WorldWideScience

Sample records for pid control design

  1. PSO optimized reduced order PID Controller design

    Yogendra Kumar Soni

    2013-03-01

    Full Text Available A novel algorithm is proposed to obtain a reduced model for stable linear time invariant continuous system. A PSO PID controller is designed for the reduced order model to meet the desired performance specifications by using PSO Optimization method. This controller is designed with the reduced order model and closed loop response is observed .The parameters of the controller are tuned to obtain a response with desired performance specifications .The results satisfy our design criteria .The same PID controller parameter is applied to original higher order system and the closed loop response is observed for to stabilize system.

  2. PID control system analysis and design

    Li, Y.; Ang, K.H.; Chong, G.C.Y.

    2006-01-01

    With its three-term functionality offering treatment of both transient and steady-state responses, proportional-integral-derivative (PID) control provides a generic and efficient solution to realworld control problems. The wide application of PID control has stimulated and sustained research and development to "get the best out of PID", and "the search is on to find the next key technology or methodology for PID tuning". This article presents remedies for problems involving the...

  3. PID control system analysis, design, and technology

    Ang, K.H.; Chong, G.C.Y.; Li, Y

    2005-01-01

    Designing and tuning a proportional-integral-derivative (PID) controller appears to be conceptually intuitive, but can be hard in practice, if multiple (and often conflicting) objectives such as short transient and high stability are to be achieved. Usually, initial designs obtained by all means need to be adjusted repeatedly through computer simulations until the closed-loop system performs or compromises as desired. This stimulates the development of "intelligent" tools...

  4. Design of aerospace control systems using fractional PID controller

    Magdy A.S. Aboelela

    2012-07-01

    Full Text Available The goal is to control the trajectory of the flight path of six degree of freedom flying body model using fractional PID. The design of fractional PID controller for the six degree of freedom flying body is described. The parameters of fractional PID controller are optimized by particle swarm optimization (PSO method. In the optimization process, various objective functions were considered and investigated to reflect both improved dynamics of the missile system and reduced chattering in the control signal of the controller.

  5. Design of Robust PID Controllers with Constrained Control Signal Activity

    Garpinger, Olof

    2009-01-01

    This thesis presents a new method for design of PI and PID controllers with the level of control signal activity taken into consideration. The main reason why the D-part is often disabled in industrial control loops is because it leads to control signal sensitivity of measurement noise. A frequently varying control signal with too high amplitude will very likely lead to actuator wear and tear. For this reason it is extremely important for any PID design method to take this into account. ...

  6. Design of Tracking of Moving Target Using PID Controller

    Ajeet Singh

    2014-09-01

    Full Text Available The Line-of-Sight stabilization and tracking control based on gyro stabilized platform is required to isolate Line of sight from the movement and vibration of carrier and ensure pointing and tracking for target in electro-optical tracking system. This work describes the design of a high performance controller for an electro-mechanical target tracking system with an optical sensor for sighting. The control law has been obtained using a linear model of the electro mechanical system. The modelling of the system has been carried out using the experimental frequency response data. In the present work, PID controller is used to design the line-of-sight stabilization and tracking system. The conventional PID controller has been incorporated to regulate the speed of the platform and moving object. The PID controller has been tuned using Ziegler Nichols method and optimized by using simplex pattern search Genetic Algorithm method. The performance of the optimized PID controller has been compared with the PID controller. The proposed controller has been tested by incorporated non-linearity into the system. Simulation results tested with conventional PID controller and optimized PID controller. It is observed that optimized PID controller provided better result

  7. The design of PID control for container CT inspection system

    This paper introduces briefly the principles of container CT inspection system, and illustrates the composing of the PID control subsystem. It also introduces the control algorithm of PID controller and the method of adjusting PID parameters in detail. It is proved that the rapid response and the high accuracy of locating can be met by using PID controller with appropriate PID parameters. (authors)

  8. Design of a PID Controller for a PCR Micro Reactor

    Dinca, M. P.; Gheorghe, M.; Galvin, P.

    2009-01-01

    Proportional-integral-derivative (PID) controllers are widely used in process control, and consequently they are described in most of the textbooks on automatic control. However, rather than presenting the overall design process, the examples given in such textbooks are intended to illuminate specific focused aspects of selection, tuning and…

  9. Design of a PID Controller for a PCR Micro Reactor

    Dinca, M. P.; Gheorghe, M.; Galvin, P.

    2009-01-01

    Proportional-integral-derivative (PID) controllers are widely used in process control, and consequently they are described in most of the textbooks on automatic control. However, rather than presenting the overall design process, the examples given in such textbooks are intended to illuminate specific focused aspects of selection, tuning and…

  10. Genetic Design of Neural PID plus Feed Forward Controllers

    Naim Ajlouni

    2004-01-01

    Full Text Available Evolutionary techniques are proposed in a new and novel paradigm to solve the problem of designing a robust neural PID plus feed forward controller for a plant with prescribed plant parameter uncertainties. The evolutionary scheme used, involves generating two separate populations, one representing the controller and the other the plant. The controller population is then evolved against a fixed population of plants representing the uncertainty space, such that the controller can control all these plants effectively. A cost function involving time-domain performance is then deployed, subject to a frequency domain stability constraint. The resulting paradigm results in a robust controller design with excellent time-domain performance. This evolutionary approach is illustrated by evolving a neural PID plus feed forward controller for a linear plant, which has a set of prescribed uncertainties.

  11. Simulated Annealing optimized PID Controller design using ISE, IAE, IATE and MSE error criteria

    Yogendra Kumar Soni , Rajesh Bhatt

    2013-01-01

    A PID controller is designed using ISE, IAE, ITAE and MSE error criteria for stable linear time invariant continuous system. A Simulated Annealing PID controller is designed for the plant to meet the desired performance specifications by using SA optimization method. PID controller gain parameters Kp,Ki,Kd are designed and applied to the PID controller system .The PID controller closed loop response is observed for ISE, IAE, IATE and MSE error criteria. A comparison of system performance obse...

  12. A General Method for Designing Fractional Order PID Controller

    Marzieh Safaei; Saeed Hosseinia; Mojtaba Hosseini Toodeshki

    2013-01-01

    The idea of using fractional order calculus in control became apparent when this kind of calculus was accepted as a powerful tool in many applications. This resulted in a new generation of PID controller called fractional order PID Controller, named as Controller. controller is more flexible and provides a better response with larger stability region as compared with standard PID controller. This paper presents a simple and reliable method for finding the family of controllers. The required...

  13. Optimal Pid Controller Design Using Adaptive Vurpso Algorithm

    Zirkohi, Majid Moradi

    2015-04-01

    The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.

  14. Design of Fuzzy PID controller to control DC motor with zero overshoot

    Meenakshi Chourasiya; Prof. Shweta karnik

    2014-01-01

    Most of the real time operation based physical system, digital PID is used in field such as servo-motor/dc motor/temperature control system, robotics, power electronics etc. need to interface with high speed constraints, higher density PLD’s such as FPGA used to integrate several logics on single IC. There are some limitations in it to overcome these limitations Fuzzy logic is introduced with PID and Fuzzy PID is formed. This paper explains experimental design of Fuzzy PID con...

  15. Design and optimization of fuzzy-PID controller for the nuclear reactor power control

    This paper introduces a fuzzy proportional-integral-derivative (fuzzy-PID) control strategy, and applies it to the nuclear reactor power control system. At the fuzzy-PID control strategy, the fuzzy logic controller (FLC) is exploited to extend the finite sets of PID gains to the possible combinations of PID gains in stable region and the genetic algorithm to improve the 'extending' precision through quadratic optimization for the membership function (MF) of the FLC. Thus the FLC tunes the gains of PID controller to adapt the model changing with the power. The fuzzy-PID has been designed and simulated to control the reactor power. The simulation results show the favorable performance of the fuzzy-PID controller.

  16. A CASE STUDY ON DESIGN AND EVALUATION OF MODIFIED ADAPTIVE FUZZY PID CONTROLLER

    Dr.Pankaj Rai; Durgesh Nandan

    2012-01-01

    Most of process control systems are based on PID controllers, because of their remarkable effectiveness, simplicity and robustness, As PID controller design theory and practical procedures are well developed, it is necessary to pay attention on fuzzy logic controller design and its applications in combinations with PID controllers. There is also necessity to develop adaptive fuzzy PID Controllers, which can automatically retune itself to match the current process characteristics. In...

  17. Design Of Multivariable Fractional Order Pid Controller Using Covariance Matrix Adaptation Evolution Strategy

    Sivananaithaperumal Sudalaiandi

    2014-06-01

    Full Text Available This paper presents an automatic tuning of multivariable Fractional-Order Proportional, Integral and Derivative controller (FO-PID parameters using Covariance Matrix Adaptation Evolution Strategy (CMAES algorithm. Decoupled multivariable FO-PI and FO-PID controller structures are considered. Oustaloup integer order approximation is used for the fractional integrals and derivatives. For validation, two Multi-Input Multi- Output (MIMO distillation columns described byWood and Berry and Ogunnaike and Ray are considered for the design of multivariable FO-PID controller. Optimal FO-PID controller is designed by minimizing Integral Absolute Error (IAE as objective function. The results of previously reported PI/PID controller are considered for comparison purposes. Simulation results reveal that the performance of FOPI and FO-PID controller is better than integer order PI/PID controller in terms of IAE. Also, CMAES algorithm is suitable for the design of FO-PI / FO-PID controller.

  18. Design New Intelligent PID like Fuzzy Backstepping Controller

    Arzhang Khajeh

    2014-02-01

    Full Text Available The minimum rule base Proportional Integral Derivative (PID Fuzzy backstepping Controller is presented in this research. The popularity of PID Fuzzy backstepping controller can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. The process of setting of PID Fuzzy backstepping controller can be determined as an optimization task. Over the years, use of intelligent strategies for tuning of these controllers has been growing. PID methodology has three inputs and if any input is described with seven linguistic values, and any rule has three conditions we will need 7 × 7 × 7 = 343 rules. It is too much work to write 343 rules. In this research the PID-like fuzzy controller can be constructed as a parallel structure of a PD-like fuzzy controller and a PI-like controller to have the minimum rule base. However backstepping controller is work based on cancelling decoupling and nonlinear terms of dynamic parameters of each link, this controller is work based on manipulator dynamic model and this technique is highly sensitive to the knowledge of all parameters of nonlinear robot manipulator’s dynamic equation. This research is used to reduce or eliminate the backstepping controller problem based on minimum rule base fuzzy logic theory to control of flexible robot manipulator system and testing of the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.

  19. BF-PSO optimized PID Controller design using ISE, IAE, IATE and MSE error criteria

    Yogendra Kumar Soni , Rajesh Bhatt

    2013-01-01

    A PID controller is designed using ISE, IAE, ITAE and MSE error criteria for stable linear time invariant continuous system. A BF-PSO PID controller is designed for the plant to meet the desired performance specifications by using BF-PSO optimization algorithm. PID controller gain parameters Kp,Ki,Kd are designed and applied to the PID controller system .The PID controller closed loop response is observed for ISE, IAE, IATE and MSE error criteria. A comparison of system performance observed f...

  20. Simulated Annealing optimized PID Controller design using ISE, IAE, IATE and MSE error criteria

    Yogendra Kumar Soni , Rajesh Bhatt

    2013-07-01

    Full Text Available A PID controller is designed using ISE, IAE, ITAE and MSE error criteria for stable linear time invariant continuous system. A Simulated Annealing PID controller is designed for the plant to meet the desired performance specifications by using SA optimization method. PID controller gain parameters Kp,Ki,Kd are designed and applied to the PID controller system .The PID controller closed loop response is observed for ISE, IAE, IATE and MSE error criteria. A comparison of system performance observed for all four criteria.

  1. A General Method for Designing Fractional Order PID Controller

    Marzieh Safaei

    2013-01-01

    Full Text Available The idea of using fractional order calculus in control became apparent when this kind of calculus was accepted as a powerful tool in many applications. This resulted in a new generation of PID controller called fractional order PID Controller, named as Controller. controller is more flexible and provides a better response with larger stability region as compared with standard PID controller. This paper presents a simple and reliable method for finding the family of controllers. The required calculations are done in frequency domain based on frequency response of the system and the stability region is specified in the parameters space. This method can be used for time-delay systems and, more generally, for any system with no transfer function.

  2. PID controller design for trailer suspension based on linear model

    Kushairi, S.; Omar, A. R.; Schmidt, R.; Isa, A. A. Mat; Hudha, K.; Azizan, M. A.

    2015-05-01

    A quarter of an active trailer suspension system having the characteristics of a double wishbone type was modeled as a complex multi-body dynamic system in MSC.ADAMS. Due to the complexity of the model, a linearized version is considered in this paper. A model reduction technique is applied to the linear model, resulting in a reduced-order model. Based on this simplified model, a Proportional-Integral-Derivative (PID) controller was designed in MATLAB/Simulink environment; primarily to reduce excessive roll motions and thus improving the ride comfort. Simulation results show that the output signal closely imitates the input signal in multiple cases - demonstrating the effectiveness of the controller.

  3. Design of Fuzzy PID controller to control DC motor with zero overshoot

    Meenakshi Chourasiya

    2014-10-01

    Full Text Available Most of the real time operation based physical system, digital PID is used in field such as servo-motor/dc motor/temperature control system, robotics, power electronics etc. need to interface with high speed constraints, higher density PLD’s such as FPGA used to integrate several logics on single IC. There are some limitations in it to overcome these limitations Fuzzy logic is introduced with PID and Fuzzy PID is formed. This paper explains experimental design of Fuzzy PID controller. We aimed to make controller power efficient, more compact, and zero overshoot. MATLAB is used to design PID controller to calculate and plot the time response of the control system and Simulink to generate a set of coefficients.

  4. A Substractive Clustering Based Fuzzy Hybrid Reference Control Design for Transient Response Improvement of PID Controller

    Endra Joelianto

    2009-11-01

    Full Text Available The well known PID controller has inherent limitations in fulfilling simultaneously the conflicting control design objectives. Parameters of the tuned PID controller should trade off the requirement of tracking set-point performances, disturbance rejection and stability robustness. Combination of hybrid reference control (HRC with PID controller results in the transient response performances can be independently achieved without deteriorating the disturbance rejection properties and the stability robustness requirement. This paper proposes a fuzzy based HRC where the membership functions of the fuzzy logic system are obtained by using a substractive clustering technique. The proposed method guarantees the transient response performances satisfaction while preserving the stability robustness of the closed loop system controlled by the PID controller with effective and systematic procedures in designing the fuzzy hybrid reference control system.

  5. Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems

    A robust adaptive PID controller design motivated from the sliding mode control is proposed for a class of uncertain chaotic systems in this paper. Three PID control gains, K p, K i, and K d, are adjustable parameters and will be updated online with an adequate adaptation mechanism to minimize a previously designed sliding condition. By introducing a supervisory controller, the stability of the closed-loop PID control system under with the plant uncertainty and external disturbance can be guaranteed. Finally, a well-known Duffing-Holmes chaotic system is used as an illustrative to show the effectiveness of the proposed robust adaptive PID controller

  6. Fuzzy Auto-adjust PID Controller Design of Brushless DC Motor

    Yuanxi, Wang; Yali, Yu; Guosheng, Zhang; Xiaoliang, Sheng

    Using conventional PID control method, to guarantee the rapidity and small overshoot dynamic and static performance of the BLDCM (brushless DC motor) system is out of the question. The control method to combine fuzzy control with PID control was fit the multivariable strong coupling nonlinear characteristic of BLDCM system. Matlab/Simulink simulation model had been built. The result of computer simulation shows that, compared with the conventional PID controller, the dynamic and static performance of fuzzy auto-adjust PID controller are put forward to optimize. The research work of this paper has profound significance for high precision controller design.

  7. Design & Implementation of PID Controller Based On FPGA with PWM Modulator

    Rajesh Nema; Rajeev Thakur; Ruchi Gupta

    2013-01-01

    Proportional-Integral-Derivative (PID) controllers are universal control structure and have widely used in Automation systems, they are usually implemented either in hardware using analog components or in software using Computer-based systems. In this paper, we focused our works designing on building a multi-channel PID controller by Field Programmable Gate Arrays (FPGAs). To overcome the hardware complexity by the use of more processors for multi channel, we are using single PID controller f...

  8. A design method of compensators for multi-variable control system with PID controllers 'CHARLY'

    A systematic design method of compensators for a multi-variable control system having usual PID controllers in its loops is presented in this paper. The method itself is able: to determine the main manipulating variable corresponding to each controlled variable with a sensitivity analysis in the frequency domain. to tune PID controllers sufficiently to realize adequate control actions with a searching technique of minimum values of cost functionals. to design compensators improving the control preformance and to simulate a total system for confirming the designed compensators. In the phase of compensator design, the state variable feed-back gain is obtained by means of the OPTIMAL REGULATOR THEORY for the composite system of plant and PID controllers. The transfer function type compensators the configurations of which were previously given are, then, designed to approximate the frequency responces of the above mentioned state feed-back system. An example is illustrated for convenience. (author)

  9. CAS algorithm-based optimum design of PID controller in AVR system

    This paper presents a novel design method for determining the optimal PID controller parameters of an automatic voltage regulator (AVR) system using the chaotic ant swarm (CAS) algorithm. In the tuning process of parameters, the CAS algorithm is iterated to give the optimal parameters of the PID controller based on the fitness theory, where the position vector of each ant in the CAS algorithm corresponds to the parameter vector of the PID controller. The proposed CAS-PID controllers can ensure better control system performance with respect to the reference input in comparison with GA-PID controllers. Numerical simulations are provided to verify the effectiveness and feasibility of PID controller based on CAS algorithm.

  10. H∞ loop shaping based robust PID controller design and its application for water level control of steam generator

    A robust PID controller design method was proposed, which was based on PID structured weight function optimization method with linear matrix inequality techniques. By combining static H∞ loop shaping controller synthesis, a robust systematic PID iterative optimization method was given. A PID main controller of steam generator water level control system was designed by using this method. Simulation results show that the control system designed by the given method is of good robust stability and robust performance, and its synthetic control quality is better than the method of full order weight optimization (or PID structured weight optimization mentioned by this paper) combined with normal H∞ controller synthesis. (authors)

  11. Direct Drive Electro-hydraulic Servo Control System Design with Self-Tuning Fuzzy PID Controller

    Wang Yeqin

    2013-06-01

    Full Text Available According to the nonlinear and time-varying uncertainty characteristics of direct drive electro-hydraulic servo control system, a self-tuning fuzzy PID control method with speed change integral and differential ahead optimizing operator is put forward by combining fuzzy inference and traditional PID control in this paper.The rule of fuzzy logic is designed, the membership function of the fuzzy subsets is determined and lookup table method is used to correcte the PID parameters in real-time. Finally the simulation is conducted with the typical input signal, such as tracking step, sine etc. The simulation results show that?the self-tuning fuzzy PID control system can effectively improve the dynamic characteristic when the system is out of the range of the operating point compared with the traditional PID control system, there is obvious improvement in the indexes of rapidity, stability and accuracy,  and fuzzy self-tuning PID Control is more robust, and more suitable for direct drive electro-hydraulic servo system.

  12. PID Daylight Control System

    Horaţiu Ştefan Grif

    2011-01-01

    The paper describes the implementation and the tuning of a digital PID controller used in a daylight control application. Due to the fact that the process is unknown, an experimental method, Ziegler-Nichols, for the tuning of the PID controller was used. The obtained PID parameters do not offer a good behavior of the ALCS. To improve the performances of the ALCS, supplementary tuning of the PID parameters, via step response analysis, was made. The step response acquiring and analysis may have...

  13. Intelligent PID controllers

    Fliess, Michel; Join, Cédric

    2008-01-01

    Intelligent PID controllers, or i-PID controllers, are PID controllers where the unknown parts of the plant, which might be highly nonlinear and/or time-varying, are taken into account without any modeling procedure. Our main tool is an online numerical differentiator, which is based on easily implementable fast estimation and identification techniques. Several numerical experiments demonstrate the efficiency of our method when compared to more classic PID regulators.

  14. Tuning of Fuzzy PID Controllers

    Jantzen, Jan

    1998-01-01

    -loop controllers. The idea is to start with a tuned, conventional PID controller, replace it with an equivalent linear fuzzy controller, make the fuzzy controller nonlinear, and eventually fine-tune the nonlinear fuzzy controller. This is relevant whenever a PID controller is possible or already implemented.......Since fuzzy controllers are nonlinear, it is more difficult to set the controller gains compared to proportional-integral-derivative (PID) controllers. This research paper proposes a design procedure and a tuning procedure that carries tuning rules from the PID domain over to fuzzy single...

  15. Design of fuzzy PID controller for high temperature pebble bed reactor

    Badgujar, Kushal D.; Satpute, Satchidanand R.; Revankara, Shripad T.; Lee, John C.; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of)

    2012-10-15

    Control system is most important characteristic to be considered to control spontaneous fission reaction in the design of the nuclear reactor. Recently fuzzy based control systems have been designed and applied as control system for nuclear plants. This article emphasize on controlling the power of the high temperature pebble bed reactor (HTPBR) with the design of Fuzzy proportional integral derivative (PID) controller. A simplified reactor model with point kinetics equation and reactor heat balance equation is used. The reactivity feedback arising from power coefficient of reactivity and Xenon poisoning is also considered. The reactor is operated at various power levels by using fuzzy PID controller. The fuzzy logic eliminates the necessity of the tuning the gains of PID controller each time by extending the finite sets of the PID controller gains.

  16. Design of fuzzy PID controller for high temperature pebble bed reactor

    Control system is most important characteristic to be considered to control spontaneous fission reaction in the design of the nuclear reactor. Recently fuzzy based control systems have been designed and applied as control system for nuclear plants. This article emphasize on controlling the power of the high temperature pebble bed reactor (HTPBR) with the design of Fuzzy proportional integral derivative (PID) controller. A simplified reactor model with point kinetics equation and reactor heat balance equation is used. The reactivity feedback arising from power coefficient of reactivity and Xenon poisoning is also considered. The reactor is operated at various power levels by using fuzzy PID controller. The fuzzy logic eliminates the necessity of the tuning the gains of PID controller each time by extending the finite sets of the PID controller gains

  17. Design Of PID Controlled Power System Stabilizer For Stability Studies Using Genetic Algorithm

    NITHIN. N

    2014-09-01

    Full Text Available This paper presents the design of a PID controlled Power System Stabilizer (PSS for stabilization of power systems. Both controllers have been designed for a single machine infinite bus system as well as for a two area interconnected thermal-thermal power system. The controller parameters of both PID and PSS are tuned using genetic algorithm. Simulation results are presented to show the effectiveness of the controllers in stabilizing the power system oscillations.

  18. Design of the Glass Batching-Material System Based Fuzzy-PID Combined Control

    Zhisong Hou; Yanchang Liu; Qigao Feng

    2013-01-01

    According to the traditional control methods of batching-material system exists defects low precision and bad real-time, this paper has proposed the combined control algorithm. This paper has designed a Fuzzy-PID control Glass batching-material system by using of combining the traditional PID and the Fuzzy control algorithm. The system uses expert system of online learning and adjusts automatically the control parameters, realize the best combination controlling precision and speed. The actua...

  19. Design of Adaptive Fuzzy PID Controller for Speed control of BLDC Motor

    R. Kandiban

    2012-03-01

    Full Text Available Brushless DC motors (BLDCM are widely used for many industrial applications because of their high efficiency, high torque and low volume. This paper proposed an improved Adaptive Fuzzy PID controller to control speed of BLDCM. This paper provides an overview of performance conventional PID controller, Fuzzy PID controller and Adaptive Fuzzy PID controller. It is difficult to tune the parameters and get satisfied control characteristics by using normal conventional PID controller. As the Adaptive Fuzzy has the ability to satisfied control characteristics and it is easy for computing. The experimental results verify that a Adaptive Fuzzy PID controller has better control performance than the both Fuzzy PID controller and conventional PID controller. The modeling, control and simulation of the BLDC motor have been done using the software package MATLAB/SIMULINK.

  20. Optimal PID control design for synchronization of delayed discrete chaotic systems

    This paper is concerned with the design of a proportional-integral-derivative (PID) controller for synchronization of delayed discrete chaotic models. The evolutionary programming algorithm (EPA) has been considered as a useful technique for finding global optimization solutions for certain complicated functions in recent years. Therefore, in this paper, we attempt to use the EP algorithm in PID control design for deriving optimal or near optimal PID control gains such that a performance index between the master and slave chaotic systems is minimized. A numerical result exemplifies the synchronization procedure

  1. Genetic Algorithm Based PID Controller Design for a Precise Tracking of Two-Axis Piezoelectric Micropositioning Stage

    Yasir Khudhair Abbas

    2012-01-01

    In this paper, an intelligent tracking control system of both single- and double-axis Piezoelectric Micropositioner stage is designed using Genetic Algorithms (GAs) method for the optimal Proportional-Integral-Derivative (PID) controller tuning parameters. The (GA)-based PID control design approach is a methodology to tune a (PID) controller in an optimal control sense with respect to specified objective function. By using the (GA)-based PID control approach, the high-performance trajectory t...

  2. Design of Optimal PID Controller with ɛ-Routh Stability for Different Processes

    XianHong Li; HaiBin Yu; MingZhe Yuan

    2013-01-01

    This paper presents a design method of the optimal proportional-integral-derivative (PID) controller with ɛ-Routh stability for different processes through Lyapunov approach. The optimal PID controller could be acquired by minimizing an augmented integral squared error (AISE) performance index which contains control error and at least first-order error derivative, or even may contain nth-order error derivative. The optimal control problem could be transformed into a nonlinear constraint optim...

  3. The Application of Stochastic Optimization Algorithms to the Design of a Fractional-order PID Controller

    Chakraborty, Mithun; Maiti, Deepyaman; Konar, Amit

    2008-01-01

    The Proportional-Integral-Derivative Controller is widely used in industries for process control applications. Fractional-order PID controllers are known to outperform their integer-order counterparts. In this paper, we propose a new technique of fractional-order PID controller synthesis based on peak overshoot and rise-time specifications. Our approach is to construct an objective function, the optimization of which yields a possible solution to the design problem. This objective function is...

  4. Design And Implementation Of PID Controller Using Relay Feedback On TRMS (Twin Rotor MIMO System)

    Shah, Dipesh H.

    2011-12-01

    Today, many process control problems can be adequately and routinely solved by conventional PID control strategies. The overriding reason that the PID controller is so widely accepted is its simple structure which has proved to be very robust with regard to many commonly met process control problems as for instance disturbances and nonlinearities. Relay feedback methods have been widely used in tuning proportional-integral-derivative controllers due to its closed loop nature. In this work, Relay based PID controller is designed and successfully implemented on TRMS (Twin Rotor MIMO System) in SISO and MIMO configurations. The performance of a Relay based PID controller for control of TRMS is investigated and performed satisfactorily. The system shares some features with a helicopter, such as important interactions between the vertical and horizontal motions. The RTWT toolbox in the MATLAB environment is used to perform real-time experiments.

  5. Frequency-domain Model Matching PID Controller Design for Aero-engine

    Liu, Nan; Huang, Jinquan; Lu, Feng

    2014-12-01

    The nonlinear model of aero-engine was linearized at multiple operation points by using frequency response method. The validation results indicate high accuracy of static and dynamic characteristics of the linear models. The improved PID tuning method of frequency-domain model matching was proposed with the system stability condition considered. The proposed method was applied to the design of PID controller of the high pressure rotor speed control in the flight envelope, and the control effects were evaluated by the nonlinear model. Simulation results show that the system had quick dynamic response with zero overshoot and zero steadystate error. Furthermore, a PID-fuzzy switching control scheme for aero-engine was designed, and the fuzzy switching system stability was proved. Simulations were studied to validate the applicability of the multiple PIDs fuzzy switching controller for aero-engine with wide range dynamics.

  6. Comparison of tuning methods for design of PID controller as an A VR

    The primary means of generator reactive power control is the generator-excitation Control, using Automatic Voltage Regulator (A VR). The role of A VR is to hold the terminal voltage magnitude of Synchronous generator at a specified level. This paper presents the design of a proportional integral-derivative (PID) controller as an A VR. The PID controller has been tuned by various tuning methods. From all methods, PID parameters are computed through various techniques i.e. Process-reaction curve, Closed-loop system, open-loop system gain margin and phase-margin specifications. From these methods, it has been found that Zhaung- Atherton method and Ho, Hang and Cao method are much superior to the conventional Ziegler-Nichols rules. The performance of the controller has been evaluated through Simulation Studies in MATLAB environment. It has been demonstrated that the PID controller, tuned with the said methods, yields highly satisfactory closed-loop performance. (author)

  7. Design and Implementation of a Neural Control System and Performance Characterization with PID Controller for Water Level Control

    Md. Selim Hasan; A.S.M. Shariar Kabir Khan; S.M. Shibbir Alam; Mehedi Hasan Pavel

    2011-01-01

    The objective of this thesis is to investigate and find a solution by designing the intelligent controller for controlling water level system, such as neural network. The controller also can be specifically run under the circumstance of system disturbances. To achieve these objectives, a prototype of water level control system has been built and implementations of both PID and neural network control algorithms are performed. In PID control, Ziegler Nichols tuning method is used to...

  8. Design of Robust Guaranteed Cost PID Controller for Networked Control Systems

    Nguyen, Quang Thuan; Veselý, Vojtech

    2010-03-01

    The paper addresses the problem of an output feedback guaranteed cost controller design for Networked Control Systems (NCSs) with time-delay and polytopic uncertainties. By constructing a new parameter-dependent Lyapunov functional and applying the free-weighting matrices technique, the parameter-dependent, delay-dependent design method will be obtained to synthesize PID controllers achieving a guaranteed cost such that the NCSs can be stabilized for all admissible uncertainties and time-delays. Finally, numerical examples are given to illustrate the effectiveness of the proposed method.

  9. Design of PID controller as an AVR in frequency-domain

    The primary means of generator reactive-power control is the generator-excitation control, using Automatic Voltage Regulator (AVR). The role of AVR is to hold the terminal-voltage of Synchronous generator at a specified level. This paper presents the design of a proportional integral- derivative (PID) controller to work as an A VR. The PID controller has been tuned by HO-HANG-CAO method. In this method, pm parameters are computed from the gain-margin and phase-margin specifications. This method has been found much superior to the conventional Ziegler- Nichols rules. The performance of the controller has been evaluated through Simulation Studies in MATLAB environment. It has been demonstrated that the PID controller, tuned with the said method, yields highly satisfactory closed loop performance. (author)

  10. Design a PID Controller for Suspension System by Back Propagation Neural Network

    Heidari, M.; Homaei, H.

    2013-01-01

    This paper presents a neural network for designing of a PID controller for suspension system. The suspension system, designed as a quarter model, is used to simplify the problem to one-dimensional spring-damper system. In this paper, back propagation neural network (BPN) has been used for determining the gain parameters of a PID controller for suspension system of automotive. The BPN method is found to be the most accurate and quick. The best results were obtained by the BPN by Levenberg-Marq...

  11. Optimal design of PID controller for second order plus time delay systems

    It is well known that the effect of time delay in the forward path of control loop deteriorates the system performance and at the same time makes it difficult to compute the optimum PID controller parameters of the feedback control systems. PI/PID controller is most popular and used more than 80% in industries as well as in accelerators lab due to its simple structure and appropriate robustness. At VECC we have planned to use a PID controller for the speed control of DC motor which will be used to adjust the solenoid coil position of the 2.45 GHz microwave ion source for optimum performance during the online operation. In this paper we present a comparison of the two methods which have been used to design the optimum PID controller parameters: one by optimizing different time domain performance indices such as lAE, ITSE etc. and other using analytical formulation based on Linear Quadratic Regulator (LQR). We have performed numerical simulations using MATLAB and compare the closed loop time response performance measures using the PID parameters obtained from above mentioned two methods on a second order transfer function of a DC motor with time delay. (author)

  12. Design New PID like Fuzzy CTC Controller: Applied to Spherical Motor

    Mohammad shamsodini

    2014-05-01

    Full Text Available The minimum rule base Proportional Integral Derivative (PID Fuzzy Computed Torque Controller with application to spherical motor is presented in this research. The popularity of PID Fuzzy Computed Torque Controller can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. PID methodology has three inputs and if any input is described with seven linguistic values, and any rule has three conditions we will need 343 rules. It is too much work to write 343 rules and have lots of problem to design embedded control system e.g., Field Programmable Gate Array (FPGA. In this research the PID-like fuzzy controller can be constructed as a parallel structure of a PD-like fuzzy controller and a conventional PI controller to have the minimum rule base and acceptable trajectory follow disturbance to control of spherical motor. However computed torque controller is work based on cancelling decoupling and nonlinear terms of dynamic parameters for each direction of three degree of freedom spherical motor, this controller is work based on motor dynamic model and this technique is highly sensitive to the knowledge of all parameters of nonlinear spherical motor’s dynamic equation. This research is used to reduce or eliminate the computed torque controller problem based on minimum rule base fuzzy logic theory to control of three degrees of freedom spherical motor system and testing of the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.

  13. Design of Fuzzy self-tuning PID controller for pitch control system of aircraft autopilot

    Beygi, Nima; Beigy, Maani; Siahi, Mehdi

    2015-01-01

    A variety of control systems have been proposed for aircraft autopilot systems. Traditional approaches such as proportional controller and conventional PID (CPID) controller are widely used. PID controller has a good static performance especially for linear and time-invariant systems, but a weak dynamic performance and discouraging function on nonlinear, time-varying, and uncertain systems. Fuzzy control theory can improve dynamic response in various conditions of system performance. This pap...

  14. Design of PID Controller for Maglev System Based on an Improved PSO with Mixed Inertia Weight

    Rongrong Song

    2014-06-01

    Full Text Available A Maglev system was modeled by the exact feedback linearization to achieve two same linear subsystems. The proportional-integral-differential controllers (PID based on particle swarm optimization (PSO algorithm with four different inertia weights were then used to regulate both linear subsystems. These different inertia weights were Fixed Inertia Weight (FIW, Linear Descend Inertia Weight (LIW, Linear Differential Descend Inertia Weight (LDW, and mixed inertia weight (FIW–LIW-LDW. On the other hand, the parameters  of the PSO-PID controllers via mixed inertia weight (FIW–LIW-LDW were optimized, the parameter values  in the electromagnet 1 and electromagnet 2 were both 0.4. Simulation results demonstrate that the control performance and robustness of PSO-PID based on mixed inertia weight (FIW–LIW-LDW was superior to that of three PSO-PID controllers based on single inertia weights. For electromagnet 1, the overshoot of PSO-PID controller with mixed inertia weight reduced 3.36% than that of PSO-PID controller with FIW, 5.81% than that of PSO-PID controller with LIW, and 6.34% than that of PSO-PID controller with LDW; for electromagnet 2, the overshoot of PSO-PID controller with mixed inertia weight reduced 1.07% than that of PSO-PID controller with FIW, 12.56% than that of PSO-PID controller with LIW, 7.97% than that of PSO-PID controller with LDW; the adjusting time of PSO-PID controller with mixed inertia weight reduced 0.395s than that of PSO-PID controller with FIW, 34.1s than that of PSO-PID controller with LIW, and 33.494s than that of PSO-PID controller with LDW

  15. Design of a Fractional Order PID Controller Using Particle Swarm Optimization Technique

    Maiti, Deepyaman; Biswas, Sagnik; Konar, Amit

    2008-01-01

    Particle Swarm Optimization technique offers optimal or suboptimal solution to multidimensional rough objective functions. In this paper, this optimization technique is used for designing fractional order PID controllers that give better performance than their integer order counterparts. Controller synthesis is based on required peak overshoot and rise time specifications. The characteristic equation is minimized to obtain an optimum set of controller parameters. Results show that this design...

  16. Comparative Studies on Decentralized Multiloop PID Controller Design Using Evolutionary Algorithms

    Saha, Sayan; Das, Saptarshi; Pakhira, Anindya; Mukherjee, Sumit; Pan, Indranil

    2013-01-01

    Decentralized PID controllers have been designed in this paper for simultaneous tracking of individual process variables in multivariable systems under step reference input. The controller design framework takes into account the minimization of a weighted sum of Integral of Time multiplied Squared Error (ITSE) and Integral of Squared Controller Output (ISCO) so as to balance the overall tracking errors for the process variables and required variation in the corresponding manipulated variables...

