billion per year by 2020, and 16 billion per year by 2040. Long-term solutions to the climate problem likely will require that large quantities of CO2 be removed from the atmosphere. In fact, massive CO2 drawdowns from the atmosphere have occurred in earth’s recent past from events occurring in our hemisphere. Studies of those analogs provide insight into the potential magnitude for specific actions to drawdown significant CO2 from the atmosphere. One of these potential actions is the large-scale production of biochar from abundant woody biomass waste and its storage in soils, where it remains stable for hundreds to thousands of years. Moreover, for the carbon emission intensity of Washington’s fuel mix, biochar production from biomass is twice as effective in offsetting GHG emissions as complete biomass combustion of the same biomass. Washington State has large quantities of wood waste biomass that could be purposed for production of combined heat/power/biochar (CHPB) through existing biomass boilers. We propose to 1) evaluate the quantities of Washington wood waste biomass, 2) inventory existing boiler capacity and assess the technical merits and challenges to repurpose the boilers to CHPB, and 3) apply literature values and analog biochar examples to better quantify the extent of CO2 drawdown that could be achieved in Washington State over the next century using engineered biochar. This white paper explores the potential to replicate the historical drawdowns of atmospheric CO2, a topic the authors think should be part of current climate-change mitigation discussions. This

  17. Biomass energy utilisation - ecological and economic aspects

    International Nuclear Information System (INIS)

    Plamen Gramatikov

    2009-01-01

    Biomass is the world's fourth largest energy source today and it represents about 35% of the primary energy supply in developing countries. Biomass is a versatile source of energy in that it can produce electricity, heat, transport fuel and it can be stored. The problems (technical, economic, etc.) which have to be solved by treatment of biomass are discussed in this work. The average quantities of biomass resources of some European countries are presented and the structure, percentage of products and their calorific values are estimated. Keywords: Biomass Energy Potential, Ecological & Economic Aspects

  18. Siting Evaluation for Biomass-Ethanol Production in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, C.M.; Zhou, J.

    2000-10-15

    This report examines four Hawaiian islands, Oahu, Hawaii, Maui, and Kauai, to identify three best combinations of potential sites and crops for producing dedicated supplies of biomass for conversion to ethanol. Key technical and economic factors considered in the siting evaluation include land availability (zoning and use), land suitability (agronomic conditions), potential quantities and costs of producing biomass feedstocks, infrastructure (including water and power supplies), transportation, and potential bioresidues to supplement dedicated energy crops.

  19. Woody biomass energy potential in 2050

    International Nuclear Information System (INIS)

    Lauri, Pekka; Havlík, Petr; Kindermann, Georg; Forsell, Nicklas; Böttcher, Hannes; Obersteiner, Michael

    2014-01-01

    From a biophysical perspective, woody biomass resources are large enough to cover a substantial share of the world's primary energy consumption in 2050. However, these resources have alternative uses and their accessibility is limited, which tends to decrease their competitiveness with respect to other forms of energy. Hence, the key question of woody biomass use for energy is not the amount of resources, but rather their price. In this study we consider the question from the perspective of energy wood supply curves, which display the available amount of woody biomass for large-scale energy production at various hypothetical energy wood prices. These curves are estimated by the Global Biosphere Management Model (GLOBIOM), which is a global partial equilibrium model of forest and agricultural sectors. The global energy wood supply is estimated to be 0–23 Gm 3 /year (0–165 EJ/year) when energy wood prices vary in a range of 0–30$/GJ (0–216$/m 3 ). If we add household fuelwood to energy wood, then woody biomass could satisfy 2–18% of world primary energy consumption in 2050. If primary forests are excluded from wood supply then the potential decreases up to 25%. - highlights: • We examine woody biomass energy potential by partial equilibrium model of forest and agriculture sectors. • It is possible to satisfy 18% (or 14% if primary forests are excluded) of the world's primary energy consumption in 2050 by woody biomass. • To achieve this would require an extensive subsidy/tax policy and would lead to substantial higher woody biomass prices compared to their current level

  20. Review: Assessing the climate mitigation potential of biomass

    Directory of Open Access Journals (Sweden)

    Patrick Moriarty

    2016-12-01

    Full Text Available For many millennia, humans have used biomass for three broad purposes: food for humans and fodder for farm animals; energy; and materials. Food has always been exclusively produced from biomass, and in the year 1800, biomass still accounted for about 95% of all energy. Biomass has also been a major source of materials for construction, implements, clothing, bedding and other uses, but some researchers think that total human uses of biomass will soon reach limits of sustainability. It is thus important to select those biomass uses that will maximise global climate change benefits. With a ‘food first’ policy, it is increasingly recognised that projections of food needs are important for estimating future global bioenergy potential, and that non-food uses of biomass can be increased by both food crop yield improvements and dietary changes. However, few researchers have explicitly included future biomaterials production as a factor in bioenergy potential. Although biomaterials’ share of the materials market has roughly halved over the past quarter-century, we show that per tonne of biomass, biomaterials will usually allow greater greenhouse gas reductions than directly using biomass for bioenergy. particularly since in many cases, biomaterials can be later burnt for energy after their useful life.

  1. Biomass energy potential in Brazil. Country study

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, J [Biomass Users Network-Brazil Regional Office, Sao Paulo (Brazil)

    1995-12-01

    The present paper was prepared as a country study about the biomass potential for energy production in Brazil. Information and analysis of the most relevant biomass energy sources and their potential are presented in six chapters. Ethanol fuel, sugar-cane bagasse, charcoal, vegetable oil, firewood and other biomass-derived fuels are the objects of a historical review, in addition to the presentation of state-of-the-art technologies, economic analysis and discussion of relevant social and environmental issues related to their production and use. Wherever possible, an evaluation, from the available sources of information and based on the author`s knowledge, is performed to access future perspectives of each biomass energy source. Brazil is a country where more than half of the energy consumed is provided from renewable sources of energy, and biomass provides 28% of the primary energy consumption. Its large extension, almost all located in the tropical and rainy region, provides an excellent site for large-scale biomass production, which is a necessity if biomass is to be used to supply a significant part of future energy demand. Even so, deforestation has occurred and is occurring in the country, and the issue is discussed and explained as mainly the result of non-energy causes or the use of old and outdated technologies for energy production. (author) 115 refs, figs, tabs

  2. Biomass energy potential in Brazil. Country study

    International Nuclear Information System (INIS)

    Moreira, J.

    1995-01-01

    The present paper was prepared as a country study about the biomass potential for energy production in Brazil. Information and analysis of the most relevant biomass energy sources and their potential are presented in six chapters. Ethanol fuel, sugar-cane bagasse, charcoal, vegetable oil, firewood and other biomass-derived fuels are the objects of a historical review, in addition to the presentation of state-of-the-art technologies, economic analysis and discussion of relevant social and environmental issues related to their production and use. Wherever possible, an evaluation, from the available sources of information and based on the author's knowledge, is performed to access future perspectives of each biomass energy source. Brazil is a country where more than half of the energy consumed is provided from renewable sources of energy, and biomass provides 28% of the primary energy consumption. Its large extension, almost all located in the tropical and rainy region, provides an excellent site for large-scale biomass production, which is a necessity if biomass is to be used to supply a significant part of future energy demand. Even so, deforestation has occurred and is occurring in the country, and the issue is discussed and explained as mainly the result of non-energy causes or the use of old and outdated technologies for energy production. (author)

  3. Biomass and biogas : potentials, efficiencies and flexibility

    NARCIS (Netherlands)

    Hofstede, Gert; Wouterse, Brian; Faber, Folkert; Nap, Jan Peter

    2012-01-01

    In the field of ‘renewable energy resources’ formation of biogas Biomass and biogas: potentials, efficiencies and flexibility is an important option. Biogas can be produced from biomass in a multistep process called anaerobic digestion (AD) and is usually performed in large digesters. Anaerobic

  4. Wood biomass: The potential of willow

    International Nuclear Information System (INIS)

    White, E.H.; Abrahamson, L.P.

    1991-10-01

    Experiments were established in central New York State in spring, 1987, to evaluate the potential of Salix for wood biomass production using ultrashort-rotation intensive-culture techniques. Five selected willow clones and one hybrid poplar clone planted at 1 x 1 foot spacing were tested for biomass production with annual coppicing. This report presents results of this research as of December 31, 1990. (VC)

  5. Biomass as electroenergetic resource in Macedonia

    International Nuclear Information System (INIS)

    Dimitrov, Konstantin

    1996-01-01

    The main characteristics of the biomass as an energetic fuel are defined and analysed. The quantities of forest and waste biomass, in different regions of the Republic of Macedonia, which can be used as energy fuel, are determined, as well as community-generated solid waste. There are analysed the necessary steps which shall be done to ensure this energy potential to be used, with involving of needed mechanization. It is determined the participation of energy received by biomass in energy balance of the Republic of Macedonia. (author). 8 refs., 10 tabs., 4 ills

  6. Potential contribution of biomass to the sustainable energy development

    International Nuclear Information System (INIS)

    Demirbas, M. Fatih; Balat, Mustafa; Balat, Havva

    2009-01-01

    Biomass is a renewable energy source and its importance will increase as national energy policy and strategy focuses more heavily on renewable sources and conservation. Biomass is considered the renewable energy source with the highest potential to contribute to the energy needs of modern society for both the industrialized and developing countries worldwide. The most important biomass energy sources are wood and wood wastes, agricultural crops and their waste byproducts, municipal solid waste, animal wastes, waste from food processing, and aquatic plants and algae. Biomass is one potential source of renewable energy and the conversion of plant material into a suitable form of energy, usually electricity or as a fuel for an internal combustion engine, can be achieved using a number of different routes, each with specific pros and cons. Currently, much research has been focused on sustainable and environmental friendly energy from biomass to replace conventional fossil fuels. The main objective of the present study is to investigate global potential and use of biomass energy and its contribution to the sustainable energy development by presenting its historical development.

  7. Pyrolysis in the Countries of the North Sea Region: Potentially available quantities of biomass waste for biochar production

    NARCIS (Netherlands)

    Kolk, van der J.W.H.; Zwart, K.B.

    2013-01-01

    One of the objectives of the Interreg IVB project Biochar: Climate Saving Soils is to assess the amount of available biomass that could be used for the production of biochar. In this publication the authors give an impression of the amounts of biomass available for pyrolysis.

  8. Biomass production potentials in Central and Eastern Europe under different scenarios

    International Nuclear Information System (INIS)

    Dam, J. van; Faaij, A.P.C.; Lewandowski, I.; Fischer, G.

    2007-01-01

    A methodology for the assessment of biomass potentials was developed and applied to Central and Eastern European countries (CEEC). Biomass resources considered are agricultural residues, forestry residues, and wood from surplus forest and biomass from energy crops. Only land that is not needed for food and feed production is considered as available for the production of energy crops. Five scenarios were built to depict the influences of different factors on biomass potentials and costs. Scenarios, with a domination of current level of agricultural production or ecological production systems, show the smallest biomass potentials of 2-5.7 EJ for all CEEC. Highest potentials can reach up to 11.7 EJ (85% from energy crops, 12% from residues and 3% from surplus forest wood) when 44 million ha of agricultural land become available for energy crop production. This potential is, however, only realizable under high input production systems and most advanced production technology, best allocation of crop production over all CEEC and by choosing willow as energy crops. The production of lignocellulosic crops, and willow in particular, best combines high biomass production potentials and low biomass production costs. Production costs for willow biomass range from 1.6 to 8.0 EUR/GJ HHV in the scenario with the highest agricultural productivity and 1.0-4.5 EUR/GJ HHV in the scenario reflecting the current status of agricultural production. Generally the highest biomass production costs are experienced when ecological agriculture is prevailing and on land with lower quality. In most CEEC, the production potentials are larger than the current energy use in the more favourable scenarios. Bulk of the biomass potential can be produced at costs lower than 2 EUR/GJ. High potentials combined with the low cost levels gives CEEC major export opportunities. (author)

  9. Spatial modeling of potential woody biomass flow

    Science.gov (United States)

    Woodam Chung; Nathaniel Anderson

    2012-01-01

    The flow of woody biomass to end users is determined by economic factors, especially the amount available across a landscape and delivery costs of bioenergy facilities. The objective of this study develop methodology to quantify landscape-level stocks and potential biomass flows using the currently available spatial database road network analysis tool. We applied this...

  10. Potential of sustainable biomass production systems in Texas

    International Nuclear Information System (INIS)

    Sanderson, M.A.; Hussey, M.A.; Wiselogel, A.E.

    1992-01-01

    Biomass production for liquid fuels feedstock from systems based on warm-season perennial grasses (WSPG) offers a sustainable alternative for forage-livestock producers in Texas. Such systems also would enhance diversity and flexibility in current production systems. Research is needed to incorporate biomass production for liquid fuels, chemicals, and electrical power into current forage-livestock management systems. Our research objectives were to (i) document the potential of several WSPG in diverse Texas environments for biomass feedstock production, (ii) conduct fundamental research on morphological development of WSPG to enhance management for biomass feedstock production, (iii) examine current on-farm production systems for opportunities to incorporate biomass production, and (iv) determine feedstock quality and stability during storage

  11. Second generation bioethanol potential from selected Malaysia's biodiversity biomasses: A review.

    Science.gov (United States)

    Aditiya, H B; Chong, W T; Mahlia, T M I; Sebayang, A H; Berawi, M A; Nur, Hadi

    2016-01-01

    Rising global temperature, worsening air quality and drastic declining of fossil fuel reserve are the inevitable phenomena from the disorganized energy management. Bioethanol is believed to clear out the effects as being an energy-derivable product sourced from renewable organic sources. Second generation bioethanol interests many researches from its unique source of inedible biomass, and this paper presents the potential of several selected biomasses from Malaysia case. As one of countries with rich biodiversity, Malaysia holds enormous potential in second generation bioethanol production from its various agricultural and forestry biomasses, which are the source of lignocellulosic and starch compounds. This paper reviews potentials of biomasses and potential ethanol yield from oil palm, paddy (rice), pineapple, banana and durian, as the common agricultural waste in the country but uncommon to be served as bioethanol feedstock, by calculating the theoretical conversion of cellulose, hemicellulose and starch components of the biomasses into bioethanol. Moreover, the potential of the biomasses as feedstock are discussed based on several reported works. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D [VTT Energy, Espoo (Finland)

    1997-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  13. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Espoo (Finland)

    1996-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  14. Estimation of energy potential of agricultural enterprise biomass

    Directory of Open Access Journals (Sweden)

    Lypchuk Vasyl

    2017-01-01

    Full Text Available Bioenergetics (obtaining of energy from biomass is one of innovative directions in energy branch of Ukraine. Correct and reliable estimation of biomass potential is essential for efficient use of it. The article reveals the issue of estimation of potential of biomass, obtained from byproducts of crop production and animal breeding, which can be used for power supply of agricultural enterprises. The given analysis was carried with application of common methodological fundamentals, revealed in the estimation of production structure of agricultural enterprises, structure of land employment, efficiency of crops growing, indicators of output of main and by-products, as well as normative (standard parameters of power output of energy raw material in relation to the chosen technology of its utilization. Results of the research prove high energy potential of byproducts of crop production and animal breeding at all of the studied enterprises, which should force its practical use.

  15. Assessment of potential biomass energy production in China towards 2030 and 2050

    Science.gov (United States)

    Zhao, Guangling

    2018-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources production, assumptions are made regarding arable land, marginal land, crops yields, forest growth rate, and meat consumption and waste production. Four scenarios were designed to describe the potential biomass energy production to elaborate the role of biomass energy in the Chinese energy system in 2030. The assessment shows that under certain restrictions on land availability, the maximum potential biomass energy productions are estimated to be 18,833 and 24,901 PJ in 2030 and 2050.

  16. Methodology for estimating biomass energy potential and its application to Colombia

    International Nuclear Information System (INIS)

    Gonzalez-Salazar, Miguel Angel; Morini, Mirko; Pinelli, Michele; Spina, Pier Ruggero; Venturini, Mauro; Finkenrath, Matthias; Poganietz, Witold-Roger

    2014-01-01

    Highlights: • Methodology to estimate the biomass energy potential and its uncertainty at a country level. • Harmonization of approaches and assumptions in existing assessment studies. • The theoretical and technical biomass energy potential in Colombia are estimated in 2010. - Abstract: This paper presents a methodology to estimate the biomass energy potential and its associated uncertainty at a country level when quality and availability of data are limited. The current biomass energy potential in Colombia is assessed following the proposed methodology and results are compared to existing assessment studies. The proposed methodology is a bottom-up resource-focused approach with statistical analysis that uses a Monte Carlo algorithm to stochastically estimate the theoretical and the technical biomass energy potential. The paper also includes a proposed approach to quantify uncertainty combining a probabilistic propagation of uncertainty, a sensitivity analysis and a set of disaggregated sub-models to estimate reliability of predictions and reduce the associated uncertainty. Results predict a theoretical energy potential of 0.744 EJ and a technical potential of 0.059 EJ in 2010, which might account for 1.2% of the annual primary energy production (4.93 EJ)

  17. The potentials of biomass as renewable energy

    International Nuclear Information System (INIS)

    Edens, J.J.

    1994-01-01

    Biomass is a term used in the context of energy to define a range of products derived from photosynthesis. Annually large amounts of solar energy is stored in the leaves, stems and branches of plants. Of the various renewable sources of energy, biomass is thus unique in that it represents stored solar energy. In addition it is the only source of carbon, and it may be converted into convenient solid, liquid and gaseous fuels. Biomass, principally in the form of wood, is humankind's oldest form of energy, and has been used to fuel both domestic and industrial activities. Traditional use has been, through direct combustion, a process still used extensively in many parts of the world. Biomass is a renewable and indigenous resource that requires little or no foreign exchange. But it is a dispersed, labor-intensive and land requiring source of energy and may avoid or reduce problems of waste disposal. We'll try to assess the potential contribution of biomass to the future world energy supply. 4 refs., 6 tabs

  18. Opportunities for Small Biomass Power Systems. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, D. D.; Pinapati, V. S.

    2000-11-15

    The purpose of this study was to provide information to key stakeholders and the general public about biomass resource potential for power generation. Ten types of biomass were identified and evaluated. The quantities available for power generation were estimated separately for five U.S. regions and Canada. A method entitled ''competitive resource profile'' was used to rank resources based on economics, utilization, and environmental impact. The results of the analysis may be used to set priorities for utilization of biomass in each U.S. region. A review of current biomass conversion technologies was accomplished, linking technologies to resources.

  19. Potential uses of Elodea nuttallii-harvested biomass

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Escobar, Marcela; Fuehner, Christoph; Zehnsdorf, Andreas [Centre for Environmental Biotechnology (UBZ), Leipzig (Germany); Voyevoda, Maryna [UFZ-Helmholtz Centre for Environmental Research, Leipzig (Germany). Analytical Chemistry Dept.

    2011-12-15

    Elodea nuttallii (PLANCH) St. John, an aquatic plant native to North America, shows invasive traits outside of its area of origin. In Europe, the plant has spread rapidly in water bodies. In Germany, the massive occurrence of E. nuttallii restricts recreational activities on lakes. Massive occurrences of E. nuttallii have been managed up to now by harvesting the plant and disposing of the biomass as organic waste, which results in high maintenance costs for lake administrators. Alternative uses to the disposal of the biomass were investigated. Analyzing the components and elemental composition of E. nuttallii samples from nine lakes in Germany, several potential uses were identified, such as the use of E. nuttallii biomass as a co-substrate with maize silage for biogas generation. Other potential applications, such as biochart production, soil amelioration, and energy recovery of feedstock chars in combustion plants, were identified from a hydrothermal carbonization process. The presence of {beta}-sitosterol in E. nuttallii, which is used in the treatment of enlarged prostates, indicates a pharmaceutical use. Even though the elemental composition of E. nuttallii biomass contains the elements of a complete fertilizer, this particular use is not recommended given its slow decomposition in soil. The most feasible alternative identified was the use of E. nuttallii biomass as a co-substrate for biogas generation in combination with maize silage. The mixing of E. nuttallii with maize silage to facilitate storage and short distances between biogas plants and lakes with massive occurrence of E. nuttallii are important factors for its applicability. (orig.)

  20. Forage quantity and quality

    Science.gov (United States)

    Jorgenson, Janet C.; Udevitz, Mark S.; Felix, Nancy A.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    The Porcupine caribou herd has traditionally used the coastal plain of the Arctic National Wildlife Refuge, Alaska, for calving. Availability of nutritious forage has been hypothesized as one of the reasons the Porcupine caribou herd migrates hundreds of kilometers to reach the coastal plain for calving (Kuropat and Bryant 1980, Russell et al. 1993).Forage quantity and quality and the chronology of snowmelt (which determines availability and phenological stages of forage) have been suggested as important habitat attributes that lead calving caribou to select one area over another (Lent 1980, White and Trudell 1980, Eastland et al. 1989). A major question when considering the impact of petroleum development is whether potential displacement of the caribou from the 1002 Area to alternate calving habitat will limit access to high quantity and quality forage.Our study had the following objectives: 1) quantify snowmelt patterns by area; 2) quantify relationships among phenology, biomass, and nutrient content of principal forage species by vegetation type; and 3) determine if traditional concentrated calving areas differ from adjacent areas with lower calving densities in terms of vegetation characteristics.

  1. Potential for the energy-oriented use of biomass in Switzerland; Potentiale zur energetischen Nutzung von Biomasse in der Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Oettli, B; Blum, M; Peter, M; Schwank, O [Infras, Zuerich (Switzerland); Bedniaguine, D; Dauriat, A; Gnansounou, G [Swiss Federal Institute of Technology (EPFL), Laboratory of Energy Systems (LASEN), Lausanne (Switzerland); Chetelat, J; Golay, G [Swiss Federal Office of Technology (EPFL), Laboratoire de systemes d' information geographique (LASIG), Lausanne (Switzerland); Hersener, J -L [Ingenieurbuero Hersener, Wiesendangen (Switzerland); Meier, U [Meritec GmbH, Guntershausen (Switzerland); Schleiss, K [Umwelt- und Kompostberatung, Grenchen (Switzerland)

    2004-07-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) discusses the potential offered by the use of biomass in the energy area. In the first and main part of the report, the base data and the methodology used are discussed and the theoretical and realisable potentials are examined. Scenarios on reference-energy prices are discussed, whereby the price of oil is taken as primary reference. General estimates of the potential of biomass are presented for 2025 and 2040 and compared with figures for 2003. Conversion paths and various types of installations are discussed. Economic potential and future market-shares of biomass energy-use are discussed. Finally, the external costs of energy supply systems are examined and their influence on the economic potential of biomass technologies is discussed. The second part of the report takes a look at the use of geographic information systems (GIS) for data acquisition and the visualisation of energy-potentials. In the third part of the report, the optimal use of the potential offered by biomass is looked at and the most important results and recommendations of the study group are presented. The report is completed with a list of relevant literature and a comprehensive appendix.

  2. Assessment of potential biomass energy production in China towards 2030 and 2050

    OpenAIRE

    Zhao, Guangling

    2016-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources...

  3. A comprehensive review of biomass resources and biofuels potential in Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Duku, Moses Hensley [School of Engineering Sciences, University of Southampton, Southampton, S017 1BJ (United Kingdom); Institute of Industrial Research, Council for Scientific and Industrial Research, P. Box LG 576, Legon (Ghana); Gu, Sai [School of Engineering Sciences, University of Southampton, Southampton, S017 1BJ (United Kingdom); Hagan, Essel Ben [Institute of Industrial Research, Council for Scientific and Industrial Research, P. Box LG 576, Legon (Ghana)

    2011-01-15

    Biomass is the major energy source in Ghana contributing about 64% of Ghana's primary energy supply. In this paper, an assessment of biomass resources and biofuels production potential in Ghana is given. The broad areas of energy crops, agricultural crop residues, forest products residues, urban wastes and animal wastes are included. Animal wastes are limited to those produced by domesticated livestock. Agricultural residues included those generated from sugarcane, maize, rice, cocoa, oil palm, coconut, sorghum and millet processing. The urban category is subdivided into municipal solid waste, food waste, sewage sludge or bio-solids and waste grease. The availability of these types of biomass, together with a brief description of possible biomass conversion routes, sustainability measures, and current research and development activities in Ghana is given. It is concluded that a large availability of biomass in Ghana gives a great potential for biofuels production from these biomass resources. (author)

  4. Current and potential utilisation of biomass energy in Fiji

    International Nuclear Information System (INIS)

    Prasad, S.

    1990-01-01

    Energy from biomass accounts for an average of 43% of the primary energy used in developing countries, with some countries totally dependent on biomass for all their energy needs. The most common use for biomass for energy is the provision of heat for cooking and heating; other uses include steam and electricity generation and crop and food drying. Fiji, a developing country, uses energy from wood and coconut wastes for cooking and copra drying. Bagasse from sugar mills is used to generate process steam as well as some 15 MW of electricity, for mill consumption and for sale to the national grid. Other, relatively small scale uses for biomass include the generation of steam and electricity for industry. This paper attempts to quantify the amount of biomass, in its various forms, available in Fiji and assesses the current potential utilisation of biomass for energy in Fiji. (author)

  5. Potential and impacts of renewable energy production from agricultural biomass in Canada

    International Nuclear Information System (INIS)

    Liu, Tingting; McConkey, Brian; Huffman, Ted; Smith, Stephen; MacGregor, Bob; Yemshanov, Denys; Kulshreshtha, Suren

    2014-01-01

    Highlights: • This study quantifies the bioenergy production potential in the Canadian agricultural sector. • Two presented scenarios included the mix of market and non-market policy targets and the market-only drivers. • The scenario that used mix of market and policy drivers had the largest impact on the production of bioenergy. • The production of biomass-based ethanol and electricity could cause moderate land use changes up to 0.32 Mha. • Overall, agricultural sector has a considerable potential to generate renewable energy from biomass. - Abstract: Agriculture has the potential to supply considerable amounts of biomass for renewable energy production from dedicated energy crops as well as from crop residues of existing production. Bioenergy production can contribute to the reduction of greenhouse gas (GHG) emissions by using ethanol and biodiesel to displace petroleum-based fuels and through direct burning of biomass to offset coal use for generating electricity. We used the Canadian Economic and Emissions Model for Agriculture to estimate the potential for renewable energy production from biomass, the impacts on agricultural production, land use change and greenhouse gas emissions. We explored two scenarios: the first considers a combination of market incentives and policy mandates (crude oil price of $120 bbl −1 ; carbon offset price of $50 Mg −1 CO 2 equivalent and policy targets of a substitution of 20% of gasoline by biomass-based ethanol; 8% of petroleum diesel by biodiesel and 20% of coal-based electricity by direct biomass combustion), and a second scenario considers only carbon offset market incentives priced at $50 Mg −1 CO 2 equivalent. The results show that under the combination of market incentives and policy mandates scenario, the production of biomass-based ethanol and electricity increases considerably and could potentially cause substantial changes in land use practices. Overall, agriculture has considerable potential to

  6. Report on a survey in fiscal 1999. Part 2. Survey on the biomass-derived energy conversion technology; 1999 nendo biomass shigen wo genryo to suru energy henkan gijutsu ni kansuru chosa hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Biomass energy is positioned as a promising environment harmonizing energy in the 21st century because it does not break down the CO2 balance in the global scale. The present survey has investigated quantity of biomass resources utilizable as energy resources, investigated and analyzed the biomass-derived energy conversion technology, searched for a promising practically usable technology, and discussed the means to achieve the technological introduction. The foreword chapter describes that now is the good time to recognize importance of and introduce the biomass-derived technology. First and second chapters estimate energy potential and utilizable quantity of wastes-based biomass in Indonesia, Malaysia, the Philippines, and Brazil. Chapter 3 investigates feasibility of methane fermentation and ethanol fermentation as a promising bio-chemical conversion process. Chapter 4 has performed feasibility studies on biomass electric power generation, methanol synthesis by gasification, thermal decomposition and gasification as promising thermo-chemical conversion processes. Chapter 5 proposed a biomass electric power generation system, a biomass-gasified methanol synthesizing system, and a dimethyl ether production system. (NEDO)

  7. Nonconformity of policy ambitions with biomass potentials in regional bioenergy transition: A Dutch example

    International Nuclear Information System (INIS)

    Özcan, Evren; Arentsen, Maarten

    2014-01-01

    Numerous regional authorities within the European Union are committed to meet renewable energy targets in line with the EU-20-20-20 strategy. Energy from biomass occupies a pivotal position in the renewable energy strategy of many regions. Effective bioenergy policy often depends on an assessment of the regional resource potential for energy from biomass. Using the Dutch province of Overijssel as a case study, this study presents a biomass resource potential assessment, based on existing statistics and a resource-focused methodology, to determine the region's theoretical and technical potential. Additionally, a methodological framework is provided to translate the outcome of this biomass resource potential assessment into the policy domain, to allow the region's bioenergy policy ambition to be evaluated. The results indicate that Overijssel's potential bioenergy target is a share of 8.3%, which does not match with the desired policy target of 14%. It is therefore clear that it is unlikely that the province's bioenergy ambition will be met with the current supply of biomass, in the absence of additional policy measures. The outcome of the biomass resource potential assessment has therefore been used to deduce and recommend multiple policy measures. - Highlights: • Biomass resource potential assessment performed with Dutch province as case study. • Methodology presented to translate technical biomass potential into policy domain. • Nonconformity found between the province's policy ambition and biomass potential. • Five policy measures identified to cope with this nonconformity

  8. Potential of Biomass for Energy. Market Survey Portugal

    International Nuclear Information System (INIS)

    2007-03-01

    The objective of this market survey is to provide information about the biomass sector in Portugal, relevant to mainly small and medium-sized enterprises (SME) in the Netherlands that are interested to strengthen their position in that sector. Much knowledge could be gathered from conversations with the partners of Sunergy, the company responsible for this survey. Sunergy is producing bio-diesel, and considering further investments in the solid biomass sector, and therefore well familiar with the developments. Other interviews were held with representatives of the Government (DGGE), association of forestry owners (AFLOPS), a biomass trading SME (Sobioen), the leading environmental NGO (Quercus), and an association representing the paper- and pulp industry (CELPA). Chapter 1 is a general introduction on biomass. Chapter 2 gives the background of the Portuguese energy sector and the relative importance of renewable and biomass energies within this market. Some prospects for future developments of the different renewable sources are given. Portugal's energy sector is dominated by a small number of players, which are introduced. Also the current policies and incentives (subsidies) are presented. In Chapter 3 the focus is on the Portuguese biomass sector, presenting the current use of biomass in each of the subsectors: transport, electricity and heat, and an overview of the policy framework specifically for biomass. Chapter 4 is a literature review of the market for existing and potential biomass resources, including demand, supply and other characteristics. Chapter 5 synthesizes the previous chapters. Also an overview of key drivers and key constraints for growth of this sector is given, leading to conclusions regarding the opportunities for Dutch companies. Finally, further information on how to proceed once the interest for Portugal's biomass sector is vested is listed at the end of Chapter 5

  9. Potential of Agricultural Biomass: Comparative Review of Selected EU Regions and Region of Vojvodina

    Directory of Open Access Journals (Sweden)

    Odavić Petrana

    2017-07-01

    Full Text Available Owing to the fact that the EU is committed to reducing greenhouse gas emissions by 20% below 1990 levels by 2020, and having in mind their high dependence on import of oil and oil derivatives, which, in turn, causes instability of power supply, increasing attention is being paid to renewable energy sources. Given the ongoing pre-accession process of the Republic of Serbia in relation to the EU, in order to determine the capacity of the country to increase the share of energy use from renewable sources, in this paper clustering of selected regions in the EU-28 has been carried out, after which a comparative analysis of regions was performed in terms of potential of agricultural biomass, for the purpose of generating energy. The aim of this study is to determine the level of the region of Vojvodina in relation to ten selected EU regions, based on parameters that affect the potential for using renewable energy sources, primarily residues from agriculture. By applying the K-means method, Borda count method and comparative analysis, and based on empirical data, results show that the region of Vojvodina takes a significant fifth place. Its share of agricultural land ranks it as the first, whereas production of cereals and the total number of farms larger than 100 ha rank it as the second. It could be concluded that Vojvodina is an agricultural region with large quantities of plant remains, primarily those left over from harvest, which represents a significant potential for energy generation from agricultural biomass.

  10. Biomass thermo-conversion. Research trends

    International Nuclear Information System (INIS)

    Rodriguez Machin, Lizet; Perez Bermudez, Raul; Quintana Perez, Candido Enrique; Ocanna Guevara, Victor Samuel; Duffus Scott, Alejandro

    2011-01-01

    In this paper is studied the state of the art in order to identify the main trends of the processes of thermo conversion of biomass into fuels and other chemicals. In Cuba, from total supply of biomass, wood is the 19% and sugar cane bagasse and straw the 80%, is why research in the country, should be directed primarily toward these. The methods for energy production from biomass can be group into two classes: thermo-chemical and biological conversion routes. The technology of thermo-chemical conversion includes three subclasses: pyrolysis, gasification, and direct liquefaction. Although pyrolysis is still under development, in the current energy scenario, has received special attention, because can convert directly biomass into solid, liquid and gaseous by thermal decomposition in absence of oxygen. The gasification of biomass is a thermal treatment, where great quantities of gaseous products and small quantities of char and ash are produced. In Cuba, studies of biomass thermo-conversion studies are limited to slow pyrolysis and gasification; but gas fuels, by biomass, are mainly obtained by digestion (biogas). (author)

  11. Energy potential through agricultural biomass using geographical information system - A case study of Punjab

    International Nuclear Information System (INIS)

    Singh, Jagtar; Panesar, B.S.; Sharma, S.K.

    2008-01-01

    Agricultural biomass has immense potential for power production in an Indian state like Punjab. A judicious use of biomass energy could potentially play an important role in mitigating environmental impacts of non-renewable energy sources particularly global warming and acid rain. But the availability of agricultural biomass is spatially scattered. The spatial distribution of this resource and the associate costs of collection and transportation are major bottlenecks for the success of biomass energy conversion facilities. Biomass, being scattered and loose, has huge collection and transportation costs, which can be reduced by properly planning and locating the biomass collection centers for biomass-based power plants. Before planning the collection centers, it is necessary to evaluate the biomass, energy and collection cost of biomass in the field. In this paper, an attempt has been made to evaluate the spatial potential of biomass with geographical information system (GIS) and a mathematical model for collection of biomass in the field has been developed. The total amount of unused agricultural biomass is about 13.73 Mt year -1 . The total power generation capacity from unused biomass is approximately 900 MW. The collection cost in the field up to the carrier unit is US$3.90 t -1 . (author)

  12. Energy potential of fruit tree pruned biomass in Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Bilandzija, N.; Voca, N.; Kricka, T.; Martin, A.; Jurisic, V.

    2012-11-01

    The world's most developed countries and the European Union (EU) deem that the renewable energy sources should partly substitute fossil fuels and become a bridge to the utilization of other energy sources of the future. This paper will present the possibility of using pruned biomass from fruit cultivars. It will also present the calculation of potential energy from the mentioned raw materials in order to determine the extent of replacement of non-renewable sources with these types of renewable energy. One of the results of the intensive fruit-growing process, in post pruning stage, is large amount of pruned biomass waste. Based on the calculated biomass (kg ha{sup 1}) from intensively grown woody fruit crops that are most grown in Croatia (apple, pear, apricots, peach and nectarine, sweet cherry, sour cherry, prune, walnut, hazelnut, almond, fig, grapevine, and olive) and the analysis of combustible (carbon 45.55-49.28%, hydrogen 5.91-6.83%, and sulphur 0.18-0.21%) and non-combustible matters (oxygen 43.34-46.6%, nitrogen 0.54-1.05%, moisture 3.65-8.83%, ashes 1.52-5.39%) with impact of lowering the biomass heating value (15.602-17.727 MJ kg{sup 1}), the energy potential of the pruned fruit biomass is calculated at 4.21 PJ. (Author) 31 refs.

  13. Biomass energetics potential of wetlands at Saare county

    International Nuclear Information System (INIS)

    Kask, U.; Kask, L.

    2002-01-01

    Most of the fuels that are being used to produce the thermal and electrical power are nonrenewable. Transferring them into energy pollutes the environment with CO 2 and surplus heat. Biomass is the most suitable energy resource in Estonian natural circumstances. Hitherto, one kind of biomass - plants of wetland - has almost not been used. There are plenty of wetlands in Saaremaa that have reasonably high productivity of biomass. Exertion of technologies of processing and using the biomass helps to create new jobs in agriculture as well in other sector of economy and evolve the regional development. The local currency circulation will improve and there are also possibilities in increase of capital expenditures and export potential. The biomass productivity of wetland plants accounting to dry matter can reach up to 4-5 kg/m 2 in a year. One advantage to use the plants of wetland (reed, cattail) in energy production is the fact that these plants will disengage from water in the end of their growth period and will need no extra drying. There are over 12000 ha of wetlands in Saaremaa, half of them could be used to get energetical biomass. The other half is either under (nature)protection or it would be economically inefficient to cut reed there. The major wetlands are in the surroundings of Mullatu bay and the Koigi swamp, also in Tornimae. There could be significant reduce in the emission of solid particles into the atmosphere, if the biomass of wetlands would be used to produce thermal and electrical power in Kuressaare. (author)

  14. Potential transgenic routes to increase tree biomass.

    Science.gov (United States)

    Dubouzet, Joseph G; Strabala, Timothy J; Wagner, Armin

    2013-11-01

    Biomass is a prime target for genetic engineering in forestry because increased biomass yield will benefit most downstream applications such as timber, fiber, pulp, paper, and bioenergy production. Transgenesis can increase biomass by improving resource acquisition and product utilization and by enhancing competitive ability for solar energy, water, and mineral nutrients. Transgenes that affect juvenility, winter dormancy, and flowering have been shown to influence biomass as well. Transgenic approaches have increased yield potential by mitigating the adverse effects of prevailing stress factors in the environment. Simultaneous introduction of multiple genes for resistance to various stress factors into trees may help forest trees cope with multiple or changing environments. We propose multi-trait engineering for tree crops, simultaneously deploying multiple independent genes to address a set of genetically uncorrelated traits that are important for crop improvement. This strategy increases the probability of unpredictable (synergistic or detrimental) interactions that may substantially affect the overall phenotype and its long-term performance. The very limited ability to predict the physiological processes that may be impacted by such a strategy requires vigilance and care during implementation. Hence, we recommend close monitoring of the resultant transgenic genotypes in multi-year, multi-location field trials. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  15. [Response of Algae to Nitrogen and Phosphorus Concentration and Quantity of Pumping Water in Pumped Storage Reservoir].

    Science.gov (United States)

    Wan, You-peng; Yin, Kui-hao; Peng, Sheng-hua

    2015-06-01

    Taking a pumped storage reservoir located in southern China as the research object, the paper established a three-dimensional hydrodynamic and eutrophication model of the reservoir employing EFDC (environmental fluid dynamics code) model, calibrated and verified the model using long-term hydraulic and water quality data. Based on the model results, the effects of nitrogen and phosphorus concentrations on the algae growth were analyzed, and the response of algae to nitrogen and phosphorus concentration and quantity of pumping water was also calculated. The results showed that the nitrogen and phosphorus concentrations had little limit on algae growth rate in the reservoir. In the nutrients reduction scenarios, reducing phosphorus would gain greater algae biomass reduction than reducing nitrogen. When reducing 60 percent of nitrogen, the algae biomass did not decrease, while 12.4 percent of algae biomass reduction could be gained with the same reduction ratio of phosphorus. When the reduction ratio went to 90 percent, the algae biomass decreased by 17.9 percent and 35.1 percent for nitrogen and phosphorus reduction, respectively. In the pumping water quantity regulation scenarios, the algae biomass decreased with the increasing pumping water quantity when the pumping water quantity was greater than 20 percent of the current value; when it was less than 20 percent, the algae biomass increased with the increasing pumping water quantity. The algae biomass decreased by 25.7 percent when the pumping water quantity was doubled, and increased by 38.8 percent when it decreased to 20 percent. The study could play an important role in supporting eutrophication controlling in water source area.

  16. Routing of biomass for sustainable agricultural development

    International Nuclear Information System (INIS)

    Suhaimi Masduki; Aini Zakaria

    1998-01-01

    Photosynthetically derived biomass and residues, including waste products from food processing industries are renewable. They accumulate every year in large quantities, causing deterioration to the environment and loss of potentially valuable resources. The conserved energy is potentially convertible; thermodynamically the energy can be tapped into forms which are more amenable for value added agricultural applications or for other higher value products such as chemicals or their feedstocks. The forms and types in which this biomass has to be modified for the intended use depend on the costs or the respective alternatives. Under current situations, where chemical feedstocks are available in abundance at very competitive prices, biomass is obviously more suitably placed in the agro-industrial sector. Recycling of the biomass or residues into the soil as biofertilizers or for some other uses for agricultural applications requires less intense energy inputs for their improvements. Highly efficient biological processes with microorganisms as the primary movers in the production of the desired end products indeed require less capital costs than in most other industrial entities. In this paper, the various processes, which are potentially valuable and economically feasible in the conversion of biomass and residues for several products important in the agricultural sector, are described. Emphasis is given to the approach and the possible permutations of these processes to arrive at the desired good quality products for sustainable agricultural development. (Author)

  17. Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion

    DEFF Research Database (Denmark)

    Bruhn, Annette; Dahl, Jonas; Bangsø Nielsen, Henrik

    2011-01-01

    The biomass production potential at temperate latitudes (56°N), and the quality of the biomass for energy production (anaerobic digestion to methane and direct combustion) were investigated for the green macroalgae, Ulva lactuca. The algae were cultivated in a land based facility demonstrating...... in weight specific methane production compared to wet biomass. Ash and alkali contents are the main challenges in the use of U. lactuca for direct combustion. Application of a bio-refinery concept could increase the economical value of the U. lactuca biomass as well as improve its suitability for production...

  18. Evaluation and Selection of Potential Biomass Sources of North-East India towards Sustainable Bioethanol Production

    International Nuclear Information System (INIS)

    Nongthombam, Grihalakshmi D.; Labala, Rajendra K.; Das, Sudripta; Handique, Pratap J.; Talukdar, Narayan C.

    2017-01-01

    Vegetation biomass production in North-East India within Indo-Burma biodiversity hotspot is luxuriant and available from April to October to consider their potential for bioethanol production. Potential of six lignocellulosic biomass (LCB) sources; namely, sugarcane bagasse (BG), cassava aerial parts (CS), ficus fruits (Ficus cunia) (FF), “phumdi” (floating biomass), rice straw (RS), and sawdust were investigated for bioethanol production using standard techniques. Morphological and chemical changes were evaluated by Scanning electron microscopy and Fourier transform infrared spectroscopy and quantity of sugars and inhibitors in LCB were determined by High performance liquid chromatography. Hydrothermally treated BG, CS, and FF released 954.54, 1,354.33, and 1,347.94 mg/L glucose and 779.31, 612.27, and 1,570.11 mg/L of xylose, respectively. Inhibitors produced due to effect of hydrothermal pretreatment ranged from 42.8 to 145.78 mg/L acetic acid, below detection level (BDL) to 17.7 µg/L 5-hydroxymethylfurfural, and BDL to 56.78 µg/L furfural. The saccharification efficiency of hydrothermally treated LCB (1.35–28.64%) was significantly higher compared with their native counterparts (0.81–17.97%). Consolidated bioprocessing of the LCB using MTCC 1755 (Fusarium oxysporum) resulted in maximum ethanol concentration of 0.85 g/L and corresponded to 42 mg ethanol per gram of hydrothermally treated BG in 120 h followed by 0.83 g/L corresponding to 41.5 mg/g of untreated CS in 144 h. These ethanol concentrations corresponded to 23.43 and 21.54% of theoretical ethanol yield, respectively. LCB of CS and FF emerged as a suitable material to be subjected to test for enhanced ethanol production in future experiments through efficient fermentative microbial strains, appropriate enzyme loadings, and standardization of other fermentation parameters.

  19. Evaluation and Selection of Potential Biomass Sources of North-East India towards Sustainable Bioethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Nongthombam, Grihalakshmi D., E-mail: griha789@gmail.com; Labala, Rajendra K.; Das, Sudripta [Institute of Bioresources and Sustainable Development (IBSD), Imphal (India); Handique, Pratap J. [Department of Biotechnology, Gauhati University, Guwahati (India); Talukdar, Narayan C., E-mail: griha789@gmail.com [Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati (India)

    2017-07-11

    Vegetation biomass production in North-East India within Indo-Burma biodiversity hotspot is luxuriant and available from April to October to consider their potential for bioethanol production. Potential of six lignocellulosic biomass (LCB) sources; namely, sugarcane bagasse (BG), cassava aerial parts (CS), ficus fruits (Ficus cunia) (FF), “phumdi” (floating biomass), rice straw (RS), and sawdust were investigated for bioethanol production using standard techniques. Morphological and chemical changes were evaluated by Scanning electron microscopy and Fourier transform infrared spectroscopy and quantity of sugars and inhibitors in LCB were determined by High performance liquid chromatography. Hydrothermally treated BG, CS, and FF released 954.54, 1,354.33, and 1,347.94 mg/L glucose and 779.31, 612.27, and 1,570.11 mg/L of xylose, respectively. Inhibitors produced due to effect of hydrothermal pretreatment ranged from 42.8 to 145.78 mg/L acetic acid, below detection level (BDL) to 17.7 µg/L 5-hydroxymethylfurfural, and BDL to 56.78 µg/L furfural. The saccharification efficiency of hydrothermally treated LCB (1.35–28.64%) was significantly higher compared with their native counterparts (0.81–17.97%). Consolidated bioprocessing of the LCB using MTCC 1755 (Fusarium oxysporum) resulted in maximum ethanol concentration of 0.85 g/L and corresponded to 42 mg ethanol per gram of hydrothermally treated BG in 120 h followed by 0.83 g/L corresponding to 41.5 mg/g of untreated CS in 144 h. These ethanol concentrations corresponded to 23.43 and 21.54% of theoretical ethanol yield, respectively. LCB of CS and FF emerged as a suitable material to be subjected to test for enhanced ethanol production in future experiments through efficient fermentative microbial strains, appropriate enzyme loadings, and standardization of other fermentation parameters.

  20. Potential impact of mangrove clearance on biomass and biomass size spectra of nematode along the Sudanese Red Sea coast.

    Science.gov (United States)

    Sabeel, Rasha Adam Osman; Vanreusel, Ann

    2015-02-01

    The potential effect of mangrove clearance on nematode assemblage biomass, biomass size spectra (NBSS) and abundance/biomass curves (ABC) was investigated in three sites representing a varying degree of mangrove clearance as well as in three stations established at each sites representing high-, mid- and low-water levels. Results revealed significant differences in sediment and nematode characteristics between the three sites. Although both the cleared and the intact mangrove had comparable biomass values, clear differences in biomass size spectra and abundance biomass curves were observed. The results suggested that the variation in the silt fraction and the food quality positively affected the total biomass. Mangrove clearance has caused a shift from a unimodal to a bimodal biomass size spectrum at all water levels, owing to an increase in smaller-bodied opportunistic non-selective deposit feeding nematodes. The ABC further confirmed the effect of clearance by classifying the cleared mangrove as moderately to grossly disturbed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Economic Potential of Biomass from Unused Agriculture Land for Energy Use

    DEFF Research Database (Denmark)

    Pfeifer, A.; Dominkovic, Dominik Franjo; Ćosić, B.

    2015-01-01

    In this paper the energy potential of biomass from growing short rotation coppice (SRC) on unused agricultural land in the Republic of Croatia was examined. At present, SRC is not completely recognized in Croatian legislative and considerations in energy strategy and action plans. The paper aspires...... to contribute to better understanding of the role SRC can take in national and local energy planning. The methodology is provided for regional analysis of biomass energy potential on unused agricultural land and for assessing the cost of the biomass at the power plant (PP) location considering transport...... plants and appropriate size of seasonal heat storage is discussed for each case study. Case studies have shown the potential for use of previously unused agricultural land to help achieve national targets for renewable energy sources as well as reducing carbon dioxide emissions, help diversify...

  2. Biomass Assessment: A Question of Method and Expertise

    International Nuclear Information System (INIS)

    Thivolle-Cazat, A.; Le Net, E.; Labalette, F.; Marsac, S.

    2013-01-01

    Whereas the new stakes on lignocellulosic biomass are often demand-oriented (heat, electricity, biofuels, etc.) mainly through public policies, the new equilibrium will depend also on the supply-side. This supply has to be understood as socio-economic and environmental targets combining many topics: multi- resources (agriculture, forest, 'dedicated coppices', by-products and wastes), available/potential quantities and costs, localisation, replacement/substitution effects (activities, lands), and supply- side stakeholders' behaviours. Many initiatives have been launched to grasp those dimensions through projects (National Research Agency, French Environment and Energy Management Agency, etc.). Many figures exist on the biomass assessment aspect but they are not clear enough and not comparable due to differences in definitions, scopes, data, parameters, geographical levels, reporting units, time-scale, etc. Regarding the characterisation of biomass supply chains, evaluations are often incomplete and lack methodological references. This article aims to focus on methodological key points and barriers to overcome, in order to get a better evaluation and understanding of biomass mobilisation expected by potential users and public authorities. (authors)

  3. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation

    Science.gov (United States)

    Rohr, Annette C.; Campleman, Sharan L.; Long, Christopher M.; Peterson, Michael K.; Weatherstone, Susan; Quick, Will; Lewis, Ari

    2015-01-01

    Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S) concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios—pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended. PMID:26206568

  4. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation

    Directory of Open Access Journals (Sweden)

    Annette C. Rohr

    2015-07-01

    Full Text Available Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios—pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended.

  5. Biomass for electricity in the EU-27: Potential demand, CO2 abatements and breakeven prices for co-firing

    International Nuclear Information System (INIS)

    Bertrand, Vincent; Dequiedt, Benjamin; Le Cadre, Elodie

    2014-01-01

    This paper analyses the potential of biomass-based electricity in the EU-27 countries, and interactions with climate policy and the EU ETS. We estimate the potential biomass demand from the existing power plants, and we match our estimates with the potential biomass supply in Europe. Furthermore, we compute the CO2 abatement associated with the co-firing opportunities in European coal plants. We find that the biomass demand from the power sector may be very high compared with potential supply. We also identify that co-firing can produce high volumes of CO 2 abatements, which may be two times larger than that of the coal-to-gas fuel switching. We also compute biomass and CO2 breakeven prices for co-firing. Results indicate that biomass-based electricity remains profitable with high biomass prices, when the carbon price is high: a Euros 16–24 (25–35, respectively) biomass price (per MWh prim ) for a Euros 20 (50, respectively) carbon price. Hence, the carbon price appears as an important driver, which can make profitable a high share of the potential biomass demand from the power sector, even with high biomass prices. This aims to gain insights on how biomass market may be impacted by the EU ETS and others climate policies. - Highlights: • Technical potential of biomass (demand and CO 2 abatement) in European electricity. • Calculation for co-firing and biomass power plants; comparison with potential biomass supply in EU-27 countries. • Calculation of biomass and CO 2 breakeven prices for co-firing. • Potential demand is 8–148% of potential supply (up to 80% of demand from co-firing). • High potential abatement from co-firing (up to 365 Mt/yr); Profitable co-firing with €16-24 (25–35) biomass price for €20 (50) CO 2 price

  6. A study of algal biomass potential in selected Canadian regions.

    Energy Technology Data Exchange (ETDEWEB)

    Passell, Howard David; Roach, Jesse Dillon; Klise, Geoffrey T.

    2011-11-01

    A dynamic assessment model has been developed for evaluating the potential algal biomass and extracted biocrude productivity and costs, using nutrient and water resources available from waste streams in four regions of Canada (western British Columbia, Alberta oil fields, southern Ontario, and Nova Scotia). The purpose of this model is to help identify optimal locations in Canada for algae cultivation and biofuel production. The model uses spatially referenced data across the four regions for nitrogen and phosphorous loads in municipal wastewaters, and CO{sub 2} in exhaust streams from a variety of large industrial sources. Other data inputs include land cover, and solar insolation. Model users can develop estimates of resource potential by manipulating model assumptions in a graphic user interface, and updated results are viewed in real time. Resource potential by location can be viewed in terms of biomass production potential, potential CO{sub 2} fixed, biocrude production potential, and area required. The cost of producing algal biomass can be estimated using an approximation of the distance to move CO{sub 2} and water to the desired land parcel and an estimation of capital and operating costs for a theoretical open pond facility. Preliminary results suggest that in most cases, the CO{sub 2} resource is plentiful compared to other necessary nutrients (especially nitrogen), and that siting and prospects for successful large-scale algae cultivation efforts in Canada will be driven by availability of those other nutrients and the efficiency with which they can be used and re-used. Cost curves based on optimal possible siting of an open pond system are shown. The cost of energy for maintaining optimal growth temperatures is not considered in this effort, and additional research in this area, which has not been well studied at these latitudes, will be important in refining the costs of algal biomass production. The model will be used by NRC-IMB Canada to identify

  7. Biomass and biomass and biogas yielding potential of sorghum as affected by planting density, sowing time and cultivar

    International Nuclear Information System (INIS)

    Mahmood, A.; Hussain, A.; Shahzad, A. N.; Honermeier, B.

    2015-01-01

    Biogas from biomass is a promising renewable energy source whose importance is increasing in European as well as in other countries. A field experiment at one location (Experimental Station Giessen, Justus Liebig University of Giessen, Germany) over two years was designed to study the effect of altering sowing time (ST), planting density and cultivar on the biomass yield and chemical composition of biomass sorghum, and its potential for methane production. Of the two cultivars tested, cv. Goliath (intraspecific hybrid) was more productive with respect to biomass yield than cv. Bovital (S. bicolor x S. sudanense hybrid). ST also influenced biomass yield and most of the quality parameters measured. Delayed sowing was in general advantageous. The choice of cultivar had a marked effect on biogas and methane yield. The highest biogas and methane yields were produced by late sown cv. Bovital. Sub-optimal planting densities limited biomass accumulation of the crop, however neither the chemical composition nor the methane yield was affected by planting density. (author)

  8. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession.

    Science.gov (United States)

    Lohbeck, Madelon; Poorter, Lourens; Martínez-Ramos, Miguel; Bongers, Frans

    2015-05-01

    Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity, actual litter decomposition, and potential litter decomposition) during secondary succession after shifting cultivation in wet tropical forest of Mexico. We test the importance of three alternative drivers of ecosystem processes: vegetation biomass (vegetation quantity hypothesis), community-weighted trait mean (mass ratio hypothesis), and functional diversity (niche complementarity hypothesis) using structural equation modeling. This allows us to infer the relative importance of different mechanisms underlying ecosystem process recovery. Ecosystem process rates changed during succession, and the strongest driver was aboveground biomass for each of the processes. Productivity of aboveground stem biomass and leaf litter as well as actual litter decomposition increased with initial standing vegetation biomass, whereas potential litter decomposition decreased with standing biomass. Additionally, biomass productivity was positively affected by community-weighted mean of specific leaf area, and potential decomposition was positively affected by functional divergence, and negatively by community-weighted mean of leaf dry matter content. Our empirical results show that functional diversity and community-weighted means are of secondary importance for explaining changes in ecosystem process rates during tropical forest succession. Instead, simply, the amount of vegetation in a site is the major driver of changes, perhaps because there is a steep biomass buildup during succession that overrides more subtle effects of community functional properties on ecosystem processes. We recommend future studies in the field of biodiversity and ecosystem functioning to separate the effects of

  9. Market Potential for Residential Biomass Heating Equipment: Stochastic and Econometric Assessments

    OpenAIRE

    Adee Athiyaman

    2015-01-01

    This paper provides estimates of market potential for biomass-residential-heating equipment in the US: that is, the greatest amount of biomass-residential-heating equipment that can be sold by the industry. The author's analysis is limited to biomass equipment used most to heat the housing unit. Assuming that households equipped with 10+ year old primary heating devices will replace rather than repair the devices he predicts that approximately 1.4 million units of residential home heating equ...

  10. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS; SEMIANNUAL

    International Nuclear Information System (INIS)

    Greg F. Weber; Christopher J. Zygarlicke

    2001-01-01

    In summary, stoker-fired boilers that cofire or switch to biomass fuel may potentially have to deal with ash behavior issues such as production of different concentrations and quantities of fine particulate or aerosols and ash-fouling deposition. Stoker boiler operators that are considering switching to biomass and adding potential infrastructure to accommodate the switch may also at the same time be looking into upgrades that will allow for generating additional power for sale on the grid. This is the case for the feasibility study being done currently for a small ( and lt;1-MW) stoker facility at the North Dakota State Penitentiary, which is considering not only the incorporation of a lower-cost biomass fuel but also a refurbishing of the stoker boiler to burn slightly hotter with the ability to generate more power and sell excess energy on the grid. These types of fuel and boiler changes can greatly affect ash behavior issues

  11. The potential of the Malaysian oil palm biomass as a renewable energy source

    International Nuclear Information System (INIS)

    Loh, Soh Kheang

    2017-01-01

    Highlights: • An energy resource data for oil palm biomass is generated. • The data encompasses crucial fuel and physicochemical characteristics. • These characteristics guide on biomass behaviors and technology selection. • Oil palm biomass is advantageous in today’s energy competitive markets. • Overall, it is a green alternative for biorefinery establishment. - Abstract: The scarcity of conventional energy such as fossil fuels (which will lead to eventual depletion) and the ever-increasing demand for new energy sources have resulted in the world moving into an era of renewable energy (RE) and energy efficiency. The Malaysian oil palm industry has been one of the largest contributor of lignocellulosic biomass, with more than 90% of the country’s total biomass deriving from 5.4 million ha of oil palms. Recent concerns on accelerating replanting activity, improving oil extraction rate, expanding mill capacity, etc. are expected to further increase the total oil palm biomass availability in Malaysia. This situation has presented a huge opportunity for the utilization of oil palm biomass in various applications including RE. This paper characterizes the various forms of oil palm biomass for their important fuel and other physicochemical properties, and assesses this resource data in totality – concerning energy potential, the related biomass conversion technologies and possible combustion-related problems. Overall, oil palm biomass possesses huge potential as one of the largest alternative energy sources for commercial exploitation.

  12. Characterization and ethanol potential from giant cassava (Manihot esculenta) stem waste biomass

    Science.gov (United States)

    Septia, E.; Supriadi; Suwinarti, W.; Amirta, R.

    2018-04-01

    Manihot esculenta stem waste biomass is promising material for ethanol production since it is unutilized substance from cassava production. Nowadays, cassava is the most common food in Indonesian society. The aims of this study were to identify availability and characteristic of giant cassava (M. esculenta) stem waste biomass for ethanol feedstock. In term of that, four plots with the size of 5m x 5m were made to calculate the total stem biomass obtained after harvesting process. In this study, various concentrations of alkaline were used to degrade lignin from the substrate. The effects of alkaline pretreatment were investigated using TAPPI method and the ethanol yield was estimated using modified NREL protocol. The results showed that the potential dry stem waste biomass from harvesting of M. esculenta was approximately 10.5 ton/ha. Further, alkaline pretreatment of stem waste biomass with 2% of NaOH coupled with the enzymatic saccharification process using meicelase was showed the highest production of sugar to reach of 38.49 % of total reduction sugar and estimated potentially converted to 2,62 L/ha of ethanol. We suggested M. esculenta stem waste biomass could be used as sustainable feedstock for ethanol production in Indonesia.

  13. A review of biomass energy potential

    International Nuclear Information System (INIS)

    Hoi Why Kong.

    1995-01-01

    This article reviews some recent development in biomass utilisation systems in Malaysia. The technology reviewed are direct combustion of biomass , wood briquetting technology, pyrolysis of biomass and gasification of wood in Malaysia

  14. Biomass production and potential water stress increase with ...

    African Journals Online (AJOL)

    The choice of planting density and tree genotype are basic decisions when establishing a forest stand. Understanding the interaction between planting density and genotype, and their relationship with biomass production and potential water stress, is crucial as forest managers are faced with a changing climate. However ...

  15. Biomass Assessment. Assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. Inventory and analysis of existing studies. Supporting document

    International Nuclear Information System (INIS)

    Dornburg, V.; Faaij, A.; Verweij, P.; Banse, M.; Van Diepen, K.; Van Keulen, H.; Langeveld, H.; Meeusen, M.; Van de Ven, G.; Wester, F.; Alkemade, R.; Ten Brink, B.; Van den Born, G.J.; Van Oorschot, M.; Ros, J.; Smout, F.; Van Vuuren, D.; Van den Wijngaart, R.; Aiking, H.; Londo, M.; Mozaffarian, H.; Smekens, K.; Lysen, E.

    2008-01-01

    This supporting document contains the result from the inventory phase of the biomass assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. This study provides a comprehensive assessment of global biomass potential estimates, focusing on the various factors affecting these potentials, such as food supplies, water use, biodiversity, energy demands and agro-economics

  16. From the idea to the construction of a biomass fuelled plant. The marketing potential

    International Nuclear Information System (INIS)

    Beyer, Ranveig Vaa

    2000-12-01

    The report deals with the case handling in connection with the planning of a biomass fuelled plant as well as the market potential for a biomass fuelled Stirling engines and direct combustion of biomass with a steam circuit

  17. Biomass chemicals: improvement in quality and quantity with physiological regulators

    Energy Technology Data Exchange (ETDEWEB)

    Kossuth, S.V.

    1984-01-01

    The search for alternative biomass energy forms has centered on two approaches: (1) production of cellulose fiber in biomass of low net energy value per unit weight, such as wood and bagasse, and (2) hydrocarbons of high net energy value per unit weight for use as chemical feedstocks and substitutes for petroleum. Major plant chemical products include oleoresin from pine (Pinus elliottii Engelm., P. palustris Mill.) rubber from the rubber tree (Hevea brasiliensis Muell.), and guayule shrub (Parthenium argentatum Gray) and sugar from sugarcane (Saccharum species). Ethylene may be a unifying natural bioregulator that can increase deposition of biomass chemicals in all four of these systems. Examples of bioregulators include the use of paraquat, diquat, and 2-chloroethylphosphonic acid (CEPA) for stimulating the synthesis of oleoresin, CEPA for prolonging the flow of rubber and increasing rubber synthesis in the rubber tree, and triethylamines of chlorinated phenoxy compounds for stimulating rubber production in guayule. In sugarcane, gibberellic acid (GA3) increases internodal elongation. Glyphosate, CEPA and other regulators increase the deposition of sucrose, diquat and CEPA inhibit flowering, and paraquat desiccates leaves to facilitate leaf removal or burning just prior to harvest. The cellular compartmentalization for the synthesis of these plant chemicals is unique for each species, and dictates cultural and harvest techniques. The mode of action and pathways for the success of these physiological regulators are discussed. 42 references.