  17. A fast PID controller Design for Modern PLC for Process Control Application

    PID is the most widely used control scheme in the process industry. Pill controllers are utilized for the control of such varied parameters as pressure, flow, temperature, etc. One characteristic of these parameters is that they posses slow dynamics. Most of the available digital controllers can manipulate only a single parameter- multiple controllers are required for control of more than one parameter. The Fast PID Controller for Modem PLC (Programmable Logic Controller) developed by the authors, provides control of several parameters at a time (through a single Pill control element), enhanced programmability including variable sampling period, parameter monitoring and data storage, which may be easily implemented in a PLC. (author)

  18. Designing a Robust and Adaptive PID Controller for Gas Turbine Connected to the Generator

    Mohsen Khalilpour

    2013-02-01

    Full Text Available Gas turbines are increasingly spread throughout the world to provide mechanical and electrical power in consumer and industrial sections. To ensure an accurate control process temperature of gas turbine with no extortionary operator involvement, a proper controller is required. Load frequency control of gas turbine is also regulates the power flow between different areas while holding the frequency constant. The main idea in this study is to assemble these 2 controllers in a unit work; the area of robust control has grown to be one of the wealthy in terms of algorithms, design techniques, analytical tools and modifications. Several books and papers already exist on the topics of parameter estimation and adaptive control. In The proposed approach, a robust and evolutionary based Proportional, Integral, Derivative (PID is utilized to control frequency-response and a robust evolutionary based Proportional, Integral (PI is utilized to control temperature. The evolutionary algorithm is used to make an optimal Proportional-Integral-Derivative (PID controller Tuning parameters. The new robust PID controller is compared with a normal classic controller (Ziegler-Nichols designed by the method.

  19. Analytical Design of PID Decoupling Control for TITO Processes with Time Delays

    Zengrong Hu

    2011-06-01

    Full Text Available Based on unit feedback closed-loop control structure, a simple analytical design method of decoupling controller matrix is proposed in terms of idea of coupling matrix for two-input-two-output (TITO processes with time delays in chemical and industrial practice. By means of powerful robustness of two degree-of-freedom PID Desired Dynamic Equation (DDE method, PID decoupling controller is analytically designed. And the Monte-Carlo stochastic experiment is introduced to analyze performance robustness of the controller. The most important merit of the proposed method is that for the nominal system the output of each channel can be decoupled entirely. Moreover, the decoupling matrix is simple and easily realized. Finally, illustrative simulation examples are included to demonstrate the remarkable superiority of the proposed method.

  20. Robust Gain-Scheduled PID Controller Design For Uncertain LPV Systems

    Veselý, Vojtech; Ilka, Adrian

    2015-01-01

    A novel methodology is proposed for robust gain-scheduled PID controller design for uncertain LPV systems. The proposed design procedure is based on the parameter-dependent quadratic stability approach. A new uncertain LPV system model has been introduced in this paper. To access the performance quality the approach of a parameter varying guaranteed cost is used which allowed to reach for different working points desired performance. Numerical examples show the benefit of the proposed method.

  1. PID Controllers Design Applied to Positioning of Ball on the Stewart Platform

    Koszewnik Andrzej; Troc Kamil; Słowik Maciej

    2014-01-01

    The paper presents the design and practical implementation of PID controllers for a Stewart platform. The platform uses a resistance touch panel as a sensor and servo motors as actuators. The complete control system stabilizing the ball on the platform is realized with the Arduino microcontroller and the Matlab/Simulink software. Two processes required to acquire measurement signals from the touch panel in two perpendicular directions X and Y, are discussed. The first process includes the cal...

  2. IMC-PID-fractional-order-filter controllers design for integer order systems.

    Maâmar, Bettayeb; Rachid, Mansouri

    2014-09-01

    One of the reasons of the great success of standard PID controllers is the presence of simple tuning rules, of the automatic tuning feature and of tables that simplify significantly their design. For the fractional order case, some tuning rules have been proposed in the literature. However, they are not general because they are valid only for some model cases. In this paper, a new approach is investigated. The fractional property is not especially imposed by the controller structure but by the closed loop reference model. The resulting controller is fractional but it has a very interesting structure for its implementation. Indeed, the controller can be decomposed into two transfer functions: an integer transfer function which is generally an integer PID controller and a simple fractional filter. PMID:24957276

  3. Design Intelligent PID like Fuzzy Sliding Mode Controller for Spherical Motor

    Farzin Matin

    2014-04-01

    Full Text Available The minimum rule base Proportional Integral Derivative (PID Fuzzy Sliding Mode Controller (SMC with application to spherical motor is presented in this research. The popularity of PID Fuzzy Sliding Mode Controller can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. The process of setting of PID Fuzzy Sliding Mode Controller can be determined as an optimization task. Over the years, use of intelligent strategies for tuning of these controllers has been growing especially in nonlinear and uncertain systems. Proportional Integral Derivative methodology has three inputs and if any input is described with seven linguistic values, and any rule has three conditions, we will need 343 rules. It is too much work to write 343 rules and have lots of problem to design embedded control system e.g., Field Programmable Gate Array (FPGA. In this research the PID-like fuzzy controller can be constructed as a parallel structure of a PD-like fuzzy controller and a conventional PI controller to have the minimum rule base and good trajectory follow disturbance to control of spherical motor. However Sliding Mode Controller is work based on cancelling decoupling and nonlinear terms of dynamic parameters for each direction of three degree of freedom spherical motor, this controller is work based on motor dynamic model and this technique is highly sensitive to the knowledge of all parameters of nonlinear spherical motor’s dynamic equation which caused to challenge in uncertain system. This research is used to reduce or eliminate the Sliding Mode Controller problem based on minimum rule base fuzzy logic theory to control of three degrees of freedom spherical motor system and testing of the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.

  4. Designing robust Mixed H /H PID Controllers based Intelligent Genetic Algorithm

    Ramzy S. Ali Al-Waily; Ali Abdullah K. Al-Thuwainy

    2011-01-01

    - It's not easy to implement the mixed / optimal controller for high order system, since in the conventional mixed / optimal feedback the order of the controller is much than that of the plant. This difficulty had been solved by using the structured specified PID controller. The merit of PID controllers comes from its simple structure, and can meets the industry processes. Also it have some kind of robustness. Even that it's hard to PID to cope the complex control p...

  5. Genetic Algorithm Based PID Controller Design for a Precise Tracking of Two-Axis Piezoelectric Micropositioning Stage

    Yasir Khudhair Abbas

    2012-01-01

    Full Text Available In this paper, an intelligent tracking control system of both single- and double-axis Piezoelectric Micropositioner stage is designed using Genetic Algorithms (GAs method for the optimal Proportional-Integral-Derivative (PID controller tuning parameters. The (GA-based PID control design approach is a methodology to tune a (PID controller in an optimal control sense with respect to specified objective function. By using the (GA-based PID control approach, the high-performance trajectory tracking responses of the Piezoelectric Micropositioner stage can be obtained. The (GA code was built and the simulation results were obtained using MATLAB environment. The Piezoelectric Micropositioner simulation model with the (GA-based PID control is illustrated to show the validity of the proposed control method for practical applications, such as scanning microscopy.

  6. PID Controller with Operational Amplifier

    Cristian Paul Chioncel; Petru Chioncel; Nicoleta Gillich

    2009-01-01

    The paper presents a PID controller made with LM741 operational amplifier that implement the PID controllers laws and allow for a widerange of applications of in the field of automatic control of technicalprocesses and systems.

  7. PID Controller with Operational Amplifier

    Cristian Paul Chioncel

    2009-01-01

    Full Text Available The paper presents a PID controller made with LM741 operational amplifier that implement the PID controllers laws and allow for a widerange of applications of in the field of automatic control of technicalprocesses and systems.

  8. Dynamic PID loop control

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.

  9. Dynamic PID loop control

    Pei, L; Theilacker, J; Soyars, W; Martinez, A; Bossert, R; DeGraff, B; Darve, C

    2012-01-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters' oscillation.

  10. PID-Structured controller design for interval systems : Application to Piezoelectric Microactuator.

    Khadraoui, Sofiane; Rakotondrabe, Micky; Lutz, Philippe

    2011-01-01

    This paper addresses the modeling and robust PID controller design for piezoelectric mi- crosystems. Piezoelectric cantilevers, used as microac- tuators in micromanipulation and microassembly con- texts, are particularly concerned. Due to their small sizes, these systems are very sensitive to environment (temperature, vibration, etc.) and to usury during functioning. Their behaviors often change because of the parameters variation. For that, linear modeling with uncertainty has been used to a...

  11. An analytical method to design the PID controller for the power control system of experimental nuclear reactor

    In order to make the design process for power control system of experimental nuclear reactor optimal, objective and analytical, an analytical design process which contains the model linearization, model reduction, theoretical design of PID controllers is discussed. This method is applied to the design of the power control system of an experimental nuclear reactor, the numerical simulation results prove that the design process is practical, and the control performance is satisfactory

  12. A simple robust PID controller design method based on sine wave identification of the uncertain plant

    The paper deals with the development and application of a new simple empirical approach to the design of robust PID controllers for technological processes in industrial practice. The main advantage of the proposed approach is the possibility to specify the required performance before the design algorithm implementation. Identification of characteristic data of the black-box type plant with varying parameters is carried out using the sine wave excitation signal, thus allowing to design the controller without necessarily knowing the mathematical model of the plant. The proposed approach has been verified on a real-world physical process. (authors)

  13. Design and Implementation of a Neural Control System and Performance Characterization with PID Controller for Water Level Control

    Md. Selim Hasan

    2011-05-01

    Full Text Available The objective of this thesis is to investigate and find a solution by designing the intelligentcontroller for controlling water level system, such as neural network. The controller also can bespecifically run under the circumstance of system disturbances. To achieve these objectives, a prototypeof water level control system has been built and implementations of both PID and neural network controlalgorithms are performed. In PID control, Ziegler Nichols tuning method is used to control the system.In neural network control, the approach of Model Reference Adaptive Neural Network (ANN Controlbased on the back propagation algorithm is applied on training the system. Both control algorithms aredeveloped to embed into a standalone DSP-based micro-controller and their performances arecompared.

  14. Multiobjective Optimization Design of a Fractional Order PID Controller for a Gun Control System

    Qiang Gao; Jilin Chen; Li Wang; Shiqing Xu; Yuanlong Hou

    2013-01-01

    Motion control of gun barrels is an ongoing topic for the development of gun control equipments possessing excellent performances. In this paper, a typical fractional order PID control strategy is employed for the gun control system. To obtain optimal parameters of the controller, a multiobjective optimization scheme is developed from the loop-shaping perspective. To solve the specified nonlinear optimization problem, a novel Pareto optimal solution based multiobjective differential evolution...

  15. Dynamic PID loop control

    Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.

    2012-01-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter ...

  16. Developments in PID Controllers: Literature Survey

    H. B. Patel; Mrs. S. N. Chaphekar

    2012-01-01

    Most of the process plants controlled by PID controllers have similar dynamics. It has found possible to set satisfactory controlled parameters from less plant information than a complete mathematical model. PID control has been an active research topic for many years. In this paper literature review of several useful PID type controller design techniques have been presented. It is observed that, performance using model order reduction technique is effective.

  17. PID control in Damavand Tokamak

    Plasma position control is one of the most important issues in the design and pe ration of Tokamaks. Since Tokamak is essentially an electric system that consists of supplies, windings, plasma, and eddy currents, a mathematical model that shows the effects of the above components on the plasma position, has been used for simulation purposes. In this paper, design and operation of a PID controller based on this model is presented

  18. Design a Novel SISO Off-line Tuning of Modified PID Fuzzy Sliding Mode Controller

    Ali Shahcheraghi

    2014-01-01

    Full Text Available The Proportional Integral Derivative (PID Fuzzy Sliding Mode Controller (FSMC is the most widely used control strategy in the Industry (control of robotic arm. The popularity of PID FSMC controllers can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. The process of setting of PID FSMC controller can be determined as an optimization task. Over the years, use of intelligent strategies for tuning of these controllers has been growing. Biologically inspired evolutionary strategies have gained importance over other strategies because of their consistent performance over wide range of process models and their flexibility. This paper analyses the modified PID FSMC controllers based on minimum rule base for flexible robot manipulator system and test the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.

  19. LQR based improved discrete PID controller design via optimum selection of weighting matrices using fractional order integral performance index

    Das, Saptarshi; Pan, Indranil; Halder, Kaushik; Das, Shantanu; Gupta, Amitava

    2013-01-01

    The continuous and discrete time Linear Quadratic Regulator (LQR) theory has been used in this paper for the design of optimal analog and discrete PID controllers respectively. The PID controller gains are formulated as the optimal state-feedback gains, corresponding to the standard quadratic cost function involving the state variables and the controller effort. A real coded Genetic Algorithm (GA) has been used next to optimally find out the weighting matrices, associated with the respective ...

  20. Fractional Order PID Controller Design for Level Control of Three Tank System Based on Improved Cuckoo Optimization Algorithm

    Meysam Gheisarnezhad; Hamed Mojallali

    2015-01-01

    Fractional-order PID (FOPID) controller is a generalization of standard PID controller using fractional calculus. Compared with the Standard PID controller, two adjustable variables “differential order” and “integral order” are added to the PID controller.Three tank system is a nonlinear multivariable process that is a good prototype of chemical industrial processes. Cuckoo Optimization Algorithm (COA), that was recently introduced has shown its good performance in optimization problems. In ...

  1. PID Controllers Design Applied to Positioning of Ball on the Stewart Platform

    Koszewnik Andrzej

    2014-12-01

    Full Text Available The paper presents the design and practical implementation of PID controllers for a Stewart platform. The platform uses a resistance touch panel as a sensor and servo motors as actuators. The complete control system stabilizing the ball on the platform is realized with the Arduino microcontroller and the Matlab/Simulink software. Two processes required to acquire measurement signals from the touch panel in two perpendicular directions X and Y, are discussed. The first process includes the calibration of the touch panel, and the second process - the filtering of measurement signals with the low pass Butterworth filter. The obtained signals are used to design the algorithm of the ball stabilization by decoupling the global system into two local subsystems. The algorithm is implemented in a soft real time system. The parameters of both PID controllers (PIDx and PIDy are tuned by the trial-error method and implemented in the microcontroller. Finally, the complete control system is tested at the laboratory stand.

  2. Automatic PID Control Loops Design for Performance Improvement of Cryogenic Turboexpander

    Joshi, D. M.; Patel, H. K.; Shah, D. K.

    2015-04-01

    Cryogenics field involves temperature below 123 K which is much less than ambient temperature. In addition, many industrially important physical processes—from fulfilling the needs of National Thermonuclear Fusion programs, superconducting magnets to treatment of cutting tools and preservation of blood cells, require extreme low temperature. The low temperature required for liquefaction of common gases can be obtained by several processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Helium liquefier is used for the liquefaction process of helium gas. In general, the Helium Refrigerator/Liquefier (HRL) needs turboexpander as expansion machine to produce cooling effect which is further used for the production of liquid helium. Turboexpanders, a high speed device that is supported on gas bearings, are the most critical component in many helium refrigeration systems. A very minor fault in the operation and manufacturing or impurities in the helium gas can destroy the turboexpander. However, since the performance of expanders is dependent on a number of operating parameters and the relations between them are quite complex, the instrumentation and control system design for turboexpander needs special attention. The inefficiency of manual control leads to the need of designing automatic control loops for turboexpander. Proper design and implementation of the control loops plays an important role in the successful operation of the cryogenic turboexpander. The PID control loops has to be implemented with accurate interlocks and logic to enhance the performance of the cryogenic turboexpander. For different normal and off-normal operations, speeds will be different and hence a proper control method for critical rotational speed avoidance is must. This paper presents the design of PID control loops needed for the efficient performance of cryogenic turboexpander (Radial Inflow type) to ensure that the control systems meet the technical conditions and constraints more accurately and ensure the equipment safety.

  3. Design Of Multivariable Fractional Order Pid Controller Using Covariance Matrix Adaptation Evolution Strategy

    Sivananaithaperumal Sudalaiandi; Baskar Subramanian

    2014-01-01

    This paper presents an automatic tuning of multivariable Fractional-Order Proportional, Integral and Derivative controller (FO-PID) parameters using Covariance Matrix Adaptation Evolution Strategy (CMAES) algorithm. Decoupled multivariable FO-PI and FO-PID controller structures are considered. Oustaloup integer order approximation is used for the fractional integrals and derivatives. For validation, two Multi-Input Multi- Output (MIMO) distillation columns described byWood and Berry and Ogunn...

  4. PID Controller Design for UPS Three-Phase Inverters Considering Magnetic Coupling

    Yu Zhang

    2014-11-01

    Full Text Available In three-phase inverters used in uninterruptible power supplies (UPSs, three-limb inductors and three-limb transformers are commonly used in consideration of cost and size. However, magnetic coupling exists between the three phases of the inverter, which can result in complex models. When instantaneous feedback control strategies are introduced to achieve high quality output waveforms, the transient analysis of the closed-loop inverters becomes difficult. In this paper, the phenomenon of magnetic coupling in three-phase inverters due to three-limb inductors and three-limb transformers is analyzed. A decoupled dynamic model is derived based on the instantaneous symmetrical components transformation, which comprises three decoupled equivalent circuits of instantaneous symmetrical components. Analyses based on this model indicate that magnetic coupling may have a significant impact on the performance of three-phase inverters under unbalanced load conditions and transient responses. For three-phase inverters in UPSs with Proportional-Integral-Differential (PID closed-loop control strategies, the interactive influence between instantaneous closed-loop regulation and magnetic coupling is researched. Finally, a method of reliability analysis and PID controller design for inverters with magnetic coupling is derived. Simulation and experiment results validate the model and conclusions.

  5. Design High Efficiency-Minimum Rule Base PID Like Fuzzy Computed Torque Controller

    Alireza Khalilian

    2014-06-01

    Full Text Available The minimum rule base Proportional Integral Derivative (PID Fuzzy Computed Torque Controller is presented in this research. The popularity of PID Fuzzy Computed Torque Controller can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. The process of setting of PID Fuzzy Computed Torque Controller can be determined as an optimization task. Over the years, use of intelligent strategies for tuning of these controllers has been growing. PID methodology has three inputs and if any input is described with seven linguistic values, and any rule has three conditions we will need 343 rules. It is too much work to write 343 rules. In this research the PID-like fuzzy controller can be constructed as a parallel structure of a PD-like fuzzy controller and a PI controller to have the minimum rule base. However computed torque controller is work based on cancelling decoupling and nonlinear terms of dynamic parameters of each link, this controller is work based on manipulator dynamic model and this technique is highly sensitive to the knowledge of all parameters of nonlinear robot manipulator’s dynamic equation. This research is used to reduce or eliminate the computed torque controller problem based on minimum rule base fuzzy logic theory to control of flexible robot manipulator system and testing of the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.

  6. Design High-Efficiency Intelligent PID like Fuzzy Backstepping Controller for Three Dimension Motor

    Mahsa Piltan

    2014-08-01

    Full Text Available The minimum rule base Proportional Integral Derivative (PID Fuzzy backstepping Controller for three dimensions spherical motor is presented in this research. The popularity of PID Fuzzy backstepping controller can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. The process of setting of PID Fuzzy backstepping controller can be determined as an optimization task. Over the years, use of intelligent strategies for tuning of these controllers has been growing. PID methodology has three inputs and if any input is described with seven linguistic values, and any rule has three conditions we will need 7 × 7 × 7 = 343 rules. It is too much work to write 343 rules. In this research the PID-like fuzzy controller can be constructed as a parallel structure of a PI-like controller and a PD-like fuzzy controller to have the minimum rule base. However backstepping controller is work based on cancelling decoupling and nonlinear terms of dynamic parameters of each dimension, this controller is work based on spherical motor dynamic model and this technique is highly sensitive to the knowledge of all parameters of nonlinear three dimension spherical motor’s dynamic equation. This research is used to reduce or eliminate the backstepping controller problem based on minimum rule base fuzzy logic theory to control of spherical motor system and testing of the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.

  7. Designing robust Mixed H /H PID Controllers based Intelligent Genetic Algorithm

    Ramzy S. Ali Al-Waily

    2011-06-01

    Full Text Available - It's not easy to implement the mixed / optimal controller for high order system, since in the conventional mixed / optimal feedback the order of the controller is much than that of the plant. This difficulty had been solved by using the structured specified PID controller. The merit of PID controllers comes from its simple structure, and can meets the industry processes. Also it have some kind of robustness. Even that it's hard to PID to cope the complex control problems such as the uncertainty and the disturbance effects. The present ideas suggests combining some of model control theories with the PID controller to achieve the complicated control problems. One of these ideas is presented in this paper by tuning the PID parameters to achieve the mixed / optimal performance by using Intelligent Genetic Algorithm (IGA. A simple modification is added to IGA in this paper to speed up the optimization search process. Two MIMO example are used during investigation in this paper. Each one of them has different control problem.

  8. Design of an iterative auto-tuning algorithm for a fuzzy PID controller

    Saeed, Bakhtiar I.; Mehrdadi, B.

    2012-05-01

    Since the first application of fuzzy logic in the field of control engineering, it has been extensively employed in controlling a wide range of applications. The human knowledge on controlling complex and non-linear processes can be incorporated into a controller in the form of linguistic terms. However, with the lack of analytical design study it is becoming more difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is not always easy to find the relation between the type of membership functions or rule-base and the controller performance. This study proposes a new systematic auto-tuning algorithm to fine tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several second order systems. The relationship between the closed-loop response and the controller parameters is analysed to devise an auto-tuning method. The results show that the proposed method is highly effective and produces zero overshoot with enhanced transient response. In addition, the robustness of the controller is investigated in the case of parameter changes and the results show a satisfactory performance.

  9. Design of an iterative auto-tuning algorithm for a fuzzy PID controller

    Since the first application of fuzzy logic in the field of control engineering, it has been extensively employed in controlling a wide range of applications. The human knowledge on controlling complex and non-linear processes can be incorporated into a controller in the form of linguistic terms. However, with the lack of analytical design study it is becoming more difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is not always easy to find the relation between the type of membership functions or rule-base and the controller performance. This study proposes a new systematic auto-tuning algorithm to fine tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several second order systems. The relationship between the closed-loop response and the controller parameters is analysed to devise an auto-tuning method. The results show that the proposed method is highly effective and produces zero overshoot with enhanced transient response. In addition, the robustness of the controller is investigated in the case of parameter changes and the results show a satisfactory performance.

  10. Optimal PID Controller Design Based on PSO-RBFNN for Wind Turbine Systems

    Jau-Woei Perng

    2014-01-01

    Full Text Available A strategy was proposed to determine the optimal operating point for the proportional-integral-derivative (PID controller of a wind turbine, and identify the stability regions in the parameter space. The proposed approach combined particle swarm optimization (PSO and radial basis function neural network (RBFNN algorithms. These intelligent algorithms are artificial learning mechanisms that can determine the optimal operating points, and were used to generate the function representing the most favorable operating  parameters from each parameter of  for the stability region of the PID controller. A graphical method was used to determine the 2D or 3D vision boundaries of the PID-type controller space in closed-loop wind turbine systems. The proposed techniques were demonstrated using simulations of a drive train model without time delay and a pitch control model with time delay. Finally, the 3D stability boundaries were determined the proposed graphical approach with and without time delay systems.

  11. Multiobjective optimization design of a fractional order PID controller for a gun control system.

    Gao, Qiang; Chen, Jilin; Wang, Li; Xu, Shiqing; Hou, Yuanlong

    2013-01-01

    Motion control of gun barrels is an ongoing topic for the development of gun control equipments possessing excellent performances. In this paper, a typical fractional order PID control strategy is employed for the gun control system. To obtain optimal parameters of the controller, a multiobjective optimization scheme is developed from the loop-shaping perspective. To solve the specified nonlinear optimization problem, a novel Pareto optimal solution based multiobjective differential evolution algorithm is proposed. To enhance the convergent rate of the optimization process, an opposition based learning method is embedded in the chaotic population initialization process. To enhance the robustness of the algorithm for different problems, an adapting scheme of the mutation operation is further employed. With assistance of the evolutionary algorithm, the optimal solution for the specified problem is selected. The numerical simulation results show that the control system can rapidly follow the demand signal with high accuracy and high robustness, demonstrating the efficiency of the proposed controller parameter tuning method. PMID:23766721

  12. Two-degree-of-freedom fractional order-PID controllers design for fractional order processes with dead-time.

    Li, Mingjie; Zhou, Ping; Zhao, Zhicheng; Zhang, Jinggang

    2016-03-01

    Recently, fractional order (FO) processes with dead-time have attracted more and more attention of many researchers in control field, but FO-PID controllers design techniques available for the FO processes with dead-time suffer from lack of direct systematic approaches. In this paper, a simple design and parameters tuning approach of two-degree-of-freedom (2-DOF) FO-PID controller based on internal model control (IMC) is proposed for FO processes with dead-time, conventional one-degree-of-freedom control exhibited the shortcoming of coupling of robustness and dynamic response performance. 2-DOF control can overcome the above weakness which means it realizes decoupling of robustness and dynamic performance from each other. The adjustable parameter η2 of FO-PID controller is directly related to the robustness of closed-loop system, and the analytical expression is given between the maximum sensitivity specification Ms and parameters η2. In addition, according to the dynamic performance requirement of the practical system, the parameters η1 can also be selected easily. By approximating the dead-time term of the process model with the first-order Padé or Taylor series, the expressions for 2-DOF FO-PID controller parameters are derived for three classes of FO processes with dead-time. Moreover, compared with other methods, the proposed method is simple and easy to implement. Finally, the simulation results are given to illustrate the effectiveness of this method. PMID:26753617

  13. Design a PID Controller of BLDC Motor by Using Hybrid Genetic-Immune

    Mohammed Obaid Ali; S.P. Koh; Chong, K. H.; Asmaa Salih Hamoodi

    2011-01-01

    In this paper hybridization between two optimization methods that are Genetic Algorithm (GA) and Artificial Immune System (AIS) is presented for determining the optimal proportional-integral derivative (PID) controller parameters, for speed control of a linear brushless DC motor. The brushless DC motor is modeled in Simulink and the Hybrid GA-AIS algorithm is implemented in MATLAB. The capability of overcoming the shortcomings of individual algorithms without losing their advantages makes the...

  14. A Hybrid MPC-PID Control System Design for the Continuous Purification and Processing of Active Pharmaceutical Ingredients

    Maitraye Sen

    2014-05-01

    Full Text Available In this work, a hybrid MPC (model predictive control-PID (proportional-integral-derivative control system has been designed for the continuous purification and processing framework of active pharmaceutical ingredients (APIs. The specific unit operations associated with the purification and processing of API have been developed from first-principles and connected in a continuous framework in the form of a flowsheet model. These integrated unit operations are highly interactive along with the presence of process delays. Therefore, a hybrid MPC-PID is a promising alternative to achieve the desired control loop performance as mandated by the regulatory authorities. The integrated flowsheet model has been simulated in gPROMSTM (Process System Enterprise, London, UK. This flowsheet model has been linearized in order to design the control scheme. The ability to track the set point and reject disturbances has been evaluated. A comparative study between the performance of the hybrid MPC-PID and a PID-only control scheme has been presented. The results show that an enhanced control loop performance can be obtained under the hybrid control scheme and demonstrate that such a scheme has high potential in improving the efficiency of pharmaceutical manufacturing operations.

  15. A GA-based PID active queue management control design for TCP/IP networks

    In this paper, a genetic algorithm-based (GA-based) proportional-integral-derivative (PID) controller as an active queue manager for Internet routers is proposed to reduce packet loss and improve network utilization in TCP/IP networks. Based on the window-based nonlinear dynamics, the TCP network was modeled as a time-delayed system with a saturated input due to the limitations of packet-dropping probability and the effects of propagation delays in TCP networks. An improved genetic algorithm is employed to derive optimal or near optimal PID control gains such that a performance index of integrated-absolute error (IAE) in terms of the error between the router queue length and the desired queue length is minimized. The performance of the proposed control scheme was evaluated in various network scenarios via a series of numerical simulations. The simulation results confirm that the proposed scheme outperforms other AQM schemes

  16. A GA-based PID active queue management control design for TCP/IP networks

    Kuo, H.-H.; Chen, C.-K.; Yan, J.-J.; Liao, T.-L.

    2008-02-01

    In this paper, a genetic algorithm-based (GA-based) proportional-integral-derivative (PID) controller as an active queue manager for Internet routers is proposed to reduce packet loss and improve network utilization in TCP/IP networks. Based on the window-based nonlinear dynamics, the TCP network was modeled as a time-delayed system with a saturated input due to the limitations of packet-dropping probability and the effects of propagation delays in TCP networks. An improved genetic algorithm is employed to derive optimal or near optimal PID control gains such that a performance index of integrated-absolute error (IAE) in terms of the error between the router queue length and the desired queue length is minimized. The performance of the proposed control scheme was evaluated in various network scenarios via a series of numerical simulations. The simulation results confirm that the proposed scheme outperforms other AQM schemes.

  17. Experimental results on the design for the APS PID global orbit control system

    The Advanced Photon Source third generation synchrotrons light source needs a stabilized particle beam position to produce high brightness and low emittance radiation. Global orbit correction control is introduced and is utilized to satisfy the demanding needs of the accelerator. This paper presents the experimental results for determining an effective and optimal controller to meet the global orbit correction requirements. These requirements include frequency/time domain demands consisting of vibrational noise attenuation, limiting of controller gains for stability and improving the system time response. Experiments were conducted with a digital signal processor implementing various PID sets to make comparisons between simulations and experiments. Measurements at these PID sets supported the results of software simulation

  18. Trade-off issues in 2DoF PID control design performance, robustness, and fragility

    Alfaro Ruiz, Víctor M.

    2014-01-01

    El algoritmo de control proporcional integral derivativo (PID) es, sin duda, el más utilizado en el control industrial, empleado la mayoría de las veces como control proporcional integral (PI). El controlador debe ser acoplado (sintonizado) al proceso controlado considerando: el desempeño del sistema de control, su respuesta a cambios en el valor deseado y la perturbación; su robustez, capacidad para mantener el sistema de control estable ante cambios en las características dinámicas del p...

  19. Design of PID Controller for Maglev System Based on an Improved PSO with Mixed Inertia Weight

    Rongrong Song; Zili Chen

    2014-01-01

    A Maglev system was modeled by the exact feedback linearization to achieve two same linear subsystems. The proportional-integral-differential controllers (PID) based on particle swarm optimization (PSO) algorithm with four different inertia weights were then used to regulate both linear subsystems. These different inertia weights were Fixed Inertia Weight (FIW), Linear Descend Inertia Weight (LIW), Linear Differential Descend Inertia Weight (LDW), and mixed inertia weight (FIW–LIW-LDW)....

  20. Fractional Order PID Controller Design for Level Control of Three Tank System Based on Improved Cuckoo Optimization Algorithm

    Meysam Gheisarnezhad

    2015-01-01

    Full Text Available Fractional-order PID (FOPID controller is a generalization of standard PID controller using fractional calculus. Compared with the Standard PID controller, two adjustable variables “differential order” and “integral order” are added to the PID controller.Three tank system is a nonlinear multivariable process that is a good prototype of chemical industrial processes. Cuckoo Optimization Algorithm (COA, that was recently introduced has shown its good performance in optimization problems. In this study, Improved Cuckoo Optimization Algorithm (ICOA has been presented. The aim of the paper is to compare different controllers tuned with a Improved Cuckoo Optimization Algorithm (ICOA for Three Tank System. In order to compare the performance of the optimized FOPID controller with other controllers, Genetic Algorithm(GA, Particle swarm optimization (PSO, Cuckoo Optimization Algorithm (COA and Imperialist Competitive Algorithm (ICA.

  1. Design and Implementation of Fuzzy Position Control System for Tracking Applications and Performance Comparison with Conventional PID

    Nader Jamali Soufi Amlashi

    2012-05-01

    Full Text Available This paper was written to demonstrate importance of a fuzzy logic controller in act over conventional methods with the help of an experimental model. Also, an efficient simulation model for fuzzy logic controlled DC motor drives using Matlab/Simulink is presented. The design and real-time implementation on a microcontroller presented. The scope of this paper is to apply direct digital control technique in position control system. Two types of controller namely PID and fuzzy logic controller will be used to control the output response. The performance of the designed fuzzy and classic PID position controllers for DC motor is compared and investigated. Digital signal Microcontroller ATMega16 is also tested to control the position of DC motor. Finally, the result shows that the fuzzy logic approach has minimum overshoot, and minimum transient and steady state parameters, which shows the more effectiveness and efficiency of FLC than conventional PID model to control the position of the motor. Conventional controllers have poorer performances due to the non-linear features of DC motors like saturation and friction.

  2. Frequency Domain Design of Fractional Order PID Controller for AVR System Using Chaotic Multi-objective Optimization

    Pan, Indranil; Das, Saptarshi

    2013-01-01

    A fractional order (FO) PID or FOPID controller is designed for an Automatic Voltage Regulator (AVR) system with the consideration of contradictory performance objectives. An improved evolutionary Non-dominated Sorting Genetic Algorithm (NSGA-II), augmented with a chaotic Henon map is used for the multi-objective optimization based design procedure. The Henon map as the random number generator outperforms the original NSGA-II algorithm and its Logistic map assisted version for obtaining a bet...

  3. Rail Vehicle Vibrations Control Using Parameters Adaptive PID Controller

    Muzaffer Metin; Rahmi Guclu

    2014-01-01

    In this study, vertical rail vehicle vibrations are controlled by the use of conventional PID and parameters which are adaptive to PID controllers. A parameters adaptive PID controller is designed to improve the passenger comfort by intuitional usage of this method that renews the parameters online and sensitively under variable track inputs. Sinusoidal vertical rail misalignment and measured real rail irregularity are considered as two different disruptive effects of the system. Active vibra...

  4. A Hybrid MPC-PID Control System Design for the Continuous Purification and Processing of Active Pharmaceutical Ingredients

    Maitraye Sen; Ravendra Singh; Rohit Ramachandran

    2014-01-01

    In this work, a hybrid MPC (model predictive control)-PID (proportional-integral-derivative) control system has been designed for the continuous purification and processing framework of active pharmaceutical ingredients (APIs). The specific unit operations associated with the purification and processing of API have been developed from first-principles and connected in a continuous framework in the form of a flowsheet model. These integrated unit operations are highly interactive along with th...

  5. Design of Nonlinear PID Neural Controller for the Speed Control of a Permanent Magnet DC Motor Model based on Optimization Algorithm

    Ahmed Sabah Al-Araji

    2014-03-01

    Full Text Available In this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showed the effectiveness of the proposed control algorithm in terms of fast and smooth dynamic response for the speed control of the real DC motor.

  6. An optimized MIMO PID controller

    Hinrik Ingi Hinriksson 1981

    2010-01-01

    A method to optimize the zero locations for a PID controller for SISO systems to achive optimized tracking of a reference system has already been derived. In this thesis this method is expanded to work for MIMO systems. This is done by minimizing the difference between the impulse or the step response of the controlled system and the chosen reference system. The optimized zero locations can be found for the controller and the best tracking possible is a achived.

  7. The Parrot UAV Controlled by PID Controllers

    Koszewnik Andrzej

    2014-08-01

    Full Text Available The paper presents the process of modeling and designing control laws for four-rotor type of the Parrot UAV. The state space model is obtained by using several phenomena like gyroscopic effects for rigid bodies, propellers and rotors. The obtained model has been used to design PID control laws for roll, pitch, yaw angle and altitude, respectively. The numerical simulations of the closed loop model are shown that system in satisfy way stabilize flight of the quadro-rotor in all considered directions.

  8. Design of an Adaptive PID Neural Controller for Continuous Stirred Tank Reactor based on Particle Swarm Optimization

    Khulood A. Dagher; Ahmed S. Al-Araji

    2013-01-01

    A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation resu...

  9. Implementation of PID and Fuzzy PID controllers for Temperature control in CSTR

    S. Srinivasulu Raju

    2013-05-01

    Full Text Available Continuous Stirred Tank Reactor (CSTR is an important subject in chemical process and offering a diverse range of researches in the area of the chemical and control engineering. Various control approaches have been applied on CSTR to control its parameters. This paper gives the demonstration about the temperature control of CSTR reactor using a fuzzy PID controller to meet the desired temperature in presence of set point changes. The parameters of PID controller can be calculated by conducting Relay feedback on process. Fuzzy logic is one of the most successful applications of fuzzy set in which the variables are linguistic rather than numeric. The development of an effective methodology for the design of such control systems undoubtedly requires the synthesis of many concepts from artificial intelligence. The most commonly used controller in the industry field is the PID controller. Fuzzy logic controller (FLC provides an alternative to PID controller, especially when the available system models are inexact or unavailable. A FLC is based on a set of control rules (fuzzy rules among linguistic variables. CSTR system is a typical chemical reactor system with complex non-linear dynamic characteristics. The fuzzy PID control algorithm is designed for the flow process station to improve the control performance better than the conventional PID controller. PID controller works well only if the mathematical model of the system could be computed. Hence it is difficult to implement PID control for variable as well as complicated systems. The proposed method can be used to realize data process and advanced control to improve the quality of the control. The simulation is carried out and the simulation results present the flexibility of the CSTR temperature control.

  10. Back stepping-Based-PID-Controller Designed for an Artificial Pancreas model

    ShaimaMahmou Mahdi

    2011-01-01

    Full Text Available Artificial pancreas is simulated to handle Type I diabetic patients under intensive care by automatically controlling the insulin infusion rate. A Backstepping technique is used to apply the effect of PID controller to blood glucose level since there is no direct relation between insulin infusion (the manipulated variable and glucose level in Bergman?s system model subjected to an oral glucose tolerance test by applying a meal translated into a disturbance. Backstepping technique is usually recommended to stabilize and control the states of Bergman's class of nonlinear systems. The results showed a very satisfactory behavior of glucose deviation to a sudden rise represented by the meal that increase the blood glucose

  11. Robust PID design based on static H∞ loop-shaping method for steam generator water level control

    The problem for control of steam generator water level is complex because its complicated shrink and parameters of its model vary with operation conditions. Static H∞ loop shaping is used to design the robust PID controller for the steam generator. Simulation results show that the control efficiency of this scheme is better than that of the other three H∞ loop shaping based methods, and the derived controller has good reference tracking capability, distribution rejection ability and acceptable control performance at different operation points. (authors)

  12. PID control design for chaotic synchronization using a tribes optimization approach

    Recently, the investigation of synchronization and control problems for discrete chaotic systems has stimulated a wide range of research activity including both theoretical studies and practical applications. This paper deals with the tuning of a proportional-integral-derivative (PID) controller using a modified Tribes optimization algorithm based on truncated chaotic Zaslavskii map (MTribes) for synchronization of two identical discrete chaotic systems subject the different initial conditions. The Tribes algorithm is inspired by the social behavior of bird flocking and is also an optimization adaptive procedure that does not require sociometric or swarm size parameter tuning. Numerical simulations are given to show the effectiveness of the proposed synchronization method. In addition, some comparisons of the MTribes optimization algorithm with other continuous optimization methods, including classical Tribes algorithm and particle swarm optimization approaches, are presented.

  13. Design PID Baseline Fuzzy Tuning Proportional- Derivative Coefficient Nonlinear Controller with Application to Continuum Robot

    Azita Yazdanpanah

    2014-04-01

    Full Text Available Continuum robot manipulators are optimized to meet best trajectory requirements. Closed loop control is a key technology that is used to optimize the system output process to achieve this goal. In order to conduct research in the area of closed loop control, a control oriented cycle-to-cycle continuum robot model, containing dynamic model information for each individual continuum robot manipulator, is a necessity. In this research, the continuum robot manipulator is modeled according to information between joint variable and torque, which is represented by the nonlinear dynamic equation. After that, a multi-input-multi-output baseline computed torque control scheme is used to simultaneously control the torque load of system to regulate the joint variables to desired levels. One of the most important challenge in control theory is on-line tuning therefore fuzzy supervised optimization is used to tune the modified baseline and computed torque control coefficient. The performance of the modified baseline computed torque controller is compared with that of a baseline proportional, integral, and derivative (PID controller.

  14. Design of a Control System for an Autonomous Vehicle Based on Adaptive-PID

    Pan Zhao

    2012-07-01

    Full Text Available The autonomous vehicle is a mobile robot integrating multi‐sensor navigation and positioning, intelligent decision making and control technology. This paper presents the control system architecture of the autonomous vehicle, called “Intelligent Pioneer”, and the path tracking and stability of motion to effectively navigate in unknown environments is discussed. In this approach, a two degree‐of‐freedom dynamic model is developed to formulate the path‐tracking problem in state space format. For controlling the instantaneous path error, traditional controllers have difficulty in guaranteeing performance and stability over a wide range of parameter changes and disturbances. Therefore, a newly developed adaptive‐PID controller will be used. By using this approach the flexibility of the vehicle control system will be increased and achieving great advantages. Throughout, we provide examples and results from Intelligent Pioneer and the autonomous vehicle using this approach competed in the 2010 and 2011 Future Challenge of China. Intelligent Pioneer finished all of the competition programmes and won first position in 2010 and third position in 2011.

  15. PID control for enhanced fuel temperature response

    Simulation technology now provides the ability to design, test, and implement advanced control algorithms without the need for traditional writing and debugging of computer programs. The National Science Foundation and Electric Power Research Institute jointly sponsor a program for the experimental development of power reactor control using this simulation technology. A proportional-integral-derivative (PID) controller to enhance the temperature response of a reactor has been identified using a high-level block diagram system model and sophisticated simulation technology

  16. Computer simulation system of neural PID control on nuclear reactor

    Neural network proportional integral differential (PID) controller on nuclear reactor is designed, and the control process is simulated by computer. The simulation result show that neutral network PID controller can automatically adjust its parameter to ideal state, and good control result can be gotten in reactor control process

  17. Poultry House Temperature Control Using Fuzzy-PID Controller

    Aborisade David O

    2014-05-01

    Full Text Available Temperature control of poultry house within thermal neutral zone of poultry birds is essential in order to reduce their mortality and increase production. The most advanced method to control the highly complex and nonlinear behaviour of the poultry house temperature, is fuzzy logic. On the other hand, PID controllers are used in most of poultry house due to its functional and structural simplicity. This paper presents a method of controlling the poultry house temperature by the combined action of both Fuzzy and PID controllers. In the design, fuzzy controller uses the structure of two inputs and three outputs. Deviation e and deviation rate ė are the inputs of the system. These are translated into a fuzzy form, fuzzy processed according to IF…THEN rules to arrive at a single outcome value and then defuzzified to get accurate values of which are used to auto-tune PID controller to control the poultry house temperature. The performances of the Fuzzy-PID based poultry house temperature control scheme during hot weather are compared with the classical PID controller. The results show that the Fuzzy-PID scheme is able to control the poultry house temperature more effectively in terms of both the steady-state error and the settling time than that of PID controller.

  18. Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II

    Highlights: • Multi-objective optimization based fractional order controller is designed for HTRS. • NSGAII is improved by iterative chaotic map with infinite collapses (ICMIC) operator. • ISE and ITSE are as chosen as objective functions in tuning parameters of HTRS. • FOPID controller outperforms the PID controller under various running conditions. • Trade-off between speed of reference tracking and damping of oscillation are shown. - Abstract: Fractional-order PID (FOPID) controller is a generalization of traditional PID controller using fractional calculus. Compared to the traditional PID controller, in FOPID controller, the order of derivative portion and integral portion is not integer, which provides more flexibility in achieving control objectives. Design stage of such an FOPID controller consists of determining five parameters, i.e. proportional, integral and derivative gains {Kp, Ki, Kd}, and extra integration and differentiation orders {λ,μ}, which has a large difference comparing with the conventional PID tuning rules, thus a suitable optimization algorithm is essential to the parameters tuning of FOPID controller. This paper focuses on the design of the FOPID controller using chaotic non-dominated sorting genetic algorithm II (NSGAII) for hydraulic turbine regulating system (HTRS). The parameters chosen of the FOPID controller is formulated as a multi-objective optimization problem, in which the objective functions are composed by the integral of the squared error (ISE) and integral of the time multiplied squared error (ITSE). The chaotic NSGAII algorithm, which is an incorporation of chaotic behaviors into NSGAII, is used as the optimizer to search true Pareto-front of the FOPID controller and designers can implement each of them based on objective functions priority. The designed chaotic NSGAII based FOPID controller procedure is applied to a HTRS system. A comparison study between the optimum integer order PID controller and optimum fractional order PID controller is presented in the paper. The simulation and some experimental results validate the superiority of the fractional order controllers over the integer controllers

  19. PID Control Effectiveness for Surface Reactor Concepts

    Control of space and surface fission reactors should be kept as simple as possible, because of the need for high reliability and the difficulty to diagnose and adapt to control system failures. Fortunately, compact, fast-spectrum, externally controlled reactors are very simple in operation. In fact, for some applications it may be possible to design low-power surface reactors without the need for any reactor control after startup; however, a simple proportional, integral, derivative (PID) controller can allow a higher performance concept and add more flexibility to system operation. This paper investigates the effectiveness of a PID control scheme for several anticipated transients that a surface reactor might experience. To perform these analyses, the surface reactor transient code FRINK was modified to simulate control drum movements based on bulk coolant temperature

  20. PID Fuzzy Logic Controller System for DC Motor Speed Control

    H. Samsul Bachri M.

    2004-04-01

    Full Text Available A good controller system must have resilience to disturbance and must be able to response quickly and accurately. Problem usually appears when PID controller system was built sensitively hence the system’s respon to the disturbance will yield big overshot/undershot then the possibility of oscillation to be happened is excelsior. When the controller system was built insensitively, the overshot/undershot will be small but the recovery time will be longer. Hybrid controller system could overcome those problems by combining PID control system with fuzzy logic. The main control of this system is PID controller while the fuzzy logic acts to reduce an overshot/undershot and a recovery time. The fuzzy logic controller is designed with two input error and delta error and one output of the motor speed. The output of fuzzy logic controller should be only half of the PID controller for limiting entirely fuzzy output. This hybrid system design has a better respon time controller system than PID controller without fuzzy logic.

  1. A Comparative Study on Temperature Control of CSTR using PI Controller, PID Controller and PID (Two Degree of Freedom Controller

    Bikash Dey

    2014-01-01

    Full Text Available This paper present three different control strategies based on PI Control, PID control and Two degree of freedom PID control for Continuous Stirred Tank Reactor (CSTR.CSTR which offers a diverse range of application in the field of chemical engineering as well as in the control engineering and is an attractive research area for process control researchers. Our objective is to control the temperature of CSTR in presence of the set point. MATLAB SIMULINK software is used for model design and simulation

  2. Multivariable PID Controller For Robotic Manipulator

    Seraji, Homayoun; Tarokh, Mahmoud

    1990-01-01

    Gains updated during operation to cope with changes in characteristics and loads. Conceptual multivariable controller for robotic manipulator includes proportional/derivative (PD) controller in inner feedback loop, and proportional/integral/derivative (PID) controller in outer feedback loop. PD controller places poles of transfer function (in Laplace-transform space) of control system for linearized mathematical model of dynamics of robot. PID controller tracks trajectory and decouples input and output.

  3. Artificial Leg Design and Control Research of a Biped Robot with Heterogeneous Legs Based on PID Control Algorithm

    Hualong Xie

    2015-04-01

    Full Text Available A biped robot with heterogeneous legs (BRHL is proposed to provide an ideal test-bed for intelligent bionic legs (IBL. To make artificial leg gait better suited to a human, a four-bar mechanism is used as its knee joint, and a pneumatic artificial muscle (PAM is used as its driving source. The static mathematical model of PAM is established and the mechanical model of a single degree of freedom of a knee joint driven by PAM is analyzed. A control simulation of an artificial leg based on PID control algorithm is carried out and the simulation results indicate that the artificial leg can simulate precisely a normal human walking gait.

  4. To Design an internal model control based PI/PID controller for low order time delay process model of boiler and heat exchanger

    In any of the control applications, controller design is the most important part. There are different types of controller architectures available in control literature. In this research work, various low order plus dead time transfer function models of industrial boiler and heat exchanger are considered. A PI/PID controller is used to control various processes that involve boiler and heat exchanger. This comprise of controlling of parameters such as temperature, pressure, flow and level. The technique used for designing the controller is known as Internal Model Control. The designed controller has to give optimal control results irrespective of undesired situation like plant and equipment saturation. So the performance and stability is tested and verified for Linear Time Invariant Systems. (author)

  5. Robust PID Controller for a Pneumatic Actuator

    Skarpetis Michael G.; Koumboulis Fotis N.; Panagiotakis George; Kouvakas Nikolaos D.

    2016-01-01

    In this paper the position control pneumatic actuator using a robust PID controller is presented. The parameters of the PID controller are computed using a Hurwitz invariability technique enriched with a Simulated Annealing Algorithm. The nonlinear model involves uncertain parameters due to linearization of the servo valve, variations of the initial volume of the cylinder and variation of the external load. The problem is proven to be solvable and the controller parameters are chosen to provi...

  6. HIERARCHICAL FUZZY PID CONTROLLER USING GRANULAR COMPUTING FOR INVERTED PENDULUM

    POTTEM SAI THARUN, M.J. NIGAM

    2013-07-01

    Full Text Available The inverted pendulum (IP is among the most difficult systems to control in the field of control engineering. The process is non linear and unstable. The objective of this paper is to balance the pendulum vertically on a motor driven wagon by the use of hierarchical fuzzy PID controller. The hierarchical fuzzy PID controller divides the control system into multiple granular levels and adopts different control strategies in different granularities. We use different fuzzy controls forcoarse adjustment in the coarse granularity and adopt classical PID as fine control in the fine granularity. Then we design asupervisor which is a fuzzy controller to switch between the different fuzzy controllers and PID control smoothly

  7. A Novel Evolutionary Tuning Method for Fractional Order PID Controller

    Subhransu Padhee

    2011-07-01

    Full Text Available PID controller is a well known controller which is used in most control applications. Around 90% control applications use PID controller as the controlling element. The tuning of PID controller is mostly done using Zeigler-Nichols tuning method. But there are some inherent drawbacks of Ziegler-Nichols based tuning. For the optimal tuning of controller, the tuned values have to be changed using computer simulation to meet the process needs. In PID controller the derivative and the integral order are in integer. Fractional order PID (FOPID is a special kind of PID controller whose derivative and integral order are fractional rather than integer. The key challenge of designing FOPID controller is to determine the two key parameters ? (integral order and µ (derivative order apart from the usual tuning parameters of PID using different tuning methods. Both ? and µ are in fraction which increases the robustness of the system and gives an optimal control. This paper proposes a novel tuning method for tuning ? and µ of FOPID using genetic algorithms.

  8. Improving the pneumatic control valve performance using a PID controller

    Heidari, Mohammad; Homaei, Hadi

    2014-01-01

    Pneumatic control valves are still the most used in process industries due to their low cost and simplicity. This paper presents a design procedure of a PID controller for a pneumatic control valve. For comparison, P and PI controllers are also utilized for the control valve. The bond graph method is used to model the control valve, in order to compare the response characteristics of the valve. Simulation results are found for three controllers of the valve. The integral time absolute error c...

  9. Design PID Baseline Fuzzy Tuning Proportional- Derivative Coefficient Nonlinear Controller with Application to Continuum Robot

    Azita Yazdanpanah; Farzin Piltan; Ali Roshanzamir; Marjan Mirshekari; Narges Gholami mozafari

    2014-01-01

    Continuum robot manipulators are optimized to meet best trajectory requirements. Closed loop control is a key technology that is used to optimize the system output process to achieve this goal. In order to conduct research in the area of closed loop control, a control oriented cycle-to-cycle continuum robot model, containing dynamic model information for each individual continuum robot manipulator, is a necessity. In this research, the continuum robot manipulator is modeled according to infor...

  10. Design of FPGA-based Digital PID Controller Using Xilinx SysGen® For Regulating Blood Glucose Level of Type-I Diabetic Patients

    Arezou Geramipour

    2013-04-01

    Full Text Available This paper emphasizes on a method for designing digital PID controller based on Field Programmable Gate Array (FPGA device for regulating blood glucose level of type-I diabetic patients. The controller is tuned using Bergman Minimal model as a diabetic patient model in MATLAB and Simulink environment. The PID parameters are tuned using a genetic algorithm (GA. Because the speed of control systems has influence on their performance and stability, Field Programmable Gate Array (FPGA device is considered. A Simulink to FPGA flow is applied to the structure of PID controller with Xilinx blocks in Simulink. The results of blood glucose of two diabetic patient models using different quantization in bits are simulated. The results show that unsuitable number of bits cause hypoglycemia and increasing the peak of blood glucose in diabetic patients. System Generator and Integrated Software Environment (ISE are used for creating Bitstream file that can be downloaded into FPGA device. The results show that implementation of PID controller on FPGA using System Generator is compact and high speed and causes the designer can evaluate and implement different designs simply.

  11. PID controller simulator software for DC motor of gamma scanning

    Mostly PID controller (Proportional-Integral-Derivative) has been used in industry. For certain applications, it can be used as a Proportional (P) model only, or as a Proportional-Integral (PI) model. The aim of this paper is to design a PID controller simulator software for DC motor which is used in gamma scanning system. A DC motor is described as a plant of SISO (Single Input Single Output) which is used for pulling down the load (detector + casing) and gamma radiation source (Co-60 + container) by using sling cable. A DC motor consist of an armature and a rotor, the equivalent circuit of DC motor is shown in a transfer function equation between output parameter (angular speed DC motor) and input parameter (voltage of DC motor). Methods used for the process of PID controller design is to arrange the PID controller parameter (Kc, Ti, Td) so that there are more PID controller transfer function model which are able to control angular speed of DC motor in stable condition, as design criteria requirement is needed. Design criteria requirement for control system are the settling time < 3 second, overshoot < 5%, rise time = 0.25 second, steady state gain = 1 and peak time < 3 second with step response reference 1 rad/second. The result of simulation gives several models of PID controller in function transfer equation which is similar with design criteria requirement in a equation of function transfer of order 2 for numerator and order 1 for denominator. (author)

  12. PID control with robust disturbance feedback control

    Kawai, Fukiko; Vinther, Kasper; Andersen, Palle; Bendtsen, Jan Dimon

    Disturbance Feedback Control (DFC) is a technique, originally proposed by Fuji Electric, for augmenting existing control systems with an extra feedback for attenuation of disturbances and model errors. In this work, we analyze the robustness and performance of a PID-based control system with DFC. A...... multiplicative uncertainty model is used to represent mismatch between a nominal model and the actual plant, and expressions for robust stability, nominal and robust performance are derived. We propose a simple grid-based search algorithm that can be used to find DFC gains to achieve robust stability and...

  13. Tuning of PID load frequency controller for power systems

    PID tuning of load frequency controllers for power systems is discussed in this paper. The tuning method is based on a two-degree-of-freedom internal model control (IMC) design method, and the performance of the resulting PID controller is related to two tuning parameters thus detuning is easy when necessary. Then an anti-GRC scheme is proposed to overcome the generation rate constraints. Finally, the method is extended to two-area cases.

  14. MIMO nonlinear PID predictive controller

    Feng, W; O'Reilly, J.; Ballance, D J

    2002-01-01

    A class of nonlinear generalised predictive controllers (NGPC) is derived for multi-input multi-output (MIMO) nonlinear systems with offset or steady-state response error. The MIMO composite controller consists of an optimal NGPC and a nonlinear disturbance observer. The design of the nonlinear disturbance observer to estimate the offset is particularly simple, as is the associated proof of overall nonlinear closed-loop system stability. Moreover, the transient error response of the disturban...

  15. A Practical Application of IMC-PID Controller in Unmanned Vehicle

    Qin Gang; Song Le; Hu Ling

    2013-01-01

    In allusion to unmanned vehicle steering control of the brushless DC motor control system, traditional PID controller parameter adjustment complex, weak ability to adapt to the environment and other issues, on the basis of the analysis of internal model control and classical PID control internal corresponding relationship, comprehensive its advantages, The design uses a brushless DC motor in the steering control system for unmanned vehicles based on the internal model PID controller ( IMC-PID...

  16. Neural PID Control Strategy for Networked Process Control

    Jianhua Zhang; Junghui Chen

    2013-01-01

    A new method with a two-layer hierarchy is presented based on a neural proportional-integral-derivative (PID) iterative learning method over the communication network for the closed-loop automatic tuning of a PID controller. It can enhance the performance of the well-known simple PID feedback control loop in the local field when real networked process control applied to systems with uncertain factors, such as external disturbance or randomly delayed measurements. The proposed PID iterative le...

  17. A satellite digital controller or 'play that PID tune again, Sam'. [Position, Integral, Derivative feedback control algorithm for design strategy

    Seltzer, S. M.

    1976-01-01

    The problem discussed is to design a digital controller for a typical satellite. The controlled plant is considered to be a rigid body acting in a plane. The controller is assumed to be a digital computer which, when combined with the proposed control algorithm, can be represented as a sampled-data system. The objective is to present a design strategy and technique for selecting numerical values for the control gains (assuming position, integral, and derivative feedback) and the sample rate. The technique is based on the parameter plane method and requires that the system be amenable to z-transform analysis.

  18. Fractional order PID controller for load frequency control

    Highlights: • The manuscript shows the design of FOPID controller for the load frequency control. • Performance of FOPID is given for non-reheated, reheated and hydro turbine. • Performance of FOPID is compared to IMC-PID and reduced order IMC-PID design scheme. • Performance of FOPID is better than the existing techniques. - Abstract: Load frequency control (LFC) plays a very important role in providing quality power both in the case of isolated as well as interconnected power systems. In order to maintain good quality power supply, the LFC should possess robustness toward the parametric uncertainty of the system and good disturbance rejection capability. The fractional order controller has the properties such as, eliminating steady state error, robustness toward plant gain variations and also good disturbance rejection. This makes the fractional order PID (FOPID) controller quite suitable for the LFC. Therefore, in this paper a FOPID is designed for single area LFC for all three types of turbines i.e., non-reheated, reheated and hydro turbines. It is observed that the FOPID controller shows better robustness toward ±50% parametric uncertainty and disturbance rejection capability than the existing techniques. Finally, the optimization of controller parameters and robustness evaluation of the control technique is done on the basis of the integral error criterion

  19. Stability Region Analysis of PID and Series Leading Correction PID Controllers for the Time Delay Systems

    D. RAMA REDDY; Dr.M.Sailaja

    2012-01-01

    This paper describes the stability regions of PID (Proportional +Integral+ Derivative) and a new PID with series leading correction (SLC) for Networked control system with time delay. The new PID controller has a tuning parameter ‘β’. The relation between β, KP, KI and KD is derived. The effect of plant parameters on stabilityregion of PID controllers and SLC-PID controllers in first-order and second-order systems with time delay are also studied. Finally, an open-loop zero was inserted into ...

  20. Implementation of PID and Fuzzy PID controllers for Temperature control in CSTR

    S. Srinivasulu Raju; T.K.S.Ravi Kiran; K.M.N. Chaitanya Kumar Reddy; M. VISWANATH

    2013-01-01

    Continuous Stirred Tank Reactor (CSTR) is an important subject in chemical process and offering a diverse range of researches in the area of the chemical and control engineering. Various control approaches have been applied on CSTR to control its parameters. This paper gives the demonstration about the temperature control of CSTR reactor using a fuzzy PID controller to meet the desired temperature in presence of set point changes. The parameters of PID controller can be calculated by conducti...

  1. Stability Region Analysis of PID and Series Leading Correction PID Controllers for the Time Delay Systems

    D. RAMA REDDY

    2012-07-01

    Full Text Available This paper describes the stability regions of PID (Proportional +Integral+ Derivative and a new PID with series leading correction (SLC for Networked control system with time delay. The new PID controller has a tuning parameter ‘β’. The relation between β, KP, KI and KD is derived. The effect of plant parameters on stabilityregion of PID controllers and SLC-PID controllers in first-order and second-order systems with time delay are also studied. Finally, an open-loop zero was inserted into the plant-unstable second order system with time delay so that the stability regions of PID and SLC-PID controllers get effectively enlarged. The total system isimplemented using MATLAB/Simulink.

  2. FPGA Based Modified Fuzzy PID Controller for Pitch Angle of Bench-top Helicopter

    A.A. Aldair

    2012-01-01

    Fuzzy PID controller design is still a complex task due to the involvement of a large number of parameters in defining the fuzzy rule base. To reduce the huge number of fuzzy rules required in the normal design for fuzzy PID controller, the fuzzy PID controller is represented as Proportional-Derivative Fuzzy (PDF) controller and Proportional-Integral Fuzzy (PIF) controller connected in parallel through a summer. The PIF controller design has been simplified by replacing the PIF controller by ...

  3. A Real Time IMC Tuned PID Controller for DC Motor

    M.SARANYA

    2012-04-01

    Full Text Available This paper presents a Internal Model Control(IMC tuned PID controller method for the DC motor for robust operation.IMC is a process model approach to design the PID controller parameter to obtain the optimal setpoint tracking and load disturbance rejection.This method of control which is based on the accurate model of the process,leads to the design of a control system that is stable and robust.The results of the IMC tuning method when compared with the Ziegler Nichols (ZN closed loop tuning provides a commendable improvement in the overshoot,rise time and settling time of the system.Simulated results in LabVIEW and Matlab using the PID and IMC are presented and also the same has been implemented and tested for a 12volt DC motor.

  4. Variable-order fuzzy fractional PID controller.

    Liu, Lu; Pan, Feng; Xue, Dingyu

    2015-03-01

    In this paper, a new tuning method of variable-order fractional fuzzy PID controller (VOFFLC) is proposed for a class of fractional-order and integer-order control plants. Fuzzy logic control (FLC) could easily deal with parameter variations of control system, but the fractional-order parameters are unable to change through this way and it has confined the effectiveness of FLC. Therefore, an attempt is made in this paper to allow all the five parameters of fractional-order PID controller vary along with the transformation of system structure as the outputs of FLC, and the influence of fractional orders λ and μ on control systems has been investigated to make the fuzzy rules for VOFFLC. Four simulation results of different plants are shown to verify the availability of the proposed control strategy. PMID:25440947

  5. A Novel Evolutionary Tuning Method for Fractional Order PID Controller

    Subhransu Padhee; Abhinav Gautam; Yaduvir Singh; Gagandeep Kaur

    2011-01-01

    PID controller is a well known controller which is used in most control applications. Around 90% control applications use PID controller as the controlling element. The tuning of PID controller is mostly done using Zeigler-Nichols tuning method. But there are some inherent drawbacks of Ziegler-Nichols based tuning. For the optimal tuning of controller, the tuned values have to be changed using computer simulation to meet the process needs. In PID controller the derivative and the integral or...

  6. Modeling Of Pid Controller Based Smps Using Fpga

    SHUBHANGI V.PATIL

    2013-02-01

    Full Text Available This paper presents a proportional integral derivative (PID controller model for buck converter topology of switch mode power supply (SMPS. PID controller in terms of the settling time while exhibiting a greater degree of robustness regarding disturbance rejection represented by severe changes in static and dynamic loads. The controller is used to change the duty cycle of the converter and thereby, the voltage is regulated. The buck converter, P, PI and PID controller are modeled and are evaluated by computer simulations. It has been found that the transient performance and steady state performance is improved using PID controller. SMPS design can produce very compact and lightweight supplies. Power conversion efficiencies of SMPS are 70 & 80 %. Implementation of SMPS by using FPGA, it gives the better performance and faster transient response. Improves the steady state performance and transient response by using PID controller, it is possible to design stable, efficient and ruggedized SMPS which has faster transient response for dynamically switching loads.In SMPS the switching action means the series regulator element is either on or off and therefore little energy is dissipated as heat and very high efficiency levels can be achieved. As a result of the high efficiency and low levels of heat dissipation, the switch mode power supplies can be made more compact. Switch mode power supply technology can be sued to provide high efficiency voltage conversions in voltage step up or boost applications or step down buck applications

  7. A toolbox for robust PID controller tuning using convex optimization

    Sadeghpour, Mehdi; de Oliveira, Vinicius; Karimi, Alireza

    2012-01-01

    A robust PID controller design toolbox for Matlab is presented in this paper. The design is based on linearizing or convexifying the conventional non-convex constraints on the classical robustness margins or H∞ constraints. Then the existing optimization solvers can be used to compute the controller parameters. The software can be used in a wide range of controller design problems, including multi-model systems and gain-scheduled controllers. The models can be parametric or non-parametric whi...

  8. Design PID-Like Fuzzy Controller With Minimum Rule Base and Mathematical Proposed On-line Tunable Gain: Applied to Robot Manipulator

    Farzin Piltan

    2011-10-01

    Full Text Available In this study, an on-line tunable gain model free PID-like fuzzy controller (GTFLC is designed for three degrees of freedom (3DOF robot manipulator to rich the best performance. Fuzzy logic controller is studied because of its model free and high performance. Today, robot manipulators are used in unknown and unstructured environment and caused to provide sophisticated systems, therefore strong mathematical tools are used in new control methodologies to design adaptive nonlinear robust controller with acceptable performance (e.g., minimum error, good trajectory, disturbance rejection. The strategies of control robot manipulator are classified into two main groups: classical and non-classical methods, however non linear classical theories have been applied successfully in many applications, but they also have some limitation. One of the most important nonlinear non classical robust controller that can used in uncertainty nonlinear systems, are fuzzy logic controller. This paper is focuses on applied mathematical tunable gain method in robust non classical method to reduce the fuzzy logic controller limitations. Therefore on-line tunable PID like fuzzy logic controller will be presented in this paper.

  9. Design PID-Like Fuzzy Controller With Minimum Rule Base and Mathematical Proposed On-line Tunable Gain: Applied to Robot Manipulator

    Farzin Piltan, N. Sulaiman, Arash Zargari, Mohammad Keshavarz & Ali Badri

    2011-10-01

    Full Text Available In this study, an on-line tunable gain model free PID-like fuzzy controller (GTFLC is designed forthree degrees of freedom (3DOF robot manipulator to rich the best performance. Fuzzy logiccontroller is studied because of its model free and high performance. Today, robot manipulatorsare used in unknown and unstructured environment and caused to provide sophisticated systems,therefore strong mathematical tools are used in new control methodologies to design adaptivenonlinear robust controller with acceptable performance (e.g., minimum error, good trajectory,disturbance rejection. The strategies of control robot manipulator are classified into two maingroups: classical and non-classical methods, however non linear classical theories have beenapplied successfully in many applications, but they also have some limitation. One of the mostimportant nonlinear non classical robust controller that can used in uncertainty nonlinear systems,are fuzzy logic controller. This paper is focuses on applied mathematical tunable gain method inrobust non classical method to reduce the fuzzy logic controller limitations. Therefore on-linetunable PID like fuzzy logic controller will be presented in this paper.

  10. A Practical Application of IMC-PID Controller in Unmanned Vehicle

    Qin Gang

    2013-06-01

    Full Text Available In allusion to unmanned vehicle steering control of the brushless DC motor control system, traditional PID controller parameter adjustment complex, weak ability to adapt to the environment and other issues, on the basis of the analysis of internal model control and classical PID control internal corresponding relationship, comprehensive its advantages, The design uses a brushless DC motor in the steering control system for unmanned vehicles based on the internal model PID controller ( IMC-PID for speed. Based on the build object theoretical model, online simulation controller show that, for the design objects, based on the internal model PID controller whether the system step response or disturbance tracking control effect can reach the classic PID control requirements, also reduces the complexity and randomness of the design parameters.

  11. ROBUST INTERNAL MODEL CONTROL STRATEGY BASED PID CONTROLLER FOR BLDCM

    A.PURNA CHANDRA RAO

    2010-11-01

    Full Text Available All the closed loop control system requires the controller for improvement of transient response of the error signal. Though the tuning of PID controller in real time is bit difficult and moreover it lacks the disturbance rejection capability. This paper presents a tuning of PID parameters based on internal model strategy. The advantageous of the proposed control strategy is well described in the paper. To test the validity of the proposed control, it is implemented in brushless dc motor drive. The mathematical model of brushless dc motor (BLDC is presented for control design. In addition the robustness of the control strategy is discussed. The proposed control strategy possesses good transient responses and good load disturbance response. In addition, the proposed control strategy possesses good tracking ability. To test the effectiveness of the proposed strategy, the BLDC is represented in transfer function model and later implemented in test system. The results are presented to validate the proposed control strategy for BLDC drive.

  12. Wind turbine pitch control using ICPSO-PID algorithm

    Xu, Chang; Tian, Qiangqiang; Shen, Wen Zhong; Zhen, Yuan; Liu, Deyou; Zhang, Ming

    2013-01-01

    controller parameters quickly; and the feed-forward controller for wind speed can improve dynamics of a pitch-control system; additionally the power controller can allow a wind turbine to have a constant power output as a wind speed is over the rated one. Compared with a conventional PID, the controller with......For the traditional simplified first-order pitch-control system model, it is difficult to describe a real dynamic characteristic of a variable pitch action system, thus a complete high order mathematical model has to be developed for the pitch control of wind turbine generation (WTG). In the paper......, a pitch controller was designed based on power and wind speed and by considering the inertia and delay characteristics of a pitch-control system to achieve a constant power output when a wind speed was beyond the rated one. A novel ICPSO-PID control algorithm was proposed based on a combination of...

  13. Model-reference robust tuning of PID controllers

    Alfaro, Victor M

    2016-01-01

    This book presents a unified methodology for the design of PID controllers that encompasses the wide range of different dynamics to be found in industrial processes. This is extended to provide a coherent way of dealing with the tuning of PID controllers. The particular method at the core of the book is the so-called model-reference robust tuning (MoReRT), developed by the authors. MoReRT constitutes a novel and powerful way of thinking of a robust design and taking into account the usual design trade-offs encountered in any control design problem. The book starts by presenting the different two-degree-of-freedom PID control algorithm variations and their conversion relations as well as the indexes used for performance, robustness and fragility evaluation:the bases of the proposed model. Secondly, the MoReRT design methodology and normalized controlled process models and controllers used in the design are described in order to facilitate the formulation of the different design problems and subsequent derivati...

  14. COMPARISON BETWEEN ARTIFICIAL BEE COLONY ALGORITHM, SHUFFLED FROG LEAPING ALGORITHM AND NERO-FUZZY SYSTEM IN DESIGN OF OPTIMAL PID CONTROLLERS

    Fatemeh Masoudnia

    2013-11-01

    Full Text Available In this paper three optimum approaches to design PID controller for a Gryphon Robot are presented. The three applied approaches are Artificial Bee Colony, Shuffled Frog Leaping algorithms and nero-fuzzy system. The design goal is to minimize the integral absolute error and reduce transient response by minimizing overshoot, settling time and rise time of step response. An Objective function of these indexes is defined and minimized applying Shuffled Frog Leaping (SFL algorithm, Artificial Bee Colony (ABC algorithm and Nero-Fuzzy System (FNN. After optimization of the objective function, the optimal parameters for the PID controller are adjusted. Simulation results show that FNN has a remarkable effect on decreasing the amount of settling time and rise-time and eliminating of steady-state error while the SFL algorithm performs better on steady-state error and the ABC algorithm is better on decreasing of overshoot. In steady state manner, all of the methods react robustly to the disturbance, but FNN shows more stability in transient response.

  15. Artificial Leg Design and Control Research of a Biped Robot with Heterogeneous Legs Based on PID Control Algorithm

    Hualong Xie; Keli Chen; Yuying Yang; Fei Li

    2015-01-01

    A biped robot with heterogeneous legs (BRHL) is proposed to provide an ideal test-bed for intelligent bionic legs (IBL). To make artificial leg gait better suited to a human, a four-bar mechanism is used as its knee joint, and a pneumatic artificial muscle (PAM) is used as its driving source. The static mathematical model of PAM is established and the mechanical model of a single degree of freedom of a knee joint driven by PAM is analyzed. A control simulation of an artificial leg based on PI...

  16. The Fuzzy-PID compound control system for the HTR-10

    The mathematical model of the 10 MW high temperature gas-cooled test reactor (HTR-10) is developed, and described with transfer functions. The Fuzzy-PID compound control tactic is adopted to design the control system. The numerical simulation deals with the decrease of the nuclear power from 100% to 30% in 15 minutes. Furthermore, the simulation results are compared with those of independent PID control and independent fuzzy control, respectively. The comparison shows: when the nuclear power changes, with the Fuzzy-PID compound control, the outlet helium temperature follows its rated value. It is proved that the Fuzzy-PID compound control has better dynamic behavior and better steady precision

  17. Tuning of PID Controller for A Linear Brushless DC Motor using Swarm Intelligence Technique

    Pooja Sharma,

    2014-05-01

    Full Text Available An Optimal Design of PID Controller is proposed in this paper. The Methodology of PSO Algorithm is utilized to search the optimal parameters of Proportional Integral Derivative (PID Controller for BLDC Motor. PSO is an Evolutionary Optimization Technique. A Linear Brushless DC Motors are known for higher efficiency and lower maintenance. The Brushless DC Motor is modeled in Simulink & tuning of PID controller using PSO is implemented in MATLAB. This Method was more efficient for Step Response Characteristics.