  18. Computational Model of a Biomass Driven Absorption Refrigeration System

    Directory of Open Access Journals (Sweden)

    Munyeowaji Mbikan

    2017-02-01

    Full Text Available The impact of vapour compression refrigeration is the main push for scientists to find an alternative sustainable technology. Vapour absorption is an ideal technology which makes use of waste heat or renewable heat, such as biomass, to drive absorption chillers from medium to large applications. In this paper, the aim was to investigate the feasibility of a biomass driven aqua-ammonia absorption system. An estimation of the solid biomass fuel quantity required to provide heat for the operation of a vapour absorption refrigeration cycle (VARC is presented; the quantity of biomass required depends on the fuel density and the efficiency of the combustion and heat transfer systems. A single-stage aqua-ammonia refrigeration system analysis routine was developed to evaluate the system performance and ascertain the rate of energy transfer required to operate the system, and hence, the biomass quantity needed. In conclusion, this study demonstrated the results of the performance of a computational model of an aqua-ammonia system under a range of parameters. The model showed good agreement with published experimental data.

  19. Assessment of potential biomass energy production in China towards 2030 and 2050

    DEFF Research Database (Denmark)

    Zhao, Guangling

    2016-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, e...

  20. Determining potential locations for biomass valorization using a macro screening approach

    Energy Technology Data Exchange (ETDEWEB)

    Van Dael, M.; Van Passel, S.; Schreurs, E. [Research Group of Environmental Economics, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek (Belgium); Pelkmans, L.; Guisson, R. [VITO, Boeretang 200, 2400 Mol (Belgium); Swinnen, G. [Research Group of Marketing, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek (Belgium)

    2012-10-15

    European policy states that by 2020 at least 20% of final energy consumption should come from renewable energy sources. Biomass as a renewable energy source cannot be disregarded in order to attain this target. In this study a macro screening approach is developed to determine potential locations for biomass valorization in a specified region. The approach consists of five steps: (1) criteria determination, (2) data gathering, (3) weight assignment, (4) final score, (5) spatial representation. The resulting outcome provides a first well balanced scan of the possibilities for energy production using regional biomass. This way policy makers and investors can be supported and motivated to study the possibilities of building energy production plants at specific locations in more detail, which can be described as a 'micro-screening'. In our case study the approach is applied to determine the potentially interesting locations to establish a biomass project. The region has been limited to the forty-four communities in the province of Limburg (Belgium). The macro screening approach has shown to be very effective since the amount of interesting locations has been reduced drastically.

  1. Comparison of biomass productivity and nitrogen fixing potential of Azolla SPP

    Energy Technology Data Exchange (ETDEWEB)

    Arora, A.; Singh, P.K. [Indian Agricultural Research Inst., New Delhi (India)

    2003-03-01

    Study was conducted on six different Azolla species, available in the germplasm collection of NCCUBGA, IARI, New Delhi namely A. filiculoides, A. mexicana, A. microphylla, A. pinnata, A. rubra and A. caroliniana in a polyhouse to assess their growth potential by determining their maximal biomass productivity, doubling time and relative growth rates. Their nitrogen fixing potential was assessed by acetylene reduction assay. Among them Azolla microphylla gave highest biomass production and relative growth rate followed by Azolla caroliniana. Both these had high nitrogenase activity also. Peak nitrogenase activity of these strains was found on 14th day of growth and it declined on further incubation. Azolla microphylla and Azolla rubra were more tolerant to salinity than others. On the other hand Azolla pinnata, which is endemic species found in India, exhibited low biomass production, relative growth rate and lower nitrogenase activity compared to other species. It was unable to sustain growth in saline medium. Under polyhouse conditions, A. microphylla was found to perform better than other cultures in terms of biomass productivity, N fixing ability and salt tolerance. Hence it is taken up for mass production.(author)

  2. Bioenergy production potential for aboveground biomass from a subtropical constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Chung [Department of Forestry and Nature Conservation, Chinese Culture University, Taipei 11114 (China); Ko, Chun-Han [School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617 (China); Bioenergy Research Center, National Taiwan University, Taipei 10617 (China); Chang, Fang-Chih [The Instrument Center, National Cheng Kung University, No.1, University Road, Tainan City 70101 (China); Chen, Pen-Yuan [Department of Landscape Architecture, National Chiayi University, Chiayi City 60004 (China); Liu, Tzu-Fen [School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617 (China); Sheu, Yiong-Shing [Department of Water Quality Protection, Environmental Protection Administration, Executive Yuan, Taipei 10042 (China); Shih, Tzenge-Lien [Department of Chemistry, Tamkang University, Tamsui, Taipei 25137 (China); Teng, Chia-Ji [Environmental Protection Bureau, Taipei County Government, Taipei 22001 (China)

    2011-01-15

    Wetland biomass has potentials for bioenergy production and carbon sequestration. Planted with multiple species macrophytes to promote biodiversity, the 3.29 ha constructed wetland has been treated 4000 cubic meter per day (CMD) domestic wastewater and urban runoff. This study investigated the seasonal variations of aboveground biomass of the constructed wetland, from March 2007 to March 2008. The overall aboveground biomass was 16,737 kg and total carbon content 6185 kg at the peak of aboveground accumulation for the system emergent macrophyte at September 2007. Typhoon Korsa flood this constructed wetland at October 2007, however, significant recovery for emergent macrophyte was observed without human intervention. Endemic Ludwigia sp. recovered much faster, compared to previously dominated typha. Self-recovery ability of the macrophyte community after typhoon validated the feasibility of biomass harvesting. Incinerating of 80% biomass harvested of experimental area in a nearby incineration plant could produce 11,846 kWh for one month. (author)

  3. Quantitative appraisal and potential analysis for primary biomass resources for energy utilization in China

    Energy Technology Data Exchange (ETDEWEB)

    Yanli, Yang; Peidong, Zhang; Yonghong, Zheng; Lisheng, Wang [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of science, Qingdao 266101 (China); Wenlong, Zhang; Yongsheng, Tian [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of science, Qingdao 266101 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)

    2010-12-15

    As the largest agricultural country, China has abundant biomass resources, but the distribution is scattered and difficult to collect. It is essential to estimate the biomass resource and its potential for bioenergy utilization in China. In this study, the amount of main biomass resources for possible energy use and their energy utilization potential in China are analyzed based on statistical data. The results showed that the biomass resource for possible energy use amounted to 8.87 x 10{sup 8} tce in 2007 of which the crops straw is 1.42 x 10{sup 8} tce, the forest biomass is 2.85 x 10{sup 8} tce, the poultry and livestock manure is 4.40 x 10{sup 7} tce, the municipal solid waste is 1.35 x 10{sup 6} tce, and the organic waste water is 6.46 x 10{sup 6} tce. Through the information by thematic map, it is indicated that, except arctic-alpine areas and deserts, the biomass resource for possible energy use was presented a relatively average distribution in China, but large gap was existed in different regions in the concentration of biomass resources, with the characteristics of East dense and West sparse. It is indicated that the energy transformation efficiency of biomass compressing and shaping, biomass anaerobic fermentation and biomass gasification for heating have higher conversion efficiency. If all of the biomass resources for possible energy use are utilized by these three forms respectively, 7.66 x 10{sup 12} t of biomass briquettes fuel, 1.98 x 10{sup 12} m{sup 3} of low calorific value gas and 3.84 x 10{sup 11} m{sup 3} of biogas could be produced, 3.65 x 10{sup 8} t to 4.90 x 10{sup 8} t of coal consumption could be substituted, and 6.12 x 10{sup 8} t to 7.53 x 10{sup 8} t of CO{sub 2} emissions could be reduced. With the enormous energy utilization potential of biomass resources and the prominent benefit of energy saving and emission reduction, it proves an effective way to adjust the energy consumption structure, to alleviate the energy crisis, to ensure

  4. Biomass yield potential of short-rotation hardwoods in the Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, W A [Kansas State Univ., Manhattan, KS (USA). Dept. of Forestry

    1989-01-01

    Wood for fuel has increased in importance. Its primary use in the world is for energy, increasingly coming from wood wastes and new biomass sources. One solution to the potential problem of using high-quality trees for fuel could be woody biomass grown under a short-rotation intensive culture system. Species, size, age and spacing are factors that affect biomass production of broadleafed trees. Trials of several species grown at close spacing (0.3 m x 0.3 m) and cut at various ages are described and related to the growth and yield of more conventionally spaced plantings on an alluvial site in eastern Kansas. (author).

  5. ENDOGENOUS CYTOKININS IN MEDICINAL BASIDIOMYCETES MYCELIAL BIOMASS

    Directory of Open Access Journals (Sweden)

    N. P.

    2016-02-01

    Full Text Available The aim of the research was to study the cytokinins production by medicinal basidial mushrooms. Cytokinins were for the first time identified and quantified in mycelial biomass of six species (Ganoderma lucidum, Trametes versicolor, Fomitopsis officinalis, Pleurotus nebrodensis, Grifola frondosa, Sparassis crispa using HPLC. Trans- and cis-zeatin, zeatin riboside, zeatin-O-glucoside, isopentenyladenosine, isopentenyladenine were found but only one species (G. lucidum, strain 1900 contained all these substances. The greatest total cytokinin quantity was detected in F. officinalis, strain 5004. S. crispa, strain 314, and F. officinalis, strain 5004, mycelial biomass was revealed to have the highest level of cytokinin riboside forms (zeatin riboside and isopentenyladenosine. The possible connection between medicinal properties of investigated basidiomycetes and of cytokinins is discussed. S. crispa, strain 314, and F. officinalis, strain 5004, are regarded as promising species for developing biotechnological techniques to produce biologically active drugs from their mycelial biomass. As one of the potential technological approaches there is proposed fungal material drying.

  6. Marine Algae: a Source of Biomass for Biotechnological Applications.

    Science.gov (United States)

    Stengel, Dagmar B; Connan, Solène

    2015-01-01

    Biomass derived from marine microalgae and macroalgae is globally recognized as a source of valuable chemical constituents with applications in the agri-horticultural sector (including animal feeds and health and plant stimulants), as human food and food ingredients as well as in the nutraceutical, cosmeceutical, and pharmaceutical industries. Algal biomass supply of sufficient quality and quantity however remains a concern with increasing environmental pressures conflicting with the growing demand. Recent attempts in supplying consistent, safe and environmentally acceptable biomass through cultivation of (macro- and micro-) algal biomass have concentrated on characterizing natural variability in bioactives, and optimizing cultivated materials through strain selection and hybridization, as well as breeding and, more recently, genetic improvements of biomass. Biotechnological tools including metabolomics, transcriptomics, and genomics have recently been extended to algae but, in comparison to microbial or plant biomass, still remain underdeveloped. Current progress in algal biotechnology is driven by an increased demand for new sources of biomass due to several global challenges, new discoveries and technologies available as well as an increased global awareness of the many applications of algae. Algal diversity and complexity provides significant potential provided that shortages in suitable and safe biomass can be met, and consumer demands are matched by commercial investment in product development.

  7. Biofilm biomass disruption by natural substances with potential for endodontic use

    Directory of Open Access Journals (Sweden)

    Flávio Rodrigues Ferreira Alves

    2013-02-01

    Full Text Available This study evaluated the in vitro effects of four natural substances on the biomass of bacterial biofilms to assess their potential use as root canal irrigants. The following substances and their combinations were tested: 0.2% farnesol; 5% xylitol; 20% xylitol; 0.2% farnesol and 5% xylitol; 0.2% farnesol, 5% xylitol, and 0.1% lactoferrin; 5% xylitol and 0.1% lactoferrin; and 20 mM salicylic acid. The crystal violet assay was used to evaluate the effects of these substances on the biomass of biofilms formed by Enterococcus faecalis and Staphylococcus epidermidis. All substances except for 20 mM salicylic acid and 20% xylitol reduced biofilm mass when compared to controls. The combination of farnesol and xylitol was the most effective agent against E. faecalis ATCC 29212 (p < 0.05. Farnesol combined with xylitol and lactoferrin was the most effective against biofilms of the endodontic strain of E. faecalis MB35 (p < 0.05. Similarly, combinations involving farnesol, xylitol, and lactoferrin reduced the biomass of S. epidermidis biofilms. In general, farnesol, xylitol, and lactoferrin or farnesol and xylitol reduced biofilm biomass most effectively. Therefore, it was concluded that combinations of antibiofilm substances have potential use in endodontic treatment to combat biofilms.

  8. Woody biomass and bioenergy potentials in Southeast Asia between 1990 and 2020

    International Nuclear Information System (INIS)

    Sasaki, Nophea; Knorr, Wolfgang; Foster, David R.; Etoh, Hiroko; Ninomiya, Hiroshi; Chay, Sengtha; Sun, Sengxi; Kim, Sophanarith

    2009-01-01

    Forests in Southeast Asia are important sources of timber and other forest products, of local energy for cooking and heading, and potentially as sources of bioenergy. Many of these forests have experienced deforestation and forest degradation over the last few decades. The potential flow of woody biomass for bioenergy from forests is uncertain and needs to be assessed before policy intervention can be successfully implemented in the context of international negotiations on climate change. Using current data, we developed a forest land use model and projected changes in area of natural forests and forest plantations from 1990 to 2020. We also developed biomass change and harvest models to estimate woody biomass availability in the forests under the current management regime. Due to deforestation and logging (including illegal logging), projected annual woody biomass production in natural forests declined from 815.9 million tons (16.3 EJ) in 1990 to 359.3 million tons (7.2 EJ) in 2020. Woody biomass production in forest plantations was estimated at 16.2 million tons yr -1 (0.3 EJ), but was strongly affected by cutting rotation length. Average annual woody biomass production in all forests in Southeast Asia between 1990 and 2020 was estimated at 563.4 million tons (11.3 EJ) yr -1 declining about 1.5% yr -1 . Without incentives to reduce deforestation and forest degradation, and to promote forest rehabilitation and plantations, woody biomass as well as wood production and carbon stocks will continue to decline, putting sustainable development in the region at risk as the majority of the population depend mostly on forest ecosystem services for daily survival. (author)

  9. The Potential for Biomass District Energy Production in Port Graham, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

    2008-05-08

    This project was a collaboration between The Energy & Environmental Research Center (EERC) and Chugachmiut – A Tribal organization Serving the Chugach Native People of Alaska and funded by the U.S. Department of Energy (DOE) Tribal Energy Program. It was conducted to determine the economic and technical feasibility for implementing a biomass energy system to service the Chugachmiut community of Port Graham, Alaska. The Port Graham tribe has been investigating opportunities to reduce energy costs and reliance on energy imports and support subsistence. The dramatic rise in the prices of petroleum fuels have been a hardship to the village of Port Graham, located on the Kenai Peninsula of Alaska. The Port Graham Village Council views the forest timber surrounding the village and the established salmon industry as potential resources for providing biomass energy power to the facilities in their community. Benefits of implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oil–diesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 3–4 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating

  10. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass.

    Science.gov (United States)

    Ennaert, Thijs; Van Aelst, Joost; Dijkmans, Jan; De Clercq, Rik; Schutyser, Wouter; Dusselier, Michiel; Verboekend, Danny; Sels, Bert F

    2016-02-07

    Increasing demand for sustainable chemicals and fuels has pushed academia and industry to search for alternative feedstocks replacing crude oil in traditional refineries. As a result, an immense academic attention has focused on the valorisation of biomass (components) and derived intermediates to generate valuable platform chemicals and fuels. Zeolite catalysis plays a distinct role in many of these biomass conversion routes. This contribution emphasizes the progress and potential in zeolite catalysed biomass conversions and relates these to concepts established in existing petrochemical processes. The application of zeolites, equipped with a variety of active sites, in Brønsted acid, Lewis acid, or multifunctional catalysed reactions is discussed and generalised to provide a comprehensive overview. In addition, the feedstock shift from crude oil to biomass involves new challenges in developing fields, like mesoporosity and pore interconnectivity of zeolites and stability of zeolites in liquid phase. Finally, the future challenges and perspectives of zeolites in the processing of biomass conversion are discussed.

  11. Overview of Considerations in Assessing the Biomass Potential of Army Installations.

    Science.gov (United States)

    1981-08-01

    techniques of harvest- ing biomass, (3) the feasibility of military development of energy planta - tions, (4) the economic feasibility of using biomass, (5...harvest system. 18 1. S. Goldstein, D. L. Holley, and E. L. Deal, "Economic Aspects of Low Gra de Ha rdwood Ut iIi za t ion ," Fore-s-t- Pro-du-cts J...equipment and techniques, (d) an initial assessment of potential silvicultural and ecologi- cal implications, and (e) an identification of managerial and

  12. Biomass Resource Assessment and Existing Biomass Use in the Madhya Pradesh, Maharashtra, and Tamil Nadu States of India

    Directory of Open Access Journals (Sweden)

    Karthikeyan Natarajan

    2015-05-01

    Full Text Available India is experiencing energy crisis and a widening gap between energy supply and demand. The country is, however, endowed with considerable, commercially and technically available renewable resources, from which surplus agro-biomass is of great importance and a relatively untapped resource. In the policy making process, knowledge of existing biomass use, degree of social reliance, and degree of biomass availability for energy production is unequivocal and pre-conditional. Field observations, documentation, and fill-in sheet tools were used to investigate the potential of biomass resources and the existing domestic, commercial, and industrial uses of biomass in selected Indian states. To do so, a team of field observers/supervisors visited three Indian states namely: Maharashtra (MH, Madhya Pradesh (MP, and Tamil Nadu (TN. Two districts from each state were selected to collect data regarding the use of biomass and the extent of biomass availability for energy production. In total, 471 farmers were interviewed, and approximately 75 farmers with various land holdings have been interviewed in each district. The existing uses of biomass have been documented in this survey study and the results show that the majority of biomass is used as fodder for domestic livestock followed by in-site ploughing, leaving trivial surplus quantities for other productive uses. Biomass for cooking appeared to be insignificant due to the availability and access to Liquefied Petroleum Gas (LPG cylinders in the surveyed districts. Opportunities exist to utilize roadside-dumped biomass, in-site burnt biomass, and a share of biomass used for ploughing. The GIS-based maps show that biomass availability varies considerably across the Taluks of the surveyed districts, and is highly dependent on a number of enviromental and socio-cultural factors. Developing competitive bioenergy market and enhancing and promoting access to more LPG fuel connections seem an appropriate socio

  13. Bird communities and biomass yields in potential bioenergy grasslands.

    Directory of Open Access Journals (Sweden)

    Peter J Blank

    Full Text Available Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields, and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes.

  14. Interacting Effects of Leaf Water Potential and Biomass on Vegetation Optical Depth

    Science.gov (United States)

    Momen, M.; Wood, J. D.; Novick, K. A.; Pockman, W.; Konings, A. G.

    2017-12-01

    Remotely-sensed microwave observations of vegetation optical depth (VOD) have been widely used to examine vegetation responses to climate. Such studies have alternately found that VOD is sensitive to both biomass and canopy water content. However, the relative impacts of changes in phenology or water stress on VOD have not been disentangled. In particular, understanding whether leaf water potential (LWP) affects VOD may permit the assimilation of satellite observations into new large-scale plant hydraulic models. Despite extensive validation of the relationship between satellite-derived VOD estimates and vegetation density, relatively few studies have explicitly sought to validate the sensitivity of VOD to canopy water status, and none have studied the effect of variations in LWP on VOD. In this work, we test the sensitivity of VOD to variations in LWP, and present a conceptual framework which relates VOD to a combination of leaf water potential and total biomass including leaves, whose dynamics can be measured through leaf area index, and woody biomass. We used in-situ measurements of LWP data to validate the conceptual model in mixed deciduous forests in Indiana and Missouri, as well as a pinion-juniper woodland in New Mexico. Observed X-band VOD from the AMSR-E and AMSR2 satellites showed dynamics similar to those reconstructed VOD signals based on the new conceptual model which employs in-situ LWP data (R2=0.60-0.80). Because LWP data are not available at global scales, we further estimated ecosystem LWP based on remotely sensed surface soil moisture to better understand the sensitivity of VOD across ecosystems. At the global scale, incorporating a combination of biomass and water potential in the reconstructed VOD signal increased correlations with VOD about 15% compared to biomass alone and about 30% compared to water potential alone. In wetter regions with denser and taller canopy heights, VOD has a higher correlation with leaf area index than with water

  15. Fungal Biomass Protein Production from Trichoderma harzianum Using Rice Polishing.

    Science.gov (United States)

    Ahmed, Sibtain; Mustafa, Ghulam; Arshad, Muhammad; Rajoka, Muhammad Ibrahim

    2017-01-01

    Industrially important enzymes and microbial biomass proteins have been produced from fungi for more than 50 years. High levels of crude protein as much as 45% are present in fungal biomass with balanced essential amino acids. The aim of this study was to access the potential of Trichoderma harzianum to produce fungal biomass protein from rice polishings. Maximum biomass yield was obtained at 5% (w/v) rice polishings after 72 h of incubation at 28°C at pH 4. Carbon and nitrogen ratio of 20 : 1 gave significantly higher production of fungal biomass protein. The FBP in the 75 L fermenter contained 49.50% crude protein, 32.00% true protein, 19.45% crude fiber, 9.62% ash, 11.5% cellulose content, and 0.325% RNA content. The profile of amino acids of final FBP exhibited that all essential amino acids were present in great quantities. The FBP produced by this fungus has been shown to be of good nutritional value for supplementation to poultry. The results presented in this study have practical implications in that the fungus T. harzianum could be used successfully to produce fungal biomass protein using rice polishings.

  16. Sustainable Biomass Potentials for Food-Feed-Fuels in the Future

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Kirchovas, Simas

    2012-01-01

    has for many years been forming the basis for the change together with wind and solar energy. These resources still contains great potentials for energy supply chains in increasing areas of Europe and the World. Biomass sustainability issues could be solved by developing the international...

  17. The use of a GIS model to evaluate the economic potential for biomass in Northampton County, Pennsylvania

    International Nuclear Information System (INIS)

    Breger, D.S.; Snyder, H.

    1999-01-01

    This paper describes the development and use of a geographical information system (GIS) model to evaluate the technical and economic potential for biomass energy (particularly willows) in a county of Pennsylvania. The model uses GIS coverages of land use, soil type, and riparian zones to evaluate the applicability and cost of biomass production and to generate a supply curve for a biomass economy. The model can be extended to consider energy end-use facilities and transportation costs to analyze the willingness-to-pay for biomass fuels by large energy users. The GIS model is designed to produce a county-level supply-and-demand curve for biomass energy, and the potential for market activity. The spatial distributions of supply-and-demand economics are valuable to target efforts to initiate biomass activities. (author)

  18. Marine biomass power plant using methane fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, T.; Saito, H.; Amano, T.; Sugawara, H.; Seki, T.; Abe, T. [Technology Research Inst., Tokyo Gas Co. Ltd., Tokyo (Japan)

    2004-07-01

    This study presented an effective way to produce biogas from the large quantities of seaweed waste in Japan. A large-scale marine biomass pilot plant was built to produce biogas from marine biomass. Methane fermentation was the process used to produce biogas from Laminaria sp. The maximum treating capacity of the pilot plant is 1 ton of seaweed per day. The pilot plant includes a pretreatment facility, fermentation, biogas storage and power generation. The maximum methane yield from the biomass plant is 22 cubic ton-seaweed. The purified biogas has generated 10 kW of electricity and 23 kW of heat. The biogas was also mixed with natural gas for use in a gas engine generator. The engine operation remained stable despite changes in quantity and composition of the collected biogas caused by changes with the source of biomass and sea conditions. The thermal efficiency of the gas engine running on mixed biogas and natural gas was more than 10 per cent higher than an engine running on biogas fuel alone. 4 refs., 2 tabs., 3 figs.

  19. Evaluation of saw palmetto for biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Pitman, W.D. (Florida Univ., Ona, FL (United States). Agricultural Research Center)

    1993-01-01

    Saw palmetto is a widely distributed shrubby monocot (palm) which occurs in dense stands in the coastal region of the southern USA. Selected areas of an existing stand in peninsular Florida were subjected to harvest intervals of 6, 12, and 24 months, with season of harvest also evaluated. Annual yields were 2-3 Mg ha[sup -1] of foliage (fronds and petioles) dry matter. A quadratic response to harvest interval was obtained with annual foliage regrowth greatest at the 12-month interval. Plant vigour, as indicated by total non-structural carbohydrate (TNC) concentration, and yield per harvest increased linearly with increasing harvest interval. Chemical analyses revealed high extractive content, with 100 mg g[sup -1] ethanol-benzene extract plus 90 mg g[sup -1] ethanol extract. Lignin concentration was also high at 180 mg g[sup -1]. The relatively low biomass yields and high concentrations of extractives and lignin indicate that saw palmetto does not have the desired characteristics for biomass energy conversion. Some potential may exist for specialty uses, such as starter fuel for waste combustion, due to availability and a highly combustible nature produced by the high extractive content. (author)

  20. Chemicals from Biomass: A Market Assessment of Bioproducts with Near-Term Potential

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scarlata, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-23

    Production of chemicals from biomass offers a promising opportunity to reduce U.S. dependence on imported oil, as well as to improve the overall economics and sustainability of an integrated biorefinery. Given the increasing momentum toward the deployment and scale-up of bioproducts, this report strives to: (1) summarize near-term potential opportunities for growth in biomass-derived products; (2) identify the production leaders who are actively scaling up these chemical production routes; (3) review the consumers and market champions who are supporting these efforts; (4) understand the key drivers and challenges to move biomass-derived chemicals to market; and (5) evaluate the impact that scale-up of chemical strategies will have on accelerating the production of biofuels.

  1. Potential and possibilities of supplying energy from biomass and biogas; Potentiale und Moeglichkeiten der Energiebereitstellung durch Biomasse und Biogas

    Energy Technology Data Exchange (ETDEWEB)

    Sonnenberg, H. [Bundesforschungsanstalt fuer Landwirtschaft, Braunschweig (Germany). Inst. fuer Betriebstechnik; Weiland, P.; Ahlgrimm, H.J. [Bundesforschungsanstalt fuer Landwirtschaft (FAL), Braunschweig (Germany). Inst. fuer Technologie

    1998-06-01

    Agriculture`s potential contribution to the energy supply of the ``town of the future`` through the conversion of biomass to energy, including biogas production, is a rather modest one. Supposing that the share of total renewable energy in Germany`s primary energy demand rises to approximately 4%, then the proportion of biomass from biotic raw materials especially produced for the purpose will at the most make up an eighth of this amount. Beyond this, biomass is burdened with other drawbacks such as low supply efficiency, limited availability, and weather-dependent reliability. On the other hand, biomass is well suited for conversion to solid, liquid, and gaseous fuels, including inexpensive ones with low energy density (solid fuels), mostly used for stationary heating applications, as well as more expensive ones such as liquid fuels with a high energy density for mobile applications in the automotive sector. Thanks to its capacity to regenerate, biomass is an inexhaustible resource. Moreover, its natural life cycle has a small impact on the environment. [Deutsch] Der Beitrag, den die Landwirtschaft durch energetische Nutzung von Biomasse, z.B. auch mit der Erzeugung von Biogas, zur Energieversorgung der `Stadt der Zukunft` leisten kann, nimmt sich bescheiden aus. Wird erwartet, dass innerhalb des naechsten Jahrzehnts der Anteil regenerativer Energien insgesamt auf etwa 4% des Primaerenergie-Verbrauchs Deutschlands ansteigen koennte, so duerfte Biomasse als speziell zur Energiegewinnung angebaute nachwachsende Rohstoffe mit bestensfalls 0,5 Prozentpunkten daran beteiligt sein. Es beduerfen darueber hinaus auch Nachteile, wie geringe Bereitstellungseffizienz, beschraenkte Verfuegbarkeit und witterungsabhaengige Zuverlaessigkeit, der Beachtung. Die Biomasse kann jedoch mit Erfolg in feste, fluessige und gasfoermige Energietraeger konvertiert werden, sowohl in preiswerte mit geringer Energiedichte (Festbrennstoffe) fuer bevorzugt stationaeren Heizungs-Einsatz als auch

  2. Local Biomass Baselines and the Recovery Potential for Hawaiian Coral Reef Fish Communities

    Directory of Open Access Journals (Sweden)

    Kelvin D. Gorospe

    2018-05-01

    Full Text Available Understanding the influence of multiple ecosystem drivers, both natural and anthropogenic, and how they vary across space is critical to the spatial management of coral reef fisheries. In Hawaii, as elsewhere, there is uncertainty with regards to how areas should be selected for protection, and management efforts prioritized. One strategy is to prioritize efforts based on an area's biomass baseline, or natural capacity to support reef fish populations. Another strategy is to prioritize areas based on their recovery potential, or in other words, the potential increase in fish biomass from present-day state, should management be effective at restoring assemblages to something more like their baseline state. We used data from 717 fisheries-independent reef fish monitoring surveys from 2012 to 2015 around the main Hawaiian Islands as well as site-level data on benthic habitat, oceanographic conditions, and human population density, to develop a hierarchical, linear Bayesian model that explains spatial variation in: (1 herbivorous and (2 total reef fish biomass. We found that while human population density negatively affected fish assemblages at all surveyed areas, there was considerable variation in the natural capacity of different areas to support reef fish biomass. For example, some areas were predicted to have the capacity to support ten times as much herbivorous fish biomass as other areas. Overall, the model found human population density to have negatively impacted fish biomass throughout Hawaii, however the magnitude and uncertainty of these impacts varied locally. Results provide part of the basis for marine spatial planning and/or MPA-network design within Hawaii.

  3. Microalgal biomass pretreatment for bioethanol production: a review

    Directory of Open Access Journals (Sweden)

    Jesús Velazquez-Lucio

    2018-03-01

    Full Text Available Biofuels derived from microalgae biomass have received a great deal of attention owing to their high potentials as sustainable alternatives to fossil fuels. Microalgae have a high capacity of CO2 fixation and depending on their growth conditions, they can accumulate different quantities of lipids, proteins, and carbohydrates. Microalgal biomass can, therefore, represent a rich source of fermentable sugars for third generation bioethanol production. The utilization of microalgal carbohydrates for bioethanol production follows three main stages: i pretreatment, ii saccharification, and iii fermentation. One of the most important stages is the pretreatment, which is carried out to increase the accessibility to intracellular sugars, and thus plays an important role in improving the overall efficiency of the bioethanol production process. Diverse types of pretreatments are currently used including chemical, thermal, mechanical, biological, and their combinations, which can promote cell disruption, facilitate extraction, and result in the modification the structure of carbohydrates as well as the production of fermentable sugars. In this review, the different pretreatments used on microalgae biomass for bioethanol production are presented and discussed. Moreover, the methods used for starch and total carbohydrates quantification in microalgae biomass are also briefly presented and compared.

  4. Expanding the biomass resource: sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes.

    Science.gov (United States)

    Corton, J; Donnison, I S; Patel, M; Bühle, L; Hodgson, E; Wachendorf, M; Bridgwater, A; Allison, G; Fraser, M D

    2016-09-01

    Waste biomass is generated during the conservation management of semi-natural habitats, and represents an unused resource and potential bioenergy feedstock that does not compete with food production. Thermogravimetric analysis was used to characterise a representative range of biomass generated during conservation management in Wales. Of the biomass types assessed, those dominated by rush ( Juncus effuses ) and bracken ( Pteridium aquilinum ) exhibited the highest and lowest volatile compositions respectively and were selected for bench scale conversion via fast pyrolysis. Each biomass type was ensiled and a sub-sample of silage was washed and pressed. Demineralization of conservation biomass through washing and pressing was associated with higher oil yields following fast pyrolysis. The oil yields were within the published range established for the dedicated energy crops miscanthus and willow. In order to examine the potential a multiple output energy system was developed with gross power production estimates following valorisation of the press fluid, char and oil. If used in multi fuel industrial burners the char and oil alone would displace 3.9 × 10 5  tonnes per year of No. 2 light oil using Welsh biomass from conservation management. Bioenergy and product development using these feedstocks could simultaneously support biodiversity management and displace fossil fuels, thereby reducing GHG emissions. Gross power generation predictions show good potential.

  5. Assessment of the Potential of Biomass Gasification for Electricity Generation in Bangladesh

    Directory of Open Access Journals (Sweden)

    Barun Kumar Das

    2014-01-01

    Full Text Available Bangladesh is an agriculture based country where more than 65 percent of the people live in rural areas and over 70% of total primary energy consumption is covered by biomass, mainly agricultural waste and wood. Only about 6% of the entire population has access to natural gas, primarily in urban areas. Electricity production in Bangladesh largely depends on fossil fuel whose reserve is now under threat and the government is now focusing on the alternating sources to harness electricity to meet the continuous increasing demand. To reduce the dependency on fossil fuels, biomass to electricity could play a vital role in this regard. This paper explores the biomass based power generation potential of Bangladesh through gasification technology—an efficient thermochemical process for distributed power generation. It has been estimated that the total power generation from the agricultural residue is about 1178 MWe. Among them, the generation potential from rice husk, and bagasses is 1010 MWe, and 50 MWe, respectively. On the other hand, wheat straw, jute stalks, maize residues, lentil straw, and coconut shell are also the promising biomass resources for power generation which counted around 118 MWe. The forest residue and municipal solid waste could also contribute to the total power generation 250 MWe and 100 MWe, respectively.

  6. Oyster reef restoration supports increased nekton biomass and potential commercial fishery value

    Directory of Open Access Journals (Sweden)

    Austin T. Humphries

    2015-08-01

    Full Text Available Across the globe, discussions centered on the value of nature drive many conservation and restoration decisions. As a result, justification for management activities increasingly asks for two lines of evidence: (1 biological proof of augmented ecosystem function or service, and (2 monetary valuation of these services. For oyster reefs, which have seen significant global declines and increasing restoration work, the need to provide both biological and monetary evidence of reef services on a local-level has become more critical in a time of declining resources. Here, we quantified species biomass and potential commercial value of nekton collected from restored oyster (Crassostrea virginica reefs in coastal Louisiana over a 3-year period, providing multiple snapshots of biomass support over time. Overall, and with little change over time, fish and invertebrate biomass is 212% greater at restored oyster reefs than mud-bottom, or 0.12 kg m−2. The additional biomass of commercial species is equivalent to an increase of local fisheries value by 226%, or $0.09 m−2. Understanding the ecosystem value of restoration projects, and how they interact with regional management priorities, is critical to inform local decision-making and provide testable predictions. Quantitative estimates of potential commercial fisheries enhancement by oyster reef restoration such as this one can be used directly by local managers to determine the expected return on investment.

  7. Biomass Assessment. Assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. Inventory and analysis of existing studies. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Dornburg, V.; Faaij, A.; Verweij, P. [Utrecht University, Utrecht (Netherlands); Banse, M.; Van Diepen, K.; Van Keulen, H.; Langeveld, H.; Meeusen, M.; Van de Ven, G.; Wester, F. [Wageningen UR, Wageningen (Netherlands); Alkemade, R.; Ten Brink, B.; Van den Born, G.J.; Van Oorschot, M.; Ros, J.; Smout, F.; Van Vuuren, D.; Van den Wijngaart, R. [Netherlands Environmental Assessment Agency NMP, Bilthoven (Netherlands); Aiking, H. [Vrije Universiteit, Amsterdam (Netherlands); Londo, M.; Mozaffarian, H.; Smekens, K. [ECN Policy Studies, Petten (Netherlands); Lysen, E. (ed.); Van Egmond, S. (ed.) [Utrecht Centre for Energy research UCE, Utrecht University, Utrecht (Netherlands)

    2008-01-15

    The increased use and potential growth of biomass for energy has triggered a heated debate on the sustainability of those developments as biomass production is now also associated with increased competition with food and feed production, loss of forest cover and the like. Besides such competition, also the net reduction in greenhouse gas emissions is questioned in case land-use for biomass is associated with clearing forest, with conversion of peat land, as well as with high fossil energy inputs for machinery, fertilisers and other agrochemicals. Although available studies give a reasonable insight in the importance of various parameters, the integration between different arenas is still limited. This causes confusion in public as well as scientific debate, with conflicting views on the possibilities for sustainable use of biomass as a result. This study aims to tackle this problem by providing a more comprehensive assessment of the current knowledge with respect to biomass resource potentials.

  8. Biomass Assessment. Assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. Inventory and analysis of existing studies. Main report

    International Nuclear Information System (INIS)

    Dornburg, V.; Faaij, A.; Verweij, P.; Banse, M.; Van Diepen, K.; Van Keulen, H.; Langeveld, H.; Meeusen, M.; Van de Ven, G.; Wester, F.; Alkemade, R.; Ten Brink, B.; Van den Born, G.J.; Van Oorschot, M.; Ros, J.; Smout, F.; Van Vuuren, D.; Van den Wijngaart, R.; Aiking, H.; Londo, M.; Mozaffarian, H.; Smekens, K.; Lysen, E.

    2008-01-01

    The increased use and potential growth of biomass for energy has triggered a heated debate on the sustainability of those developments as biomass production is now also associated with increased competition with food and feed production, loss of forest cover and the like. Besides such competition, also the net reduction in greenhouse gas emissions is questioned in case land-use for biomass is associated with clearing forest, with conversion of peat land, as well as with high fossil energy inputs for machinery, fertilisers and other agrochemicals. Although available studies give a reasonable insight in the importance of various parameters, the integration between different arenas is still limited. This causes confusion in public as well as scientific debate, with conflicting views on the possibilities for sustainable use of biomass as a result. This study aims to tackle this problem by providing a more comprehensive assessment of the current knowledge with respect to biomass resource potentials

  9. Marketing research for energy from biomass in Europe; Marktverkenning voor energie uit biomassa in Europa

    Energy Technology Data Exchange (ETDEWEB)

    Rijpkema, B. [TNO Milieu, Energie en Procesinnovatie TNO-MEP, Apeldoorn (Netherlands); Van den Berg, P.; Vanb Haren, P. [Biomass Technology Group BTG, Enschede (Netherlands)

    1997-07-01

    Insight is given into the European market for energy from biomass, including information on plant size, most promising technologies, etc. These potentials may offer opportunities for manufacturers of energy generating systems. A quick scan of 23 European countries has been carried out as phase 1 of this project, which resulted in data, presented in the following format: General introduction; Existing energy infrastructure and structure of the energy demand; Price of fossil fuels, electricity and heat; Available biomass quantities; Prices of biomass; Installed biomass plants; Policy and regulations. Based on that information an overall conclusion was drawn for each country`s biomass energy situation. In phase 2 a more detailed survey has been executed for Estonia, Germany, Poland and Spain. The results of both phases are presented in a separate English report. This report is the result of phase 3 in which the results of phase 1 and 2 are evaluated to assess the possibilities for Dutch manufacturers of biomass energy systems

  10. Interacting Effects of Leaf Water Potential and Biomass on Vegetation Optical Depth: Effects of LWP and Biomass on VOD

    Energy Technology Data Exchange (ETDEWEB)

    Momen, Mostafa [Department of Earth System Science, Stanford University, Stanford CA USA; Wood, Jeffrey D. [School of Natural Resources, University of Missouri, Columbia MO USA; Novick, Kimberly A. [School of Public and Environmental Affairs, Indiana University-Bloomington, Bloomington IN USA; Pangle, Robert [Department of Biology, University of New Mexico, Albuquerque NM USA; Pockman, William T. [Department of Biology, University of New Mexico, Albuquerque NM USA; McDowell, Nate G. [Pacific Northwest National Laboratory, Richland WA USA; Konings, Alexandra G. [Department of Earth System Science, Stanford University, Stanford CA USA

    2017-11-01

    Remotely sensed microwave observations of vegetation optical depth (VOD) have been widely used for examining vegetation responses to climate. Nevertheless, the relative impacts of phenological changes in leaf biomass and water stress on VOD have not been explicitly disentangled. In particular, determining whether leaf water potential (ψL) affects VOD may allow these data sets as a constraint for plant hydraulic models. Here we test the sensitivity of VOD to variations in ψL and present a conceptual framework that relates VOD to ψL and total biomass including leaves, whose dynamics are measured through leaf area index, and woody components. We used measurements of ψL from three sites across the US—a mixed deciduous forests in Indiana and Missouri and a piñon-juniper woodland in New Mexico—to validate the conceptual model. The temporal dynamics of X-band VOD were similar to those of the VOD signal estimated from the new conceptual model with observed ψL (R2 = 0.6–0.8). At the global scale, accounting for a combination of biomass and estimated ψL (based on satellite surface soil moisture data) increased correlations with VOD by ~ 15% and 30% compared to biomass and water potential, respectively. In wetter regions with denser and taller canopy heights, VOD has a higher correlation with leaf area index than with water stress and vice versa in drier regions. Our results demonstrate that variations in both phenology and ψL must be considered to accurately interpret the dynamics of VOD observations for ecological applications.

  11. Residual biomass potential of commercial and pre-commercial sugarcane cultivars

    Directory of Open Access Journals (Sweden)

    Marcos Guimarães de Andrade Landell

    2013-10-01

    Full Text Available Sugarcane (Saccharum spp. is an efficient and sustainable alternative for energy generation compared to non-renewable sources. Currently, during the mechanized harvest process, the straw left in the field can be used in part for the second generation ethanol and increasing the electric energy production. Thus, this study aimed to provide information on the potential for residual biomass cultivars of sugarcane cropping system. This study provides the following information: yield of straw, depending on the calculated leaf area index and the number of tillers per linear meter; primary energy production of several sugarcane genotypes; contribution of dry tops and leaves; biomass yield; and evaluation of fiber, cellulose, hemicellulose and lignin. Preliminary results obtained by researchers of the State of São Paulo, Brazil, and reCviews related studies are presented. The results suggest that the production of sugarcane straw content varies according to the cultivars; the greater mass of sugarcane straw is in the top leaves and that the potential for the crude energy production of sugarcane per area unit can be increased using fiber-rich species or species that produce more straw. The straw indexes was shown to be a good indicator and allow the estimation of straw volumes generated in a sugarcane crop. The cellulose, hemicellulose and lignin composition in sugarcane is distinct among varieties. Therefore, it is possible to develop distinct biomass materials for energy production and for the development of sugarcane mills using biochemical processes and thermal routes.

  12. Evaluation of the production potential of bio-oil from Vietnamese biomass resources by fast pyrolysis

    International Nuclear Information System (INIS)

    Phan, Binh M.Q.; Duong, Long T.; Nguyen, Viet D.; Tran, Trong B.; Nguyen, My H.H.; Nguyen, Luong H.; Nguyen, Duc A.; Luu, Loc C.

    2014-01-01

    Agricultural activities in Vietnam generate about 62 million tonnes of biomass (rice straw, rice husk, bagasse, corn cob, corn stover, etc.) annually. In this work, four different types of biomass from Vietnam, namely rice straw, rice husk, factory bagasse, and corn cob, have been studied as potential raw materials to produce bio-oil by fast pyrolysis technology. Test runs were conducted in a fluidized-bed reactor at a temperature of 500 °C and residence time less than 2 s. Size and moisture content of the feed were less than 2 mm and 2%, respectively. It was found that yields of bio-oil as a liquid product obtained from pyrolysis of these feedstocks were more than 50% and that obtained from the bagasse was the highest. Bio-oil quality from Vietnamese biomass resources satisfies ASTM D7544-12 standard for pyrolysis liquid biofuels. These results showed the potential of using biomass in Vietnam to produce bio-oil which could be directly used as a combustion fuel or upgraded into transportation fuels and chemicals. - Highlights: • Four types of Vietnamese biomass were firstly analyzed in detail. • Optimal conditions for fast pyrolysis reaction for Vietnamese biomass types. • Bio-oil product adapted to the standard specification for pyrolysis liquid biofuel

  13. Utilization of biomass in the U.S. for the production of ethanol fuel as a gasoline replacement. I - Terrestrial resource potential. II - Energy requirements, with emphasis on lignocellulosic conversion

    Science.gov (United States)

    Ferchak, J. D.; Pye, E. K.

    The paper assesses the biomass resource represented by starch derived from feed corn, surplus and distressed grain, and high-yield sugar crops planted on set-aside land in the U.S. It is determined that the quantity of ethanol produced may be sufficient to replace between 5 to 27% of present gasoline requirements. Utilization of novel cellulose conversion technology may in addition provide fermentable sugars from municipal, agricultural and forest wastes, and ultimately from highly productive silvicultural operations. The potential additional yield of ethanol from lignocellulosic biomass appears to be well in excess of liquid fuel requirements of an enhanced-efficiency transport sector at present mileage demands. No conflict with food production would be entailed. A net-energy assessment is made for lignocellulosic biomass feedstocks' conversion to ethanol and an almost 10:1 energy yield/energy cost ratio determined. It is also found that novel cellulose pretreatment and enzymatic conversion methods still under development may significantly improve even that figure, and that both chemical-feedstocks and energy-yielding byproducts such as carbon dioxide, biogas and lignin make ethanol production potentially energy self-sufficient. A final high-efficiency production approach incorporates site-optimized, nonpolluting energy sources such as solar and geothermal.

  14. On the Assessment of the CO2 Mitigation Potential of Woody Biomass

    Directory of Open Access Journals (Sweden)

    Víctor Codina Gironès

    2018-01-01

    Full Text Available Woody biomass, a renewable energy resource, accumulates solar energy in form of carbon hydrates produced from atmospheric CO2 and H2O. It is, therefore, a means of CO2 mitigation for society as long as the biogenic carbon released to the atmosphere when delivering its energy content by oxidation can be accumulated again during growth of new woody biomass. Even when considering the complete life cycle, usually, only a small amount of fossil CO2 is emitted. However, woody biomass availability is limited by land requirement and, therefore, it is important to maximize its CO2 mitigation potential in the energy system. In this study, we consider woody biomass not only as a source of renewable energy but also as a source of carbon for seasonal storage of solar electricity. A first analysis is carried out based on the mitigation effect of woody biomass usage pathways, which is the avoided fossil CO2 emissions obtained by using one unit of woody biomass to provide energy services, as alternative to fossil fuels. Results show that woody biomass usage pathways can achieve up to 9.55 times the mitigation effect obtained through combustion of woody biomass, which is taken as a reference. Applying energy system modeling and multi-objective optimization techniques, the role of woody biomass technological choices in the energy transition is then analyzed at a country scale. The analysis is applied to Switzerland, demonstrating that the use of woody biomass in gasification–methanation systems, coupled with electrolysers and combined with an intensive deployment of PV panels and efficient technologies, could reduce the natural gas imports to zero. Electrolysers are used to boost synthetic natural gas production by hydrogen injection into the methanation reaction. The hydrogen used is produced when there is excess of solar electricity. The efficient technologies, such as heat pumps and battery electric vehicles, allow increasing the overall efficiency of the

  15. Modeling Reef Fish Biomass, Recovery Potential, and Management Priorities in the Western Indian Ocean.

    Science.gov (United States)

    McClanahan, Timothy R; Maina, Joseph M; Graham, Nicholas A J; Jones, Kendall R

    2016-01-01

    Fish biomass is a primary driver of coral reef ecosystem services and has high sensitivity to human disturbances, particularly fishing. Estimates of fish biomass, their spatial distribution, and recovery potential are important for evaluating reef status and crucial for setting management targets. Here we modeled fish biomass estimates across all reefs of the western Indian Ocean using key variables that predicted the empirical data collected from 337 sites. These variables were used to create biomass and recovery time maps to prioritize spatially explicit conservation actions. The resultant fish biomass map showed high variability ranging from ~15 to 2900 kg/ha, primarily driven by human populations, distance to markets, and fisheries management restrictions. Lastly, we assembled data based on the age of fisheries closures and showed that biomass takes ~ 25 years to recover to typical equilibrium values of ~1200 kg/ha. The recovery times to biomass levels for sustainable fishing yields, maximum diversity, and ecosystem stability or conservation targets once fishing is suspended was modeled to estimate temporal costs of restrictions. The mean time to recovery for the whole region to the conservation target was 8.1(± 3SD) years, while recovery to sustainable fishing thresholds was between 0.5 and 4 years, but with high spatial variation. Recovery prioritization scenario models included one where local governance prioritized recovery of degraded reefs and two that prioritized minimizing recovery time, where countries either operated independently or collaborated. The regional collaboration scenario selected remote areas for conservation with uneven national responsibilities and spatial coverage, which could undermine collaboration. There is the potential to achieve sustainable fisheries within a decade by promoting these pathways according to their social-ecological suitability.

  16. Potential of forestry biomass for energy in economies in transition

    International Nuclear Information System (INIS)

    Apalovic, R.

    1995-01-01

    A rapid increase in the world's population, the gradual exhaustion of fossil fuels and serious ecological problems are making developed countries more attentive to the utilization of renewable energy sources, mainly biomass, which should form part of the global energy mix during the twenty-first century. The economies in transition have been experiencing a transformation of their political, economic and social systems and a modernization of their industry, including the energy industry. Energy supply in the transition economies is based on coal, oil, gas and nuclear power. Of the renewable sources, only hydroelectric power is utilized to any significant extent. The forest biomass resources of these economies are quantified in this paper. The economies in transition have a big potential for biomass from forestry and timber industry wastes and agricultural wastes that are not being utilized and could become a source of energy. So far, biomass is used as a source of energy in only small amounts in the wood and pulp industries and as fuelwood in forestry. The governments of some countries (the Czech Republic, Hungary and Slovakia) have energy plans through the year 2010 that aim to develop renewable energy sources. Economic, institutional, technical and other barriers to the development of renewable sources and their utilization are analysed in this paper and some remedies are proposed. In cooperation with countries such as Austria, Denmark, Sweden, Finland, the United States of America and others, which have achieved remarkable results in the utilization of biomass for energy, it would be possible for the transition economies to quickly develop the technological know-how needed to satisfy the demand for energy of approximately 350 million inhabitants. (author)

  17. Cyanobacteria cultivation in industrial wastewaters and biodiesel production from their biomass: a review.

    Science.gov (United States)

    Balasubramanian, Lavanya; Subramanian, Geetha; Nazeer, Thayiba Thanveer; Simpson, Hannah Shalini; Rahuman, Shifina T; Raju, Preetha

    2011-01-01

    As an alternative fuel biodiesel has become increasingly important due to diminishing petroleum reserves and adverse environmental consequences of exhaust gases from petroleum-fueled engines. Recently, research interest has focused on the production of biofuel from microalgae. Cyanobacteria appeared to be suitable candidates for cultivation in wastes and wastewaters because they produce biomass in satisfactory quantity and can be harvested relatively easily due to their size and structure. In addition, their biomass composition can be manipulated by several environmental and operational factors to produce biomass with concrete characteristics. Herein, we review the culture of cyanobacteria in wastewaters and also the potential resources that can be transformed into biodiesel successfully for meeting the ever-increasing demand for biodiesel production. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  18. An assessment of the biomass potential of Cyprus for energy production

    International Nuclear Information System (INIS)

    Kythreotou, Nicoletta; Tassou, Savvas A.; Florides, Georgios

    2012-01-01

    Biodegradable waste in Cyprus predominately consists of the biodegradable fraction of municipal solid waste, sewage sludge, solid and liquid agricultural residues and solid and liquid wastes from food and drink industries. Biodegradable waste is a very important source of biomass. The potential amount of solid and liquid biomass of the specified waste streams was estimated to be 9.2 million tonnes, after collecting data on the waste generation coefficients. Both liquid and solid waste can be used for the production of biogas (BG), which can be combusted for the production of thermal and electrical energy. The potential biogas production was estimated on the basis of Chemical Oxygen Demand (COD) consumption and on the basis of digested mass. The potential biogas production was found to be 114 and 697 million m 3 respectively. Further research is required for the improvement of waste generation coefficients. The results on energy production provide an indication of the importance of promotion of anaerobic digestion for the treatment of biodegradable waste to the energy balance of the country. Anaerobic digestion can provide decentralisation of energy production, and production of energy in areas that are in most cases remote. -- Highlights: ► Waste generation coefficients were estimated according to available data for Cyprus. ► Total solid and liquid biomass from waste was estimated to be 9.2 million tonnes. ► Biogas production was estimated using COD and mass digested. ► Further research is required for the improvement of waste generation coefficients. ► Energy production estimates indicates the importance of anaerobic digestion.

  19. Forest harvesting reduces the soil metagenomic potential for biomass decomposition.

    Science.gov (United States)

    Cardenas, Erick; Kranabetter, J M; Hope, Graeme; Maas, Kendra R; Hallam, Steven; Mohn, William W

    2015-11-01

    Soil is the key resource that must be managed to ensure sustainable forest productivity. Soil microbial communities mediate numerous essential ecosystem functions, and recent studies show that forest harvesting alters soil community composition. From a long-term soil productivity study site in a temperate coniferous forest in British Columbia, 21 forest soil shotgun metagenomes were generated, totaling 187 Gb. A method to analyze unassembled metagenome reads from the complex community was optimized and validated. The subsequent metagenome analysis revealed that, 12 years after forest harvesting, there were 16% and 8% reductions in relative abundances of biomass decomposition genes in the organic and mineral soil layers, respectively. Organic and mineral soil layers differed markedly in genetic potential for biomass degradation, with the organic layer having greater potential and being more strongly affected by harvesting. Gene families were disproportionately affected, and we identified 41 gene families consistently affected by harvesting, including families involved in lignin, cellulose, hemicellulose and pectin degradation. The results strongly suggest that harvesting profoundly altered below-ground cycling of carbon and other nutrients at this site, with potentially important consequences for forest regeneration. Thus, it is important to determine whether these changes foreshadow long-term changes in forest productivity or resilience and whether these changes are broadly characteristic of harvested forests.

  20. Integrated production of warm season grasses and agroforestry for biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Samson, R.; Omielan, J. [Resource Efficient Agricultural Production-Canada, Ste, Anne de Bellevue, Quebec (Canada); Girouard, P.; Henning, J. [McGill Univ., Ste. Anne de Bellevue, Quebec (Canada)

    1993-12-31

    Increased research on C{sub 3} and C{sub 4} perennial biomass crops is generating a significant amount of information on the potential of these crops to produce large quantities of low cost biomass. In many parts of North America it appears that both C{sub 3} and C{sub 4} species are limited by water availability particularly on marginal soils. In much of North America, rainfall is exceeded by evaporation. High transpiration rates by fast growing trees and rainfall interception by the canopy appear to indicate that this can further exacerbate the problem of water availability. C{sub 4} perennial grasses appear to have distinct advantages over C{sub 3} species planted in monoculture systems particularly on marginal soils. C{sub 4} grasses historically predominated over much of the land that is now available for biomass production because of their adaptation to low humidity environments and periods of low soil moisture. The planting of short rotation forestry (SRF) species in an energy agroforestry system is proposed as an alternative production strategy which could potentially alleviate many of the problems associated with SRF monocultures. Energy agroforestry would be complementary to both production of conventional farm crops and C{sub 4} perennial biomass crops because of beneficial microclimatic effects.

  1. Assessment of equine waste as a biomass resource in New York State

    Science.gov (United States)

    Equine operations may generate excessive quantities of biomass (manure and used bedding) that could either become a waste or a resource, especially when the biomass is developed as an alternative energy source. Using the generated biomass as a resource can involve a variety of approaches such as la...

  2. Fungal Waste-Biomasses as Potential Low-Cost Biosorbents for Decolorization of Textile Wastewaters

    Directory of Open Access Journals (Sweden)

    Antonella Anastasi

    2012-10-01

    Full Text Available The biosorption potential of three fungal waste-biomasses (Acremonium strictum, Acremonium sp. and Penicillium sp. from pharmaceutical companies was compared with that of a selected biomass (Cunninghamella elegans, already proven to be very effective in dye biosorption. Among the waste-biomasses, A. strictum was the most efficient (decolorization percentage up to 90% within 30 min with regard to three simulated dye baths; nevertheless it was less active than C. elegans which was able to produce a quick and substantial decolorization of all the simulated dye baths (up to 97% within 30 min. The biomasses of A. strictum and C. elegans were then tested for the treatment of nine real exhausted dye baths. A. strictum was effective at acidic or neutral pH, whereas C. elegans confirmed its high efficiency and versatility towards exhausted dye baths characterised by different classes of dyes (acid, disperse, vat, reactive and variation in pH and ionic strength. Finally, the effect of pH on the biosorption process was evaluated to provide a realistic estimation of the validity of the laboratory results in an industrial setting. The C. elegans biomass was highly effective from pH 3 to pH 11 (for amounts of adsorbed dye up to 1054 and 667 mg of dye g−1 biomass dry weight, respectively; thus, this biomass can be considered an excellent and exceptionally versatile biosorbent material.

  3. Interactions between crop biomass and development of foliar diseases in winter wheat and the potential to graduate the fungicide dose according to crop biomass

    DEFF Research Database (Denmark)

    Jensen, Peter Kryger; Jørgensen, Lise Nistrup

    2016-01-01

    dose. The study was carried out investigating fungicide dose response controlling foliar diseases in winter wheat at three biomass densities obtained growing the crop at three nitrogen levels and using variable seed rates. Further the field experiments included three fungicide dose rates at each...... biomass level, an untreated control, and 75%, 50% and 33% of the recommended fungicide dose rate and the experiments were replicated for three years. Crop biomass had a significant influence on occurrence of septoria and yellow rust with greater disease severity at increasing crop biomass. In two of three...... years, the interaction of crop biomass and fungicide dose rate had a significant influence on disease severity indicating a biomassdependent dose response. The interaction occurred in the two years with high yield potential in combination with severe disease attack. If the variation in crop density...

  4. Co-combustion and gasification of various biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Mutanen, K [A. Ahlstrom Corporation, Varkaus (Finland). Ahlstrom Pyropower

    1997-12-31

    During the last twenty years the development of fluidized bed combustion and gasification technology has made it possible to increase significantly utilisation of various biomasses in power and heat generation. The forerunner was the pulp and paper industry that has an adequate biomass fuel supply and energy demand on site. Later on municipalities and even utilities have seen biomass as a potential fuel. The range of available biomasses includes wood-based fuels and wastes like bark, wood chips, and saw dust, agricultural wastes like straw, olive waste and rice husk, sludges from paper mills and de-inking plants, other wastes like municipal sludges, waste paper and RDF. Recently new environmental regulations and taxation of fossil fuels have further increased interest in the use of biomasses in energy generation. However, in many cases available quantities and/or qualities of biomasses are not adequate for only biomass-based energy generation in an economic sense. On the other hand plant owners want to maintain a high level of fuel flexibility and fuel supply security. In some cases disposing by burning is the only feasible way to handle certain wastes. In many cases the only way to fulfil these targets and utilize the energy is to apply co-combustion or gasification of different fuels and wastes. Due to the fact that fluidized bed combustion technology offers a very high fuel flexibility and high combustion efficiency with low emissions it has become the dominating technology in co-combustion applications. This presentation will present Alhstrom`s experiences in co-combustion of biomasses in bubbling beds and Ahlstrom Pyroflow circulating fluidized beds based on about 200 operating references worldwide. CFB gasification will also be discussed 9 refs.

  5. Co-combustion and gasification of various biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Mutanen, K. [A. Ahlstrom Corporation, Varkaus (Finland). Ahlstrom Pyropower

    1996-12-31

    During the last twenty years the development of fluidized bed combustion and gasification technology has made it possible to increase significantly utilisation of various biomasses in power and heat generation. The forerunner was the pulp and paper industry that has an adequate biomass fuel supply and energy demand on site. Later on municipalities and even utilities have seen biomass as a potential fuel. The range of available biomasses includes wood-based fuels and wastes like bark, wood chips, and saw dust, agricultural wastes like straw, olive waste and rice husk, sludges from paper mills and de-inking plants, other wastes like municipal sludges, waste paper and RDF. Recently new environmental regulations and taxation of fossil fuels have further increased interest in the use of biomasses in energy generation. However, in many cases available quantities and/or qualities of biomasses are not adequate for only biomass-based energy generation in an economic sense. On the other hand plant owners want to maintain a high level of fuel flexibility and fuel supply security. In some cases disposing by burning is the only feasible way to handle certain wastes. In many cases the only way to fulfil these targets and utilize the energy is to apply co-combustion or gasification of different fuels and wastes. Due to the fact that fluidized bed combustion technology offers a very high fuel flexibility and high combustion efficiency with low emissions it has become the dominating technology in co-combustion applications. This presentation will present Alhstrom`s experiences in co-combustion of biomasses in bubbling beds and Ahlstrom Pyroflow circulating fluidized beds based on about 200 operating references worldwide. CFB gasification will also be discussed 9 refs.

  6. Le biomasse come opportunità per il territorio: analisi tecnico-economica per la Regione Basilicata

    Directory of Open Access Journals (Sweden)

    Severino Romano

    2016-01-01

    Full Text Available In Basilicata region there is a considerable amount of unused wood as well as the capacity to use it as feedstock for the production of bioenergy. Thus, the supply of renewable energy could be increased through greater utilization of forest biomass. However, for a better planning of the production and processing chain, the energy and forestry sectors require better estimates of the availability of unused roundwood and residues. The aim of the research was the development of a model for the spatial evaluation of biomass quantities obtainable from forestland. The results obtained point out a significant amounts of biomass distributed on most of the territory; b good opportunities related to white certificate trading and c potential of business creation, entrepreneurship and local employment.