  18. Tuning of PID Controller for A Linear Brushless DC Motor using Swarm Intelligence Technique

    Pooja Sharma; Rajeev Gupta

    2014-01-01

    An Optimal Design of PID Controller is proposed in this paper. The Methodology of PSO Algorithm is utilized to search the optimal parameters of Proportional Integral Derivative (PID) Controller for BLDC Motor. PSO is an Evolutionary Optimization Technique. A Linear Brushless DC Motors are known for higher efficiency and lower maintenance. The Brushless DC Motor is modeled in Simulink & tuning of PID controller using PSO is implemented in MATLAB. This Method was more efficient ...

  19. Series pid pitch controller of large wind turbines generator

    Micić Aleksandar D.

    2015-01-01

    Full Text Available For this stable process with oscillatory dynamics, characterized with small damping ratio and dominant transport delay, design of the series PID pitch controller is based on the model obtained from the open-loop process step response, filtered with the second-order Butterworth filter Fbw. Performance of the series PID pitch controller, with the filter Fbw, is analyzed by simulations of the set-point and input/output disturbance responses, including simulations with a colored noise added to the control variable. Excellent performance/robustness tradeoff is obtained, compared to the recently proposed PI pitch controllers and to the modified internal model pitch controller, developed here, which has a natural mechanism to compensate effect of dominant transport delay. [Projekat Ministarstva nauke Republike Srbije, br. III 47016

  20. Simulation and Tuning of PID Controllers using Evolutionary Algorithms

    K.R.S. Narayanan; T.Jayanthi; T.Lakshmi Priyanka; S.A.V Satya Murty

    2012-01-01

    The Proportional Integral Derivative (PID) controller is the most widely used control strategy in the Industry. The popularity of PID controllers can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. The process of setting of PID controller can be determined as an optimization task. Over the years, use of intelligent strategies for tuning of these controllers has been growing. Biologically inspired evolutionary strateg...

  1. MULTI-OBJECTIVE PID CONTROLLER BASED ON ADAPTIVE WEIGHTED PSO WITH APPLICATION TO STEAM TEMPERATURE CONTROL IN BOILERS

    C Agees Kumar; N.Kesavan Nair

    2010-01-01

    PID controller is widely used for main steam temperature control of boiler unit in thermal power plant. To avoid the drawback of current PID design methods, this paper presents a new design method for multi-objective PID controller to synthetically consider system requirement in reliability and robustness. Adaptive weighted PSO (AWPSO) technique is applied to the parameter optimization design. The optimization problem considered is highly nonlinear, complex, with multiple objectives and const...

  2. Automatic Tuning of PID Controller for a 1-D Levitation System Using a Genetic Algorithm

    Yang, Zhenyu; Pedersen, Gerulf K.m.

    The automatic PID control design for a onedimensional magnetic levitation system is investigated. The PID controller is automatically tuned using the non-dominated sorting genetic algorithm (NSGA-II) based on a nonlinear system model. The developed controller is digitally implemented and tested...

  3. PID Controller Parameters Tuning Based-on Satisfaction for Superheated Steam Temperature of Power Station Boiler

    Benxian Xiao; Jun Xiao; Rongbao Chen; Yanhong Li

    2014-01-01

    Proposed the PID controller parameters tuning method based-on New Luus-Jaakola (NLJ) algorithm and satisfaction idea. According to the different requirements of each performance index, designed the satisfaction function with fuzzy constraint attributes, and then determined the comprehensive satisfaction function for PID tuning by NLJ algorithm. Provided the steps of PID controller parameters tuning based on the NLJ algorithm and satisfaction, and applied this tuning method to the cascade cont...

  4. Real/binary co-operative and co-evolving swarms based multivariable PID controller design of ball mill pulverizing system

    Highlights: ► We extend the concept of co-operation and co-evolution in some PSO variants. ► We use developed co-operative PSOs in multivariable PID controller design/tuning. ► We find that co-operative PSOs converge faster and give high quality solutions. ► Dividing the search space among swarms improves search efficiency. ► The proposed methods allow the practitioner for heterogeneous problem formulation. - Abstract: In this paper, multivariable PID controller design based on cooperative and coevolving multiple swarms is demonstrated. A simplified multi-variable MIMO process model of a ball mill pulverizing system with steady state decoupler is considered. In order to formulate computational models of cooperative and coevolving multiple swarms three different algorithms like real coded PSO, discrete binary PSO (DBPSO) and probability based discrete binary PSO (PBPSO) are employed. Simulations are carried out on three composite functions simultaneously considering multiple objectives. The cooperative and coevolving multiple swarms based results are compared with the results obtained through single swarm based methods like real coded particle swarm optimization (PSO), discrete binary PSO (DBPSO), and probability based discrete binary PSO (PBPSO) algorithms. The cooperative and coevolving swarms based techniques outperform the real coded PSO, PBPSO, and the standard discrete binary PSO (DBPSO) algorithm in escaping from local optima. Furthermore, statistical analysis of the simulation results is performed to calculate the comparative reliability of various techniques. All of the techniques employed are suitable for controller tuning, however, the multiple cooperative and coevolving swarms based results are considerably better in terms of mean fitness, variance of fitness, and success rate in finding a feasible solution in comparison to those obtained using single swarm based methods.

  5. Experimental simulation system of fuzzy PID control on nuclear reactor

    A set of experimental simulation system is constructed to simulate the nuclear reactor, study of fuzzy PID control on nuclear reactor is done on this simulation system, and control result show that when reactor load change and coolant temperature's change can be soon restrained by using fuzzy PID controller, and precision of steady state is high, so good control result can be gotten

  6. Control of an industrial process using PID control blocks in automation controller

    Van Dessel, Michel; Jacobs, Marc

    2011-01-01

    Many continuous industrial processes can be controlled using programmable automation controllers for digital implementation of classical PID control. For this type of applications, a PID control block has been developed for use in the programming environment PCWorkx. In the lecture two types of PID control of tank level are discussed: single point control and cascade control. The single point control uses a single PID controller to regulate tank level using a single measurement for feedbac...

  7. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    Saraji, Ali Motalebi; Ghanbari, Mahmood

    2014-12-01

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.

  8. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear

  9. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    Saraji, Ali Motalebi [Young Researchers and Elite Club, AliAbad Katoul Branch, Islamic Azad University, AliAbad Katoul (Iran, Islamic Republic of); Ghanbari, Mahmood [Department of Electrical Engineering, AliAbad Katoul Branch, Islamic Azad University, AliAbad Katoul (Iran, Islamic Republic of)

    2014-12-10

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.

  10. Self tuning fuzzy PID type load and frequency controller

    In this paper, a self tuning fuzzy PID type controller is proposed for solving the load frequency control (LFC) problem. The fuzzy PID type controller is constructed as a set of control rules, and the control signal is directly deduced from the knowledge base and the fuzzy inference. Moreover, there exists a self tuning mechanism that adjusts the input scaling factor corresponding to the derivative coefficient and the output scaling factor corresponding to the integral coefficient of the PID type fuzzy logic controller in an on-line manner. The self tuning mechanism depends on the peak observer idea, and this idea is modified and adapted to the LFC problem. A two area interconnected system is assumed for demonstrations. The proposed self tuning fuzzy PID type controller has been compared with the fuzzy PID type controller without a self tuning mechanism and the conventional integral controller through some performance indices

  11. PID and predictive control of electrical drives and power converters using MATLAB/Simulink

    Wang, Liuping; Yoo, Dae; Gan, Lu; Ng, Ki

    2015-01-01

    A timely introduction to current research on PID and predictive control by one of the leading authors on the subject PID and Predictive Control of Electric Drives and Power Supplies using MATLAB/Simulink examines the classical control system strategies, such as PID control, feed-forward control and cascade control, which are widely used in current practice.  The authors share their experiences in actual design and implementation of the control systems on laboratory test-beds, taking the reader from the fundamentals through to more sophisticated design and analysis.    The book contains secti

  12. Optimal Design of DC to DC Boost Converter with Closed Loop Control PID Mechanism for High Voltage Photovoltaic Application

    R. Arulmurugan

    2012-10-01

    Full Text Available This paper proposes a new dc to dc boost converter using closed loop control proportional Integral and Derivative mechanism for photovoltaic (PV standalone high voltage applications. The boost converter is composed of MOSFETs which are driven by closed loop PWM control. Many advantages including high efficiency, minimum number of switch, high voltage and power, low cost. This converter is attractive for high voltage and high power applications. The analysis and design considerations of the converter are presented. A prototype was implemented for an application requiring a 410W output power, input voltage range from 17.1-V, and a 317-V output voltage. The proposed system efficiency is about 90%.

  13. Soft Real-Time PID Control on a VME Computer

    Karayan, Vahag; Sander, Stanley; Cageao, Richard

    2007-01-01

    microPID (uPID) is a computer program for real-time proportional + integral + derivative (PID) control of a translation stage in a Fourier-transform ultraviolet spectrometer. microPID implements a PID control loop over a position profile at sampling rate of 8 kHz (sampling period 125microseconds). The software runs in a strippeddown Linux operating system on a VersaModule Eurocard (VME) computer operating in real-time priority queue using an embedded controller, a 16-bit digital-to-analog converter (D/A) board, and a laser-positioning board (LPB). microPID consists of three main parts: (1) VME device-driver routines, (2) software that administers a custom protocol for serial communication with a control computer, and (3) a loop section that obtains the current position from an LPB-driver routine, calculates the ideal position from the profile, and calculates a new voltage command by use of an embedded PID routine all within each sampling period. The voltage command is sent to the D/A board to control the stage. microPID uses special kernel headers to obtain microsecond timing resolution. Inasmuch as microPID implements a single-threaded process and all other processes are disabled, the Linux operating system acts as a soft real-time system.

  14. Research on digital PID control algorithm for HPCT

    Digital PID applied in high-precision HPCT (High-precision current transducer) based on Digital Signal Processor (DSP) TMS320F2812 and special D/A converter was researched. By using increment style PID Control algorithm, the stability and precision of high-precision HPCT output voltage is improved. On basis of deeply analysing incremental digital PID, the scheme model of HPCT is proposed, the feasibility simulation using Matlab is given. Practical hardware circuit verified the incremental PID has closed-loop control process in tracking HPCT output voltage. (authors)

  15. Remote PID Control of a DC Motor

    V. Silva

    2007-08-01

    Full Text Available This paper presents a remote experiment forcontrolling a DC motor. This work was part of a final yeargraduation project of the Industrial Electronics Course atthe University of Minho. It was implemented by anundergraduate student for students use. The experiment iscontrolled using a PID algorithm programmed in LabViewenvironment. The remote user can test PID digitalalgorithms and parameters, change reference velocity valuesand register the motor output velocity profile.

  16. Optimal Tuning of Fractional Order PID Controller for DC Motor Speed Control Using Particle Swarm Optimization

    Ankit Rastogi,; Pratibha Tiwari

    2013-01-01

    PID controller is the most widely used controller in industry for control applications due to its simple structure and easy parameter adjusting.But increase in complexity of control systems has introduced many modified PID controllers.The recent advancement in fractional order calculus has introduced fractional order PID controller and it has recieved a great attention for researchers.Fractional order PID (FOPID) controller is an advancement of conventional PID controller in which the derivat...

  17. PID feedback control of monochromator thermal stabilization

    The desire for increasingly smaller X-ray beams for macromolecular crystallography experiments also stimulates the need for improvements in beam stability. There are numerous sources of instability, which influence beam quality on the micron-size scale. Typically, the most problematic source is thermal drift within the double crystal monochromators. In addition to using liquid nitrogen to indirectly cool both the first and second crystals, GM/CA-CAT previously used a combination of flowing water at constant temperature and copper braiding to stabilize the mechanics, mounts, and the Compton scatter shielding. However, the copper braids inefficiently stabilized the temperature of components that were distant from the water lines. Additionally, vibrations in the water lines propagated throughout the vibrationally dampened monochromator, thereby introducing both positional and intensity instabilities in the transmitted X-ray beam. To address these problems, heating pads were placed directly onto the temperature-sensitive components, with output controlled by a PID-feedback loop. As a result, there is negligible temperature change in the first crystal radiation shielding over the entire range of operational heat loads. Additionally, the angular drift in the second crystal induced by temperature changes in other components is dramatically decreased.

  18. ANFIS-PID Controller for Arm Rehabilitation Device

    M.H.Jali

    2015-10-01

    Full Text Available In this paper, the arm rehabilitation device controller based on fuzzy logic techniques is presented. Patients who has post-stroke may lose control of their upper limb. If they are treated with functional rehabilitation training, the patients can rehabilitate their motion functions and working abilities. These rehabilitation devices are used to recover the movement of arm after stroke. Many controllers had been used for the rehabilitation device and one of them is ANFIS-PID controller where Adaptive Neuro-Fuzzy Inference System (ANFIS technique is the combination of fuzzy logic and neural network system. The objectives of this project are to develop arm rehabilitation device controller based on the ANFIS-PID technique. The development of ANFIS is purposely as an inverse model to the system and proportional-integral- erivative (PID controller as a feedback control. EMG model is integrated to the control system as reference where Artificial Neural Network (ANN is used to model the EMG to position relationship. Simulation is conducted using MATLAB to validate the system performance that is integrated with EMG model. Then the performance is compared between ANFIS-PID controller and PID alone controller. ANFIS–PID controller reduced more tracking error compared to PID controller and demonstrates better results when disturbance is applied to the control system.

  19. Turbine speed control system based on a fuzzy-PID

    Sun, Jian-Hua; Wang, Wei; Yu, Hai-Yan

    2008-12-01

    The flexibility demand of marine nuclear power plant is very high, the multiple parameters of the marine nuclear power plant with the once-through steam generator are strongly coupled, and the normal PID control of the turbine speed can’t meet the control demand. This paper introduces a turbine speed Fuzzy-PID controller to coordinately control the steam pressure and thus realize the demand for quick tracking and steady state control over the turbine speed by using the Fuzzy control’s quick dynamic response and PID control’s steady state performance. The simulation shows the improvement of the response time and steady state performance of the control system.

  20. PID Controller Parameters Tuning Based-on Satisfaction for Superheated Steam Temperature of Power Station Boiler

    Benxian Xiao

    2014-06-01

    Full Text Available Proposed the PID controller parameters tuning method based-on New Luus-Jaakola (NLJ algorithm and satisfaction idea. According to the different requirements of each performance index, designed the satisfaction function with fuzzy constraint attributes, and then determined the comprehensive satisfaction function for PID tuning by NLJ algorithm. Provided the steps of PID controller parameters tuning based on the NLJ algorithm and satisfaction, and applied this tuning method to the cascade control system of superheated steam temperature for Power Station Boiler. Finally the simulation and experiment results have shown the proposed method has good dynamic and static control performances for this complicated superheated steam temperature control system.

  1. Model-free control and intelligent PID controllers: towards a possible trivialization of nonlinear control?

    Fliess, Michel; Join, Cédric

    2009-01-01

    We are introducing a model-free control and a control with a restricted model for finite-dimensional complex systems. This control design may be viewed as a contribution to ``intelligent'' PID controllers, the tuning of which becomes quite straightforward, even with highly nonlinear and/or time-varying systems. Our main tool is a newly developed numerical differentiation. Differential algebra provides the theoretical framework. Our approach is validated by several numerical experiments.

  2. PID control for chaotic synchronization using particle swarm optimization

    In this paper, we attempt to use the proportional-integral-derivative (PID) controller to achieve the chaos synchronization for delayed discrete chaotic systems. Three PID control gains can be optimally determined by means of using a novel optimization algorithm, called the particle swarm optimization (PSO). The algorithm is motivated from the organism behavior of fish schooling and bird flocking, and involves the social psychology principles in socio-cognition human agents and evolutionary computations. It has a good numerical convergence for solving optimization problem. To show the validity of the PSO-based PID control for chaos synchronization, several cases with different initial populations are considered and some simulation results are shown.

  3. Application of PEM Fuel Cell for Stand-alone Based on an Fuzzy PID Control

    S.M. Rakhtala

    2015-09-01

    Full Text Available Fuel cell (FC systems are appropriate candidates as alternative energy sources for use in stand-alone applications. Due to the typical power profile of a stand-alone consisting of transients is not suitable for the use of a sole FC system. This paper presents the control of the fuel cell for stand-alone application based on fuzzy PID (FPID controller. The aim of the paper is to achieve the control of the fuel cell for stand-alone by designing a suitable power conditioning unit that consists of the two stages of DC/DC converter and DC/AC inverter. A PID controller to be used for the voltage control of the designed boost converter is proposed and compared with a classical PID controller for performance validation. Furthermore, an analysis of double loop fuzzy PID controller for a single phase inverter is done.

  4. A new adaptive configuration of PID type fuzzy logic controller.

    Fereidouni, Alireza; Masoum, Mohammad A S; Moghbel, Moayed

    2015-05-01

    In this paper, an adaptive configuration for PID type fuzzy logic controller (FLC) is proposed to improve the performances of both conventional PID (C-PID) controller and conventional PID type FLC (C-PID-FLC). The proposed configuration is called adaptive because its output scaling factors (SFs) are dynamically tuned while the controller is functioning. The initial values of SFs are calculated based on its well-tuned counterpart while the proceeding values are generated using a proposed stochastic hybrid bacterial foraging particle swarm optimization (h-BF-PSO) algorithm. The performance of the proposed configuration is evaluated through extensive simulations for different operating conditions (changes in reference, load disturbance and noise signals). The results reveal that the proposed scheme performs significantly better over the C-PID controller and the C-PID-FLC in terms of several performance indices (integral absolute error (IAE), integral-of-time-multiplied absolute error (ITAE) and integral-of-time-multiplied squared error (ITSE)), overshoot and settling time for plants with and without dead time. PMID:25530256

  5. Variable Structure PID Control to Prevent Integrator Windup

    Hall, C. E.; Hodel, A. S.; Hung, J. Y.

    1999-01-01

    PID controllers are frequently used to control systems requiring zero steady-state error while maintaining requirements for settling time and robustness (gain/phase margins). PID controllers suffer significant loss of performance due to short-term integrator wind-up when used in systems with actuator saturation. We examine several existing and proposed methods for the prevention of integrator wind-up in both continuous and discrete time implementations.

  6. Performance Analysis of Ship Tracking using PID/Fuzzy Controller

    Sanjay.N1 , Adinath Jain2 , Dr.S.A.Hariprasad

    2013-06-01

    Full Text Available Accurate ship Path following is an issue of the Marine Navigation Technology. In order to achieve accurate path following in ship navigation various controllers like PID(Proportional-Integral-Derivative, Adaptive and Predictive controllers are used. However, the main problem of ships is the PID controller is that they are set to work under specific conditions. Even though predictive controllers have predictive capability and are giving accurate results but they are computationally complex. In this work an attempt is made to evaluate the performance of Adaptive (Fuzzy logic and PID controllers in terms of tracking efficiency and computational time. Computational result evaluated using mat lab shows that Adaptive (Fuzzy logic provides better tracking performance than PID.

  7. Nonlinear process control using adaptive predictive PID controller

    An adaptive PID control algorithm based on a neural network based predictor is presented to control nonlinear processes with time-delay. The architecture of a feed forward neural network based d-step predictor is given. In order to speed up the training of the neural network, a recursive least squares fast training algorithm is applied to on-line neural model identification. Simulation shows the presented method is effective for compensation of time-delay

  8. Beam closed orbit feedback based on PID control

    The algorithm in the feedback system has important influence on the performance of the beam orbit. Good feedback algorithm can greatly improve the beam orbit stability. In this paper, the theory of beam closed orbit correction, the principle of PID control and the beam closed orbit feedback correction using PID control were introduced. The simulation results were given. Compared with least-square method, the PID feedback algorithm makes the steady-state error smaller and more accurate, and enhances the beam orbit stability. (authors)

  9. DE-based tuning of PI(?)D(?) controllers.

    Martín, Fernando; Monje, Concepción A; Moreno, Luis; Balaguer, Carlos

    2015-11-01

    A new method that relies on evolutionary computation concepts is proposed in this paper to tune the parameters of fractional order PI(?)D(?) controllers, in which the orders of the integral and derivative parts, ? and ?, respectively, are fractional. The main advantage of the fractional order controllers is that the increase in the number of parameters in the controller allows an increase in the number of control specifications that can be met. A Differential Evolution (DE) algorithm is proposed to make the controlled system fulfill different design specifications in time and frequency domains. This method is based on the minimization of a fitness function. Experiments have been carried out in simulation and in a real DC motor platform. The results illustrate the effectiveness of this method. PMID:26514918

  10. Speed Control of DC Motor Using Extended Kalman FilterBased Fuzzy PID

    Meysam Shadkam; Hamed Mojallali; Yaser Bostani

    2013-01-01

    In this paper, extended Kalman filter (EKF) isused for online optimization of input and output membershipfunctions (MFs) of Mamdani fuzzy PID controller. Theproposed controller is employed for controlling the separatelyexcited DC motor. The simulation results show that the fuzzyPID controller with online optimization has better efficiencythan classic PID controller and fuzzy PID controller with fixedmembership functions.

  11. Simulation Study and Speed Control of Permanent Magnet Synchronous Motor By Using Self-Tuning Fuzzy-PID Controller

    AÇIKGÖZ, Hakan; ŞEKKELİ, Mustafa; GANİ, Ahmet; KEÇECİOĞLU, Ö. Fatih

    2015-01-01

    : In recent years, permanent magnet synchronous motors (PMSM) are widely used in the mid-powerful servo motor drive because of their high power, torque and efficiency. Simualtion study was carried for speed control of PMSM using Matlab/Simulink software package. In this control method, Self-tuning fuzzy-PID controller and PID controller is first designed to apply to speed control unit of PMSM. Self-tuning Fuzzy-PID controller is developed using MATLAB/Simulink Fuzzy Logic Toolbox. Simulation ...

  12. Stability Control of an Autonomous Quadcopter through PID Control Law

    Nicolas Ives Roque Pacheco

    2015-05-01

    Full Text Available In the recent years the world has seen a astonishing ascendance of non tripulated vehicles, and among these is the quadrotors aircrafts or quadcopters. These types of aircraft have been of particular interest due to its easy maneuverability in closed and open spaces and somewhat simplified dynamics. In these paper is presented an first attempt in the built model, to control the 4 DOF(Degrees of freedom of an soon to be autonomous quadcopter through PID law in an controlled environment.

  13. MULTI-OBJECTIVE PID CONTROLLER BASED ON ADAPTIVE WEIGHTED PSO WITH APPLICATION TO STEAM TEMPERATURE CONTROL IN BOILERS

    C.Agees Kumar

    2010-07-01

    Full Text Available PID controller is widely used for main steam temperature control of boiler unit in thermal power plant. To avoid the drawback of current PID design methods, this paper presents a new design method for multi-objective PID controller to synthetically consider system requirement in reliability and robustness. Adaptive weighted PSO (AWPSO technique is applied to the parameter optimization design. The optimization problem considered is highly nonlinear, complex, with multiple objectives and constraints. The simulation results on an actual main steam temperature control system indicate that, the multi-objective PID controller designed by presented method, can improve the dynamic performance of main steam temperature control system, with good robustness ability.

  14. Quarter Car Active Suspension System Control Using PID Controller tuned by PSO

    Wissam H. Al-Mutar

    2015-01-01

    The objective of this paper is to design an efficient control scheme for car suspension system. The purpose of suspension system in vehicles is to get more comfortable riding and good handling with road vibrations. A nonlinear hydraulic actuator is connected to passive suspension system in parallel with damper. The Particles Swarm Optimization is used to tune a PID controller for active suspension system. The designed controller is applied for quarter car suspension system and result is compa...

  15. Applications of Fuzzy adaptive PID control in the thermal power plant denitration liquid ammonia evaporation

    Li (Tiffany) Jing; Zhang Guo Qing; Cheng Huan Xin; Cheng Li

    2016-01-01

    For the control of the liquid level of liquid ammonia in thermal power plant’s ammonia vaporization room, traditional PID controller parameter tuning is difficult to adapt to complex control systems, the setting of the traditional PID controller parameters is difficult to adapt to the complex control system. For the disadvantage of bad parameter setting, poor performance and so on the fuzzy adaptive PID control is proposed. Fuzzy adaptive PID control combines the advantages of traditional PID...

  16. A novel auto-tuning PID control mechanism for nonlinear systems.

    Cetin, Meric; Iplikci, Serdar

    2015-09-01

    In this paper, a novel Runge-Kutta (RK) discretization-based model-predictive auto-tuning proportional-integral-derivative controller (RK-PID) is introduced for the control of continuous-time nonlinear systems. The parameters of the PID controller are tuned using RK model of the system through prediction error-square minimization where the predicted information of tracking error provides an enhanced tuning of the parameters. Based on the model-predictive control (MPC) approach, the proposed mechanism provides necessary PID parameter adaptations while generating additive correction terms to assist the initially inadequate PID controller. Efficiency of the proposed mechanism has been tested on two experimental real-time systems: an unstable single-input single-output (SISO) nonlinear magnetic-levitation system and a nonlinear multi-input multi-output (MIMO) liquid-level system. RK-PID has been compared to standard PID, standard nonlinear MPC (NMPC), RK-MPC and conventional sliding-mode control (SMC) methods in terms of control performance, robustness, computational complexity and design issue. The proposed mechanism exhibits acceptable tuning and control performance with very small steady-state tracking errors, and provides very short settling time for parameter convergence. PMID:26117284

  17. PID controller tuning using the magnitude optimum criterion

    Papadopoulos, Konstantinos

    2014-01-01

    An instructive reference that will help control researchers and engineers, interested in a variety of industrial processes, to take advantage of a powerful tuning method for the ever-popular PID control paradigm. This monograph presents explicit PID tuning rules for linear control loops regardless of process complexity. It shows the reader how such loops achieve zero steady-position, velocity, and acceleration errors and are thus able to track fast reference signals. The theoretical development takes place in the frequency domain by introducing a general-transfer-function-known process model

  18. Vibrations control of light rail transportation vehicle via PID type fuzzy controller using parameters adaptive method

    MET?N, Muzaffer; GÜÇLÜ, Rahmi

    2011-01-01

    In this study, a conventional PID type fuzzy controller and parameter adaptive fuzzy controller are designed to control vibrations actively of a light rail transport vehicle which modeled as 6 degree-of-freedom system and compared performances of these two controllers. Rail vehicle model consists of a passenger seat and its suspension system, vehicle body, bogie, primary and secondary suspensions and wheels. The similarity between mathematical model and real system is shown by compar...

  19. Optimal Tuning of Fractional Order PID Controller for DC Motor Speed Control Using Particle Swarm Optimization

    Ankit Rastogi,

    2013-05-01

    Full Text Available PID controller is the most widely used controller in industry for control applications due to its simple structure and easy parameter adjusting.But increase in complexity of control systems has introduced many modified PID controllers.The recent advancement in fractional order calculus has introduced fractional order PID controller and it has recieved a great attention for researchers.Fractional order PID (FOPID controller is an advancement of conventional PID controller in which the derivative and integral order are fractional rather than integer.Apart from the usual tuning parameters of PID, it has two more parameters ? (integer order and ? (derivative order which are in fractions.This increases the flexiblity and robustness of the system and gives a better performance than classical PID controller. In this research paper, FOPID has been applied to DC motor for speed control and optimal values of ? and ? has been obtained using particle swarm optimization technique.

  20. Simulation and Tuning of PID Controllers using Evolutionary Algorithms

    K.R.S. Narayanan

    2012-10-01

    Full Text Available The Proportional Integral Derivative (PID controller is the most widely used control strategy in the Industry. The popularity of PID controllers can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. The process of setting of PID controller can be determined as an optimization task. Over the years, use of intelligent strategies for tuning of these controllers has been growing. Biologically inspired evolutionary strategies have gained importance over other strategies because of their consistent performance over wide range of process models and their flexibility. The level control systems on Deaerator, Feed Water Heaters, and Condenser Hot well are critical to the proper operation of the units in Nuclear Power plants. For Precise control of level, available tuning technologies based on conventional optimization methods are found to be inadequate as these conventional methods are having limitations. To overcome the limitations, alternate tuning techniques based on Genetic Algorithm are emerging. This paper analyses the manual tuning techniques and compares the same with Genetic Algorithm tuning methods for tuning PID controllers for level control system and testing of the quality of process control in the simulation environment of PFBR Operator Training Simulator(OTS.

  1. Genetic Tuned PID Controller Based Speed Control of DC Motor Drive

    S. A. Deraz

    2014-11-01

    Full Text Available Due to its extensive use for motion control systems in industry, tuning of the proportional-integral-derivative (PID controller parameters has been the focus of intensive research. In this paper, a novel tuning method for the parameters of PID controller based speed control of DC motor using genetic algorithm (GA is proposed. The main advantage of the proposed method is that the mathematical model of the system under control is not required, so it is useful in many industrial processes that have no obvious or complicated model. In addition, this method allows determining the best values of PID parameters for a specified overshoot, rise time, settling time, and steady-state error. The DC motor with the designed PID controller is modelled and the simulation results are obtained. The obtained results are compared with those of conventional Ziegler Nichols (ZN, GA based integral absolute of the error (IAE index, and GA based mean of the squared error (MSE index methods. The comparison indicates effectiveness of the proposed tuning method as it gives a better performance and satisfies the specified control characteristics.

  2. Comparison of PID Controller Tuning Methods with Genetic Algorithm for FOPTD System

    K. Mohamed Hussain

    2014-02-01

    Full Text Available Measurement of Level, Temperature, Pressure and Flow parameters are very vital in all process industries. A combination of a few transducers with a controller, that forms a closed loop system leads to a stable and effective process. This article deals with control of in the process tank and comparative analysis of various PID control techniques and Genetic Algorithm (GA technique. The model for such a Real-time process is identified as First Order Plus Dead Time (FOPTD process and validated. The need for improved performance of the process has led to the development of model based controllers. Well-designed conventional Proportional, Integral and Derivative (PID controllers are the most widely used controller in the chemical process industries because of their simplicity, robustness and successful practical applications. Many tuning methods have been proposed for PID controllers. Many tuning methods have been proposed for obtaining better PID controller parameter settings. The comparison of various tuning methods for First Order Plus Dead Time (FOPTD process are analysed using simulation software. Our purpose in this study is comparison of these tuning methods for single input single output (SISO systems using computer simulation.Also efficiency of various PID controller are investigated for different performance metrics such as Integral Square Error (ISE, Integral Absolute Error (IAE, Integral Time absolute Error (ITAE, and Mean square Error (MSE is presented and simulation is carried out. Work in this paper explores basic concepts, mathematics, and design aspect of PID controller. Comparison between the PID controller and Genetic Algorithm (GA will have been carried out to determine the best controller for the temperature system.

  3. Tuning method for multi-variable control system with PID controllers

    Control systems, including thermal and nuclear power plants, generally and mainly use PID controllers consisting of proportional, integral and differential actions. These systems consist of multiple control loops which interfere with each other. Therefore, it is present status that the fine control of the system is carried out by the trial and error method because the adjusting procedure for a single control loop cannot be applied to a multi-loop system in most cases. In this report, a method to effectively adjust PID controller parameters in a short time in a control system which consists of multi-loops that interfere with each other. This method makes adjustment by using the control area as the evaluation function, which is the time-dependent integration of control deviation, the input to the PID controllers. In other words, the evaluation function is provided for each control result for every parameter (gain constant, reset rate, and differentiation time), and all parameters are simultaneously changed in the direction of minimizing the values of these evaluation functions. In the report, the principle of tuning method, the evaluation function for each of three parameters, and the adjusting system configuration for separately using for actual plant tuning and for control system design are described. It also shows the examples of application to the actual tuning of the control system for a thermal power plant and to a control system design. (Wakatsuki, Y.)

  4. Active vibration and noise control of vibro-acoustic system by using PID controller

    Li, Yunlong; Wang, Xiaojun; Huang, Ren; Qiu, Zhiping

    2015-07-01

    Active control simulation of the acoustic and vibration response of a vibro-acoustic cavity of an airplane based on a PID controller is presented. A full numerical vibro-acoustic model is developed by using an Eulerian model, which is a coupled model based on the finite element formulation. The reduced order model, which is used to design the closed-loop control system, is obtained by the combination of modal expansion and variable substitution. Some physical experiments are made to validate and update the full-order and the reduced-order numerical models. Optimization of the actuator placement is employed in order to get an effective closed-loop control system. For the controller design, an iterative method is used to determine the optimal parameters of the PID controller. The process is illustrated by the design of an active noise and vibration control system for a cavity structure. The numerical and experimental results show that a PID-based active control system can effectively suppress the noise inside the cavity using a sound pressure signal as the controller input. It is also possible to control the noise by suppressing the vibration of the structure using the structural displacement signal as the controller input. For an airplane cavity structure, considering the issue of space-saving, the latter is more suitable.

  5. Split PID control: two sensors can be better than one

    Znaimer, Leith

    2014-01-01

    The traditional proportional-integral-derivative (PID) algorithm for regulation suffers from a tradeoff: placing the sensor near the sample being regulated ensures that its steady-state temperature matches the desired setpoint. However, the propagation delay (lag) between heater and sample can limit the control bandwidth. Moving the sensor closer to the heater reduces the lag and increases the bandwidth but introduces offsets and drifts into the temperature of the sample. Here, we explore the consequences of using two probes---one near the heater, one near the sample---and assigning the integral term to the sample probe and the other terms to the heater probe. The \\textit{split-PID} algorithm can outperform PID control loops based on one sensor.

  6. Intelligent particle swarm optimized fuzzy PID controller for AVR system

    Mukherjee, V. [Department of Electrical Engineering, Asansol Engineering College, Asansol, West Bengal (India); Ghoshal, S.P. [Department of Electrical Engineering, National Institute of Technology, Durgapur, West Bengal (India)

    2007-10-15

    In process plants like thermal power plants, biomedical instrumentation the popular use of proportional-integral-derivative (PID) controllers can be noted. Proper tuning of such controllers is obviously a prime priority as any other alternative situation will require a high degree of industrial expertise. So in order to get the best results of PID controllers the optimal tuning of PID gains is required. This paper, thus, deals with the determination of off-line, nominal, optimal PID gains of a PID controller of an automatic voltage regulator (AVR) for nominal system parameters and step reference voltage input. Craziness based particle swarm optimization (CRPSO) and binary coded genetic algorithm (GA) are the two props used to get the optimal PID gains. CRPSO proves to be more robust than GA in performing optimal transient performance even under various nominal operating conditions. Computational time required by CRPSO is lesser than that of GA. Factors that have influenced the enhancement of global searching ability of PSO are the incorporation of systematic and intelligent velocity, position updating procedure and introduction of craziness. This modified from of PSO is termed as CRPSO. For on-line off-nominal system parameters Sugeno fuzzy logic (SFL) is applied to get on-line terminal voltage response. The work of SFL is to extrapolate intelligently and linearly, the nominal optimal gains in order to determine off-nominal optimal gains. The on-line computational burden of SFL is noticeably low. Consequently, on-line optimized transient response of incremental change in terminal voltage is obtained. (author)

  7. Multi-region fuzzy logic controller with local PID controllers for U-tube steam generator in nuclear power plant

    Puchalski Bartosz

    2015-12-01

    Full Text Available In the paper, analysis of multi-region fuzzy logic controller with local PID controllers for steam generator of pressurized water reactor (PWR working in wide range of thermal power changes is presented. The U-tube steam generator has a nonlinear dynamics depending on thermal power transferred from coolant of the primary loop of the PWR plant. Control of water level in the steam generator conducted by a traditional PID controller which is designed for nominal power level of the nuclear reactor operates insufficiently well in wide range of operational conditions, especially at the low thermal power level. Thus the steam generator is often controlled manually by operators. Incorrect water level in the steam generator may lead to accidental shutdown of the nuclear reactor and consequently financial losses. In the paper a comparison of proposed multi region fuzzy logic controller and traditional PID controllers designed only for nominal condition is presented. The gains of the local PID controllers have been derived by solving appropriate optimization tasks with the cost function in a form of integrated squared error (ISE criterion. In both cases, a model of steam generator which is readily available in literature was used for control algorithms synthesis purposes. The proposed multi-region fuzzy logic controller and traditional PID controller were subjected to broad-based simulation tests in rapid prototyping software - Matlab/Simulink. These tests proved the advantage of multi-region fuzzy logic controller with local PID controllers over its traditional counterpart.

  8. Study of Immune PID Networked Control System Based on TrueTime

    Daogang Peng

    2011-06-01

    Full Text Available Networked control system has been a hotspot in the research fields of control theory and control engineering applications at home and abroad. Immune PID controller based on biological immune mechanism has simple structure and algorithms, and with the features of strong robustness and adaptability. The structure of networked control system based on immune PID controller had been designed in this paper, taking the typical one-order inertia plant with time delay and second-order inertia plant in the process of industrial production for example, the simulation model of immune PID networked control system based on TrueTime toolbox had built in the MATLAB environment, and simulation studies have shown the feasibility and effectiveness of the control scheme.

  9. Genetic Algorithm and Fuzzy Tuning PID Controller Applied on Speed Control System for Marine Diesel Engines

    Naeim Farouk

    2012-11-01

    Full Text Available The degree of speed control of ship machinery effects on the economics and optimization of the machinery configuration and operation. All marine vessel ranging need some sort of speed control system to control and govern the speed of the marine diesel engines. The main focus of this study is to apply and comparative between two specific soft-computing techniques. Fuzzy logic controller and genetic algorithm to design and tuning of PID controller for applied on speed control system of marine diesel engine to get an output with better dynamic and static performance. Simulation results show that the response of system when using genetic algorithm is better and faster than when using fuzzy tuning PID controller.

  10. PID Control in the Third Millennium Lessons Learned and New Approaches

    Visioli, Antonio

    2012-01-01

    The early 21st century has seen a renewed interest in research in the widely-adopted proportional-integral-derivative (PID) controllers. PID Control in the Third Millennium provides an overview of the advances made as a result. Featuring: ·        new approaches for controller tuning; ·        control structures and configurations for more efficient control; ·        practical issues in PID implementation; and ·        non-standard approaches to PID including fractional-order, event-based, nonlinear, data-driven and predictive control; the nearly twenty chapters provide a state-of-the-art resumé of PID controller theory, design and realization. Each chapter has specialist authorship and ideas clearly characterized from both academic and industrial viewpoints. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series o...

  11. Active structural control with stable fuzzy PID techniques

    Yu, Wen

    2016-01-01

    This book presents a detailed discussion of intelligent techniques to measure the displacement of buildings when they are subjected to vibration. It shows how these techniques are used to control active devices that can reduce vibration 60–80% more effectively than widely used passive anti-seismic systems. After introducing various structural control devices and building-modeling and active structural control methods, the authors propose offset cancellation and high-pass filtering techniques to solve some common problems of building-displacement measurement using accelerometers. The most popular control algorithms in industrial settings, PD/PID controllers, are then analyzed and then combined with fuzzy compensation. The stability of this combination is proven with standard weight-training algorithms. These conditions provide explicit methods for selecting PD/PID controllers. Finally, fuzzy-logic and sliding-mode control are applied to the control of wind-induced vibration. The methods described are support...

  12. Speed Control of Bldc Motor Drive By Using Pid Controllers

    Y.Narendra Kumar,

    2014-04-01

    Full Text Available This paper mainly deals with the Brushless DC (BLDC motor speed driving systems have sprouted in various small scale and large scale applications like automobile industries, domestic appliances etc. This leads to the development in Brushless DC motor (BLDCM. The usage of BLDC Motor enhances various performance factors ranging from higher efficiency, higher torque in low-speed range, high power density ,low maintenance and less noise than other motors. The BLDC Motor can act as an alternative for traditional motors like induction and switched reluctance motors. In this paper PID controller is implemented with speed feedback loop and it is observe that torque ripples are minimized. Simulation is carried out using MATLAB / SIMULINK. The results show that the performance of BLDC Motor is quite satisfactory for various loading conditions. Brushless DC motor drives are typically employed in speed controlled applications.

  13. Patents, software and hardware for PID control: an overview and analysis of the current art

    Li, Y.; Ang, K.H.; Chong, G.C.Y.

    2006-01-01

    Proportional-integral-derivative (PID) control provides simplicity, clear functionality, and ease of use. Since the invention of PID control in 1910 (largely owing to Elmer Sperry’s ship autopilot) and the straightforward Ziegler-Nichol (Z-N) tuning rule in 1942, the popularity of PID has grown tremendously. Today, PID is used in more than 90% of practical control systems, ranging from consumer electronics to industrial processes. The wide application of PID has stimulated and sustained the ...

  14. Research on the Robustness of an Adaptive PID Control of a Kind of Supersonic Missile

    Gangling Jiao; Yuqiang Jin; Shixing Wang

    2012-01-01

    Based on the multi-loop design method, the dynamic characteristic of missile system is viewed as a two-loops system, such as inner loop and outer loop. An adaptive PID control strategy is designed for the pitch channel linear model of supersonic missile. The robustness of a double PID controller is analyzed by changing the aerodynamic coefficients. The control law is testified to be stable even the aerodynamic coefficients are changed between 0.7 and 1.7 times of its standard value and the co...

  15. Performance Enhancement of PID Controllers by Modern Optimization Techniques for Speed Control of PMBL DC Motor

    M. Antony Freeda Rani

    2015-08-01

    Full Text Available Permanent Magnet Brushless DC motor (PMBL DC is used in a large number of industrial and automotive applications because of their high efficiency, compactness and excellent reliability. However to design an efficient PMBL DC motor, it is necessary to provide an effective controller that has to reduce the overshoot, settling and rise time. In this study, an improved PID controller has been designed by optimizing the parameters of PID controller based on two advanced optimization techniques ANFIS and Cuckoo Search optimization for speed control of a PMBL DC motor. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. The PMBL DC motor is modeled in SIMULINK implementing the algorithms in MATLAB and the performance evaluation has been studied.

  16. Vibration Control of Bus Suspension System using PI and PID Controller

    Swati Gaur

    2013-07-01

    Full Text Available This paper presents the application of PI and PIDcontroller to control the vibration occurred in the bus suspensionsystem. When the suspension system is designed, a ¼ model ofbus is used to simplify the problem to a one dimensional massspring-damper system. Its open-loop performance on the basis oftime response is observed which depicts that the bus suspensionhas oscillations with large settling time. To overcome thisproblem, closed-loop system is used. Despite continuousadvancement in control theory, Proportional –Integral (PI andProportional-Integral-Derivative (PID Controllers are thepopular technique to control any process. In this paper,Proportional-Integral (PI and Proportional-Integral-Derivative(PID controllers are used to control the vibrations to givesmooth response of the bus suspension system and carry-out their comparison on the basis of time and frequency using Matlab environment. The simulation and implementation of thecontroller is done using MATLAB/SIMULINK.

  17. Quarter Car Active Suspension System Control Using PID Controller tuned by PSO

    Wissam H. Al-Mutar

    2015-07-01

    Full Text Available The objective of this paper is to design an efficient control scheme for car suspension system. The purpose of suspension system in vehicles is to get more comfortable riding and good handling with road vibrations. A nonlinear hydraulic actuator is connected to passive suspension system in parallel with damper. The Particles Swarm Optimization is used to tune a PID controller for active suspension system. The designed controller is applied for quarter car suspension system and result is compared with passive suspension system model and input road profile. Simulation results show good performance for the designed controller

  18. Optimization of PID controller based on The Bees Algorithm for one leg of a quadruped robot

    Bakırcıoğlu Veli

    2016-01-01

    Full Text Available In this paper, we apply The Bees Algorithm to find optimal PID controller gains to control angular positions of robot leg joints with the minimum position error. In order to present more realistic simulation, system modelled in MATLAB/Simulink environment which is close to experimental set up. Solid model of system, which has two degrees of freedom, drawn by using a CAD software. Required physical specifications of robot leg for MATLAB/Simulink modelling is obtained from this CAD model. Controller of the system is designed in MATLAB/Simulink interface. Simulation results derived to show effectiveness of The Bees Algorithm to find optimal PID controller gains.

  19. A Comparison between Fuzzy-PSO Controller and PID-PSO Controller for Controlling a DC Motor

    Ali Ghareaghaji

    2015-01-01

    The Direct current motors are in different types and there are several methods for controlling of their speed. In this paper two ways for speed controlling suggested. First a fuzzy logic speed controller for DC motor is designed and it’s parameter calculated by Particle Sward Optimization (PSO). The speed controller designed according to fuzzy rules, then for having better performance, the controller optimized with PSO. Secondly a PID controller that it’s parameter find by PSO, is used for sp...

  20. Heat control in HVDC resistive divider by PID and NN controllers

    In this study, a control system is presented that is devised to increase measurement precisions within a prototype high voltage DC resistive divider (HVDC-RD). Since one of the major sources of measurement errors in such devices is the self heating effect, a system controlling the temperature within the high voltage DC resistive divider is devised so that suitable and stable temperature conditions are maintained that, in return, will decrease the measurement errors. The resistive divider system is cooled by oil, and PID and neural network (NN) controllers try to keep the temperature within the prescribed limits. The system to be controlled exhibits a nonlinear character, and therefore, a control approach based on NN controllers is proposed. Thus, a system that can fulfill the various requirements dictated by the designer is constructed. The performance of the NN controller is compared with that of the PID controller developed for the same purpose, and the values of the performance indices indicate the superiority of the NN controller over that of the classical PID controller

  1. Self-tuning PID-type Fuzzy Adaptive Control for CRAC in Datacenters

    Deng, Junwen; Yang, Liu; Cheng, Xinrong; Liu, Wu

    2014-01-01

    In order to eliminate the current negative condition of Automatic Computer Room Air-Conditioning (CRAC) system, self-tuning Fuzzy Logic Control (FLC) was designed and applied to fan speed in CRAC system. In this paper, we derive a thermodynamic model of a datacenter suitable for applying adaptive self-tuning PID-type fuzzy adaptive control theory. It combines ...

  2. TORQUE RIPPLE MINIMIZATION IN SWITCHED RELUCTANCE MOTORS USING PID FUZZY LOGIC CONTROLLER

    K Deepak; G. Nagarajan

    2014-01-01

    The main objective of this paper is to design a system which will have small speed ripple and also produces fast response of switch reluctance motor (SRM) for various speeds , magnetic flux and current by means of PID fuzzy logic controller. The speed of motor is get increased by means of reducing the torque value and also by means of ripple content. The SRM will haves a PI fuzzy logic controller and a derivative part. The developed novel PID-like fuzzy logic controller (FLC) ...

  3. Improved PID method of temperature control for adiabatic demagnetization refrigerators

    We report a new method of precise temperature control for an adiabatic demagnetization refrigerator (ADR). Temperature of the experimental stage of ADRs is usually controlled with the standard PID (Proportional, Integral, and Derivative control) method by decreasing the magnet current of the superconducting solenoid surrounding the paramagnetic salt inside the ADR. In controlling the temperature of our portable ADR system, we found a small residual between the aimed and measured temperatures, which gradually increased in time as the magnet current decreases. This phenomenon is explained by the magnetic cooling theory, and we have introduced a new functional parameter to improve the standard PID method. Applying this improvement to our system, highly stabilized temperature of 10μK rms at 100mK up to the period of ∼15ks is presented. It is demonstrated that the temperature controlled time was increased by ∼30% in our experiment. Our improved PID method is useful to maintain the long-term temperature stability down to almost zero magnet current with a relatively small ADR

  4. Control of a Quadrotor Using a Smart Self-Tuning Fuzzy PID Controller

    Deepak Gautam

    2013-11-01

    Full Text Available This paper deals with the modelling, simulation-based controller design and path planning of a four rotor helicopter known as a quadrotor. All the drags, aerodynamic, coriolis and gyroscopic effect are neglected. A Newton-Euler formulation is used to derive the mathematical model. A smart self-tuning fuzzy PID controller based on an EKF algorithm is proposed for the attitude and position control of the quadrotor. The PID gains are tuned using a self-tuning fuzzy algorithm. The self-tuning of fuzzy parameters is achieved based on an EKF algorithm. A smart selection technique and exclusive tuning of active fuzzy parameters is proposed to reduce the computational time. Dijkstra’s algorithm is used for path planning in a closed and known environment filled with obstacles and/or boundaries. The Dijkstra algorithm helps avoid obstacle and find the shortest route from a given initial position to the final position.

  5. A modified Adaptive Wavelet PID Control Based on Reinforcement Learning for Wind Energy Conversion System Control

    REZAZADEH, A.

    2010-05-01

    Full Text Available Nonlinear characteristics of wind turbines and electric generators necessitate complicated and nonlinear control of grid connected Wind Energy Conversion Systems (WECS. This paper proposes a modified self-tuning PID control strategy, using reinforcement learning for WECS control. The controller employs Actor-Critic learning in order to tune PID parameters adaptively. These Actor-Critic learning is a special kind of reinforcement learning that uses a single wavelet neural network to approximate the policy function of the Actor and the value function of the Critic simultaneously. These controllers are used to control a typical WECS in noiseless and noisy condition and results are compared with an adaptive Radial Basis Function (RBF PID control based on reinforcement learning and conventional PID control. Practical emulated results prove the capability and the robustness of the suggested controller versus the other PID controllers to control of the WECS. The ability of presented controller is tested by experimental setup.

  6. Application of a PID controller based on fuzzy logic to reduce variations in the control parameters in PWR reactors

    Nuclear reactors are in nature nonlinear systems and their parameters vary with time as a function of power level. These characteristics must be considered if large power variations occur in power plant operational regimes, such as in load-following conditions. A PWR reactor has a component called pressurizer, whose function is to supply the necessary high pressure for its operation and to contain pressure variations in the primary cooling system. The use of control systems capable of reducing fast variations of the operation variables and to maintain the stability of this system is of fundamental importance. The best-known controllers used in industrial control processes are proportional-integral-derivative (PID) controllers due to their simple structure and robust performance in a wide range of operating conditions. However, designing a fuzzy controller is seen to be a much less difficult task. Once a Fuzzy Logic controller is designed for a particular set of parameters of the nonlinear element, it yields satisfactory performance for a range of these parameters. The objective of this work is to develop fuzzy proportional-integral-derivative (fuzzy-PID) control strategies to control the level of water in the reactor. In the study of the pressurizer, several computer codes are used to simulate its dynamic behavior. At the fuzzy-PID control strategy, the fuzzy logic controller is exploited to extend the finite sets of PID gains to the possible combinations of PID gains in stable region. Thus the fuzzy logic controller tunes the gain of PID controller to adapt the model with changes in the water level of reactor. The simulation results showed a favorable performance with the use to fuzzy-PID controllers. (author)

  7. Application of a PID controller based on fuzzy logic to reduce variations in the control parameters in PWR reactors

    Vasconcelos, Wagner Eustaquio de; Lira, Carlos Alberto Brayner de Oliveira; Brito, Thiago Souza Pereira de; Afonso, Antonio Claudio Marques, E-mail: wagner@unicap.br, E-mail: cabol@ufpe.br, E-mail: afonsofisica@gmail.com, E-mail: thiago.brito86@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociencias. Departamento de Energia Nuclear; Cruz Filho, Antonio Jose da; Marques, Jose Antonio, E-mail: antonio.jscf@gmail.com, E-mail: jamarkss@uol.com.br [Universidade Catolica de Pernambuco (CCT/PUC-PE), Recife, PE (Brazil). Centro de Ciencias e Tecnologia; Teixeira, Marcello Goulart, E-mail: marcellogt@dcc.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Matematica. Dept. de Matematica

    2013-07-01

    Nuclear reactors are in nature nonlinear systems and their parameters vary with time as a function of power level. These characteristics must be considered if large power variations occur in power plant operational regimes, such as in load-following conditions. A PWR reactor has a component called pressurizer, whose function is to supply the necessary high pressure for its operation and to contain pressure variations in the primary cooling system. The use of control systems capable of reducing fast variations of the operation variables and to maintain the stability of this system is of fundamental importance. The best-known controllers used in industrial control processes are proportional-integral-derivative (PID) controllers due to their simple structure and robust performance in a wide range of operating conditions. However, designing a fuzzy controller is seen to be a much less difficult task. Once a Fuzzy Logic controller is designed for a particular set of parameters of the nonlinear element, it yields satisfactory performance for a range of these parameters. The objective of this work is to develop fuzzy proportional-integral-derivative (fuzzy-PID) control strategies to control the level of water in the reactor. In the study of the pressurizer, several computer codes are used to simulate its dynamic behavior. At the fuzzy-PID control strategy, the fuzzy logic controller is exploited to extend the finite sets of PID gains to the possible combinations of PID gains in stable region. Thus the fuzzy logic controller tunes the gain of PID controller to adapt the model with changes in the water level of reactor. The simulation results showed a favorable performance with the use to fuzzy-PID controllers. (author)

  8. A set of decentralized PID controllers for an – link robot manipulator

    G Leena; G Ray

    2012-06-01

    A class of stabilizing decentralized proportional integral derivative (PID) controllers for an -link robot manipulator system is proposed. The range of decentralized PID controller parameters for an -link robot manipulator is obtained using Kharitonov theorem and stability boundary equations. Basically, the proposed design technique is based on the gain-phase margin tester and Kharitonov’s theorem that synthesizes a set of PID controllers for the linear model while nonlinear interaction terms involve in system dynamics are treated as zero. The stability analysis of the composite system with the designed set of decentralized PID controllers is investigated by incorporating bounding parameters of interconnection terms in LMI formulation. From the range of controller gains obtained by the proposed method, a genetic algorithm is adopted to get an optimal controller gains so that the tracking error is minimum. Simulation results are shown to demonstrate the applicability of the proposed control scheme for solution of fixed as well as time-varying trajectory tracking control problems.

  9. Design and implementation of a 2-DOF PID compensation for magnetic levitation systems.

    Ghosh, Arun; Rakesh Krishnan, T; Tejaswy, Pailla; Mandal, Abhisek; Pradhan, Jatin K; Ranasingh, Subhakant

    2014-07-01

    This paper employs a 2-DOF (degree of freedom) PID controller for compensating a physical magnetic levitation system. It is shown that because of having a feedforward gain in the proposed 2-DOF PID control, the transient performance of the compensated system can be changed in a desired manner unlike the conventional 1-DOF PID control. It is also shown that for a choice of PID parameters, although the theoretical loop robustness is the same for both the compensated systems, in real-time, 2-DOF PID control may provide superior robustness if a suitable choice of the feedforward parameter is made. The results are verified through simulations and experiments. PMID:24947430

  10. A Comparison between Fuzzy-PSO Controller and PID-PSO Controller for Controlling a DC Motor

    Ali Ghareaghaji

    2015-06-01

    Full Text Available The Direct current motors are in different types and there are several methods for controlling of their speed. In this paper two ways for speed controlling suggested. First a fuzzy logic speed controller for DC motor is designed and it’s parameter calculated by Particle Sward Optimization (PSO. The speed controller designed according to fuzzy rules, then for having better performance, the controller optimized with PSO. Secondly a PID controller that it’s parameter find by PSO, is used for speed controlling of a DC motor. At the end the performance of fuzzy logic controller compared with PID controller. The results show that fuzzy-PSO controller has better performance.

  11. Performance Comparison of Optimal Fractional Order Hybrid Fuzzy PID Controllers for Handling Oscillatory Fractional Order Processes with Dead Time

    Das, Saptarshi; Pan, Indranil; Das, Shantanu

    2013-01-01

    Fuzzy logic based PID controllers have been studied in this paper, considering several combinations of hybrid controllers by grouping the proportional, integral and derivative actions with fuzzy inferencing in different forms. Fractional order (FO) rate of error signal and FO integral of control signal have been used in the design of a family of decomposed hybrid FO fuzzy PID controllers. The input and output scaling factors (SF) along with the integro-differential operators are tuned with re...

  12. Genetic Algorithm Based PID Controller Tuning Approach for Continuous Stirred Tank Reactor

    A. JAYACHITRA; R. Vinodha

    2014-01-01

    Genetic algorithm (GA) based PID (proportional integral derivative) controller has been proposed for tuning optimized PID parameters in a continuous stirred tank reactor (CSTR) process using a weighted combination of objective functions, namely, integral square error (ISE), integral absolute error (IAE), and integrated time absolute error (ITAE). Optimization of PID controller parameters is the key goal in chemical and biochemical industries. PID controllers have narrowed down the operating r...

  13. Systematic design approach of fuzzy PID stabilizer for DC-DC converters

    DC-DC converters process electrical energy by switching between a fixed number of configurations. The objective of controlling these systems is to provide better performances, ensure closed loop stability and guarantee a simple predictable behaviour. Based on a converter averaged model, we propose, in this paper, a systematic design approach of a fuzzy PID. The choice of controller parameters stands on the whole system stability requirements. Extension of the obtained asymptotic stability to structural stability is presented to show that the developed controller ensures also a simple and predictable behaviour of the converter. Finally, we illustrate the efficiency of the proposed fuzzy PID design approach through simulations in voltage mode as well as in current mode control

  14. Genetic Algorithm Tuning of PID Controller in Smith Predictor for Glucose Concentration Control

    Tsonyo Slavov

    2011-07-01

    Full Text Available This paper focuses on design of a glucose concentration control system based on nonlinear model plant of E. coli MC4110 fed-batch cultivation process. Due to significant time delay in real time glucose concentration measurement, a correction is proposed in glucose concentration measurement and a Smith predictor (SP control structure based on universal PID controller is designed. To reduce the influence of model error in SP structure the estimate of measured glucose concentration is used. For the aim an extended Kalman filter (EKF is designed. To achieve good closed-loop system performance genetic algorithm (GA based optimal controller tuning procedure is applied. A standard binary encoding GA is applied. The GA parameters and operators are specified for the considered here problem. As a result the optimal PID controller settings are obtained. The simulation experiments of the control systems based on SP with EKF and without EKF are performed. The results show that the control system based on SP with EKF has a better performance than the one without EKF. For a short time the controller sets the control variable and maintains it at the desired set point during the cultivation process. As a result, a high biomass concentration of 48.3 g·l-1 is obtained at the end of the process.

  15. Optimization of PID Controller for Quarter-Car Suspension System using Genetic Algorithm

    Nitish Katal, Sanjay Kr. Singh

    2012-09-01

    Full Text Available In order to improve the ride comfort and stabilityby reducing the body acceleration in vehicles caused by the roadirregularities, suspension system plays an imperative role inretaining the continuous road wheel contact for better roadholding. In this paper, a quarter-car suspension model has beenconsidered and a PID controller has been designed for the same.The aim of the work described in this paper is to illustrate theimprovement of response of the system by optimizing the PIDcontrollers using genetic algorithms. In the conclusion, by acomparative analysis between the conventional PID tuningmethods and optimization carried out using genetic algorithmsoffers lesser oscillatory and better response.

  16. Robust PID based power system stabiliser: Design and real-time implementation

    Bevrani, Hassan [Department of Electrical and Computer Eng., University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Hiyama, Takashi [Department of Electrical and Computer Eng., Kumamoto University, Kumamoto (Japan); Bevrani, Hossein [Department of Statistics, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2011-02-15

    This paper addresses a new robust control strategy to synthesis of robust proportional-integral-derivative (PID) based power system stabilisers (PSS). The PID based PSS design problem is reduced to find an optimal gain vector via an H{infinity} static output feedback control (H{infinity}-SOF) technique, and the solution is easily carried out using a developed iterative linear matrix inequalities algorithm. To illustrate the developed approach, a real-time experiment has been performed for a longitudinal four-machine infinite-bus system using the Analog Power System Simulator at the Research Laboratory of the Kyushu Electric Power Company. The results of the proposed control strategy are compared with full-order H{infinity} and conventional PSS designs. The robust PSS is shown to maintain the robust performance and minimise the effect of disturbances properly. (author)

  17. Research on the Robustness of an Adaptive PID Control of a Kind of Supersonic Missile

    Gangling Jiao

    2012-09-01

    Full Text Available Based on the multi-loop design method, the dynamic characteristic of missile system is viewed as a two-loops system, such as inner loop and outer loop. An adaptive PID control strategy is designed for the pitch channel linear model of supersonic missile. The robustness of a double PID controller is analyzed by changing the aerodynamic coefficients. The control law is testified to be stable even the aerodynamic coefficients are changed between 0.7 and 1.7 times of its standard value and the control effect is compared with the sliding mode control strategy. Also the advantage and defect of both control strategy are summarized at the end of this study.

  18. A Proportional Integral Derivative (PID Feedback Control without a Subsidiary Speed Loop

    M. Aboelhassan

    2008-01-01

    Full Text Available The aim of this investigation is to design and describe the essential features of a brushless direct-current (BLDC motor. The static and dynamical state of the BLDC-Motor is designed and calculated.Within this frame-work, it has been shown that while working with the P-controller in conjunction with the subsidiary speed loop and PD-controller (with non-zero error in a steady state without a subsidiary speed loop, there is PID-controller without a subsidiary speed loop which has zero error in a steady state. The last part of this paper is dedicated to a simulation of the circle rounds of P and PID controllers with and without a subsidiary speed loop in MATLAB–SIMULINK to decide which of these controllers is suitable, available and reliable with a BLDC-Motor and their application in cutting tool machines in general. 

  19. Research on the Robustness of an Adaptive PID Control of a Kind of Supersonic Missile

    Gangling Jiao

    2013-01-01

    Full Text Available In this study, the dynamic characteristic of missile system is viewed as a two-loop system, such as inner loop and outer loop and we design an adaptive PID control strategy for the pitch channel linear model of supersonic missile. The robustness of a double PID controller is analyzed by changing the aerodynamic coefficients. The control law is testified to be stable even the aerodynamic coefficients are changed between 0.7 and 1.7 times of its standard value and the control effect is compared with the sliding mode control strategy. Also the advantage and defect of both control strategy are summarized at the end of this study.

  20. New results on the robust stability of PID controllers with gain and phase margins for UFOPTD processes.

    Jin, Q B; Liu, Q; Huang, B

    2016-03-01

    This paper considers the problem of determining all the robust PID (proportional-integral-derivative) controllers in terms of the gain and phase margins (GPM) for open-loop unstable first order plus time delay (UFOPTD) processes. It is the first time that the feasible ranges of the GPM specifications provided by a PID controller are given for UFOPTD processes. A gain and phase margin tester is used to modify the original model, and the ranges of the margin specifications are derived such that the modified model can be stabilized by a stabilizing PID controller based on Hermite-Biehlers Theorem. Furthermore, we obtain all the controllers satisfying a given margin specification. Simulation studies show how to use the results to design a robust PID controller. PMID:26708658

  1. Comparing the Performance of Optimal PID and Optimal Fractional-Order PID Controllers Applied to the Nonlinear Boost Converter

    Merrikh-Bayat, Farshad; Jamshidi, Alireza

    2013-01-01

    This paper proposes the application of fractional-order PID (FOPID) controller for output voltage control of boost converters. For this purpose, parameters of the FOPID controller are calculated such that the Integral Absolute Error (IAE) of the variations of the output voltage is minimized. Since the search space is very large in dealing with such an optimization problem, the Artificial Bee Colony (ABC) algorithm is used for optimal tuning the parameters of the FOPID controller. Simulations,...

  2. Simulation Research on Control System of Brushless DC Motor Based on Fuzzy-PID

    Fanneng Zhou; Changjun Qiu; Yulin Wang; Pinghu Chen

    2012-01-01

    To improve the overall performance of brushless DC motor (BLDCM), fuzzy-PID controller and its application in BLDCM control system are presented. Through the analysis of the mathematical models of BLDCM and combination of fuzzy control strategy and traditional PID control strategy, the modeling and simulation are done by the fuzzy control toolbox of MATLAB. The simulation results show that the fuzzy PID control speeds up response time, reduces the overshoot, and has strong robust and adaptive...

  3. RBF neural network PID for Bilateral Servo Control System

    Zhang Jingdong

    2013-09-01

    Full Text Available Tele-operated bilateral hydraulic servo system with master-slave robot at the core can be complex manipulated in uncertain or extreme environment (such as space, seabed, radicalization, battlefield, etc.. In this paper, a novel force feedback bilateral servo system is presented, based on analysis of bilateral servo system at home and abroad, which adopts tuning PID control algorithm with RBF neural network at the same time. From the simulation results, the novel force feedback bilateral servo system is presented to verify the effectiveness of the proposed control algorithm.The control briefness, fast response, strong robustness, good disturbance rejection capability and good adaptive capability can be obtained.It is also revealed from simulation results that the proposed control algorithm is valid for force feedback bilateral servo system and also provides the theoretical and experimental basis.    

  4. A modified Adaptive Wavelet PID Control Based on Reinforcement Learning for Wind Energy Conversion System Control

    REZAZADEH, A.; SEDIGHIZADEH, M.

    2010-01-01

    Nonlinear characteristics of wind turbines and electric generators necessitate complicated and nonlinear control of grid connected Wind Energy Conversion Systems (WECS). This paper proposes a modified self-tuning PID control strategy, using reinforcement learning for WECS control. The controller employs Actor-Critic learning in order to tune PID parameters adaptively. These Actor-Critic learning is a special kind of reinforcement learning that uses a single wavelet neural network to appro...

  5. Gain Scheduling of PID Controller Based on Fuzzy Systems

    Singh Sandeep

    2016-01-01

    Full Text Available This paper aims to utilize fuzzy rules and reasoning to determine the controller parameters and the PID controller generates the control signal. The objective of this study is to simulate the proposed scheme on various processes and arrive at results providing better response of the system when compared with best industrial auto-tuning technique: Ziegler-Nichols. The proposed scheme is based upon the Ultimate Gain (Ku and the Period (Tu of the system. The error and rate of change in error gains are tuned manually to get the desired response using LabVIEW. This can also be done with various optimization techniques. A thumb rule for choosing the ranges for Kc, Kd and Ki has been obtained experimentally.

  6. Optimization of PID Controllers Using Ant Colony and Genetic Algorithms

    Ünal, Muhammet; Topuz, Vedat; Erdal, Hasan

    2013-01-01

    Artificial neural networks, genetic algorithms and the ant colony optimization algorithm have become a highly effective tool for solving hard optimization problems. As their popularity has increased, applications of these algorithms have grown in more than equal measure. While many of the books available on these subjects only provide a cursory discussion of theory, the present book gives special emphasis to the theoretical background that is behind these algorithms and their applications. Moreover, this book introduces a novel real time control algorithm, that uses genetic algorithm and ant colony optimization algorithms for optimizing PID controller parameters. In general, the present book represents a solid survey on artificial neural networks, genetic algorithms and the ant colony optimization algorithm and introduces novel practical elements related to the application of these methods to  process system control.

  7. Genetic Algorithm Based PID tuning for Controlling Paraplegic Humanoid Walking Movement

    Hashim Ali

    2012-07-01

    Full Text Available Genetic Algorithm (GA is a very useful tool to search and optimize many engineering and scientific problems. In this paper, a real time enhanced biomedical model of humanoid structure is developed in MSC visual Nastran to assist the paraplegic patient. The complexity of the model is driven by the needs that the model parameters must be estimated for an eventual individual with disability. After the development of humanoid structure an inverse model is designed to estimate the joint torques. The reference trajectories of the humanoid model are obtained from MSC visual Nastran.The controllers are designed in Matlab/ Simulink for four joints which are manually tuned simultaneously to obtain the results. Afterwards, GA is used to tune the PID controllers to find the optimal solutions which are compared with manually tuned PIDs. The results are shown and hence it is proved that GA has given a better optimized control system.

  8. Tuning of PID controllers for integrating systems using direct synthesis method.

    Anil, Ch; Padma Sree, R

    2015-07-01

    A PID controller is designed for various forms of integrating systems with time delay using direct synthesis method. The method is based on comparing the characteristic equation of the integrating system and PID controller with a filter with the desired characteristic equation. The desired characteristic equation comprises of multiple poles which are placed at the same desired location. The tuning parameter is adjusted so as to achieve the desired robustness. Tuning rules in terms of process parameters are given for various forms of integrating systems. The tuning parameter can be selected for the desired robustness by specifying Ms value. The proposed controller design method is applied to various transfer function models and to the nonlinear model equations of jacketed CSTR to show its effectiveness and applicability. PMID:25800952

  9. Hybrid Takagi-Sugeno Fuzzy FED PID Control of Nonlinear Systems

    Hamed, Basil; El Khateb, Ahmad

    2008-06-01

    The new method of proportional-integral-derivative (PID) controller is proposed in this paper for a hybrid fuzzy PID controller for nonlinear system. The important feature of the proposed approach is that it combines the fuzzy gain scheduling method and a fuzzy fed PID controller to solve the nonlinear control problem. The resultant fuzzy rule base of the proposed controller contains one part. This single part of the rules uses the Takagi-Sugeno method for solving the nonlinear problem. The simulation results of a nonlinear system show that the performance of a fed PID Hybrid Takagi-Sugeno fuzzy controller is better than that of the conventional fuzzy PID controller or Hybrid Mamdani fuzzy FED PID controller.

  10. Applications of Fuzzy adaptive PID control in the thermal power plant denitration liquid ammonia evaporation

    Li Jing

    2016-01-01

    Full Text Available For the control of the liquid level of liquid ammonia in thermal power plant’s ammonia vaporization room, traditional PID controller parameter tuning is difficult to adapt to complex control systems, the setting of the traditional PID controller parameters is difficult to adapt to the complex control system. For the disadvantage of bad parameter setting, poor performance and so on the fuzzy adaptive PID control is proposed. Fuzzy adaptive PID control combines the advantages of traditional PID technology and fuzzy control. By using the fuzzy controller to intelligent control the object, the performance of the PID controller is further improved, and the control precision of the system is improved[1]. The simulation results show that the fuzzy adaptive PID controller not only has the advantages of high accuracy of PID controller, but also has the characteristics of fast and strong adaptability of fuzzy controller. It realizes the optimization of PID parameters which are in the optimal state, and the maximum increase production efficiency, so that are more suitable for nonlinear dynamic system.

  11. Compare the results of Tuning of PID controller by using PSO and GA Technique for AVR system

    Anil Kumar , Dr. Rajeev Gupta

    2013-06-01

    Full Text Available This paper Present to design method fordetermining the optimal proportional-integral-derivative(PID controller parameters of an Automatic VoltageRegulator (AVR system using the particle swarmoptimization (PSO algorithm and Genetic Algorithm (GA.The design goal is to minimize transient response byminimizing overshoot, settling time and rise time of stepresponse. The proposed approach had superior features,including easy implementation, stable convergencecharacteristic, and good computational efficiency. Fast tuningof optimum PID controller parameters yields high-qualitysolution. First an objective function is defined, and then byminimizing the objective functions using real-coded GA andPSO, the optimal controller parameters can be assigned.Compare the result of step response of AVR system by usingParticle Swarm Optimization (PSO and Genetic Algorithm(GA. The obtained result of the closed loop PSO-PID andGA-PID controller response to the unit step input signalshows excellent performance of the PID controller.Keywords— AVR system, Feedback System, Optimization,PID controller, PSO and GA.

  12. LabVIEW FPGA Implementation Of a PID Controller For D.C. Motor Speed Control

    Fakhrulddin H. Ali

    2010-12-01

    Full Text Available This Paper presents a novel hardware design methodology of digital control systems. For this, instead of synthesizing the control system using Very high speed integration circuit Hardware Description Language (VHDL, LabVIEW FPGA module from National Instrument (NI is used to design the whole system that include analog capture circuit to take out the analog signals (set point and process variable from the real world, PID controller module, and PWM signal generator module to drive the motor. The physical implementation of the digital system is based on Spartan-3E FPGA from Xilinx. Simulation studies of speed control of a D.C. motor are conducted and the effect of a sudden change in reference speed and load are also included.

  13. Comparison of intelligent fuzzy based AGC coordinated PID controlled and PSS controlled AVR system

    Mukherjee, V. [Department of Electrical Engineering, Asansol Engineering College, Asansol, West Bengal (India); Ghoshal, S.P. [Department of Electrical Engineering, National Institute of Technology, Durgapur, West Bengal (India)

    2007-11-15

    This paper attempts to investigate the performance of intelligent fuzzy based coordinated control of the Automatic Generation Control (AGC) loop and the excitation loop equipped with Proportional Integral Derivative (PID) controlled Automatic Voltage Regulator (AVR) system and Power System Stabilizer (PSS) controlled AVR system. The work establishes that PSS controlled AVR system is much more robust in dynamic performance of the system over a wide range of system operating configurations. Thus, it is revealed that PSS equipped AVR is much more superior than PID equipped AVR in damping the oscillation resulting in improved transient response. The paper utilizes a novel class of Particle Swarm Optimization (PSO) termed as Craziness based Particle Swarm Optimization (CRPSO) as optimizing tool to get optimal tuning of PSS parameters as well as the gains of PID controllers. For on-line, off-nominal operating conditions Takagi Sugeno Fuzzy Logic (TSFL) has been applied to obtain the off-nominal optimal gains of PID controllers and parameters of PSS. Implementation of TSFL helps to achieve very fast dynamic response. Fourth order model of generator with AVR and high gain thyristor excitation system is considered for PSS controlled system while normal gain exciter is considered for PID controlled system. Simulation study also reveals that with high gain exciter, PID control is not at all effective. Transient responses are achieved by using modal analysis. (author)

  14. Nonlinear Adaptive PID Control for Greenhouse Environment Based on RBF Network

    Guanghui Li; Lihong Xu; Haigen Hu; Songwei Zeng

    2012-01-01

    This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through ...