  7. Potential of forestry biomass for energy in economies in transition

    Energy Technology Data Exchange (ETDEWEB)

    Apalovic, R [State Forest Products Research Institute and Slovak Biomass Association, Bratislava (Slovakia)

    1995-12-01

    A rapid increase in the world`s population, the gradual exhaustion of fossil fuels and serious ecological problems are making developed countries more attentive to the utilization of renewable energy sources, mainly biomass, which should form part of the global energy mix during the twenty-first century. The economies in transition have been experiencing a transformation of their political, economic and social systems and a modernization of their industry, including the energy industry. Energy supply in the transition economies is based on coal, oil, gas and nuclear power. Of the renewable sources, only hydroelectric power is utilized to any significant extent. The forest biomass resources of these economies are quantified in this paper. The economies in transition have a big potential for biomass from forestry and timber industry wastes and agricultural wastes that are not being utilized and could become a source of energy. So far, biomass is used as a source of energy in only small amounts in the wood and pulp industries and as fuelwood in forestry. The governments of some countries (the Czech Republic, Hungary and Slovakia) have energy plans through the year 2010 that aim to develop renewable energy sources. Economic, institutional, technical and other barriers to the development of renewable sources and their utilization are analysed in this paper and some remedies are proposed. In cooperation with countries such as Austria, Denmark, Sweden, Finland, the United States of America and others, which have achieved remarkable results in the utilization of biomass for energy, it would be possible for the transition economies to quickly develop the technological know-how needed to satisfy the demand for energy of approximately 350 million inhabitants. (author) 6 refs, 4 figs, 4 tabs

  8. Time scale dependent negative emission potential of forests and biomass plantations via wood burial, torrefied biomass, biochar and pyrogas condensate sequestration in soil

    Science.gov (United States)

    Schmidt, Hans-Peter; Kammann, Claudia; Lucht, Wolfgang; Gerten, Dieter; Foidl, Nikolaus

    2017-04-01

    The efficiency of Negative Emission Technologies (NET) is dependent on (1) the transformation of the biomass carbon into a form that can be sequestered, (2) the mean residence time of the sequestered carbon, (3) the regrowth and thus carbon re-accumulation of the harvested biomass, and (4) the positive or negative priming of soil carbon. These four parameters define the time scale dependent C-balance of various NET-Systems and permit a global economic and environmental evaluation. As far as geologic CO2 storage is considered to be feasible with close to zero losses and if the energy for transport, transformation and disposal is taken from the process bioenergy, conventional BE-CCS has a C sequestration potential of 50 - 70 % depending on the type of biomass and the technology used. Beside unknown risks of deep stored CO2 and high costs, regrowth of C-accumulating biomass is hampered in the long-term as not only carbon but also essential soil nutrients are mined. Under this scenario, biomass regrowth is expected to slow down and soil carbon content to decrease. These factors enlarge the time horizon until a BE-CCS system becomes carbon neutral and eventual carbon negative (when biomass regrowth exceeds the difference between the harvested biomass carbon and BE-CCS stored carbon). Thermal treatment of biomass under a low oxygen regime (torrefaction, pyrolysis, gasification) can transform up to 85% of biomass carbon into various solid and liquid forms of recalcitrant carbon that can be sequestered. Depending on the process parameters and temperature, the mean residence time of the torrefied or pyrolysed biomass can last from several decennials to centennials when applied to the soil of the biomass production site. The carbon can thus be stored at comparatively low costs within the ecosystem itself. As the thermal treatment preserves most of the biomass-accumulated nutrients (except N), natural nutrient cycles are maintained within the biomass system. Depending on the

  9. Potential of Tropical Fruit Waste Biomass for Production of Bio-Briquette Fuel: Using Indonesia as an Example

    Directory of Open Access Journals (Sweden)

    Anna Brunerová

    2017-12-01

    Full Text Available Within developing countries, there is an appeal to use waste biomass for energy generation in the form of bio-briquettes. This study investigated the potential use of bio-briquettes that are produced from the waste biomass of the following tropical fruits: durian (Durio zibethinus, coconut (Cocos nucifera, coffee (Coffea arabica, cacao (Theobroma cacao, banana (Musa acuminata and rambutan (Nephelium lappaceum. All fruit waste biomass samples exhibited an extremely high level of initial moisture content (78.22% in average. Fruit samples with the highest proportion of fruit waste biomass (of total unprocessed fruit mass were represented by cacao (83.82%, durian (62.56% and coconut (56.83%. Highest energy potentials (calorific value of fruit waste biomass were observed in case of coconut (18.22 MJ∙kg−1, banana (17.79 MJ∙kg−1 and durian (17.60 MJ∙kg−1 fruit samples, whereas fruit waste biomass with the lowest level of ash content originated from the rambutan (3.67%, coconut (4.52%, and durian (5.05% fruit samples. When investigating the energy demands to produce bio-briquettes from such feedstock materials, the best results (lowest amount of required deformation energy in combination with highest level of bio-briquette bulk density were achieved by the rambutan, durian and banana fruit waste biomass samples. Finally, all investigated bio-briquette samples presented satisfactory levels of bulk density (>1050 kg∙m−3. In conclusion, our results indicated the practicability and viability of such bio-briquette fuel production, as well as supporting the fact that bio-briquettes from tropical fruit waste biomass can offer a potentially attractive energy source with many benefits, especially in rural areas.

  10. Biomass characterization of Buddleja davidii: a potential feedstock for biofuel production.

    Science.gov (United States)

    Hallac, Bassem B; Sannigrahi, Poulomi; Pu, Yunqiao; Ray, Michael; Murphy, Richard J; Ragauskas, Arthur J

    2009-02-25

    A compositional analysis was performed on Buddleja davidii to determine its general biomass characteristics and provide detailed analysis of the chemical structures of its cellulose and lignin using NMR. B. davidii is a new potential lignocellulosic bioresource for producing bioethanol because it has several attractive agroenergy features. The biomass composition of B. davidii is 30% lignin, 35% cellulose, and 34% hemicellulose. Solid-state CP/MAS (13)C NMR showed that 33% of the cellulose is para-crystalline and 41% is at inaccessible surfaces. Both quantitative (13)C and (31)P NMR were used to examine the structure of lignin. The lignin was determined to be guaiacyl and syringyl with an h:g:s ratio of 0:81:19.

  11. Reliable Biomass Supply Chain Design under Feedstock Seasonality and Probabilistic Facility Disruptions

    Directory of Open Access Journals (Sweden)

    Zhixue Liu

    2017-11-01

    Full Text Available While biomass has been recognized as an important renewable energy source which has a range of positive impacts on the economy, environment, and society, the existence of feedstock seasonality and risk of service disruptions at collection facilities potentially compromises the efficiency and reliability of the energy supply system. In this paper, we consider reliable supply chain design for biomass collection against feedstock seasonality and time-varying disruption risks. We optimize facility location, inventory, biomass quantity, and shipment decisions in a multi-period planning horizon setting. A real-world case in Hubei, China is studied to offer managerial insights. Our computational results show that: (1 the disruption risk significantly affects both the optimal facility locations and the supply chain cost; (2 no matter how the failure probability changes, setting backup facilities can significantly decrease the total cost; and (3 the feedstock seasonality does not affect locations of the collection facilities, but it affects the allocations of collection facilities and brings higher inventory cost for the biomass supply chain.

  12. Statistical prediction of biomethane potentials based on the composition of lignocellulosic biomass

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe; Spliid, Henrik; Østergård, Hanne

    2014-01-01

    Mixture models are introduced as a new and stronger methodology for statistical prediction of biomethane potentials (BPM) from lignocellulosic biomass compared to the linear regression models previously used. A large dataset from literature combined with our own data were analysed using canonical...

  13. Energy values and estimation of power generation potentials of some non-woody biomass species

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M; Patel, S K [National Institute of Technology, Rourkela (India)

    2008-07-01

    In view of high energy potentials in non-woody biomass species and an increasing interest in their utilization for power generation, an attempt has been made in this study to assess the proximate analysis and energy content of different components of Ocimum canum and Tridax procumbens biomass species (both non-woody), and their impact on power generation and land requirement for energy plantations. The net energy content in Ocimum canum was found to be slightly higher than that in Tridax procumbens. In spite of having higher ash contents, the barks from both the plant species exhibited higher calorific values. The results have shown that approximately 650 and 1,270 hectares of land are required to generate 20,000 kWh/day electricity from Ocimum canum and Tridax procumbens biomass species. Coal samples, obtained from six different local mines, were also examined for their qualities, and the results were compared with those of studied biomass materials. This comparison reveals much higher power output with negligible emission of suspended particulate matters (SPM) from biomass materials.

  14. Regional allocation of biomass to U.S. energy demands under a portfolio of policy scenarios.

    Science.gov (United States)

    Mullins, Kimberley A; Venkatesh, Aranya; Nagengast, Amy L; Kocoloski, Matt

    2014-01-01

    The potential for widespread use of domestically available energy resources, in conjunction with climate change concerns, suggest that biomass may be an essential component of U.S. energy systems in the near future. Cellulosic biomass in particular is anticipated to be used in increasing quantities because of policy efforts, such as federal renewable fuel standards and state renewable portfolio standards. Unfortunately, these independently designed biomass policies do not account for the fact that cellulosic biomass can equally be used for different, competing energy demands. An integrated assessment of multiple feedstocks, energy demands, and system costs is critical for making optimal decisions about a unified biomass energy strategy. This study develops a spatially explicit, best-use framework to optimally allocate cellulosic biomass feedstocks to energy demands in transportation, electricity, and residential heating sectors, while minimizing total system costs and tracking greenhouse gas emissions. Comparing biomass usage across three climate policy scenarios suggests that biomass used for space heating is a low cost emissions reduction option, while biomass for liquid fuel or for electricity becomes attractive only as emissions reduction targets or carbon prices increase. Regardless of the policy approach, study results make a strong case for national and regional coordination in policy design and compliance pathways.

  15. Produção de biomassa e teor de macronutrientes do milheto, feijão-de-porco e guandu-anão em cultivo solteiro e consorciado Biomass production and macronutrients quantity of millet, jack bean, guandu single and in intercropping

    Directory of Open Access Journals (Sweden)

    Cícero Monti Teixeira

    2005-02-01

    Full Text Available Objetivou-se determinar a produção de biomassa e o teor de macronutrientes do milheto (Pennisetum typhoides (Burm. Stapf, feijão-de-porco (Canavalia ensiformes (L. DC. e guandu-anão (Cajanus cajan (L. Millsp. em cultivo solteiro e nos consórcios da gramínea com as leguminosas, visando a produção de palha no sistema plantio direto. O trabalho foi conduzido no campo experimental do Departamento de Agricultura da Universidade Federal de Lavras (Lavras, MG, Brasil. O delineamento foi o de blocos casualizados, com cinco tratamentos e quatro repetições. Apenas o guandu-anão solteiro apresentou menor produção de fitomassa fresca e seca, sendo que os demais tratamentos não diferiram entre si, pelo teste de Tukey a 5% de probabilidade. De forma geral, as leguminosas apresentaram maiores teores de N e Ca e o milheto maiores teores de S. Apenas o feijão-de-porco solteiro apresentou menor teor de P. Os maiores teores de K foram apresentados pelo milheto solteiro e consorciado com as leguminosas e pelo feijão-de-porco em consórcio com milheto. Os menores teores de Mg foram verificados para o guandu-anão.The object of this work was to evaluate the biomass production and the macronutrients quantity of millet (Pennisetum typhoides (Burm. Stapf, jack bean (Canavalia ensiformes (L. DC., guandu (Cajanus cajan, (L. Millsp. dwarf cultivar, and the millet with leguminous consortiums to straw production in no-tillage system. The experiment was carried in experimental area at Agriculture Department of the Federal University of Lavras (Lavras, Minas Gerais state, Brazil. The experimental design was randomized blocks, with five treatments and four replications. For biomass production, only the guandu presented smaller fresh and dry biomass yield than the other treatments. In general, the leguminous presented the greatest N and Ca quantities and millet the greatest quantities of S. Only jack bean presented minor P quantity. For K the greatest quantities

  16. Dry season biomass estimation as an indicator of rangeland quantity using multi-scale remote sensing data

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2014-10-01

    Full Text Available vegetation is green and photosynthetic active. During dry season, biomass estimation is always not plausible using vegetation indices. The aim of this study is to estimate dry biomass using the multi-scale remote sensing data in the savanna ecosystem. Field...

  17. Analysis of casein biopolymers adsorption to lignocellulosic biomass as a potential cellulase stabilizer.

    Science.gov (United States)

    Eckard, Anahita Dehkhoda; Muthukumarappan, Kasiviswanathan; Gibbons, William

    2012-01-01

    Although lignocellulosic materials have a good potential to substitute current feedstocks used for ethanol production, conversion of these materials to fermentable sugars is still not economical through enzymatic hydrolysis. High cost of cellulase has prompted research to explore techniques that can prevent from enzyme deactivation. Colloidal proteins of casein can form monolayers on hydrophobic surfaces that alleviate the de-activation of protein of interest. Scanning electron microscope (SEM), fourier transform infrared spectroscopy (FT-IR), capillary electrophoresis (CE), and Kjeldahl and BSA protein assays were used to investigate the unknown mechanism of action of induced cellulase activity during hydrolysis of casein-treated biomass. Adsorption of casein to biomass was observed with all of the analytical techniques used and varied depending on the pretreatment techniques of biomass. FT-IR analysis of amides I and II suggested that the substructure of protein from casein or skim milk were deformed at the time of contact with biomass. With no additive, the majority of one of the cellulase mono-component, 97.1 ± 1.1, was adsorbed to CS within 24 h, this adsorption was irreversible and increased by 2% after 72 h. However, biomass treatment with skim-milk and casein reduced the adsorption to 32.9% ± 6.0 and 82.8% ± 6.0, respectively.

  18. Evaluating a biomass resource: The TVA region-wide biomass resource assessment model

    Energy Technology Data Exchange (ETDEWEB)

    Downing, M.; Graham, R.L. [Oak Ridge National Lab., TN (United States)

    1993-12-31

    The economic and supply structures of short rotation woody crop (SRWC) markets have not been established. Establishing the likely price and supply of SRWC biomass in a region is a complex task because biomass is not an established commodity as are oil, natural gas and coal. In this study we project the cost and supply of short-rotation woody biomass for the TVA region -- a 276 county area that includes all of Tennessee and portions of 10 contiguous states in the southeastern United States. Projected prices and quantities of SRWC are assumed to be a function of the amount and quality of crop and pasture land available in a region, expected SRWC yields and production costs on differing soils and land types, and the profit that could be obtained from current conventional crop production on these same lands. Results include the supply curve of SRWC biomass that is projected to be available from the entire region, the amount and location of crop and pasture land that would be used, and the conventional agricultural crops that would be displaced as a function of SRWC production. Finally, we show the results of sensitivity analysis on the projected cost and supply of SRWC biomass. In particular, we examine the separate impacts of varying SRWC production yields.

  19. An Optimization-Based System Model of Disturbance-Generated Forest Biomass Utilization

    Science.gov (United States)

    Curry, Guy L.; Coulson, Robert N.; Gan, Jianbang; Tchakerian, Maria D.; Smith, C. Tattersall

    2008-01-01

    Disturbance-generated biomass results from endogenous and exogenous natural and cultural disturbances that affect the health and productivity of forest ecosystems. These disturbances can create large quantities of plant biomass on predictable cycles. A systems analysis model has been developed to quantify aspects of system capacities (harvest,…

  20. Characteristics of Ampel bamboo as a biomass energy source potential in Bali

    Science.gov (United States)

    Sucipta, M.; Putra Negara, D. N. K.; Tirta Nindhia, T. G.; Surata, I. W.

    2017-05-01

    Currently, non-renewable fossil energy dominates utilization of the world energy need for many applications. Efforts has been developed to find alternative renewable energy sources, due to fossil energy availability is diminishing. And one of renewable energy source is from biomass. The aim of this research is to determine characteristics of the Ampel bamboo (Bambusa vulgaris) as an energy potential of biomass. The Ampel bamboo’s characteristics possessed are evaluated based on its chemical composition; moisture, volatile, ash, and fixed carbon through proximate analysis; and also carbon, hydrogen and nitrogen content through ultimate analysis. From the Thermo-gravimetric analysis (TGA) indicates that Ampel bamboo contains of about 18.10% hemicelluloses, 47.75% cellulose and 18.86% lignin. While from the ultimate analysis results in the content of carbon, hydrogen, and Nitrogen of Ampel bamboo are 39.75%, 5.75% and 0% respectively. With such characteristics, it indicates that Ampel bamboo has an attractive potential as a renewable energy source.

  1. Productivity and cost of harvesting a stemwood biomass product from integrated cut-to-length harvest operations in Australian Pinus radiata plantations

    International Nuclear Information System (INIS)

    Walsh, D.; Strandgard, M.

    2014-01-01

    Significant quantities of woody biomass from the tops of trees and larger woody ‘waste’ pieces that fall outside existing sawlog and pulpwood specifications are left on site post final harvest in Australian radiata Pinus radiata (D. Don) (radiata pine) plantations. Woody biomass is a potential product for pulp making or energy generation. Commercial use of woody biomass from radiata pine plantations would add extra value to the Australian plantation estate through improved resource utilisation, and potentially reduced post-harvesting silvicultural costs. This study investigated the productivity and cost impact of the harvest and extraction to roadside of woody biomass in an integrated harvest operation in a typical Australian two machine (harvester/processor and forwarder), cut-to-length, clearfall operation in a mature, thinned radiata pine plantation. The harvest operation yielded 23 GMt/ha (5% of the total yield) of woody biomass (known as ‘fibreplus’), 443 GMt/ha of sawlogs and 28 GMt/ha of pulpwood. The mean quantity of biomass left on site was 128 GMt/ha, mainly consisting of branches and needles, sufficient to minimise nutrient loss and protect the soil from erosion. Woodchips derived from the fibreplus product were suitable for kraft pulp making, (when blended in small amounts with clean de-barked roundwood woodchips), and for energy generation. The method trialed with the fibreplus product being produced did not impact harvesting and processing productivity and costs, but extraction was 14% less productive. Through analysis of the productivities of each phase and development of a cost model the harvest and extraction of the fibreplus product was estimated to increase total unit costs by ∼4.9%. - Highlights: • Study of the productivity and cost impact of producing a woody biomass product. • We compared two scenarios – harvesting with and without the biomass product. • An additional 23 GMt/ha (5% of the total yield) of woody biomass

  2. Jointly optimizing selection of fuel treatments and siting of forest biomass-based energy production facilities for landscape-scale fire hazard reduction.

    Science.gov (United States)

    Peter J. Daugherty; Jeremy S. Fried

    2007-01-01

    Landscape-scale fuel treatments for forest fire hazard reduction potentially produce large quantities of material suitable for biomass energy production. The analytic framework FIA BioSum addresses this situation by developing detailed data on forest conditions and production under alternative fuel treatment prescriptions, and computes haul costs to alternative sites...

  3. Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide

    International Nuclear Information System (INIS)

    Kelly-Yong, Tau Len; Lee, Keat Teong; Mohamed, Abdul Rahman; Bhatia, Subhash

    2007-01-01

    Various catastrophes related to extreme weather events such as floods, hurricanes, droughts and heat waves occurring on the Earth in the recent times are definitely a clear warning sign from nature questioning our ability to protect the environment and ultimately the Earth itself. Progressive release of greenhouse gases (GHG) such as CO 2 and CH 4 from development of various energy-intensive industries has ultimately caused human civilization to pay its debt. Realizing the urgency of reducing emissions and yet simultaneously catering to needs of industries, researches and scientists conclude that renewable energy is the perfect candidate to fulfill both parties requirement. Renewable energy provides an effective option for the provision of energy services from the technical point of view. In this context, biomass appears as one important renewable source of energy. Biomass has been a major source of energy in the world until before industrialization when fossil fuels become dominant and researches have proven from time to time its viability for large-scale production. Although there has been some successful industrial-scale production of renewable energy from biomass, generally this industry still faces a lot of challenges including the availability of economically viable technology, sophisticated and sustainable natural resources management, and proper market strategies under competitive energy markets. Amidst these challenges, the development and implementation of suitable policies by the local policy-makers is still the single and most important factor that can determine a successful utilization of renewable energy in a particular country. Ultimately, the race to the end line must begin with the proof of biomass ability to sustain in a long run as a sustainable and reliable source of renewable energy. Thus, the aim of this paper is to present the potential availability of oil palm biomass that can be converted to hydrogen (leading candidate positioned as the

  4. Study of the biomass potential that can be used for producing biogas in Burkina Faso

    International Nuclear Information System (INIS)

    1998-10-01

    The introduction of biogas to Burkina Faso was done in 1976 through program of research and development. Agricultural and Animal waste is the principal substrates and the produced gas is useful principally to satisfy the domestic energy needs. The technological outputs go from 200 has 300 liters per m 3 of tank whereas the biological outputs are of 100 has 300 liters per kilogram of dry matter. The cost of the installations vary from 12000 to 100000 Fcfa per m 3 of tank according to the type of digester. In August 1998, only the installation of biogas of the School of Water and Drill of Dinderesso (Bobo-Dioulasso) produced biogas. According to the estimates, Burkina Faso respectively has an annual average potential of production theoretical and accessible about 4694 million and 2790 million m 3 of biogas coming by order from importance from livestock wastes, farming, human and urban. By taking a coefficient of 60% to take account of the imperfections of technology and implementation, 1674 million m 3 of biogas (accessible) could have been produced from the biomass over the period 1990-1996. For the same period, this quantity of biogas could have generated annually 2000 to 2344 GWh of electricity (cogeneration) against 218 GWh for the SONABEL [fr

  5. Novel Magnetic Cross-Linked Cellulase Aggregates with a Potential Application in Lignocellulosic Biomass Bioconversion

    Directory of Open Access Journals (Sweden)

    Junqi Jia

    2017-02-01

    Full Text Available The utilization of renewable biomass resources to produce high-value chemicals by enzymatic processes is beneficial for alternative energy production, due to the accelerating depletion of fossil fuels. As immobilization techniques can improve enzyme stability and reusability, a novel magnetic cross-linked cellulase aggregate has been developed and applied for biomass bioconversion. The crosslinked aggregates could purify and immobilize enzymes in a single operation, and could then be combined with magnetic nanoparticles (MNPs, which provides easy separation of the materials. The immobilized cellulase showed a better activity at a wider temperature range and pH values than that of the free cellulase. After six cycles of consecutive reuse, the immobilized cellulase performed successful magnetic separation and retained 74% of its initial activity when carboxylmethyl cellulose (CMC was used as the model substrate. Furthermore, the structure and morphology of the immobilized cellulase were studied by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. Moreover, the immobilized cellulase was shown to hydrolyze bamboo biomass with a yield of 21%, and was re-used in biomass conversion up to four cycles with 38% activity retention, which indicated that the immobilized enzyme has good potential for biomass applications.

  6. Novel Magnetic Cross-Linked Cellulase Aggregates with a Potential Application in Lignocellulosic Biomass Bioconversion.

    Science.gov (United States)

    Jia, Junqi; Zhang, Weiwei; Yang, Zengjie; Yang, Xianling; Wang, Na; Yu, Xiaoqi

    2017-02-10

    The utilization of renewable biomass resources to produce high-value chemicals by enzymatic processes is beneficial for alternative energy production, due to the accelerating depletion of fossil fuels. As immobilization techniques can improve enzyme stability and reusability, a novel magnetic cross-linked cellulase aggregate has been developed and applied for biomass bioconversion. The crosslinked aggregates could purify and immobilize enzymes in a single operation, and could then be combined with magnetic nanoparticles (MNPs), which provides easy separation of the materials. The immobilized cellulase showed a better activity at a wider temperature range and pH values than that of the free cellulase. After six cycles of consecutive reuse, the immobilized cellulase performed successful magnetic separation and retained 74% of its initial activity when carboxylmethyl cellulose (CMC) was used as the model substrate. Furthermore, the structure and morphology of the immobilized cellulase were studied by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Moreover, the immobilized cellulase was shown to hydrolyze bamboo biomass with a yield of 21%, and was re-used in biomass conversion up to four cycles with 38% activity retention, which indicated that the immobilized enzyme has good potential for biomass applications.

  7. Selection of Willows (Salix sp. for Biomass Production

    Directory of Open Access Journals (Sweden)

    Davorin Kajba

    2014-12-01

    Full Text Available Background and Purpose: Willows compared with other species are the most suitable for biomass production in short rotations because of their very abundant growth during the first years. Nowadays, in Croatia, a large number of selected and registered willow clones are available. The main objective of the research should be to find genotypes which, with minimum nutrients, will produce the maximum quantity of biomass. Material and Methods: Clonal test of the arborescent willows include the autochthonous White Willow (Salix alba, interracial hybrids of the autochthonous White Willow and the English ‘cricket’ Willow (S. alba var. calva, interspecies hybrids (S. matsudana × S. alba, as well as multispecies hybrids of willows. Average production of dry biomass (DM∙ha-1∙a-1 per hectare was estimated in regard to the clone, survival, spacing and the number of shoots per stump. Results: The highest biomass production as well as the best adaptedness and phenotypic stability on testing site was shown by clones (‘V 374’, ‘V 461’, ‘V 578’ from 15.2 - 25.0 t∙DM∙ha-1∙a-1 originated from backcross hybrid S. matsudana × (S. matsudana × S. alba and by one S. alba clone (‘V 95’, 23.1 - 25.7 t∙DM∙ha-1∙a-1. These clones are now at the stage of registration and these results indicate significant potential for further breeding aimed at biomass production in short rotations. Conclusions: Willow clones showed high biomass production on marginal sites and dry biomass could be considerably increased with the application of intensive silvicultural and agro technical measures. No nutrition or pest control measures were applied (a practice otherwise widely used in intensive cultivation system, while weed vegetation was regulated only at the earliest age.

  8. Analysis of Casein Biopolymers Adsorption to Lignocellulosic Biomass as a Potential Cellulase Stabilizer

    Directory of Open Access Journals (Sweden)

    Anahita Dehkhoda Eckard

    2012-01-01

    Full Text Available Although lignocellulosic materials have a good potential to substitute current feedstocks used for ethanol production, conversion of these materials to fermentable sugars is still not economical through enzymatic hydrolysis. High cost of cellulase has prompted research to explore techniques that can prevent from enzyme deactivation. Colloidal proteins of casein can form monolayers on hydrophobic surfaces that alleviate the de-activation of protein of interest. Scanning electron microscope (SEM, fourier transform infrared spectroscopy (FT-IR, capillary electrophoresis (CE, and Kjeldahl and BSA protein assays were used to investigate the unknown mechanism of action of induced cellulase activity during hydrolysis of casein-treated biomass. Adsorption of casein to biomass was observed with all of the analytical techniques used and varied depending on the pretreatment techniques of biomass. FT-IR analysis of amides I and II suggested that the substructure of protein from casein or skim milk were deformed at the time of contact with biomass. With no additive, the majority of one of the cellulase mono-component, 97.1 ± 1.1, was adsorbed to CS within 24 h, this adsorption was irreversible and increased by 2% after 72 h. However, biomass treatment with skim-milk and casein reduced the adsorption to 32.9% ± 6.0 and 82.8% ± 6.0, respectively.

  9. Analysis of Casein Biopolymers Adsorption to Lignocellulosic Biomass as a Potential Cellulase Stabilizer

    Science.gov (United States)

    Eckard, Anahita Dehkhoda; Muthukumarappan, Kasiviswanathan; Gibbons, William

    2012-01-01

    Although lignocellulosic materials have a good potential to substitute current feedstocks used for ethanol production, conversion of these materials to fermentable sugars is still not economical through enzymatic hydrolysis. High cost of cellulase has prompted research to explore techniques that can prevent from enzyme deactivation. Colloidal proteins of casein can form monolayers on hydrophobic surfaces that alleviate the de-activation of protein of interest. Scanning electron microscope (SEM), fourier transform infrared spectroscopy (FT-IR), capillary electrophoresis (CE), and Kjeldahl and BSA protein assays were used to investigate the unknown mechanism of action of induced cellulase activity during hydrolysis of casein-treated biomass. Adsorption of casein to biomass was observed with all of the analytical techniques used and varied depending on the pretreatment techniques of biomass. FT-IR analysis of amides I and II suggested that the substructure of protein from casein or skim milk were deformed at the time of contact with biomass. With no additive, the majority of one of the cellulase mono-component, 97.1 ± 1.1, was adsorbed to CS within 24 h, this adsorption was irreversible and increased by 2% after 72 h. However, biomass treatment with skim-milk and casein reduced the adsorption to 32.9% ± 6.0 and 82.8% ± 6.0, respectively. PMID:23118515

  10. Insight on Biomass Supply and Feedstock Definition for Fischer-Tropsch Based BTL Processes

    International Nuclear Information System (INIS)

    Coignac, Julien

    2013-01-01

    Process chains of thermo chemical conversion of lignocellulosic biomass through gasification and Fischer-Tropsch synthesis (known as BTL) represent promising alternatives for biofuels production. Since biomass is heterogeneous and not homogeneously spread over territories, one of the major technological stakes of the project is to develop a flexible industrial chain capable of co-treating the widest possible range of biomass and fossil fuel feedstock. The present study aims at characterizing biomass diversity (availability and potentials by area, cost and mineral composition) by carrying out a state of the art, as a preliminary step in order to define a series of biomass to be tested in the demonstration plant and therefore define specifications for the process. Fifty different biomass were considered for their bio-energy application potential and were finally classified into four categories: agricultural by-products, dedicated energy crops, (Very) Short Rotation Coppice ((V)SRC) and forestry biomass. Biomass availability and potentials were investigated by the mean of a literature review of past and current projects (e.g. RENEW project, Biomass Energy Europe Project, etc.) and scientific articles. Most collected data are technical potentials, meaning that they take into account biophysical limits of crops and forests, technological possibilities, competition with other land uses and ecological constraints (e.g. natural reserves). Results show various emerging markets: North and South America have considerable amounts of agricultural by-products, forest residues, and large land areas which could be dedicated to energy crops; Africa shows relevant possibilities to grow Short Rotation Forestry (SRF) and energy crops; Russia has large available quantities of agricultural by-products and forest residues, as well as little valuable land where energy crops and SRC could be grown, and Asia shows relevant amounts of forest residues and possibilities of growing SRC, as well

  11. Global biomass production potentials exceed expected future demand without the need for cropland expansion.

    Science.gov (United States)

    Mauser, Wolfram; Klepper, Gernot; Zabel, Florian; Delzeit, Ruth; Hank, Tobias; Putzenlechner, Birgitta; Calzadilla, Alvaro

    2015-11-12

    Global biomass demand is expected to roughly double between 2005 and 2050. Current studies suggest that agricultural intensification through optimally managed crops on today's cropland alone is insufficient to satisfy future demand. In practice though, improving crop growth management through better technology and knowledge almost inevitably goes along with (1) improving farm management with increased cropping intensity and more annual harvests where feasible and (2) an economically more efficient spatial allocation of crops which maximizes farmers' profit. By explicitly considering these two factors we show that, without expansion of cropland, today's global biomass potentials substantially exceed previous estimates and even 2050s' demands. We attribute 39% increase in estimated global production potentials to increasing cropping intensities and 30% to the spatial reallocation of crops to their profit-maximizing locations. The additional potentials would make cropland expansion redundant. Their geographic distribution points at possible hotspots for future intensification.

  12. Impact of Precipitation Patterns on Biomass and Species Richness of Annuals in a Dry Steppe

    Science.gov (United States)

    Yan, Hong; Liang, Cunzhu; Li, Zhiyong; Liu, Zhongling; Miao, Bailing; He, Chunguang; Sheng, Lianxi

    2015-01-01

    Annuals are an important component part of plant communities in arid and semiarid grassland ecosystems. Although it is well known that precipitation has a significant impact on productivity and species richness of community or perennials, nevertheless, due to lack of measurements, especially long-term experiment data, there is little information on how quantity and patterns of precipitation affect similar attributes of annuals. This study addresses this knowledge gap by analyzing how quantity and temporal patterns of precipitation affect aboveground biomass, interannual variation aboveground biomass, relative aboveground biomass, and species richness of annuals using a 29-year dataset from a dry steppe site at the Inner Mongolia Grassland Ecosystem Research Station. Results showed that aboveground biomass and relative aboveground biomass of annuals increased with increasing precipitation. The coefficient of variation in aboveground biomass of annuals decreased significantly with increasing annual and growing-season precipitation. Species richness of annuals increased significantly with increasing annual precipitation and growing-season precipitation. Overall, this study highlights the importance of precipitation for aboveground biomass and species richness of annuals. PMID:25906187

  13. Evaluating a biomass resource: The TVA region-wide biomass resource assessment model

    International Nuclear Information System (INIS)

    Downing, M.; Graham, R.L.

    1993-01-01

    Wood is an alterative fuel for electric power generation at coal-fired plants in the Tennessee Valley Authority (TVA) region. Short rotation wood energy crops (SRWC) could provide a source of this woody biomass. However, the economic and supply structures of SRWC markets have not been established. Establishing the likely price and supply of SRWC biomass in a region is a complex task because biomass is not an established commodity as are oil, natural gas and coal. In this study we project the cost and supply of short-rotation woody biomass for the TVA region -- a 276 county area that includes all of Tennessee and portions of 10 contiguous states in the southeastern United States. Projected prices and quantities of SRWC are assumed to be a function of the amount and quality of crop and pasture land available in a region. expected SRWC yields and production costs on differing soils and land types, and the profit that could be obtained from current conventional crop production on these same lands. Results include the supply curve of SRWC biomass that is projected to be available from the entire region, the amount and location of crop and pasture land that would be used, and the conventional agricultural crops that would be displaced as a function of SRWC production. Finally, we show the results of sensitivity analysis on the projected cost and supply of SRWC biomass. In particular, we examine the separate impacts of varying SRWC production yields

  14. The potential for energy production from crop residues in Zimbabwe

    Energy Technology Data Exchange (ETDEWEB)

    Jingura, R.M.; Matengaifa, R. [School of Engineering Sciences and Technology, Chinhoyi University of Technology, P. Bag 7724, Chinhoyi (Zimbabwe)

    2008-12-15

    There is increasing interest in Zimbabwe in the use of renewable energy sources as a means of meeting the country's energy requirements. Biomass provides 47% of the gross energy consumption in Zimbabwe. Energy can be derived from various forms of biomass using various available conversion technologies. Crop residues constitute a large part of the biomass available from the country's agriculture-based economy. The potential for energy production of crop residues is examined using data such as estimates of the quantities of the residues and their energy content. The major crops considered are maize, sugarcane, cotton, soyabeans, groundnuts, wheat, sorghum, fruits and forestry plantations. Quantities of residues are estimated from crop yields by using conversion coefficients for the various crops. Long-term crop yields data from 1970 to 1999 were used. Total annual residue yields for crops, fruits and forestry plantations are 7.805 Mt, 378 kt and 3.05 Mt, respectively. The crops, fruits and forestry residues have energy potential of 81.5, 4.9 and 44.3 PJ per year, respectively. This represents about 44% of the gross energy consumption in Zimbabwe. The need to balance use of crop residues for both energy purposes and other purposes such as animal feeding and soil fertility improvement is also highlighted. (author)

  15. Effect of Grazing on Forage Quality and Quantity for Ungulates of ...

    African Journals Online (AJOL)

    This study examined the effect of grazing as simulated by clipping on forage quality and quantity in terms of above ground biomass, live, total production and nutrients content of forages utilized by ungulates of Kainji Lake National Park. Three 2.5m by 2.5m plots were constructed in the three main vegetation communities in ...

  16. Biomass production of multipopulation microalgae in open air pond for biofuel potential.

    Science.gov (United States)

    Selvakumar, P; Umadevi, K

    2016-04-01

    Biodiesel gains attention as it is made from renewable resources and has considerable environmental benefits. The present investigation has focused on large scale cultivation of multipopulation microalgae in open air pond using natural sea water without any additional nutritive supplements for low cost biomass production as a possible source of biofuel in large scale. Open air algal pond attained average chlorophyll concentration of 11.01 µg/L with the maximum of 43.65 µg/L as well as a higher lipid concentration of 18% (w/w) with lipid content 9.3 mg/L on the 10th day of the culture; and maximum biomass of 0.36 g/L on the 7th day of the culture. Composition analysis of fatty acid methyl ester (FAME) was performed by gas chromatography and mass spectrometry (GCMS). Multipopulation of algal biomass had 18% of total lipid content with 55% of total saturated fatty acids (SFA), 35.3% of monounsaturated fatty acids (MUFA) and 9.7% of polyunsaturated fatty acids (PUFA), revealing a potential source of biofuel production at low cost.

  17. Forestry and biomass energy projects

    DEFF Research Database (Denmark)

    Swisher, J.N.

    1994-01-01

    This paper presents a comprehensive and consistent methodology to account for the costs and net carbon flows of different categories of forestry and biomass energy projects and describes the application of the methodology to several sets of projects in Latin America. The results suggest that both...... biomass energy development and forestry measures including reforestation and forest protection can contribute significantly to the reduction of global CO2 emissions, and that local land-use capacity must determine the type of project that is appropriate in specific cases. No single approach alone...... is sufficient as either a national or global strategy for sustainable land use or carbon emission reduction. The methodology allows consistent comparisons of the costs and quantities of carbon stored in different types of projects and/or national programs, facilitating the inclusion of forestry and biomass...

  18. 'Underutilised' agricultural land: its definitions, potential use for future biomass production and its environmental implications

    Science.gov (United States)

    Miyake, Saori; Bargiel, Damian

    2017-04-01

    A growing bioeconomy and increased demand for biomass products on food, health, fibre, industrial products and energy require land resources for feedstock production. It has resulted in significant environmental and socio-economic challenges on a global scale. As a result, consideration of such effects of land use change (LUC) from biomass production (particularly for biofuel feedstock) has emerged as an important area of policy and research, and several potential solutions have been proposed to minimise such adverse LUC effects. One of these solutions is the use of lands that are not in production or not suitable for food crop production, such as 'marginal', 'degraded', 'abandoned' and 'surplus' agricultural lands for future biomass production. The terms referring to these lands are usually associated with the potential production of 'marginal crops', which can grow in marginal conditions (e.g. poor soil fertility, low rainfall, drought) without much water and agrochemical inputs. In our research, we referred to these lands as 'underutilised' agricultural land and attempted to define them for our case study areas located in Australia and Central and Eastern Europe (CEE). Our goal is to identify lands that can be used for future biomass production and to evaluate their environmental implications, particularly impacts related to biodiversity, water and soil at a landscape scale. The identification of these lands incorporates remote sensing and spatially explicit approaches. Our findings confirmed that there was no universal or single definition of the term 'underutilised' agricultural land as the definitions significantly vary by country and region depending not only on the biophysical environment but also political, institutional and socio-economic conditions. Moreover, our results highlighted that the environmental implications of production of biomass on 'underutilised' agricultural land for biomass production are highly controversial. Thus land use change

  19. Measuring the Regional Availability of Forest Biomass for Biofuels and the Potential of GHG Reduction

    Directory of Open Access Journals (Sweden)

    Fengli Zhang

    2018-01-01

    Full Text Available Forest biomass is an important resource for producing bioenergy and reducing greenhouse gas (GHG emissions. The State of Michigan in the United States (U.S. is one region recognized for its high potential of supplying forest biomass; however, the long-term availability of timber harvests and the associated harvest residues from this area has not been fully explored. In this study time trend analyses was employed for long term timber assessment and developed mathematical models for harvest residue estimation, as well as the implications of use for ethanol. The GHG savings potential of ethanol over gasoline was also modeled. The methods were applied in Michigan under scenarios of different harvest solutions, harvest types, transportation distances, conversion technologies, and higher heating values over a 50-year period. Our results indicate that the study region has the potential to supply 0.75–1.4 Megatonnes (Mt dry timber annually and less than 0.05 Mt of dry residue produced from these harvests. This amount of forest biomass could generate 0.15–1.01 Mt of ethanol, which contains 0.68–17.32 GJ of energy. The substitution of ethanol for gasoline as transportation fuel has potential to reduce emissions by 0.043–1.09 Mt CO2eq annually. The developed method is generalizable in other similar regions of different countries for bioenergy related analyses.

  20. The biomass file

    International Nuclear Information System (INIS)

    2010-01-01

    As biomass represents the main source of renewable energy to reach the 23 per cent objective in terms of energy consumption by 2020, a first article gives a synthetic overview of its definition, its origins, its possible uses, its share in the French energy mix, its role by 2020, strengths and weaknesses for its development, the growth potential of its market, and its implications in terms of employment. A second article outlines the assets of biomass, indicates the share of some crops in biomass energy production, and discusses the development of new resources and the possible energy valorisation of various by-products. Interviews about biomass market and development perspectives are proposed with representatives of institutions, energy industries and professional bodies concerned with biomass development and production. Other articles comments the slow development of biomass-based cogeneration, the coming into operation of a demonstration biomass roasting installation in Pau (France), the development potential of biogas in France, the project of bio natural gas vehicles in Lille, and the large development of biogas in Germany

  1. Evaluating the composition and processing potential of novel sources of Brazilian biomass for sustainable biorenewables production.

    Science.gov (United States)

    Lima, Marisa A; Gomez, Leonardo D; Steele-King, Clare G; Simister, Rachael; Bernardinelli, Oigres D; Carvalho, Marcelo A; Rezende, Camila A; Labate, Carlos A; Deazevedo, Eduardo R; McQueen-Mason, Simon J; Polikarpov, Igor

    2014-01-18

    The search for promising and renewable sources of carbohydrates for the production of biofuels and other biorenewables has been stimulated by an increase in global energy demand in the face of growing concern over greenhouse gas emissions and fuel security. In particular, interest has focused on non-food lignocellulosic biomass as a potential source of abundant and sustainable feedstock for biorefineries. Here we investigate the potential of three Brazilian grasses (Panicum maximum, Pennisetum purpureum and Brachiaria brizantha), as well as bark residues from the harvesting of two commercial Eucalyptus clones (E. grandis and E. grandis x urophylla) for biofuel production, and compare these to sugarcane bagasse. The effects of hot water, acid, alkaline and sulfite pretreatments (at increasing temperatures) on the chemical composition, morphology and saccharification yields of these different biomass types were evaluated. The average yield (per hectare), availability and general composition of all five biomasses were compared. Compositional analyses indicate a high level of hemicellulose and lignin removal in all grass varieties (including sugarcane bagasse) after acid and alkaline pretreatment with increasing temperatures, whilst the biomasses pretreated with hot water or sulfite showed little variation from the control. For all biomasses, higher cellulose enrichment resulted from treatment with sodium hydroxide at 130°C. At 180°C, a decrease in cellulose content was observed, which is associated with high amorphous cellulose removal and 5-hydroxymethyl-furaldehyde production. Morphological analysis showed the effects of different pretreatments on the biomass surface, revealing a high production of microfibrillated cellulose on grass surfaces, after treatment with 1% sodium hydroxide at 130°C for 30 minutes. This may explain the higher hydrolysis yields resulting from these pretreatments, since these cellulosic nanoparticles can be easily accessed and cleaved by

  2. Polypogon monspeliensis waste biomass: A potential biosorbent for ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-20

    Mar 20, 2009 ... and initial metal concentration for Cd (II) uptake by P. monspeliensis waste biomass were 6, 0.05 g, .... Inital metal(mg/L) q. (m g. /g. ) Figure 4. Effect of initial concentration on the biosorption of Cd (II) by Polypogon monspeliensis waste biomass. Effect of initial Cd ..... Biosorption of uranium by Pseudomonas.

  3. Biomass resources in California

    Energy Technology Data Exchange (ETDEWEB)

    Tiangco, V.M.; Sethi, P.S. [California Energy Commission, Sacramento, CA (United States)

    1993-12-31

    The biomass resources in California which have potential for energy conversion were assessed and characterized through the project funded by the California Energy Commission and the US Department of Energy`s Western Regional Biomass Energy Program (WRBEP). The results indicate that there is an abundance of biomass resources as yet untouched by the industry due to technical, economic, and environmental problems, and other barriers. These biomass resources include residues from field and seed crops, fruit and nut crops, vegetable crops, and nursery crops; food processing wastes; forest slash; energy crops; lumber mill waste; urban wood waste; urban yard waste; livestock manure; and chaparral. The estimated total potential of these biomass resource is approximately 47 million bone dry tons (BDT), which is equivalent to 780 billion MJ (740 trillion Btu). About 7 million BDT (132 billion MJ or 124 trillion Btu) of biomass residue was used for generating electricity by 66 direct combustion facilities with gross capacity of about 800 MW. This tonnage accounts for only about 15% of the total biomass resource potential identified in this study. The barriers interfering with the biomass utilization both in the on-site harvesting, collection, storage, handling, transportation, and conversion to energy are identified. The question whether these barriers present significant impact to biomass {open_quotes}availability{close_quotes} and {open_quotes}sustainability{close_quotes} remains to be answered.

  4. Biomass Burning Observation Project Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kleinman, KI [Brookhaven National Laboratory; Sedlacek, AJ [Brookhaven National Laboratory

    2013-09-01

    Aerosols from biomass burning perturb Earth’s climate through the direct radiative effect (both scattering and absorption) and through influences on cloud formation and precipitation and the semi-direct effect. Despite much effort, quantities important to determining radiative forcing such as the mass absorption coefficients (MAC) of light-absorbing carbon, secondary organic aerosol (SOA) formation rates, and cloud condensation nuclei (CCN) activity remain in doubt. Field campaigns in northern temperate latitudes have been overwhelmingly devoted to other aerosol sources in spite of biomass burning producing about one-third of the fine particles (PM2.5) in the U.S.

  5. Biomass torrefaction: A promising pretreatment technology for biomass utilization

    Science.gov (United States)

    Chen, ZhiWen; Wang, Mingfeng; Ren, Yongzhi; Jiang, Enchen; Jiang, Yang; Li, Weizhen

    2018-02-01

    Torrefaction is an emerging technology also called mild pyrolysis, which has been explored for the pretreatment of biomass to make the biomass more favorable for further utilization. Dry torrefaction (DT) is a pretreatment of biomass in the absence of oxygen under atmospheric pressure and in a temperature range of 200-300 degrees C, while wet torrrefaction (WT) is a method in hydrothermal or hot and high pressure water at the tempertures within 180-260 degrees C. Torrrefied biomass is hydrophobic, with lower moisture contents, increased energy density and higher heating value, which are more comparable to the characteristics of coal. With the improvement in the properties, torrefied biomass mainly has three potential applications: combustion or co-firing, pelletization and gasification. Generally, the torrefaction technology can accelerate the development of biomass utilization technology and finally realize the maximum applications of biomass energy.

  6. Synergistic impact of sonic-tenside on biomass disintegration potential: Acidogenic and methane potential studies, kinetics and cost analytics.

    Science.gov (United States)

    Tamilarasan, K; Arulazhagan, P; Rani, R Uma; Kaliappan, S; Banu, J Rajesh

    2018-04-01

    An exploration into the symbiotic impact of sonic-tenside (SDBS - sodium dodecyl benzene sulfonate) on biomass disintegration potential and to reduce the energy consumption was studied. At optimized condition (specific energy input 9600 kJ/kg TS; SDBS dosage 0.07 g/g SS), higher percentage of biomass lysis and solids reduction (23.9% and 19.8%) was obtained in blended sonic-tenside disintegration (STD), than sonic disintegration (SD) (17.6% and 9.8%). The bioacidogenic potential (BAP) assay in terms of volatile fatty acids (VFA) production (722 mg/L) was found to be higher for STD, in comparison to SD (350 mg/L). The impact of STD on anaerobic digestion was evident from its methane yield (0.239 g/g COD), higher than SD (0.182 g/g COD). A monetary evaluation of the present study provides a net gain of 2 USD/ton for STD, indicating the profitability of the technique. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Assessment of the technical and economic potentials of biomass use for the production of steam, chemicals and polymers

    NARCIS (Netherlands)

    Saygin, D.; Gielen, D. J.; Draeck, M.; Worrell, E.; Patel, M. K.

    2014-01-01

    Fossil fuel substitution with biomass is one of the measures to reduce carbon dioxide (CO2) emissions. This paper estimates the cost-effectiveness of raising industrial steam and producing materials (i.e. chemicals, polymers) from biomass. We quantify their long-term global potentials in terms of

  8. Electricity from biomass

    International Nuclear Information System (INIS)

    Price, B.

    1998-11-01

    Electricity from biomass assesses the potential of biomass electricity for displacing other more polluting power sources and providing a relatively clean and ecologically friendly source of energy; discusses its environmental and economic effects, while analysing political and institutional initiatives and constraints; evaluates key factors, such as energy efficiency, economics, decentralisation and political repurcussions; considers the processes and technologies employed to produce electricity from biomass; and discusses the full range of incentives offered to producers and potential producers and the far-reaching implications it could have for industry, society and the environment. (author)

  9. Thermal gasification of biomass technology development in the U.S.A

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S P [Inst. of Gas Technology, Des Plaines, IL (United States); Bain, R L; Craig, K R [National Renewable Energy Laboratory, Golden, CO (United States)

    1997-12-31

    In the U.S.A., the widely recognized importance of biomass utilization in controlling carbon build-up in the biosphere and the potential benefit of creating new industries associated with new job opportunities, particularly in the rural areas, have added impetus to the development and commercialization of advanced biomass energy conversion methods. Recent analyses and evaluations have shown that many short rotation energy crops (SREC) produce significant net-energy (i.e., energy yield greater than the energy input for plant growth). SREC such as willow, poplar, and miscanthus may yield up to 20 dry tonnes/yr/ha/year of biomass feedstocks, some with about 20 % moisture, after the third year of plantation. Implementation by U.S. EPA of the recent Clean Water Act Federal Biosolids Rules specified as Code 40 of Federal Register 503, should make available large quantities of high nitrogen content, pathogen-free municipal sludges ideally suited as an inexpensive source of organic fertiliser, thus improving the economics of SREC. The concept of herbaceous SREC can be further augmented when value-added byproducts, such as cattle feed, could be produced along with biomass energy feedstocks. Since 1990, there has been renewed interest in the United States in developing advanced power-generating cycles utilizing biomass gasification. The advanced systems have the potential for higher generation efficiencies, 35 % to 40 %, and lower costs of electricity, $0.045 to $0.055/kWh, compared to conventional direct-combustion systems. The efficiency of power production can be even higher (about 55 %) when the fuel gas is converted to hydrogen followed by electrochemical conversion to electricity in a fuel cell. The Energy Policy Act of 1992 includes a number of provisions to promote the commercialisation of biomass power production. The recent Global Climate Change Action Plan also includes several programs and incentives for biomass power production. A summary of U.S. demonstration

  10. Thermal gasification of biomass technology development in the U.S.A

    International Nuclear Information System (INIS)

    Babu, S.P.; Bain, R.L.; Craig, K.R.

    1996-01-01

    In the U.S.A., the widely recognized importance of biomass utilization in controlling carbon build-up in the biosphere and the potential benefit of creating new industries associated with new job opportunities, particularly in the rural areas, have added impetus to the development and commercialization of advanced biomass energy conversion methods. Recent analyses and evaluations have shown that many short rotation energy crops (SREC) produce significant net-energy (i.e., energy yield greater than the energy input for plant growth). SREC such as willow, poplar, and miscanthus may yield up to 20 dry tonnes/yr/ha/year of biomass feedstocks, some with about 20 % moisture, after the third year of plantation. Implementation by U.S. EPA of the recent Clean Water Act Federal Biosolids Rules specified as Code 40 of Federal Register 503, should make available large quantities of high nitrogen content, pathogen-free municipal sludges ideally suited as an inexpensive source of organic fertiliser, thus improving the economics of SREC. The concept of herbaceous SREC can be further augmented when value-added byproducts, such as cattle feed, could be produced along with biomass energy feedstocks. Since 1990, there has been renewed interest in the United States in developing advanced power-generating cycles utilizing biomass gasification. The advanced systems have the potential for higher generation efficiencies, 35 % to 40 %, and lower costs of electricity, $0.045 to $0.055/kWh, compared to conventional direct-combustion systems. The efficiency of power production can be even higher (about 55 %) when the fuel gas is converted to hydrogen followed by electrochemical conversion to electricity in a fuel cell. The Energy Policy Act of 1992 includes a number of provisions to promote the commercialisation of biomass power production. The recent Global Climate Change Action Plan also includes several programs and incentives for biomass power production. A summary of U.S. demonstration

  11. Thermal gasification of biomass technology development in the U.S.A

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S.P. [Inst. of Gas Technology, Des Plaines, IL (United States); Bain, R.L.; Craig, K.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-12-31

    In the U.S.A., the widely recognized importance of biomass utilization in controlling carbon build-up in the biosphere and the potential benefit of creating new industries associated with new job opportunities, particularly in the rural areas, have added impetus to the development and commercialization of advanced biomass energy conversion methods. Recent analyses and evaluations have shown that many short rotation energy crops (SREC) produce significant net-energy (i.e., energy yield greater than the energy input for plant growth). SREC such as willow, poplar, and miscanthus may yield up to 20 dry tonnes/yr/ha/year of biomass feedstocks, some with about 20 % moisture, after the third year of plantation. Implementation by U.S. EPA of the recent Clean Water Act Federal Biosolids Rules specified as Code 40 of Federal Register 503, should make available large quantities of high nitrogen content, pathogen-free municipal sludges ideally suited as an inexpensive source of organic fertiliser, thus improving the economics of SREC. The concept of herbaceous SREC can be further augmented when value-added byproducts, such as cattle feed, could be produced along with biomass energy feedstocks. Since 1990, there has been renewed interest in the United States in developing advanced power-generating cycles utilizing biomass gasification. The advanced systems have the potential for higher generation efficiencies, 35 % to 40 %, and lower costs of electricity, $0.045 to $0.055/kWh, compared to conventional direct-combustion systems. The efficiency of power production can be even higher (about 55 %) when the fuel gas is converted to hydrogen followed by electrochemical conversion to electricity in a fuel cell. The Energy Policy Act of 1992 includes a number of provisions to promote the commercialisation of biomass power production. The recent Global Climate Change Action Plan also includes several programs and incentives for biomass power production. A summary of U.S. demonstration

  12. Biomass Demand-Resources Value Targeting

    International Nuclear Information System (INIS)

    Lim, Chun Hsion; Lam, Hon Loong

    2014-01-01

    Highlights: • Introduce DRVT supply chain modelling approach to consider underutilised biomass. • Advantages of the novel DRVT biomass supply chain approach. • A case study is presented to demonstrate the improvement of the system. - Abstract: With the global awareness towards sustainability, biomass industry becomes one of the main focuses in the search of alternative renewable resources for energy and downstream product. However, the efficiency of the biomass management, especially in supply chain is still questionable. Even though many researches and integrations of supply chain network have been conducted, less has considered underutilised biomass. This leads to the ignorance of potential value in particular biomass species. A new Demand-Resources Value Targeting (DRVT) approach is introduced in this study to investigate the value of each biomass available in order to fully utilise the biomass in respective applications. With systematic biomass value classification, integration of supply chain based on biomass value from biomass resources-to-downstream product can be developed. DRVT model allows better understanding of biomass and their potential downstream application. A simple demonstration of DRVT approach is conducted based on biomass resources in Malaysia

  13. Quality and Quantity of Sorghum Hydroponic Fodder from Different Varieties and Harvest Time

    Science.gov (United States)

    Chrisdiana, R.

    2018-02-01

    This experiment was designed to compare different varieties and harvest time of sorghum hydroponic fodder based on nutrient content and biomass production. Experimental design for fodder productivity was completely randomized design with 2 x 3 factorial, i.e., sorghum varieties (KD 4 and Super-1) and time of harvesting the sorghum hydroponic fodder (8,12 and 16 d). Total biomass and DM production, were affected significantly (p<0.05) on harvest time. Total biomass and nutrient content were increased in longer harvest time. The nutrient content were increased with decreasing total value of DM. Super-1 varieties produce larger biomass and nutrient content higher than KD4 (p<0.05). Based on sorghum hidroponic fodder quality and quantity, sorghum hidroponic fodder with Super-1 varieties harvested at 12 d had a good quality of fodder and it can be alternative of technology providing quality forage and land saving with a short time planting period and continous production.

  14. New market potential: Torrefaction of woody biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tumuluru, Jaya Shankar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hess, J. Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-02

    Biomass was the primary source of energy worldwide until a few generations ago, when the energy-density, storability and transportability of fossil fuels enabled one of the most rapid cultural transformations in the history of humankind: the industrial revolution. In just a few hundred years, coal, oil and natural gas have prompted the development of highly efficient, high-volume manufacturing and transportation systems that have become the foundation of the world economy. But over-reliance on fossil resources has also led to environmental and energy security concerns. In addition, one of the greatest advantages of using biomass to replace fossil fuels is reduced greenhouse gas emissions and carbon footprint.

  15. Potential for post-closure radionuclide redistribution due to biotic intrusion: aboveground biomass, litter production rates, and the distribution of root mass with depth at material disposal area G, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    French, Sean B.; Christensen, Candace; Jennings, Terry L.; Jaros, Christopher L.; Wykoff, David S.; Crowell, Kelly J.; Shuman, Rob

    2008-01-01

    Low-level radioactive waste (LLW) generated at the Los Alamos National Laboratories (LANL) is disposed of at LANL's Technical Area (T A) 54, Material Disposal Area (MDA) G. The ability of MDA G to safely contain radioactive waste during current and post-closure operations is evaluated as part of the facility's ongoing performance assessment (PA) and composite analysis (CA). Due to the potential for uptake and incorporation of radio nuclides into aboveground plant material, the PA and CA project that plant roots penetrating into buried waste may lead to releases of radionuclides into the accessible environment. The potential amount ofcontamination deposited on the ground surface due to plant intrusion into buried waste is a function of the quantity of litter generated by plants, as well as radionuclide concentrations within the litter. Radionuclide concentrations in plant litter is dependent on the distribution of root mass with depth and the efficiency with which radionuclides are extracted from contaminated soils by the plant's roots. In order to reduce uncertainties associated with the PA and CA for MDA G, surveys are being conducted to assess aboveground biomass, plant litter production rates, and root mass with depth for the four prominent vegetation types (grasses, forbs, shrubs and trees). The collection of aboveground biomass for grasses and forbs began in 2007. Additional sampling was conducted in October 2008 to measure root mass with depth and to collect additional aboveground biomass data for the types of grasses, forbs, shrubs, and trees that may become established at MDA G after the facility undergoes final closure, Biomass data will be used to estimate the future potential mass of contaminated plant litter fall, which could act as a latent conduit for radionuclide transport from the closed disposal area. Data collected are expected to reduce uncertainties associated with the PA and CA for MDA G and ultimately aid in the assessment and subsequent

  16. Potential of energetic utilization of grains residual biomass; Potencial de utilizacao energetica de biomassa residual de graos

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Anna L. [Instituto de Tecnologia de Alimentos (ITAL), Campinas, SP (Brazil). Centro de Tecnologia de Embalagem], e-mail: anna@ital.sp.gov.br; Ambrogi, Vinicius S.; Guerra, Sinclair M.G. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica], e-mail: ambrogi@fem.unicamp.br, e-mail: sguerra@fem.unicamp.br

    2004-07-01

    The biomass resulting from the rejected parts of grains, as straw and peel of rice, corn, wheat, soy, all great cultivations in the country, has potential to be takes advantage as energy. It was considered that the contribution of this residual biomass is near of 167,8 million GJ/year, value that could be added to the use already established of the cane bagasse for energy purpose (658 million GJ, in 2001). This energy can be used for drying of these same grains (energy expense estimate of 67 million GJ), currently obtained from oil. It can also substitute the fuel oil used in the agricultural section, in the industries of food and beverage, ceramic and textile (sections that consumed 67.822 GJ in 2001). In Sao Paulo state the regions with greater potential to install biomass plants are located in Assis, Avare and Itapeva EDR (regional development office). (author)

  17. Ethanol yield and energy potential of stems from a spectrum of sorghum biomass types

    Energy Technology Data Exchange (ETDEWEB)

    McBee, G.G.; Creelman, R.A.; Miller, F.R.

    1988-01-01

    Sorghum biomass is a renewable resource that offers significant potential for energy utilization. Six sorghum cultivars, representing an array of stem types, were evaluated for ethanol yield. Ethanol production was individually obtained for both the total stem and the pith of each type by anaerobic yeast fermentation. Value of the energy contained in the rind was determined by calorimetry. The highest yield of ethanol from total stem fermentation was 3418.3 liters ha/sup -1/ produced from Rio. Fermentation of Rio pith to ethanol and combustion of the rind resulted in the highest total energy value of the cultivars. The least and greatest energy values were 6.3 and 44.3 x 10/sup 6/ kcal ha/sup -1/ for SC0056-14 and Rio, respectively. Conversion ratios of potentially fermentable carbohydrates (within the vegetative biomass) to ethanol produced, averaged 0.438 for the pith and 0.406 for total stems.

  18. Effect of quantity and composition of waste on the prediction of annual methane potential from landfills.

    Science.gov (United States)

    Cho, Han Sang; Moon, Hee Sun; Kim, Jae Young

    2012-04-01

    A study was conducted to investigate the effect of waste composition change on the methane production in landfills. An empirical equation for the methane potential of the mixed waste is derived based on the methane potential values of individual waste components and the compositional ratio of waste components. A correction factor was introduced in the equation and was determined from the BMP and lysimeter tests. The equation and LandGEM were applied for a full size landfill and the annual methane potential was estimated. Results showed that the changes in quantity of waste affected the annual methane potential from the landfill more than the changes of waste composition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Herbaceous biomass predication from environmental and remote sensing indicators

    CSIR Research Space (South Africa)

    Dudeni-Tlhone, N

    2012-11-01

    Full Text Available Feeding patterns and distribution of herbivores animals are known to be influenced by quality and quantity of forage such as grass. Modelling indicators of grass quality and biomass are critical in understanding such patterns and for decision makers...

  20. Calculating the share of process energy consumed by biomass conversion plants. Bestimmung der Anteile der Prozessenergie bei einer Biogasanlage

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, W

    1984-06-01

    During the winter season the process energy consumption of biomass conversion plants is relatively high. Apart from the quantity and temperature of manures and insulation of the fermentation tank the process energy consumption depends on the efficiency of the heating system. Moreover, heat losses decide on the required quantities of process energy. Compared with the process energy consumption the electric power consumption of the engines supplying the biomass conversion plant is relatively low. Along with calculations tests and measurements in a biomass conversion plant during the winter season of 1981/1982 give access to the interrelation between process energy and electric power consumption.