  15. Simulation Research of Brushless Direct Current Motor Speed System Based on Neuro-PID Position Controller

    Xiang Li

    2009-01-01

    A new speed control strategy is presented for high performance con­trol of a Brushless Direct Current Motor (BLDCM). A self-tuning Neuro-PID controller is developed for speed control. The PID gains are tuned automatically by the neural network in an on-line way. In recent years, the re-searches on the control of electrical machines based on Neuro-PID Position Controller are increased.It offers inherent advantages over con­ventional PID controller for BLDCM, Such as reduction of the effects of...

  16. Speed Control of DC Motor under Varying Load Using PID Controller

    Muhammad Rafay Khan

    2015-08-01

    Full Text Available DC motors are used extensively in industrial variable speed applications because of most demanding speed-torque characteristics and are simple in controlling aspects. This paper presents a DC motor speed controlling technique under varying load condition. The linear system model of separately excited DC motor with Torque-variation is designed using PID controller. A Matlab simulation of proposed system with no-Load and full-load condition is performed on Simulink platform to observe the system response. The motor speed is kept constant in this experiment. The simulation result of the experiment shows that a motor is running approximately at a constant speed regardless of a motor load. The Simulink results show that the speed of the motor is slow down only for about 270 rpm (9% in 980 milliseconds under the effect of full load. However, the motor speed is hunting about 200 rpm (6.66% in 900 milliseconds on unloading condition. It is concluded that a PID controller is successful tool for controlling the motor speed in presence of load disturbances.

  17. Experimental studies on active vibration control of a smart composite beam using a PID controller

    This paper presents experimental verification of the active vibration control of a smart cantilever composite beam using a PID controller. In order to prevent negative occurrences in the derivative and integral terms in a PID controller, first-order low-pass filters are implemented in the derivative action and in the feedback of the integral action. The proposed application setup consists of a composite cantilever beam with a fiber-reinforced piezoelectric actuator and strain gage sensors. The beam is modeled using a finite element method based on third-order shear deformation theory. The experiment considers vibration control under periodic excitation and an initial static deflection. A control algorithm was implemented on a PIC32MX440F256H microcontroller. Experimental results corresponding to the proposed PID controller are compared with corresponding results using proportional (P) control, proportional–integral (PI) control and proportional–derivative (PD) control. Experimental results indicate that the proposed PID controller provides 8.93% more damping compared to a PD controller, 14.41% more damping compared to a PI controller and 19.04% more damping compared to a P controller in the case of vibration under periodic excitation. In the case of free vibration control, the proposed PID controller shows better performance (settling time 1.2 s) compared to the PD controller (settling time 1.5 s) and PI controller (settling time 2.5 s). (paper)

  18. Experimental studies on active vibration control of a smart composite beam using a PID controller

    Jovanović, Miroslav M.; Simonović, Aleksandar M.; Zorić, Nemanja D.; Lukić, Nebojša S.; Stupar, Slobodan N.; Ilić, Slobodan S.

    2013-11-01

    This paper presents experimental verification of the active vibration control of a smart cantilever composite beam using a PID controller. In order to prevent negative occurrences in the derivative and integral terms in a PID controller, first-order low-pass filters are implemented in the derivative action and in the feedback of the integral action. The proposed application setup consists of a composite cantilever beam with a fiber-reinforced piezoelectric actuator and strain gage sensors. The beam is modeled using a finite element method based on third-order shear deformation theory. The experiment considers vibration control under periodic excitation and an initial static deflection. A control algorithm was implemented on a PIC32MX440F256H microcontroller. Experimental results corresponding to the proposed PID controller are compared with corresponding results using proportional (P) control, proportional-integral (PI) control and proportional-derivative (PD) control. Experimental results indicate that the proposed PID controller provides 8.93% more damping compared to a PD controller, 14.41% more damping compared to a PI controller and 19.04% more damping compared to a P controller in the case of vibration under periodic excitation. In the case of free vibration control, the proposed PID controller shows better performance (settling time 1.2 s) compared to the PD controller (settling time 1.5 s) and PI controller (settling time 2.5 s).

  19. Position Control of Pneumatic Actuator Using Self-Regulation Nonlinear PID

    Syed Najib Syed Salim; Mohd Fua’ad Rahmat; Ahmad ’Athif Mohd Faudzi; Ismail, Zool H.; Noorhazirah Sunar

    2014-01-01

    The enhancement of nonlinear PID (N-PID) controller for a pneumatic positioning system is proposed to improve the performance of this controller. This is executed by utilizing the characteristic of rate variation of the nonlinear gain that is readily available in N-PID controller. The proposed equation, namely, self-regulation nonlinear function (SNF), is used to reprocess the error signal with the purpose of generating the value of the rate variation, continuously. With the addition of this ...

  20. PID: from material properties to outdoor performance and quality control counter measures

    Berghold, J.; Koch, S.; Pingel, S.; Janke, S.; Ukar, A.; Grunow, P.; Shioda, T.

    2015-09-01

    Although the main root causes and referring counter measures for PID are known, a significant part of the industrial modules are still found to be PID sensitive in testing and PID is increasingly evident in field. This paper discusses field occurrence of PID with respect to environmental conditions and material properties. Different PID pattern in field and in test are analyzed in terms of the potential distribution and surface conductivity. Examples are given for the correlation of PID lab tests of a (commercial) BOM with real outdoor degradation. PID progress is predicted for different locations and compared with measurement data. Suitable quality control measures are discussed for the modules as well as for the encapsulation material

  1. A Fuzzy PID Approach for the Vibration Control of the FSPM

    Zhu-Feng Shao

    2013-01-01

    Full Text Available This paper focuses on the vibration control issue of a Flexibly Supported Parallel Manipulator (FSPM, which consists of a flexible support and a rigid parallel manipulator. The distinct characteristic of an FSPM is the dynamic coupling between the rigid and flexible parts, which challenges the vibration control implemented by the rigid parallel manipulator. The research object is a 40m scale model of the Feed Support System (FSS for the Five‐hundred‐meter Aperture Spherical radio Telescope (FAST project, which is composed of a cable‐driven parallel manipulator, an A‐B rotator and a rigid Stewart manipulator, assembled in series. The cable‐driven parallel manipulator is sensitive to disturbances and could lead to system vibration with a large terminal error. The rigid Stewart manipulator is designed to carry out the vibration control. Considering the time‐variability, nonlinearity and dynamic coupling of an FSPM, a fuzzy proportional–integral–derivative (PID controller is introduced. The fuzzy inference rules established on the terminal error and the error change are used to adjust the PID parameters to achieve better performance. Physical experiments are carried out and the results indicate that the fuzzy PID method can effectively promote the terminal precision and maintain system stability. The control methodology proposed in this paper is quite promising for the vibration control of an FSPM.

  2. Optimal fuzzy logic-based PID controller for load-frequency control including superconducting magnetic energy storage units

    This paper proposes a new optimal fuzzy logic-based-proportional-integral-derivative (FLPID) controller for load frequency control (LFC) including superconducting magnetic energy storage (SMES) units. Conventionally, the membership functions and control rules of fuzzy logic control are obtained by trial and error method or experiences of designers. To overcome this problem, the multiple tabu search (MTS) algorithm is applied to simultaneously tune PID gains, membership functions and control rules of FLPID controller to minimize frequency deviations of the system against load disturbances. The MTS algorithm introduces additional techniques for improvement of search process such as initialization, adaptive search, multiple searches, crossover and restarting process. Simulation results explicitly show that the performance of the optimum FLPID controller is superior to the conventional PID controller and the non-optimum FLPID controller in terms of the overshoot, settling time and robustness against variations of system parameters

  3. Optimal fuzzy logic-based PID controller for load-frequency control including superconducting magnetic energy storage units

    Pothiya, Saravuth; Ngamroo, Issarachai [Department of Electrical Engineering, Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand)

    2008-10-15

    This paper proposes a new optimal fuzzy logic-based-proportional-integral-derivative (FLPID) controller for load frequency control (LFC) including superconducting magnetic energy storage (SMES) units. Conventionally, the membership functions and control rules of fuzzy logic control are obtained by trial and error method or experiences of designers. To overcome this problem, the multiple tabu search (MTS) algorithm is applied to simultaneously tune PID gains, membership functions and control rules of FLPID controller to minimize frequency deviations of the system against load disturbances. The MTS algorithm introduces additional techniques for improvement of search process such as initialization, adaptive search, multiple searches, crossover and restarting process. Simulation results explicitly show that the performance of the optimum FLPID controller is superior to the conventional PID controller and the non-optimum FLPID controller in terms of the overshoot, settling time and robustness against variations of system parameters. (author)

  4. Implementation of motor speed control using PID control in programmable logic controller

    Samin, R. E.; Azmi, N. A.; Ahmad, M. A.; Ghazali, M. R.; Zawawi, M. A.

    2012-11-01

    This paper presents the implementation of motor speed control using Proportional Integral Derrivative (PID) controller using Programmable Logic Controller (PLC). Proportional Integral Derrivative (PID) controller is the technique used to actively control the speed of the motor. An AC motor is used in the research together with the PLC, encoder and Proface touch screen. The model of the PLC that has been used in this project is OMRON CJIG-CPU42P where this PLC has a build in loop control that can be made the ladder diagram quite simple using function block in CX-process tools. A complete experimental analysis of the technique in terms of system response is presented. Comparative assessment of the impact of Proportional, Integral and Derivative in the controller on the system performance is presented and discussed.

  5. Neuro-PID tracking control of a discharge air temperature system

    In this paper, the problem of improving the performance of a discharge air temperature (DAT) system using a PID controller and augmenting it with neural network based tuning and tracking functions is explored. The DAT system is modeled as a SISO (single input single output) system. The architecture of the real time neuro-PID controller and simulation results obtained under realistic operating conditions are presented. The neural network assisted PID tuning method is simple to implement. Results show that the network assisted PID controller is able to track both constant and variable set point trajectories efficiently in the presence of disturbances acting on the DAT system

  6. Speed Control System on Marine Diesel Engine Based on a Self-Tuning Fuzzy PID Controller

    Naeim Farouk

    2012-03-01

    Full Text Available The degree of speed control of ship machinery effects on the economics and optimization of the machinery configuration and operation. All marine vessel ranging need some sort of speed control system to control and govern the speed of the marine diesel engines. This study presents a self-tuning fuzzy PID control system for speed control system of marine diesel engine. The system under consideration is a fourth-order plant with highly dynamic and uncertain environments. The current speed controllers for marine/traction diesel engines based on PID Controller cannot fully handle the uncertainties associated with such dynamic environments. A fuzzy logic control algorithm is used to estimate the PID coefficients in order to handle such uncertainties to produce a better control performance. Simulation tests were established using Simulink of MATLAB. The obtained results have demonstrated the feasibility and effectiveness of the proposed approach. Simulation results are represented in this study.

  7. Optimal fractional order PID design via Tabu Search based algorithm.

    Ateş, Abdullah; Yeroglu, Celaleddin

    2016-01-01

    This paper presents an optimization method based on the Tabu Search Algorithm (TSA) to design a Fractional-Order Proportional-Integral-Derivative (FOPID) controller. All parameter computations of the FOPID employ random initial conditions, using the proposed optimization method. Illustrative examples demonstrate the performance of the proposed FOPID controller design method. PMID:26652128

  8. An improved auto-tuning scheme for PID controllers.

    Dey, Chanchal; Mudi, Rajani K

    2009-10-01

    An improved auto-tuning scheme is proposed for Ziegler-Nichols (ZN) tuned PID controllers (ZNPIDs), which usually provide excessively large overshoots, not tolerable in most of the situations, for high-order and nonlinear processes. To overcome this limitation ZNPIDs are upgraded by some easily interpretable heuristic rules through an online gain modifying factor defined on the instantaneous process states. This study is an extension of our earlier work [Mudi RK., Dey C. Lee TT. An improved auto-tuning scheme for PI controllers. ISA Trans 2008; 47: 45-52] to ZNPIDs, thereby making the scheme suitable for a wide range of processes and more generalized too. The proposed augmented ZNPID (AZNPID) is tested on various high-order linear and nonlinear dead-time processes with improved performance over ZNPID, refined ZNPID (RZNPID), and other schemes reported in the literature. Stability issues are addressed for linear processes. Robust performance of AZNPID is observed while changing its tunable parameters as well as the process dead-time. The proposed scheme is also implemented on a real time servo-based position control system. PMID:19647819

  9. A Nested PID Steering Control for Lane Keeping in Vision Based Autonomous Vehicles

    Marino, R.; SCALZI, S; Netto, M.

    2009-01-01

    In this paper a nested PID steering control for lane keeping in vision based autonomous vehicles is designed to perform path following in the case of roads with an uncertain curvature. The control input is the steering wheel angle: it is designed on the basis of the yaw rate, measured by a gyroscope, and the lateral offset, measured by the vision system as the distance between the road centerline and a virtual point at a fixed distance from the vehicle. No lateral acceleration and no lateral ...

  10. Decentralized PID controller for TITO systems using characteristic ratio assignment with an experimental application.

    Hajare, V D; Patre, B M

    2015-11-01

    This paper presents a decentralized PID controller design method for two input two output (TITO) systems with time delay using characteristic ratio assignment (CRA) method. The ability of CRA method to design controller for desired transient response has been explored for TITO systems. The design methodology uses an ideal decoupler to reduce the interaction. Each decoupled subsystem is reduced to first order plus dead time (FOPDT) model to design independent diagonal controllers. Based on specified overshoot and settling time, the controller parameters are computed using CRA method. To verify performance of the proposed controller, two benchmark simulation examples are presented. To demonstrate applicability of the proposed controller, experimentation is performed on real life interacting coupled tank level system. PMID:26521724

  11. Intelligent Robust Feed-forward Fuzzy Feedback Linearization Estimation of PID Control with Application to Continuum Robot

    Afsaneh Salehi

    2013-05-01

    Full Text Available Refer to this paper, an intelligent-fuzzy feed-forward computed torque estimator for Proportional-Integral-Derivative (PID controller is proposed for highly nonlinear continuum robot manipulator. In the absence of robot knowledge, PID may be the best controller, because it is model-free, and its parameters can be adjusted easily and separately and it is the most used in robot manipulators. In order to remove steady-state error caused by uncertainties and noise, the integrator gain has to be increased. This leads to worse transient performance, even destroys the stability. The integrator in a PID controller also reduces the bandwidth of the closed-loop system. Model-based compensation for PD control is an alternative method to substitute PID control. Computed torque compensation is one of the nonlinear compensator. The main problem of the pure computed torque compensator (CTC was highly nonlinear dynamic parameters which related to system’s dynamic parameters in certain and uncertain systems. The nonlinear equivalent dynamic problem in uncertain system is solved by using feed-forward fuzzy inference system. To eliminate the continuum robot manipulator system’s dynamic; Mamdani fuzzy inference system is design and applied to CTC. This methodology is based on design feed-forward fuzzy inference system and applied to CTC. The results demonstrate that the model base feed-forward fuzzy CTC estimator works well to compensate linear PID controller in presence of partly uncertainty system (e.g., continuum robot.

  12. Active vibration control of a piezoelectric beam using PID controller: Experimental study

    Najeeb ur, Rahman; M. Naushad, Alam.

    2012-12-01

    Full Text Available Vibration suppression of smart beams using the piezoelectric patch structure is presented in the present work. The smart system consists of a beam as the host structure and piezoceramic patches as the actuation and sensing elements. An experimental set-up has been developed to obtain the active vibr [...] ation suppression of smart beam. The set-up consists of a smart cantilever beam, the data acquisition system and a LabView based controller. Experiments are performed for different beam specimen. The coupled effcient layerwise (zigzag) theory is used for theoretical finite element modeling. The finite element model is free of shear locking. The beam element has two nodes with four mechanical and a variable number of electric degrees of freedom at each node. In the thickness direction, the electric field is approximated as piecewise linear across an arbitrary number of sub-layers in the piezoelectric layers. Cubic Hermite interpolation is used for the deflection, and linear interpolation is used for the axial displacement and the shear rotation. Undamped Natural Frequencies are obtained by solving the Eigen Value problem using Subspace Iteration method for cantilever beam. A state space model characterizing the dynamics of the physical system is developed from experimental results using PID approach for the purpose of control law design. The experimental results obtained by using the active vibration control system have demonstrated the validity and effciency of PID controller. Experiments are conducted to compare the controlling of various cantilever beams of different sizes. It shows that the present actuator and sensor based control method is effective and the LabView control plots for various beams can be used as a benchmark for analytical work. The results are compared with ABAQUS software and 1D Finite element formulation based on zigzag theory.

  13. Performance Analysis and FPGA Implementation of Digital PID Controller for Speed Control of DC Motor

    Charul Agarwal

    2013-06-01

    Full Text Available This paper deals with the performance analysis and implementation of PID(Proportional-Integral-Derivative Controller on FPGA platform.The hardware implementation has been done on Xilinx Spartan 3E FPGA board.The software implementation has been done using Xilinx ISE 8.1i as a tool and simulation is performed using ModelSim 5.4a as a simulator.The PWM signal is generated by FPGA board,which further given to dc motor for its speed control. A new technique has been introduced for the generation of the control input as a PWM signal for controlling the motor driver circuit and decoding the optical encoder data for using it for the speed feedback in the PID control loop. The VHDL algorithm for the proposed implementation has been presented in this paper. Performance analysis of PID controller using MATLAB software shows the effectiveness of the proposed method.

  14. The Research of PID Control in a Large Scale Helium Refrigerator

    Pan, W.; Wu, J. H.; Li, L. F.; Liu, H. M.; Li, Q.

    2015-12-01

    In the development of a helium refrigerator, the control of load temperature stability is an important requirement. We usually use multistage control strategies to achieve the precise control of it. Each level has its strict control logic. PID controllers are the core control module in the process. Therefore, a research of its principle and parameters’ setting occupies an important position in the development work. This paper detailed describes the PID control principle used in a large scale helium refrigerator of 10kW@20K, as well as several improvements on PID parameters’ setting, by using simulations and experiments in combination. The temperature is eventually controlled more precise.

  15. FPGA Synthesis of Fuzzy (PD and PID Controller for Insulin Pumps in Diabetes Using Cadence

    R. HariKumar

    2012-01-01

    Full Text Available This paper emphasizes on a FPGA synthesis of Fuzzy PD and PID Controller in biomedical application. We aim at identifying a proper methodology for the infusion process of insulin to diabetic patients using an automated fuzzy logic PD and PID controller. A synthesis of FPGA model of the above automatic controller is analyzed and synthesized. In Type I and Type II diabetes the patient is dependent on an external source of insulin to be infused at an appropriate rate to maintain blood glucose concentration. Hypoglycemia has short term effects which can lead to diabetic coma and possibly death, while hyperglycemia has a long term impact that has been linked to nephropathy, retinopathy and other tissues damage. In this process insulin is administrated through an infusion pump as a single injection. The pump is controlled by the automatic control Fuzzy PD Controller which is more efficient compared to the conventional PD Controller. This is of primary importance where the processes are too complex to be analyzed using the conventional one. The designed controller is implemented with low power multiplier and Fuzzy controller architecture. In case of non- linear inputs, Fuzzy PD Controller performs better compared to the conventional controller and consumes lesser power. The blood glucose level is monitored from Photo Plethysmography of pulse Oximeter. This fuzzy controller model will surely be a boon to the diabetic patients.

  16. Effect of Time Delay on Robust PID Controllers for a Transfer Function

    Mukul Gaur,

    2013-05-01

    Full Text Available A controller designed for a nominal process model generally works fine for the nominal plant model, but may fail even by a slight change in it. Robust control deals with system analysis and control design for such imperfectly known process models. Robust control has been a recent addition to the field of control engineering that primarily deals with obtaining system robustness in the presence of uncertainties. A lot of research has been done and many approaches are available for robust design of the plants. In this paper, a graphical technique introduced in [1] to find all proportional integral derivative (PID controllers that satisfy the robust stability constraint of a given single input-single-output (SISO linear time-invariant (LTI system with time delay[1], is followed and effects of change of time-delay in the nominal plant model is discussed.

  17. Optimized linear motor and digital PID controller setup used in Mössbauer spectrometer

    Kohout, Pavel; Kouřil, Lukáš; Navařík, Jakub; Novák, Petr; Pechoušek, Jiří

    2014-10-01

    Optimization of a linear motor and digital PID controller setup used in a Mössbauer spectrometer is presented. Velocity driving system with a digital PID feedback subsystem was developed in the LabVIEW graphical environment and deployed on the sbRIO real-time hardware device (National Instruments). The most important data acquisition processes are performed as real-time deterministic tasks on an FPGA chip. Velocity transducer of a double loudspeaker type with a power amplifier circuit is driven by the system. Series of calibration measurements were proceeded to find the optimal setup of the P, I, D parameters together with velocity error signal analysis. The shape and given signal characteristics of the velocity error signal are analyzed in details. Remote applications for controlling and monitoring the PID system from computer or smart phone, respectively, were also developed. The best setup and P, I, D parameters were set and calibration spectrum of α-Fe sample with an average nonlinearity of the velocity scale below 0.08% was collected. Furthermore, the width of the spectral line below 0.30 mm/s was observed. Powerful and complex velocity driving system was designed.

  18. PID self tuning control based on Mamdani fuzzy logic control for quadrotor stabilization

    Priyambodo, Tri Kuntoro; Dharmawan, Andi; Putra, Agfianto Eko

    2016-02-01

    Quadrotor as one type of UAV have the ability to perform Vertical Take Off and Landing (VTOL). It allows the Quadrotor to be stationary hovering in the air. PID (Proportional Integral Derivative) control system is one of the control methods that are commonly used. It is usually used to optimize the Quadrotor stabilization at least based on the three Eulerian angles (roll, pitch, and yaw) as input parameters for the control system. The three constants of PID can be obtained in various methods. The simplest method is tuning manually. This method has several weaknesses. For example if the three constants are not exact, the resulting response will deviate from the desired result. By combining the methods of PID with fuzzy logic systems where human expertise is implemented into the machine language is expected to further optimize the control system.

  19. PID self tuning control based on Mamdani fuzzy logic control for quadrotor stabilization

    Quadrotor as one type of UAV have the ability to perform Vertical Take Off and Landing (VTOL). It allows the Quadrotor to be stationary hovering in the air. PID (Proportional Integral Derivative) control system is one of the control methods that are commonly used. It is usually used to optimize the Quadrotor stabilization at least based on the three Eulerian angles (roll, pitch, and yaw) as input parameters for the control system. The three constants of PID can be obtained in various methods. The simplest method is tuning manually. This method has several weaknesses. For example if the three constants are not exact, the resulting response will deviate from the desired result. By combining the methods of PID with fuzzy logic systems where human expertise is implemented into the machine language is expected to further optimize the control system

  20. MULTI OBJECTIVE OPTIMIZATION OF VEHICLE ACTIVE SUSPENSION SYSTEM USING DEBBO BASED PID CONTROLLER

    Kalaivani Rajagopal

    2014-03-01

    Full Text Available This paper proposes the Multi Objective Optimization (MOO of Vehicle Active Suspension System (VASS with a hybrid Differential Evolution (DE based Biogeography-Based Optimization (BBO (DEBBO for the parameter tuning of Proportional Integral Derivative (PID controller. Initially a conventional PID controller, secondly a BBO, an rising nature enthused global optimization procedure based on the study of the ecological distribution of biological organisms and a hybridized DEBBO algorithm which inherits the behaviours of BBO and DE have been used to find the tuning parameters of the PID controller to improve the performance of VASS by considering a MOO function as the performance index. Simulations of passive system, active system having PID controller with and without optimizations have been performed by considering dual and triple bump kind of road disturbances in MATLAB/Simulink environment. The simulation results show the effectiveness of DEBBO based PID (DEBBOPID in achieving the goal.

  1. Online Self-Tuning Precompensation for a PID Heading Control of a Flying Robot

    Manukid Parnichkun; Sukon Puntunan

    2006-01-01

    In this paper, an online self-tuning precompensation for a Proportional-Integral-Derivative (PID) controller is proposed to control heading direction of a flying robot. The flying robot is a highly nonlinear plant, it is a modified X-Cell 60 radio-controlled helicopter. Heading direction is controlled to evaluate efficiency of the proposed precompensation algorithm. The heading control is based on the conventional PID control combined with an online self-tuning precompensation so that both th...

  2. Study on PID control system based on fuzzy self-adaptive parameter-adjusting technique of once-through steam generator

    A three-parameter fuzzy self-adaptive-adjusting Proportional-Integral-Differential (PID) control system is designed in this paper based on the full study of the characteristics of once-through steam generator. The fuzzy self-adaptive technique as well as three-parameter control system is introduced to normal PID control system. Simulation result indicates that this control system can give effective control over once-through steam generator by the analysis of control simulation result. (authors)

  3. An Improved PID Algorithm Based on Insulin-on-Board Estimate for Blood Glucose Control with Type 1 Diabetes.

    Hu, Ruiqiang; Li, Chengwei

    2015-01-01

    Automated closed-loop insulin infusion therapy has been studied for many years. In closed-loop system, the control algorithm is the key technique of precise insulin infusion. The control algorithm needs to be designed and validated. In this paper, an improved PID algorithm based on insulin-on-board estimate is proposed and computer simulations are done using a combinational mathematical model of the dynamics of blood glucose-insulin regulation in the blood system. The simulation results demonstrate that the improved PID algorithm can perform well in different carbohydrate ingestion and different insulin sensitivity situations. Compared with the traditional PID algorithm, the control performance is improved obviously and hypoglycemia can be avoided. To verify the effectiveness of the proposed control algorithm, in silico testing is done using the UVa/Padova virtual patient software. PMID:26550021

  4. Fuzzy PID Control Method for Internet-based Tele-operation Manipulators System

    Wei Gao

    2013-11-01

    Full Text Available Trajectory tracking control problem for internet-based tele-operation system is researched in this paper. The control structure of master and slave tele-operation manipulators adapts bilateral servo control architecture with force deviation feedback. The simulation model of three degrees of freedom (3-DOF manipulator is presented. In order to ensure the synchronization of positions of the master and slave manipulators, a fuzzy PID control method is proposed. This control algorithm is to adjust the three parameters of PID controller online by fuzzy control method. The contrast simulation experiments of PID and fuzzy PID control methods show that the proposed control method can effectively improve the force and position tracking performance and reduce time delay.

  5. Automatic Tuning Of Proportional-Integral-Derivative (Pid Controller Using Particle Swarm Optimization (Pso Algorithm

    S. J. Bassi 1, 1 and2, 1 and 2

    2011-11-01

    Full Text Available The proportional-integral-derivative (PID controllers are the most popular controllers used in industry because of their remarkable effectiveness, simplicity of implementation and broad applicability. However, manual tuning of these controllers is time consuming, tedious and generally lead to poor performance. This tuning which is application specific also deteriorates with time as a result of plant parameter changes. This paper presents an artificial intelligence (AI method of particle swarm optimization (PSO algorithm for tuning the optimal proportional-integral derivative (PID controller parameters for industrial processes. This approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency over the conventional methods. Ziegler- Nichols, tuning method was applied in the PID tuning and results were compared with the PSO-Based PID for optimum control. Simulation results are presented to show that the PSO-Based optimized PID controller is capable of providing an improved closed-loop performance over the Ziegler- Nichols tuned PID controller Parameters. Compared to the heuristic PID tuning method of Ziegler-Nichols, the proposed method was more efficient in improving the step response characteristics such as, reducing the steady-states error; rise time, settling time and maximum overshoot in speed control of DC motor.

  6. Automatic Tuning Of Proportional-Integral-Derivative (Pid Controller Using Particle Swarm Optimization (Pso Algorithm

    S. J. Bassi

    2011-10-01

    Full Text Available The proportional-integral-derivative (PID controllers are the most popular controllers used in industry because of their remarkable effectiveness, simplicity of implementation and broad applicability. However, manual tuning of these controllers is time consuming, tedious and generally lead to poor performance. This tuning which is application specific also deteriorates with time as a result of plant parameter changes. This paper presents an artificial intelligence (AI method of particle swarm optimization (PSO algorithm for tuning the optimal proportional-integral derivative (PID controller parameters for industrial processes. This approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency over the conventional methods. Ziegler- Nichols, tuning method was applied in the PID tuning and results were compared with the PSO-Based PID for optimum control. Simulation results are presented to show that the PSO-Based optimized PID controller is capable of providing an improved closed-loop performance over the Ziegler- Nichols tuned PID controller Parameters. Compared to the heuristic PID tuning method of Ziegler-Nichols, the proposed method was more efficient in improving the step response characteristics such as, reducing the steady-states error; rise time, settling time and maximum overshoot in speed control of DC motor.

  7. Liberia PIDS

    US Agency for International Development — PIDS is the web-based system designed to allow data input and consultative sessions by USAID/Liberia's IPs and USAID personnel. It is established and maintained by...

  8. Pengembangan Bioelectrical Impedance Sebagai Control Commands Pengaturan Kecepatan Gerak Kursi Roda Dengan Metoda PID Controller

    Juli Sardi

    2014-09-01

    Full Text Available In the present study, bioimpedance signals of human body was utilized to control speed of a wheelchair movement. A bioimpedance is electrically passive part contained the body tissues. The research is one of alternative solutions for patients with paralysis of the upper and lower limb. Firstly, design of system of the research consisted of bioimpedance measuring instruments and a mechanical design of the wheelchair. Bioimpedance measurement was performed by injecting a sinusoidal current source of 0.5 mArms with a frequency of 50 kHz to muscle tissue (shoulder to obtain the output voltage in the range of 0-5 Vdc. With impulse and manual thresholding methods, the voltage signal was classified into several controls command to adjust the speed and direction of the wheelchair control based on PID Controller. The experimental result of the research was realization of bioimpedance signal that used as a reference to control the direction and speed of the wheelchair with a success rate of 86.7 %. A wheelchair velocity was classified into three types of motion, namely slow, medium and fast. Slow speed has a rated speed of 30 Cm/s, medium speed value speed of 40 Cm/s and fast speed value of 50 Cm/s. The wheelchair can also turn to the left and the right in accordance with the wishes of wheelchair user beside to moving forward.

  9. Comparative Performance Analysis between Fuzzy Logic Controller (FLC and PID Controller for an Inverted Pendulum System

    Aleem Ahmed Khan

    2012-10-01

    Full Text Available The idea of this paper is to compare the time-response performance characteristics between two controllers having different strategy for an inverted pendulum system. The main objective is to determine which control strategy brings the better results in comparative analysis with regard to pendulum’s angle and cart’s position of the system. The inverted pendulum system in fact a critical and challenging control problem, which continually moves away from a stable state. Two Control strategies for an Inverted pendulum system model are presented for stabilized controlling such as Proportional-Integral-Derivatives (PID and Fuzzy Logic Controller (FLC Controllers. Matlab Simulation has been performed on Simulink platform shows that both controllers successfully controls Multi-output Inverted pendulum system. However PID is more efficient and has a better time response characteristics than FLC control strategy.

  10. Computation of stabilizing PI and PID controllers using the stability boundary locus

    In this paper, a new method for the calculation of all stabilizing PI controllers is given. The proposed method is based on plotting the stability boundary locus in the (k p, k i)-plane and then computing the stabilizing values of the parameters of a PI controller. The technique presented does not require sweeping over the parameters and also does not need linear programming to solve a set of inequalities. Thus it offers several important advantages over existing results obtained in this direction. Beyond stabilization, the method is used to shift all poles to a shifted half plane that guarantees a specified settling time of response. Computation of stabilizing PI controllers which achieve user specified gain and phase margins is studied. It is shown via an example that the stabilizing region in the (k p, k i)-plane is not always a convex set. The proposed method is also used to design PID controllers. The limiting values of a PID controller which stabilize a given system are obtained in the (k p, k i)-plane (k p, k d)-plane and (k i, k d)-plane. Furthermore, the proposed method is used to compute all the parameters of a PI controller which stabilize a control system with an interval plant family. Examples are given to show the benefits of the method presented

  11. The Design of Constant Pressure Water Supply PID System Based on PLC

    Yilei Wang

    2012-02-01

    Full Text Available According to the requirement of city residential water demand, this paper designs a set of VF speed regulating constant pressure water supply system based on PLC. The system consists of PLC, transducer, pressure sensor, water pumps and other units. The system controls three water pumps by frequency conversion cycle, which have soft starting and frequency function, and with the principle of “start first and stop last”, the system makes effective use of water pump motors. PLC computes by PID through the deviation between the measured value and the set value, controls the output frequency of the inverter and changes the water pump motor speed according to the operation result, so as to maintain the user’s pipe network pressure, to achieve the purpose of constant pressure water supply. The design is of great technical and economic benefits, and has the broad application prospect and promotion value.

  12. A High Order Sliding Mode Control with PID Sliding Surface: Simulation on a Torpedo

    Rhif, Ahmed

    2012-01-01

    Position and speed control of the torpedo present a real problem for the actuators because of the high level of the system non linearity and because of the external disturbances. The non linear systems control is based on several different approaches, among it the sliding mode control. The sliding mode control has proved its effectiveness through the different studies. The advantage that makes such an important approach is its robustness versus the disturbances and the model uncertainties. However, this approach implies a disadvantage which is the chattering phenomenon caused by the discontinuous part of this control and which can have a harmful effect on the actuators. This paper deals with the basic concepts, mathematics, and design aspects of a control for nonlinear systems that make the chattering effect lower. As solution to this problem we will adopt as a starting point the high order sliding mode approaches then the PID sliding surface. Simulation results show that this control strategy can attain exce...

  13. Control of Molecular Weight Distribution in Batch Emulsion Polymerization using PID Controller: Case Studies

    Parul Arora, Alok Gupta

    2013-10-01

    Full Text Available Two Control strategies are developed to control the molecular weight in emulsion polymerization by manipulating flow-rates of water stream of jacket in first case study and the power of heater in another study. The control strategies were validated with experimental data of emulsion polymerization using Methyl methacrylate as monomer. PID controller is used to control the temperature of the reactor in both the case studies.

  14. Multi-Objective PID-Controller Tuning for a Magnetic Levitation System using NSGA-II

    Pedersen, Gerulf K. M.; Yang, Zhenyu

    This paper investigates the issue of PID-controller parameter tuning for a magnetic levitation system using the non-dominated sorting genetic algorithm (NSGA-II). The magnetic levitation system is inherently unstable and the PID-controller parameters are hard to find using conventional methods....... Based on four different performance measures, derived from the step response of the levitation system, the algorithm is used to find a set of non-dominated parameters for a PID-controller that can stabilize the system and minimize the performance measures....

  15. Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time.

    Das, Saptarshi; Pan, Indranil; Das, Shantanu

    2013-07-01

    Fuzzy logic based PID controllers have been studied in this paper, considering several combinations of hybrid controllers by grouping the proportional, integral and derivative actions with fuzzy inferencing in different forms. Fractional order (FO) rate of error signal and FO integral of control signal have been used in the design of a family of decomposed hybrid FO fuzzy PID controllers. The input and output scaling factors (SF) along with the integro-differential operators are tuned with real coded genetic algorithm (GA) to produce optimum closed loop performance by simultaneous consideration of the control loop error index and the control signal. Three different classes of fractional order oscillatory processes with various levels of relative dominance between time constant and time delay have been used to test the comparative merits of the proposed family of hybrid fractional order fuzzy PID controllers. Performance comparison of the different FO fuzzy PID controller structures has been done in terms of optimal set-point tracking, load disturbance rejection and minimal variation of manipulated variable or smaller actuator requirement etc. In addition, multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used to study the Pareto optimal trade-offs between the set point tracking and control signal, and the set point tracking and load disturbance performance for each of the controller structure to handle the three different types of processes. PMID:23664205

  16. Effects of a GPC-PID control strategy with hierarchical structure for a cooling coil unit

    This paper presents a GPC-PID control strategy for a cooling-coil unit in heating, ventilation and air conditioning systems. By analysis of the cooling towers and chillers, different models in the occupied period are considered in each operating condition. Because of the complication of components, well tuned PID controllers are unsatisfied, and the results are poor over a wide range of operation conditions. To solve this problem, a GPC-PID controller with hierarchical structure is proposed based on minimizing the generalized predictive control criterion to tune conventional PID controller parameters. Simulation and experiments show that the proposed controller is able to deal with a wide range of operating conditions and to achieve better performance than conventional methods

  17. A numerical model including PID control of a multizone crystal growth furnace

    Panzarella, Charles H.; Kassemi, Mohammad

    1992-01-01

    This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.

  18. A fuzzy PID-controlled SMA actuator for a two-DOF joint

    Shi Zhenyun

    2014-04-01

    Full Text Available Shape memory alloy (SMA actuator is a potential advanced component for servo-systems of aerospace vehicles and aircraft. This paper presents a joint with two degrees of freedom (DOF and a mobility range close to ±60° when driven by SMA triple wires. The fuzzy proportional-integral-derivative (PID-controlled actuator drive was designed using antagonistic SMA triple wires, and the resistance feedback signal made a closed loop. Experiments showed that, with the driving responding frequency increasing, the overstress became harder to be avoided at the position under the maximum friction force. Furthermore, the hysteresis gap between the heating and cooling paths of the strain-to-resistance curve expanded under this condition. A fuzzy logic control was considered as a solution, and the curves of the wires were then modeled by fitting polynomials so that the measured resistance was used directly to determine the control signal. Accurate control was demonstrated through the step response, and the experimental results showed that under the fuzzy PID-control program, the mean absolute error (MAE of the rotation angle was about 3.147°. In addition, the investigation of the external interference to the system proved the controllable maximum output.

  19. Comparison between Conventional and Fuzzy Logic PID Controllers for Controlling DC Motors

    Essam Natsheh

    2010-09-01

    Full Text Available Fuzzy logic and proportional-integral-derivative (PID controllers are compared for use in direct current (DC motors positioning system. A simulation study of the PID position controller for the armature-controlled with fixed field and field controlled with fixed armature current DC motors is performed. Fuzzy rules and the inferencing mechanism of the fuzzy logic controller (FLC are evaluated by using conventional rule-lookup tables that encode the control knowledge in a rules form. The performance assessment of the studied position controllers is based on transient response and error integral criteria. The results obtained from the FLC are not only superior in the rise time, speed fluctuations, and percent overshoot but also much better in the controller output signal structure, which is much remarkable in terms of the hardware implementation.

  20. Improvement of Step-Down Converter Performance with Optimum Lqr and Pid Controller with Applied Genetic Algorithm

    Nejati, R.; Eshtehardiha, S.; Poudeh, M. Bayati

    2008-10-01

    The DC converter can be employed alone for the stabilization or the control of DC voltage of a battery or it can be a component of a complex converter to control the intermediate or output voltages. Due to the switching property included in their structure, DC-DC converters have a non-linear behavior and their controlling design is accompanied with complexities. But by employing the average method it is possible to approximate the system by a linear system and then linear control methods can be used. Dynamic performance of buck converters output voltage can be controlled by methods of Linear Quadratic Regulator (LQR) and PID. The former controller designing needs to positive definite matrix selection and the later is relative to desired pole places in complex coordinate. In this article, matrixes coefficients and the best constant values for PID controllers are selected based on Genetic algorithm method. The simulation results show an improvement in voltage control response.

  1. The Self-Adaptive Fuzzy PID Controller in Actuator Simulated Loading System

    Chuanhui Zhang

    2013-05-01

    Full Text Available This paper analyzes the structure principle of the actuator simulated loading system with variable stiffness, and establishes the simplified model. What’s more, it also does a research on the application of the self-adaptive tuning of fuzzy PID(Proportion Integration Differentiation in actuator simulated loading system with variable stiffness. Because the loading system is connected with the steering system by a spring rod, there must be strong coupling. Besides, there are also the parametric variations accompanying with the variations of the stiffness. Based on compensation from the feed-forward control on the disturbance brought by the motion of steering engine, the system performance can be improved by using fuzzy adaptive adjusting PID control to make up the changes of system parameter caused by the changes of the stiffness. By combining the fuzzy control with traditional PID control, fuzzy adaptive PID control is able to choose the parameters more properly.

  2. Comparison between PI and PID controllers used in UPFC control for power flow

    Aghdam, Hossein Nasir [Department of Electrical Engineering, Ahar Branch, Islamic Azad University, Ahar (Iran, Islamic Republic of); email: h_nasir@iau-ahar.ac.ir; Kaheh, Meghdad [Department of Electrical Engineering, Majlesi Branch, Islamic Azad University, Majlesi (Iran, Islamic Republic of); email: kaheh.meghdad@gmail.com; Najafi, Babak [Department of Electrical Engineering, Germi Branch, Islamic Azad University, Germi (Iran, Islamic Republic of); email: ba.najafi@gmail.com4; Farhadi, Payam; Karimi, Mohammad [Department of Electrical Engineering, Parsabad Moghan Branch, Islamic Azad University, Young Researchers Club, Parsabad Moghan (Iran, Islamic Republic of); email: pfarhadi@iaupmogan.ac.ir; Karimi, Mohammad, email: mohammadkarimi62@gmail.com

    2011-07-01

    This paper compares features of PI and PID Controllers, the two most frequently used unified power flow controllers (UPFC) in transmission lines. These are Flexible AC Transmission Systems devices (FACTS) which are used in general to control the power flow and damp oscillations of power systems. These features enhance the capacity of existing transmission systems to carry energy, obviating the need to build new transmission lines while at the same time respecting safety, environmental, and economic constraints. The growing demand for energy has put pressure on the industry to develop appropriate methods for augmenting the efficacity and reliability of systems while operating within their various limitations. In conclusion, it was demonstrated that the PI controller response is better for power system stability but that in reactive power control the PI and PID controllers have similar performance. The efficiency of the UPFCs was also demonstrated using MATLAB/SIMULINK software.

  3. PID feedback controller used as a tactical asset allocation technique: The G.A.M. model

    Gandolfi, G.; Sabatini, A.; Rossolini, M.

    2007-09-01

    The objective of this paper is to illustrate a tactical asset allocation technique utilizing the PID controller. The proportional-integral-derivative (PID) controller is widely applied in most industrial processes; it has been successfully used for over 50 years and it is used by more than 95% of the plants processes. It is a robust and easily understood algorithm that can provide excellent control performance in spite of the diverse dynamic characteristics of the process plant. In finance, the process plant, controlled by the PID controller, can be represented by financial market assets forming a portfolio. More specifically, in the present work, the plant is represented by a risk-adjusted return variable. Money and portfolio managers’ main target is to achieve a relevant risk-adjusted return in their managing activities. In literature and in the financial industry business, numerous kinds of return/risk ratios are commonly studied and used. The aim of this work is to perform a tactical asset allocation technique consisting in the optimization of risk adjusted return by means of asset allocation methodologies based on the PID model-free feedback control modeling procedure. The process plant does not need to be mathematically modeled: the PID control action lies in altering the portfolio asset weights, according to the PID algorithm and its parameters, Ziegler-and-Nichols-tuned, in order to approach the desired portfolio risk-adjusted return efficiently.

  4. MULTI OBJECTIVE OPTIMIZATION OF VEHICLE ACTIVE SUSPENSION SYSTEM USING DEBBO BASED PID CONTROLLER

    Kalaivani Rajagopal; Lakshmi Ponnusamy

    2014-01-01

    This paper proposes the Multi Objective Optimization (MOO) of Vehicle Active Suspension System (VASS) with a hybrid Differential Evolution (DE) based Biogeography-Based Optimization (BBO) (DEBBO) for the parameter tuning of Proportional Integral Derivative (PID) controller. Initially a conventional PID controller, secondly a BBO, an rising nature enthused global optimization procedure based on the study of the ecological distribution of biological organisms and a hybridized DEBBO algorithm wh...

  5. Please no more PID tuning rules

    Oliveira, Paulo; Cunha, José Boaventura; Coelho, J. P.

    2002-01-01

    Despite the large number of existent design and tunig techniques, adequate PID controller tuning by plant operations is still not accomplished in many process control loops. The particle swarm optimisation algorithms is proposed as an alternative technique to design and tune PID controllers for linear single-input single-output systems. This evolutionary approach is illustrated by a simulation example, in which the PID is used to control a set of models that represents a wide variety of proce...

  6. Power Regulation of a Wind Turbine Using Adaptive Fuzzy- PID Pitch Angle Controller

    Sachin Goyal,

    2013-05-01

    Full Text Available Abstract—This paper considers power generation control in variable pitch wind turbines, using an adaptive fuzzy-PID controller. The pitch angle control system was simulated using MATLAB/ SIMULINK tool to test the control strategy and performance evaluation of the system. To test the controller’s performance, a wind profile has been simulated and results are validated to show that the proposed controllers are effective for power regulation. To highlight the improvements of the method the proposed controller are compared to the conventional PID controller.

  7. Comparison between Conventional PID and Fuzzy Logic Controller for Liquid Flow Control: Performance Evaluation of Fuzzy Logic and PID Controller by Using MATLAB/Simulink

    Gaurav

    2012-06-01

    Full Text Available Measuring the flow of liquids is a critical need in many industrial plants. In recent years, flow control has become a highly multi-disciplinary research activity encompassing theoretical, computational and experimental fluid dynamics. Fuzzy control is based on fuzzy logic-a logical system that is much closer in spirit to human thinking and natural language than traditional logical systems. During the past several years, fuzzy control has emerged as one of the most active and fruitful areas for research in the applications of fuzzy set theory, especially in the realm of industrial processes, which do not lend themselves to control by conventional methods because of a lack of quantitative data regarding the input-output relations. The fuzzy logic controller (FLC based on fuzzy logic provides a means of converting a linguistic control strategy based on expert knowledge into an automatic control strategy. Fuzzy Logic controller has better stability, small overshoot, and fast response. In this Paper, performance analysis of the conventional PID controller and fuzzy logic controller has been done by the use of Matlab and Simulink and in the end comparison of various time domain parameters is done to prove that the fuzzy logic controller has small overshoot and fast response as compared to PID controller.

  8. An Investigation of ANN based PID Controllers using Three- Area Load Frequency Control in Interconnected Power System

    V.Shanmuga Sundaram ,

    2011-05-01

    Full Text Available The LFC problem, which is the major requirement in parallel operation of several interconnected systems, is one of very important subjects in power system studies. In this study, the power systems with threeareas connected through tie-lines are considered. The perturbation of frequencies at the areas and resulting tieline power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. The objective of LFC is to minimize the transient deviations and to provide zero steady state errors of these variables in a very short time. Variation in load frequency is an index for normal operation of power systems. When load Perturbation takes place anywhere in any area of the system, it will affect the frequency at other areas also. To control load frequency of power systems various controllers are used in different areas, but due to non-linearity's in the system components and alternators, these controllers cannot control the frequency quickly and efficiently. The simple neural networks can alleviate this difficulty. This paper deals with various controllers like proportional integral (PI, Proportional Integral Derivative (PID andANN (Artificial neural network tuned PID controller for three area load frequency control.The performance of the PID type controller with fixed gain, Conventional integral controller (PI and ANN based PID (ANN-PID controller have been compared through MATLAB Simulation results. Comparison of performance responses of integral controller & PID controller show that the ANN- PID controller has quite satisfactory generalization capability, feasibility and reliability, as well as accuracy in three area system. The qualitative and quantitative comparison have been carried out for Integral,PID and ANN- PID controllers. The superiority of the performance of ANN over integral and PID controller is highlighted.

  9. Fuzzy-PID control algorithm of a loop reactor for microbial corrosion testing

    D. Rangel-Miranda

    2015-06-01

    Full Text Available The thermal control of loop reactor utilized to run hydrodynamic tests of microbical corrosion, where full control of the temperature is crucial, is presented. Since the accuracy of the temperature is critical along the pipe trajectory for the microbial culture, it must be controlled with an accuracy of ± 0.5°C, which is achieved by an implemented fuzzy-PID (Proportional Integral and Derivative control algorithm, capable to provide the accuracy at the temperature range required. The system counts with an especially-designed software to program the desired temperature. Several tests were carried out at different temperatures and water volumes to characterize the rising time and thermal inertia presented by the system. As a result, the performance and power consumption were notability improved.

  10. The Smith-PID Control of Three-Tank-System Based on Fuzzy Theory

    Jianqiu Deng

    2011-03-01

    Full Text Available   According to the character of the volume-lag of the controlled process of three-tank-system, Smith predictor was adopted to compensate three-tank-system fuzzy adaptive control system. Fuzzy adaptive Smith predictive control system is composed with Smith predictor and fuzzy adaptive controller. The PID parameters were setting on line. This algorithm uses fuzzy adaptive PID control to improve the resistance ability to random disturbance and Smith predictive control to overcome the time-delay character of controlled object. Simulation results showed that this control algorithm has the advantages of strong adaptive ability and noise immunity.

  11. A comparison of fuzzy logic-PID control strategies for PWR pressurizer control

    This paper describes the results obtained from a comparison performed between classical proportional-integral-derivative (PID) and fuzzy logic (FL) controlling the pressure in a pressurized water reactor (PWR). The two methodologies have been tested under various transient scenarios, and their performances are evaluated with respect to robustness and on-time response to external stimuli. One of the main concerns in the safe operation of PWR is the pressure control in the primary side of the system. In order to maintain the pressure in a PWR at the desired level, the pressurizer component equipped with sprayers, heaters, and safety relief valves is used. The control strategy in a Westinghouse PWR is implemented with a PID controller that initiates either the electric heaters or the sprayers, depending on the direction of the coolant pressure deviation from the setpoint

  12. Study on the Integral Separation PID Control in Piezoelectric Crystal Positioning Process

    Yucheng Liu; Yubin Liu

    2013-01-01

    The Preisach control model is one of the effective methods for piezoelectric crystal control. However, unstable data sampling brought considerable influence and errors to the control process. For the purpose of improving the precision and stability of positioning control in implementation procedure, this paper applied the integral separation PID control technology to piezoelectric crystal positioning process. Desirable results of precision control have been acquired.

  13. Effect of Bottom Slope on Determining Optimum Coefficients and Performance of PID Controller in Irrigation Canals

    Sh. Zamani

    2014-02-01

    Full Text Available Modernization of irrigation canals as an operation improvement tool is essential to promote the performance of canal networks and indeed requires control systems. Proportional integral derivative (PID algorithms have more applications than the other controllers in different places of the world, but tuning these controllers for different hydraulic conditions of canals is considered as a major problem for designing control algorithms. Since the bottom slope is one of the effective factors in the water flow dynamic behavior, in this research, the distant downstream Proportional Integral Derivative feedback control with decouplers was designed with a change in longitudinal slope in a reference canal and its performance was investigated. The canal characteristics were used to tune this controller and the system identification as a new method was applied for determining canal characteristics. SOBEK hydrodynamic model modulated with MATLAB software was used to design and run the control algorithms, and slope influence on water flow behavior, tuning controller, and coefficients of controller were investigated with different values of slope. Then, controller performance for hypothetical period of operation in various scenarios was evaluated with computation performance indices. The results showed less resonance behavior of water flow and less potential of controller in steep slope

  14. Pid Plus Fuzzy Logic Controller Based Electronic Load Controller For Self Exited Induction Generator.

    S.Swathi,; V. Vijaya Kumar Nayak

    2014-01-01

    This paper deals with the electronic load controller for self exited induction generator using PID plus fuzzy logic controller. The self-excited induction generators (SEIGs) are considered to be well suited for generating electricity by means of conventional energy sources and for supplying electrical energy in remote and rural areas. Induction generators have many advantages such as cost, reduced maintenance, rugged, and simple construction, brushless rotor (squirrel cage). A...

  15. Pid Plus Fuzzy Logic Controller Based Electronic Load Controller For Self Exited Induction Generator.

    S.Swathi,

    2014-01-01

    Full Text Available This paper deals with the electronic load controller for self exited induction generator using PID plus fuzzy logic controller. The self-excited induction generators (SEIGs are considered to be well suited for generating electricity by means of conventional energy sources and for supplying electrical energy in remote and rural areas. Induction generators have many advantages such as cost, reduced maintenance, rugged, and simple construction, brushless rotor (squirrel cage. A three phase induction generator can be operated on a delta connection for supplying single phase loads. The main disadvantage of SEIG has is that it poor voltage regulation, and its value depends on the prime mover speed, capacitance, load current and power factor of the load. The electronic load controller (ELC can be used for maintaining constant voltage and frequency of SEIG with variable consumer load driven by constant prime mover. This paper presents the simulation design and implementation of ELC using fuzzy logic method for an SEIG feeding single-phase load. The ELC consist of a rectifier, IGBT as a chopper switch, PI controller, voltage sensor, and resistive dump load in which power consumption was varied through the duty cycle of the chopper. However an ELC consist of electronics system, in general, has complex nonlinear model with parameter variation problem, and the control need to be very fast. The fuzzy logic based controller gives nonlinear control with fast response and virtually no overshoot. The simulation of ELC for self exited induction generator is carried out on MATLAB/SIMULINK. By this proposed ELC using FLC for SEIG we can maintain the constant voltage and frequency of SEIG with variable consumer load.

  16. Overall non-linear correction of phase shifting mechanism in white light interferometry system based on displacement feedback control combined with fuzzy PID control

    Song, Ningfang; Luo, Xinkai; Li, Huipeng; Li, Jiao

    2015-10-01

    The non-linearity of the phase shifting mechanism in white light interferometry system can seriously affect the measuring accuracy of the system. In this paper, the correcting method is to combine the displacement feedback control technology with the fuzzy PID control technology. Displacement feedback control mechanism and fuzzy PID controller are designed and then try to figure it out through Matlab simulation and experiment.. The result shows that combining the displacement feedback control technology with the fuzzy PID control technology can fulfill decent overall non-linear correction in the white light interferometry measuring system. Meanwhile, the accuracy of the correction is high and the non-linearity drop from 2% to 0.1%.

  17. Synthesis of PID-type controllers without parametric models: A graphical approach

    This paper considers the problem of determining the set of all stabilizing proportional-integral-derivative (PID) type controllers without parametric models for any given linear time-invariant (LTI) plants. It is shown that the only information for designing is the frequency response data and the number of right-half-plane (RHP) poles of the plant, and all stabilizing domains in the parameter space of PID-type controllers are determined by the boundaries which are analytically described based on the technique of D-decomposition. The method can handle arbitrary order minimum phase, non-minimum phase, stable or unstable plants and particularly, plants that have zeros or poles on the imaginary axis. It is shown that the approach presented does not require any parametric models of plants and can be applied to a wide range of industrial applications, especially where plants parametric models (transfer function and state space) are not available or identification is difficult. Several examples illustrate the proposed method

  18. Research on AHP speed adjusting based on fuzzy-PID double-mode complex control

    Sang, Yong; Liu, Yang; Lin, Hongbin; Wang, Zhanlin

    2008-10-01

    In the ground test station of AC motor driven airborne hydraulic pump (referred to as AHP, hereinafter), speed adjusting is usually worsened by the high order, nonlinearity and time-varying features of AC motor, as well as the nonlinearity of the hydraulic system. In order to solve these problems a new complex control method based on Fuzzy-PID control theory is brought forward. The control method adopts fuzzy controller to enhance the system's tracing features under big error conditions and adopts parameter self-modifying Fuzzy-PID control to eliminate static errors under small error conditions. Simulation results show that the complex controller has faster response, higher accuracy, stronger robust, compared with the general PID controller. The AHP speed and robust requirements can be satisfied.

  19. Compare the results of Tuning of PID controller by using PSO and GA Technique for AVR system

    Anil Kumar , Dr. Rajeev Gupta

    2013-01-01

    This paper Present to design method fordetermining the optimal proportional-integral-derivative(PID) controller parameters of an Automatic VoltageRegulator (AVR) system using the particle swarmoptimization (PSO) algorithm and Genetic Algorithm (GA).The design goal is to minimize transient response byminimizing overshoot, settling time and rise time of stepresponse. The proposed approach had superior features,including easy implementation, stable convergencecharacteristic, and good computation...

  20. Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload.

    Sharma, Richa; Gaur, Prerna; Mittal, A P

    2015-09-01

    The robotic manipulators are multi-input multi-output (MIMO), coupled and highly nonlinear systems. The presence of external disturbances and time-varying parameters adversely affects the performance of these systems. Therefore, the controller designed for these systems should effectively deal with such complexities, and it is an intriguing task for control engineers. This paper presents two-degree of freedom fractional order proportional-integral-derivative (2-DOF FOPID) controller scheme for a two-link planar rigid robotic manipulator with payload for trajectory tracking task. The tuning of all controller parameters is done using cuckoo search algorithm (CSA). The performance of proposed 2-DOF FOPID controllers is compared with those of their integer order designs, i.e., 2-DOF PID controllers, and with the traditional PID controllers. In order to show effectiveness of proposed scheme, the robustness testing is carried out for model uncertainties, payload variations with time, external disturbance and random noise. Numerical simulation results indicate that the 2-DOF FOPID controllers are superior to their integer order counterparts and the traditional PID controllers. PMID:25896827

  1. Optimum PID Control of Multi-wing Attractors in A Family of Lorenz-like Chaotic Systems

    Acharya, Anish; Das, Saptarshi; Pan, Indranil

    2012-01-01

    Multi-wing chaotic attractors are highly complex nonlinear dynamical systems with higher number of index-2 equilibrium points. Due to the presence of several equilibrium points, randomness of the state time series for these multi-wing chaotic systems is higher than that of the conventional double wing chaotic attractors. A real coded Genetic Algorithm (GA) based global optimization framework has been presented in this paper, to design optimum PID controllers so as to control the state traject...

  2. A Novel Fractional Order Fuzzy PID Controller and Its Optimal Time Domain Tuning Based on Integral Performance Indices

    Das, Saptarshi; Pan, Indranil; Das, Shantanu; Gupta, Amitava

    2012-01-01

    A novel fractional order (FO) fuzzy Proportional-Integral-Derivative (PID) controller has been proposed in this paper which works on the closed loop error and its fractional derivative as the input and has a fractional integrator in its output. The fractional order differ-integrations in the proposed fuzzy logic controller (FLC) are kept as design variables along with the input-output scaling factors (SF) and are optimized with Genetic Algorithm (GA) while minimizing several integral error in...

  3. Dynamic characteristics research of pressurizer control system and PID parameters setting

    A mathematics model and simulation model of pressurizer pressure control system for nuclear power plant are established. The static and dynamic characteristics of the pressurizer pressure control system are researched under the condition of that the average coolant temperature changes +- 3 degree C and the outer load changes +- 10% of the rated power by step. The parameters of the Proportional, Integral and Differential (PID) controller are set too. As a result, if the proper parameters of the PID controller have been chosen, the static and dynamic character of pressurizer pressure control system can be greatly improved

  4. Application of low pass filtering PID control algorithm for plasma density control system in HT-7 tokamak

    PID control is the disciplinarian frequently used in feed-back control system, and the low pass filtering PID algorithm based on the digital filtering technology is presented. The principle of this algorithm and its realization are described. The feed-back control system for plasma density in HT-7 Tokamak is introduced. The algorithm enhances the control precision by filtering the noise intermingled in the error signal and is well used in the plasma density control system in HT-7 Tokamak. (authors)

  5. Energetically efficient proportional-integral-differential (PID) control of wake vortices behind a circular cylinder

    Das, Pramode K.; Mathew, Sam; Shaiju, A. J.; Patnaik, B. S. V.

    2016-02-01

    The control of vortex shedding behind a circular cylinder is a precursor to a wide range of external shear flow problems in engineering, in particular the flow-induced vibrations. In the present study, numerical simulation of an energetically efficient active flow control strategy is proposed, for the control of wake vortices behind a circular cylinder at a low Reynolds number of 100. The fluid is assumed to be incompressible and Newtonian with negligible variation in properties. Reflectionally symmetric controllers are designed such that, they are located on a small sector of the cylinder over which, tangential sliding mode control is imparted. In the field of modern controls, proportional (P), integral (I) and differential (D) control strategies and their numerous combinations are extremely popular in industrial practice. To impart suitable control actuation, the vertically varying lift force on the circular cylinder, is synthesised for the construction of an error term. Four different types of controllers considered in the present study are, P, I, PI and PID. These controllers are evaluated for their energetic efficiency and performance. A linear quadratic optimal control problem is formulated, to minimise the cost functional. By performing detailed simulations, it was observed that, the system is energetically efficient, even when the twin eddies are still persisting behind the circular cylinder. To assess the adaptability of the controllers, the actuators were switched on and off to study their dynamic response.

  6. Automatic PID Tuning Based on Genetic Algorithm for Botnia Soccer Robots

    Gong, Pengju

    2012-01-01

    Current PID parameters of botnia soccer robot are experiential predefined. Those PID parameters are fixed on different field surface, which make the PID controller cannot perform very well. To get appropriate PID parameters based on the specific field, the genetic algorithm was used to tune the PID parameters automatically. In this thesis, a genetic algorithm program used to tune botnia soccer robot PID parameters has been designed. Meanwhile, this design has been simulated with Matlab and...

  7. Multi-variable PID neural network decoupling algorithm in scrap copper smelting process control

    Li, Yingdao; Guan, Hongwei; Zhong, Weihong; Song, Zhihuan; Ma, Xiushui

    2010-12-01

    In order to eliminate the coupling between the loops for control in the system of scrap copper smelting, we propose the methods to built the dynamic models of inverter-fan-furnace pressure loop and natural gas and combustion air flow-air fuel ratio-furnace temperature loop based on data-driven, established the thought of multi-variable control model with the amount of scrap copper, gas flow and speed of fan as input, temperature and pressure of furnace as output, then use the method of PID neural network to decouple. Simulation results show that the control system be with the features of fast response, small overshoot and without static error, and also multi-variable PID neural network adjusts the connection weights based on the effect produced by the changes of object parameters, achieve the decoupling of the coupling variables effectively; as with reference to the PID control requirements, making the whole system be simple and standard.

  8. Control strategy for anaesthetic drug dosage with interaction among human physiological organs using optimal fractional order PID controller

    Das, Saptarshi; Das, Sourav; Maharatna, Koushik

    2014-01-01

    In this paper, an efficient control strategy for physiological interaction based anaesthetic drug infusion model is explored using the fractional order (FO) proportional integral derivative (PID) controllers. The dynamic model is composed of several human organs by considering the brain response to the anaesthetic drug as output and the drug infusion rate as the control input. Particle Swarm Optimisation (PSO) is employed to obtain the optimal set of parameters for PID/FOPID controller struct...

  9. Evolutionary Tuning Method for PID Controller Parameters of a Cruise Control System Using Metamodeling

    M. S. Mohamed Ali; M. N. Ab Malek

    2009-01-01

    For long time the optimization of controller parameters uses the well-known classical method such as the Ziegler-Nichols and the Cohen-Coon tuning techniques. Despite its effectiveness, these off-line tuning techniques can be time consuming especially for a case of complex nonlinear system. This paper attempts to show a great deal on how Metamodeling techniques can be utilized to tune the PID controller parameters quickly. Note that the plant use in this study is the cruise control system wit...

  10. Demonstration of the improved PID method for the accurate temperature control of ADRs

    Microcalorimeters require extreme stability (-bar 10μK) of thermal bath at low temperature (∼100mK). We have developed a portable adiabatic demagnetization refrigerator (ADR) system for ground experiments with TES microcalorimeters, in which we observed residual temperature between aimed and measured values when magnet current was controlled with the standard Proportional, Integral, and Derivative control (PID) method. The difference increases in time as the magnet current decreases. This phenomenon can be explained by the theory of the magnetic cooling, and we have introduced a new functional parameter to improve the PID method. With this improvement, long-term stability of the ADR temperature about 10μK rms is obtained up to the period of ∼15ks down to almost zero magnet current. We briefly describe our ADR system and principle of the improved PID method, showing the temperature control result. It is demonstrated that the controlled time of the aimed temperature can be extended by about 30% longer than the standard PID method in our system. The improved PID method is considered to be of great advantage especially in the range of small magnet current

  11. The fractional PID controllers tuned by genetic algorithms for expansion turbine in the cryogenic air separation process

    Bu?anovi? Ljubiša J.

    2014-01-01

    Full Text Available This paper deals with the design of a new algorithm of PID control based on fractional calculus (FC in production of technical gases, i.e. in a cryogenic air separation process. Production of low pressure liquid air was first introduced by P. L. Kapica and involved expansion in a gas turbine. For application in the synthesis of the control law, for the input temperature and flow of air to the expansion turbine, it is necessary to determine the appropriate differential equations of the cryogenic process of mixing of two gaseous airflows at different temperatures before entrance to the expansion turbine. Thereafter, the model is linearized and decoupled and consequently classical PID and fractional order controllers are taken to assess the quality of the proposed technique. A set of optimal parameters of these controllers are achieved through the genetic algorithm optimization procedure by minimizing a cost function. Our design method focuses on minimizing performance criterion which involves IAE, overshoot, as well as settling time. A time-domain simulation was used to identify the performance of controller with respect to a traditional optimized PID controller. [Projekat Ministarstva nauke Republike Srbije, br. 35006

  12. Numerical simulation and analysis of fuzzy PID and PSD control methodologies as dynamic energy efficiency measures

    Energy efficiency enhancement is achieved by utilizing control algorithms that reduce overshoots and undershoots as well as unnecessary fluctuations in the amount of energy input to energy consuming systems during transient operation periods. It is hypothesized that application of control methodologies with characteristics that change with time and according to the system dynamics, identified as dynamic energy efficiency measures (DEEM), achieves the desired enhancement. The objective of this study is to simulate and analyze the effects of fuzzy logic based tuning of proportional integral derivative (F-PID) and proportional sum derivative (F-PSD) controllers for a heating and cooling energy system while accounting for the dynamics of the major system components. The procedure to achieve the objective includes utilization of fuzzy logic rules to determine the PID and PSD controllers gain coefficients so that the control laws for regulating the heat exchangers heating or cooling energy inputs are determined in each time step of the operation period. The performances of the F-PID and F-PSD controllers are measured by means of two cost functions that are based on quadratic forms of the energy input and deviation from a set point temperature. It is found that application of the F-PID control algorithm, as a DEEM, results in lower costs for energy input and deviation from a set point temperature by 24% and 17% as compared to a PID and 13% and 8% as compared to a PSD, respectively. It is also shown that the F-PSD performance is better than that of the F-PID controller

  13. An Approach to Tune PID Fuzzy Logic Controllers Based on Reinforcement Learning

    Rezine, Hacene; Rabah, Louali; Faucher, J&#;rome; Maussion, Pascal

    2008-01-01

    On the whole, this paper provides some new and original headlines for the on-site tuning PID like fuzzy logic controllers.With the Broida methodology for conventional PID controllers; it is possible to obtain satisfying basic FPID. These settings depend only on two or three parameters (K, T and eventually ) extracting from an open-loop identification test of the process. A second set of pre-defined settings for the controllable factors FPID is proposed and selected from the reinforcement lear...

  14. Continuous Firefly Algorithm for Optimal Tuning of Pid Controller in Avr System

    Bendjeghaba, Omar

    2014-01-01

    This paper presents a tuning approach based on Continuous firefly algorithm (CFA) to obtain the proportional-integral- derivative (PID) controller parameters in Automatic Voltage Regulator system (AVR). In the tuning processes the CFA is iterated to reach the optimal or the near optimal of PID controller parameters when the main goal is to improve the AVR step response characteristics. Conducted simulations show the effectiveness and the efficiency of the proposed approach. Furthermore the proposed approach can improve the dynamic of the AVR system. Compared with particle swarm optimization (PSO), the new CFA tuning method has better control system performance in terms of time domain specifications and set-point tracking.

  15. PID controller auto-tuning based on process step response and damping optimum criterion.

    Pavković, Danijel; Polak, Siniša; Zorc, Davor

    2014-01-01

    This paper presents a novel method of PID controller tuning suitable for higher-order aperiodic processes and aimed at step response-based auto-tuning applications. The PID controller tuning is based on the identification of so-called n-th order lag (PTn) process model and application of damping optimum criterion, thus facilitating straightforward algebraic rules for the adjustment of both the closed-loop response speed and damping. The PTn model identification is based on the process step response, wherein the PTn model parameters are evaluated in a novel manner from the process step response equivalent dead-time and lag time constant. The effectiveness of the proposed PTn model parameter estimation procedure and the related damping optimum-based PID controller auto-tuning have been verified by means of extensive computer simulations. PMID:24035643

  16. Optimización de señal de control en reguladores PID con arquitectura antireset Wind-Up

    Ilber Adonayt Ruge Ruge

    2011-12-01

    Full Text Available This paper shows the reader the methods of tuning PID controllers Kayser-Rajka (KR and Astrom-Haglund (AH, with the aim of evaluatingtheir performance against some conventional methods like Ziegler-Nichols tuning (ZN. It also shows the method for improving the control signal based on the architecture Antireset Wind-Up.

  17. Study of PID Controller Based Pitch Actuator System for Variable Speed HAWT using MATLAB

    VISHAL T. MAKVANA, RINAL K. AHIR, DHAVAL K. PATEL, JITENDRA A. JADHAV

    2013-05-01

    Full Text Available As the energy demand and greenhouse gases emission is increasing day by day the popularity of renewable energy systems is also being raised. One of the most popular renewable energy systems over the past decade has been the wind energy or wind turbines. Wind turbine extracts kinetic energy from the wind. Currently much research has concentrated on improving the aerodynamic performance of wind turbine. Variable speed horizontal axis wind turbines use blade pitch control to meet specified objectives for three regions of operation named low wind, medium wind and high wind conditions. In this paper a control strategy is being developed for variable speed horizontal axis wind turbine which will allow the turbine to run at its maximum efficiency. For this purpose the PID controller based pitch actuator system is used to control the aerodynamic power of wind turbine. MATLAB Simulink power system tool is used to develop the model of PID controller. In this paper a model for the simulation of the PID controller based pitch actuator system is constructed using properly selected sub blocks. Step response of this PID controller based pitch actuator system will be analyzed. The above presented model can be a useful tool for wind power industry to study the behavior of wind turbines.

  18. Control de velocidad de un motor de CD con un controlador PID Wavenet

    Abraham Christian Pedroza Araujo

    2014-01-01

    Full Text Available El controlador más utilizado actualmente en la industria es el controlador PID. Sin embargo, el algoritmo PID lineal tiene bajo desempeño cuando el proceso a controlar presenta dinámicas complejas como zonas muertas y características no lineales. El funcionamiento del controlador PID en general, se basa en la actuación en forma proporcional, integral y derivativa sobre la señal de error e(t, definida como e(t = yref(t - y(t, con la finalidad de efectuar la señal de control u(t que manipula la salida del proceso en forma deseada como se muestra la Figura 1. Figura 1. Esquema de un control clásico. Figura 1. Esquema de un control clásico. Las constantes kp ki kd son las ganancias del PID. Existen distintas técnicas analíticas y experimentales con el fin de sintonizar esas ganancias. Una alternativa a este problema de sintonización es el controlador PID wavenet, donde por medio de una wavenet y un filtro IIR se estima la salida del sistema a controlar, lo cual se utiliza para re-sintonizar las ganancias de un PID discreto, todo esto en línea. Esta es la alternativa que se emplea en el presente trabajo de investigación y enfocada a la simulación y control de un motor de cd obteniendo resultados.

  19. Discrete-Time Fractional-Order PID Controller: Definition, Tuning, Digital Realization and Experimental Results

    Merrikh-Bayat, Farshad; Mirebrahimi, Seyedeh-Nafiseh; Khalili, Mohammad-Reza

    2014-01-01

    In some of the complicated control problems we have to use the controllers that apply nonlocal operators to the error signal to generate the control. Currently, the most famous controller with nonlocal operators is the fractional-order PID (FOPID). Commonly, after tuning the parameters of FOPID controller, its transfer function is discretized (for realization purposes) using the so-called generating function. This discretization is the origin of some errors and unexpected results in feedback ...

  20. Genetic algorithm-based fuzzy-PID control methodologies for enhancement of energy efficiency of a dynamic energy system

    The simplicity in coding the heuristic judgment of experienced operator by means of fuzzy logic can be exploited for enhancement of energy efficiency. Fuzzy logic has been used as an effective tool for scheduling conventional PID controllers gain coefficients (F-PID). However, to search for the most desirable fuzzy system characteristics that allow for best performance of the energy system with minimum energy input, optimization techniques such as genetic algorithm (GA) could be utilized and the control methodology is identified as GA-based F-PID (GA-F-PID). The objective of this study is to examine the performance of PID, F-PID, and GA-F-PID controllers for enhancement of energy efficiency of a dynamic energy system. The performance evaluation of the controllers is accomplished by means of two cost functions that are based on the quadratic forms of the energy input and deviation from a setpoint temperature, referred to as energy and comfort costs, respectively. The GA-F-PID controller is examined in two different forms, namely, global form and local form. For the global form, all possible combinations of fuzzy system characteristics in the search domain are explored by GA for finding the fittest chromosome for all discrete time intervals during the entire operation period. For the local form, however, GA is used in each discrete time interval to find the fittest chromosome for implementation. The results show that the global form GA-F-PID and local form GA-F-PID control methodologies, in comparison with PID controller, achieve higher energy efficiency by lowering energy costs by 51.2%, and 67.8%, respectively. Similarly, the comfort costs for deviation from setpoint are enhanced by 54.4%, and 62.4%, respectively. It is determined that GA-F-PID performs better in local from than global form.