  1. Entropy and Its Correlations with Other Related Quantities

    Directory of Open Access Journals (Sweden)

    Jing Wu

    2014-02-01

    Full Text Available In order to find more correlations between entropy and other related quantities, an analogical analysis is conducted between thermal science and other branches of physics. Potential energy in various forms is the product of a conserved extensive quantity (for example, mass or electric charge and an intensive quantity which is its potential (for example, gravitational potential or electrical voltage, while energy in specific form is a dissipative quantity during irreversible transfer process (for example mechanical or electrical energy will be dissipated as thermal energy. However, it has been shown that heat or thermal energy, like mass or electric charge, is conserved during heat transfer processes. When a heat transfer process is for object heating or cooling, the potential of internal energy U is the temperature T and its potential “energy” is UT/2 (called entransy and it is the simplified expression of thermomass potential energy; when a heat transfer process is for heat-work conversion, the potential of internal energy U is (1 − T0/T, and the available potential energy of a system in reversible heat interaction with the environment is U − U0 − T0(S − S0, then T0/T and T0(S − S0 are the unavailable potential and the unavailable potential energy of a system respectively. Hence, entropy is related to the unavailable potential energy per unit environmental temperature for heat-work conversion during reversible heat interaction between the system and its environment. Entropy transfer, like other forms of potential energy transfer, is the product of the heat and its potential, the reciprocal of temperature, although it is in form of the quotient of the heat and the temperature. Thus, the physical essence of entropy transfer is the unavailable potential energy transfer per unit environmental temperature. Entropy is a non-conserved, extensive, state quantity of a system, and entropy generation in an irreversible heat transfer process

  2. Flash pyrolysis at high temperature of ligno-cellulosic biomass and its components - production of synthesis gas; Pyrolyse flash a haute temperature de la biomasse ligno-cellulosique et de ses composes - production de gaz de synthese

    Energy Technology Data Exchange (ETDEWEB)

    Couhert, C

    2007-11-15

    Pyrolysis is the first stage of any thermal treatment of biomass and governs the formation of synthesis gas for the production of electricity, hydrogen or liquid fuels. The objective of this work is to establish a link between the composition of a biomass and its pyrolysis gas. We study experimental flash pyrolysis and fix the conditions in which quantities of gas are maximal, while aiming at a regime without heat and mass transfer limitations (particles about 100 {mu}m): temperature of 950 C and residence time of about 2 s. Then we try to predict gas yields of any biomass according to its composition, applicable in this situation where thermodynamic equilibrium is not reached. We show that an additivity law does not allow correlating gas yields of a biomass with fractions of cellulose, hemi-cellulose and lignin contained in this biomass. Several explanations are suggested and examined: difference of pyrolytic behaviour of the same compound according to the biomass from which it is extracted, interactions between compounds and influence of mineral matter. With the aim of industrial application, we study pyrolysis of millimetric and centimetric size particles, and make a numerical simulation of the reactions of pyrolysis gases reforming. This simulation shows that the choice of biomass affects the quantities of synthesis gas obtained. (author)

  3. Bacterial biomass and heterotrophic potential in the waters of the Chesapeake Bay plume and contiguous continental shelf

    Science.gov (United States)

    Kator, H. I.; Zubkoff, P. L.

    1981-01-01

    Seasonal baseline data on bacterial biomass and heterotrophic uptake in the Chesapeake Bay plume and contiguous Atlantic Ocean shelf waters are discussed. Viable count bacterial numbers in surface water samples collected during June 1980 ranged from a maximum of 190,000 MPN (most probable number)/ml at the Bay mouth to a minimum of 7900 MPN/ml offshore. Similarly, direct count densities ranged from 1,800,000 BU (bacterial units)/ml to 24,000 BU/ml. Heterotrophic potential (V max) was largest at the Bay mouth and lowest offshore. Biomass and V max values usually decreased with depth although subsurface maxima were occasionally observed at inshore stations. Correlation of biomass and heterotrophic potential data with selected hydrographic variables was determind with a nonparametric statistic. Results indicate viable counts are positively and significantly correlated with total chlorophyll, temperature, direct count and V max during June 1980; significant negative correlations are obtained with salinity and depth. Calculations of bacterial standing crop are discussed.

  4. Romania biomass energy. Country study

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, M; Easterly, J L; Mark, P E; Keller, A [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  5. Romania biomass energy. Country study

    International Nuclear Information System (INIS)

    Burnham, M.; Easterly, J.L.; Mark, P.E.; Keller, A.

    1995-01-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  6. Potential of Space-Borne Hyperspectral Data for Biomass Quantification in an Arid Environment: Advantages and Limitations

    Directory of Open Access Journals (Sweden)

    Harald Zandler

    2015-04-01

    Full Text Available In spite of considerable efforts to monitor global vegetation, biomass quantification in drylands is still a major challenge due to low spectral resolution and considerable background effects. Hence, this study examines the potential of the space-borne hyperspectral Hyperion sensor compared to the multispectral Landsat OLI sensor in predicting dwarf shrub biomass in an arid region characterized by challenging conditions for satellite-based analysis: The Eastern Pamirs of Tajikistan. We calculated vegetation indices for all available wavelengths of both sensors, correlated these indices with field-mapped biomass while considering the multiple comparison problem, and assessed the predictive performance of single-variable linear models constructed with data from each of the sensors. Results showed an increased performance of the hyperspectral sensor and the particular suitability of indices capturing the short-wave infrared spectral region in dwarf shrub biomass prediction. Performance was considerably poorer in the area with less vegetation cover. Furthermore, spatial transferability of vegetation indices was not feasible in this region, underlining the importance of repeated model building. This study indicates that upcoming space-borne hyperspectral sensors increase the performance of biomass prediction in the world’s arid environments.

  7. The potential impacts of biomass feedstock production on water resource availability.

    Science.gov (United States)

    Stone, K C; Hunt, P G; Cantrell, K B; Ro, K S

    2010-03-01

    Biofuels are a major topic of global interest and technology development. Whereas bioenergy crop production is highly dependent on water, bioenergy development requires effective allocation and management of water. The objectives of this investigation were to assess the bioenergy production relative to the impacts on water resource related factors: (1) climate and weather impact on water supplies for biomass production; (2) water use for major bioenergy crop production; and (3) potential alternatives to improve water supplies for bioenergy. Shifts to alternative bioenergy crops with greater water demand may produce unintended consequences for both water resources and energy feedstocks. Sugarcane and corn require 458 and 2036 m(3) water/m(3) ethanol produced, respectively. The water requirements for corn grain production to meet the US-DOE Billion-Ton Vision may increase approximately 6-fold from 8.6 to 50.1 km(3). Furthermore, climate change is impacting water resources throughout the world. In the western US, runoff from snowmelt is occurring earlier altering the timing of water availability. Weather extremes, both drought and flooding, have occurred more frequently over the last 30 years than the previous 100 years. All of these weather events impact bioenergy crop production. These events may be partially mitigated by alternative water management systems that offer potential for more effective water use and conservation. A few potential alternatives include controlled drainage and new next-generation livestock waste treatment systems. Controlled drainage can increase water available to plants and simultaneously improve water quality. New livestock waste treatments systems offer the potential to utilize treated wastewater to produce bioenergy crops. New technologies for cellulosic biomass conversion via thermochemical conversion offer the potential for using more diverse feedstocks with dramatically reduced water requirements. The development of bioenergy

  8. Resource potential for renewable energy generation from co-firing of woody biomass with coal in the Northern U.S.

    Science.gov (United States)

    Michael E. Goerndt; Francisco X. Aguilar; Kenneth Skog

    2013-01-01

    Past studies have established measures of co-firing potential at varying spatial scales to assess opportunities for renewable energy generation from woody biomass. This study estimated physical availability, within ecological and public policy constraints, and associated harvesting and delivery costs of woody biomass for co-firing in selected power plants of the...

  9. Viewls - Biomass production potentials in Central and Eastern Europe under different scenarios. Final report of WP3 of the VIEWLS project, funded by DG-Tren

    Energy Technology Data Exchange (ETDEWEB)

    Dam, J. van; Faaij, A.; Lewandowski, I. (and others)

    2006-01-15

    The EU has set ambitious targets to increase the use of Renewable Energy Sources from which a large part has to come from biomass To meet these targets, a large amount of biomass resources is needed which requires large areas of land in the EU. This article discusses a methodology and results for a regional biomass potential assessment in Central and Eastern European Accession countries (CEEC). The biomass potential assessment is implemented for a defined set of scenarios. The scenarios are based on the main drivers in Europe relevant for agriculture and land use change, i.e. World Trade Negotiations or Common Agricultural Policy. The methodology for the biomass potential assessment is based on land use changes over time. A certain amount of land is needed to meet the required production for food (derived from agricultural crops and livestock) and wood products. The surplus available land can possibly be used for biomass production. Results of the biomass potential assessment are available on a Nuts-3 region level in the CEEC for different scenarios. As the concept of large-scale biomass production is only feasible when production is profitable for the stakeholders involved, price and cost-relations are included in the assessment. Final deliverable are cost-supply curves from different sources (energy crops, residues) and scenarios for the CEEC. (au)

  10. ABOVE GROUND BIOMASS MICRONUTRIENTS IN A SEASONAL SUBTROPICAL FOREST

    Directory of Open Access Journals (Sweden)

    Hamilton Luiz Munari Vogel

    2015-06-01

    Full Text Available In the above ground biomass of a native forest or plantation are stored large quantities of nutrients, with few studies in the literature, especially concerning micronutrients. The present work aimed to quantify the micronutrients in above ground biomass in a Seasonal Subtropical forest in Itaara-RS, Brazil. For the above ground biomass evaluation, 20 trees of five different diameter classes were felled. The above ground biomass was separated in the following compartments: stem wood, stem bark, branches and leaves. The contents of B, Cu, Fe, Mn and Zn in the biomass samples were determined. The stock of micronutrients in the biomass for each component was obtained based on the estimated dry biomass, multiplied by the nutrient content. The total production of above ground biomass was estimated at 210.0 Mg.ha-1. The branches, stem wood, stem bark and leaves corresponded to 48.8, 43.3, 5.4 and 2.4% of the above ground biomass. The lower levels of B, Cu, Fe and Mn are in stem wood, except for Zn; in the branches and trunk wood are the largest stocks of B, Cu, Fe and Mn. In the branches, leaves and trunk bark are stored most micronutrients, pointing to the importance of these to remain on the soil.

  11. Bioenergy Crop Production in the United States. Potential Quantities, Land Use Changes, and Economic Impacts on the Agricultural Sector

    International Nuclear Information System (INIS)

    Walsh, Marie E.; Torre Ugarte, D.G. de la; Shapouri, H.; Slinsky, S.P.

    2003-01-01

    The U.S. Departments of Agriculture and Energy jointly analyzed the economic potential for, and impacts of, large-scale bioenergy crop production in the United States. An agricultural sector model (POLYSYS) was modified to include three potential bioenergy crops (switchgrass, hybrid poplar, and willow). At farmgate prices of US $2.44/GJ, an estimated 17 million hectares of bioenergy crops, annually yielding 171 million dry Mg of biomass, could potentially be produced at a profit greater than existing agricultural uses for the land. The estimate assumes high productivity management practices are permitted on Conservation Reserve Program lands. Traditional crops prices are estimated to increase 9 to 14 percent above baseline prices and farm income increases annually by US $6.0 billion above baseline. At farmgate prices of US $1.83/GJ, an estimated 7.9 million hectares of bioenergy crops, annually yielding 55 million dry Mg of biomass, could potentially be produced at a profit greater than existing agricultural uses for the land. The estimate assumes management practices intended to achieve high environmental benefits on Conservation Reserve Program lands. Traditional crops prices are estimated to increase 4 to 9 percent above baseline prices and farm income increases annually by US $2.8 billion above baseline

  12. Method and means for determining heat quantities

    Energy Technology Data Exchange (ETDEWEB)

    Waasdorp, G G; de Jong, J J; Bijl, A

    1965-08-24

    To determine the quantity of potential heat W that has flowed past a certain point in a certain time, the velocity of the combustible Q, the temperature T, and the specific gravity YDTU are measured, and these values are transmitted to a computer which automatically calculates the quantity: ..pi..EQUATION/sup -/ in which delta T is the difference between the combustible temperature T and a reference temperature, and in which the relation f(YDTU, delta T) represents the heat of combustion as a function of the quantities YDTU and delta T and possibly other properties of the combustible. Alternatively the quantity: ..pi..EQUATION/sup -/ may be measured; here the quantities have the same meaning as above.

  13. Flash pyrolysis at high temperature of ligno-cellulosic biomass and its components - production of synthesis gas

    International Nuclear Information System (INIS)

    Couhert, C.

    2007-11-01

    Pyrolysis is the first stage of any thermal treatment of biomass and governs the formation of synthesis gas for the production of electricity, hydrogen or liquid fuels. The objective of this work is to establish a link between the composition of a biomass and its pyrolysis gas. We study experimental flash pyrolysis and fix the conditions in which quantities of gas are maximal, while aiming at a regime without heat and mass transfer limitations (particles about 100 μm): temperature of 950 C and residence time of about 2 s. Then we try to predict gas yields of any biomass according to its composition, applicable in this situation where thermodynamic equilibrium is not reached. We show that an additivity law does not allow correlating gas yields of a biomass with fractions of cellulose, hemi-cellulose and lignin contained in this biomass. Several explanations are suggested and examined: difference of pyrolytic behaviour of the same compound according to the biomass from which it is extracted, interactions between compounds and influence of mineral matter. With the aim of industrial application, we study pyrolysis of millimetric and centimetric size particles, and make a numerical simulation of the reactions of pyrolysis gases reforming. This simulation shows that the choice of biomass affects the quantities of synthesis gas obtained. (author)

  14. Biomass energy - large potential in North-West Russia

    International Nuclear Information System (INIS)

    Borchsenius, Hans

    2000-01-01

    Changing from oil or coal to bio fuel is a high priority in all European countries. The potential for such a transition is largest in North-West Russia, where several factors point to biomass energy: large bio fuel resources, large need for heating because of the cold climate, and almost 100% coverage of district heating. Here, the largest continuous coniferous forest in Europe supplies the raw material for a considerable forest industry, including some of the biggest sawmills and paper- and cellulose factories in the world. The fraction of the timber that cannot go into this production is suitable as bio fuel. About 15% of the raw material in this industry is bark and sawdust which can be used for energy production. In addition, 10% of the biomass of the trees remains on the forest floor as twigs, treetops etc. If all this sawdust and felling waste was used to replace heating oil, the corresponding reduction of CO2 emission would amount to 25 mill m3 per year. The forest industry in Russia is currently in full production, and an increasing mass of sawdust and wood waste is accumulating in depositories that cover larger and larger areas. Depositories are often set on fire to keep down the masses; at the same time, the district heating plants are fired with expensive oil or coal. This paradoxical situation is due to the economical crises in the 1990s. Neither private companies nor the local governments could invest in bio fueled boilers. Bio fuel projects are cost-effective and easy to document and perfectly suitable for joint implementations under the Kyoto Protocol

  15. Agricultural Residues and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    There are many opportunities to leverage agricultural resources on existing lands without interfering with production of food, feed, fiber, or forest products. In the recently developed advanced biomass feedstock commercialization vision, estimates of potentially available biomass supply from agriculture are built upon the U.S. Department of Agriculture’s (USDA’s) Long-Term Forecast, ensuring that existing product demands are met before biomass crops are planted. Dedicated biomass energy crops and agricultural crop residues are abundant, diverse, and widely distributed across the United States. These potential biomass supplies can play an important role in a national biofuels commercialization strategy.

  16. Economics of multifunctional biomass systems

    International Nuclear Information System (INIS)

    Ignaciuk, A.

    2006-01-01

    for the Bioelectricity sector. The main questions that are dealt within this chapter are: to what extent the multi-product crops increase the potential of bioelectricity production and how do they affect the prices of agricultural commodities. These questions are analyzed in the general equilibrium framework. This line of analysis is chosen because it allows comprising the bottom-up information about multi-productivity with the general setting of the whole economy in an applied computable general equilibrium (AGE) framework. This is important since energy policy responses influence main economic sectors and via feedback effects they influence the whole economy. The impact of climate policies on land use allocation, sectoral production and consumption levels and prices of land, food, electricity and other commodities, including the multiproductivity of crops is assessed. Moreover, this chapter provides an analysis to what extent competition for land can be reduced by using multi-product crops. In Chapter 5, the general equilibrium framework is further explored. The phytoremediation characteristics of willow plantations and forestry, thanks to which contaminated land can be cleaned up, are analyzed. The potentials of additional land for biomass production, which is currently not used due to its poor productivity characteristics or due to its high contamination with heavy metals, are calculated. Such land cannot be used for food production, therefore the analysis of the effects of an increased land quantity for biomass production is performed and an assessment of its impact on the environment and on the economy is done. Moreover, this chapter deals with the question to what extent the competition issues for land can be resolved by using the multifunctional characteristics of biomass and forestry crops. Chapter 6 deals with material substitution and resource cascading. Two different chemicals are dealt with, that are currently produced using fossil fuels; (1) nylon and (2

  17. Forest biomass and wood waste resources

    Science.gov (United States)

    K. Skog; P. Lebow; D.. Dykstra; P.. Miles; B.J. Stokes; R.D. Perlack; M. Buford; J. Barbour; D. McKeever

    2011-01-01

    This chapter provides estimates of forest biomass and wood waste quantities, as well as roadside costs (i.e., supply curves) for each county in the contiguous United States. Roadside price is the price a buyer pays for wood chips at a roadside in the forest, at a processing mill location in the case of mill residue, or at a landfill for urban wood wastes prior to any...

  18. Potential use of vegetal Biomass as insulation in extreme climates of Ecuador

    Directory of Open Access Journals (Sweden)

    Luis Velasco Roldan

    2015-12-01

    Full Text Available In Ecuador, a factor of great ecological wealth is linked to its tradition in the use of fibers and other organic waste composite character as filler element, reinforcement or insulation in the field of housing construction, which carries great potential under the most viable architecture. The climate variability in Ecuador and the low purchasing power of their inhabitants forced to use local available building materials inexpensive or at no cost, in order to achieve economic and comfortable housing. That is why we have analyzed the presence of natural resources and waste biomass confronting regional building tradition, later superimpose geographically with major climatic variables affecting energy efficiency. This makes it possible to determine what, where and how to use the different biomass resources to allow a response to build that has a strong social, economic, environmental and energy argument in order to facilitate the conditions for access to economic habitat efficient, safe and dignified.

  19. Driftless Area Initiative Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Angie [Northeast Iowa Resource Conservation & Development, Inc., Postville, IA (United States); Bertjens, Steve [Natural Resources Conservation Service, Madison, WI (United States); Lieurance, Mike [Northeast Iowa Resource Conservation & Development, Inc., Postville, IA (United States); Berguson, Bill [Univ. of Minnesota, Minneapolis, MN (United States). Natural Resources Research Inst.; Buchman, Dan [Univ. of Minnesota, Minneapolis, MN (United States). Natural Resources Research Inst.

    2012-12-31

    The Driftless Area Initiative Biomass Energy Project evaluated the potential for biomass energy production and utilization throughout the Driftless Region of Illinois, Iowa, Minnesota and Wisconsin. The research and demonstration aspect of the project specifically focused on biomass energy feedstock availability and production potential in the region, as well as utilization potential of biomass feedstocks for heat, electrical energy production, or combined heat and power operations. The Driftless Region was evaluated because the topography of the area offers more acres of marginal soils on steep slopes, wooded areas, and riparian corridors than the surrounding “Corn Belt”. These regional land characteristics were identified as potentially providing opportunity for biomass feedstock production that could compete with traditional agriculture commodity crops economically. The project researched establishment methods and costs for growing switchgrass on marginal agricultural lands to determine the economic and quantitative feasibility of switchgrass production for biomass energy purposes. The project was successful in identifying the best management and establishment practices for switchgrass in the Driftless Area, but also demonstrated that simple economic payback versus commodity crops could not be achieved at the time of the research. The project also analyzed the availability of woody biomass and production potential for growing woody biomass for large scale biomass energy production in the Driftless Area. Analysis determined that significant resources exist, but costs to harvest and deliver to the site were roughly 60% greater than that of natural gas at the time of the study. The project contributed significantly to identifying both production potential of biomass energy crops and existing feedstock availability in the Driftless Area. The project also analyzed the economic feasibility of dedicated energy crops in the Driftless Area. High commodity crop prices

  20. Potential of water surface-floating microalgae for biodiesel production: Floating-biomass and lipid productivities.

    Science.gov (United States)

    Muto, Masaki; Nojima, Daisuke; Yue, Liang; Kanehara, Hideyuki; Naruse, Hideaki; Ujiro, Asuka; Yoshino, Tomoko; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2017-03-01

    Microalgae have been accepted as a promising feedstock for biodiesel production owing to their capability of converting solar energy into lipids through photosynthesis. However, the high capital and operating costs, and high energy consumption, are hampering commercialization of microalgal biodiesel. In this study, the surface-floating microalga, strain AVFF007 (tentatively identified as Botryosphaerella sudetica), which naturally forms a biofilm on surfaces, was characterized for use in biodiesel production. The biofilm could be conveniently harvested from the surface of the water by adsorbing onto a polyethylene film. The lipid productivity of strain AVFF007 was 46.3 mg/L/day, allowing direct comparison to lipid productivities of other microalgal species. The moisture content of the surface-floating biomass was 86.0 ± 1.2%, which was much lower than that of the biomass harvested using centrifugation. These results reveal the potential of this surface-floating microalgal species as a biodiesel producer, employing a novel biomass harvesting and dewatering strategy. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. The use of corn (ZEA MAYS) biomass in drying process

    International Nuclear Information System (INIS)

    Kricka, T.; Pliestic, S.

    1996-01-01

    The most important agricultural crop in the world, besides wheat and rice is corn. In the last 10 years, Republic of Croatia has produced about 2000000 tons of corn. Most of that is used for food and feed and for seed production and it is 1000000 tons in quantity. This quantity demands between 35000 to 40000 tons of oil. For the reason, this paper describes the possibilities of the substitution of oil with corn biomass after harvesting. (author)

  2. Determining the potential of inedible weed biomass for bio-energy and ethanol production

    Directory of Open Access Journals (Sweden)

    Siripong Premjet

    2013-02-01

    Full Text Available Surveys of indigenous weeds in six provinces located in the low northern part of Thailand were undertaken to determine the potential of weed biomass for bio-energy and bio-ethanol. The results reveal that most of the weed samples had low moisture contents and high lower heating values (LHVs. The LHVs at the highest level, ranging from 17.7 to 18.9 Mg/kg, and at the second highest level, ranging from 16.4 to 17.6 Mg/kg, were obtained from 11 and 31 weed species, respectively. It was found that most of the collected weed samples contained high cellulose and low lignin contents. Additionally, an estimate of the theoretical ethanol yields based on the amount of cellulose and hemicellulose in each weed species indicated that a high ethanol yield resulted from weed biomasses with high cellulose and hemicellulose contents. Among the collected weed species, the highest level of ethanol yield, ranging from 478.9 to 548.5 L/ton (substrate, was achieved from 11 weed species. It was demonstrated that most of the collected weed species tested have the potential for thermal conversion and can be used as substrates for ethanol production.

  3. Washington State biomass data book

    International Nuclear Information System (INIS)

    Deshaye, J.A.; Kerstetter, J.D.

    1991-07-01

    This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs

  4. Cellulolytic and xylanolytic potential of high β-glucosidase-producing Trichoderma from decaying biomass.

    Science.gov (United States)

    Okeke, Benedict C

    2014-10-01

    Availability, cost, and efficiency of microbial enzymes for lignocellulose bioconversion are central to sustainable biomass ethanol technology. Fungi enriched from decaying biomass and surface soil mixture displayed an array of strong cellulolytic and xylanolytic activities. Strains SG2 and SG4 produced a promising array of cellulolytic and xylanolytic enzymes including β-glucosidase, usually low in cultures of Trichoderma species. Nucleotide sequence analysis of internal transcribed spacer 2 (ITS2) region of rRNA gene revealed that strains SG2 and SG4 are closely related to Trichoderma inhamatum, Trichoderma piluliferum, and Trichoderma aureoviride. Trichoderma sp. SG2 crude culture supernatant correspondingly displayed as much as 9.84 ± 1.12, 48.02 ± 2.53, and 30.10 ± 1.11 units mL(-1) of cellulase, xylanase, and β-glucosidase in 30 min assay. Ten times dilution of culture supernatant of strain SG2 revealed that total activities were about 5.34, 8.45, and 2.05 orders of magnitude higher than observed in crude culture filtrate for cellulase, xylanase, and β-glucosidase, respectively, indicating that more enzymes are present to contact with substrates in biomass saccharification. In parallel experiments, Trichoderma species SG2 and SG4 produced more β-glucosidase than the industrial strain Trichoderma reesei RUT-C30. Results indicate that strains SG2 and SG4 have potential for low cost in-house production of primary lignocellulose-hydrolyzing enzymes for production of biomass saccharides and biofuel in the field.

  5. Continuous exposure of pesticides in an aquifer changes microbial biomass, diversity and degradation potential

    DEFF Research Database (Denmark)

    de Lipthay, J. R.; Johnsen, K.; Aamand, J.

    2000-01-01

    We studied in situ effects of pesticide exposure on microbial degradation potential and community structure of aquifer sediments. Sediment samples pre-exposed to pesticides were significantly different to non-exposed control samples. Pre-exposed sediment showed an increased degradation potential ...... towards phenoxyalcanoic acid herbicides as well as impact on microbial diversity was observed. Furthermore, bacterial biomass was changed, e.g. increased numbers of phenoxyalcanoic acid degraders in pesticide exposed sediment.......We studied in situ effects of pesticide exposure on microbial degradation potential and community structure of aquifer sediments. Sediment samples pre-exposed to pesticides were significantly different to non-exposed control samples. Pre-exposed sediment showed an increased degradation potential...

  6. Technical, economic and environmental potential of co-firing of biomass in coal and natural gas fired power plants in the Netherlands

    International Nuclear Information System (INIS)

    Van Ree, R.; Korbee, R.; Eenkhoorn, S.; De Lange, T.; Groenendaal, B.

    2000-01-01

    In this paper the technical, economic, and environmental potential of co-firing of biomass in existing Dutch coal and natural gas fired power plants, and industrial combined-cycles (CC), is addressed. Main criteria that are considered are: the availability and contractibility of biomass for energy purposes; the (technical) operation of the conventional fossil fuel based processes may not be disturbed; the gaseous and liquid plant emissions have to comply to those applicable for power plants/CCs, the commercial applicability of the solid residues may not be negatively influenced; applicable additional biomass conversion technologies must be commercially available; the necessary additional investment costs must be acceptable from an economic point of view, and the co-firing option must result in a substantial CO 2 -emission reduction. The main result of the study described in the paper is the presentation of a clear and founded indication of the total co-firing potential of biomass in existing power plants and industrial CCs in the Netherlands. This potential is determined by considering both technical, economic, and environmental criteria. In spite of the fact that the co-firing potential for the specific Dutch situation is presented, the results of the criteria considered are more generally applicable, and therefore are also very interesting for potential co-firing initiatives outside of the Netherlands

  7. EnerGEO biomass pilot

    International Nuclear Information System (INIS)

    Tum, M.; Guenther, K.P.; McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S.; Biberacher, M.

    2013-01-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  8. EnerGEO biomass pilot

    Energy Technology Data Exchange (ETDEWEB)

    Tum, M.; Guenther, K.P. [German Aerospace Center (DLR), Wessling (Germany). German Remote Sensing Data Center (DFD); McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S. [International Institute for Applied Systems Analysis (IIASA), Laxenburg (Austria); Biberacher, M. [Research Studios Austria AG (RSA), Salzburg (Austria)

    2013-07-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  9. Forest Biomass for Climate Change Mitigation

    DEFF Research Database (Denmark)

    Nielsen, Anders Tærø

    Awareness of elevated CO2 levels in the atmosphere and resulting climate change has increased focus on renewable energy sources during recent decades. Biomass for energy has been predicted to have the greatest potential for CO2 reductions in the short term and the IPCC assumes that the use...... of biomass for energy is CO2 neutral. Several studies have however criticized this CO2 neutrality assumption and questioned whether CO2 reductions actually are achieved through use of biomass for energy. The purpose of this thesis is to investigate the biomass production potential of poplar plantations...... on southern Scandinavian sites, managed under different systems both in agriculture and in forests. In addition, the objective is to assess the potential of the poplar plantations to mitigate climate change by using poplar biomass for substitution of fossil fuels in comparison to a traditional product...

  10. Preliminary analysis of biomass potentially useful for producing biodiesel

    International Nuclear Information System (INIS)

    Cabrera Cifuentes, Gerardo; Burbano Jaramillo, Juan Carlos; Garcia Melo, Jose Isidro

    2011-01-01

    Given that biodiesel is emerging as a viable solution for some energy and environmental problems, research on raw materials appropriate for its production is a matter of growing interest. In this study we present the results of research devoted to preliminary analysis on several vegetable (biomass) species potentially useful for producing biodiesel. The bioprospection zone is a region on the Colombian Pacific coast. The candidate species collected underwent different standardized ASTM tests in order for us to define properties that facilitate their evaluation. Some of the species underwent a transesterification process. Comparisons between the thermo-physical properties of the biofuels obtained and the properties of commercial diesel were carried out. Also, performance tests for these biofuels were conducted in compression ignition engines, particularly evaluating efficiency, fuel consumption, and potency at different RPMs.

  11. ADVANCED BIOMASS REBURNING FOR HIGH EFFICIENCY NOx CONTROL AND BIOMASS REBURNING - MODELING/ENGINEERING STUDIES JOINT FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir M. Zamansky; Mark S. Sheldon; Vitali V. Lissianski; Peter M. Maly; David K. Moyeda; Antonio Marquez; W. Randall Seeker

    2000-10-01

    high efficiency of biomass in reburning are low fuel-N content and high content of alkali metals in ash. These results indicate that the efficiency of biomass as a reburning fuel may be predicted based on its ultimate, proximate, and ash analyses. The results of experimental and kinetic modeling studies were utilized in applying a validated methodology for reburning system design to biomass reburning in a typical coal-fired boiler. Based on the trends in biomass reburning performance and the characteristics of the boiler under study, a preliminary process design for biomass reburning was developed. Physical flow models were applied to specific injection parameters and operating scenarios, to assess the mixing performance of reburning fuel and overfire air jets which is of paramount importance in achieving target NO{sub x} control performance. The two preliminary cases studied showed potential as candidate reburning designs, and demonstrated that similar mixing performance could be achieved in operation with different quantities of reburning fuel. Based upon this preliminary evaluation, EER has determined that reburning and advanced reburning technologies can be successfully applied using biomass. Pilot-scale studies on biomass reburning conducted by EER have indicated that biomass is an excellent reburning fuel. This generic design study provides a template approach for future demonstrations in specific installations.

  12. Energy production from biomass

    International Nuclear Information System (INIS)

    Bestebroer, S.I.

    1995-01-01

    The aim of the task group 'Energy Production from Biomass', initiated by the Dutch Ministry of Economic Affairs, was to identify bottlenecks in the development of biomass for energy production. The bottlenecks were identified by means of a process analysis of clean biomass fuels to the production of electricity and/or heat. The subjects in the process analysis are the potential availability of biomass, logistics, processing techniques, energy use, environmental effects, economic impact, and stimulation measures. Three categories of biomass are distinguished: organic residual matter, imported biomass, and energy crops, cultivated in the Netherlands. With regard to the processing techniques attention is paid to co-firing of clean biomass in existing electric power plants (co-firing in a coal-fired power plant or co-firing of fuel gas from biomass in a coal-fired or natural gas-fired power plant), and the combustion or gasification of clean biomass in special stand-alone installations. 5 figs., 13 tabs., 28 refs

  13. Forest biomass and energy-wood potential in the southern United States

    Energy Technology Data Exchange (ETDEWEB)

    Saucier, J.R. [Forestry Sciences Lab., Athens, GA (United States)

    1993-12-31

    Timber resource data were compiled from the most recent USDA Forest Service inventory data for the 12 Southern States from Virginia to Texas. Timber resource inventories traditionally include only trees 5 inches dbh and greater and their volumes to the prevailing merchantable top diameter expressed in cubic feet, board feet, or cords. For this paper, conversion factors were developed to express timber inventories in weight and to expand the inventories to include the crowns of merchantable trees and trees less than 5 inches dbh. By so doing, the total aboveground biomass is estimated for the timberlands in the South. The region contains 185 million acres of timberland. Some 14.6 billion green tons of woody biomass are present on southern timberland -- about 79 tons per acre. When mature stands are harvested, the average acre in the South has 22.2 tons of woody material left in crowns and sapling, and 5.1 tons in cull stems. Thus, an average of 27.3 green tons per acre of potential energy wood are left after conventional harvests. Conversion factors that are presented permit estimates for specific tracts, areas, counties, or states.

  14. Study of mobilizable agricultural and first fermentation biomass in the PACA region. Methodology and synthesis

    International Nuclear Information System (INIS)

    Charbonnier, Christian; Chailan, Guy; Arnaud, Marie Therese; Bourgade, Beatrice; Bassoleil, Monique; Garcia, Julien; Mouton, Remi; Pourriere, Christine; Gazeau, Gerard

    2009-06-01

    Whereas the PACA region produces less energy than it consumes, this study focusses on the assessment of biomass-based energy production in this region. It aimed at identifying the different agricultural biomass sources which could produce energy, and at assessing, in an objective and realistic way, the valorisation potential of this biomass through combustion or methanization. This assessment was made without compromising existing valorisation activities and while preserving the return to soil of organic materials. Thus, for each considered product, this study aimed at determining whether it has physical-chemical characteristics allowing energy production, which quantity can be mobilised within the region, and at determining technical and possible organisational conditions for its mobilisation. Product sheets are provided. A synthesis proposes a synthetic table, an overview of similar products which can be used for energy production through combustion or methanization, a geographical distribution of these products, an identification of best suitable organisations (collective or individual units), an energy assessment at the regional scale, and an assessment of product availability on the short and medium terms

  15. The potential role of waste biomass in the future urban electricity system

    OpenAIRE

    Jiang, Yu; Werf, van der, Edwin; Ierland, van, Ekko C.; Keesman, Karel J.

    2017-01-01

    The share of intermittent renewable electricity (IRE) in the future urban electricity system is expected to increase significantly. Sufficient back-up capacity is needed in the period when IRE output is low. Bioenergy is both dispatchable and carbon-neutral, and can hence be a promising option to back up IRE. The objective of this study is to explore the potential of urban waste biomass in backing up IRE in an urban electricity system. An urban electricity system model is developed to project...

  16. High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation

    International Nuclear Information System (INIS)

    Cunniff, Jennifer; Purdy, Sarah J.; Barraclough, Tim J.P.; Castle, March; Maddison, Anne L.; Jones, Laurence E.; Shield, Ian F.; Gregory, Andrew S.; Karp, Angela

    2015-01-01

    Willows (Salix spp.) grown as short rotation coppice (SRC) are viewed as a sustainable source of biomass with a positive greenhouse gas (GHG) balance due to their potential to fix and accumulate carbon (C) below ground. However, exploiting this potential has been limited by the paucity of data available on below ground biomass allocation and the extent to which it varies between genotypes. Furthermore, it is likely that allocation can be altered considerably by environment. To investigate the role of genotype and environment on allocation, four willow genotypes were grown at two replicated field sites in southeast England and west Wales, UK. Above and below ground biomass was intensively measured over two two-year rotations. Significant genotypic differences in biomass allocation were identified, with below ground allocation differing by up to 10% between genotypes. Importantly, the genotype with the highest below ground biomass also had the highest above ground yield. Furthermore, leaf area was found to be a good predictor of below ground biomass. Growth environment significantly impacted allocation; the willow genotypes grown in west Wales had up to 94% more biomass below ground by the end of the second rotation. A single investigation into fine roots showed the same pattern with double the volume of fine roots present. This greater below ground allocation may be attributed primarily to higher wind speeds, plus differences in humidity and soil characteristics. These results demonstrate that the capacity exists to breed plants with both high yields and high potential for C accumulation. - Highlights: • SRC willows are a source of biomass and act as carbon (C) sinks. • Biomass allocation was measured in 4 willow genotypes grown in two UK field sites. • The greatest yielding genotype had the greatest below ground biomass at both sites. • Below ground biomass allocation differed by up to 10% between genotypes and 94% between sites. • Environment e.g. wind

  17. Exploiting the Medium Term Biomass Energy Potentials in Austria. A Comparison of Costs and Macroeconomic Impact

    International Nuclear Information System (INIS)

    Steininger, K.W.; Voraberger, H.

    2003-01-01

    The transition to an implicitly solar-based energy system can make use of various specific biomass energy systems. This paper provides economic and environmental indicators for evaluating alternative options. The paper proceeds in three empirical steps. First, an expert survey supplies the primary biomass potentials available for non-food use in Austria and their respective costs. Second, an inquiry into investment, operating and financing costs of 30 different biomass energy use systems allows a standardized comparison among them and their relationship to fossil reference technologies. Third, a computable general equilibrium model of the Austrian economy is employed to quantify the impacts of fostering the use of distinct biomass energy technologies. The results allow us to distinguish between those technologies that tend to lead to an increase in both GDP and employment (e.g., combined heat and power production from sewage sludge biogas), to an increase only in employment, while GDP tends to diminish (e.g., district heating based on agricultural pellets) or to a decline in both (e.g., co-firing based on wood-chips, bark or industrial pellets). Individual technologies could account for up to one third of Austria's Kyoto obligation, while combinations of technologies, triggered by a combined CO2 tax and biomass energy subsidy for example, could almost fully lead to Austrian Kyoto-compliance

  18. The influence of dissolved petroleum hydrocarbon residues on natural phytoplankton biomass

    Digital Repository Service at National Institute of Oceanography (India)

    Shailaja, M.S.

    on phytoplankton biomass varies depending on the nature rather than the quantity of petroleum hydrocarbons present. Culture studies with unialgal Nitzschia sp. in seawater collected from selected stations in the study area as well as in artificial seawater spiked...

  19. Simulated biomass, environmental impacts and best management practices for long-term switchgrass systems in a semi-arid region

    International Nuclear Information System (INIS)

    Wang, Limei; Qian, Yaling; Brummer, Joe E.; Zheng, Jiyong; Wilhelm, Sarah; Parton, William J.

    2015-01-01

    Long-term information on switchgrass (Panicum virgatum L.) as a biomass energy crop grown on marginally saline soil and the associated impacts on soil carbon (C) and nitrogen (N) dynamics, greenhouse gas (GHG) emissions, and best management practices (BMPs) are limited. In this study, we employed the DAYCENT model, based on a 4-year switchgrass field experiment, to evaluate the long-term biomass yield potential and environmental impacts, and further to develop BMPs for switchgrass in a semi-arid region. The model showed that long-term (14-year) annual mean biomass yields were 9.6 and 5.2 Mg ha −1 for irrigated and rainfed switchgrass systems, respectively. The simulated biomass yields correlated well with field-measured biomass with r 2 values of 0.99 and 0.89 for irrigated and rainfed systems, respectively. Soil organic carbon (SOC) and soil total nitrogen (STN) accumulated rapidly after switchgrass establishment, with mean accrual rates of 0.99–1.13 Mg C ha −1  yr −1 and 0.04–0.08 Mg N ha −1  yr −1 , respectively. Based on the outputs of numerous long-term model simulations with variable irrigation water supplies and N rates, the irrigation regime and N rate with the highest yield to input ratio were chosen as BMPs. The DAYCENT model predicted-BMP was irrigating every 14 days at 70% potential evapotranspiration combined with an N rate of 67 kg ha −1  yr −1 . Switchgrass established and produced biomass reasonably well in this semi-arid region; however, appropriate irrigation and N fertilization were needed for optimal biomass yield. Switchgrass had a great potential to sequester C into soils with low N 2 O emissions while supplying significant quantities of biomass for biofuel synthesis. - Highlights: • The DAYCENT model reliably simulated the growth of switchgrass on marginal land. • Long-term biomass and environmental impacts were simulated using the DAYCENT model. • Switchgrass produced biomass well on marginal land, but

  20. Formulation, Pretreatment, and Densification Options to Improve Biomass Specifications for Co-Firing High Percentages with Coal

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; J Richard Hess; Richard D. Boardman; Shahab Sokhansanj; Christopher T. Wright; Tyler L. Westover

    2012-06-01

    There is a growing interest internationally to use more biomass for power generation, given the potential for significant environmental benefits and long-term fuel sustainability. However, the use of biomass alone for power generation is subject to serious challenges, such as feedstock supply reliability, quality, and stability, as well as comparative cost, except in situations in which biomass is locally sourced. In most countries, only a limited biomass supply infrastructure exists. Alternatively, co-firing biomass alongwith coal offers several advantages; these include reducing challenges related to biomass quality, buffering the system against insufficient feedstock quantity, and mitigating the costs of adapting existing coal power plants to feed biomass exclusively. There are some technical constraints, such as low heating values, low bulk density, and grindability or size-reduction challenges, as well as higher moisture, volatiles, and ash content, which limit the co-firing ratios in direct and indirect co-firing. To achieve successful co-firing of biomass with coal, biomass feedstock specifications must be established to direct pretreatment options in order to modify biomass materials into a format that is more compatible with coal co-firing. The impacts on particle transport systems, flame stability, pollutant formation, and boiler-tube fouling/corrosion must also be minimized by setting feedstock specifications, which may include developing new feedstock composition by formulation or blending. Some of the issues, like feeding, co-milling, and fouling, can be overcome by pretreatment methods including washing/leaching, steam explosion, hydrothermal carbonization, and torrefaction, and densification methods such as pelletizing and briquetting. Integrating formulation, pretreatment, and densification will help to overcome issues related to physical and chemical composition, storage, and logistics to successfully co-fire higher percentages of biomass ( > 40

  1. Estimating volume, biomass, and potential emissions of hand-piled fuels

    Science.gov (United States)

    Clinton S. Wright; Cameron S. Balog; Jeffrey W. Kelly

    2009-01-01

    Dimensions, volume, and biomass were measured for 121 hand-constructed piles composed primarily of coniferous (n = 63) and shrub/hardwood (n = 58) material at sites in Washington and California. Equations using pile dimensions, shape, and type allow users to accurately estimate the biomass of hand piles. Equations for estimating true pile volume from simple geometric...

  2. Greenhouse gas emissions of Dutch biomass. Quantification of greenhouse gases emission of Dutch biomass for electricity and heat

    International Nuclear Information System (INIS)

    Koop, K.; Yildiz, I.

    2010-09-01

    The greenhouse gas emissions of all available flows of the biomass chain have been established. This report has the following aims: (1) to establish the greenhouse gas emission of Dutch biomass available for generating electricity and heat; (2) to obtain insight in the opportunities and threats for using the potential of the biomass chains that have the highest potential to reduce greenhouse gas emissions. This report can be seen as a supplement to the report 'Availability of Dutch biomass for electricity and heat in 2020' (2009) [nl

  3. Demonstration of the Viability and Evaluation of Production Costs for Biomass-Infused Coal Briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Kamshad, Kourosh [Coaltek Incorporated, Tucker, GA (United States)

    2014-04-01

    This project was split into four main areas, first to identify the best combination of coal and biomass, second, create and test lab quantity of preferred combinations, Third, create a sizeable quantity for larger scale handling and consuming analysis and fourth, to provide analysis for a commercial scale production capacity. Samples of coal and biomass were collected. Five coals, representing the three major coal ranks, were collected including one bituminous, two sub-bituminous, and two lignite samples. In addition, three square bales (~50 lbs/bale) each of corn Stover and switch grass were collected with one bale of each sample processed through a hammer mill to approximately -5 mesh. A third sample of sawdust was collected once experimentation began at the University of Kentucky. Multiple combinations of coal and biomass; coal, biomass, with biomass binder, were tested until a formulation was identified that could meet the requirement criteria. Based on the results of the binderless briquetting evaluations, the CS/Sub-bit combinations was selected for extended evaluation at a 10% biomass addition rate while the WS/Bitum combination was selected for extended evaluation at a 30% biomass-addition rate. With the final results of the selection process complete, the CoalTek continuous production pilot plant in Tucker GA was outfitted with the specialized blending equipment and two 1/4 ton production runs of biomass and binder subbituminous coal briquettes were completed. These briquettes were later used for a calorific test burn at the University of North Dakota. The first formulation included subbituminous coal, corn stover and a corn starch binder the second formulation included subbituminous coal, wheat stover and corn starch binder.

  4. Measurement of organic carbon quantity at chemoautorophic bacterium; Kagaku dokuritsu eiyo saikin ni okeru yuki tansoryo no sokutei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, I; Kato, K; Nozaki, K [Electrotechnical Laboratory, Tsukuba (Japan); Kurokawa, K [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1996-10-27

    Described herein is the method for analyzing quantity of organic carbon synthesized by chemoautotrophic bacterium. It is based on the combustion-infrared spectroscopy, which is normally adopted for quantitative analysis of organic carbon. The problems involved in the measurement of organic compounds synthesized by iron-oxidizing bacteria are noise by culture medium components, aging of gas analyzer and contamination with organic compounds from a silicon plug. The measures taken in this study against these problems include comparison of the results with a medium containing iron-oxidizing bacteria with those with a medium free of these bacteria, calibration with the standard solution for each measurement, and replacement of a silicone plug by a silicon cap. Organic carbon is measured by a TOC-5000 analyzer equipped with an automatic sample feeder ASI-5000. Biomass density is determined by the MPN method. It is confirmed that organic carbon quantity is almost in proportion to biomass density, a phenomenon which can be used to determine organic carbon quantity. 7 refs., 6 figs., 1 tab.

  5. Bioethanol production potential from Brazilian biodiesel co-products

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Evan Michael; Filho, Delly Oliveira; Martins, Marcio Aredes [Departamento de Engenharia Agricola, Universidade Federal de Vicosa, Campus Universitario 36570-000 Vicosa, MG (Brazil); Steward, Brian L. [Department of Agricultural and Biosystems Engineering, Iowa State University, 214D Davidson Hall, Ames, IA 50011 (United States)

    2011-01-15

    One major problem facing the commercial production of cellulosic ethanol is the challenge of economically harvesting and transporting sufficient amounts of biomass as a feedstock at biorefinery plant scales. Oil extraction for biodiesel production, however, yields large quantities of biomass co-products rich in cellulose, sugar and starch, which in many cases may be sufficient to produce enough ethanol to meet the alcohol demands of the transesterification process. Soybean, castor bean, Jatropha curcas, palm kernel, sunflower and cottonseed were studied to determine ethanol production potential from cellulose found in the oil extraction co-products and also their capacity to meet transesterification alcohol demands. All crops studied were capable of producing enough ethanol for biodiesel production and, in the case of cottonseed, 470% of the transesterification demand could be met with cellulosic ethanol production from oil extraction co-products. Based on Brazilian yields of the crops studied, palm biomass has the highest potential ethanol yield of 108 m{sup 3} km{sup -2} followed by J. curcas with 40 m{sup 3} km{sup -2}. A total of 3.5 hm{sup 3} could be produced from Brazilian soybean oil extraction co-products. (author)

  6. ADVANCED BIOMASS REBURNING FOR HIGH EFFICIENCY NOx CONTROL AND BIOMASS REBURNING - MODELING/ENGINEERING STUDIES JOINT FINAL REPORT; FINAL

    International Nuclear Information System (INIS)

    Vladimir M Zamansky; Mark S. Sheldon; Vitali V. Lissianski; Peter M. Maly; David K. Moyeda; Antonio Marquez; W. Randall Seeker

    2000-01-01

    high efficiency of biomass in reburning are low fuel-N content and high content of alkali metals in ash. These results indicate that the efficiency of biomass as a reburning fuel may be predicted based on its ultimate, proximate, and ash analyses. The results of experimental and kinetic modeling studies were utilized in applying a validated methodology for reburning system design to biomass reburning in a typical coal-fired boiler. Based on the trends in biomass reburning performance and the characteristics of the boiler under study, a preliminary process design for biomass reburning was developed. Physical flow models were applied to specific injection parameters and operating scenarios, to assess the mixing performance of reburning fuel and overfire air jets which is of paramount importance in achieving target NO(sub x) control performance. The two preliminary cases studied showed potential as candidate reburning designs, and demonstrated that similar mixing performance could be achieved in operation with different quantities of reburning fuel. Based upon this preliminary evaluation, EER has determined that reburning and advanced reburning technologies can be successfully applied using biomass. Pilot-scale studies on biomass reburning conducted by EER have indicated that biomass is an excellent reburning fuel. This generic design study provides a template approach for future demonstrations in specific installations

  7. Catalytic routes from biomass to fuels

    DEFF Research Database (Denmark)

    Riisager, Anders

    2014-01-01

    chain unaffected. This presentation will survey the status of biofuels production from different sources, and discuss the sustainability of making transportation fuels from biomass. Furthermore, recently developed chemocatalytic technologies that allow efficient conversion of lignocellulosic biomass...... the chemical industry to find new feasible chemocatalytic routes to convert the components of lignocellulosic plant biomass (green biomass) as well as aquatic biomass (blue biomass) into potential platform chemicals that can replace the fossil based chemicals in order to leave the chemical supply and value...

  8. A Simultaneous Density-Integral System for Estimating Stem Profile and Biomass: Slash Pine and Willow Oak

    Science.gov (United States)

    Bernard R. Parresol; Charles E. Thomas

    1996-01-01

    In the wood utilization industry, both stem profile and biomass are important quantities. The two have traditionally been estimated separately. The introduction of a density-integral method allows for coincident estimation of stem profile and biomass, based on the calculus of mass theory, and provides an alternative to weight-ratio methodology. In the initial...

  9. FY 1984 report on the results of the verification test on the methanol conversion for oil-fired power plant. Survey of the potential quantity supplied of overseas resource (Survey of the potential quantity supplied of methanol); 1984 nendo sekiyu karyoku hatsudensho metanoru tenkan tou jissho shiken kaigai shigen kyokyu kano ryo chosa (Metanoru kyokyu kano ryo chosa) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-03-01

    Based on the results of the survey of the potential quantity supplied of overseas resource which was made from FY 1981 to FY 1983, the paper predicted the world methanol supply plan, changes in the oil situation, economical efficiency of methanol and the competitive power with petroleum products, etc., and studied the time of potential supply, areas of potential supply and supply potential of power generation use methanol during the period toward 2000. In case the comparatively low crude oil price is predicted due to the energy supply/demand (Scenario A), the supply potential of power generation use methanol in four projects on methanol production taken up as trial calculation example is considered very low. Even in case the comparatively high crude oil price is predicted (Scenario C), it is in 1989 that the methanol market price becomes equivalent in heat quantity to the crude oil price. It is difficult to expect the potential before 1989. In case of the intermediate case between Scenario A and Scenario C (Scenario B), it is in 1993 that the methanol price becomes equivalent in heat quantity to the crude oil price. It is difficult to expect the potential before 1993. (NEDO)

  10. Assessment of forest nutrient pools in view of biomass potentials - a case study from Austria oak stands

    Science.gov (United States)

    Yan, S.; Bruckman, V. J.; Glatzel, G.; Hochbichler, E.

    2012-04-01

    As one of the renewable energy forms, bio-energy could help to relieve the pressure which is caused by growing global energy demand. In Austria, large area of forests, traditional utilization of biomass and people's desire to live in a sound environment have supported the positive development of bio-energy. Soil nutrient status is in principle linked with the productivity of the aboveground biomass. This study focuses on K, Ca and Mg pools in soils and aboveground biomass in order to learn more on the temporal dynamics of plant nutrients as indicators for biomass potentials in Quercus dominated forests in northeastern Austria. Three soil types (according to WRB: eutric cambisol, calcic chernozem and haplic luvisol) were considered representative for the area and sampled. We selected nine Quercus petraea dominated permanent plots for this study. Exchangeable cations K, Ca and Mg in the soils were quantified in our study plots. Macronutrients pools of K, Ca and Mg in aboveground biomass were calculated according to inventory data and literature review. The exchangeable cations pool in the top 50 cm of the soil were 882 - 1,652 kg ha-1 for K, 2,661 to 16,510 kg ha-1 for Ca and 320 - 1,850 kg ha-1 for Mg. The nutrient pool in aboveground biomass ranged from 29 to 181 kg ha-1 for K, from 56 to 426 kg ha-1 for Ca and from 4 to 26 kg ha-1 for Mg. The underground exchangeable pools of K, Ca and Mg are generally 10, 22 and 58 times higher than aboveground biomass nutrient pools. Our results showed that the nutrient pools in the mineral soil are sufficient to support the tree growth. The levels of soil nutrients in particular K, Ca and Mg in our study areas are reasonably high and do not indicate the necessity for additional fertilization under current silvicultural practices and biomass extraction rate. The forest in our study areas is in favorable condition to supply biomass as raw material for energy utilization.

  11. Potential and limitations of biomass production for energy purposes: Vegetable oils compared with alcohol

    International Nuclear Information System (INIS)

    Andrade, C.S.; Rosa, L.P.

    1984-01-01

    Since Brazil has favourable conditions for biomass production, as regards land mass, soil and climate, several agricultural products have been proposed as alternatives to petroleum-derived fuels. An analysis is made of the potential and limitations of energy systems using biomass production aimed at the use of vegetable oils in diesel engines compared with the experience acquired in Brazil with alcohol fuel in Otto engines. The current status of the national programme for alcohol production (PNA) within the framework of Brazilian agriculture in the last few years is presented, taking into account its objectives, achievements and impacts. Regarding vegetable oils, it must be emphasized that freight and mass passenger transport is being researched in every aspect - from the agricultural production of oleaginous plants to the use of oils in diesel engines. To assess the potential of oleaginous plant production, land needs for the years 1990 and 2000 have been estimated. From the study of some selected oleaginous plants and their potential expansion in a realistic way it was concluded that the viability of this alternative to diesel oil is limited in the short and medium term compared with alcohol, which provides better conditions for great expansion in the short term. It is believed that the option is viable, provided that it is launched gradually to avoid repeating the negative impacts that (according to some experts) were generated by PNA. (author)

  12. Production of Aspergillus niger biomass on sugarcane distillery wastewater: physiological aspects and potential for biodiesel production.

    Science.gov (United States)

    Chuppa-Tostain, Graziella; Hoarau, Julien; Watson, Marie; Adelard, Laetitia; Shum Cheong Sing, Alain; Caro, Yanis; Grondin, Isabelle; Bourven, Isabelle; Francois, Jean-Marie; Girbal-Neuhauser, Elisabeth; Petit, Thomas

    2018-01-01

    Sugarcane distillery waste water (SDW) or vinasse is the residual liquid waste generated during sugarcane molasses fermentation and alcohol distillation. Worldwide, this effluent is responsible for serious environmental issues. In Reunion Island, between 100 and 200 thousand tons of SDW are produced each year by the three local distilleries. In this study, the potential of Aspergillus niger to reduce the pollution load of SDW and to produce interesting metabolites has been investigated. The fungal biomass yield was 35 g L -1 corresponding to a yield of 0.47 g of biomass/g of vinasse without nutrient complementation. Analysis of sugar consumption indicated that mono-carbohydrates were initially released from residual polysaccharides and then gradually consumed until complete exhaustion. The high biomass yield likely arises from polysaccharides that are hydrolysed prior to be assimilated as monosaccharides and from organic acids and other complex compounds that provided additional C-sources for growth. Comparison of the size exclusion chromatography profiles of raw and pre-treated vinasse confirmed the conversion of humic- and/or phenolic-like molecules into protein-like metabolites. As a consequence, chemical oxygen demand of vinasse decreased by 53%. Interestingly, analysis of intracellular lipids of the biomass revealed high content in oleic acid and physical properties relevant for biodiesel application. The soft-rot fungus A. niger demonstrated a great ability to grow on vinasse and to degrade this complex and hostile medium. The high biomass production is accompanied by a utilization of carbon sources like residual carbohydrates, organic acids and more complex molecules such as melanoidins. We also showed that intracellular lipids from fungal biomass can efficiently be exploited into biodiesel.

  13. Modeling loblolly pine aboveground live biomass in a mature pine-hardwood stand: a cautionary tale

    Science.gov (United States)

    D. C. Bragg

    2011-01-01

    Carbon sequestration in forests is a growing area of interest for researchers and land managers. Calculating the quantity of carbon stored in forest biomass seems to be a straightforward task, but it is highly dependent on the function(s) used to construct the stand. For instance, there are a number of possible equations to predict aboveground live biomass for loblolly...

  14. Co-liquefaction of Elbistan Lignite with Manure Biomass; Part 2 - Effect of Biomass Type, Waste to Lignite Ratio and Solid to Liquid Ratio

    Science.gov (United States)

    Karaca, Hüseyin; Koyunoglu, Cemil

    2017-12-01

    Most coal hydrogenation processes require a large quantity of hydrogen. In general, a coal derived liquid such as anthracene oil was used as a hydrogen donor solvent. Tetralin, partially hydrogenated pyrene, phenantrene and coal-derived solvents, which contain hydroaromatic compounds, are efficient solvents to donate hydrogen. In an attempt to reduce the high cost of hydrogen, part of the hydrogen was replaced by a low cost hydrogen donor solvent. This must be hydrogenated during or before the process and recycled. To reduce the cost of hydrogen donor vehicles instead of liquids recycled from the liquefaction process or several biomass types, industrial by products, liquid fractions derived from oil sands bitumen were successfully used to solubilize a coal from the past. In an attempt to reduce the high cost of hydrogen, part of the hydrogen was replaced by a low cost hydrogen donor solvent. However, when hydrogen is supplied from the hydroaromatic structures present in the solvent, the activity of coal minerals is too low to rehydrogenate the solvent in-situ. Nevertheless, a decrease of using oxygen, in addition to enhanced usage of the hydrogen supply by using various waste materials might lead to a decrease of the cost of the liquefaction procedure. So instead of using tetralin another feeding material such as biomass is becoming another solution improving hydrogen donor substances. Most of the liquefaction process were carried out in a batch reactor, in which the residence time of the liquefaction products is long enough to favour the retrogressive reactions, early studies which are related to liquefaction of coal with biomass generally focus on the synergetic effects of coal while biomass added. Early studies which are related to liquefaction of coal with biomass generally focus on the synergetic effects of coal while biomass added. Alternatively, to understand the hydrogen transfer from biomass to coal, in this study, Elbistan Lignite (EL) with manure, tea

  15. Influence of quantity and lability of sediment organic matter on the biomass of two isoetids, Littorella uniflora and Echinodorus repens

    DEFF Research Database (Denmark)

    Pulido Pérez, Cristina; Lucassen, E.C.H.E.; Pedersen, Ole

    2011-01-01

    of the experiment, plants were harvested and their biomass, tissue nutrient concentration and (for L. uniflora) uprooting force were measured. 3. For both species, all plants survived and showed no signs of stress on all types of sediment. The biomass of E. repens increased as the fraction of organic matter...... was increased (from 6 to 39% of organic content, depending upon sediment type). However, in some of the sediment types, a higher fraction of organic matter led to a decline in biomass. The biomass of L. uniflora was less responsive to organic content and was decreased significantly only when the least labile......P>1. Despite real improvement in the water quality of many previously eutrophic lakes, the recovery of submerged vegetation has been poor. This lack of recovery is possibly caused by the accumulation of organic matter on the top layer of the sediment, which is produced under eutrophic conditions...

  16. Biomass of cocoa and sugarcane

    Science.gov (United States)

    Siswanto; Sumanto; Hartati, R. S.; Prastowo, B.

    2017-05-01

    The role of the agricultural sector is very important as the upstream addressing downstream sectors and national energy needs. The agricultural sector itself is also highly dependent on the availability of energy. Evolving from it then it must be policies and strategies for agricultural development Indonesia to forward particularly agriculture as producers as well as users of biomass energy or bioenergy for national development including agriculture balance with agriculture and food production. Exports of biomass unbridled currently include preceded by ignorance, indifference and the lack of scientific data and potential tree industry in the country. This requires adequate scientific supporting data. This study is necessary because currently there are insufficient data on the potential of biomass, including tree biomasanya detailing the benefits of bioenergy, feed and food is very necessary as a basis for future policy. Measurement of the main estate plants biomass such as cocoa and sugarcane be done in 2015. Measurements were also conducted on its lignocellulose content. Tree biomass sugarcane potential measured consist of leaves, stems and roots, with the weight mostly located on the stem. Nevertheless, not all the potential of the stem is a good raw material for bioethanol. For cocoa turned out leaves more prospective because of its adequate hemicellulose content. For sugarcane, leaf buds contain a good indicator of digestion of feed making it more suitable for feed.

  17. Trading biomass or GHG emission credits?

    NARCIS (Netherlands)

    Laurijssen, J; Faaij, A.P.C.

    2009-01-01

    Global biomass potentials are considerable but unequally distributed over the world. Countries with Kyoto targets could import biomass to substitute for fossil fuels or invest in bio-energy projects in the country of biomass origin and buy the credits (Clean Development Mechanism (CDM) and Joint

  18. Biomass electrochemistry : from cellulose to sorbitol

    NARCIS (Netherlands)

    Kwon, Youngkook

    2013-01-01

    The primary goal of this thesis is to study the potential role of electrochemistry in finding new routes for sustainable chemicals from biomass in aqueous-phase solutions. In order to assess the potential of electrochemistry in biomass conversion, we developed an online HPLC system by using a

  19. Assessment of Biomass Resources in Liberia

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A.

    2009-04-01

    Biomass resources meet about 99.5% of the Liberian population?s energy needs so they are vital to basic welfare and economic activity. Already, traditional biomass products like firewood and charcoal are the primary energy source used for domestic cooking and heating. However, other more efficient biomass technologies are available that could open opportunities for agriculture and rural development, and provide other socio-economic and environmental benefits.The main objective of this study is to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels. It intends to inform policy makers and industry developers of the biomass resource availability in Liberia, identify areas with high potential, and serve as a base for further, more detailed site-specific assessments.

  20. Bio-methanol potential in Indonesia: Forest biomass as a source of bio-energy that reduces carbon emissions

    Energy Technology Data Exchange (ETDEWEB)

    Suntana, Asep S. [Forest Systems and Bio-Energy Program, College of Forest Resources, University of Washington, Box 352100, Seattle, WA 98195-2100 (United States); Indonesian Ecolabeling Institute/Lembaga Ekolabel Indonesia (LEI), Taman Bogor Baru Blok BIV No. 12, Bogor 16152 (Indonesia); Vogt, Kristiina A. [Forest Systems and Bio-Energy Program, College of Forest Resources, University of Washington, Box 352100, Seattle, WA 98195-2100 (United States); Interforest LLC, Holderness, NH 03245 (United States); Renewol LLC, 63260 Overtree Road, Bend, OR 97701 (United States); Turnblom, Eric C. [Forest Biometrics Program, College of Forest Resources, University of Washington, Box 352100, WA 98195-2100 (United States); Upadhye, Ravi [ARU Associates, Pleasanton, CA 94566 (United States)

    2009-11-15

    Since Indonesia has significant land area in different forest types that could be used to produce biofuels, the potential to sustainably collect and convert forest materials to methanol for use in energy production was examined. Using the annually available aboveground forest biomass, from 40 to 168 billion l of bio-methanol could be produced for use as a transportation fuel and/or to supply fuel cells to produce electricity. When a lower forest biomass availability estimate was used to determine how much electricity (methanol fed into fuel cells) could be produced in Indonesia, more than 10 million households or about 12,000 villages (20% of the total rural villages in Indonesia) would be supplied annually with electricity. Collecting forest biomass at the higher end of the estimated available biomass and converting it to methanol to supply fuel cells could provide electricity to more than 42 million households annually. This would be approximately 52,000 villages, or 86% of the total rural villages in Indonesian. When electricity is produced with bio-methanol/fuel cells, it could potentially supply from half to all of the current electricity consumed in Indonesia. By generating electricity using bio-methanol/fuel cells instead of from fossil fuels, from 9 to 38% of the total carbon currently emitted each year in Indonesia could be avoided. In contrast, substituting this same amount of bio-methanol for gasoline could provide all of the annual gasoline needs of Indonesia and contribute towards reducing their carbon emissions by about 8-35%. (author)

  1. Biomass feedstock analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Moilanen, A.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The overall objectives of the project `Feasibility of electricity production from biomass by pressurized gasification systems` within the EC Research Programme JOULE II were to evaluate the potential of advanced power production systems based on biomass gasification and to study the technical and economic feasibility of these new processes with different type of biomass feed stocks. This report was prepared as part of this R and D project. The objectives of this task were to perform fuel analyses of potential woody and herbaceous biomasses with specific regard to the gasification properties of the selected feed stocks. The analyses of 15 Scandinavian and European biomass feed stock included density, proximate and ultimate analyses, trace compounds, ash composition and fusion behaviour in oxidizing and reducing atmospheres. The wood-derived fuels, such as whole-tree chips, forest residues, bark and to some extent willow, can be expected to have good gasification properties. Difficulties caused by ash fusion and sintering in straw combustion and gasification are generally known. The ash and alkali metal contents of the European biomasses harvested in Italy resembled those of the Nordic straws, and it is expected that they behave to a great extent as straw in gasification. Any direct relation between the ash fusion behavior (determined according to the standard method) and, for instance, the alkali metal content was not found in the laboratory determinations. A more profound characterisation of the fuels would require gasification experiments in a thermobalance and a PDU (Process development Unit) rig. (orig.) (10 refs.)

  2. Economics of power generation from imported biomass

    International Nuclear Information System (INIS)

    Lako, P.; Van Rooijen, S.N.M.

    1998-02-01

    Attention is paid to the economics of import of biomass to the Netherlands, and subsequent utilisation for power generation, as a means to reduce dependence on (imported) fossil fuels and to reduce CO2 emission. Import of wood to the extent of 40 PJ or more from Baltic and South American states seems to be readily achievable. Import of biomass has various advantages, not only for the European Union (reduced CO2 emissions) but also for the countries of origin (employment creation). However, possible disadvantages or risks should be taken into account. With that in mind, import of biomass from Baltic states seems very interesting, although it should be noted that in some of those countries the alternative of fuel-switching to biomass seems to be more cost-effective than import of biomass from those countries. Given the expected increase in inland biomass consumption in the Baltic countries and the potential substantial future demand for biomass in other Western European countries it is expected that the biomass supply from Baltic countries will not be sufficient to fulfill the demand. An early focus on import from other countries seems advisable. Several power generation options are available with short to medium term potential and long term potential. The margin between costs of biomass-fuelled power and of coal fired power will be smaller, due to substantial improvements in power generating efficiency and reductions of investment costs of options for power generation from biomass, notably Biomass Gasification Combined Cycle. 18 refs

  3. Hydropower and biomass as renewable energy sources in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, K.

    2001-01-01

    When talking about renewable energy sources today, the most important and economical energy sources for Turkey are hydropower and biomass.The present study gives a review of production, consumption, and economics of hydropower and biomass as renewable energy sources in Turkey. Turkey has a total gross hydropower potential of 433 GW, but only 125 GW of the total hydroelectric potential of Turkey can be economically used. By the commissioning of new hydropower plants, which are under construction, 36% of the economically usable potential of the country could be tapped. On the other hand, biomass (wood and wastes) energy is the second most important renewable energy source for Turkey. However, the biomass energy sources of Turkey are limited. In 1998, the biomass share of the total energy consumption of the country is 10%. In this study, the potential of important biomass energy sources and animal solid wastes of the country were determined. The effects of hydropower and biomass usage on the environment were also discussed. Considering total cereal products and fatty seed plants, approximately 50-60 million tons per year of biomass and 8-10 million tons of solid matter animal waste are produced, and 70% of total biomass is seen as being usable for energy. Some useful suggestions and recommendations are also presented. The present study shows that there is an important potential for hydropower and biomass energy sources in Turkey. (author)

  4. Impacts of biofuels production alternatives on water quantity and quality in the Iowa River Basin

    Science.gov (United States)

    Wu, Y.; Liu, S.

    2012-01-01

    Corn stover as well as perennial grasses like switchgrass (Panicum virgatum) and miscanthus are being considered as candidates for the second generation biofuel feedstocks. However, the challenges to biofuel development are its effects on the environment, especially water quality. This study evaluates the long-term impacts of biofuel production alternatives (e.g., elevated corn stover removal rates and the potential land cover change) on an ecosystem with a focus on biomass production, soil erosion, water quantity and quality, and soil nitrate nitrogen concentration at the watershed scale. The Soil and Water Assessment Tool (SWAT) was modified for setting land cover change scenarios and applied to the Iowa River Basin (a tributary of the Upper Mississippi River Basin). Results show that biomass production can be sustained with an increased stover removal rate as long as the crop demand for nutrients is met with appropriate fertilization. Although a drastic increase (4.7–70.6%) in sediment yield due to erosion and a slight decrease (1.2–3.2%) in water yield were estimated with the stover removal rate ranging between 40% and 100%, the nitrate nitrogen load declined about 6–10.1%. In comparison to growing corn, growing either switchgrass or miscanthus can reduce sediment erosion greatly. However, land cover changes from native grass to switchgrass or miscanthus would lead to a decrease in water yield and an increase in nitrate nitrogen load. In contrast to growing switchgrass, growing miscanthus is more productive in generating biomass, but its higher water demand may reduce water availability in the study area.

  5. Oil palm biomass as a sustainable energy source: A Malaysian case study

    International Nuclear Information System (INIS)

    Shuit, S.H.; Tan, K.T.; Lee, K.T.; Kamaruddin, A.H.

    2009-01-01

    It has been widely accepted worldwide that global warming is by far the greatest threat and challenge in the new millennium. In order to stop global warming and to promote sustainable development, renewable energy is a perfect solution to achieve both targets. Presently million hectares of land in Malaysia is occupied with oil palm plantation generating huge quantities of biomass. In this context, biomass from oil palm industries appears to be a very promising alternative as a source of raw materials including renewable energy in Malaysia. Thus, this paper aims to present current scenario of biomass in Malaysia covering issues on availability and sustainability of feedstock as well as current and possible utilization of oil palm biomass. This paper will also discuss feasibility of some biomass conversion technologies and some ongoing projects in Malaysia related to utilization of oil palm biomass as a source of renewable energy. Based on the findings presented, it is definitely clear that Malaysia has position herself in the right path to utilize biomass as a source of renewable energy and this can act as an example to other countries in the world that has huge biomass feedstock. (author)

  6. Methanol from biomass: A technoeconomic analysis

    International Nuclear Information System (INIS)

    Stevens, D.J.

    1991-01-01

    Biomass-derived methanol offers significant potential as an alternative transportation fuel. Methanol is cleaner burning and has a lower flame temperature than gasoline. These characteristics can result in lower carbon monoxide and nitrogen oxide emissions when methanol is used as a fuel. Methanol produced from biomass offers potential advantages over that from other sources. When produced from biomass which is subsequently regrown, methanol does not contribute net emissions of carbon dioxide, a greenhouse gas, to the atmosphere. The introduction of alternative fuels will likely be driven by a number of political and economic decisions. The ability of biomass to compete with other resources will be determined in part by the economics of the production systems. In this paper, recent technoeconomic analyses of biomass-methanol systems are presented. The results are compared with methanol production from coal and natural gas

  7. Production of methanol/DME from biomass

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Münster-Swendsen, Janus

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier...... cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51...... gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic...

  8. Estimating Swedish biomass energy supply

    International Nuclear Information System (INIS)

    Johansson, J.; Lundqvist, U.

    1999-01-01

    Biomass is suggested to supply an increasing amount of energy in Sweden. There have been several studies estimating the potential supply of biomass energy, including that of the Swedish Energy Commission in 1995. The Energy Commission based its estimates of biomass supply on five other analyses which presented a wide variation in estimated future supply, in large part due to differing assumptions regarding important factors. In this paper, these studies are assessed, and the estimated potential biomass energy supplies are discusses regarding prices, technical progress and energy policy. The supply of logging residues depends on the demand for wood products and is limited by ecological, technological, and economic restrictions. The supply of stemwood from early thinning for energy and of straw from cereal and oil seed production is mainly dependent upon economic considerations. One major factor for the supply of willow and reed canary grass is the size of arable land projected to be not needed for food and fodder production. Future supply of biomass energy depends on energy prices and technical progress, both of which are driven by energy policy priorities. Biomass energy has to compete with other energy sources as well as with alternative uses of biomass such as forest products and food production. Technical progress may decrease the costs of biomass energy and thus increase the competitiveness. Economic instruments, including carbon taxes and subsidies, and allocation of research and development resources, are driven by energy policy goals and can change the competitiveness of biomass energy

  9. Quality and Quantity of Particulate Organic Carbon in a Coral Reef at Tioman Island, Malaysia

    International Nuclear Information System (INIS)

    Nakajima, R.; Toda, T.; Shibata, A.

    2011-01-01

    The quality and quantity of particulate organic carbon (POC) were investigated in a fringing coral reef of Tioman Island, Malaysia to better understand the food sources for reef meso-zooplankton. Phytoplankton biomass in the water column was on average 0.22 (± 0.07) mg Chl-a m-3, of which pico phytoplankton was the most important (size <3 μm, 50-70 % of the total Chl-a). The proportion of C biomass by phytoplankton and other plankton to particulate organic carbon (POC) was low (6 % and 5 %, respectively) and the major portion of POC was occupied by detritus (89 %), suggesting that the diet of particle-feeding or suspension feeding meso-zooplankton would chiefly consist of detritus. (author)

  10. Carbon sequestration rate and aboveground biomass carbon potential of three young species in lower Gangetic plain.

    Science.gov (United States)

    Jana, Bipal K; Biswas, Soumyajit; Majumder, Mrinmoy; Roy, Pankaj K; Mazumdar, Asis

    2011-07-01

    Carbon is sequestered by the plant photosynthesis and stored as biomass in different parts of the tree. Carbon sequestration rate has been measured for young species (6 years age) of Shorea robusta at Chadra forest in Paschim Medinipur district, Albizzia lebbek in Indian Botanic Garden in Howrah district and Artocarpus integrifolia at Banobitan within Kolkata in the lower Gangetic plain of West Bengal in India by Automated Vaisala Made Instrument GMP343 and aboveground biomass carbon has been analyzed by CHN analyzer. The specific objective of this paper is to measure carbon sequestration rate and aboveground biomass carbon potential of three young species of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia. The carbon sequestration rate (mean) from the ambient air during winter season as obtained by Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 11.13 g/h, 14.86 g/h and 4.22g/h, respectively. The annual carbon sequestration rate from ambient air were estimated at 8.97 t C ha(-1) by Shorea robusta, 11.97 t C ha(-1) by Albizzia lebbek and 3.33 t C ha(-1) by Artocarpus integrifolia. The percentage of carbon content (except root) in the aboveground biomass of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 47.45, 47.12 and 43.33, respectively. The total aboveground biomass carbon stock per hectare as estimated for Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 5.22 t C ha(-1) , 6.26 t C ha(-1) and 7.28 t C ha(-1), respectively in these forest stands.

  11. Potential impacts of biomass production in the United States on biological diversity

    International Nuclear Information System (INIS)

    Cook, J.H.; Beyea, J.; Keeler, K.H.

    1991-01-01

    This paper reports that biomass could be a renewable source of energy and chemicals that would not add CO 2 to the atmosphere. It will become economically competitive as its cost decreases relative to energy costs, and biotechnology is expected to accelerate this trend by increasing biomass productivity. Pressure to slow global warming may also make biomass more attractive. Substantial dependence on biomass would entail massive changes in land use, risking serious reductions in biodiversity through destruction of habitat for native species. Forests could be managed and harvested more intensively, and virtually all arable land unsuitable for high-value agriculture or silviculture might be used to grow energy crops. The authors estimate that it would require an area equal to that farmed in 1988, about 130 million hectares, just to supply the United States with transportation fuel. Planning at micro to macro scales will be crucial to minimize the ecological impacts of producing biomass. Cropping and harvesting systems will need to provide the spatial and temporal diversity characteristics of natural ecosystems and successional sequences. To maximize habitat value for interior-dependent species, it will be essential to maintain the connectivity of the habitat network, both within biomass farms and to surrounding undisturbed areas

  12. Food and biomass potential of Prunus virginiana L. (chokecherry).

    Science.gov (United States)

    Wang, Sunmin; Young, Lester; Faye, Amberly; Li, Bonnie; Clancy, Johanna; Bors, Bob; Reaney, Martin

    2012-03-14

    Prunus virginiana L. (chokecherry) fruit has potential to provide both food and energy and as annual yield of biomass and energy are much greater than annual crops such as canola and wheat. We determined chokecherry fruit weight fractions as well as pit and extracted seed oil concentrations and fatty acid composition. Gross energy for each of the fractions was determined, as were carbon and nitrogen content. Extrapolation of these data suggests that gross energy from pits alone over a 24-year period (890 GJ·ha(-1)) is equivalent to that from an entire canola/wheat rotation (850 GJ·ha(-1)). After maturity, pulp contributes an additional 1130 GJ·ha(-1) over 21 years from ~3.4 t·ha(-1)·year(-1) (dw), while wood from pruning could add another 60 GJ·ha(-1)·year(-1). Over this time period, chokecherry would produce 1.5-2.5 times the amount of oil produced by a canola/wheat rotation.

  13. Distribution and potential of bioenergy resources from agricultural activities in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Valdez-Vazquez, Idania; Acevedo-Benitez, Jorge A. [Lab. of Environmental Biotechnology and Biofuels, Deparment of Marine Biotechnology, CICESE. Km 107 Carretera Tijuana-Ensenada, 22860 Ensenada, Baja California (Mexico); Hernandez-Santiago, Cuitlahuac [Universidad del Mar, Ciudad Universitaria, Puerto Angel, San Pedro Pochutla 70902, Oaxaca (Mexico)

    2010-09-15

    Biomass is the most abundant and versatile form of renewable energy in the world. The bioenergy production from crop residues is compatible with both food and energy production. Currently, several technologies are available for transforming crop residues into utilizable energy such as direct combustion and fermentation. Mexico is the third largest country in LAC in terms of the cropland area and would become a central focus of attention for the production of biofuels. In this paper we examined the type, location and quantities of various crop residues in Mexico to evaluate their potential for conversion into bioenergy through combustion and fermentation. It was estimated that 75.73 million tons of dry matter was generated from 20 crops in Mexico. From this biomass, 60.13 million tons corresponds to primary crop residues mainly from corn straw, sorghum straw, tops/leaves of sugarcane and wheat straw. The generation of secondary crop residues accounted for 15.60 million tons to which sugarcane bagasse, corncobs, maguey bagasse and coffee pulp were the main contributors. The distribution of this biomass showed that several Mexican municipalities had very high by-product potentials where each municipality could have an installed capacity of 78 MW (via direct combustion) or 0.3 million m{sup 3} of bioethanol per year (via anaerobic fermentation). The identification of these municipalities where the biomass potential is high is important since it constitutes the first step towards evaluating the current biomass availability and accurately estimating the bioenergy production capacity from crop residues. (author)

  14. Potentials of Selected Malaysian Biomasses as Co-Gasification Fuels with Oil Palm Fronds in a Fixed-Bed Downdraft Gasifier

    Directory of Open Access Journals (Sweden)

    Moni Mohamad Nazmi Zaidi

    2014-07-01

    Full Text Available Oil palm frond (OPF has been successfully gasified to produce syngas and has since deemed as a potential source of biomass fuel in Malaysia. However, if OPF is to be utilized as a main fuel for industrial-scale firing/gasification plant, interruption in fuel supply may occur due to numerous reasons, for instance inefficient fuel processing and ineffective transportation. A secondary supporting solid fuel is therefore necessary as a partial component to the main fuel in such cases, where the secondary fuel is combusted with the main fuel to adhere to main fuel shortage. Gasification of two fuels together, known as co-gasification, is practiced worldwide, some in industrial scale. However, current practice utilizes biomass fuel as the secondary fuel to coal in co-gasification. This investigation explores into the feasibility of co-gasifying two biomass fuels together to produce syngas. OPF was chosen as the primary fuel and a selection of Malaysian biomasses were studied to discover their compatibility with OPF in co-gasification. Biomass selection was made using score-and-rank method and their selection criteria are concisely discussed.

  15. Biomass for energy from field crops

    Energy Technology Data Exchange (ETDEWEB)

    Zubr, J.

    1988-01-01

    On the basis of a field experiment, selected crops were evaluated for feasibility in producing biomass applicable as raw material for fuels. Both the main products and byproducts of the crops were investigated in the laboratory for qualitative characteristics and were subjected to methanogenic fermentation under mesophilic conditions. The biogas energy potential and gross energy potential were determined. Under the climatic conditions of Northern Europe, sugar beet (Beta vulgaris) was found to be a superior energy crop. White cabbage (Brassica oleracea var. Capitata), rhubarb (Rheum rhaponticum) and comfrey (Symphytum asperum) can be considered as potential crops for biomass. The agrotechnical and the economic aspects of the biomass production are being subjected to further investigation.

  16. GIS-based assessment of the biomass potential from phytoremediation of contaminated agricultural land in the Campine region in Belgium

    International Nuclear Information System (INIS)

    Schreurs, Eloi; Voets, Thomas; Thewys, Theo

    2011-01-01

    Dedicated energy crop cultivation is expected to be the prevalent form of biomass production for reaching renewable energy targets set by the European Union. However, there are some concerns with regard to its sustainability. This study demonstrates how this problem can be evaded by applying phytoremediation, i.e. the use of plants to remove pollutants from moderately contaminated soils. By selecting the appropriate plants a considerable biomass flow is produced without taking in scarce agricultural land, while simultaneously remediating the soil to levels of contamination below threshold values. Since phytoremediation is only applicable within a limited range of soil pollutant concentrations, the outer values of this range have to be determined at first. Subsequently, a Geographic Information System (GIS) is needed to perform further analyses. The contamination in the region is predicted using GIS, after which the agricultural area is determined that can be committed to energy crop cultivation. This way, the biomass potential and the resulting bioenergy potential from phytoremediation can be assessed. In this paper the Campine region in Belgium, a region diffusely contaminated with heavy metals like cadmium (Cd), is examined. It is illustrated that more than 2000 ha of agricultural land hold Cd concentrations exceeding guide values set by the Flemish Government. However, a large majority of these soils can be remediated by phytoremediation within a reasonable time span of 42 years. Concurrently, a significant amount of biomass is supplied for renewable energy production. -- Highlights: → More than 2000 ha of agricultural land have elevated Cd concentrations. → 87% can be remediated within 42 years by phytoremediation. → Annual biomass flow of 19 067 Mg for 21 years.

  17. Forest soil carbon is threatened by intensive biomass harvesting.

    Science.gov (United States)

    Achat, David L; Fortin, Mathieu; Landmann, Guy; Ringeval, Bruno; Augusto, Laurent

    2015-11-04

    Forests play a key role in the carbon cycle as they store huge quantities of organic carbon, most of which is stored in soils, with a smaller part being held in vegetation. While the carbon storage capacity of forests is influenced by forestry, the long-term impacts of forest managers' decisions on soil organic carbon (SOC) remain unclear. Using a meta-analysis approach, we showed that conventional biomass harvests preserved the SOC of forests, unlike intensive harvests where logging residues were harvested to produce fuelwood. Conventional harvests caused a decrease in carbon storage in the forest floor, but when the whole soil profile was taken into account, we found that this loss in the forest floor was compensated by an accumulation of SOC in deeper soil layers. Conversely, we found that intensive harvests led to SOC losses in all layers of forest soils. We assessed the potential impact of intensive harvests on the carbon budget, focusing on managed European forests. Estimated carbon losses from forest soils suggested that intensive biomass harvests could constitute an important source of carbon transfer from forests to the atmosphere (142-497 Tg-C), partly neutralizing the role of a carbon sink played by forest soils.

  18. Social cost pricing of fossil fuels used in the production of electricity: implications to biomass feasibility

    International Nuclear Information System (INIS)

    Dillivan, K.D.; English, B.C.

    1997-01-01

    The primary objective of this study is to investigate full social pricing for fossil fuels and the subsequent effect on biomass quantities in the state of Tennessee. The first step is to estimate the full social costs and then to estimate the effects of their internalization. Other objectives are (1) investigate whether or not market imperfections exist, (2) if they exist, how should full social cost pricing be estimated, (3) what other barriers help fossil fuels stay economically attractive and prevent biomass from competing, (4) estimating the demand for biomass, and (5) given this demand for biomass, what are the implications for farmers and producers in Tennessee. (author)

  19. Macroalgae as a Biomass Feedstock: A Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roesijadi, Guritno; Jones, Susanne B.; Snowden-Swan, Lesley J.; Zhu, Yunhua

    2010-09-26

    A thorough of macroalgae analysis as a biofuels feedstock is warranted due to the size of this biomass resource and the need to consider all potential sources of feedstock to meet current biomass production goals. Understanding how to harness this untapped biomass resource will require additional research and development. A detailed assessment of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with existing energy supply chains, and the associated economic and life cycle analyses will facilitate evaluation of this potentially important biomass resource.

  20. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K; Keraenen, H [Enviropower Inc., Espoo (Finland)

    1997-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  1. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K.; Keraenen, H. [Enviropower Inc., Espoo (Finland)

    1996-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  2. Potential availability of urban wood biomass in Michigan: Implications for energy production, carbon sequestration and sustainable forest management in the U.S.A

    International Nuclear Information System (INIS)

    MacFarlane, David W.

    2009-01-01

    Tree and wood biomass from urban areas is a potentially large, underutilized resource viewed in the broader social context of biomass production and utilization. Here, data and analysis from a regional study in a 13-county area of Michigan, U.S.A. are combined with data and analysis from several other studies to examine this potential. The results suggest that urban trees and wood waste offer a modest amount of biomass that could contribute significantly more to regional and national bio-economies than it does at present. Better utilization of biomass from urban trees and wood waste could offer new sources of locally generated wood products and bio-based fuels for power and heat generation, reduce fossil fuel consumption, reduce waste disposal costs and reduce pressure on forests. Although wood biomass generally constitutes a 'carbon-neutral' fuel, burning rather than burying urban wood waste may not have a net positive effect on reducing atmospheric CO 2 levels, because it may reduce a significant long term carbon storage pool. Using urban wood residues for wood products may provide the best balance of economic and environmental values for utilization

  3. Biomass as a modern fuel

    International Nuclear Information System (INIS)

    Hall, D.O.; House, J.

    1994-01-01

    Case studies are presented for several developed and developing countries. Constraints involved in modernising biomass energy and the potential for turning them into entrepreneurial opportunities are discussed. It is concluded that the long term impacts of biomass programmes and projects depend mainly on ensuring sustainability, flexibility and replicability while taking account of local conditions and providing multiple benefits. Implementation of biomass projects requires governmental policy initiatives that will internalise the external economic, social and environmental costs of conventional fuel sources so that biomass fuels can become competitive on a ''level playing field''. Policies are also required to encourage R and D and commercialisation of biomass energy programs in close co-ordination with the private sector. (author)

  4. Effects of pre-treatment technologies on quantity and quality of source-sorted municipal organic waste for biogas recovery

    DEFF Research Database (Denmark)

    Hansen, Trine Lund; Jansen, J.l.C.; Davidsson, Å.

    2007-01-01

    , collection bag material (plastic or paper) and easily degradable organic matter. Furthermore, the particle size of the biomass was related to the pre-treatment technology. The content of plastic in the biomass depended both on the actual collection bag material used in the system and the pre......Source-sorted municipal organic waste collected from different dwelling types in five Danish cities and pre-treated at three different plants was sampled and characterized several times during one year to investigate the origin of any differences in composition of the pre-treated waste introduced...... by city, pre-treatment technology, dwelling type or annual season. The investigated pre-treatment technologies were screw press, disc screen and shredder + magnet. The average quantity of pre-treated organic waste (biomass) produced from the incoming waste varied between the investigated pre...

  5. Assessment of Biomass Resources in Afghanistan

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A.; Overend, R.

    2011-01-01

    Afghanistan is facing many challenges on its path of reconstruction and development. Among all its pressing needs, the country would benefit from the development and implementation of an energy strategy. In addition to conventional energy sources, the Afghan government is considering alternative options such as energy derived from renewable resources (wind, solar, biomass, geothermal). Biomass energy is derived from a variety of sources -- plant-based material and residues -- and can be used in various conversion processes to yield power, heat, steam, and fuel. This study provides policymakers and industry developers with information on the biomass resource potential in Afghanistan for power/heat generation and transportation fuels production. To achieve this goal, the study estimates the current biomass resources and evaluates the potential resources that could be used for energy purposes.

  6. Theme E: Forest Biomass and Bioenergy

    DEFF Research Database (Denmark)

    Bentsen, Niclas Scott; Stupak, Inge; Smith, C

    2014-01-01

    Several countries in the world have policies for increased use of biomass for energy and biomaterials. It is likely that such policies will lead to increased international demand for wood and increased pressure on the world’s forests. Concerns for forest sustainability have been expressed, especi...... challenges in the different regions for consideration by institutions developing energy biomass sourcing polices and biomass sustainability criteria in the public and private sector......., especially in the EU and its biomass importing countries. As countries and companies search worldwide for new biomass sourcing areas, there is a need to review and compare the biomass potentials in different regions and the associated forest sustainability challenges. We reviewed the literature to assess...

  7. Production of methanol/DME from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Birk Henriksen, U.; Muenster-Swendsen, J.; Fink, A.; Roengaard Clausen, L.; Munkholt Christensen, J.; Qin, K.; Lin, W.; Arendt Jensen, P.; Degn Jensen, A.

    2011-07-01

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier types have been investigated in this project: 1) The Two-Stage Gasifier (Viking Gasifier), designed to produce a very clean gas to be used in a gas engine, has been connected to a lab-scale methanol plant, to prove that the gas from the gasifier could be used for methanol production with a minimum of gas cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51-58% (LHV). By using waste heat from the plants for district heating, the total energy efficiencies could reach 87-88% (LHV). 2) A lab-scale electrically heated entrained flow gasifier has been used to gasify wood and straw. Entrained flow gasifiers are today the preferred gasifier type for commercial coal gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic fraction of the biomass that is not converted to gas appears as soot. Thermodynamic computer models of DME and methanol plants based on using entrained flow gasification were created to show the potential of such plants. These models showed that the potential torrefied biomass to DME/methanol + net electricity energy efficiency was 65-71% (LHV). Different routes to produce liquid transport fuels from biomass are possible. They include production of RME (rapeseed oil

  8. Pellets for Power: sustainable biomass import from Ukraine : public final report

    NARCIS (Netherlands)

    Elbersen, H.W.; Poppens, R.P.; Lesschen, J.P.; Sluis, van der T.; Galytska, M.; Kulyk, M.; Jamblinne, de P.; Kraisvitnii, P.; Rii, O.; Hoekstra, T.

    2013-01-01

    This project responds to the mismatch between on the one hand a growing demand for biomass on the Dutch and EU energy markets with a limited biomass potential and on the other hand large amounts of biomass and biomass potential currently underutilised in Ukraine. Ukraine itself is seen as a very

  9. The Regional Biomass-Energy Agency (ERBE): an opportunity for the biomass-energy development in Wallonia

    International Nuclear Information System (INIS)

    Lemaire, P.; Menu, J.F.; Belle, J.F. van; Schenkel, Y.

    1997-01-01

    In 1995, the European Commission (Directorate-General for Energy) and the Walloon government set up a biomass-energy agency (ERBE), to promote and build biomass-energy projects in Wallonia (Belgium). A survey of biomass-energy potential indicates that wood-energy seems to offer the best utilization opportunities. Forest and logging residues, sawmills' and joineries' off-cuts, pallets residues, etc. could be burnt in wood district heating units with a significant social benefit. Consequently, the ERBE Agency is trying to set up projects in this way in Austria (+/- 100 wood heating systems) or in Sweden. It serves to inform industries and municipalities about biomass-energy, to advise them in the building of biomass-energy projects, to identify their energy needs and their biomass resources, to carry out prefeasibility studies, to inform them about financing opportunities, and so on. (author)

  10. Carbon Fiber from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, Anelia [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States); Booth, Samuel [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States)

    2016-09-01

    Carbon fiber (CF), known also as graphite fiber, is a lightweight, strong, and flexible material used in both structural (load-bearing) and non-structural applications (e.g., thermal insulation). The high cost of precursors (the starting material used to make CF, which comes predominately from fossil sources) and manufacturing have kept CF a niche market with applications limited mostly to high-performance structural materials (e.g., aerospace). Alternative precursors to reduce CF cost and dependence on fossil sources have been investigated over the years, including biomass-derived precursors such as rayon, lignin, glycerol, and lignocellulosic sugars. The purpose of this study is to provide a comprehensive overview of CF precursors from biomass and their market potential. We examine the potential CF production from these precursors, the state of technology and applications, and the production cost (when data are available). We discuss their advantages and limitations. We also discuss the physical properties of biomass-based CF, and we compare them to those of polyacrylonitrile (PAN)-based CF. We also discuss manufacturing and end-product considerations for bio-based CF, as well as considerations for plant siting and biomass feedstock logistics, feedstock competition, and risk mitigation strategies. The main contribution of this study is that it provides detailed technical and market information about each bio-based CF precursor in one document while other studies focus on one precursor at a time or a particular topic (e.g., processing). Thus, this publication allows for a comprehensive view of the CF potential from all biomass sources and serves as a reference for both novice and experienced professionals interested in CF production from alternative sources.

  11. Importance of interactions between food quality, quantity, and gut transit time on consumer feeding, growth, and trophic dynamics.

    Science.gov (United States)

    Mitra, Aditee; Flynn, Kevin J

    2007-05-01

    Ingestion kinetics of animals are controlled by both external food availability and feedback from the quantity of material already within the gut. The latter varies with gut transit time (GTT) and digestion of the food. Ingestion, assimilation efficiency, and thus, growth dynamics are not related in a simple fashion. For the first time, the important linkage between these processes and GTT is demonstrated; this is achieved using a biomass-based, mechanistic multinutrient model fitted to experimental data for zooplankton growth dynamics when presented with food items of varying quality (stoichiometric composition) or quantity. The results show that trophic transfer dynamics will vary greatly between the extremes of feeding on low-quantity/high-quality versus high-quantity/low-quality food; these conditions are likely to occur in nature. Descriptions of consumer behavior that assume a constant relationship between the kinetics of grazing and growth irrespective of food quality and/or quantity, with little or no recognition of the combined importance of these factors on consumer behavior, may seriously misrepresent consumer activity in dynamic situations.

  12. GIS-Based Suitability Model for Assessment of Forest Biomass Energy Potential in a Region of Portugal

    Science.gov (United States)

    Quinta-Nova, Luis; Fernandez, Paulo; Pedro, Nuno

    2017-12-01

    This work focuses on developed a decision support system based on multicriteria spatial analysis to assess the potential for generation of biomass residues from forestry sources in a region of Portugal (Beira Baixa). A set of environmental, economic and social criteria was defined, evaluated and weighted in the context of Saaty’s analytic hierarchies. The best alternatives were obtained after applying Analytic Hierarchy Process (AHP). The model was applied to the central region of Portugal where forest and agriculture are the most representative land uses. Finally, sensitivity analysis of the set of factors and their associated weights was performed to test the robustness of the model. The proposed evaluation model provides a valuable reference for decision makers in establishing a standardized means of selecting the optimal location for new biomass plants.

  13. Field biomass as energy resource for the future; Peltobiomassat tulevaisuuden energiaresurssina

    Energy Technology Data Exchange (ETDEWEB)

    Pahkala, K.; Loetjoenen, T. (eds.)

    2012-11-01

    area left over for energy crops, and already with mixed diet even with the 'good development' scenario, less than half or even none of the field area could be allocated to energy crops in many of the studied countries. In the future the situation may become more favorable for production of biomasses for energy, if plant breeding is successful and also cultivation and procession technologies proceed favorably. In some countries, especially in the north, also climate change may increase production potential. At the same time, the population may not increase much in the countries studied here, which together with favorable development may free field area from food production. Residues of field crops unsuitable for food or fodder could be used as raw material for bioenergy. The largest available source (70-90%) of potential field crop residue material is straw of cereals. The biggest producers of cereals and thus straw for bioenergy are (in order of production quantity) France, Germany, Great Britain, Italy and Spain in Western Europe and Russia (European part), Ukraine and Poland in Eastern Europe. The presently quite modest yields and thus bioenergy potential of cereal straw of Ukraine and Russia are expected to increase considerably in the near future. In the Nordic countries, the largest field crop residue potential is in Denmark. A major constraint in adopting usage of straw material for bioenergy is the maintenance of soil organic matter and productivity. In the present study we assumed that 50% of the potential straw biomass was left in the field to improve soil quality. Differences in growth conditions, soil quality and soil type and texture complicate estimates of residue potential, but on general at least 20-30% of the potential straw residue could be used for bioenergy. In the big agricultural countries in Europe this would translate into 20-75 TWh of technically available and economically feasible bioenergy potential annually. Also in Finland, field

  14. Is torrefaction of polysaccharides-rich biomass equivalent to carbonization of lignin-rich biomass?

    Science.gov (United States)

    Bilgic, E; Yaman, S; Haykiri-Acma, H; Kucukbayrak, S

    2016-01-01

    Waste biomass species such as lignin-rich hazelnut shell (HS) and polysaccharides-rich sunflower seed shell (SSS) were subjected to torrefaction at 300°C and carbonization at 600°C under nitrogen. The structural variations in torrefied and carbonized biomasses were compared. Also, the burning characteristics under dry air and pure oxygen (oxy-combustion) conditions were investigated. It was concluded that the effects of carbonization on HS are almost comparable with the effects of torrefaction on SSS in terms of devolatilization and deoxygenation potentials and the increases in carbon content and the heating value. Consequently, it can be proposed that torrefaction does not provide efficient devolatilization from the lignin-rich biomass while it is relatively more efficient for polysaccharides-rich biomass. Heat-induced variations in biomass led to significant changes in the burning characteristics under both burning conditions. That is, low temperature reactivity of biomass reduced considerably and the burning shifted to higher temperatures with very high burning rates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Modelling the potential consequences of future worldwide biomass energy demand for the french forests and timber

    International Nuclear Information System (INIS)

    Buongiorno, Joseph; Raunikar, Ronald; Zhu, Shushuai

    2011-01-01

    This article describes an investigation conducted, using a world model for the forestry and forest-based industries, on the effects of the current unpredictable changes in worldwide demand for biomass energy on this sector in France. Two contrasting scenarios are tested. The results are commented and the potential conflict between various would uses - workable timber, industrial timber and dendro-energy - is underscored. (authors)

  16. 2007 Biomass Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    The Biomass Program is actively working with public and private partners to meet production and technology needs. With the corn ethanol market growing steadily, researchers are unlocking the potential of non-food biomass sources, such as switchgrass and forest and agricultural residues. In this way, the Program is helping to ensure that cost-effective technologies will be ready to support production goals for advanced biofuels.

  17. Investigation into the applicability of Bond Work Index (BWI) and Hardgrove Grindability Index (HGI) tests for several biomasses compared to Colombian La Loma coal

    OpenAIRE

    Williams, Orla; Eastwick, Carol; Kingman, Sam; Giddings, Donald; Lormor, Stephen; Lester, Edward

    2015-01-01

    With increasing quantities of biomass being combusted in coal fired power stations, there is an urgent need to be able to predict the grindability of biomass in existing coal mills, but currently no standard biomass grindability test exists. In this study, the applicability of the Hardgrove Grindability Index (HGI) and Bond Work Index (BWI) as standard grindability tests for biomass were investigated for commercially sourced wood pellets, steam exploded pellets, torrefied pellets, sunflower p...

  18. The regional environmental impact of biomass production

    International Nuclear Information System (INIS)

    Graham, R.L.

    1994-01-01

    The objective of this paper is to present a broad overview of the potential environmental impacts of biomass energy from energy crops. The subject is complex because the environmental impact of using biomass for energy must be considered in the context of alternative energy options while the environmental impact of producing biomass from energy crops must be considered in the context of the alternative land-uses. Using biomass-derived energy can reduce greenhouse gas emissions or increase them; growing biomass energy crops can enhance soil fertility or degrade it. Without knowing the context of the biomass energy, one can say little about its specific environmental impacts. The primary focus of this paper is an evaluation of the environmental impacts of growing energy crops. I present an approach for quantitatively evaluating the potential environmental impact of growing energy crops at a regional scale that accounts for the environmental and economic context of the crops. However, to set the stage for this discussion, I begin by comparing the environmental advantages and disadvantages of biomass-derived energy relative to other energy alternatives such as coal, hydropower, nuclear power, oil/gasoline, natural gas and photovoltaics

  19. Outcome of UNIDO symposium on biomass energy

    International Nuclear Information System (INIS)

    Nazemi, A.H.

    1997-01-01

    The results of the UNIDO symposium are presented. The symposium covered a variety of subjects, beginning with a comparison of biomass energy production and potential uses in different regions, specific country case studies about the present situation and trends in biomass energy utilisation. Technological aspects discussed included the production of biomass resources, their conversion into energy carriers and technology transfer to developing countries. An analysis of financial resources available and mechanisms for funding biomass projects were given. Environmental effects and some relatively successful biomass projects under development were described. (K.A.)

  20. Use of tamarisk as a potential feedstock for biofuel production.

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Amy Cha-Tien; Norman, Kirsten

    2011-01-01

    This study assesses the energy and water use of saltcedar (or tamarisk) as biomass for biofuel production in a hypothetical sub-region in New Mexico. The baseline scenario consists of a rural stretch of the Middle Rio Grande River with 25% coverage of mature saltcedar that is removed and converted to biofuels. A manufacturing system life cycle consisting of harvesting, transportation, pyrolysis, and purification is constructed for calculating energy and water balances. On a dry short ton woody biomass basis, the total energy input is approximately 8.21 mmBTU/st. There is potential for 18.82 mmBTU/st of energy output from the baseline system. Of the extractable energy, approximately 61.1% consists of bio-oil, 20.3% bio-char, and 18.6% biogas. Water consumptive use by removal of tamarisk will not impact the existing rate of evapotranspiration. However, approximately 195 gal of water is needed per short ton of woody biomass for the conversion of biomass to biocrude, three-quarters of which is cooling water that can be recovered and recycled. The impact of salt presence is briefly assessed. Not accounted for in the baseline are high concentrations of Calcium, Sodium, and Sulfur ions in saltcedar woody biomass that can potentially shift the relative quantities of bio-char and bio-oil. This can be alleviated by a pre-wash step prior to the conversion step. More study is needed to account for the impact of salt presence on the overall energy and water balance.

  1. Waveform LiDAR across forest biomass gradients

    Science.gov (United States)

    Montesano, P. M.; Nelson, R. F.; Dubayah, R.; Sun, G.; Ranson, J.

    2011-12-01

    Detailed information on the quantity and distribution of aboveground biomass (AGB) is needed to understand how it varies across space and changes over time. Waveform LiDAR data is routinely used to derive the heights of scattering elements in each illuminated footprint, and the vertical structure of vegetation is related to AGB. Changes in LiDAR waveforms across vegetation structure gradients can demonstrate instrument sensitivity to land cover transitions. A close examination of LiDAR waveforms in footprints across a forest gradient can provide new insight into the relationship of vegetation structure and forest AGB. In this study we use field measurements of individual trees within Laser Vegetation Imaging Sensor (LVIS) footprints along transects crossing forest to non-forest gradients to examine changes in LVIS waveform characteristics at sites with low (field AGB measurements to original and adjusted LVIS waveforms to detect the forest AGB interval along a forest - non-forest transition in which the LVIS waveform lose the ability to discern differences in AGB. Our results help identify the lower end the forest biomass range that a ~20m footprint waveform LiDAR can detect, which can help infer accumulation of biomass after disturbances and during forest expansion, and which can guide the use of LiDAR within a multi-sensor fusion biomass mapping approach.

  2. Modelling of gasification using deferent kinds of biomass in a downdraft reactor

    International Nuclear Information System (INIS)

    Rabell Ferran, Santiago J.; Brito Sauvanell, Angel L

    2011-01-01

    In this work is exposed the methodology of realization of a equilibrium model, capable to predict the composition of the generated gas, its caloric value, the cold and hot efficiency and the quantity of air per quantity of biomass in a downdraft reactor. For this model's realization it was considered that all the chemical reactions that happen in the gasification area are in thermodynamic equilibrium, doesn't considered tar formation, and alone it is considered the methane formation(CH4), it is not considered formation of CxHy. To make more practical and more accessible the model was carried out a software in Excel. The work use as fuel, wood, paddy husk, paper and solid waste. The behavior of generated gases was studied with the variation of the content of humidity. Were determined the calorific value of generated gas, and the value of the cold and hot efficiency for each biomass varying the content of humidity of the same one, where it shows for 20% of humidity, for the wood a value of 5,65MJ/Nm3, for the paddy husk is of 3,88 MJ/Nm3, for the paper it is of 5,83 MJ/Nm3, and for the waste it is of 4,36 MJ/Nm3; and the cold and hot efficiency for wood 30,16%, and 60,37%; for paddy husk 25,43% and 40,83%, paper 33,40% and 63,28%; and waste 22,18% and 41,35% respectively. It was also determined the gravimetric relationship of necessary air/ biomass for each biomass. (author)

  3. The contribution of microbial biomass to the adsorption of radioiodide in soils

    International Nuclear Information System (INIS)

    Bors, J.; Martens, R.

    1992-01-01

    The contribution of soil microbial biomass to the sorption and migration of radiodide in soil has been investigated. In two arable soils, a chernozem and a podzol, the numbers of microorganisms were either reduced by biocidal treatment or increased by addition of nutrient sources. Radioiodide ( 125 I - ) adsorption by the pretreated soils was measured, relative to untreated soil samples, in aqueous suspensions containing iodide by estimating the distribution coefficient (K d ) after eight days of incubation. A reduction of biomass to about 10% of its original level drastically decreased adsorption. Elevated levels of microbial biomass (up to 126%) increased adsorption but the increase was not always correlated with biomass level. A closer correlation between soil biomass and adsorption was observed when the concentration of radioiodide in the suspension was increased by several orders of magnitude. Conditions such as anarobiosis and elevated temperatures which are known to influence the activity and survival of microorganisms also exerted an effect on radioiodide sorption. In accordance with the relationship described here between radioiodide adsorption and microbial biomass, migration in water saturated soil columns was influenced by the quantity of microorganisms present. However, high biomass contents obviously caused anaerobic conditions in the system, leading to increased leaching of radioiodide. (author)

  4. The contribution of microbial biomass to the adsorption of radioiodide in soils

    Energy Technology Data Exchange (ETDEWEB)

    Bors, J. (Niedersaechsisches Inst. fuer Radiooekologie, Hannover (Germany)); Martens, R. (Bundesforschungsanstalt fuer Landwirtschaft, Braunschweig (Germany). Inst. fuer Biochemie des Bodens)

    1992-01-01

    The contribution of soil microbial biomass to the sorption and migration of radiodide in soil has been investigated. In two arable soils, a chernozem and a podzol, the numbers of microorganisms were either reduced by biocidal treatment or increased by addition of nutrient sources. Radioiodide ({sup 125}I{sup -}) adsorption by the pretreated soils was measured, relative to untreated soil samples, in aqueous suspensions containing iodide by estimating the distribution coefficient (K{sub d}) after eight days of incubation. A reduction of biomass to about 10% of its original level drastically decreased adsorption. Elevated levels of microbial biomass (up to 126%) increased adsorption but the increase was not always correlated with biomass level. A closer correlation between soil biomass and adsorption was observed when the concentration of radioiodide in the suspension was increased by several orders of magnitude. Conditions such as anarobiosis and elevated temperatures which are known to influence the activity and survival of microorganisms also exerted an effect on radioiodide sorption. In accordance with the relationship described here between radioiodide adsorption and microbial biomass, migration in water saturated soil columns was influenced by the quantity of microorganisms present. However, high biomass contents obviously caused anaerobic conditions in the system, leading to increased leaching of radioiodide. (author).

  5. Energy from Dutch biomass. Energie uit Nederlandse biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Van Doorn, J

    1993-12-01

    Attention is paid to the options and potential of using biomass wastes in the Netherlands for the production of energy. An overview of the flows of biomass residues is given, next to the biomass properties, and biomass conversion techniques. Data on the contribution of renewable energy sources (1990) and targets for the year 2010 are presented and briefly discussed. It is expected that the contribution of biomass will increase considerably in the next years in the form of cheap biomass residues. 1 fig., 4 tabs.

  6. International biomass. International markets of biomass-energy - Public synthesis

    International Nuclear Information System (INIS)

    Gardette, Yves-Marie; Dieckhoff, Lea; Lorne, Daphne; Postec, Gwenael; Cherisey, Hugues de; RANTIEN, Caroline

    2014-11-01

    This publication proposes a synthesis of a study which aimed at analysing the present and future place of wood-energy in the European Union as the main renewable resource used to produce heat and electricity. This study comprised an analysis of European markets of solid biomass and of regulation, case studies on wood-energy producer markets (North America, Eastern Europe, Brazil and Africa), a study of preparation modes (shredding, granulation, roasting) and biomass transport. This study is based on bibliographical searches in national and European sources, and on field data collected by the various bodies involved in this study. This synthesis notably discusses the following issues: solid biomass is the main renewable resource for the EU and has many applications; European objectives for solid biomass by 2020 are very ambitious; markets are becoming international to face the EU's increasing demand; pellet production in North America is strongly increasing; in Europe, eastern European countries are the main exporters; Brazil has an export potential which is still to be confirmed; the African trade with Europe is still in its infancy. Finally, the development perspectives of roasted wood trade are discussed

  7. Seasonal variations in carbon biomass of bacteria, thraustochytrids and microzooplankton in the northern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Raghukumar, S.; Gauns, M.; Madhupratap, M.

    sup(-1) d sup(-1) below 100 m. In the NAS, heterotrophic bacteria appear to playa significant role in sustaining microzooplankton and the so-called 'Arabian Sea mesozooplankton stable-biomass paradox' through microbial loop. Sizable quantities of Hbac...

  8. Strongly intensive quantities

    International Nuclear Information System (INIS)

    Gorenstein, M. I.; Gazdzicki, M.

    2011-01-01

    Analysis of fluctuations of hadron production properties in collisions of relativistic particles profits from use of measurable intensive quantities which are independent of system size variations. The first family of such quantities was proposed in 1992; another is introduced in this paper. Furthermore we present a proof of independence of volume fluctuations for quantities from both families within the framework of the grand canonical ensemble. These quantities are referred to as strongly intensive ones. Influence of conservation laws and resonance decays is also discussed.

  9. Energy from biomass and waste

    International Nuclear Information System (INIS)

    1991-01-01

    This report provides a review of the Commission of the European Communities (CEC) Energy Demonstration Programme in the sector of Energy from biomass and waste, and examines the current status of the energy technologies associated with the sector, in relation to projects supported under the Programme, those included under various national programmes and by reference to the published literature. Detailed overviews of five sub-categories represented in the Energy from biomass and waste sector are presented to illustrate their relative significance in terms of estimated energy potential, technological and economic status and the nature of future research, development and demonstration needs. Finally the potential role of the biomass and waste energy technologies in meeting the energy needs of the developing world is discussed. 33 refs; 2 figs; 11 tabs

  10. Design of Sustainable Biomass Value Chains – Optimising the supply logistics and use of biomass over time

    NARCIS (Netherlands)

    Batidzirai, B.

    2013-01-01

    Modern bioenergy systems have significant potential to cost-effectively substitute fossil energy carriers with substantial GHG emissions reduction benefits. To mobilise large-scale biomass supplies, large volumes of biomass feedstock need to be secured, and competitive feedstock value chains need to

  11. Biomass a fast growing energy resource

    International Nuclear Information System (INIS)

    Hansen, Ulf

    2003-01-01

    Biomass as an energy resource is as versatile as the biodiversity suggests. The global net primary production, NPP, describes the annual growth of biomass on land and in the seas. This paper focuses on biomass grown on land. A recent estimate for the NPP on land is 120 billion tons of dry matter. How much of this biomass are available for energy purposes? The potential contribution of wood fuel and energy plants from sustainable production is limited to some 5% of NPP, i.e. 6 Bt. One third of the potential is energy forests and energy plantations which at present are not economic. One third is used in rural areas as traditional fuel. The remaining third would be available for modern biomass energy conversion. Biomass is assigned an expanding role as a new resource in the world's energy balance. The EU has set a target of doubling the share of renewable energy sources by 2010. For biomass the target is even more ambitious. The challenge for biomass utilization lies in improving the technology for traditional usage and expanding the role into other areas like power production and transportation fuel. Various technologies for biomass utilization are available among those are combustion, gasification, and liquefaction. Researchers have a grand vision in which the chemical elements in the hydrocarbon molecules of biomass are separated and reformed to yield new tailored fuels and form the basis for a new world economy. The vision of a new energy system based on fresh and fossilized biomass to be engineered into an environmentally friendly and sustainable fuel is a conceivable technical reality. One reason for replacing exhaustible fossil fuels with biomass is to reduce carbon emissions. The most efficient carbon dioxide emission reduction comes from replacing brown coal in a steam-electric unit, due to the efficiency of the thermal cycle and the high carbon intensity of the coal. The smallest emission reduction comes from substituting natural gas. (BA)

  12. Potential of Livestock Generated Biomass: Untapped Energy Source in India

    Directory of Open Access Journals (Sweden)

    Gagandeep Kaur

    2017-06-01

    Full Text Available Modern economies run on the backbone of electricity as one of major factors behind industrial development. India is endowed with plenty of natural resources and the majority of electricity within the country is generated from thermal and hydro-electric plants. A few nuclear plants assist in meeting the national requirements for electricity but still many rural areas remain uncovered. As India is primarily a rural agrarian economy, providing electricity to the remote, undeveloped regions of the country remains a top priority of the government. A vital, untapped source is livestock generated biomass which to some extent has been utilized to generate electricity in small scale biogas based plants under the government's thrust on rural development. This study is a preliminary attempt to correlate developments in this arena in the Asian region, as well as the developed world, to explore the possibilities of harnessing this resource in a better manner. The current potential of 2600 million tons of livestock dung generated per year, capable of yielding 263,702 million m3 of biogas is exploited. Our estimates suggest that if this resource is utilized judiciously, it possesses the potential of generating 477 TWh (Terawatt hour of electrical energy per annum.

  13. Sustainable Biomass Resources for Biogas Production

    DEFF Research Database (Denmark)

    Meyer, Ane Katharina Paarup

    The aim of this thesis was to identify and map sustainable biomass resources, which can be utilised for biogas production with minimal negative impacts on the environment, nature and climate. Furthermore, the aim of this thesis was to assess the resource potential and feasibility of utilising...... such biomasses in the biogas sector. Sustainability in the use of biomass feedstock for energy production is of key importance for a stable future food and energy supply, and for the functionality of the Earths ecosystems. A range of biomass resources were assessed in respect to sustainability, availability...... from 39.3-66.9 Mtoe, depending on the availability of the residues. Grass from roadside verges and meadow habitats in Denmark represent two currently unutilised sources. If utilised in the Danish biogas sector, the results showed that the resources represent a net energy potential of 60,000 -122,000 GJ...

  14. Gaps in sampling and limitations to tree biomass estimation: a review of past sampling efforts over the past 50 years

    Science.gov (United States)

    Aaron Weiskittel; Jereme Frank; James Westfall; David Walker; Phil Radtke; David Affleck; David Macfarlane

    2015-01-01

    Tree biomass models are widely used but differ due to variation in the quality and quantity of data used in their development. We reviewed over 250 biomass studies and categorized them by species, location, sampled diameter distribution, and sample size. Overall, less than half of the tree species in Forest Inventory and Analysis database (FIADB) are without a...

  15. Proteomics Insights into the Biomass Hydrolysis Potentials of a Hypercellulolytic Fungus Penicillium funiculosum.

    Science.gov (United States)

    Ogunmolu, Funso Emmanuel; Kaur, Inderjeet; Gupta, Mayank; Bashir, Zeenat; Pasari, Nandita; Yazdani, Syed Shams

    2015-10-02

    The quest for cheaper and better enzymes needed for the efficient hydrolysis of lignocellulosic biomass has placed filamentous fungi in the limelight for bioprospecting research. In our search for efficient biomass degraders, we identified a strain of Penicillium funiculosum whose secretome demonstrates high saccharification capabilities. Our probe into the secretome of the fungus through qualitative and label-free quantitative mass spectrometry based proteomics studies revealed a high abundance of inducible CAZymes and several nonhydrolytic accessory proteins. The preferential association of these proteins and the attending differential biomass hydrolysis gives an insight into their interactions and clues about possible roles of novel hydrolytic and nonhydrolytic proteins in the synergistic deconstruction of lignocellulosic biomass. Our study thus provides the first comprehensive insight into the repertoire of proteins present in a high-performing secretome of a hypercellulolytic Penicillium funiculosum, their relative abundance in the secretome, and the interaction dynamics of the various protein groups in the secretome. The gleanings from the stoichiometry of these interactions hold a prospect as templates in the design of cost-effective synthetic cocktails for the optimal hydrolysis of biomass.

  16. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    Energy Technology Data Exchange (ETDEWEB)

    Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Graham, Robin Lambert [ORNL; Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Turhollow Jr, Anthony F [ORNL; Stokes, Bryce [Navarro Research & Engineering; Brandt, Craig C [ORNL

    2011-08-01

    The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small

  17. Biomass yield from an urban landscape

    Science.gov (United States)

    Utilizing biomass from urban landscapes could significantly contribute to the nation’s renewable energy needs. In 2007, an experiment was begun to evaluate the biomass production from a bermudagrass, Cynodon dactylon var. dactylon (L.) Pers., lawn in Woodward, Oklahoma and to estimate the potential...

  18. Torrefied biomass for use in power station sector; Torrefizierte Biomasse zum Einsatz im Kraftwerkssektor

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Janet; Schaubach, Kay [Deutsches Biomasseforschungszentrum (DBFZ) gemeinnuetzige GmbH, Leipzig (Germany). Bereich Bioenergiesysteme; Kiel, Jaap; Carbo, Michiel [Energy Research Centre of the Netherlands (ECN), Petten (Netherlands); Wojcik, Magdalena [OFI Austrian Research Institute for Chemistry and Technology, Vienna (Austria)

    2013-10-01

    In the torrefaction process biomass is heated up in the absence of oxygen to a temperature of at least 250 C. By combining torrefaction with pelletisation or briquetting, biomass materials can be converted into a high-energy-density bioenergy carrier with improved behaviour in (long-distance) transport, handling and storage. Torrefaction also creates superior properties for biomass in many major end-use applications. The process has the potential to provide a significant contribution to an enlarged raw material portfolio for sustainable biomass fuel production inside Europe by including both agricultural and forestry biomass (residues). The article will briefly introduce the concept and objectives of the project and the different torrefaction technologies involved and then focus on the results obtained within the first project phase of the EU-project SECTOR. This comprises production of torrefied biomass batches, subsequent densification (pelletisation and briquetting), characterisation and Round Robin testing of characterisation methods, initial logistics and end-use performance testing, material safety data sheet preparation and sustainability assessment along the value chain. (orig.)

  19. Liquid biofuels from blue biomass

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Jensen, Annette Eva; Bangsø Nielsen, Henrik

    2011-01-01

    Marine (blue) biomasses, such as macroalgaes, represent a huge unexploited amount of biomass. With their various chemical compositions, macroalgaes can be a potential substrate for food, feed, biomaterials, pharmaceuticals, health care products and also for bioenergy. Algae use seawater as a growth...... medium, light as energy source and they capture CO2 for the synthesis of new organic material, thus can grow on non-agricultural land, without increasing food prices, or using fresh water. Due to all these advantages in addition to very high biomass yield with high carbohydrate content, macroalgaes can...

  20. Biomass, lasting perspective. Biomassa, een duurzaam perspectief

    Energy Technology Data Exchange (ETDEWEB)

    Knol, M E [Centrum voor Energiebesparing en Schone Technologie,Delft (Netherlands)

    1989-10-01

    The contribution of biomass in a possible sustainable energy future of the Netherlands is discussed. The different types of biomass, their properties and their most effective energy conversion techniques are summarized. At this moment the energy potential of the available biomass is 110 PJ per year. Net energy: 45 PJ per year (= 2% of the energy consumption in the Netherlands). Estimated net energy in 2000 is 60 PJ per year. Scenario calculations for the late 21st century reveal potential and net energy amounts of 350 PJ and 280 PJ per year, respectively. 2 refs., 4 tabs., 1 ill.

  1. Winery biomass waste degradation by sequential sonication and mixed fungal enzyme treatments.

    Science.gov (United States)

    Karpe, Avinash V; Dhamale, Vijay V; Morrison, Paul D; Beale, David J; Harding, Ian H; Palombo, Enzo A

    2017-05-01

    To increase the efficiency of winery-derived biomass biodegradation, grape pomace was ultrasonicated for 20min in the presence of 0.25M, 0.5Mand1.0MKOH and 1.0MNaOH. This was followed by treatment with a 1:1 (v/v) mix of crude enzyme preparation derived from Phanerochaete chrysosporium and Trametes versicolor for 18h and a further 18h treatment with a 60:14:4:2 percent ratio combination of enzymes derived from Aspergillus niger: Penicillium chrysogenum: Trichoderma harzianum: P. citrinum, repsectively. Process efficiency was evaluated by its comparison to biological only mixed fungal degradation over 16days. Ultrasonication treatment with 0.5MKOH followed by mixed enzyme treatment yielded the highest lignin degradation of about 13%. Cellulase, β-glucosidase, xylanase, laccase and lignin peroxidase activities of 77.9, 476, 5,390.5, 66.7 and 29,230.7U/mL, respectively, were observed during biomass degradation. Gas chromatography-mass spectrometry (GC-MS) analysis of the degraded material identified commercially important compounds such as gallic acid, lithocholic acid, glycolic acid and lactic acid which were generated in considerable quantities. Thus, the combination of sonication pre-treatment and enzymatic degradation has the potential to considerably improve the breakdown of agricultural biomass and produce commercially useful compounds in markedly less time (<40h) with respect to biological only degradation (16days). Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Power from biomass: the power utility perspective

    International Nuclear Information System (INIS)

    Serafimova, K.; Angele, H.-C.

    2008-01-01

    This article takes a look at possible strategies that electricity utilities in Switzerland could follow in order to be able to make use of biomass as a source of energy. Increasing interest in damp biomass as a relatively cheap, renewable and climate-friendly source of energy is commented on. Strategic choices that energy utilities have to make when they decide to enter into the biomass market are examined. The potentials involved are examined, including biogenic materials from domestic wastes and from agriculture. Figures on potential waste tonnage are quoted. Questions on subsidies and the free market are examined. The setting up of 'virtual power stations' - networks of installations using photovoltaic, wind and biomass - is discussed, as are various strategies that utilities can follow in this area. Examples of such 'virtual power stations' are listed.

  3. Public beliefs that may affect biomass development

    International Nuclear Information System (INIS)

    Draper, H.M.

    1993-01-01

    The Tennessee River chip mill controversy involves the expansion of the pulp and paper industry rather than the biomass energy industry; however, the concerns expressed by environmentalists are likely to be the same for biomass projects that propose use of privately-owned land. It may be incorrect to assume that private landowners will have more flexibility in forest management techniques than public agencies. In fact, when faced with a potentially large new demand source for wood, environmentalists will try to stop the project while pushing for stringent regulation of harvesting. This paper describes and analyzes beliefs about forest management (related to biomass energy) taken from the 1,200 letters and 200 public hearing statements received by TVA on the chip mill environmental impact statement. The chip mill controversy suggests that there is a potential for strong coalitions to form to stop new biomass demand sources. As much as possible, the biomass industry will need to anticipate and address land management issues. New concepts such as landscape ecology and ecosystem management should be considered. Even so, increased use of non-dedicated biomass resources will require more public acceptance of the concept that ecosystems and their biomass resources can tolerate increased levels of management

  4. Increasing biomass resource availability through supply chain analysis

    International Nuclear Information System (INIS)

    Welfle, Andrew; Gilbert, Paul; Thornley, Patricia

    2014-01-01

    Increased inclusion of biomass in energy strategies all over the world means that greater mobilisation of biomass resources will be required to meet demand. Strategies of many EU countries assume the future use of non-EU sourced biomass. An increasing number of studies call for the UK to consider alternative options, principally to better utilise indigenous resources. This research identifies the indigenous biomass resources that demonstrate the greatest promise for the UK bioenergy sector and evaluates the extent that different supply chain drivers influence resource availability. The analysis finds that the UK's resources with greatest primary bioenergy potential are household wastes (>115 TWh by 2050), energy crops (>100 TWh by 2050) and agricultural residues (>80 TWh by 2050). The availability of biomass waste resources was found to demonstrate great promise for the bioenergy sector, although are highly susceptible to influences, most notably by the focus of adopted waste management strategies. Biomass residue resources were found to be the resource category least susceptible to influence, with relatively high near-term availability that is forecast to increase – therefore representing a potentially robust resource for the bioenergy sector. The near-term availability of UK energy crops was found to be much less significant compared to other resource categories. Energy crops represent long-term potential for the bioenergy sector, although achieving higher limits of availability will be dependent on the successful management of key influencing drivers. The research highlights that the availability of indigenous resources is largely influenced by a few key drivers, this contradicting areas of consensus of current UK bioenergy policy. - Highlights: • As global biomass demand increases, focus is placed indigenous resources. • A Biomass Resource Model is applied to analyse UK biomass supply chain dynamics. • Biomass availability is best increased

  5. Energetic potential of algal biomass from high-rate algal ponds for the production of solid biofuels.

    Science.gov (United States)

    Costa, Taynan de Oliveira; Calijuri, Maria Lúcia; Avelar, Nayara Vilela; Carneiro, Angélica de Cássia de Oliveira; de Assis, Letícia Rodrigues

    2017-08-01

    In this investigation, chemical characteristics, higher, lower and net heating value, bulk and energy density, and thermogravimetric analysis were applied to study the thermal characteristics of three algal biomasses. These biomasses, grown as by-products of wastewater treatment in high-rate algal ponds (HRAPs), were: (i) biomass produced in domestic effluent and collected directly from an HRAP (PO); (ii) biomass produced in domestic effluent in a mixed pond-panel system and collected from the panels (PA); and (iii) biomass originating from the treatment effluent from the meat processing industry and collected directly from an HRAP (IN). The biomass IN was the best alternative for thermal power generation. Subsequently, a mixture of the algal biomasses and Jatropha epicarp was used to produce briquettes containing 0%, 25%, 50%, 75%, and 100% of algal biomass, and their properties were evaluated. In general, the addition of algal biomass to briquettes decreased both the hygroscopicity and fixed carbon content and increased the bulk density, ash content, and energy density. A 50% proportion of biomass IN was found to be the best raw material for producing briquettes. Therefore, the production of briquettes consisting of algal biomass and Jatropha epicarp at a laboratory scale was shown to be technically feasible.

  6. Biomass energy: State of the technology present obstacles and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, L.

    1993-06-23

    The prevailing image of wood and waste burning as dirty and environmentally harmful is no longer valid. The use of biomass combustion for energy can solve many of our nation`s problems. Wood and other biomass residues that are now causing expensive disposal problems can be burned as cleanly and efficiently as natural gas, and at a fraction of the cost. New breakthroughs in integrated waste-to-energy systems, from fuel handling, combustion technology and control systems to heat transfer and power generation, have dramatically improved system costs, efficiencies, cleanliness of emissions, maintenance-free operation, and end-use applications. Increasing costs for fossil fuels and for waste disposal strict environmental regulations and changing political priorities have changed the economics and rules of the energy game. This report will describe the new rules, new playing fields and key players, in the hope that those who make our nation`s energy policy and those who play in the energy field will take biomass seriously and promote its use.

  7. Energy from biomass: An overview

    International Nuclear Information System (INIS)

    Van der Toorn, L.J.; Elliott, T.P.

    1992-01-01

    Attention is paid to the effect of the use of energy from biomass on the greenhouse effect. An overview is given of the aspects of forest plantation, carbon dioxide fixation and energy from biomass, in particular with regard to the potential impact of the use of biomass energy on the speed of accumulation of carbon in the atmosphere. A simple model of the carbon cycle to illustrate the geochemical, biological and antropogenic characteristics of the cycle is presented and briefly discussed. Biomass, which is appropriate for energy applications, can be subdivided into three categories: polysaccharides, vegetable oils, and lignocellulosis. The costs for the latter are discussed. Three important options to use biomass as a commercial energy source are solid fuels, liquid fuels, and power generation. For each option the value of energy (on a large-scale level) is compared to the costs of several types of biomass. Recent evaluation of new techniques show that small biomass conversion plants can realize an electricity efficiency of 40%, with capitalized costs far below comparable conventional biomass conversion plants. One of the policy instruments to stimulate the use of biomass as an energy source is the carbon levy, in which the assumed external costs to reduce carbon dioxide emission are expressed. Political and administrative feasibility are important factors in the decision making with regard to carbon storage and energy plantations. 6 figs

  8. Biomass electric technologies: Status and future development

    International Nuclear Information System (INIS)

    Bain, R.L.; Overend, R.P.

    1992-01-01

    At the present time, there axe approximately 6 gigawatts (GWe) of biomass-based, grid-connected electrical generation capacity in the United States. This capacity is primarily combustion-driven, steam-turbine technology, with the great majority of the plants of a 5-50 megawatt (MW) size and characterized by heat rates of 14,770-17,935 gigajoules per kilowatt-hour (GJ/kWh) (14,000-17,000 Btu/kWh or 18%-24% efficiency), and with installed capital costs of $1,300-$1,500/kW. Cost of electricity for existing plants is in the $0.065-$O.08/kWh range. Feedstocks are mainly waste materials; wood-fired systems account for 88% of the total biomass capacity, followed by agricultural waste (3%), landfill gas (8%), and anaerobic digesters (1%). A significant amount of remote, non-grid-connected, wood-fired capacity also exists in the paper and wood products industry. This chapter discusses biomass power technology status and presents the strategy for the U.S. Department of Energy (DOE) Biomass Power Program for advancing biomass electric technologies to 18 GWe by the year 2010, and to greater than 100 GWe by the year 2030. Future generation systems will be characterized by process efficiencies in the 35%-40% range, by installed capital costs of $770-$900/kW, by a cost of electricity in the $0.04-$O.05/kWh range, and by the use of dedicated fuel-supply systems. Technology options such as integrated gasification/gas-turbine systems, integrated pyrolysis/gas-turbine systems, and innovative direct-combustion systems are discussed, including present status and potential growth. This chapter also presents discussions of the U.S. utility sector and the role of biomass-based systems within the industry, the potential advantages of biomass in comparison to coal, and the potential environmental impact of biomass-based electricity generation

  9. Availability of biomass for energy production. GRAIN: Global Restrictions on biomass Availability for Import to the Netherlands

    International Nuclear Information System (INIS)

    Lysen, E.H.

    2000-08-01

    The report includes reports of activities that were carried out within the GRAIN project. This evaluation shows that the (technical) potential contribution of bio-energy to the future world's energy supply could be very large. In theory, energy farming on current agricultural land could contribute over 800 EJ, without jeopardising the world's food supply. Use of degraded lands may add another 150 EJ, although this contribution will largely come from crops with a low productivity. The growing demand for bio-materials may require a biomass input equivalent to 20-50 EJ, which must be grown on plantations when existing forests are not able to supply this growing demand. Organic wastes and residues could possibly supply another 40-170 EJ, with uncertain contributions from forest residues and potentially a very significant role for organic waste, especially when bio-materials are used on a larger scale. In total, the upper limit of the bio-energy potential could be over 1000 EJ per year. This is considerably more than the current global energy use of 400 EJ. However, this contribution is by no means guaranteed: crucial factors determining biomass availability for energy are: (1) Population growth and economic development; (2) The efficiency and productivity of food production systems that must be adopted worldwide and the rate of their deployment in particular in developing countries; (3) Feasibility of the use of marginal/degraded lands; (4) Productivity of forests and sustainable harvest levels; (5) The (increased) utilisation of bio-materials. Major transitions are required to exploit this bio-energy potential. It is uncertain to what extent such transitions are feasible. Depending on the factors mentioned above, the bio-energy potential could be very low as well. At regional/local level the possibilities and potential consequences of biomass production and use can vary strongly, but the insights in possible consequences are fairly limited up to now. Bio-energy offers

  10. A perspective on competitiveness of Brazil in the global supply of biomass

    Directory of Open Access Journals (Sweden)

    Javier Cárcel Carrasco

    2012-12-01

    Full Text Available In this paper we intend to present an integrated view of biomass production in Brazil. By analyzing biomass potential and biomass production costs we seek to present a broad view of Brazilian competitiveness in the domestic and global energy markets. By mapping out this potential, we want to present the main opportunities for Brazil in its quest for cleaner, more competitive and more sustainable fuel sources. Our estimate of the potential represents almost double the volume that the country produced in 2010. This should enable Brazil to meet 30% of global demand for biomass by 2035. As regards production costs and profits, dedicated biomass has trading conditions to yield the same or more than the most profitable products in the sector such as sugarcane, soybeans or wood. Compared with fossil fuels, the cost of biomass is equivalent to an oil barrel below R$ 40.00, although adequate logistics is crucial for the economic feasibility of biomass utilization. Global demand for biomass will increase in the coming years, both for conventional and modern uses, such as second generation biofuels or biomass gasification. Due to its agricultural potential, Brazil could become a major biomass producer, with great economic and environmental advantages in a world increasingly concerned with sustainability and climate change.

  11. The Prospects of Rubberwood Biomass Energy Production in Malaysia

    Directory of Open Access Journals (Sweden)

    Jegatheswaran Ratnasingam

    2015-03-01

    Full Text Available Rubber has been shown to be one of the most important plantation crops in Malaysia, and rubber tree biomass has widespread applications in almost all sectors of the wood products manufacturing sector. Despite its abundance, the exploitation of rubberwood biomass for energy generation is limited when compared to other available biomass such as oil palm, rice husk, cocoa, sugarcane, coconut, and other wood residues. Furthermore, the use of biomass for energy generation is still in its early stages in Malaysia, a nation still highly dependent on fossil fuels for energy production. The constraints for large scale biomass energy production in Malaysia are the lack of financing for such projects, the need for large investments, and the limited research and development activities in the sector of efficient biomass energy production. The relatively low cost of energy in Malaysia, through the provision of subsidy, also restricts the potential utilization of biomass for energy production. In order to fully realize the potential of biomass energy in Malaysia, the environmental cost must be factored into the cost of energy production.

  12. A review on biomass classification and composition, cofiring issues and pretreatment methods

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

    2011-08-01

    Presently around the globe there is a significant interest in using biomass for power generation as power generation from coal continues to raise environmental concerns. Biomass alone can be used for generation of power which can bring lot of environmental benefits. However the constraints of using biomass alone can include high investments costs for biomass feed systems and also uncertainty in the security of the feedstock supply due to seasonal variations and in most of the countries biomass is dispersed and the infrastructure for biomass supply is not well established. Alternatively cofiring biomass along with coal offer advantages like (a) reducing the issues related to biomass quality and buffers the system when there is insufficient feedstock quantity and (b) costs of adapting the existing coal power plants will be lower than building new systems dedicated only to biomass. However with the above said advantages there exists some technical constrains including low heating and energy density values, low bulk density, lower grindability index, higher moisture and ash content to successfully cofire biomass with coal. In order to successfully cofire biomass with coal, biomass feedstock specifications need to be established to direct pretreatment options that may include increasing the energy density, bulk density, stability during storage and grindability. Impacts on particle transport systems, flame stability, pollutant formation and boiler tube fouling/corrosion must also be minimized by setting feedstock specifications including composition and blend ratios if necessary. Some of these limitations can be overcome by using pretreatment methods. This paper discusses the impact of feedstock pretreatment methods like sizing, baling, pelletizing, briquetting, washing/leaching, torrefaction, torrefaction and pelletization and steam explosion in attainment of optimum feedstock characteristics to successfully cofire biomass with coal.

  13. Biomass yielding potential of naturally regenerated Prosopis juliflora tree stands at three varied ecosystems in southern districts of Tamil Nadu, India.

    Science.gov (United States)

    Saraswathi, K; Chandrasekaran, S

    2016-05-01

    Fuel energy demand is of great concern in recent times due to the depletion of fossil fuel resources. Biomass serves as widely available primary renewable energy source. Hence, a study was performed to assess the above-ground biomass yielding capability of fuel wood tree Prosopis juliflora in three varied ecosystems viz., coastal, fallow land and riparian ecosystems in southern districts of Tamil Nadu. The results showed that the biomass production potential and above-ground net primary productivity of P. juliflora depend on the age of the tree stands and the nature of ecosystem. A higher biomass yield was observed for P. juliflora trees with 5 to 10 years old when compared to less than 5 years of their age. Among the three ecosystems, the maximum biomass production was recorded in riparian ecosystem. The stands with less than 5-year-old P. juliflora trees gave 1.40 t/ha, and 5- to 10-year-old tree stands produced 27.69 t/ha in riparian ecosystem. Above-ground net primary productivity of both the age groups was high in fallow land ecosystem. In riparian ecosystem, the wood showed high density and low sulphur content than the other two ecosystems. Hence, P. juliflora biomass can serve as an environmentally and economically feasible fuel as well as their utilization proffers an effective means to control its invasiveness.

  14. Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    C. Lievens; J. Yperman; J. Vangronsveld; R. Carleer [Hasselt University, Diepenbeek (Belgium). Laboratory of Applied Chemistry

    2008-08-15

    Presently, little or no information of implementing fast pyrolysis for looking into the potential valorisation of heavy metal contaminated biomass is available. Fast pyrolysis of heavy metal contaminated biomass (birch and sunflower), containing high amounts of Cd, Cu, Pb and Zn, resulting from phytoremediation, is investigated. The effect of the pyrolysis temperature (623, 673, 773 and 873 K) and the type of solid heat carrier (sand and fumed silica) on the distribution of the heavy metals in birch and sunflower pyrolysis fractions are studied. The goal of the set-up is 'concentrating' heavy metals in the ash/char fraction after thermal treatment, preventing them to be released in the condensable and/or volatile fractions. The knowledge of the behaviour of heavy metals affects directly future applications and valorisation of the pyrolysis products and thus contaminated biomass. They are indispensable for making and selecting the proper thermal conditions for their maximum recovery. In view of the future valorisation of these biomasses, the amounts of the pyrolysis fractions and the calorific values of the obtained liquid pyrolysis products, as a function of the pyrolysis temperature, are determined. 46 refs., 8 figs., 4 tabs.

  15. Laboratory Studies of Carbon Emission from Biomass Burning for use in Remote Sensing

    Science.gov (United States)

    Wald, Andrew E.; Kaufman, Yoram J.

    1998-01-01

    Biomass burning is a significant source of many trace gases in the atmosphere. Up to 25% of the total anthropogenic carbon dioxide added to the atmosphere annually is from biomass burning. However, this gaseous emission from fires is not directly detectable from satellite. Infrared radiance from the fires is. In order to see if infrared radiance can be used as a tracer for these emitted gases, we made laboratory measurements to determine the correlation of emitted carbon dioxide, carbon monoxide and total burned biomass with emitted infrared radiance. If the measured correlations among these quantities hold in the field, then satellite-observed infrared radiance can be used to estimate gaseous emission and total burned biomass on a global, daily basis. To this end, several types of biomass fuels were burned under controlled conditions in a large-scale combustion laboratory. Simultaneous measurements of emitted spectral infrared radiance, emitted carbon dioxide, carbon monoxide, and total mass loss were made. In addition measurements of fuel moisture content and fuel elemental abundance were made. We found that for a given fire, the quantity of carbon burned can be estimated from 11 (micro)m radiance measurements only within a factor of five. This variation arises from three sources, 1) errors in our measurements, 2) the subpixel nature of the fires, and 3) inherent differences in combustion of different fuel types. Despite this large range, these measurements can still be used for large-scale satellite estimates of biomass burned. This is because of the very large possible spread of fire sizes that will be subpixel as seen by Moderate Resolution Imaging Spectroradiometer (MODIS). Due to this large spread, even relatively low-precision correlations can still be useful for large-scale estimates of emitted carbon. Furthermore, such estimates using the MODIS 3.9 (micro)m channel should be even more accurate than our estimates based on 11 (micro)m radiance.

  16. Photosynthesis-related quantities for education and modeling.

    Science.gov (United States)

    Antal, Taras K; Kovalenko, Ilya B; Rubin, Andrew B; Tyystjärvi, Esa

    2013-11-01

    A quantitative understanding of the photosynthetic machinery depends largely on quantities, such as concentrations, sizes, absorption wavelengths, redox potentials, and rate constants. The present contribution is a collection of numbers and quantities related mainly to photosynthesis in higher plants. All numbers are taken directly from a literature or database source and the corresponding reference is provided. The numerical values, presented in this paper, provide ranges of values, obtained in specific experiments for specific organisms. However, the presented numbers can be useful for understanding the principles of structure and function of photosynthetic machinery and for guidance of future research.

  17. Greenhouse gas mitigation potential of biomass energy technologies in Vietnam using the long range energy alternative planning system model

    International Nuclear Information System (INIS)

    Kumar, Amit; Bhattacharya, S.C.; Pham, H.L.

    2003-01-01

    The greenhouse gas (GHG) mitigation potentials of number of selected Biomass Energy Technologies (BETs) have been assessed in Vietnam. These include Biomass Integrated Gasification Combined Cycle (BIGCC) based on wood and bagasse, direct combustion plants based on wood, co-firing power plants and Stirling engine based on wood and cooking stoves. Using the Long-range Energy Alternative Planning (LEAP) model, different scenarios were considered, namely the base case with no mitigation options, replacement of kerosene and liquefied petroleum gas (LPG) by biogas stove, substitution of gasoline by ethanol in transport sector, replacement of coal by wood as fuel in industrial boilers, electricity generation with biomass energy technologies and an integrated scenario including all the options together. Substitution of coal stoves by biogas stove has positive abatement cost, as the cost of wood in Vietnam is higher than coal. Replacement of kerosene and LPG cookstoves by biomass stove also has a positive abatement cost. Replacement of gasoline by ethanol can be realized after a few years, as at present the cost of ethanol is more than the cost of gasoline. The replacement of coal by biomass in industrial boiler is also not an attractive option as wood is more expensive than coal in Vietnam. The substitution of fossil fuel fired plants by packages of BETs has a negative abatement cost. This option, if implemented, would result in mitigation of 10.83 million tonnes (Mt) of CO 2 in 2010

  18. The potential of freshwater macroalgae as a biofuels feedstock and the influence of nutrient availability on freshwater macroalgal biomass production

    Science.gov (United States)

    Yun, Jin-Ho

    Extensive efforts have been made to evaluate the potential of microalgae as a biofuel feedstock during the past 4-5 decades. However, filamentous freshwater macroalgae have numerous characteristics that favor their potential use as an alternative algal feedstock for biofuels production. Freshwater macroalgae exhibit high rates of areal productivity, and their tendency to form dense floating mats on the water surface imply significant reductions in harvesting and dewater costs compared to microalgae. In Chapter 1, I reviewed the published literature on the elemental composition and energy content of five genera of freshwater macroalgae. This review suggested that freshwater macroalgae compare favorably with traditional bio-based energy sources, including terrestrial residues, wood, and coal. In addition, I performed a semi-continuous culture experiment using the common Chlorophyte genus Oedogonium to investigate whether nutrient availability can influence its higher heating value (HHV), productivity, and proximate analysis. The experimental study suggested that the most nutrient-limited growth conditions resulted in a significant increase in the HHV of the Oedogonium biomass (14.4 MJ/kg to 16.1 MJ/kg). Although there was no significant difference in productivity between the treatments, the average dry weight productivity of Oedogonium (3.37 g/m2/day) was found to be much higher than is achievable with common terrestrial plant crops. Although filamentous freshwater macroalgae, therefore, have significant potential as a renewable source of bioenergy, the ultimate success of freshwater macroalgae as a biofuel feedstock will depend upon the ability to produce biomass at the commercial-scale in a cost-effective and sustainable manner. Aquatic ecology can play an important role to achieve the scale-up of algal crop production by informing the supply rates of nutrients to the cultivation systems, and by helping to create adaptive production systems that are resilient to

  19. USE OF WASTE WATER OF LIVESTOCK IN ORDER TO OBTAIN BIOMASS FODDER CHEAP

    Directory of Open Access Journals (Sweden)

    MELNICIUC CRISTINA

    2009-12-01

    Full Text Available The aim of this work was the combination of two directions for use of algae: algae biomass obtaining fodder minor and wastewater purification. Subject research have served cianofite species of algae: Nostoc gelatinosum, N. flagelliforme and Anabaena propinqua. As nutrient medium were used wastewater from livestock complexes (poultry and pigs with a rich content of organic substances. Investigations carried out indicate that the largest quantity of biomass of Nostoc flageliforme is achieved in the cultivation with wastewater by 1% from pig complexes -13.2 g / l, Nostoc gelatinosum-1% -68 g / l. and Anabaena propinqua-5%-8.8g/l.

  20. Resource stoichiometry and availability modulate species richness and biomass of tropical litter macro-invertebrates.

    Science.gov (United States)

    Jochum, Malte; Barnes, Andrew D; Weigelt, Patrick; Ott, David; Rembold, Katja; Farajallah, Achmad; Brose, Ulrich

    2017-09-01

    High biodiversity and biomass of soil communities are crucial for litter decomposition in terrestrial ecosystems such as tropical forests. However, the leaf litter that these communities consume is of particularly poor quality as indicated by elemental stoichiometry. The impact of resource quantity, quality and other habitat parameters on species richness and biomass of consumer communities is often studied in isolation, although much can be learned from simultaneously studying both community characteristics. Using a dataset of 780 macro-invertebrate consumer species across 32 sites in tropical lowland rain forest and agricultural systems on Sumatra, Indonesia, we investigated the effects of basal resource stoichiometry (C:X ratios of N, P, K, Ca, Mg, Na, S in local leaf litter), litter mass (basal resource quantity and habitat space), plant species richness (surrogate for litter habitat heterogeneity), and soil pH (acidity) on consumer species richness and biomass across different consumer groups (i.e. 3 feeding guilds and 10 selected taxonomic groups). In order to distinguish the most important predictors of consumer species richness and biomass, we applied a standardised model averaging approach investigating the effects of basal resource stoichiometry, litter mass, plant species richness and soil pH on both consumer community characteristics. This standardised approach enabled us to identify differences and similarities in the magnitude and importance of such effects on consumer species richness and biomass. Across consumer groups, we found litter mass to be the most important predictor of both species richness and biomass. Resource stoichiometry had a more pronounced impact on consumer species richness than on their biomass. As expected, taxonomic groups differed in which resource and habitat parameters (basal resource stoichiometry, litter mass, plant species richness and pH) were most important for modulating their community characteristics. The importance

  1. Empowerment model of biomass in west java

    Science.gov (United States)

    Mulyana, C.; Fitriani, N. I.; Saad, A.; Yuliah, Y.

    2017-06-01

    Scarcity of fossil energy accelerates the search of renewable energy sources as the substitution. In West Java, biomass has potential to be developed into bio-briquette because the resources are abundant. The objectives of this research are mapping the potency of biomass as bio-briquette in West Java, and making the model of the empowerment biomass potential involving five fundamental step which are raw material, pre-processing process, conversion mechanism, products, and end user. The main object of this model focused on 3 forms which are solid, liquid, and gas which was made by involving the community component as the owner biomass, district government, academics and researcher communities, related industries as users of biomass, and the central government as the policy holders and investors as a funder. In the model was described their respective roles and mutual relationship one with another so that the bio-briquette as a substitute of fossil fuels can be realized. Application of this model will provide the benefits in renewability energy sources, environmental, socio economical and energy security.

  2. The global economic long-term potential of modern biomass in a climate-constrained world

    Science.gov (United States)

    Klein, David; Humpenöder, Florian; Bauer, Nico; Dietrich, Jan Philipp; Popp, Alexander; Bodirsky, Benjamin Leon; Bonsch, Markus; Lotze-Campen, Hermann

    2014-07-01

    Low-stabilization scenarios consistent with the 2 °C target project large-scale deployment of purpose-grown lignocellulosic biomass. In case a GHG price regime integrates emissions from energy conversion and from land-use/land-use change, the strong demand for bioenergy and the pricing of terrestrial emissions are likely to coincide. We explore the global potential of purpose-grown lignocellulosic biomass and ask the question how the supply prices of biomass depend on prices for greenhouse gas (GHG) emissions from the land-use sector. Using the spatially explicit global land-use optimization model MAgPIE, we construct bioenergy supply curves for ten world regions and a global aggregate in two scenarios, with and without a GHG tax. We find that the implementation of GHG taxes is crucial for the slope of the supply function and the GHG emissions from the land-use sector. Global supply prices start at 5 GJ-1 and increase almost linearly, doubling at 150 EJ (in 2055 and 2095). The GHG tax increases bioenergy prices by 5 GJ-1 in 2055 and by 10 GJ-1 in 2095, since it effectively stops deforestation and thus excludes large amounts of high-productivity land. Prices additionally increase due to costs for N2O emissions from fertilizer use. The GHG tax decreases global land-use change emissions by one-third. However, the carbon emissions due to bioenergy production increase by more than 50% from conversion of land that is not under emission control. Average yields required to produce 240 EJ in 2095 are roughly 600 GJ ha-1 yr-1 with and without tax.

  3. The global economic long-term potential of modern biomass in a climate-constrained world

    International Nuclear Information System (INIS)

    Klein, David; Humpenöder, Florian; Bauer, Nico; Dietrich, Jan Philipp; Popp, Alexander; Leon Bodirsky, Benjamin; Bonsch, Markus; Lotze-Campen, Hermann

    2014-01-01

    Low-stabilization scenarios consistent with the 2 °C target project large-scale deployment of purpose-grown lignocellulosic biomass. In case a GHG price regime integrates emissions from energy conversion and from land-use/land-use change, the strong demand for bioenergy and the pricing of terrestrial emissions are likely to coincide. We explore the global potential of purpose-grown lignocellulosic biomass and ask the question how the supply prices of biomass depend on prices for greenhouse gas (GHG) emissions from the land-use sector. Using the spatially explicit global land-use optimization model MAgPIE, we construct bioenergy supply curves for ten world regions and a global aggregate in two scenarios, with and without a GHG tax. We find that the implementation of GHG taxes is crucial for the slope of the supply function and the GHG emissions from the land-use sector. Global supply prices start at $5 GJ −1 and increase almost linearly, doubling at 150 EJ (in 2055 and 2095). The GHG tax increases bioenergy prices by $5 GJ −1 in 2055 and by $10 GJ −1 in 2095, since it effectively stops deforestation and thus excludes large amounts of high-productivity land. Prices additionally increase due to costs for N 2 O emissions from fertilizer use. The GHG tax decreases global land-use change emissions by one-third. However, the carbon emissions due to bioenergy production increase by more than 50% from conversion of land that is not under emission control. Average yields required to produce 240 EJ in 2095 are roughly 600 GJ ha −1 yr −1 with and without tax. (letter)

  4. Biomass equations for selected drought-tolerant eucalypts in South ...

    African Journals Online (AJOL)

    In the water-scarce environment of South Africa, drought-tolerant eucalypt species have the potential to contribute to the timber and biomass resource. Biomass functions are a necessary prerequisite to predict yield and carbon sequestration. In this study preliminary biomass models for Eucalyptus cladocalyx, ...

  5. Agroecology of Novel Annual and Perennial Crops for Biomass Production

    DEFF Research Database (Denmark)

    Manevski, Kiril; Jørgensen, Uffe; Lærke, Poul Erik

    The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production.......The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production....

  6. Data supporting the assessment of biomass based electricity and reduced GHG emissions in Cuba.

    Science.gov (United States)

    Sagastume Gutiérrez, Alexis; Cabello Eras, Juan J; Vandecasteele, Carlo; Hens, Luc

    2018-04-01

    Assessing the biomass based electricity potential of developing nations like Cuba can help to reduce the fossil fuels dependency and the greenhouse gas emissions. The data included in this study present the evolution of electricity production and greenhouse gas emissions in Cuba. Additionally, the potentialities to produce biomass based electricity by using the most significant biomass sources in Cuba are estimated. Furthermore, estimations of the potential reductions of greenhouse gas emissions, resulting from implementing the biomass based electricity potential of the different sources discussed in the study, are included. Results point to the most promising biomass sources for electricity generation and their potential to reduce GHG emissions.

  7. Carbon stocks in tree biomass and soils of German forests

    Directory of Open Access Journals (Sweden)

    Wellbrock Nicole

    2017-06-01

    Full Text Available Close to one third of Germany is forested. Forests are able to store significant quantities of carbon (C in the biomass and in the soil. Coordinated by the Thünen Institute, the German National Forest Inventory (NFI and the National Forest Soil Inventory (NFSI have generated data to estimate the carbon storage capacity of forests. The second NFI started in 2002 and had been repeated in 2012. The reporting time for the NFSI was 1990 to 2006. Living forest biomass, deadwood, litter and soils up to a depth of 90 cm have stored 2500 t of carbon within the reporting time. Over all 224 t C ha-1 in aboveground and belowground biomass, deadwood and soil are stored in forests. Specifically, 46% stored in above-ground and below-ground biomass, 1% in dead wood and 53% in the organic layer together with soil up to 90 cm. Carbon stocks in mineral soils up to 30 cm mineral soil increase about 0.4 t C ha-1 yr-1 stocks between the inventories while the carbon pool in the organic layers declined slightly. In the living biomass carbon stocks increased about 1.0 t C ha-1 yr-1. In Germany, approximately 58 mill. tonnes of CO2 were sequestered in 2012 (NIR 2017.

  8. Economic analysis of biomass crop production in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, M.; Hodges, A.W.; Stricker, J.A.; Kiker, C.F. [University of Florida, Gainesville, FL (United States)

    1997-07-01

    Favorable soil and climate conditions for production of biomass crops in Florida, and a market for their use, provide the essentials for developing a biomass energy system in the State. Recent surveys showed that there is low opportunity cost land available and several high yield herbaceous and woody crops have potential as biomass crops. Comparison of biomass crop yields, farmgate costs, and costs of final products in Florida and other states show that Florida can be considered as one of the best areas for development of biomass energy systems in the United States. This paper presents facts and figures on biomass production and conversion in Florida and addresses issues of concern to the economics of biomass energy in the State. (author)

  9. Economic analysis of biomass crop production in Florida

    International Nuclear Information System (INIS)

    Rahmani, M.; Hodges, A.W.; Stricker, J.A.; Kiker, C.F.

    1997-01-01

    Favorable soil and climate conditions for production of biomass crops in Florida, and a market for their use, provide the essentials for developing a biomass energy system in the State. Recent surveys showed that there is low opportunity cost land available and several high yield herbaceous and woody crops have potential as biomass crops. Comparison of biomass crop yields, farmgate costs, and costs of final products in Florida and other states show that Florida can be considered as one of the best areas for development of biomass energy systems in the United States. This paper presents facts and figures on biomass production and conversion in Florida and addresses issues of concern to the economics of biomass energy in the State. (author)

  10. Biomass and its potential for protein and amino acids : valorizing agricultural by-products

    NARCIS (Netherlands)

    Sari, Y.W.

    2015-01-01

    The use of biomass for industrial products is not new. Plants have long been used for clothes, shelter, paper, construction, adhesives, tools, and medicine. With the exploitation on fossil fuel usage in the early 20th century and development of petroleum based refinery, the use of biomass for

  11. Burning of biomass waste

    International Nuclear Information System (INIS)

    Holm Christensen, B.; Evald, A.; Buelow, K.

    1997-01-01

    The amounts of waste wood from the Danish wood processing industry available for the energy market has been made. Furthermore a statement of residues based on biomass, including waste wood, used in 84 plants has been made. The 84 plants represent a large part of the group of purchasers of biomass. A list of biomass fuel types being used or being potential fuels in the future has been made. Conditions in design of plants of importance for the environmental impact and possibility of changing between different biomass fuels are illustrated through interview of the 84 plants. Emissions from firing with different types of residues based on biomass are illustrated by means of different investigations described in the literature of the composition of fuels, of measured emissions from small scale plants and full scale plants, and of mass balance investigations where all incoming and outgoing streams are analysed. An estimate of emissions from chosen fuels from the list of types of fuels is given. Of these fuels can be mentioned residues from particle board production with respectively 9% and 1% glue, wood pellets containing binding material with sulphur and residues from olive production. (LN)

  12. Status of biomass fuels technologies research in the US

    Energy Technology Data Exchange (ETDEWEB)

    Koontz, R.P.; Parker, S.; Glenn, B.

    1984-07-01

    Biomass is a tremendous potential source of fuel and chemical feedstocks. The US Department of Energy has sponsored a broad spectrum of research on biomass at various US government laboratories, private installations, and universities. The status of biomass fuels technologies research in the US is discussed.

  13. Influence of carbon-bearing raw material on microfungus Blakeslea Trispora biomass producing

    Directory of Open Access Journals (Sweden)

    L. Myronenko

    2015-05-01

    Full Text Available Introduction. This paper investigates influence of hydrated fullerenes on degree of accumulation bioactive substances of microfungus Blakeslea trispora. Materials and methods. In this research effort detection of fatty-acid composition in amino acids, carotenoids and sterols biomass by means of using methods of high-performance liquid chromatography, adsorption and disjunctive chromatography in thin-layer sorbent and spectrophotometric; gravimetric method; method of direct spectrophotometration in benzene took place. Results and discussion. It has been induced that application of hydrated fullerenes in microfungus Blakeslea trispora nutrient medium promotes increasing accumulation in biomass quantity of carotene on 32,3 %; asparaginic, glutamic acids and leucine. Reproportion carbon to nitrogen by means of adding to microfungus Blakeslea trispora nutrient culture medium hydrated fullerenes did not influence on the biomass amino acid structure any. Obtained data of fatty-acid composition in microfungus Blakeslea trispora lipoid fraction indicate about significant predominance unsaturated fatty acids and, as a result of this, we have advance of use microfungus Blakeslea trispora biomass as a source of biologically active substances for establishing a new kind of prophylactic action goods.

  14. Assessment of the phytoextraction potential of high biomass crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Allica, Javier [NEIKER-tecnalia, Basque Institute of Agricultural Research and Development, c/Berreaga 1, E-48160 Derio (Spain); Becerril, Jose M. [Department of Plant Biology and Ecology, University of the Basque Country, P.O. Box 644, E-48080 Bilbao (Spain); Garbisu, Carlos [NEIKER-tecnalia, Basque Institute of Agricultural Research and Development, c/Berreaga 1, E-48160 Derio (Spain)], E-mail: cgarbisu@neiker.net

    2008-03-15

    A hydroponic screening method was used to identify high biomass crop plants with the ability to accumulate metals. Highest values of shoot accumulation were found in maize cv. Ranchero, rapeseed cv. Karat, and cardoon cv. Peralta for Pb (18 753 mg kg{sup -1}), Zn (10 916 mg kg{sup -1}), and Cd (242 mg kg{sup -1}), respectively. Subsequently, we tested the potential of these three cultivars for the phytoextraction of a metal spiked compost, finding out that, in cardoon and maize plants, increasing Zn and Cd concentrations led to lower values of root and shoot DW. By contrast, rapeseed shoot growth was not significantly affected by Cd concentration. Finally, a metal polluted soil was used to check these cultivars' phytoextraction capacity. Although the soil was phytotoxic enough to prevent the growth of cardoon and rapeseed plants, maize plants phytoextracted 3.7 mg Zn pot{sup -1}. We concluded that the phytoextraction performance of cultivars varies depending on the screening method used. - The phytoextraction performance of cultivars varies significantly depending on the screening method used.

  15. Assessment of the phytoextraction potential of high biomass crop plants

    International Nuclear Information System (INIS)

    Hernandez-Allica, Javier; Becerril, Jose M.; Garbisu, Carlos

    2008-01-01

    A hydroponic screening method was used to identify high biomass crop plants with the ability to accumulate metals. Highest values of shoot accumulation were found in maize cv. Ranchero, rapeseed cv. Karat, and cardoon cv. Peralta for Pb (18 753 mg kg -1 ), Zn (10 916 mg kg -1 ), and Cd (242 mg kg -1 ), respectively. Subsequently, we tested the potential of these three cultivars for the phytoextraction of a metal spiked compost, finding out that, in cardoon and maize plants, increasing Zn and Cd concentrations led to lower values of root and shoot DW. By contrast, rapeseed shoot growth was not significantly affected by Cd concentration. Finally, a metal polluted soil was used to check these cultivars' phytoextraction capacity. Although the soil was phytotoxic enough to prevent the growth of cardoon and rapeseed plants, maize plants phytoextracted 3.7 mg Zn pot -1 . We concluded that the phytoextraction performance of cultivars varies depending on the screening method used. - The phytoextraction performance of cultivars varies significantly depending on the screening method used

  16. Spectroscopic analyses of chemical adaptation processes within microalgal biomass in response to changing environments

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Frank, E-mail: fvogt@utk.edu; White, Lauren

    2015-03-31

    Highlights: • Microalgae transform large quantities of inorganics into biomass. • Microalgae interact with their growing environment and adapt their chemical composition. • Sequestration capabilities are dependent on cells’ chemical environments. • We develop a chemometric hard-modeling to describe these chemical adaptation dynamics. • This methodology will enable studies of microalgal compound sequestration. - Abstract: Via photosynthesis, marine phytoplankton transforms large quantities of inorganic compounds into biomass. This has considerable environmental impacts as microalgae contribute for instance to counter-balancing anthropogenic releases of the greenhouse gas CO{sub 2}. On the other hand, high concentrations of nitrogen compounds in an ecosystem can lead to harmful algae blooms. In previous investigations it was found that the chemical composition of microalgal biomass is strongly dependent on the nutrient availability. Therefore, it is expected that algae’s sequestration capabilities and productivity are also determined by the cells’ chemical environments. For investigating this hypothesis, novel analytical methodologies are required which are capable of monitoring live cells exposed to chemically shifting environments followed by chemometric modeling of their chemical adaptation dynamics. FTIR-ATR experiments have been developed for acquiring spectroscopic time series of live Dunaliella parva cultures adapting to different nutrient situations. Comparing experimental data from acclimated cultures to those exposed to a chemically shifted nutrient situation reveals insights in which analyte groups participate in modifications of microalgal biomass and on what time scales. For a chemometric description of these processes, a data model has been deduced which explains the chemical adaptation dynamics explicitly rather than empirically. First results show that this approach is feasible and derives information about the chemical biomass

  17. Spectroscopic analyses of chemical adaptation processes within microalgal biomass in response to changing environments

    International Nuclear Information System (INIS)

    Vogt, Frank; White, Lauren

    2015-01-01

    Highlights: • Microalgae transform large quantities of inorganics into biomass. • Microalgae interact with their growing environment and adapt their chemical composition. • Sequestration capabilities are dependent on cells’ chemical environments. • We develop a chemometric hard-modeling to describe these chemical adaptation dynamics. • This methodology will enable studies of microalgal compound sequestration. - Abstract: Via photosynthesis, marine phytoplankton transforms large quantities of inorganic compounds into biomass. This has considerable environmental impacts as microalgae contribute for instance to counter-balancing anthropogenic releases of the greenhouse gas CO 2 . On the other hand, high concentrations of nitrogen compounds in an ecosystem can lead to harmful algae blooms. In previous investigations it was found that the chemical composition of microalgal biomass is strongly dependent on the nutrient availability. Therefore, it is expected that algae’s sequestration capabilities and productivity are also determined by the cells’ chemical environments. For investigating this hypothesis, novel analytical methodologies are required which are capable of monitoring live cells exposed to chemically shifting environments followed by chemometric modeling of their chemical adaptation dynamics. FTIR-ATR experiments have been developed for acquiring spectroscopic time series of live Dunaliella parva cultures adapting to different nutrient situations. Comparing experimental data from acclimated cultures to those exposed to a chemically shifted nutrient situation reveals insights in which analyte groups participate in modifications of microalgal biomass and on what time scales. For a chemometric description of these processes, a data model has been deduced which explains the chemical adaptation dynamics explicitly rather than empirically. First results show that this approach is feasible and derives information about the chemical biomass adaptations

  18. Lorraine - The beautiful biomass energy

    International Nuclear Information System (INIS)

    Braun, Pascale

    2013-01-01

    This article evokes various projects of biomass energy production which have been recently developed and built in north-eastern France, notably for industrial and heating applications. It also outlines that the largest industrial projects have been given up: because of the relative steadiness of gas and coal prices, and of the possible opportunity given by shale gas exploitation, industries have been reluctant in investing installations which take longer time to be written off. The quantities of yearly available wood have been reduced for different reasons: resource accessibility, landscape preservation, vicinity of water harnessing points. These restrictions entailed the definition of threshold for the public support of new projects, a decision with which industrials disagree

  19. Influence of lignin on biochemical methane potential of biomass for biogas production

    DEFF Research Database (Denmark)

    Triolo, Jin Mi; Sommer, Sven G.; Møller, Henrik Bjarne

    2011-01-01

    model for these two biomass groups. Validation of the combined model was carried out using datasets from the literature. This study showed that lignin was not degraded during anaerobic digestion. Furthermore, lignin concentration in organic materials was the strongest predictor of BMP for all...... the biomass groups. The square of the sample correlation coefficient (R2) from the BMP versus lignin was 0.908 (P lignin concentration could be used to predict...

  20. Density equation of bio-coal briquettes and quantity of maize cob in Phitsanulok, Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Patomsok Wilaipon [Naresuan University, Phitsanulok (Thailand). Department of Mechanical Engineering

    2008-07-01

    One of the most important crops in Phitsanulok, a province in Northern Thailand, is maize. BaseD on the calculation, the quantity of maize cob produced in this region was approximately 220 kton year{sup -1}. The net heating value of maize cob was found to be 14.2 MJ kg{sup -1}. Therefore, the total energy over 874 TJ year-1 can be obtained from this agricultural waste. In the experiments, maize cob was utilized as the major ingredient for producing biomass-coal briquettes. The maize cob was treated with sodium hydroxide solution before mixing with coal fine. The ratios of coal:maize were 1:2 and 1:3, respectively. The range of briquetting pressures was from 4-8 MPa. The result showed that the density was strongly affected by both parameters. Finally, the relationship between biomass ratio, briquetting pressures and briquette density was developed and validated by using regression technique. 13 refs., 2 figs.

  1. Sustainable biomass production for energy in Sri Lanka

    International Nuclear Information System (INIS)

    Perera, K.K.C.K.; Rathnasiri, P.G.; Sugathapala, A.G.T.

    2003-01-01

    The present study concentrates mainly on the estimation of land availability for biomass production and the estimation of sustainable biomass production potential for energy. The feasible surplus land area available for bioenergy plantation is estimated assuming two land availability scenarios (Scenarios 1 and 2) and three biomass demand scenarios (IBD Scenario, SBD Scenario and FBD Scenario). Scenario 1 assumes that 100% of the surplus area available in base year 1997 will be suitable for plantation without considering population growth and food production and that 75% of this surplus land is feasible for plantation. Scenario 2 assumes that future food requirement will grow by 20% and the potential surplus area will be reduced by that amount. The incremental biomass demand scenario (IBD Scenario) assumes that only the incremental demand for biomass in the year 2010 with respect to the base year 1997 has to be produced from new plantation. The sustainable biomass demand scenario (SBD Scenario) assumes that the total sustainable supply of biomass in 1997 is deducted from the future biomass demand in 2010 and only the balance is to be met by new plantation. The full biomass demand scenario (FBD Scenario) assumes that the entire projected biomass demand of the year 2010 needs to be produced from new plantation. The total feasible land area for the scenarios IBD-1, 1BD-2, SBD-1, SBD-2, FBD-1 and FBD-2 are approximately 0.96, 0.66, 0.80, 0.94, 0.60 and 0.30 Mha, respectively. Biomass production potential is estimated by selecting appropriate plant species, plantation spacing and productivity level. The results show that the total annual biomass production in the country could vary from 2 to 9.9 Mt. With the production option (i.e. 1.5 mx1.5 m spacing plantation with fertilizer application) giving the highest yield, the total biomass production for energy under IBD Scenario would be 9.9 Mt yr -1 for Scenario 1 and 6.7 Mt yr -1 for Scenario 2. Under SBD Scenario, the

  2. Biomass for biogas plants in Denmark - in the short and long term; Biomasse til biogasanlaeg i Danmark - pae kort og langt sigt

    Energy Technology Data Exchange (ETDEWEB)

    Birkmose, T.; Hjort-Gregersen, K.; Stefanek, K.

    2013-04-15

    In the short term, it is one of the major challenges for the developments of the biogas sector that resources of organic waste of the type (organic industrial wastes) that have heretofore been used, generally are estimated to be nearly exhausted. This has led to a number of new biogas projects based on the use of corn (energy crops) as additional biomass to livestock manure. However, Danish policy now has implemented a restriction on the use of corn and other energy crops for biogas production. It is with the restriction clarified that there is a need to use other additional biomass for biogas production. There is a need in the short term to clarify how alternative biomasses such as straw, nature preservation biomass, household waste, etc. in a technically and economically reliable and satisfactory way can be used for biogas production, so that the dependence of energy crops can be reduced. Additionally, it will be essential if the yield of using manure can be increased to reduce economic dependence on energy crops. In the longer term it is essential to strengthen the assessment of the resource potential of biomass available for the production of biogas, and thus what the contribution of biogas in the long term is estimated to be in the future energy supply based on renewable energy. The present report presents the current and future biomass resources potential and biogas production potential. The biomass resources are primarily agricultural and municipal wastes. (LN)

  3. FY 1997 report on the research study for preparation of NEDO`s vision. Biomass energy; 1997 nendo chosa hokokusho (NEDO vision sakutei ni muketa chosa kenkyu). Biomass energy ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research study was made on the current usage, technological development and future subjects of biomass energy. The current use of biomass energy over the world estimated to be nearly a billion t/y oil equivalent. This value is estimated to be only a part of a pure primary biomass yield of 73 billion t/y oil equivalent showing a large supply potential. The evaluation result of a biomass energy potential in the world by GLUE (Global Land Use and Energy Model) considering worldwide biomass flow and competition of land use showed that no change of land use form in advanced areas is predicted, and no production of new biomass energy from forests in advancing areas is also expected. Production of biomass energy from farm products is promising in advanced areas, while the potential of biomass residue is high in advancing areas showing the possibility of energy development. Development of new biotechnologies such as molecular control of bio-production functions is expected to increase biomass resources. 76 refs., 26 figs., 30 tabs.

  4. 16 CFR 500.25 - Net quantity, average quantity, permitted variations.

    Science.gov (United States)

    2010-01-01

    ... good distribution practice and which unavoidably result in change of weight or mass or measure. (c... good packaging practice: Provided, that such variations shall not be permitted to such extent that the... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Net quantity, average quantity, permitted...

  5. Overview of biomass and waste fuel resources for power production

    International Nuclear Information System (INIS)

    Easterly, J.L.; Burnham, M.

    1993-01-01

    This paper provides an overview of issues and opportunities associated with the use of biomass for electric power generation. Important physical characteristics of biomass and waste fuels are summarized, including comparisons with conventional fossil fuels, primarily coal. The paper also provides an overview of the current use of biomass and waste fuels for electric power generation. Biomass and waste fuels are currently used for approximately 9,800 megawatts (MW) of electric generating capacity, including about 6,100 MW of capacity fueled by wood/wood waste and about 2,200 MW of capacity fueled with municipal solid waste. Perspectives on the future availability of biomass fuels (including energy crops) are addressed, as well as projected levels of market penetration for biomass power. By the year 2010, there is a potential for 22,000 MW, to as much as 70,000 MW of biomass-powered electric generating capacity in the U.S. Given the range of benefits offered by biomass, including reduced sulfur emissions, reduced greenhouse gas emissions, job creation, rural revitalization impacts, and new incentives under the Energy Policy Act of 1992, the potential use of biomass for power production could significantly expand in the future

  6. Integral use of sugarcane vinasse for biomass production of actinobacteria: Potential application in soil remediation.

    Science.gov (United States)

    Aparicio, Juan D; Benimeli, Claudia S; Almeida, César A; Polti, Marta A; Colin, Verónica L

    2017-08-01

    The use of living actinobacteria biomass to clean up contaminated soils is an attractive biotechnology approach. However, biomass generation from cheap feedstock is the first step to ensure process sustainability. The present work reports the ability of four actinobacteria, Streptomyces sp. M7, MC1, A5, and Amycolatopsis tucumanensis, to generate biomass from sugarcane vinasse. Optimal vinasse concentration to obtain the required biomass (more than 0.4 g L -1 ) was 20% for all strains, either grown individually or as mixed cultures. However, the biomass fraction recovered from first vinasse was discarded as it retained trace metals present in the effluent. Fractions recovered from three consecutive cycles of vinasse re-use obtained by mixing equal amounts of biomass from single cultures or produced as a mixed culture were evaluated to clean up contaminated soil with lindane and chromium. In all cases, the decrease in pesticide was about 50% after 14 d of incubation. However, chromium removal was statistically different depending on the preparation methodology of the inoculum. While the combined actinobacteria biomass recovered from their respective single cultures removed about 85% of the chromium, the mixed culture biomass removed more than 95%. At the end of the reused vinasse cycle, the mixed culture removed more than 70% of the biological oxygen demand suggesting a proportional reduction in the effluent toxicity. These results represent the first integral approach to address a problematic of multiple contaminations, concerning pesticides, heavy metals and a regionally important effluent like vinasse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Biomass assessment and small scale biomass fired electricity generation in the Green Triangle, Australia

    International Nuclear Information System (INIS)

    Rodriguez, Luis C.; May, Barrie; Herr, Alexander; O'Connell, Deborah

    2011-01-01

    Coal fired electricity is a major factor in Australia's greenhouse gas emissions (GHG) emissions. The country has adopted a mandatory renewable energy target (MRET) to ensure that 20% of electricity comes from renewable sources by 2020. In order to support the MRET, a market scheme of tradable Renewable Energy Certificates (RECs) has been implemented since 2001. Generators using biomass from eligible sources are able to contribute to GHG emission reduction through the substitution of coal for electricity production and are eligible to create and trade RECs. This paper quantifies the potential biomass resources available for energy generation from forestry and agriculture in the Green Triangle, one of the most promising Australian Regions for biomass production. We analyse the cost of electricity generation using direct firing of biomass, and estimate the required REC prices to make it competitive with coal fired electricity generation. Major findings suggest that more than 2.6 million tonnes of biomass are produced every year within 200 km of the regional hub of Mount Gambier and biomass fired electricity is viable using feedstock with a plant gate cost of 46 Australian Dollars (AUD) per tonne under the current REC price of 34 AUD per MWh. These findings are then discussed in the context of regional energy security and existing targets and incentives for renewable energies. -- Highlights: → We assessed the biomass production in the Green Triangle. → 2.6 million tonnes of biomass per year are produced within 200 km from Mt Gambier. → Renewable Energy Certificates makes bioenergy competitive with coal electricity. → At a REC price of 34 AUD, biomass of up to 46 AUD/tonne might be used for bionergy

  8. Potential for thermochemical conversion of biomass residues from the integrated sugar-ethanol process - Fate of ash and ash-forming elements.

    Science.gov (United States)

    Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Zevenhoven, Maria; Hupa, Mikko

    2017-06-01

    In this work, potential for thermochemical conversion of biomass residues from an integrated sugar-ethanol process and the fate of ash and ash-forming elements in the process are presented. Ash, ash-forming elements, and energy flows in the process were determined using mass balances and analyses of eight different biomass samples for ash contents, elemental compositions, and heating values. The results show that the ash content increases from the sugarcane to the final residue, vinasse. The cane straw, which is left in the field, contains one-third of the energy and 25% of the K and Cl while the vinasse contains 2% of the energy and 40% of the K and Cl in the cane. K and Cl in biomass fuels cause corrosion and fouling problems in boilers and gasifiers. Over 85% of these elements in the straw are water soluble indicating that water leaching would improve it for utilization in thermochemical conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Trends and Challenges in Catalytic Biomass Conversion

    DEFF Research Database (Denmark)

    Osmundsen, Christian Mårup; Egeblad, Kresten; Taarning, Esben

    2013-01-01

    The conversion of biomass to the plethora of chemicals used in modern society is one of the major challenges of the 21st century. Due to the significant differences between biomass resources and the current feedstock, crude oil, new technologies need to be developed encompassing all steps...... in the value chain, from pretreatment to purification. Heterogeneous catalysis is at the heart of the petrochemical refinery and will likely play an equally important role in the future biomass-based chemical industry. Three potentially important routes to chemicals from biomass are highlighted in this chapter....... The conversion of biomass-derived substrates, such as glycerol, by hydrogenolysis to the important chemicals ethylene glycol and propane diols. Secondly, the conversion of carbohydrates by Lewis acidic zeolites to yield alkyl lactates, and finally the conversion of lignin, an abundant low value source of biomass...

  10. Allometric equations for estimating standing biomass of Avicennia marina in Bushehr of Iran

    Directory of Open Access Journals (Sweden)

    Akbar Ghasemi

    2016-07-01

    Full Text Available Today, it is important to use of ecological indicators, such as biomass for recognizing the special status of ecosystems, such as mangrove forests and also monitoring and evaluating changes through a specific period. Because using the direct method of evaluating biomass would be destructive, it is common in all similar area to use determine exact Allometric equations by using the statistical relationship between the structural characteristics of trees and their biomass and use these equations to estimate the biomass of trees. The aim of this study is estimate the aboveground biomass of mangroves and determine Allometric models for Nayband area in Bushehr, located in southern Iran. A number of mangrove trees were randomly selected. Collar diameter, crown diameter and tree height of standing trees were measured. After logging and weighing fresh weight, dry weight, trunk and branches were obtained in laboratory and biomass of components was calculated. The relationship between quantities feature of trees and biomass for determination of allometric equation was studied by using linear, power and exponential regression. The equations were compared with each other based on the different modeling parameters. The highest significant correlation was found between crown diameters and dry weight (R > 0.90. The best equations were obtained by means of an exponential and power regression models (R2adj> 0.90. The models were obtained from explained factor, suggests that there might be a relationship between the characteristics of mangrove trees and biomass.

  11. Radiation quantities and units

    International Nuclear Information System (INIS)

    2013-01-01

    This fifth chapter presents the conceptual evolution, the definition procedures, the radiological quantities themselves, the relation between them, the new operational quantities and the new quantities defined in the ICRP 60 that replaced ICRP 26 and was included in the CNEN-NN-3.01 standard of 2011

  12. Application of an empirical model in CFD simulations to predict the local high temperature corrosion potential in biomass fired boilers

    International Nuclear Information System (INIS)

    Gruber, Thomas; Scharler, Robert; Obernberger, Ingwald

    2015-01-01

    To gain reliable data for the development of an empirical model for the prediction of the local high temperature corrosion potential in biomass fired boilers, online corrosion probe measurements have been carried out. The measurements have been performed in a specially designed fixed bed/drop tube reactor in order to simulate a superheater boiler tube under well-controlled conditions. The investigated boiler steel 13CrMo4-5 is commonly used as steel for superheater tube bundles in biomass fired boilers. Within the test runs the flue gas temperature at the corrosion probe has been varied between 625 °C and 880 °C, while the steel temperature has been varied between 450 °C and 550 °C to simulate typical current and future live steam temperatures of biomass fired steam boilers. To investigate the dependence on the flue gas velocity, variations from 2 m·s −1 to 8 m·s −1 have been considered. The empirical model developed fits the measured data sufficiently well. Therefore, the model has been applied within a Computational Fluid Dynamics (CFD) simulation of flue gas flow and heat transfer to estimate the local corrosion potential of a wood chips fired 38 MW steam boiler. Additionally to the actual state analysis two further simulations have been carried out to investigate the influence of enhanced steam temperatures and a change of the flow direction of the final superheater tube bundle from parallel to counter-flow on the local corrosion potential. - Highlights: • Online corrosion probe measurements in a fixed bed/drop tube reactor. • Development of an empirical corrosion model. • Application of the model in a CFD simulation of flow and heat transfer. • Variation of boundary conditions and their effects on the corrosion potential

  13. Environmental implications of increased biomass energy use

    Energy Technology Data Exchange (ETDEWEB)

    Miles, T.R. Sr.; Miles, T.R. Jr. (Miles (Thomas R.), Portland, OR (United States))

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  14. Gasification and co-gasification of biomass wastes: Effect of the biomass origin and the gasifier operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lapuerta, Magin; Hernandez, Juan J.; Pazo, Amparo; Lopez, Julio [Universidad de Castilla-La Mancha, Escuela Tecnica Superior de Ingenieros Industriales (Edificio Politecnico), Avenida Camilo Jose Cela s/n. 13071 Ciudad Real (Spain)

    2008-09-15

    Air gasification of different biomass fuels, including forestry (pinus pinaster pruning) and agricultural (grapevine and olive tree pruning) wastes as well as industry wastes (sawdust and marc of grape), has been carried out in a circulating flow gasifier in order to evaluate the potential of using these types of biomass in the same equipment, thus providing higher operation flexibility and minimizing the effect of seasonal fuel supply variations. The potential of using biomass as an additional supporting fuel in coal fuelled power plants has also been evaluated through tests involving mixtures of biomass and coal-coke, the coke being a typical waste of oil companies. The effect of the main gasifier operating conditions, such as the relative biomass/air ratio and the reaction temperature, has been analysed to establish the conditions allowing higher gasification efficiency, carbon conversion and/or fuel constituents (CO, H{sub 2} and CH{sub 4}) concentration and production. Results of the work encourage the combined use of the different biomass fuels without significant modifications in the installation, although agricultural wastes (grapevine and olive pruning) could to lead to more efficient gasification processes. These latter wastes appear as interesting fuels to generate a producer gas to be used in internal combustion engines or gas turbines (high gasification efficiency and gas yield), while sawdust could be a very adequate fuel to produce a H{sub 2}-rich gas (with interest for fuel cells) due to its highest reactivity. The influence of the reaction temperature on the gasification characteristics was not as significant as that of the biomass/air ratio, although the H{sub 2} concentration increased with increasing temperature. (author)

  15. Swiss Biomass Programme - Overview report on the 2007 research programme; Programm Biomasse: Ueberblicksbericht zum Forschungsprogramm 2007

    Energy Technology Data Exchange (ETDEWEB)

    Binggeli, D; Guggisberg, B

    2008-07-01

    This illustrated report for the Swiss Federal Office of Energy (SFOE) presents an overview of the results obtained in 2007 within the framework of the Swiss Biomass research programme. The potential for biomass use in Switzerland is reviewed and the emphases of the national programme are discussed. The results obtained are noted for the following areas: process optimisation, including - amongst others - particle emissions and control aspects as well as combined wood-pellets and solar heating systems. Projects involving non-wood biomass are reported on, including biomass digesters and various biogas systems. Further reports deal with the analysis and optimisation of material flows, organic pollutants and methane losses. New conversion technologies are reported on. Further reports deal with basic strategies and concepts in the area of biomass usage. National and international co-operation is also discussed. A selection of innovative pilot and demonstration projects is also presented and research and development projects are listed.

  16. Use of GIS for estimating potential and actual forest biomass for continental South and Southeast Asia.

    Science.gov (United States)

    L. R. Iverson; S. Brown; A. Prasad; H. Mitasova; A. J. R. Gillespie; A. E. Lugo

    1994-01-01

    A geographic information system (GIS) was used to estimate total biomass and biomass density of the tropical forest in south and southeast Asia because available data from forest inventories were insufficient to extrapolate biomass-density estimates across the region.

  17. Biomass carbon stocks in China's forests between 2000 and 2050: a prediction based on forest biomass-age relationships.

    Science.gov (United States)

    Xu, Bing; Guo, ZhaoDi; Piao, ShiLong; Fang, JingYun

    2010-07-01

    China's forests are characterized by young forest age, low carbon density and a large area of planted forests, and thus have high potential to act as carbon sinks in the future. Using China's national forest inventory data during 1994-1998 and 1999-2003, and direct field measurements, we investigated the relationships between forest biomass density and forest age for 36 major forest types. Statistical approaches and the predicted future forest area from the national forestry development plan were applied to estimate the potential of forest biomass carbon storage in China during 2000-2050. Under an assumption of continuous natural forest growth, China's existing forest biomass carbon (C) stock would increase from 5.86 Pg C (1 Pg=10(15) g) in 1999-2003 to 10.23 Pg C in 2050, resulting in a total increase of 4.37 Pg C. Newly planted forests through afforestation and reforestation will sequestrate an additional 2.86 Pg C in biomass. Overall, China's forests will potentially act as a carbon sink for 7.23 Pg C during the period 2000-2050, with an average carbon sink of 0.14 Pg C yr(-1). This suggests that China's forests will be a significant carbon sink in the next 50 years.

  18. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land: Case of Croatia

    International Nuclear Information System (INIS)

    Pfeifer, Antun; Dominković, Dominik Franjo; Ćosić, Boris; Duić, Neven

    2016-01-01

    Highlights: • Potential of unused agricultural land for biomass and fruit production is assessed. • Technical and energy potential of biomass from SRC and fruit pruning is calculated. • Economic feasibility of CHP plants utilizing biomass from SRC is presented for Croatia. • Sensitivity analysis and recommendations for shift toward feasibility are provided. - Abstract: In this paper, the energy potential of biomass from growing short rotation coppice on unused agricultural land in the Republic of Croatia is used to investigate the feasibility of Combined Heat and Power (CHP) facilities fueled by such biomass. Large areas of agricultural land that remain unused for food crops, represent significant potential for growing biomass that could be used for energy. This biomass could be used to supply power plants of up to 15 MW_e in accordance with heat demands of the chosen locations. The methodology for regional energy potential assessment was elaborated in previous work and is now used to investigate the conditions in which such energy facilities could be feasible. The overall potential of biomass from short rotation coppice cultivated on unused agricultural land in the scenarios with 30% of the area is up to 10 PJ/year. The added value of fruit trees pruning biomass represents an incentive for the development of fruit production on such agricultural land. Sensitivity analysis was conducted for several parameters: cost of biomass, investment costs in CHP systems and combined change in biomass and technology cost.

  19. Biomass supply in EU27 from 2010 to 2030

    International Nuclear Information System (INIS)

    Panoutsou, Calliope; Eleftheriadis, John; Nikolaou, Anastasia

    2009-01-01

    With biomass staying high in the EU political agenda and most of the recent documents acknowledging that it has the potential to make a very significant contribution to reaching the 20% target [], the issue of supply in terms of feedstock types, availability constraints and costs in different Member States is set to determine the future technology uptake and market deployment prospects. This paper is based on one of the initial studies, 'Bioenergy's role in the EU market. A view of developments until 2020', and presents a structured review for EU biomass resources, aiming to map technical potentials and provide detailed information on availability, costs and future trends for biomass potentials of different residual feedstocks in EU27. (author)

  20. Thermodynamic quantities for the Klein–Gordon equation

    Indian Academy of Sciences (India)

    We study some thermodynamic quantities for the Klein–Gordon equation with a linear plus inverselinear, scalar potential. We obtain the energy eigenvalues with the help of the quantization rule from the biconfluent Heun's equation.We use a method based on the Euler–MacLaurin formula to analytically compute thethermal ...

  1. Surplus biomass through energy efficient kilns

    International Nuclear Information System (INIS)

    Anderson, Jan-Olof; Westerlund, Lars

    2011-01-01

    Highlights: → The magnitude of the national heat demand for drying lumber in kilns is established. → Each part of the total heat consumption is divided and shown between the main drying conditions. → The potential to increase the energy efficiency in kilns with available techniques is presented. → The market demand for the biomass, available with increase kiln energy efficiency, is reviled. -- Abstract: The use of biomass in the European Union has increased since the middle of the 1990s, mostly because of high subsidies and CO 2 emission regulation through the Kyoto protocol. The sawmills are huge biomass suppliers to the market; out of the Swedish annual lumber production of 16.4 Mm 3 , 95% is produced by medium to large-volume sawmills with a lumber quotient of 47%. The remaining part is produced as biomass. An essential part (12%) of the entering timber is used for supply of heat in their production processes, mostly in the substantial drying process. The drying process is the most time and heat consuming process in the sawmill. This study was undertaken to determine the sawmills' national use of energy and potential magnitude of improvements. If the drying process can be made more effective, sawmills' own use of biomass can be decreased and allow a considerably larger supply to the biomass market through processed or unprocessed biomass, heat or electricity production. The national electricity and heat usage when drying the lumber have been analysed by theoretical evaluation and experimental validation at a batch kiln. The main conclusion is that the heat consumption for drying lumber among the Swedish sawmills is 4.9 TW h/year, and with available state-of-the-art techniques it is possible to decrease the national heat consumption by approximately 2.9 TW h. This additional amount of energy corresponds to the market's desire for larger energy supply.

  2. Global patterns and predictions of seafloor biomass using random forests.

    Directory of Open Access Journals (Sweden)

    Chih-Lin Wei

    Full Text Available A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM, seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes. Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management.

  3. Experiences with biomass in Denmark

    DEFF Research Database (Denmark)

    Gregg, Jay Sterling; Bolwig, Simon; Solér, Ola

    The Bioenergy Department in SENER have requested assistance with planning for the deployment of bioenergy (Biomass, biogas and waste incineration) in Mexico and information on Danish experiences with developing policy initiatives promoting bioenergy. This introduction to the Danish experiences...... with biomass use is compiled as preparation for SENER’s potential visit to Denmark in 2014. This report was prepared 19 June, 2014 by DTU System Analysis to Danish Energy Agency (DEA) as part of a frame contract agreement....

  4. Hot Gas Conditioning: Recent Progress with Larger-Scale Biomass Gasification Systems; Update and Summary of Recent Progress

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D. J.

    2001-09-01

    As a result of environmental and policy considerations, there is increasing interest in using renewable biomass resources as feedstock for power, fuels, and chemicals and hydrogen. Biomass gasification is seen as an important technology component for expanding the use of biomass. Advanced biomass gasification systems provide clean products that can be used as fuel or synthesis gases in a variety of environmentally friendly processes. Advanced end-use technologies such as gas turbines or synthesis gas systems require high quality gases with narrowly defined specifications. Other systems such as boilers may also have fuel quality requirements, but they will be substantially less demanding. The gas product from biomass gasifiers contains quantities of particulates, tars, and other constituents that may exceed these specified limits. As a result, gas cleaning and conditioning will be required in most systems. Over the past decade, significant research and development activities have been conducted on the topic of gas cleanup and conditioning. This report provides an update of efforts related to large-scale biomass gasification systems and summarizes recent progress. Remaining research and development issues are also summarized.

  5. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

    2009-03-31

    enzymatic conversion. All three of these processes are of particular interest to states in the Southeastern US since the agricultural products produced in this region are highly variable in terms of actual crop, production quantity, and the ability of land areas to support a particular type of crop. This greatly differs from the Midwestern US where most of this region's agricultural land supports one to two primary crops, such as corn and soybean. Therefore, developing processes which are relatively flexible in terms of biomass feedstock is key to the southeastern region of the US if this area is going to be a 'player' in the developing biomass to chemicals arena. With regard to the fermentation of syngas, research was directed toward developing improved biocatalysts through organism discovery and optimization, improving ethanol/acetic acid separations, evaluating potential bacterial contaminants, and assessing the use of innovative fermentors that are better suited for supporting syngas fermentation. Acid hydrolysis research was directed toward improved conversion yields and rates, acid recovery using membranes, optimization of fermenting organisms, and hydrolyzate characterization with changing feedstocks. Additionally, a series of development efforts addressed novel separation techniques for the separation of key chemicals from fermentation activities. Biogas related research focused on key factors hindering the widespread use of digester technologies in non-traditional industries. The digestion of acetic acids and other fermentation wastewaters was studied and methods used to optimize the process were undertaken. Additionally, novel laboratory methods were designed along with improved methods of digester operation. A search for better performing digester consortia was initiated coupled with improved methods to initiate their activity within digester environments. The third activity of the consortium generally studied the production of &apos

  6. Estimation of arboreal lichen biomass available to woodland caribou in Hudson Bay lowland black spruce sites

    Directory of Open Access Journals (Sweden)

    Sarah K. Proceviat

    2003-04-01

    Full Text Available An arboreal lichen index to be utilized in assessing woodland caribou habitat throughout northeastern Ontario was developed. The "index" was comprised of 5 classes, which differentiated arboreal lichen biomass on black spruce trees, ranging from maximal quantities of arboreal lichen (class 5 to minimal amounts of arboreal lichen (class 1. This arboreal lichen index was subsequently used to estimate the biomass of arboreal lichen available to woodland caribou on lowland black spruce sites ranging in age from 1 year to 150 years post-harvest. A total of 39 sites were assessed and significant differences in arboreal lichen biomass were found, with a positive linear relationship between arboreal lichen biomass and forest age. It is proposed that the index be utilized by government and industry as a means of assessing the suitability of lowland black spruce habitat for woodland caribou in this region.

  7. Strategies for Optimizing Algal Biology for Enhanced Biomass Production

    International Nuclear Information System (INIS)

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-01-01

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  8. Strategies for Optimizing Algal Biology for Enhanced Biomass Production

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T., E-mail: rsayre@newmexicoconsortium.org [Los Alamos National Laboratory, New Mexico Consortium, Los Alamos, NM (United States)

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  9. Research and evaluation of biomass resources/conversion/utilization systems. Biomass allocation model. Volume 1: Test and appendices A & B

    Science.gov (United States)

    Stringer, R. P.; Ahn, Y. K.; Chen, H. T.; Helm, R. W.; Nelson, E. T.; Shields, K. J.

    1981-08-01

    A biomass allocation model was developed to show the most profitable combination of biomass feedstocks, thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating which of a large number of potential biomass missions is the most profitable mission. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a microprocessor. A User's Manual for the system is included. Biomass derived fuels included in the data base are the following: medium Btu gas, low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil.

  10. Community assessment of tropical tree biomass

    DEFF Research Database (Denmark)

    Theilade, Ida; Rutishauser, Ervan; Poulsen, Michael K.

    2015-01-01

    Background REDD+ programs rely on accurate forest carbon monitoring. Several REDD+ projects have recently shown that local communities can monitor above ground biomass as well as external professionals, but at lower costs. However, the precision and accuracy of carbon monitoring conducted by local...... communities have rarely been assessed in the tropics. The aim of this study was to investigate different sources of error in tree biomass measurements conducted by community monitors and determine the effect on biomass estimates. Furthermore, we explored the potential of local ecological knowledge to assess...... measurement, with special attention given to large and odd-shaped trees. A better understanding of traditional classification systems and concepts is required for local tree identifications and wood density estimates to become useful in monitoring of biomass and tree diversity....

  11. Liquid fuel from biomass

    International Nuclear Information System (INIS)

    Breinholt, T.; Gylling, M.; Parsby, M.; Meyer Henius, U.; Sander Nielsen, B.

    1992-09-01

    Various options for Danish production of liquid motor fuels from biomass have been studied in the context of the impact of EEC new common agricultural policy on prices and production quantities of crops, processes and production economy, restraints concerning present and future markets in Denmark, environmental aspects, in particular substitution of fossil fuels in the overall production and end-use, revenue loss required to assure competition with fossil fuels and national competence in business, industry and research. The options studied are rapeseed oil and derivates, ethanol, methanol and other thermo-chemical conversion products. The study shows that the combination of fuel production and co-generation of heat and electricity carried out with energy efficiency and utilization of surplus electricity is important for the economics under Danish conditions. Considering all aspects, ethanol production seems most favorable but in the long term, pyrolyses with catalytic cracking could be an interesting option. The cheapest source of biomass in Denmark is straw, where a considerable amount of the surplus could be used. Whole crop harvested wheat on land otherwise set aside to be fallow could also be an important source for ethanol production. Most of the options contribute favorably to reductions of fossil fuel consumption, but variations are large and the substitution factor is to a great extent dependent on the individual case. (AB) (32 refs.)

  12. Cogeneration: One way to use biomass efficiently

    International Nuclear Information System (INIS)

    Gustavsson, L.; Johansson, B.

    1993-01-01

    Cogeneration in district heating systems is the most energy-efficient way to convert biomass into heat and electricity with current or nearly commercial technologies. Methanol produced from biomass and used in vehicles instead of petrol or diesel could reduce carbon dioxide emissions nearly as much per unit of biomass as if the biomass were used to replace natural gas for cogeneration, but at some higher cost per unit of carbon dioxide reduction. The most energy-efficient way to use biomass for cogeneration appears to be combined cycle technology, and the world's first demonstration plant is now being built. Potentially, this technology can be used for electricity production in Swedish district heating systems to provide nearly 20% of current Swedish electricity production, while simultaneously reducing carbon dioxide emissions from the district heating systems by some 55%. The heat costs from cogeneration with biomass are higher than the heat costs from fossil fuel plants at current fuel prices. Biomass can only compete with fossil fuel if other advantages, for example a lower environmental impact are considered. (au) (35 refs.)

  13. Biomass Resource Allocation among Competing End Uses

    Energy Technology Data Exchange (ETDEWEB)

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

  14. Biomass. A modern and environmentally acceptable fuel

    International Nuclear Information System (INIS)

    Hall, D.O.; House, J.I.

    1995-01-01

    The energy of the sun and carbon dioxide from the atmosphere are captured by plants during photosynthesis. Plant biomass can be used to absorb carbon dioxide emissions from fossil fuels, or it can be converted into modern energy carriers such as electricity, and liquid and gaseous fuels. Biomass supplies 13% of the world's energy consumption (55 EJ, 1990), and in some developing countries it accounts for over 90% of energy use. There is considerable potential for the modernisation of biomass fuels through improved utilisation of existing resources, higher plant productivities and efficient conversion processes using advanced technologies. The interest in bioenergy is increasing rapidly, and it is widely considered as one of the main renewable energy resources of the future due to its large potential, economic viability, and various social and environmental benefits. In particular, biomass energy is among the most favourable options for reducing carbon dioxide emissions. Most of the perceived problems such as land availability, environmental impact, economic viability, and efficiency can be overcome with good management. The constraints to achieving environmentally-acceptable biomass production are not insurmountable, but should rather be seen as scientific and entrepreneurial opportunities which will yield numerous advantages at local, national and international levels in the long term

  15. Thermodynamic efficiency of biomass gasification and biofuels conversion

    NARCIS (Netherlands)

    Ptasinski, K.J.

    2008-01-01

    Biomass has great potential as a clean renewable feedstock for producing biofuels such as Fischer-Tropsch biodiesel, methanol, and hydrogen. The use of biomass is accompanied by possible ecological drawbacks, however, such as limitation of land or water and competition with food production. For

  16. Efficiency analysis of hydrogen production methods from biomass

    NARCIS (Netherlands)

    Ptasinski, K.J.

    2008-01-01

    Abstract: Hydrogen is considered as a universal energy carrier for the future, and biomass has the potential to become a sustainable source of hydrogen. This article presents an efficiency analysis of hydrogen production processes from a variety of biomass feedstocks by a thermochemical method –

  17. Biomass production and carbon storage of Populus ×canadensis ...

    African Journals Online (AJOL)

    euramericana (Dode) Guinier ex Piccarolo) clone I-214 have good potential for biomass production. The objective of the study was estimation of biomass using allometric equations and estimation of carbon allocation according to tree components.

  18. Fiscal 1998 research report. Research on energy conversion technology using biomass resources; 1998 nendo chosa hokokusho. Biomass shigen wo genryo to suru energy henkan gijutsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Feasibility study was made on construction of the new energy production system by thermochemical conversion or combination of thermochemical and biological conversions of agricultural, fishery and organic waste system biomass resources. This report first outlines types and characteristics of biomass over the world, proposes the classification method of biomass from the viewpoint of biomass energy use, and shows the introduction scenario of biomass energy. The energy potential is calculated of agricultural waste, forestry waste and animal waste as the most promising biomass energy resources, and the biomass energy potential of energy plantation is estimated. The present and future of biochemical energy conversion technologies are viewed. The present and future of thermochemical energy conversion technologies are also viewed. Through evaluation of every conversion technology, the difference in feature between each conversion technology was clarified, and the major issues for further R and D were showed. (NEDO)

  19. The use of corn (ZEA MAYS) biomass in drying process; Upotreba biomase kukuruza (ZEA MAYS) u procesu susenja

    Energy Technology Data Exchange (ETDEWEB)

    Kricka, T; Pliestic, S [Agronomski fakultet, Zavod za poljoprivrednu tehnologiju, skladistenje i transport, Zagreb (Croatia)

    1997-12-31

    The most important agricultural crop in the world, besides wheat and rice is corn. In the last 10 years, Republic of Croatia has produced about 2000000 tons of corn. Most of that is used for food and feed and for seed production and it is 1000000 tons in quantity. This quantity demands between 35000 to 40000 tons of oil. For the reason, this paper describes the possibilities of the substitution of oil with corn biomass after harvesting. (author). 3 tabs., 13 refs.

  20. Measuring nanocurie quantities of tritium bred in metallic lithium and lithium oxide samples

    International Nuclear Information System (INIS)

    Bertone, P.C.

    1985-01-01

    The LBM program requires that nanocurie quantities of tritium, bred in both lithium oxide pellets and lithium samples, be measured with an uncertainty not exceeding + or - 6%. Two methods of accurately measuring nanocurie quantities of tritium bred in LBM lithium oxide pellets and one method of accurately measuring nanocurie quantities of tritium bred in lithium samples are described. Potential errors associated with these tritium measurement techniques are also discussed

  1. Fuels production by the thermochemical transformation of the biomass; La production de carburants par transformation thermochimique de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Claudet, G. [CEA, 75 - Paris (France)

    2005-07-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  2. Compacting biomass waste materials for use as fuel

    Science.gov (United States)

    Zhang, Ou

    Every year, biomass waste materials are produced in large quantity. The combustibles in biomass waste materials make up over 70% of the total waste. How to utilize these waste materials is important to the nation and the world. The purpose of this study is to test optimum processes and conditions of compacting a number of biomass waste materials to form a densified solid fuel for use at coal-fired power plants or ordinary commercial furnaces. Successful use of such fuel as a substitute for or in cofiring with coal not only solves a solid waste disposal problem but also reduces the release of some gases from burning coal which cause health problem, acid rain and global warming. The unique punch-and-die process developed at the Capsule Pipeline Research Center, University of Missouri-Columbia was used for compacting the solid wastes, including waste paper, plastics (both film and hard products), textiles, leaves, and wood. The compaction was performed to produce strong compacts (biomass logs) under room temperature without binder and without preheating. The compaction conditions important to the commercial production of densified biomass fuel logs, including compaction pressure, pressure holding time, back pressure, moisture content, particle size, binder effects, and mold conditions were studied and optimized. The properties of the biomass logs were evaluated in terms of physical, mechanical, and combustion characteristics. It was found that the compaction pressure and the initial moisture content of the biomass material play critical roles in producing high-quality biomass logs. Under optimized compaction conditions, biomass waste materials can be compacted into high-quality logs with a density of 0.8 to 1.2 g/cm3. The logs made from the combustible wastes have a heating value in the range 6,000 to 8,000 Btu/lb which is only slightly (10 to 30%) less than that of subbituminous coal. To evaluate the feasibility of cofiring biomass logs with coal, burn tests were

  3. Biomass and alcohol production potential of over-ripe plantains and ...

    African Journals Online (AJOL)

    Procedures for alcohol and protein-rich biomass production from over-ripe plantains and their peels are described. Chemical analyses indicated a significantly (P < 0.05) higher content of moisture, crude fat and protein; as well as potassium, sodium, calcium, iron and magnesium in ripe plantains than in their peels.

  4. Assessment of the microbial growth potential of slow sand filtrate with the biomass production potential test in comparison with the assimilable organic carbon method.

    Science.gov (United States)

    van der Kooij, Dick; Veenendaal, Harm R; van der Mark, Ed J; Dignum, Marco

    2017-11-15

    Slow sand filtration is the final treatment step at four surface-water supplies in the Netherlands. The microbial growth potential (MGP) of the finished water was measured with the assimilable organic carbon (AOC) method using pure cultures and the biomass production potential (BPP) test. In the BPP test, water samples were incubated untreated at 25 °C and the active-biomass concentration was measured by adenosine tri-phosphate (ATP) analysis. Addition of a river-water inoculum improved the test performance and characteristic growth and maintenance profiles of the water were obtained. The maximum ATP concentration attained within seven days and the cumulative biomass production after 14 days of incubation (BPC 14 , d ng ATP L -1 ) showed highly significant and strong linear relationships with the AOC in the slow sand filtrates. The lowest AOC and BPC 14 levels were observed in the supplies applying dune filtration without ozonation in post treatment, with AOC/TOC = 1.7 ± 0.3 μg acetate-C equivalents mg -1 C and BPC 14 /TOC = 16.3 ± 2.2 d ng ATP mg -1 C, corresponding with 1.2 ± 0.19 ng ATP mg -1 C. These characteristics may represent the lowest specific MGP of natural organic matter achievable by biofiltration at temperatures ≤20 °C. The AOC and BPC 14 concentrations in the slow sand filtrate of the supply treating lake water by ozonation with granular-activated-carbon filtration and slow sand filtration as post treatment increased with decreasing temperature. The BPP test revealed that this slow sand filtrate sampled at 2 °C contained growth-promoting compounds that were not detected with the AOC test. These observations demonstrate the utility of the BPP test for assessing the MGP of drinking water and show the performance limits of biofiltration for MGP reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Biomass and electricity: the agricultural biomass. Geothermal energy from fractured rocks: prospective scenarios and impact on environment

    International Nuclear Information System (INIS)

    Delacroix, S.; Whitwham, M.

    1999-09-01

    This publication contains two articles. The first one aims at giving an assessment of energy production potential of biomass in France at a regional level. It gives estimates of volumes of breeding effluents in the different French regions and according to a low and a high hypothesis, presents various technologies used to produce energy from these effluents (examples in Denmark and in Great-Britain), gives estimates of quantities of wheat or barley straws which could be used for energy production in the different French regions and describes straw-based Danish cogeneration plants, gives estimates for other energetic crops (some trees and herbaceous crops) and reports the Belgium experience. The second text reports a middle-term or long-term prospective and economical feasibility study on the production of geothermal energy from fractured rocks. Some researches have already demonstrated the feasibility of a heat exchanger on very deep and cracked granitic rocks which could supply hot water that could be used for energy production. The study examines the different possibilities of evolution of this concept (deepness, increase in the number of wells, transformation into heat, electricity or cogeneration) and describes their technical and economical characteristics within an industrial development perspective on the long term

  6. Urban rainwater runoff quantity and quality: a potential endogenous resource in cities?

    OpenAIRE

    Angrill Toledo, Sara; Petit Boix, Anna; Morales Pinzon, Tito; Josa Garcia-Tornel, Alejandro; Rieradevall Pons, Joan; Gabarrell Durany, Xavier

    2017-01-01

    Rainwater harvesting might help to achieve self-sufficiency, but it must comply with health standards. We studied the runoff quantity and quality harvested from seven urban surfaces in a university campus in Barcelona according to their use (pedestrian or motorized mobility) and materials (concrete, asphalt and slabs). An experimental rainwater harvesting system was used to collect the runoff resulting from a set of rainfall events. We estimated the runoff coefficient and initial abstraction ...

  7. TG-FTIR analysis of biomass pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Bassilakis, R.; Carangelo, R.M.; Wojtowicz, M.A. [Advanced Fuel Research Inc., Hartford, CT (United States)

    2001-10-09

    A great need exists for comprehensive biomass-pyrolysis models that could predict yields and evolution patterns of selected volatile products as a function of feedstock characteristics and process conditions. A thermogravimetric analyzer coupled with Fourier transform infrared analysis of evolving products (TG-FTIR) can provide useful input to such models in the form of kinetic information obtained under low heating rate conditions. In this work, robust TG-FTIR quantification routes were developed for infrared analysis of volatile products relevant to biomass pyrolysis. The analysis was applied to wheat straw, three types of tobacco (Burley, Oriental, and Bright) and three biomass model compounds (xylan, chlorogenic acid, and D-glucose). Product yields were compared with literature data, and species potentially quantifiable by FT-IR are reviewed. Product-evolution patterns are reported for all seven biomass samples. 41 refs., 7 figs., 2 tabs.

  8. Biomass resilience of Neotropical secondary forests.

    Science.gov (United States)

    Poorter, Lourens; Bongers, Frans; Aide, T Mitchell; Almeyda Zambrano, Angélica M; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Broadbent, Eben N; Chazdon, Robin L; Craven, Dylan; de Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben H J; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; de Oliveira, Alexandre A; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velázquez, Jorge; Romero-Pérez, I Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans F M; Vicentini, Alberto; Vieira, Ima C G; Bentos, Tony Vizcarra; Williamson, G Bruce; Rozendaal, Danaë M A

    2016-02-11

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  9. Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction

    International Nuclear Information System (INIS)

    Murphy, Fionnuala; Sosa, Amanda; McDonnell, Kevin; Devlin, Ger

    2016-01-01

    The energy sector is the major contributor to GHG (greenhouse gas emissions) in Ireland. Under EU Renewable energy targets, Ireland must achieve contributions of 40%, 12% and 10% from renewables to electricity, heat and transport respectively by 2020, in addition to a 20% reduction in GHG emissions. Life cycle assessment methodology was used to carry out a comprehensive, holistic evaluation of biomass-to-energy systems in 2020 based on indigenous biomass supply chains optimised to reduce production and transportation GHG emissions. Impact categories assessed include; global warming, acidification, eutrophication potentials, and energy demand. Two biomass energy conversion technologies are considered; co-firing with peat, and biomass CHP (combined heat and power) systems. Biomass is allocated to each plant according to a supply optimisation model which ensures minimal GHG emissions. The study shows that while CHP systems produce lower environmental impacts than co-firing systems in isolation, determining overall environmental impacts requires analysis of the reference energy systems which are displaced. In addition, if the aims of these systems are to increase renewable energy penetration in line with the renewable electricity and renewable heat targets, the optimal scenario may not be the one which achieves the greatest environmental impact reductions. - Highlights: • Life cycle assessment of biomass co-firing and CHP systems in Ireland is carried out. • GWP, acidification and eutrophication potentials, and energy demand are assessed. • Biomass supply is optimised based on minimising GHG emissions. • CHP systems cause lower environmental impacts than biomass co-firing with peat. • Displacing peat achieves higher GHG emission reductions than replacing fossil heat.

  10. The estimation of differential counting measurements of possitive quantities with relatively large statistical errors

    International Nuclear Information System (INIS)

    Vincent, C.H.

    1982-01-01

    Bayes' principle is applied to the differential counting measurement of a positive quantity in which the statistical errors are not necessarily small in relation to the true value of the quantity. The methods of estimation derived are found to give consistent results and to avoid the anomalous negative estimates sometimes obtained by conventional methods. One of the methods given provides a simple means of deriving the required estimates from conventionally presented results and appears to have wide potential applications. Both methods provide the actual posterior probability distribution of the quantity to be measured. A particularly important potential application is the correction of counts on low radioacitvity samples for background. (orig.)

  11. Panorama 2007: Potential biomass mobilization for bio-fuel production worldwide, in Europe and in France

    International Nuclear Information System (INIS)

    Lorne, D.

    2007-01-01

    One key factor in ensuring the success of bio-fuel technologies, which are expected to see high growth, is the availability of biomass resources. Although the targets set in Europe and France for the replacement of petroleum products in the transport sector by 2010 can be met by converting farm surpluses into biofuels, in order to proceed further, it will be necessary to mobilize a resource that is more abundant and potentially less costly: ligno-cellulosic materials, i.e. wood or straw. The future of biofuels depends on establishing the much-awaited 'second generation' bio-fuel pathways able to convert ligno-cellulosic materials to ethanol, bio-diesel and bio-kerosene. (author)

  12. Solar Program Assessment: Environmental Factors - Fuels from Biomass.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    The purpose of this report is to present and prioritize the major environmental issues associated with the further development of biomass production and biomass conversion systems. To provide a background for this environmental analysis, the basic concepts of the technology are reviewed, as are resource requirements. The potential effects of this…

  13. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  14. Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H [Laboratory of Quantitative Vegetation Ecology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Jiang, G M [Laboratory of Quantitative Vegetation Ecology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093 (China); Agronomy Department, Shandong Agricultural University, Tai' an 271018, Shandong Province (China); Zhuang, H Y [National Bio-Energy CO., LTD, No. 26B, Financial Street, Xicheng District, Beijing 100032 (China); Shandong Academy of Sciences, No. 19, Keyuan Road, Ji' nan 250014, Shandong Province (China); Wang, K J [Agronomy Department, Shandong Agricultural University, Tai' an 271018, Shandong Province (China)

    2008-06-15

    As the largest developing country in the world, China is urgently in short of energy and natural resources. However, biological resources such as crop residues are burnt in the field, which cause serious environmental pollution. Still it is not clear how much storage and potential of these huge crop residues are in China. This paper firstly reported the distribution, utilization structure and potential of crop biomass and provided the tangible information of crop residues in rural China through careful collecting and recalculating data. From 1995 to 2005, China produces some 630 million tons of crop residues per year, 50% of which comes from east and central south of China. The amount of crop residues is 1.3 times of the total yield of crops, 2 times of the total fodder of grassland, which covers 41% of China's territory. Crop residues of corn, wheat and rice amounted to 239, 137 and 116 million tons, respectively, accounting for nearly 80% of the total crop residues. Unfortunately, the utilizing structure is seriously improper for such abundant biomass resources. Although 23% of the crop residues are used for forage, 4% for industry materials and 0.5% for biogas, the large parts are used with lower efficiency or wasted, with 37% being directly combusted by farmers, 15% lost during collection and the rest 20.5% discarded or directly burnt in the field. Reasonable adjustment of the utilizing pattern and popularization of the recycling agriculture are essential out-ways for residues, with the development of the forage industry being the breakthrough point. We suggested that utilizing the abandoned 20.5% of the total residues for forage and combining agriculture and stock raising can greatly improve the farm system and cut down fertilizer pollution. Through the development of forage industries, the use efficiency of crop residues could be largely enhanced. Commercializing and popularizing technologies of biomass gasification and liquefaction might be substitute

  15. Prevention of Tibetan eco-environmental degradation caused by traditional use of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)

    2009-12-15

    Tibet is short in fossil energy, but rich in renewable energy sources, such as biomass, hydro, solar, geothermal, and wind power. This potential energy supply in Tibet can be juxtaposed to what drives Tibetan energy consumption its economic motivation and its cultural traditions. Currently, biomass heavily dominates Tibet's energy consumption. In 2003, total energy consumption was about 2 million tce (ton coal equivalent), traditional biomass accounting for nearly 70%. The rarified atmosphere and use of outdated stoves, make for a very low combustion efficiency, utilizing 10-15% of the potential energy of biomass. With population and economic growth, traditional use of biomass has become the principal factor responsible for deforestation, grassland degradation, desertification, and soil erosion. To eradicate the negative impact of the traditional use of biomass on the eco-environment in Tibet, a series of effective countermeasures are investigated. Among these are improved efficiency of stoves, widespread use of solar energy, hydroelectricity as a substitute for traditional biomass, and the development of biogas. (author)

  16. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land

    DEFF Research Database (Denmark)

    Pfeifer, Antun; Dominkovic, Dominik Franjo; Ćosić, Boris

    2016-01-01

    In this paper, the energy potential of biomass from growing short rotation coppice on unused agricultural land in the Republic of Croatia is used to investigate the feasibility of Combined Heat and Power (CHP) facilities fueled by such biomass. Large areas of agricultural land that remain unused...... work and is now used to investigate the conditions in which such energy facilities could be feasible. The overall potential of biomass from short rotation coppice cultivated on unused agricultural land in the scenarios with 30% of the area is up to 10PJ/year. The added value of fruit trees pruning...... biomass represents an incentive for the development of fruit production on such agricultural land. Sensitivity analysis was conducted for several parameters: cost of biomass, investment costs in CHP systems and combined change in biomass and technology cost....

  17. Predicting Consumer Biomass, Size-Structure, Production, Catch Potential, Responses to Fishing and Associated Uncertainties in the World’s Marine Ecosystems

    Science.gov (United States)

    Jennings, Simon; Collingridge, Kate

    2015-01-01

    Existing estimates of fish and consumer biomass in the world’s oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases ≈4 fold when smaller individuals (production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented

  18. High Potential Source for Biomass Degradation Enzyme Discovery and Environmental Aspects Revealed through Metagenomics of Indian Buffalo Rumen

    Directory of Open Access Journals (Sweden)

    K. M. Singh

    2014-01-01

    Full Text Available The complex microbiomes of the rumen functions as an effective system for plant cell wall degradation, and biomass utilization provide genetic resource for degrading microbial enzymes that could be used in the production of biofuel. Therefore the buffalo rumen microbiota was surveyed using shot gun sequencing. This metagenomic sequencing generated 3.9 GB of sequences and data were assembled into 137270 contiguous sequences (contigs. We identified potential 2614 contigs encoding biomass degrading enzymes including glycoside hydrolases (GH: 1943 contigs, carbohydrate binding module (CBM: 23 contigs, glycosyl transferase (GT: 373 contigs, carbohydrate esterases (CE: 259 contigs, and polysaccharide lyases (PE: 16 contigs. The hierarchical clustering of buffalo metagenomes demonstrated the similarities and dissimilarity in microbial community structures and functional capacity. This demonstrates that buffalo rumen microbiome was considerably enriched in functional genes involved in polysaccharide degradation with great prospects to obtain new molecules that may be applied in the biofuel industry.

  19. Biotechnological potential of Synechocystis salina co-cultures with selected microalgae and cyanobacteria: Nutrients removal, biomass and lipid production.

    Science.gov (United States)

    Gonçalves, Ana L; Pires, José C M; Simões, Manuel

    2016-01-01

    Cultivation of microalgae and cyanobacteria has been the focus of several research studies worldwide, due to the huge biotechnological potential of these photosynthetic microorganisms. However, production of these microorganisms is still not economically viable. One possible alternative to improve the economic feasibility of the process is the use of consortia between microalgae and/or cyanobacteria. In this study, Chlorella vulgaris, Pseudokirchneriella subcapitata and Microcystis aeruginosa were co-cultivated with Synechocystis salina to evaluate how dual-species cultures can influence biomass and lipid production and nutrients removal. Results have shown that the three studied consortia achieved higher biomass productivities than the individual cultures. Additionally, nitrogen and phosphorus consumption rates by the consortia provided final concentrations below the values established by European Union legislation for these nutrients. In the case of lipid productivities, higher values were determined when S. salina was co-cultivated with P. subcapitata and M. aeruginosa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains.

    Science.gov (United States)

    Papanikolaou, S; Dimou, A; Fakas, S; Diamantopoulou, P; Philippoussis, A; Galiotou-Panayotou, M; Aggelis, G

    2011-05-01

    In this study, we have investigated the biochemical behaviour of Aspergillus sp. (five strains) and Penicillium expansum (one strain) fungi cultivated on waste cooking olive oil. The production of lipid-rich biomass was the main target of the work. In parallel, the biosynthesis of other extracellular metabolites (organic acids) and enzyme (lipase) and the substrate fatty acid specificity of the strains were studied. Carbon-limited cultures were performed on waste oil, added in the growth medium at 15g l(-1) , and high biomass quantities were produced (up to c.18g l(-1) , conversion yield of c. 1·0 g of dry biomass formed per g of fat consumed or higher). Cellular lipids were accumulated in notable quantities in almost all cultures. Aspergillus sp. ATHUM 3482 accumulated lipid up to 64·0% (w/w) in dry fungal mass. In parallel, extracellular lipase activity was quantified, and it was revealed to be strain and fermentation time dependent, with a maximum quantity of 645 U ml(-1) being obtained by Aspergillus niger NRRL 363. Storage lipid content significantly decreased at the stationary growth phase. Some differences in the fatty acid composition of both cellular and residual lipids when compared with the initial substrate fat used were observed; in various cases, cellular lipids more saturated and enriched with arachidic acid were produced. Aspergillus strains produced oxalic acid up to 5·0 g l(-1) . Aspergillus and Penicillium strains are able to convert waste cooking olive oil into high-added-value products.   Increasing fatty wastes amounts are annually produced. The current study provided an alternative way of biovalourization of these materials, by using them as substrates, to produce added-value compounds. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  1. Tropical Africa: Land use, biomass, and carbon estimates for 1980

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S. [Environmental Protection Agency, Corvallis, OR (United States). Western Ecology Division; Gaston, G. [Environmental Protection Agency, Corvallis, OR (United States). National Research Council; Daniels, R.C. [ed.] [Oak Ridge National Lab., TN (United States)

    1996-06-01

    This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980 and describes a methodology that may be used to extend this data set to 1990 and beyond based on population and land cover data. The biomass data and carbon estimates are for woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with the possible magnitude of historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth`s land surface and includes those countries that for the most part are located in Tropical Africa. Countries bordering the Mediterranean Sea and in southern Africa (i.e., Egypt, Libya, Tunisia, Algeria, Morocco, South Africa, Lesotho, Swaziland, and Western Sahara) have maximum potential biomass and land cover information but do not have biomass or carbon estimate. The database was developed using the GRID module in the ARC/INFO{sup TM} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass-carbon values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

  2. Comparison of nutrient removal capacity and biomass settleability of four high-potential microalgal species.

    Science.gov (United States)

    Su, Yanyan; Mennerich, Artur; Urban, Brigitte

    2012-11-01

    Four common used microalgae species were compared in terms of settleability, nutrient removal capacity and biomass productivity. After 1 month training, except cyanobacteria Phormidium sp., three green microalgae species, Chlamydomonas reinhardtii, Chlorella vulgaris and Scenedesmus rubescens, showed good settleability. The N and P removal efficiency was all above 99% within 7, 4, 6 and 6 days for N and 4, 2, 3 and 4 days for P, resulting in the N removal rates of 3.66±0.17, 6.39±0.20, 4.39±0.06 and 4.31±0.18 mg N/l/d and P removal rates of 0.56±0.07, 0.89±0.05, 0.76±0.09 and 0.60±0.05 mg P/l/d for Phormidium sp., C. reinhardtii, C. vulgaris and S. rubescens, respectively. Phormidium sp. had the lowest algal biomass productivity (2.71±0.7 g/m(2)/d) and the other three green microalgae showed higher algal biomass productivity (around 6 g/m(2)/d). Assimilation into biomass was the main removal mechanism for N and P. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Continuous production of biohythane from hydrothermal liquefied cornstalk biomass via two-stage high-rate anaerobic reactors.

    Science.gov (United States)

    Si, Bu-Chun; Li, Jia-Ming; Zhu, Zhang-Bing; Zhang, Yuan-Hui; Lu, Jian-Wen; Shen, Rui-Xia; Zhang, Chong; Xing, Xin-Hui; Liu, Zhidan

    2016-01-01

    Biohythane production via two-stage fermentation is a promising direction for sustainable energy recovery from lignocellulosic biomass. However, the utilization of lignocellulosic biomass suffers from specific natural recalcitrance. Hydrothermal liquefaction (HTL) is an emerging technology for the liquefaction of biomass, but there are still several challenges for the coupling of HTL and two-stage fermentation. One particular challenge is the limited efficiency of fermentation reactors at a high solid content of the treated feedstock. Another is the conversion of potential inhibitors during fermentation. Here, we report a novel strategy for the continuous production of biohythane from cornstalk through the integration of HTL and two-stage fermentation. Cornstalk was converted to solid and liquid via HTL, and the resulting liquid could be subsequently fed into the two-stage fermentation systems. The systems consisted of two typical high-rate reactors: an upflow anaerobic sludge blanket (UASB) and a packed bed reactor (PBR). The liquid could be efficiently converted into biohythane via the UASB and PBR with a high density of microbes at a high organic loading rate. Biohydrogen production decreased from 2.34 L/L/day in UASB (1.01 L/L/day in PBR) to 0 L/L/day as the organic loading rate (OLR) of the HTL liquid products increased to 16 g/L/day. The methane production rate achieved a value of 2.53 (UASB) and 2.54 L/L/day (PBR), respectively. The energy and carbon recovery of the integrated HTL and biohythane fermentation system reached up to 79.0 and 67.7%, respectively. The fermentation inhibitors, i.e., 5-hydroxymethyl furfural (41.4-41.9% of the initial quantity detected) and furfural (74.7-85.0% of the initial quantity detected), were degraded during hydrogen fermentation. Compared with single-stage fermentation, the methane process during two-stage fermentation had a more efficient methane production rate, acetogenesis, and COD removal. The microbial distribution

  4. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-06-01

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. The technical and economic performances of the selected processes were evaluated using computer models and available literature. Using these results, the carbon sequestration potential of the three technologies was then evaluated. The results of these evaluations are given in this final report.

  5. Thermodynamic analysis of hydrogen production from biomass gasification

    International Nuclear Information System (INIS)

    Cohce, M.K.; Dincer, I.; Rosen, M.A.

    2009-01-01

    'Full Text': Biomass resources have the advantage of being renewable and can therefore contribute to renewable hydrogen production. In this study, an overview is presented of hydrogen production methods in general, and biomass-based hydrogen production in particular. For two methods in the latter category (direct gasification and pyrolysis), assessments are carried out, with the aim of investigating the feasibility of producing hydrogen from biomass and better understanding the potential of biomass as a renewable energy source. A simplified model is presented here for biomass gasification based on chemical equilibrium considerations, and the effects of temperature, pressure and the Gibbs free energy on the equilibrium hydrogen yield are studied. Palm oil (designated C 6 H 10 O 5 ), one of the most common biomass resources in the world, is considered in the analyses. The gasifier is observed to be one of the most critical components of a biomass gasification system, and is modeled using stoichiometric reactions. Various thermodynamic efficiencies are evaluated, and both methods are observed to have reasonably high efficiencies. (author)

  6. Bioenergy Project Development and Biomass Supply

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Modern biomass, and the resulting useful forms of bioenergy produced from it, are anticipated by many advocates to provide a significant contribution to the global primary energy supply of many IEA member countries during the coming decades. For non-member countries, particularly those wishing to achieve economic growth as well as meet the goals for sustainable development, the deployment of modern bioenergy projects and the growing international trade in biomass-based energy carriers offer potential opportunities.

  7. Influence of the Addition of Riboflavin in Culture Medium on Delivering Biomass Using Yeast Strains of Saccharomyces Carlsbengensis

    Directory of Open Access Journals (Sweden)

    Cornelia Nicoară

    2010-05-01

    Full Text Available Yeasts requirements for growth factors should be considered both in terms of ability to summarize the simpleaverage and the dependence on external supplies. Vitamins are components of coenzymes or enzymes prostheticgroups and thus they are growth factors for yeast. The study concerns about the influence of the addition ofriboflavin in culture medium in different quantities, the accumulation of yeast biomass under the action of yeaststrains of beer. The process of cultivation has been made for 24 hours at a temperature of 220C. The addition ofriboflavin in culture medium of yeast biomass increased in each strain of yeast compared with the witness - thesample without added riboflavin. Biomass obtained by follow this procedure could be used to create new foodproducts with high ration nutritional value.

  8. Regional biomass stores and dynamics in forests of coastal Alaska

    Science.gov (United States)

    Mikhaill A. Yatskov; Mark E. Harmon; Olga N. Krankina; Tara M. Barrett; Kevin R. Dobelbower; Andrew N. Gray; Becky Fasth; Lori Trummer; Toni L. Hoyman; Chana M. Dudoit

    2015-01-01

    Coastal Alaska is a vast forested region (6.2 million ha) with the potential to store large amounts of carbon in live and dead biomass thus influencing continental and global carbon dynamics. The main objectives of this study were to assess regional biomass stores, examine the biomass partitioning between live and dead pools, and evaluate the effect of disturbance on...

  9. Gas turbines: gas cleaning requirements for biomass-fired systems

    OpenAIRE

    Oakey, John; Simms, Nigel; Kilgallon, Paul

    2004-01-01

    Increased interest in the development of renewable energy technologies has been hencouraged by the introduction of legislative measures in Europe to reduce CO2 emissions from power generation in response to the potential threat of global warming. Of these technologies, biomass-firing represents a high priority because of the modest risk involved and the availability of waste biomass in many countries. Options based on farmed biomass are also under development. This paper reviews the challenge...

  10. Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass.

    Science.gov (United States)

    Ansari, Faiz Ahmad; Gupta, Sanjay Kumar; Shriwastav, Amritanshu; Guldhe, Abhishek; Rawat, Ismail; Bux, Faizal

    2017-06-01

    Microalgae have tremendous potential to grow rapidly, synthesize, and accumulate lipids, proteins, and carbohydrates. The effects of solvent extraction of lipids on other metabolites such as proteins and carbohydrates in lipid-extracted algal (LEA) biomass are crucial aspects of algal biorefinery approach. An effective and economically feasible algae-based oil industry will depend on the selection of suitable solvent/s for lipid extraction, which has minimal effect on metabolites in lipid-extracted algae. In current study, six solvent systems were employed to extract lipids from dry and wet biomass of Scenedesmus obliquus. To explore the biorefinery concept, dichloromethane/methanol (2:1 v/v) was a suitable solvent for dry biomass; it gave 18.75% lipids (dry cell weight) in whole algal biomass, 32.79% proteins, and 24.73% carbohydrates in LEA biomass. In the case of wet biomass, in order to exploit all three metabolites, isopropanol/hexane (2:1 v/v) is an appropriate solvent system which gave 7.8% lipids (dry cell weight) in whole algal biomass, 20.97% proteins, and 22.87% carbohydrates in LEA biomass. Graphical abstract: Lipid extraction from wet microalgal biomass and biorefianry approach.

  11. Mold biomass as a potential source of nutrient proteins

    Energy Technology Data Exchange (ETDEWEB)

    Fuska, J; Kollarova, A

    1977-01-01

    In submerged cultures of Penicillium resticulosum, Mycelium sterilium, Gibberella fuiikuroi, and Coprinus species grown for 72 hours in medium containing 5 to 7% sawdust hydrolyzate, 1.28 to 1.45 g of dry biomass per 100 mL of culture was produced with 28.1 to 35.3% total amino acids and 15 to 18% essential amino acids; 80 to 90% of the cellular protein was digestible. Mannose, glucose and galactose of the hydrolyzate were utilized faster than xylose and arabinose.

  12. The regional effects of a biomass fuel industry on US agriculture

    International Nuclear Information System (INIS)

    Gallagher, Paul W.

    2014-01-01

    This study looks at the potential competitiveness of the emerging biomass-based biofuel industry in the current economic environment. A simulation model suggests that a mature biomassbased biofuel industry is potentially competitive with gasoline, and capable of filling a significant fraction of motor fuel supplies. However, the existing land policy has a narrow definition of agricultural land for a biomass-based fuel industry. A broader definition of agricultural land suitable for biomass inputs would reduce biofuel processing costs, relieve the food versus fuel conflict, and increase the net gain to fuel consumers, food consumers, and producers of food and fuel. - Highlights: • We look at the potential competitiveness of a mature biomass fuel (BF) industry in the US. • We model a land policy that allows BF-cattle competition for forage, crop residues, and pasture. • We estimate the cost reductions and welfare gains associated with modifying the land use policy

  13. Energy of forest biomass in Croatia

    International Nuclear Information System (INIS)

    Cupin, N.; Krivak, B.; Dundovic, J.

    2005-01-01

    Forest biomass is organic substance raised in forest ecosystem, consisting of trees and bushes which are used for mechanical processing and thermal use. Croatia, with 44 percent of surface under forests, has the renewable energy potential in forest biomass that could cover as much as about 50 percent of the current heating consumption. The existence of an appropriate heating consume and district heating are a prerequisite for exploitation of the mentioned potential. At the same time, heating consumption enables the utilization of cogeneration plants and the paper gives examples of such possibilities in industry, community and special facilities (sport centres, hotels, hospitals etc.). Among them, the so called 'Croatian energy absurdum' is mentioned. The paper underlines the feasibility of exploitation of forest biomass at the national level and suggests that, in order to promote and accelerate the development of cogeneration plants, the HED expert group should be established. The task of the expert group would be to draft proposal for appropriate measures in this regard and submit it to the Government for consideration.(author)

  14. Long Term Potentials and Costs of RES - Part II: The Role of International Biomass Trade

    NARCIS (Netherlands)

    Hoefnagels, E.T.A.; Junginger, H.M.; Resch, G.; Panzer, C.

    2011-01-01

    This report investigated the impact of international transport on the total cost and greenhouse gas balance of solid woody biomass. For this purpose, a geospatial intermodal biomass transport model was developed in the ArcGIS 10.0 Network Analyst extension. This model has been complemented with data

  15. Renewing Rock-Tenn: A Biomass Fuels Assessment for Rock-Tenn's St. Paul Recycled Paper Mill.

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Carl

    2007-03-31

    In the summer of 2006 the Green Institute started the study for the RockTenn paper mill that would evaluate the economics and supply chain reliability of wood waste and other clean biomass as a fuel for the facility. The Green Institute obtained sponsorship from a broad coalition representing the community and the project team included other consultants and university researchers specializing in biomass issues. The final product from the project was a report to: 1) assess the availability of clean biomass fuel for use at the Rock-Tenn site; 2) roughly estimate costs at various annual usage quantities; and 3) develop the building blocks for a supply chain procurement plan. The initial report was completed and public presentations on the results were completed in spring of 2007.

  16. Biomass in a sustainable energy system

    International Nuclear Information System (INIS)

    Boerjesson, Paal

    1998-04-01

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO 2 emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO 2 reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO 2 emission reductions than transportation fuels from annual crops. Swedish CO 2 emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic value of these

  17. Biomass in a sustainable energy system

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    1998-04-01

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO{sub 2} emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO{sub 2} reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO{sub 2} emission reductions than transportation fuels from annual crops. Swedish CO{sub 2} emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic

  18. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  19. The role of biomass in US industrial interfuel substitution

    International Nuclear Information System (INIS)

    Jones, Clifton T.

    2014-01-01

    The role of biomass in US industrial interfuel substitution in the industrial sector has typically been analyzed using data for the four traditional fuels of coal, oil, electricity and natural gas. However, the use of biomass as an industrial fuel in the US has grown, and now exceeds that of coal. Using data from 1960 to 2011, interfuel substitution in the US industrial sector is modeled with a dynamic linear logit model which includes biomass alongside the other four traditional fuels. Adding biomass to the model reduces somewhat the estimated own-price and cross-price elasticities for the other four fuels, while revealing that biomass and natural gas are substitute fuels. This implies that previous studies excluding biomass may have overestimated the potential for interfuel substitution, giving policy makers an inaccurate impression of the ability of carbon taxes or other environmental regulation to reduce greenhouse gas (GHG) emissions. - Highlights: • Biomass usage by the US industrial sector now exceeds coal usage. • Previous interfuel substitution studies have not included biomass as a fuel. • Linear logit model is used to examine role of biomass in interfuel substitution. • Including biomass in the model lowers estimated price elasticities for traditional fuels. • Biomass is found to be a substitute for natural gas for industrial users

  20. A productivity and cost comparison of two systems for producing biomass fuel from roadside forest treatment residues

    Science.gov (United States)

    Nathaniel Anderson; Woodam Chung; Dan Loeffler; John Greg Jones

    2012-01-01

    Forest operations generate large quantities of forest biomass residues that can be used for production of bioenergy and bioproducts. However, a significant portion of recoverable residues are inaccessible to large chip vans, making use financially infeasible. New production systems must be developed to increase productivity and reduce costs to facilitate use of these...

  1. Comparative study of different waste biomass for energy application.

    Science.gov (United States)

    Motghare, Kalyani A; Rathod, Ajit P; Wasewar, Kailas L; Labhsetwar, Nitin K

    2016-01-01

    Biomass is available in many varieties, consisting of crops as well as its residues from agriculture, forestry, and the agro-industry. These different biomass find their way as freely available fuel in rural areas but are also responsible for air pollution. Emissions from such solid fuel combustion to indoor, regional and global air pollution largely depend on fuel types, combustion device, fuel properties, fuel moisture, amount of air supply for combustion and also on climatic conditions. In both economic and environment point of view, gasification constitutes an attractive alternative for the use of biomass as a fuel, than the combustion process. A large number of studies have been reported on a variety of biomass and agriculture residues for their possible use as renewable fuels. Considering the area specific agriculture residues and biomass availability and related transportation cost, it is important to explore various local biomass for their suitability as a fuel. Maharashtra (India) is the mainstay for the agriculture and therefore, produces a significant amount of waste biomass. The aim of the present research work is to analyze different local biomass wastes for their proximate analysis and calorific value to assess their potential as fuel. The biomass explored include cotton waste, leaf, soybean waste, wheat straw, rice straw, coconut coir, forest residues, etc. mainly due to their abundance. The calorific value and the proximate analysis of the different components of the biomass helped in assessing its potential for utilization in different industries. It is observed that ash content of these biomass species is quite low, while the volatile matter content is high as compared to Indian Coal. This may be appropriate for briquetting and thus can be used as a domestic fuel in biomass based gasifier cook stoves. Utilizing these biomass species as fuel in improved cook-stove and domestic gasifier cook-stoves would be a perspective step in the rural energy and

  2. Environmental application for GIS: Assessing Iskandar Malaysia's (IM) sewage sludge for potential biomass resource

    Science.gov (United States)

    Salim, M. R.; Shaharuddin, N.; Abdullah Halim, K.

    2014-02-01

    The low carbon scenario could be achieved through the identification of major sectors contributing to the emission of high greenhouse gases (GHG) into the atmosphere. Sewage treatment plant (STP) was ranked as one of the major sectors that emits methane gas (CH4) during treatment processes, including sludge treatment. Sludge treatment is also capital extensive with high operational cost. Thus, sewage sludge has been accepted as a nuisance in STP. However, many has claimed that, sludge produced contain organic matter that has the potential for biomass resource. Thus, it would be such a Žwaste? if sludge are directly disposed of into the landfill without utilizing them at its full potential. In order to do so, it is vital to be able to determine the amount of sludge production. This research was implemented in Iskandar Malaysia regions in the state of Johor. By using GIS tool, the regions that produced the most sewage sludge can be determined, and can be group as critical area. Result shows that Nusajaya produces the most, compared to other regions, which indicated Nusajaya as a densely populated region.

  3. Electrifying biomass

    International Nuclear Information System (INIS)

    Kusnierczyk, D.

    2005-01-01

    British Columbia's (BC) energy plan was outlined in this PowerPoint presentation. BC Hydro is the third largest electric utility in Canada with a generating capacity of 11,000 MW, 90 per cent of which is hydro generation. Various independent power project (IPP) biomass technologies were outlined, including details of biogas, wood residue and municipal solid waste facilities. An outline of BC Hydro's overall supply mix was presented, along with details of the IPP supply mix. It was suggested that the cancellation of the Duke Point power project has driven growth in the renewable energy sector. A chart of potential energy contribution by resource type was presented, as well as unit energy cost ranges. Resources included small and large hydro; demand side management; resource smart natural gas; natural gas; coal; wind; geothermal; biomass; wave; and tidal. The acquisition process was reviewed. Details of calls for tenders were presented, and issues concerning bidder responsibility and self-selection were examined. It was observed that wood residue presents a firm source of electricity that is generally local, and has support from the public. In addition, permits for wood residue energy conversion are readily available. However, size limitations, fuel risks, and issues concerning site control may prove to be significant challenges. It was concluded that the success of biomass energy development will depend on adequate access and competitive pricing. tabs., figs

  4. Long-term biomass resources for energy aim - quantities, costs and conditions of the market

    International Nuclear Information System (INIS)

    Gylling, M.; Abildtrup, J.; Vodder Nielsen, K.; Petersen, S.M.; Varming, S.

    2001-01-01

    This project assesses the agricultural, technical and economic possibilities for producing the planned quantity of energy crops in year 2015. The assessments in this project are based on two essential assumptions: 1) The total demand for straw and energy crops to meet the energy plans is added up, and the available amount of straw is used first and energy crops will be used for the remaining amount. 2) As long as the present economic conditions for set-aside prevails, it will only be the set-aside areas that will be available for energy crop production. Energy crops are not seen as economic competitive with other cash-crops on the reform areas.Three different scenarios for the agricultural crop production up to year 2015 are outlined; a reference scenario where the current development is extrapolated; an environment scenario in which a higher degree of environmental awareness is taken into account and a market scenario in which the economic competitiveness of agricultural production gains more focus. (au)

  5. Energetic use of renewable fuels. Logistics of energy carrier supply, technologies of usage, boundary conditions for economically efficient use of biomass. Proceedings; Energetische Nutzung nachwachsender Rohstoffe - Logistik der Energietraegerbereitstellung, Technologien der Energietraegernutzung, Rahmenbedinungen fuer den wirtschaftlichen Einsatz von Biomasse. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Within the 14th international conference 'Energetical use of renewable fuels' at Freiberg (Federal Republic of Germany) at 11th and 12th September, 2008, the following lectures were held: (a) State of the legislation procedure for the revision of the Renewable Energy Resources Act and Renewable Energy Resources Heat Act (Bernhard Dreher); (b) Power generation from biomass - A task of investigation? (Martin Kaltschmitt); (c) A physical-chemical online analysis of fine dust emissions from wood furnaces (Michael Sattler, Christian Gaegauf, Nicolas Meyer, Maaren Heringa); (d) Actual state of standardization of biogenic solid fuels (Andreas Neff, Frank Baur); (e) Combined heat and power coupling with thermal gasification of biomass - State of the art and actual developments (Juergen Karl); (f) Wood power generation in the practice - Possibilities and potentials (Michael Hoeffling); (g) Biological natural gas - An analysis and evaluation (Alexander Vogel, Stephan Ramesohl); (h) Digestion of biomass ensures a high yield of biogas (Thilo Lehmann, Christina Dornack); (i) Market for wood pellets in the Federal Republic of Germany - State of the art, development, perspectives (Martin Bentele); (j) Report on the expert opinion ''Utilization of biomass for power generation'' of the Scientific Advisory Council agrarian policy at BMELV (Thomas De Witte); (k) About the ecology of short rotation plants (Heino Wolf); (l) Generation of electricity and heat on the basis of straw - The first straw-fired heating plant in Germany (Rainer Knieper); (m) Standardization of liquid fuels in European context (Thomas Brehmer, Franz Heger); (n) Bio fuels of the second generation: Production, quantities of biomass and strategies of supply (Lutz Freytag); (o) Biomass-fired heating plant Simmering (Ludwig Gockner); (p) Industrial network Renewably Energy in the Free State of Saxony (Klaus Beumler); (q) Exemplary regional conversion of an intelligent, decentralised

  6. Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges.

    Science.gov (United States)

    Paudel, Shukra Raj; Banjara, Sushant Prasad; Choi, Oh Kyung; Park, Ki Young; Kim, Young Mo; Lee, Jae Woo

    2017-12-01

    The anaerobic digestion (AD) of agricultural biomass is an attractive second generation biofuel with potential environmental and economic benefits. Most agricultural biomass contains lignocellulose which requires pretreatment prior to AD. For optimization, the pretreatment methods need to be specific to the characteristics of the biomass feedstock. In this review, cereal residue, fruit and vegetable wastes, grasses and animal manure were selected as the agricultural biomass candidates, and the fundamentals and current state of various pretreatment methods used for AD of these feedstocks were investigated. Several nonconventional methods (electrical, ionic liquid-based chemicals, ruminant biological pretreatment) offer potential as targeted pretreatments of lignocellulosic biomass, but each comes with its own challenges. Pursuing an energy-intensive route, a combined bioethanol-biogas production could be a promising a second biofuel refinery option, further emphasizing the importance of pretreatment when lignocellulosic feedstock is used. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Zeolite-catalyzed biomass conversion to fuels and chemicals

    DEFF Research Database (Denmark)

    Taarning, Esben; Osmundsen, Christian Mårup; Yang, Xiaobo

    2011-01-01

    Heterogeneous catalysts have been a central element in the efficient conversion of fossil resources to fuels and chemicals, but their role in biomass utilization is more ambiguous. Zeolites constitute a promising class of heterogeneous catalysts and developments in recent years have demonstrated...... their potential to find broad use in the conversion of biomass. In this perspective we review and discuss the developments that have taken place in the field of biomass conversion using zeolites. Emphasis is put on the conversion of lignocellulosic material to fuels using conventional zeolites as well...

  8. Results from software based empirical models of and standing biomass for poplar and willow grown as short rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, M.E.; Morgan, G.W.; Brewer, A.C. (Forest Research Biometrics, Surveys and Statistics Division, Forest Research, Wrecclesham (United Kingdom))

    2007-07-01

    Statistical analysis was used to create a model for estimating the quantity of biomass produced by crops of poplar and willow grown as short rotation coppice. This model was converted into a software system as described here. The software is currently available for scientific demonstration. (orig.)

  9. Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum.

    Science.gov (United States)

    Das, Lalitendu; Liu, Enshi; Saeed, Areej; Williams, David W; Hu, Hongqiang; Li, Chenlin; Ray, Allison E; Shi, Jian

    2017-11-01

    This study takes combined field trial, lab experiment, and economic analysis approaches to evaluate the potential of industrial hemp in comparison with kenaf, switchgrass and biomass sorghum. Agronomy data suggest that the per hectare yield (5437kg) of industrial hemp stem alone was at a similar level with switchgrass and sorghum; while the hemp plants require reduced inputs. Field trial also showed that ∼1230kg/ha hemp grain can be harvested in addition to stems. Results show a predicted ethanol yield of ∼82gallons/dry ton hemp stems, which is comparable to the other three tested feedstocks. A comparative cost analysis indicates that industrial hemp could generate higher per hectare gross profit than the other crops if both hemp grains and biofuels from hemp stem were counted. These combined evaluation results demonstrate that industrial hemp has great potential to become a promising regional commodity crop for producing both biofuels and value-added products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Environmental implications of increased biomass energy use. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miles, T.R. Sr.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States)

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  11. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis

    Directory of Open Access Journals (Sweden)

    Couturier Marie

    2012-02-01

    Full Text Available Abstract Background Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemicellulose-rich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide insights into the fungal secreted enzymatic pools involved in lignocellulose degradation. Results In this study, we performed a wide analysis of 20 filamentous fungi for which genomic data are available to investigate their biomass-hydrolysis potential. A comparison of fungal genomes and secretomes using enzyme activity profiling revealed discrepancies in carbohydrate active enzymes (CAZymes sets dedicated to plant cell wall. Investigation of the contribution made by each secretome to the saccharification of wheat straw demonstrated that most of them individually supplemented the industrial Trichoderma reesei CL847 enzymatic cocktail. Unexpectedly, the most striking effect was obtained with the phytopathogen Ustilago maydis that improved the release of total sugars by 57% and of glucose by 22%. Proteomic analyses of the best-performing secretomes indicated a specific enzymatic mechanism of U. maydis that is likely to involve oxido-reductases and hemicellulases. Conclusion This study provides insight into the lignocellulose-degradation mechanisms by filamentous fungi and allows for the identification of a number of enzymes that are potentially useful to further improve the industrial lignocellulose bioconversion process.

  12. Switchgrass a valuable biomass crop for energy

    CERN Document Server

    2012-01-01

    The demand of renewable energies is growing steadily both from policy and from industry which seeks environmentally friendly feed stocks. The recent policies enacted by the EU, USA and other industrialized countries foresee an increased interest in the cultivation of energy crops; there is clear evidence that switchgrass is one of the most promising biomass crop for energy production and bio-based economy and compounds. Switchgrass: A Valuable Biomass Crop for Energy provides a comprehensive guide to  switchgrass in terms of agricultural practices, potential use and markets, and environmental and social benefits. Considering this potential energy source from its biology, breed and crop physiology to its growth and management to the economical, social and environmental impacts, Switchgrass: A Valuable Biomass Crop for Energy brings together chapters from a range of experts in the field, including a foreword from Kenneth P. Vogel, to collect and present the environmental benefits and characteristics of this a ...

  13. Environmental assessment of two different crop systems in terms of biomethane potential production

    International Nuclear Information System (INIS)

    Bacenetti, Jacopo; Fusi, Alessandra; Negri, Marco; Guidetti, Riccardo; Fiala, Marco

    2014-01-01

    The interest in renewable energy sources has gained great importance in Europe due to the need to reduce fossil energy consumption and greenhouse gas emissions, as required by the Renewable Energy Directive (RED) of the European Parliament. The production of energy from energy crops appears to be consistent with RED. The environmental impact related to this kind of energy primarily originates from crop cultivation. This research aimed to evaluate the environmental impact of different crop systems for biomass production: single and double crop. The environmental performances of maize and maize plus wheat were assessed from a life cycle perspective. Two alternative scenarios considering different yields, crop management, and climatic conditions, were also addressed. One normal cubic metre of potential methane was chosen as a functional unit. Methane potential production data were obtained through lab experimental tests. For both of the crop systems, the factors that have the greatest influence on the overall environmental burden are: fertilizer emissions, diesel fuel emissions, diesel fuel production, and pesticide production. Notwithstanding the greater level of methane potential production, the double crop system appears to have the worse environmental performance with respect to its single crop counterpart. This result is due to the bigger quantity of inputs needed for the double crop system. Therefore, the greater amount of biomass (silage) obtained through the double crop system is less than proportional to the environmental burden that results from the bigger quantity of inputs requested for double crop. - Highlights: • Environmental impact of two crop systems was evaluated • Biomethane specific production tests were carried out • Alternative scenarios (different yields and crop management) were assessed • Maize single crop obtains the better environmental performance • Critical factors are: fertilizer and diesel fuel emissions and diesel fuel

  14. Environmental assessment of two different crop systems in terms of biomethane potential production

    Energy Technology Data Exchange (ETDEWEB)

    Bacenetti, Jacopo; Fusi, Alessandra, E-mail: alessandra.fusi@unimi.it; Negri, Marco; Guidetti, Riccardo; Fiala, Marco

    2014-01-01

    The interest in renewable energy sources has gained great importance in Europe due to the need to reduce fossil energy consumption and greenhouse gas emissions, as required by the Renewable Energy Directive (RED) of the European Parliament. The production of energy from energy crops appears to be consistent with RED. The environmental impact related to this kind of energy primarily originates from crop cultivation. This research aimed to evaluate the environmental impact of different crop systems for biomass production: single and double crop. The environmental performances of maize and maize plus wheat were assessed from a life cycle perspective. Two alternative scenarios considering different yields, crop management, and climatic conditions, were also addressed. One normal cubic metre of potential methane was chosen as a functional unit. Methane potential production data were obtained through lab experimental tests. For both of the crop systems, the factors that have the greatest influence on the overall environmental burden are: fertilizer emissions, diesel fuel emissions, diesel fuel production, and pesticide production. Notwithstanding the greater level of methane potential production, the double crop system appears to have the worse environmental performance with respect to its single crop counterpart. This result is due to the bigger quantity of inputs needed for the double crop system. Therefore, the greater amount of biomass (silage) obtained through the double crop system is less than proportional to the environmental burden that results from the bigger quantity of inputs requested for double crop. - Highlights: • Environmental impact of two crop systems was evaluated • Biomethane specific production tests were carried out • Alternative scenarios (different yields and crop management) were assessed • Maize single crop obtains the better environmental performance • Critical factors are: fertilizer and diesel fuel emissions and diesel fuel

  15. Combined Municipal Solid Waste and biomass system optimization for district energy applications.

    Science.gov (United States)

    Rentizelas, Athanasios A; Tolis, Athanasios I; Tatsiopoulos, Ilias P

    2014-01-01

    Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Spatial variation and prediction of forest biomass in a heterogeneous landscape

    Institute of Scientific and Technical Information of China (English)

    S.Lamsal; D.M.Rizzo; R.K.Meentemeyer

    2012-01-01

    Large areas assessments of forest biomass distribution are a challenge in heterogeneous landscapes,where variations in tree growth and species composition occur over short distances.In this study,we use statistical and geospatial modeling on densely sampled forest biomass data to analyze the relative importance of ecological and physiographic variables as determinants of spatial variation of forest biomass in the environmentally heterogeneous region of the Big Sur,California.We estimated biomass in 280 forest plots (one plot per 2.85 km2) and measured an array of ecological (vegetation community type,distance to edge,amount of surrounding non-forest vegetation,soil properties,fire history) and physiographic drivers (elevation,potential soil moisture and solar radiation,proximity to the coast) of tree growth at each plot location.Our geostatistical analyses revealed that biomass distribution is spatially structured and autocorrelated up to 3.1 km.Regression tree (RT) models showed that both physiographic and ecological factors influenced biomass distribution.Across randomly selected sample densities (sample size 112 to 280),ecological effects of vegetation community type and distance to forest edge,and physiographic effects of elevation,potentialsoil moisture and solar radiation were the most consistent predictors of biomass.Topographic moisture index and potential solar radiation had a positive effect on biomass,indicating the importance of topographicallymediated energy and moisture on plant growth and biomass accumulation.RT model explained 35% of the variation in biomass and spatially autocorrelated variation were retained in regession residuals.Regression kriging model,developed from RT combined with kriging of regression residuals,was used to map biomass across the Big Sur.This study demonstrates how statistical and geospatial modeling can be used to discriminate the relative importance of physiographic and ecologic effects on forest biomass and develop

  17. Quantity Stickiness versus Stackelberg Leadership

    International Nuclear Information System (INIS)

    Ferreira, F. A.

    2008-01-01

    We study the endogenous Stackelberg relations in a dynamic market. We analyze a twice-repeated duopoly where, in the beginning, each firm chooses either a quantity-sticky production mode or a quantity-flexible production mode. The size of the market becomes observable after the first period. In the second period, a firm can adjust its quantity if, and only if, it has adopted the flexible mode. Hence, if one firm chooses the sticky mode whilst the other chooses the flexible mode, then they respectively play the roles of a Stackelberg leader and a Stackelberg follower in the second marketing period. We compute the supply quantities at equilibrium and the corresponding expected profits of the firms. We also analyze the effect of the slope parameter of the demand curve on the expected supply quantities and on the profits.

  18. Biomass estimation as a function of vertical forest structure and forest height: potential and limitations for radar remote sensing

    OpenAIRE

    Torano Caicoya, Astor; Kugler, Florian; Papathanassiou, Kostas; Biber, Peter; Pretzsch, Hans

    2010-01-01

    One common method to estimate biomass is measuring forest height and applying allometric equations to get forest biomass. Conditions like changing forest density or changing forest structure bias the allometric relations or biomass estimation fails completely. Remote sensing systems like SAR or LIDAR allow to measure vertical structure of forests. In this paper it is investigated whether vertical structure is sensitive to biomass. For this purpose vertical biomass profiles were calculated usi...

  19. Biomass energy in Central America

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J M [Biomass Users` Network, Regional Office for Central America and the Caribbean, San Jose (Costa Rica)

    1995-12-01

    The objective of this paper is to introduce the concept of biomass to energy issues and opportunities in Central America. In this region, made up of seven countries (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama), the biomass sector has the potential to play a crucial role in alleviating the environmental and development predicaments faced by all economies of the region. This paper assesses the available biomass resources at the regional and country levels and gives an overview of the current utilization of biomass fuels. It also describes the overall context in which the biomass-to-energy initiatives are immersed. At the regional level, biomass energy consumption accounts for more than 50% of total energy consumption. In regard to the utilization of biomass for energy purposes, it is clear that Central America faces a critical juncture at two levels, both mainly in rural areas: in the productive sector and at the household level. The absence of sustainable development policies and practices has jeopardized the availability of biomass fuels, particularly wood. Firewood is an important source of energy for rural industries such as coffee processing, which is one of the largest productive activities in the region. This paper comments on some of the most successful technological innovations already in place in the region, for instance, the rapid development of co-generation projects by the sugar cane industry, especially in El Salvador and Guatemala, the substitution of coffee husks for firewood in coffee processing plants in Costa Rica and El Salvador and the sustainable use of pine forests for co-generation in Honduras. Only one out of every two inhabitants in Central America now has access to electricity from the public grid. Biomass fuels, mainly firewood but also, to a lesser extent, other crop residues such as corn stalks, are the main source of energy for cooking and heating by most of the population. (It is foreseen that by the end

  20. Biomass energy in Central America

    International Nuclear Information System (INIS)

    Blanco, J.M.

    1995-01-01

    The objective of this paper is to introduce the concept of biomass to energy issues and opportunities in Central America. In this region, made up of seven countries (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama), the biomass sector has the potential to play a crucial role in alleviating the environmental and development predicaments faced by all economies of the region. This paper assesses the available biomass resources at the regional and country levels and gives an overview of the current utilization of biomass fuels. It also describes the overall context in which the biomass-to-energy initiatives are immersed. At the regional level, biomass energy consumption accounts for more than 50% of total energy consumption. In regard to the utilization of biomass for energy purposes, it is clear that Central America faces a critical juncture at two levels, both mainly in rural areas: in the productive sector and at the household level. The absence of sustainable development policies and practices has jeopardized the availability of biomass fuels, particularly wood. Firewood is an important source of energy for rural industries such as coffee processing, which is one of the largest productive activities in the region. This paper comments on some of the most successful technological innovations already in place in the region, for instance, the rapid development of co-generation projects by the sugar cane industry, especially in El Salvador and Guatemala, the substitution of coffee husks for firewood in coffee processing plants in Costa Rica and El Salvador and the sustainable use of pine forests for co-generation in Honduras. Only one out of every two inhabitants in Central America now has access to electricity from the public grid. Biomass fuels, mainly firewood but also, to a lesser extent, other crop residues such as corn stalks, are the main source of energy for cooking and heating by most of the population. (It is foreseen that by the end

  1. Analysis of potency and development of renewable energy based on agricultural biomass waste in Jambi province

    Science.gov (United States)

    Devita, W. H.; Fauzi, A. M.; Purwanto, Y. A.

    2018-05-01

    Indonesia has the big potency of biomass. The source of biomass energy is scattered all over the country. The big potential in concentrated scale is on the island of Sumatera. Jambi province which is located in Sumatra Island has the potency of biomass energy due to a huge area for estate crop and agriculture. The Indonesian government had issued several policies which put a higher priority on the utilization of renewable energy. This study aimed to identify the conditions and distribution of biomass waste potential in Jambi province. The potential biomass waste in Jambi province was 27,407,183 tons per year which dominated of oil palm residue (46.16%), rice husk and straw (3.52%), replanting rubberwood (50.32%). The total power generated from biomass waste was 129 GWhth per year which is consisted of palm oil residue (56 GWhth per year), rice husk and straw (3.22 GWhth per year), rubberwood (70.56 GWhth per year). Based on the potential of biomass waste, then the province of Jambi could obtain supplies of renewable energy from waste biomass with electricity generated amount to 32.34 GWhe per year.

  2. Biomass utilisation for combined heat and power generation: Status and perspectives for rural regions. Guelzow expert discussions; Energetische Nutzung von Biomasse mit Kraft-Waerme-Kopplung: Stand der Technik und Perspektiven fuer den laendlichen Raum. Guelzower Fachgespraeche

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Biomass has a high potential but biomass utilisation technologies have not yet reached sufficient maturity for a general breakthrough on the market. Political boundary conditions alone are not sufficient if technical conversion processes are neglected. For the time being, the potential of biomass can not be utilised.

  3. A critical review on biomass gasification, co-gasification, and their environmental assessments

    Directory of Open Access Journals (Sweden)

    Somayeh Farzad

    2016-12-01

    Full Text Available Gasification is an efficient process to obtain valuable products from biomass with several potential applications, which has received increasing attention over the last decades. Further development of gasification technology requires innovative and economical gasification methods with high efficiencies. Various conventional mechanisms of biomass gasification as well as new technologies are discussed in this paper. Furthermore, co-gasification of biomass and coal as an efficient method to protect the environment by reduction of greenhouse gas (GHG emissions has been comparatively discussed. In fact, the increasing attention to renewable resources is driven by the climate change due to GHG emissions caused by the widespread utilization of conventional fossil fuels, while biomass gasification is considered as a potentially sustainable and environmentally-friendly technology. Nevertheless, social and environmental aspects should also be taken into account when designing such facilities, to guarantee the sustainable use of biomass. This paper also reviews the life cycle assessment (LCA studies conducted on biomass gasification, considering different technologies and various feedstocks.

  4. Analysis of the availability of biomass in Cuba with energy ends

    International Nuclear Information System (INIS)

    Pla Duporte, Manuel; Arango, Mirta; Guyat Dupuy, Maria Antonia

    2011-01-01

    The quick decrease of the fossil fuels has taken to the search of renewable sources of energy. Cuba has in the biomasses one of the biggest potentialities of sources renewable of energy, but even with a small exploitation. The purpose of increasing the employment of the sources renewable of energy, in particular the biomasses one requires evaluation of the capacities with which it counts our country. Presently work the results of an are presented The study carried out directed to the evaluation of these sources focused basically to the possibility of their employment in processes thermochemical. The evaluation of the is attacked availability of these energy resources, their main ones characteristic, the potentialities are also determined of use of the selected biomasses. Equally you it makes an estimate of the availability of the biomasses chosen in dependence of the behavior of its consumption, for finally to carry out an appreciation of the one potential of energy obtaining starting from her and its technician-economic feasibility. (author)

  5. The potential impact of externalities considerations on the market for biomass power technologies

    International Nuclear Information System (INIS)

    Swezey, B.G.; Porter, K.L.; Feher, J.S.

    1995-01-01

    Of all the renewable energy sources used for power generation, biomass energy has experienced the greatest growth over the last decade. Spurred by requirements established in the Public Utility Regulatory Policies Act of 1978 (PURPA), as well as various tax incentives, biomass-based power generation now provides more than 50 billion kWh of electric energy from 10,000 MW of installed capacity. The overwhelming majority of this capacity, primarily wood-based, has been developed by the nonutility sector. However, the biomass industry is currently facing more difficult market conditions due to a reduction in federal incentives and changes in the generation market, such as lower utility avoided costs, slower demand growth, and greater competition among both generators and fuel sources. States are increasingly contemplating the inclusion of market externalities costs and benefits associated with different generation options in electricity resource planning and procurement decisions. Market externalities, as they relate to generation resources and technologies, represent impacts that are not wholly reflected in the market price of electricity derived from these sources. These impacts, which can be either positive or negative, can encompass environmental, economic and other social factors, but state considerations have focused predominantly on environmental externalities costs, especially air emissions. The explicit quantification of externalities could measurably affect the competitive standing of various energy resources and technologies in future generation resource acquisitions. This paper summarizes work undertaken to assess the status the externalities considerations in state and utility electricity resource planning processes and to determine how externalities considerations might help or hinder future development of biomass power plants. (author)

  6. Biomass and Neutral Lipid Production in Geothermal Microalgal Consortia

    Science.gov (United States)

    Bywaters, Kathryn F.; Fritsen, Christian H.

    2015-01-01

    Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems – in addition to oil-derived fuels (Bird et al., 2011, 2012). Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass, and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 39.0 to 344.1 mg C L−1 day−1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production) ranged from 0 to 38.74 mg free fatty acids (FFA) and triacylglycerols (TAG) L−1 day−1; the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio) decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment. All results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels. PMID:25763368

  7. Biomass and Neutral Lipid Production in Geothermal Microalgal Consortia

    Directory of Open Access Journals (Sweden)

    Kathryn Faye Bywaters

    2015-02-01

    Full Text Available Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems- in addition to oil-derived fuels (Bird et al., 2011;Bird et al., 2012. Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 368 to 3246 mg C L-1 d-1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production ranged from zero to 38.74 mg free fatty acids and triacylglycerols L-1 d-1, the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment – all results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels.

  8. Fungal treated lignocellulosic biomass as ruminant feed ingredient: A review

    NARCIS (Netherlands)

    Kuijk, van S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W.

    2015-01-01

    In ruminant nutrition, there is an increasing interest for ingredients that do not compete with human nutrition. Ruminants are specialists in digesting carbohydrates in plant cell walls; therefore lignocellulosic biomass has potential in ruminant nutrition. The presence of lignin in biomass,

  9. Will biomass be the environmentally friendly fuel of the future?

    International Nuclear Information System (INIS)

    Hall, D.O.; Scrase, J.I.

    1998-01-01

    Many influential organisations foresee biomass playing a key role in a future, more sustainable, global energy supply matrix. Countries such as Austria, Brazil, Denmark, Finland, Sweden, India, the USA and the UK are actively encouraging the use of biomass for energy, and pushing forward the development of the necessary knowledge and technology for modern biomass energy systems. There is a growing consensus that renewable energy must progressively displace the use of fossil fuels, with fears of global climate change adding urgency to this need. Among the available types of renewable energy biomass is unique in its ability to provide solid, liquid and gaseous fuels which can be stored and transported. The potential resource for bioenergy is large, especially in forest-rich nations, in richer countries where there is a surplus of agricultural land, and in many low latitude countries where high biomass yields are possible. Therefore we expect biomass to be an important fuel of the future, but this cannot be taken for granted. The systems adopted must demonstrate clear environmental and social benefits relative to alternatives if the potential is to be realised. These benefits are not inherent to biomass energy, but depend on site- and fuel cycle-specific factors. Life-cycle analysis and evaluation of external costs are important means for assessing the social and environmental pros and cons of bioenergy systems. (author)

  10. Faecal-wood biomass co-combustion and ash composition analysis.

    Science.gov (United States)

    Somorin, Tosin Onabanjo; Kolios, Athanasios J; Parker, Alison; McAdam, Ewan; Williams, Leon; Tyrrel, Sean

    2017-09-01

    Fuel blending is a widely used approach in biomass combustion, particularly for feedstocks with low calorific value and high moisture content. In on-site sanitation technologies, fuel blending is proposed as a pre-treatment requirement to reduce moisture levels and improve the physiochemical properties of raw faeces prior to drying. This study investigates the co-combustion performance of wood dust: raw human faeces blends at varying air-to-fuel ratios in a bench-scale combustor test rig. It concludes with ash composition analyses and discusses their potential application and related problems. The study shows that a 50:50 wood dust (WD): raw human faeces (FC) can reduce moisture levels in raw human faeces by ∼40% prior to drying. The minimum acceptable blend for treating moist faeces without prior drying at a combustion air flow rate of 14-18 L/min is 30:70 WD: FC. For self-sustained ignition and flame propagation, the minimum combustion temperature required for conversion of the fuel to ash is ∼400 °C. The most abundant elements in faecal ash are potassium and calcium, while elements such as nickel, aluminium and iron are in trace quantities. This suggests the potential use of faecal ash as a soil conditioner, but increases the tendency for fly ash formation and sintering problems.

  11. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-01

    Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

  12. UK resource base assessment of organisations and capabilities in the biomass sector

    International Nuclear Information System (INIS)

    1996-01-01

    British Biogen is the trade association for the UK's emerging biomass industry. It has been recognised that the biomass industry has considerable export potential due to its immense scale potential overseas, and there is an accompanying need for an export development strategy for the industry. The report contains a detailed analysis of a selection of UK companies and organisations, with regard to their export capabilities, thus providing an essential pre-requisite to developing the export strategy. The fundamental aim of the study is to assess the nature, scale and current capabilities of the UK biomass industry resource base and, in turn, to determine its potential to service export markets. (author)

  13. Biomass Support for the China Renewable Energy Law: Final Report, December 2005

    Energy Technology Data Exchange (ETDEWEB)

    2006-10-01

    Final subcontractor report giving an overview of the biomass power generation technologies used in China. Report covers resources, technologies, foreign technologies and resources for comparison purposes, biomass potential in China, and finally government policies in China that support/hinder development of the using biomass in China for power generation.

  14. Remote sensing and modeling. A tool to provide the spatial information for biomass production potential

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, K.P.; Wisskirchen, K.; Schroedter-Homscheidt, M. [DLR, Wessling (Germany). German Remote Sensing Data Center; Borg, E.; Fichtelmann, B. [DLR, Neustrelitz (Germany). German Remote Sensing Data Center

    2006-07-01

    Earth observation from space has been successfully demonstrated over a wide range of monitoring activities, mostly with the aim of measuring the spatial and temporal distribution of biophysical and geophysical parameters as e.g. the Normalized Difference Vegetation Index (NDVI), the land surface temperature (LST) or the land use classification (LCC). With the growing need for more reliable information of global biomass activity in the frame of climate change, the identification and quantification of carbon sinks and sources got of importance. The goal of our activities is to use time series of remote sensing data and carbon modeling to assess the biomass of large regions. Future activities will be discussed as reprocessing of archived time series (e.g. 30 years) of remote sensing data, which will be used as input to biomass modeling, improving the spatial resolution of local, historic land use maps by processing archived Landsat data (30m), using an innovative classification processor for deriving actual multi-temporal land use maps based MERIS data (300m) and delivering a biomass equivalent indicator as productivity indicator. (orig.)

  15. Predicting plant biomass accumulation from image-derived parameters

    Science.gov (United States)

    Chen, Dijun; Shi, Rongli; Pape, Jean-Michel; Neumann, Kerstin; Graner, Andreas; Chen, Ming; Klukas, Christian

    2018-01-01

    Abstract Background Image-based high-throughput phenotyping technologies have been rapidly developed in plant science recently, and they provide a great potential to gain more valuable information than traditionally destructive methods. Predicting plant biomass is regarded as a key purpose for plant breeders and ecologists. However, it is a great challenge to find a predictive biomass model across experiments. Results In the present study, we constructed 4 predictive models to examine the quantitative relationship between image-based features and plant biomass accumulation. Our methodology has been applied to 3 consecutive barley (Hordeum vulgare) experiments with control and stress treatments. The results proved that plant biomass can be accurately predicted from image-based parameters using a random forest model. The high prediction accuracy based on this model will contribute to relieving the phenotyping bottleneck in biomass measurement in breeding applications. The prediction performance is still relatively high across experiments under similar conditions. The relative contribution of individual features for predicting biomass was further quantified, revealing new insights into the phenotypic determinants of the plant biomass outcome. Furthermore, methods could also be used to determine the most important image-based features related to plant biomass accumulation, which would be promising for subsequent genetic mapping to uncover the genetic basis of biomass. Conclusions We have developed quantitative models to accurately predict plant biomass accumulation from image data. We anticipate that the analysis results will be useful to advance our views of the phenotypic determinants of plant biomass outcome, and the statistical methods can be broadly used for other plant species. PMID:29346559

  16. How necessary are the new quantities

    International Nuclear Information System (INIS)

    Kraus, W.

    1991-01-01

    The necessity of the ICRU operational quantities is discussed from the point of view of practical, opertional radiation protection, on the basis of ICRU report 43. It is clear that, although the new quantities have some advantages over previous systems of operational quantities, there are some disadvantages as well. The decision to adopt these quantities is, therefore, not clear cut. (orig.)

  17. Renewable energy--traditional biomass vs. modern biomass

    International Nuclear Information System (INIS)

    Goldemberg, Jose; Teixeira Coelho, Suani

    2004-01-01

    Renewable energy is basic to reduce poverty and to allow sustainable development. However, the concept of renewable energy must be carefully established, particularly in the case of biomass. This paper analyses the sustainability of biomass, comparing the so-called 'traditional' and 'modern' biomass, and discusses the need for statistical information, which will allow the elaboration of scenarios relevant to renewable energy targets in the world

  18. A study of palm biomass processing strategy in Sarawak

    Science.gov (United States)

    Lee, S. J. Y.; Ng, W. P. Q.; Law, K. H.

    2017-06-01

    In the past decades, palm industry is booming due to its profitable nature. An environmental concern regarding on the palm industry is the enormous amount of waste produced from palm industry. The waste produced or palm biomass is one significant renewable energy source and raw material for value-added products like fiber mats, activated carbon, dried fiber, bio-fertilizer and et cetera in Malaysia. There is a need to establish the palm biomass industry for the recovery of palm biomass for efficient utilization and waste reduction. The development of the industry is strongly depending on the two reasons, the availability and supply consistency of palm biomass as well as the availability of palm biomass processing facilities. In Malaysia, the development of palm biomass industry is lagging due to the lack of mature commercial technology and difficult logistic planning as a result of scattered locality of palm oil mill, where palm biomass is generated. Two main studies have been carried out in this research work: i) industrial study of the feasibility of decentralized and centralized palm biomass processing in Sarawak and ii) development of a systematic and optimized palm biomass processing planning for the development of palm biomass industry in Sarawak, Malaysia. Mathematical optimization technique is used in this work to model the above case scenario for biomass processing to achieve maximum economic potential and resource feasibility. An industrial study of palm biomass processing strategy in Sarawak has been carried out to evaluate the optimality of centralized processing and decentralize processing of the local biomass industry. An optimal biomass processing strategy is achieved.

  19. Precise and efficient evaluation of gravimetric quantities at arbitrarily scattered points in space

    Science.gov (United States)

    Ivanov, Kamen G.; Pavlis, Nikolaos K.; Petrushev, Pencho

    2017-12-01

    Gravimetric quantities are commonly represented in terms of high degree surface or solid spherical harmonics. After EGM2008, such expansions routinely extend to spherical harmonic degree 2190, which makes the computation of gravimetric quantities at a large number of arbitrarily scattered points in space using harmonic synthesis, a very computationally demanding process. We present here the development of an algorithm and its associated software for the efficient and precise evaluation of gravimetric quantities, represented in high degree solid spherical harmonics, at arbitrarily scattered points in the space exterior to the surface of the Earth. The new algorithm is based on representation of the quantities of interest in solid ellipsoidal harmonics and application of the tensor product trigonometric needlets. A FORTRAN implementation of this algorithm has been developed and extensively tested. The capabilities of the code are demonstrated using as examples the disturbing potential T, height anomaly ζ , gravity anomaly Δ g , gravity disturbance δ g , north-south deflection of the vertical ξ , east-west deflection of the vertical η , and the second radial derivative T_{rr} of the disturbing potential. After a pre-computational step that takes between 1 and 2 h per quantity, the current version of the software is capable of computing on a standard PC each of these quantities in the range from the surface of the Earth up to 544 km above that surface at speeds between 20,000 and 40,000 point evaluations per second, depending on the gravimetric quantity being evaluated, while the relative error does not exceed 10^{-6} and the memory (RAM) use is 9.3 GB.

  20. CHARACTERIZATION QUALITATIVE OF SOEL FOR A VALORIZATION BEST OF THE BIOMASS PRODUCED

    Directory of Open Access Journals (Sweden)

    Y. M’Sadak

    2015-03-01

    Full Text Available The main objective of this study was to qualitatively characterize biomass of Solanum elaeagnifolium Cav. (or SOEL to highlight the essential alternatives its valorization. At first, we studied the potential of composting biomass of this plant. The physico-chemical characterization of biomass silverleaf nightshade has detected a wealth in organic carbon, which highlighted the potential value of this plant in the Co-composting with other biodegradable waste. In a second step, we assessed the possibility to develop this plant in the area of treatment in textile effluents by biosorption of dyes on fibers from the biomass of this plant, especially after the discovery of high levels of cellulose in its different organs.

  1. CHARACTERIZATION QUALITATIVE OF SOEL FOR A VALORIZATION BEST OF THE BIOMASS PRODUCED

    Directory of Open Access Journals (Sweden)

    Y. M’Sadak

    2015-01-01

    Full Text Available The main objective of this study was to qualitatively characterize biomass of Solanum elaeagnifolium Cav. (or SOEL to highlight the essential alternatives its valorization. At first, we studied the potential of composting biomass of this plant. The physico-chemical characterization of biomass silverleaf nightshade has detected a wealth in organic carbon, which highlighted the potential value of this plant in the Co-composting with other biodegradable waste. In a second step, we assessed the possibility to develop this plant in the area of treatment in textile effluents by biosorption of dyes on fibers from the biomass of this plant, especially after the discovery of high levels of cellulose in its different organs.

  2. Agricultural policies and biomass fuels

    Science.gov (United States)

    Flaim, S.; Hertzmark, D.

    The potentials for biomass energy derived from agricultural products are examined. The production of energy feedstocks from grains is discussed for the example of ethanol production from grain, with consideration given to the beverage process and the wet milling process for obtaining fuel ethanol from grains and sugars, the nonfeedstock costs and energy requirements for ethanol production, the potential net energy gain from ethanol fermentation, the effect of ethanol fuel production on supplies of protein, oils and feed and of ethanol coproducts, net ethanol costs, and alternatives to corn as an ethanol feedstock. Biomass fuel production from crop residues is then considered; the constraints of soil fertility on crop residue removal for energy production are reviewed, residue yields with conventional practices and with reduced tillage are determined, technologies for the direct conversion of cellulose to ethanol and methanol are described, and potential markets for the products of these processes are identified. Implications for agricultural policy of ethanol production from grain and fuel and chemical production from crop residues are also discussed.

  3. Three-dimensional porous activated carbon derived from loofah sponge biomass for supercapacitor applications

    Science.gov (United States)

    Su, Xiao-Li; Chen, Jing-Ran; Zheng, Guang-Ping; Yang, Jing-He; Guan, Xin-Xin; Liu, Pu; Zheng, Xiu-Cheng

    2018-04-01

    Biomass carbon source is generally cheap, environmentally friendly and readily available in high quality and quantity. In this work, a series of loofah sponge-derived activated carbon (SAC-x) with hierarchical porous structures are prepared by KOH chemical activation and used as electrode materials for supercapacitors. The pore size can be easily controllable by changing the dosage of KOH. The optimized material (SAC-4) exhibits a high specific capacitance of 309.6 F g-1 at 1 A g-1 in the three-electrode system using 6 M KOH electrolyte. More importantly, the as-assembled symmetric supercapacitor based on SAC-4 exhibits a high energy density of 16.1 Wh kg-1 at a power density of 160.0 W kg-1 using 1 M Na2SO4 electrolyte. These remarkable results demonstrate the exciting commercial potential of SAC-x for high-performance supercapacitor applications due to their high specific surface area, appropriately porous structure, and the trace heteroatom (O and N) functionalities.

  4. CO2 substitution potential and CO2 reduction costs of an energetic exploitation of solid biomasses in Germany

    International Nuclear Information System (INIS)

    Becher, S.

    1995-01-01

    For the reduction of the anthropogenic greenhouse effect, the CO 2 , emissions are clearly to be reduced in future, according to the resolution made by the Federal Republic. Against the background of this objective, possible contributions of the biogenous solid fuels for the reduction of the CO 2 release of fossil origin are presented and discussed. For that, first the existing potentials of biomass in Germany and their present use are shown. Based on this, the CO 2 emissions by the present use already avoided, as well as the existing unexploited potentials of the CO 2 reduction potentials still to be exploited are determined. In accordance with an 'integral' starting point, thereby all pre- and post-positioned processes are considered. Finally, the specific CO 2 reduction costs are analysed and compared with other options. (orig.) [de

  5. Supercritical Fluids Processing of Biomass to Chemicals and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Norman K. [Iowa State Univ., Ames, IA (United States)

    2011-09-28

    The main objective of this project is to develop and/or enhance cost-effective methodologies for converting biomass into a wide variety of chemicals, fuels, and products using supercritical fluids. Supercritical fluids will be used both to perform reactions of biomass to chemicals and products as well as to perform extractions/separations of bio-based chemicals from non-homogeneous mixtures. This work supports the Biomass Program’s Thermochemical Platform Goals. Supercritical fluids are a thermochemical approach to processing biomass that, while aligned with the Biomass Program’s interests in gasification and pyrolysis, offer the potential for more precise and controllable reactions. Indeed, the literature with respect to the use of water as a supercritical fluid frequently refers to “supercritical water gasification” or “supercritical water pyrolysis.”

  6. Biogeochemical potential of biomass pyrolysis systems for limiting global warming to 1.5 °C

    Science.gov (United States)

    Werner, C.; Schmidt, H.-P.; Gerten, D.; Lucht, W.; Kammann, C.

    2018-04-01

    Negative emission (NE) technologies are recognized to play an increasingly relevant role in strategies limiting mean global warming to 1.5 °C as specified in the Paris Agreement. The potentially significant contribution of pyrogenic carbon capture and storage (PyCCS) is, however, highly underrepresented in the discussion. In this study, we conduct the first quantitative assessment of the global potential of PyCCS as a NE technology based on biomass plantations. Using a process-based biosphere model, we calculate the land use change required to reach specific climate mitigation goals while observing biodiversity protection guardrails. We consider NE targets of 100–300 GtC following socioeconomic pathways consistent with a mean global warming of 1.5 °C as well as the option of additional carbon balancing required in case of failure or delay of decarbonization measures. The technological opportunities of PyCCS are represented by three tracks accounting for the sequestration of different pyrolysis products: biochar (as soil amendment), bio-oil (pumped into geological storages) and permanent-pyrogas (capture and storage of CO2 from gas combustion). In addition, we analyse how the gain in land induced by biochar-mediated yield increases on tropical cropland may reduce the pressure on land. Our results show that meeting the 1.5 °C goal through mitigation strategies including large-scale NE with plantation-based PyCCS may require conversion of natural vegetation to biomass plantations in the order of 133–3280 Mha globally, depending on the applied technology and the NE demand. Advancing towards additional bio-oil sequestration reduces land demand considerably by potentially up to 60%, while the benefits from yield increases account for another 3%–38% reduction (equalling 82–362 Mha). However, when mitigation commitments are increased by high balancing claims, even the most advanced PyCCS technologies and biochar-mediated co-benefits cannot compensate for

  7. Opportunities for and limits to Academics as System builders-The case of realizing the potential of gasified biomass in Austria

    International Nuclear Information System (INIS)

    Hellsmark, Hans; Jacobsson, Staffan

    2009-01-01

    Gasified biomass is a technology that has the potential to partially replace fossil fuels for the production of heat, electricity, transport fuels, synthetic natural gas (BioSNG) and chemicals. In the context of climate change, biomass gasification is an attractive technology. It is, however, still in the early phase of its diffusion and much of the knowledge resides in the academic sector and in small companies-the technological innovation system (TIS) is in the process of being formed. Austria is one of the leading European countries in this field and much of the development in Austria can be traced to one prominent individual, Professor Hermann Hofbauer at the Technical University of Vienna. The purpose of this paper is to analyze how and the extent to which an individual academic, Professor Hofbauer, has influenced the formation of a TIS centred on gasified biomass in Austria. We find that his impact is multidimensional and significant but that there is also a frictional and intentional resistance that obstructs the commercialisation of the new technology. These sources of resistance go beyond the ability of an individual system builder to handle. Policy makers, therefore, need to add a strong element of system building activities that interact with and supplement those pursued by Professor Hofbauer.

  8. Evaluation of diverse wheat genotypes for potential biomass production through physiological parameters at seedling stage under controlled environment

    International Nuclear Information System (INIS)

    Khattak, G.S.S.

    2014-01-01

    Thirty wheat genotypes from UK, CIMMYT and Pakistan were evaluated under controlled environment conditions for their potential biomass production by measuring stomatal conductance (gs; porometry), leaf photosynthesis (IRGA), carbon isotope discrimination and carbon content (isotope ratio and mass analysis) at Rothamsted Research, Harpenden, UK during 2011. Amongst the dwarf genotypes, Rht2 and Rht3 showed lower stomatal conductance than Seri 32B, Seri 87B and Bathoor-07. For these 5 genotypes and another genotype Inqalab photosynthetic performance was determined by means of IRGA measurements. Of these genotypes Inqalab had the highest photosynthetic activity (A), stomatal conductance (gs), transpiration (E) and leaf intercellular CO/sub 2/ but it also had the lowest water use efficiency (A/gs) and intrinsic water use efficiency (A/E). Seri-87B had the greatest water use efficiency (A/gs) and intrinsic water use efficiency (A/E). All the Pakistani genotypes had large stomatal conductances and high 13C delta and thus may be expected to produce high biomass under irrigations and optimum inputs. (author)

  9. Assessment of the status and outlook of biomass energy in Jordan

    International Nuclear Information System (INIS)

    Al-Hamamre, Zayed; Al-Mater, Ali; Sweis, Fawaz; Rawajfeh, Khaled

    2014-01-01

    Highlights: • The potential of utilizing biomass as an energy source in Jordan is investigated. • The biomass thermal energy represents 10.2% of the total primary energy. • Bioenergy production depends on biomass availability, conversion and recovery efficiency. - Abstract: This work investigates the status and potential of utilizing biomass as an energy source in Jordan. The amount of waste and residue is estimated to be 6.680 million tons for the year 2011. Two scenarios were investigated: biogas production and thermal treatment. The amount of biogas that can be produced from various biomass sources in Jordan is estimated at 428 MCM. The equivalent annual power production is estimated at 698.1 GW h. This is equivalent to about 5.09% of the consumed electricity (13,535 GW h) and 39.65% of the imported electricity in 2011. The alternative scenario of thermal treatment was investigated. The total theoretical thermal energy that can be obtained assuming 70% conversion efficiency is equivalent to 779 thousand toe (5.33 million barrels of crude oil) which amounts to 10.2% of the total primary energy consumed in 2011. Due to biomass collection and recovery challenges, the energy availability factor varies for the different resources. Hence, contribution of the different biomass resources can significantly vary

  10. Leaching from biomass combustion ash

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2014-01-01

    The use of biomass combustion ashes for fertilizing and liming purposes has been widely addressed in scientific literature. Nevertheless, the content of potentially toxic compounds raises concerns for a possible contamination of the soil. During this study five ash samples generated at four...

  11. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    Energy Technology Data Exchange (ETDEWEB)

    Bruce C. Folkedahl; Jay R. Gunderson; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2002-09-01

    determine ash formation and potential fouling mechanisms and to optimize activities in the modified pilot-scale system. (4) Pilot-scale testing in the grate-fired system. The resulting data were used to elucidate ash-related problems during coal-biomass cofiring and offer a range of potential solutions.

  12. The orientation distribution of tunneling-related quantities

    Science.gov (United States)

    Seif, W. M.; Refaie, A. I.; Botros, M. M.

    2018-03-01

    In the nuclear tunneling processes involving deformed nuclei, most of the tunneling-related quantities depend on the relative orientations of the participating nuclei. In the presence of different multipole deformations, we study the variation of a few relevant quantities for the α-decay and the sub-barrier fusion processes, in an orientation degree of freedom. The knocking frequency and the penetration probability are evaluated within the Wentzel-Kramers-Brillouin approximation. The interaction potential is calculated with Skyrme-type nucleon-nucleon interaction. We found that the width of the potential pocket, the Coulomb barrier radius, the penetration probability, the α-decay width, and the fusion cross-section follow consistently the orientation-angle variation of the radius of the deformed nucleus. The orientation distribution patterns of the pocket width, the barrier radius, the logarithms of the penetrability, the decay width, and the fusion cross-section are found to be highly analogous to pattern of the deformed-nucleus radius. The curve patterns of the orientation angle distributions of the internal pocket depth, the Coulomb barrier height and width, as well as the knocking frequency simulate inversely the variation of the deformed nucleus radius. The predicted orientation behaviors will be of a special interest in predicting the optimum orientations for the tunneling processes.

  13. Understanding forest-derived biomass supply with GIS modelling

    DEFF Research Database (Denmark)

    Hock, B. K.; Blomqvist, L.; Hall, P.

    2012-01-01

    distribution, and the cost of delivery as forests are frequently remote from energy users. A GIS-based model was developed to predict supply curves of forest biomass material for a site or group of sites, both now and in the future. The GIS biomass supply model was used to assist the New Zealand Energy...... Efficiency and Conservation Authority's development of a national target for biomass use for industrial heat production, to determine potential forest residue volumes for industrial heat and their delivery costs for 19 processing plants of the dairy company Fonterra, and towards investigating options...

  14. Biosorption of lead (II and copper (II by biomass of some marine algae

    Directory of Open Access Journals (Sweden)

    Chaisuksant, Y.

    2004-09-01

    Full Text Available Biosorption of heavy metal ions by algae is a potential technology for treating wastewater contaminated with heavy metals. Adsorption of lead (II and copper (II in aqueous solutions by some marine algae available in large quantities in Pattani Bay including Gracilaria fisheri, Ulva reticulata and Chaetomorpha sp. were investigated. The effect of pH on metal sorption of the algal biomass and the metal uptake capacity of the algal biomass comparing to that of synthetic adsorbents including activated carbon and siliga gel were studied by using batch equilibrium experiments. Each dried adsorbent was stirred in metal ions solutions with different pH or different concentration at room temperature for 24 hours and the residual metal ions were analysed using atomic absorption spectrophotometer. The initial concentrations of lead and copper ionswere 70 µg/l and 20 mg/l, respectively. It was found that the effect of pH on metal sorption was similar in each algal biomass. The metal uptake capacity increased as pH of the solution increased from 2.0 to 4.0 and reached a plateau at pH 5.0-7.0. The metal uptake capacities of each algal biomass were similar. At low concentrations of metal ions, the metal adsorption occurred rapidly while at higher metal concentration less metal adsorption by each algal biomass was observed. The metal adsorption of activated carbon and silica gel occurred gradually and was less than those of algal biomass. The equilibrium data of copper and lead ions fitted well to the Langmuir and Freundlich isotherm models. The maximum sorption capacity (Qm values (mean±SD of Chaetomorpha sp., U. reticulata, G. fisheri, activated carbon and silica gel for lead ions were 1.26±0.14, 1.19±0.14, 1.18±0.15, 1.14±0.11 and 1.15±0.12 mg/g, respectively. For copper adsorption, the Qm values for G. fisheri, U. reticulata and Chaetomorpha biomass were 15.87±1.03, 14.71±1.02 and 12.35± 1.03 mg/g, respectively. While those of activated carbon and

  15. Aboveground Tree Biomass for Pinus ponderosa in Northeastern California

    Directory of Open Access Journals (Sweden)

    Todd A. Hamilton

    2013-03-01

    Full Text Available Forest managers need accurate biomass equations to plan thinning for fuel reduction or energy production. Estimates of carbon sequestration also rely upon such equations. The current allometric equations for ponderosa pine (Pinus ponderosa commonly employed for California forests were developed elsewhere, and are often applied without consideration potential for spatial or temporal variability. Individual-tree aboveground biomass allometric equations are presented from an analysis of 79 felled trees from four separate management units at Blacks Mountain Experimental Forest: one unthinned and three separate thinned units. A simultaneous set of allometric equations for foliage, branch and bole biomass were developed as well as branch-level equations for wood and foliage. Foliage biomass relationships varied substantially between units while branch and bole biomass estimates were more stable across a range of stand conditions. Trees of a given breast height diameter and crown ratio in thinned stands had more foliage biomass, but slightly less branch biomass than those in an unthinned stand. The observed variability in biomass relationships within Blacks Mountain Experimental Forest suggests that users should consider how well the data used to develop a selected model relate to the conditions in any given application.

  16. Decentralized biomass combustion: State of the art and future development

    NARCIS (Netherlands)

    Obernberger, I.

    1998-01-01

    The present amount of biomass used for heat, and to a smaller extent electricity production, is already considerable in several European countries but the potential unused in Europe is even higher. Combustion is the most mature conversion technology utilized for biomass. The systems addressed in

  17. The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency

    Science.gov (United States)

    Kleiblinger, K.M.; Hall, E.K.; Wanek, W.; Szukics, U.; Hämmerle, I.; Ellersdorfer, G.; Böck, S.; Strauss, J.; Sterflinger, K.; Richter, A.; Zechmeister-Boltenstern, S.

    2010-01-01

    The carbon-use-efficiency (CUE) of microorganisms is an important parameter in determining ecosystem-level carbon (C) cycling; however, little is known about how variance in resources affects microbial CUE. To elucidate how resource quantity and resource stoichiometry affect microbial CUE, we cultured four microorganisms - two fungi (Aspergillus nidulans and Trichoderma harzianum) and two bacteria (Pectobacterium carotovorum and Verrucomicrobium spinosum) - under 12 unique C, nitrogen (N) and phosphorus (P) ratios. Whereas the CUE of A. nidulans was strongly affected by C, bacterial CUE was more strongly affected by mineral nutrients (N and P). Specifically, CUE in P. carotovorum was positively correlated with P, while CUE of V. spinosum primarily depended on N. This resulted in a positive relationship between fungal CUE and resource C : nutrient stoichiometry and a negative relationship between bacterial CUE and resource C : nutrient stoichiometry. The difference in the direction of the relationship between CUE and C : nutrient for fungi vs. bacteria was consistent with differences in biomass stoichiometry and suggested that fungi have a higher C demand than bacteria. These results suggest that the links between biomass stoichiometry, resource demand and CUE may provide a mechanism for commonly observed temporal and spatial patterns in microbial community structure and function in natural habitats.

  18. Column leaching from biomass combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2015-01-01

    The utilization of biomass combustion ashes for forest soil liming and fertilizing has been addressed in literature. Though, a deep understanding of the ash chemical composition and leaching behavior is necessary to predict potential benefits and environmental risks related to this practice....... In this study, a fly ash sample from an operating Danish power plant based on wood biomass was collected, chemically characterized and investigated for its leaching release of nutrients and heavy metals. A column leaching test was employed. The strongly alkaline pH of all the collected eluates suggested...

  19. Biomass, new markets ! How to mobilize the resource? Seminar proceedings

    International Nuclear Information System (INIS)

    2005-10-01

    The various papers of this seminar addressed the following questions: how to valorize the biomass potential to respond to challenges of greenhouse gas emission reduction? What are the conditions to mobilize biomass considering the existing concurrence between its different usages? How to use experiences of biomass mobilization to cope with the demand increase? How to consider the key factors of success all together? More particularly, the interveners addressed the different resources (agricultural by-products, forestry, and wood waste), actors, technical approaches, and economical and logistical aspects, the role of biomass in the commitments for the struggle against climate change, the issue of supply

  20. Estimation of potential biomass resource and biogas production from aquatic plants in Argentina

    Science.gov (United States)

    Fitzsimons, R. E.; Laurino, C. N.; Vallejos, R. H.

    1982-08-01

    The use of aquatic plants in artificial lakes as a biomass source for biogas and fertilizer production through anaerobic fermentation is evaluated, and the magnitude of this resource and the potential production of biogas and fertilizer are estimated. The specific case considered is the artificial lake that will be created by the construction of Parana Medio Hydroelectric Project on the middle Parana River in Argentina. The growth of the main aquatic plant, water hyacinth, on the middle Parana River has been measured, and its conversion to methane by anaerobic fermentation is determined. It is estimated that gross methane production may be between 1.0-4.1 x 10 to the 9th cu cm/year. The fermentation residue can be used as a soil conditioner, and it is estimated production of the residue may represent between 54,900-221,400 tons of nitrogen/year, a value which is 2-8 times the present nitrogen fertilizer demand in Argentina.

  1. Energy Efficiency of Biogas Produced from Different Biomass Sources

    International Nuclear Information System (INIS)

    Begum, Shahida; Nazri, A H

    2013-01-01

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  2. Fuels production by the thermochemical transformation of the biomass

    International Nuclear Information System (INIS)

    Claudet, G.

    2005-01-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  3. Electricity production by advanced biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y [VTT Energy, Espoo (Finland). Energy Production Technologies; Bridgwater, T [Aston Univ. Birmingham (United Kingdom); Beckman, D [Zeton Inc., Burlington, Ontario (Canada)

    1996-11-01

    This report gives the results of the Pyrolysis Collaborative Project organized by the International Energy Agency (IEA) under Biomass Agreement. The participating countries or organizations were Canada, European Community (EC), Finland, United States of America, and the United Kingdom. The overall objective of the project was to establish baseline assessments for the performance and economics of power production from biomass. Information concerning the performance of biomass-fuelled power plants based on gasification is rather limited, and even less data is available of on pyrolysis based power applications. In order to gain further insight into the potential for these technologies, this study undertook the following tasks: (1) Prepare process models to evaluate the cost and performance of new advanced biomass power production concepts, (2) Assess the technical and economic uncertainties of different biomass power concepts, (3) Compare the concepts in small scale and in medium scale production (5 - 50 MW{sub e}) to conventional alternatives. Processes considered for this assessment were biomass power production technologies based on gasification and pyrolysis. Direct combustion technologies were employed as a reference for comparison to the processes assessed in this study. Wood was used a feedstock, since the most data was available for wood conversion

  4. Bio energy: Production of Biomass; Produksjon av biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Noreng, Katrina; Indergaard, Mentz; Liodden, Ole Joergen; Hohle, Erik Eid; Sandberg, Eiliv

    2001-07-01

    This is Chapter 2 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Biomass resources in Norway, (2) The foundation - photosynthesis, (3) Biomass from forestry, (4) Biomass from peat lands, (5) Biomass from agriculture and (6) Biomass from lakes and sea. The exposition largely describes the conditions in Norway, where the use of bio energy can be increased from 15 TWh to 35 TWh using available technology. At present, water-borne heating systems are not extensively used in Norway and 30% of the biomass that is cut in the forests remains there as waste. Using this waste for energy generation would not only contribute to reduce the emission of greenhouse gases, but would often lead to improved forest rejuvenation. Use of a few per thousand of the Norwegian peat lands would produce 2 - 3 TWh. According to calculations, along the coast of Norway, there are at least 15 mill tonnes of kelp and sea tangle and these resources can be utilized in a sustainable way.

  5. Landsat 8 and ICESat-2: Performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass

    Science.gov (United States)

    Glenn, Nancy F.; Neuenschwander, Amy; Vierling, Lee A.; Spaete, Lucas; Li, Aihua; Shinneman, Douglas; Pilliod, David S.; Arkle, Robert; McIlroy, Susan

    2016-01-01

    The Landsat 8 mission provides new opportunities for quantifying the distribution of above-ground carbon at moderate spatial resolution across the globe, and in particular drylands. Furthermore, coupled with structural information from space-based and airborne laser altimetry, Landsat 8 provides powerful capabilities for large-area, long-term studies that quantify temporal and spatial changes in above-ground biomass and cover. With the planned launch of ICESat-2 in 2017 and thus the potential to couple Landsat 8 and ICESat-2 data, we have unprecedented opportunities to address key challenges in drylands, including quantifying fuel loads, habitat quality, biodiversity, carbon cycling, and desertification.

  6. Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality.

    Science.gov (United States)

    Vandecasteele, Bart; Boogaerts, Christophe; Vandaele, Elke

    2016-12-01

    The question was tackled on how the green waste compost industry can optimally apply the available biomass resources for producing both bioenergy by combustion of the woody fraction, and high quality soil improvers as renewable sources of carbon and nutrients. Compost trials with removal of woody biomass before or after composting were run at 9 compost facilities during 3 seasons to include seasonal variability of feedstock. The project focused on the changes in feedstock and the effect on the end product characteristics (both compost and recovered woody biomass) of this woody biomass removal. The season of collection during the year clearly affected the biochemical and chemical characteristics of feedstock, woody biomass and compost. On one hand the effect of removal of the woody fraction before composting did not significantly affect compost quality when compared to the scenario where the woody biomass was sieved from the compost at the end of the composting process. On the other hand, quality of the woody biomass was not strongly affected by extraction before or after composting. The holocellulose:lignin ratio was used in this study as an indicator for (a) the decomposition potential of the feedstock mixture and (b) to assess the stability of the composts at the end of the process. Higher microbial activity in green waste composts (indicated by higher oxygen consumption) and thus a lower compost stability resulted in higher N immobilization in the compost. Removal of woody biomass from the green waste before composting did not negatively affect the compost quality when more intensive composting was applied. The effect of removal of the woody fraction on the characteristics of the green waste feedstock and the extracted woody biomass is depending on the season of collection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles

    International Nuclear Information System (INIS)

    Crutzen, P.J.; Andreae, M.O.

    1990-01-01

    Biomass burning is widespread, especially in the tropics. It serves to clear land for shifting cultivation, to convert forests to agricultural and pastoral lands, and to remove dry vegetation in order to promote agricultural productivity and the growth of higher yield grasses. Furthermore, much agricultural waste and fuel wood is being combusted, particularly in developing countries. Biomass containing 2 to 5 petagrams of carbon is burned annually (1 petagram = 10 15 grams), producing large amounts of trace gases and aerosol particles that play important roles in atmospheric chemistry and climate. Emissions of carbon monoxide and methane by biomass burning affect the oxidation efficiency of the atmosphere by reacting with hydroxyl radicals, and emissions of nitric oxide and hydrocarbons lead to high ozone concentrations in the tropics during the dry season. Large quantities of smoke particles are produced as well, and these can serve as cloud condensation nuclei. These particles may thus substantially influence cloud microphysical and optical properties, an effect that could have repercussions for the radiation budget and the hydrological cycle in the tropics. Widespread burning may also disturb biogeochemical cycles, especially that of nitrogen. About 50% of the nitrogen in the biomass fuel can be released as molecular nitrogen. This pyrodenitrification process causes a sizable loss of fixed nitrogen in tropical ecosystems, in the range of 10 to 20 teragrams per year (1 teragram = 10 12 grams)

  8. Hydration properties of briquetted wheat straw biomass feedstock

    DEFF Research Database (Denmark)

    Zhang, Heng; Fredriksson, Maria; Mravec, Jozef

    2017-01-01

    Biomass densification elevates the bulk density of the biomass, providing assistance in biomass handling, transportation, and storage. However, the density and the chemical/physical properties of the lignocellulosic biomass are affected. This study examined the changes introduced by a briquetting...... process with the aim of subsequent processing for 2nd generation bioethanol production. The hydration properties of the unprocessed and briquetted wheat straw were characterized for water absorption via low field nuclear magnetic resonance and sorption balance measurements. The water was absorbed more...... rapidly and was more constrained in the briquetted straw compared to the unprocessed straw, potentially due to the smaller fiber size and less intracellular air of the briquetted straw. However, for the unprocessed and briquetted wheat straw there was no difference between the hygroscopic sorption...

  9. Characteristics Data Base: Programmer's guide to the LWR Quantities Data Base

    International Nuclear Information System (INIS)

    Jones, K.E.; Moore, R.S.

    1990-08-01

    The LWR Quantities Data Base is a menu-driven PC data base developed as part of OCRWM's waste, technical data base on the characteristics of potential repository wastes, which also includes non-LWR spent fuel, high-level and other materials. This programmer's guide completes the documentation for the LWR Quantities Data Base, the user's guide having been published previously. The PC data base itself may be requested from the Oak Ridge National Laboratory, using the order form provided in Volume 1 of publication DOE/RW-0184

  10. Biochemical methane potential prediction of plant biomasses: Comparing chemical composition versus near infrared methods and linear versus non-linear models.

    Science.gov (United States)

    Godin, Bruno; Mayer, Frédéric; Agneessens, Richard; Gerin, Patrick; Dardenne, Pierre; Delfosse, Philippe; Delcarte, Jérôme

    2015-01-01

    The reliability of different models to predict the biochemical methane potential (BMP) of various plant biomasses using a multispecies dataset was compared. The most reliable prediction models of the BMP were those based on the near infrared (NIR) spectrum compared to those based on the chemical composition. The NIR predictions of local (specific regression and non-linear) models were able to estimate quantitatively, rapidly, cheaply and easily the BMP. Such a model could be further used for biomethanation plant management and optimization. The predictions of non-linear models were more reliable compared to those of linear models. The presentation form (green-dried, silage-dried and silage-wet form) of biomasses to the NIR spectrometer did not influence the performances of the NIR prediction models. The accuracy of the BMP method should be improved to enhance further the BMP prediction models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-04-01

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. During this reporting period, the technical and economic performances of the selected processes were evaluated using computer models and available literature. The results of these evaluations are summarized in this report.

  12. Stakeholder perspectives on converting forest biomass to energy in Oregon, USA

    Energy Technology Data Exchange (ETDEWEB)

    Stidham, Melanie; Simon-Brown, Viviane [Department of Forest Ecosystems and Society, College of Forestry, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331 (United States)

    2011-01-15

    Within the state of Oregon, USA, there is considerable interest in the possibility of converting forest biomass to energy. A number of studies have assessed the technical feasibility of forest biomass energy, but few have focused on social aspects, an important consideration in projects involving public forests. This study explores the social context of converting forest biomass to energy, using qualitative research methods. Semi-structured interviews were conducted with forty individuals representing nine different stakeholder groups. Information gained through interviews was used to understand stakeholder views on forest biomass energy, including their perspectives on potential barriers and opportunities in Oregon. Findings indicate the most challenging barrier will be access to long-term, consistent supply. A related challenge is the long history of contention between parties over forest products coming from public lands. However, findings also show that there are many areas of common ground between these groups that have historically been at odds, such as agreement on the necessity of restoration treatments in certain forest types, the by-product of which could be used for biomass generation. Potential conflicts still exist, for instance over projects in mixed conifer forests. Development of policies and projects through inclusive, collaborative approaches could alleviate controversies, potentially allowing more activities to move forward. Information provided by this research creates a foundation for discussions as forest biomass energy becomes an increasingly prominent issue in Oregon, the western USA, and other regions of the world. (author)

  13. Analysis and co-ordination of the activities concerning gasification of biomass. Summary country report, Denmark and Norway

    International Nuclear Information System (INIS)

    Stoholm, P.; Olsen, A.

    1996-11-01

    The analysis summarises the coordination of activities concerning the gasification of biomass in Denmark and Norway. The total quantity of available biomass for energy production in Denmark corresponds to ca. 115 PJ of which ca. 40% is utilized - and this constitutes ca. 6% of the country's total energy consumption. The resulting energy from biomass is currently mostly used for heating purposes utilizing small wood/straw household or farm stoves in addition to ca. 100 district heating systems. There is a tendency to use biomass fuels for electric power production as in the case of all major waste incineration plants and about 10 fully or partly wood/straw-fired cogeneration plants which are found within the range of 2 -20 MWe. A table shows details of all Danish biomass gasification plants and information is given on the types of biomass, under the titles of residue products and energy crops, most relevant to energy production in Denmark. Data is presented on the consumption of renewable energy in Denmark, recalculated in fuel equivalents, and Danish national energy policy and related legislation are described. Information on Norway's use of biomass as fuel is given under the headings of primary consumption, biomass sources and use, legislation, and brief evaluations of commercial gasification plants, pilot and demonstration plants, and laboratory plants and studies. It has recently been decided to speed up the development of small-scale gasification plants for combined heat and electricity production using biomass as fuel in Denmark. Total Norwegian energy consumption is 25% higher than Denmark's, and biomass fuels cover only 3.6% of this. (ARW) 32 refs

  14. Biomass and Biogas for Sustainable Energy Generation: Recent Development and Perspectives

    International Nuclear Information System (INIS)

    Mustafa Omer, Abdeen

    2017-01-01

    Biogas from biomass appears to have potential as an alternative energy source, which is potentially rich in biomass resources. This is an overview of some salient points and perspectives of biogas technology. The current literature is reviewed regarding the ecological, social, cultural and economic impacts of biogas technology. This article gives an overview of present and future use of biomass as an industrial feedstock for production of fuels, chemicals and other materials. However, to be truly competitive in an open market situation, higher value products are required. Results suggest that biogas technology must be encouraged, promoted, invested, implemented, and demonstrated, but especially in remote rural areas. (author)

  15. Swamp future. Energy for Western Pomerania Grid formation and potentials for the thermal utilization of biomass from paludi culture; MoorZukunft. Energie fuer Vorpommern. Netzwerkbildung und Potentiale fuer die thermische Verwertung von Biomasse aus Paludikultur

    Energy Technology Data Exchange (ETDEWEB)

    Nordt, Anke; Schroeder, Christian [Greifswald Univ. (Germany). Inst. fuer Botanik und Landschaftsoekologie; Schroeder, Philipp

    2013-10-01

    MoorZukunft aims to initiate pilot projects for utilisation biomass from ''wet'' peatland for energy purposes. Also alternative concepts of funding regional cooperations are to be developed. The implementation of paludiculture, the sustainable cultivation of rewetted peatland, needs innovative unions between farmers who produce primary material for paludi-products and biomass consumers for energy or material utilisation. Areas for implementing paludiculture are identified and potential partners for regional use and consumption are cross-linked. Business models will be developed with the parties of possible cooperations, i.g. between farmer and municipal energy supplier and functional attended until realisation. The procedure to initiate pilot projects will be explained. This expands from requests of areas and partners until possible forms of organisation locally shared utilisation partnerships. (orig.)

  16. Family forest owner preferences for biomass harvesting in Massachusetts

    Science.gov (United States)

    Marla Markowski-Lindsay; Thomas Stevens; David B. Kittredge; Brett J. Butler; Paul Catanzaro; David Damery

    2012-01-01

    U.S. forests, including family-owned forests, are a potential source of biomass for renewable energy. Family forest owners constitute a significant portion of the overall forestland in the U.S., yet little is known about family forest owners' preferences for supplying wood-based biomass. The goal of this study is to understand how Massachusetts family forest...

  17. Pollutants generated by the combustion of solid biomass fuels

    CERN Document Server

    Jones, Jenny M; Ma, Lin; Williams, Alan; Pourkashanian, Mohamed

    2014-01-01

    This book considers the pollutants formed by the combustion of solid biomass fuels. The availability and potential use of solid biofuels is first discussed because this is the key to the development of biomass as a source of energy.This is followed by details of the methods used for characterisation of biomass and their classification.The various steps in the combustion mechanisms are given together with a compilation of the kinetic data. The chemical mechanisms for the formation of the pollutants: NOx, smoke and unburned hydrocarbons, SOx, Cl compounds, and particulate metal aerosols

  18. Biomass recalcitrance

    DEFF Research Database (Denmark)

    Felby, Claus

    2009-01-01

    Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes - this co......Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes...... - this collective resistance is known as "biomass recalcitrance." Breakthrough technologies are needed to overcome barriers to developing cost-effective processes for converting biomass to fuels and chemicals. This book examines the connection between biomass structure, ultrastructure, and composition......, to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments...

  19. The impact of symbolic and non-symbolic quantity on spatial learning.

    Directory of Open Access Journals (Sweden)

    Koleen McCrink

    Full Text Available An implicit mapping of number to space via a "mental number line" occurs automatically in adulthood. Here, we systematically explore the influence of differing representations of quantity (no quantity, non-symbolic magnitudes, and symbolic numbers and directional flow of stimuli (random flow, left-to-right, or right-to-left on learning and attention via a match-to-sample working memory task. When recalling a cognitively demanding string of spatial locations, subjects performed best when information was presented right-to-left. When non-symbolic or symbolic numerical arrays were embedded in these spatial locations, and mental number line congruency prompted, this effect was attenuated and in some cases reversed. In particular, low-performing female participants who viewed increasing non-symbolic number arrays paired with the spatial locations exhibited better recall for left-to-right directional flow information relative to right-to-left, and better processing for the left side of space relative to the right side of space. The presence of symbolic number during spatial learning enhanced recall to a greater degree than non-symbolic number--especially for female participants, and especially when cognitive load is high--and this difference was independent of directional flow of information. We conclude that quantity representations have the potential to scaffold spatial memory, but this potential is subtle, and mediated by the nature of the quantity and the gender and performance level of the learner.

  20. Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2015-12-01

    Full Text Available images and random forest technique in the north-eastern part of South Africa. Series of field work to collect samples for leaf N and biomass were undertaken in March 2013, April or May 2012 (end of wet season) and July 2012 (dry season). Several...