  1. Avaliação de controles PID adaptativos para um sistema de aquecimento resistivo de água Evaluation of adaptive PID controls for a resistive system of heating water

    Maria Isabel Berto

    2004-09-01

    Full Text Available O trabalho consiste na implementação de um controle convencional PID/SISO-feedback para obter um ajuste fino na temperatura de entrada da água de aquecimento em um processo de pasteurização. Para isto utilizou-se uma resistência de 2500 Watts instalada na linha do fluido secundário da seção de aquecimento do pasteurizador e um Pt100 para a medição de sua temperatura. Como o comportamento desta temperatura em função de uma mesma perturbação degrau de potência na resistência é dependente da vazão de trabalho, objetivou-se encontrar um controle único para que a mesma fosse mantida no set-point desejado na faixa de operação de vazão da água do processo (300 a 700L/h. Três sintonias para o controlador adaptativo PID foram testadas: a primeira consistiu na implementação de uma função adaptativa dos parâmetros PID, ajustada através dos valores individuais obtidos para cada vazão de trabalho conforme metodologia da curva de reação do processo; a segunda consistiu em configurar os parâmetros do PID com os valores médios destes calculados individualmente para cada vazão, e a terceira consistiu na sintonia através de uma função adaptativa ajustada pelos parâmetros de sintonia obtidos pela metodologia de Aström & Hägglund. A avaliação do desempenho das sintonias dos controladores adaptativos foi realizada por comparação dos valores dos índices de erro, obtidos por perturbações do sistema em malha fechada na vazão de água. Os resultados obtidos mostraram que dentre as sintonias testadas, a terceira sintonia, popularmente conhecida como "Bang-Bang", apresentou menores oscilações e os menores valores dos índices de erros.The aim of this work is to implement a conventional PID/SISO feedback control to obtain a fine adjustment of the water inlet temperature at a pasteurization process. For that, a resistance of 2500 Watts and a Pt100 to measure the temperature were installed in the water inlet line of the pasteurizer heating section. As the water temperature behavior according to the same step change on the potency of the resistance depends on the working flow rate, a single controller was designed to keep this temperature at its desirable set-point, for the water flow rate, within the range of 300 to 700L/h. Three different tunings for the PID were tested: the first consisted on the implementation of a function for the calculation of the PID parameters fitted to individual values obtained from each flow rate, according to process reaction curve methodology; the second consisted on using the PID parameters calculated as the average of these individual values; at the third tuning, an adaptive function fitted with the individual parameters obtained with Aström & Hägglund methodology was used. The performance evaluation of the configured PID controllers was carried out by comparing the error index values, obtained after disturbances in the water flow rate in the closed loop system. The error indexes calculated after step changes in the water flow rate were used to evaluate the tunings. The results have shown that the third tuning, called "Bang Bang" presented minor oscillations and smaller error indexes compared to the other two methods.

  2. Supervisory System and Multivariable Control Applying Weighted Fuzzy-PID Logic in an Alcoholic Fermentation Process

    Márcio Mendonça

    2015-10-01

    Full Text Available In this work, it is analyzed a multivariate system control of an alcoholic fermentation process with no minimum phase. The control is made with PID classic controllers associated with a supervisory system based on Fuzzy Systems. The Fuzzy system, a priori, send set-points to PID controllers, but also adds protection functions, such as if the biomass valued is at zero or very close. The Fuzzy controller changes the campaign to prevent or mitigate the paralyzation of the process. Three control architectures based on Fuzzy Control Systems are presented and compared in performance with classic control in different campaigns. The third architecture, in particular, adds an adaptive function. A brief summary of Fuzzy theory and correlated works will be presented. And, finally simulations results, conclusions and future works end the article.

  3. Implementation of ON/OFF and PID controller using TCP Protocol Based on Virtual Instrumentation

    Abhyarthana Bisoyi , Umesh Chandra Pati

    2013-01-01

    LabVIEW(Laboratory Virtual InstrumentEngineering Workbench)isthe softwarewhichgives virtual existence ofhardware, reduces its costand hencetermed as Virtual Instrumentation.Thispaper deals with the implementation ofON/OFFand PID controller for controlling the temperatureof a heating element inside a wooden box with thehelp of LabVIEW. In this software,TransmissionControl Protocol (TCP)is used for developing anonline transmission processbetween client andserver. Client has control overthe set ...

  4. A hybrid PSO-PID approach for trajectory tracking application of a liquid level control process

    Turker Tekin Erguzel

    2015-07-01

    Full Text Available Water level control is a crucial step for steam generators (SG which are widely used to control the temperature of nuclear power plants. The control process is therefore a challenging task to improve the performance of water level control system. The performance assessment is another consideration to underline. In this paper, in order to get better control of water level, the nonlinear process was first expressed in terms of a transfer function (TF, a proportional-integral-derivative (PID controller was then attached to the model. The parameters of the PID controller was finally optimized using particle swarm optimization (PSO. Simulation results indicate that the proposed approach can make an effective tracking of a given level set or reference trajectory.

  5. Method’s and Test Stand for Electronic PID Controller

    Cristian Paul Chioncel

    2009-01-01

    Full Text Available The paper presents method’s and a testing stand for electronic controller using for this a signal generator and a digital oscilloscope respectively the virtual instrumentation and the signal acquisitions from the controllers input and output through an data acquisition board and an PC on that Lab View program runs.

  6. Method’s and Test Stand for Electronic PID Controller

    Cristian Paul Chioncel; Petru Chioncel; Nicoleta Gillich; Ovidiu Tirian

    2009-01-01

    The paper presents method’s and a testing stand for electronic controller using for this a signal generator and a digital oscilloscope respectively the virtual instrumentation and the signal acquisitions from the controllers input and output through an data acquisition board and an PC on that Lab View program runs.

  7. Immune algorithm based active PID control for structure systems

    An immune algorithm is a kind of evolutional computation strategies, which is developed in the basis of a real immune mechanism in the human body. Recently, scientific or engineering applications using this scheme are remarkably increased due to its significant ability in terms of adaptation and robustness for external disturbances. Particularly, this algorithm is efficient to search optimal parameters against complicated dynamic systems with uncertainty and perturbation. In this paper, we investigate an immune algorithm embedded Proportional Integral Derivate (called IPID) control, in which an optimal parameter vector of the controller is determined offline by using a cell-mediated immune response of the immunized mechanism. For evaluation, we apply the proposed control to mitigation of vibrations for nonlinear structural systems, cased by external environment load such as winds and earthquakes. Comparing to traditional controls under same simulation scenarios, we demonstrate the innovation control is superior especially in robustness aspect

  8. A Conformal Mapping Based Fractional Order Approach for Sub-optimal Tuning of PID Controllers with Guaranteed Dominant Pole Placement

    Saha, Suman; Das, Shantanu; Gupta, Amitava

    2012-01-01

    A novel conformal mapping based Fractional Order (FO) methodology is developed in this paper for tuning existing classical (Integer Order) Proportional Integral Derivative (PID) controllers especially for sluggish and oscillatory second order systems. The conventional pole placement tuning via Linear Quadratic Regulator (LQR) method is extended for open loop oscillatory systems as well. The locations of the open loop zeros of a fractional order PID (FOPID or PI{\\lambda}D{\\mu}) controller have been approximated in this paper vis-\\`a-vis a LQR tuned conventional integer order PID controller, to achieve equivalent integer order PID control system. This approach eases the implementation of analog/digital realization of a FOPID controller with its integer order counterpart along with the advantages of fractional order controller preserved. It is shown here in the paper that decrease in the integro-differential operators of the FOPID/PI{\\lambda}D{\\mu} controller pushes the open loop zeros of the equivalent PID cont...

  9. Optimization of PID Controller for Brushless DC Motor by using Bio-inspired Algorithms

    Sanjay Kr. Singh

    2014-02-01

    Full Text Available This study presents the use and comparison of various bio-inspired algorithms for optimizing the response of a PID controller for a Brushless DC Motor in contrast to the conventional methods of tuning. For the optimization of the PID controllers Genetic Algorithm, Multi-objective Genetic Algorithm and Simulated Annealing have been used. PID controller tuning with soft-computing algorithms comprises of obtaining the best possible outcome for the three PID parameters for improving the steady state characteristics and performance indices like overshoot percentage, rise time and settling time. For the calculation and simulation of the results the Brushless DC Motor model, Maxon EC 45 flat ф 45 mm with Hall Sensors Motor has been used. The results obtained the optimization using Genetic Algorithms, Multi-objective Genetic Algorithm and Simulated Annealing is compared with the ones derived from the Ziegler-Nichols method and the MATLAB SISO Tool. And it is observed that comparatively better results are obtained by optimization using Simulated Annealing offering better steady state response.

  10. Multi-stage fuzzy PID power system automatic generation controller in deregulated environments

    In this paper, a multi-stage fuzzy proportional integral derivative (PID) type controller is proposed to solve the automatic generation control (AGC) problem in a deregulated power system that operates under deregulation based on the bilateral policy scheme. In each control area, the effects of the possible contracts are treated as a set of new input signals in a modified traditional dynamical model. The multi-stage controller uses the fuzzy switch to blend a proportional derivative (PD) fuzzy logic controller with an integral fuzzy logic input. The proposed controller operates on fuzzy values passing the consequence of a prior stage on to the next stage as fact. The salient advantage of this strategy is its high insensitivity to large load changes and disturbances in the presence of plant parameter variations and system nonlinearities. This newly developed strategy leads to a flexible controller with simple structure that is easy to implement, and therefore, it can be useful for the real world power systems. The proposed method is tested on a three area power system with different contracted scenarios under various operating conditions. The results of the proposed controller are compared with those of the classical fuzzy PID type controller and classical PID controller through some performance indices to illustrate its robust performance

  11. A Comparative Analysis of Integrated Boost Flyback Converter using PID and Fuzzy Controller

    R. Samuel Rajesh Babu

    2015-01-01

    This paper presents a comparative analysis of Integrated boost flyback converter for Renewable energy System. IBFC is the combination of boost converter and fly back converter. The proposed converter is simulated in open and closed loop using PID and FUZZY controller. The Fuzzy Logic Controller (FLC) is used reduce the rise time, settling time to almost negligible and try to remove the delay time and inverted response. The performance of IBFC with fuzzy logic controller  is found better inste...

  12. PID Controller Settings Based on a Transient Response Experiment

    Silva, Carlos M.; Lito, Patricia F.; Neves, Patricia S.; Da Silva, Francisco A.

    2008-01-01

    An experimental work on controller tuning for chemical engineering undergraduate students is proposed using a small heat exchange unit. Based upon process reaction curves in open-loop configuration, system gain and time constant are determined for first order model with time delay with excellent accuracy. Afterwards students calculate PID…

  13. An optimal PID controller via LQR for standard second order plus time delay systems.

    Srivastava, Saurabh; Misra, Anuraag; Thakur, S K; Pandit, V S

    2016-01-01

    An improved tuning methodology of PID controller for standard second order plus time delay systems (SOPTD) is developed using the approach of Linear Quadratic Regulator (LQR) and pole placement technique to obtain the desired performance measures. The pole placement method together with LQR is ingeniously used for SOPTD systems where the time delay part is handled in the controller output equation instead of characteristic equation. The effectiveness of the proposed methodology has been demonstrated via simulation of stable open loop oscillatory, over damped, critical damped and unstable open loop systems. Results show improved closed loop time response over the existing LQR based PI/PID tuning methods with less control effort. The effect of non-dominant pole on the stability and robustness of the controller has also been discussed. PMID:26654724

  14. Research and Simulation Analysis of Car Following System Based Fuzzy PID Control

    Xiaoju Lu

    2013-01-01

    Full Text Available Fuzzy PID has advantages that do not need to make accurate mathematical model and has a strong capacity of resisting disturbance. Auto adaptive cruise control system has been researched and has been built into a model of simulation, which are based of Fuzzy PID algorithm within the tool of simulink in this study. The system which is based on simple longitudinal dynamics of vehicle takes advantage of the relation between driving force and velocity to solve the problem that following when the vehicle is driving. The advantage of the system has simple model that controls the velocity of following vehicle through only controlling driving force and the model is without relating braving and throttle of vehicle. The results of simulating demonstrates that following system which its inputs of controller are the error of distance and the relative velocity between leading car and following car has a quite good character of following, fast response and safety performance.

  15. HYBRID SYSTEM BASED FUZZY-PID CONTROL SCHEMES FOR UNPREDICTABLE PROCESS

    M.K. Tan

    2011-07-01

    Full Text Available In general, the primary aim of polymerization industry is to enhance the process operation in order to obtain high quality and purity product. However, a sudden and large amount of heat will be released rapidly during the mixing process of two reactants, i.e. phenol and formalin due to its exothermic behavior. The unpredictable heat will cause deviation of process temperature and hence affect the quality of the product. Therefore, it is vital to control the process temperature during the polymerization. In the modern industry, fuzzy logic is commonly used to auto-tune PID controller to control the process temperature. However, this method needs an experienced operator to fine tune the fuzzy membership function and universe of discourse via trial and error approach. Hence, the setting of fuzzy inference system might not be accurate due to the human errors. Besides that, control of the process can be challenging due to the rapid changes in the plant parameters which will increase the process complexity. This paper proposes an optimization scheme using hybrid of Q-learning (QL and genetic algorithm (GA to optimize the fuzzy membership function in order to allow the conventional fuzzy-PID controller to control the process temperature more effectively. The performances of the proposed optimization scheme are compared with the existing fuzzy-PID scheme. The results show that the proposed optimization scheme is able to control the process temperature more effectively even if disturbance is introduced.

  16. Methods of integral saturation elimination in automatic regulation systems with PID-controllers

    Дмитро Олегович Кроніковський

    2014-01-01

    The effect of integral saturation that reduces the quality of regulation appears with classic PID-controller usage in the real conditions.The pulp dryer of sugar factory as the real object of automation is considered. The impact of integral saturation is demonstrated based on the control processes modeling in pulp dryer. A modern methods to eliminate the integral saturation are considered. 

  17. Optimization of PID controller based on The Bees Algorithm for one leg of a quadruped robot

    Bakırcıoğlu Veli; Arif Şen M.; Kalyoncu Mete

    2016-01-01

    In this paper, we apply The Bees Algorithm to find optimal PID controller gains to control angular positions of robot leg joints with the minimum position error. In order to present more realistic simulation, system modelled in MATLAB/Simulink environment which is close to experimental set up. Solid model of system, which has two degrees of freedom, drawn by using a CAD software. Required physical specifications of robot leg for MATLAB/Simulink modelling is obtained from this CAD model. Contr...

  18. MPC-based auto-tuned PID controller for the steam generator water level

    In this work, proportional-integral-derivative (PID) control gains are automatically tuned by using a model predictive control (MPC) method. The MPC has received much attention as a powerful tool for the control of industrial process systems. An MPC-based PID controller can be derived from the second order linear model of a process. The steam generator is usually described by the well-known 4th order linear model which consists of the mass capacity, reverse dynamics and mechanical oscillations terms. But the important terms in this linear model are the mass capacity and reverse dynamics terms, both of which can be described by a 2nd order linear system. The proposed auto-tuned PID controller was applied to a linear model of steam generators. The parameters of a linear model for steam generators are very different according to the power levels. The proposed controller showed good performance for the water level deviation and sudden steam flow disturbances that are typical in the existing power plants by changing only the input-weighting factor according to the power level

  19. PID temperature controller in pig nursery: improvements in performance, thermal comfort, and electricity use

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Sartor, Karina

    2015-12-01

    The use of smarter temperature control technologies in heating systems can optimize the use of electric power and performance of piglets. Two control technologies of a resistive heating system were assessed in a pig nursery: a PID (proportional, integral, and derivative) controller and a thermostat. The systems were evaluated regarding thermal environment, piglet performance, and use of electric power for 99 days. The heating system with PID controller improved the thermal environment conditions and was significantly (P < 0.001) more efficient in terms of electricity use to produce 1 kg of body weight (2.88 kWh kg-1), specific cost (0.75 R kg-1), weight gain (7.3 kg), daily weight gain (0.21 kg day-1), and feed conversion (1.71) than the system with thermostat (3.98 kWh kg-1; 1.03 R kg-1; 5.2 kg; 0.15 kg day-1, and 2.62, respectively). The results indicate that the PID-controlled heating system is more efficient in electricity use and provides better conditions for thermal comfort and animal performance than heating with thermostat.

  20. Regular self-oscillating and chaotic behaviour of a PID controlled gimbal suspension gyro

    The dynamics of a gyro in gimbal with a PID controller to obtain steady state, self-oscillating and chaotic motion is considered in this paper. The mathematical model of the whole system is deduced from the gyroscope nutation theory and from a feedback control system formed by a PID controller with constrained integral action. The paper shows that the gyro and the associated PID feedback control system have multiple equilibrium points, and from the analysis of a Poincare-Andronov-Hopf bifurcation at the equilibrium points, it is possible to deduce the conditions, which give regular and self-oscillating behaviour. The calculation of the first Lyapunov value is used to predict the motion of the gyro in order to obtain a desired equilibrium point or self-oscillating behaviour. The mechanism of the stability loss of the gyro under small vibrations of the gyro platform and the appearance of chaotic motion is also presented. Numerical simulations are performed to verify the analytical results

  1. Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach

    Despite the popularity, the tuning aspect of proportional-integral-derivative (PID) controllers is a challenge for researchers and plant operators. Various controllers tuning methodologies have been proposed in the literature such as auto-tuning, self-tuning, pattern recognition, artificial intelligence, and optimization methods. Chaotic optimization algorithms as an emergent method of global optimization have attracted much attention in engineering applications. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from local optimum, is a promising tool for engineering applications. In this paper, a tuning method for determining the parameters of PID control for an automatic regulator voltage (AVR) system using a chaotic optimization approach based on Lozi map is proposed. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. Simulation results are promising and show the effectiveness of the proposed approach. Numerical simulations based on proposed PID control of an AVR system for nominal system parameters and step reference voltage input demonstrate the good performance of chaotic optimization.

  2. A PSO-PID quaternion model based trajectory control of a hexarotor UAV

    Artale, Valeria; Milazzo, Cristina L. R.; Orlando, Calogero; Ricciardello, Angela

    2015-12-01

    A quaternion based trajectory controller for a prototype of an Unmanned Aerial Vehicle (UAV) is discussed in this paper. The dynamics of the UAV, a hexarotor in details, is described in terms of quaternion instead of the usual Euler angle parameterization. As UAV flight management concerns, the method here implemented consists of two main steps: trajectory and attitude control via Proportional-Integrative-Derivative (PID) and Proportional-Derivative (PD) technique respectively and the application of Particle Swarm Optimization (PSO) method in order to tune the PID and PD parameters. The optimization is the consequence of the minimization of a objective function related to the error with the respect to a proper trajectory. Numerical simulations support and validate the proposed method.

  3. A novel memristive multilayer feedforward small-world neural network with its applications in PID control.

    Dong, Zhekang; Duan, Shukai; Hu, Xiaofang; Wang, Lidan; Li, Hai

    2014-01-01

    In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN) inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme. PMID:25202723

  4. Incorporation of fractional-order dynamics into an existing PI/PID DC motor control loop.

    Tepljakov, Aleksei; Gonzalez, Emmanuel A; Petlenkov, Eduard; Belikov, Juri; Monje, Concepción A; Petráš, Ivo

    2016-01-01

    The problem of changing the dynamics of an existing DC motor control system without the need of making internal changes is considered in the paper. In particular, this paper presents a method for incorporating fractional-order dynamics in an existing DC motor control system with internal PI or PID controller, through the addition of an external controller into the system and by tapping its original input and output signals. Experimental results based on the control of a real test plant from MATLAB/Simulink environment are presented, indicating the validity of the proposed approach. PMID:26639053

  5. Control of a production-inventory system using a pid and demand prediction based controller

    S., Tosetti; D., Patiño; F., Capraro; A., Gambier.

    2009-10-01

    Full Text Available The need of reducing inventory levels as much as possible without loosing sales opportunities is an important goal not only for small but also for mid-size and large companies, on account of the high costs associated with large inventory stocks. In general, the performance of inventory systems is al [...] so affected by the Bullwhip effect caused, among other factors, by non-zero lead times. This paper proposes an automatic pipeline feedback order-based production control system (APIOBPCS) considering a demand with cyclic and stochastic components. The dynamics and delays of the production process are modeled as a pure delay. The control system structure consists of a PID controller and demand prediction based on an Extended Kalman Filter (EKF). The main objective of the controller is to stabilize and regulate the inventory levels about a desired set-point. The extended Kalman Filter estimates the parameters of a Volterra time-series model to predict future values of the demand. The control system is evaluated by simulations, showing a good performance and better results than those achieved by using traditional inventory control techniques.

  6. Design of Fuzzy Controllers

    Jantzen, Jan

    1998-01-01

    Design of a fuzzy controller requires more design decisions than usual, for example regarding rule base, inference engine, defuzzification, and data pre- and post processing. This tutorial paper identifies and describes the design choices related to single-loop fuzzy control, based on an internat...... international standard which is underway. The paper contains also a design approach, which uses a PID controller as a starting point. A design engineer can view the paper as an introduction to fuzzy controller design.......Design of a fuzzy controller requires more design decisions than usual, for example regarding rule base, inference engine, defuzzification, and data pre- and post processing. This tutorial paper identifies and describes the design choices related to single-loop fuzzy control, based on an...

  7. Cascade sliding mode-PID controller for a coupled-inductor boost converter

    Carrero Candelas, Niliana Andreina; Batlle Arnau, Carles; Fossas Colet, Enric

    2013-01-01

    In this paper, a coupled-inductor Boost converter is modelled as a piece-wise complementarity system and controlled by means of two loops: a sliding mode control inner loop and an experimentally tuned PID outer loop control. The aim of the closed loop system is to regulate the output voltage of the coupled-inductor Boost converter. The control is carried out using the piece-wise complementarity model of the converter, which takes into account its hybrid dynamic. In addition, the performance a...

  8. Power-Stabilization of High Frequency Gyrotrons Using a Double PID Feedback Control for Applications to High Power THz Spectroscopy

    Idehara, Toshitaka; Kuleshov, Alexei; Ueda, Keisuke; Khutoryan, Eduard

    2013-11-01

    High stabilization of the output power of high frequency gyrotrons for high power THz spectroscopy is an important issue in order to extend the applications of gyrotrons to wider subjects. For this objective, we tried a PID feedback control on a heater current of a triode magnetron injection gun (MIG) for stabilization of an electron beam current and an additional PID control of an anode voltage of the gun for direct stabilization of output power. This double PID control achieved effective responses for the stabilization of output power in both slow (from several tens seconds to several minutes) and fast (from milliseconds to seconds) time scales.

  9. Temperature control of a steam generator by means of an hybrid system PID-RLC; Control de las temperaturas de un generador de vapor mediante un sistema hibrido PID-RLC

    Palomares Gonzalez, Daniel; Garcia Mendoza, Raul [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    A description is made of the design and evaluation of an hybrid control system, formed by a quadratic gaussian linear regulator (QLR) and proportional integral derivative (PID) type regulators. This scheme is used to control the reheater and secondary superheater steam temperatures of a steam generator model with a maximum capacity of 2,150,000 pounds per hour. Once applied to the model of a 300 MW steam power plant, this system showed better results than the traditional schemes and inclusively better than some modern control schemes. This fact characterizes it as a high potential system to be applied to steam power plants. [Espanol] Se describe el diseno y la evaluacion de un sistema de control hibrido, formado por un regulador lineal cuadratico gaussiano (RLC) y reguladores tipo proporcional integral derivativo (PID). Este esquema se utiliza para controlar las temperaturas de vapor del recalentador y sobrecalentador secundario del modelo de un generador de vapor con capacidad maxima de 2,150,000 libras por hora. Una vez aplicado al modelo de una unidad termoelectrica de 300 MW, este sistema produjo mejores resultados que los esquemas tradicionales e incluso mejores que algunos esquemas de control moderno. Esto lo caracteriza como un sistema con un alto potencial para aplicarse a unidades termoelectricas.

  10. Performance Enhancement of a Dynamic System Using PID Controller Tuning Formulae

    Jyotiprakash Patra

    2011-09-01

    Full Text Available The proportional integral derivative (PID controller is the most dominant form of automatic controller in industrial use today. With this technique, it is necessary to adjust the controller parameters according to the nature of the process. Thus, for effective control of a HVDC system, for example, specific values need to be chosen for the P, I and D parameters, which will be different for the values required to control, for example, an induction motor drive. This tailoring of controller to process is known as controller tuning. Controller tuning is easily and effectively performed using tuning rules (i.e. formulae for controller tuning, based on process information. Such tuning rules allow the easy set up of controllers to achieve optimum performance at commissioning. Importantly, they allow ease of re -commissioning if the characteristics of the process change. The paper communicates the results of recent work in the collation of industry-relevant PI and PID controller tuning rules, which may be applied to a variety of applications in power electronics, machines and drives.

  11. PID temperature controller and heating assembly for superheated liquid neutron sensor

    Superheated drop detector developed by DL, Jodhpur works on bubble chamber principle. Such type of detector for personal neutron dosimetry is commercially available. The above neutron dosimeter is temperature dependent and it is quite difficult to compensate for temperature in extreme environment. An attempt is made to develop a PID temperature controller along with heating assembly for neutron survey meter so as to cover the vide neutron energy response. The details of temperature controller circuit and heating assembly are highlighted in the present paper with the results obtained using R-114 sensor liquid. (author)

  12. Self-Tuning PID controller for autonomous car tracking in urban traffic

    Alonso, Luciano; Juan P. Oria; Al-Hadithi, Basil M.; Jiménez Avello, Agustín

    2013-01-01

    In this paper an on line self-tuned PID controller is proposed for the control of a car whose goal is to follow another one, at distances and speeds typical in urban traffic. The bestknown tuning mechanism is perhaps the MIT rule, due to its ease of implementation. However, as it is well known, this method does not guarantee the stability of the system, providing good results only for constant or slowly varying reference signals and in the absence of noise, which are unrealistic conditions...

  13. Velocity relaxed and craziness-based swarm optimized intelligent PID and PSS controlled AVR system

    Chatterjee, A.; Mukherjee, V. [Department of Electrical Engineering, Asansol Engineering College, Asansol, Vivekananda Sarani, Kanyapur, West Bengal 713305 (India); Ghoshal, S.P. [Department of Electrical Engineering, National Institute of Technology, Durgapur, West Bengal 713209 (India)

    2009-09-15

    This paper explores a comparative performance study of two new classes of particle swarm optimization techniques, one with velocity update relaxation (VURPSO) and the other based on novel position, velocity updating strategy and craziness (CRPSO). Both VURPSO and CRPSO highly enhance searching ability. Genetic algorithm (GA) is considered for the sake of comparison. Finally, it is revealed that while applying in two power systems applications (PID controlled AVR system, PSS controlled AVR system), VURPSO exhibits better transient performance than CRPSO/GA. For on-line, off-nominal conditions, Takagi Sugeno fuzzy logic is applied to obtain on-line responses for both the system models. (author)

  14. Modeling and Simulation of Control Actuation System with Fuzzy-PID Logic Controlled Brushless Motor Drives for Missiles Glider Applications

    Murali Muniraj; Ramaswamy Arulmozhiyal

    2015-01-01

    A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage m...

  15. A Conformal Mapping Based Fractional Order Approach for Sub-optimal Tuning of PID Controllers with Guaranteed Dominant Pole Placement

    Saha, Suman; Das, Saptarshi; Das, Shantanu; Gupta, Amitava

    2012-01-01

    A novel conformal mapping based Fractional Order (FO) methodology is developed in this paper for tuning existing classical (Integer Order) Proportional Integral Derivative (PID) controllers especially for sluggish and oscillatory second order systems. The conventional pole placement tuning via Linear Quadratic Regulator (LQR) method is extended for open loop oscillatory systems as well. The locations of the open loop zeros of a fractional order PID (FOPID or PI{\\lambda}D{\\mu}) controller have...

  16. Research on Fuzzy Immune Self-Adaptive PID Algorithm Based on New Smith Predictor for Networked Control System

    Haitao Zhang; Jinbo Hu; Wenshao Bu

    2015-01-01

    We first analyze the effect of network-induced delay on the stability of networked control systems (NCSs). Then, aiming at stochastic characteristics of the time delay, we introduce a new Smith predictor to remove the exponential function with the time delay in the closed-loop characteristic equation of the NCS. Furthermore, we combine the fuzzy PID algorithm with the fuzzy immune control algorithm and present a fuzzy immune self-adaptive PID algorithm to compensate the influence of the model...

  17. H-GA-PSO Method for Tuning of a PID Controller for a Buck-Boost Converter Modeled with a New Method of Signal Flow Graph Technique

    Leila Mohammadian

    2015-03-01

    Full Text Available In this paper, a new method of signal flow graph technique and Mason’s gain formula are applied for extracting the model and transfer functions from control to output and from input to output of a buck-boost converter. In order to investigate necessity of a controller for the converter with assumed parameters, the frequency and time domain analysis is done and the open loop system characteristics are verified. In addition, the needed closed loop controlled system specifications are determined. Moreover, designing a controller for the mentioned converter system based on the extracted model is discussed. For this purpose, a proportional-integral-derivative (PID controller is designed and the hybrid of genetic algorithm (GA and particle swarm optimization (PSO, called H-GA-PSO method is used for tuning of the PID controller. Finally, the simulation results are used to show the performance of the proposed modeling and regulation methods.

  18. Genetic design of interpolated non-linear controllers for linear plants

    The techniques of genetic algorithms are proposed as a means of designing non-linear PID control systems. It is shown that the use of genetic algorithms for this purpose results in highly effective non-linear PID control systems. These results are illustrated by using genetic algorithms to design a non-linear PID control system and contrasting the results with an optimally tuned linear PID controller. (author)

  19. Reducing the energy consumption of an earth–air heat exchanger with a PID control system

    Highlights: • The application of control actions to green technologies has been simulated. • Energy consumption of green technologies can be reduced even more. • The efficiency of green technologies can be raised. • Environmental concerns can be diminished. • The sustainability of the planet can be increased. - Abstract: Reducing environmental emissions is one of the challenges that human being has to overcome. It can only be reached with a proper energetic efficiency and management of the processes that exist in the society nowadays. Several academic works have mentioned that raising the efficiency of a process it also increases sustainability and in turn decreases the environmental impact. One process that requires much attention is the cooling and heating of buildings; this process contributes to the major part of the electric bill, in particular, if a conventional and old air conditioning is used as commonly occurs in many countries. In recent years there have been developed new alternatives that are used in few countries, such as the earth–air heat exchanger, where air is passed through a heat exchanger buried a few meters below the ground. The heat exchanger takes advantage of the well-known difference between the temperature of the surrounding air and the temperature of the ground for cooling or heating the air that is subsequently injected into the buildings. This process requires less energy, then in the present work is thought that a PID (Proportional, Integral and Derivative) controller can be applied to an earth–air heat exchanger to reduce even more the energy consumption. Therefore, a simulation of a thermodynamic model of an earth–air heat exchanger was done and used along with a PID controller, to estimate savings in energy consumption. The results show that the energy consumption can be reduced up to 87% with the PID control, hence the efficiency of the process is increased as well as the sustainability of the planet and thus the environmental concerns are diminished

  20. Uso de controlador PID como tecnologia eficiente em sistema de aquecimento de creche suína / Use of PID controller as efficient technology in heating system of swine nursery

    Juliana de S. G., Barros; Luiz A., Rossi; Karina, Sartor.

    2015-05-01

    Full Text Available O uso racional de energia elétrica em creches suínas pode ser viabilizado sem afetar o desempenho produtivo dos animais visando à sustentabilidade do setor razão por que o objetivo deste trabalho foi avaliar a eficiência de duas tecnologias de controle de temperatura em sistema de aquecimento resist [...] ivo em creche suína, no uso de energia elétrica e no ganho de peso dos leitões. Os sistemas avaliados foram: resistências elétricas suspensas com controle PID (proporcional, integral e derivativo) e resistências elétricas suspensas com termostato. O experimento foi realizado durante o período de inverno, entre maio e setembro de 2013. Os critérios de comparação foram: consumo de energia elétrica (kWh), consumo específico (kWh kg-1), custo específico (R$ kg-1), indicador de eficiência elétrica no aquecimento, ganho de peso (kg) e ganho de peso diário (kg d-1). O sistema de aquecimento com controlador PID, apesar de apresentar maior consumo médio, foi mais eficiente quanto ao uso de energia elétrica para produzir 1 kg de peso vivo (2,88 kWh kg-1), quanto ao custo específico (0,75 R$ kg-1) e quanto ao ganho de peso dos leitões (7,3 kg) em comparação com o sistema com termostato (3,98 kWh kg-1, 1,03 R$ kg-1 e 5,2 kg, respectivamente). Abstract in english The rational use of energy in swine nurseries can be made possible without affecting the productive performance of animals, aiming the sustainability of the sector. The objective of this study was to evaluate the efficiency of two technologies for temperature control of resistive heating system for [...] swine nursery on the use of electricity by the systems and on the weight gain of the piglets. The evaluated systems were: overhead electric heaters with PID (proportional, integral and derivative) control and suspended electric heaters with thermostat. The experiment was conducted during the winter period between May and September 2013. The comparison criteria were: electricity consumption (kWh), specific consumption (kWh kg-1), specific cost (R$ kg-1), indicator of electrical efficiency in heating, weight gain (kg) and daily weight gain (kg d-1). The heating system with PID controller, although showed a higher average consumption, was more efficient as the electricity used to produce 1 kg of body weight (2,88 kWh kg-1), as the specific cost (0,75 R$ kg-1) and for weight gain of piglets (7,3 kg) compared to the system with thermostat (3,98 kWh kg-1, 1,03 R$ kg-1 and 5,2 kg, respectively).

  1. Research on PID controller with input shaping algorithm for linear motor

    Liu, Yang; Dong, Yue; Fan, Wenchao; Fu, Zhenxian

    2015-02-01

    The reticle stage of lithography is a high precision servo motion platform, which requires using macro movement of linear motor and micro movement of voice coil motor to realize an nm-level positioning precision and tracking. In order to increase the control effect and response speed of macro movement linear motor of reticle stage of lithography, the paper presents an efficient control for linear motor. The method use input shaping technique with Proportional Integral Derivative (PID) controller to realize the high position precision in small stetting time. In the paper we firstly build the linear motor mathematical modeling which is end to velocity loop or position loop. so that we mainly focus on the tracking of speed signal. Then a PID controller is introduced in the system, which is high frequency used in industrial control. Finally, as the need of high positioning precision and small stetting time, we apply input shaping algorithm to solve the problem. The simulation of the system is performed by using MATLAB/Simulation. The evaluation of the method is the performance of input tracking capability.

  2. PSO-tuned PID controller for coupled tank system via priority-based fitness scheme

    Jaafar, Hazriq Izzuan; Hussien, Sharifah Yuslinda Syed; Selamat, Nur Asmiza; Abidin, Amar Faiz Zainal; Aras, Mohd Shahrieel Mohd; Nasir, Mohamad Na'im Mohd; Bohari, Zul Hasrizal

    2015-05-01

    The industrial applications of Coupled Tank System (CTS) are widely used especially in chemical process industries. The overall process is require liquids to be pumped, stored in the tank and pumped again to another tank. Nevertheless, the level of liquid in tank need to be controlled and flow between two tanks must be regulated. This paper presents development of an optimal PID controller for controlling the desired liquid level of the CTS. Two method of Particle Swarm Optimization (PSO) algorithm will be tested in optimizing the PID controller parameters. These two methods of PSO are standard Particle Swarm Optimization (PSO) and Priority-based Fitness Scheme in Particle Swarm Optimization (PFPSO). Simulation is conducted within Matlab environment to verify the performance of the system in terms of settling time (Ts), steady state error (SSE) and overshoot (OS). It has been demonstrated that implementation of PSO via Priority-based Fitness Scheme (PFPSO) for this system is potential technique to control the desired liquid level and improve the system performances compared with standard PSO.

  3. Photovoltaic System Regulation Based on a PID Fuzzy Controller to Ensure a Fixed Settling Time

    Paula A. Ortiz-Valencia

    2013-11-01

    Full Text Available The main objective of the controllers in photovoltaic systems (PV is to ensure the maximum extraction of the available power. Those controllers usually combine the action of a maximum power point tracking algorithm (MPPT with a voltage regulator, which has the function of rejecting disturbances at the panel terminals. Such controllers are commonly based on PI and PID structures, it requiring linearized models at an operating point. But, due to disturbances generated by the environment and the load, the operating point of the system changes drastically, which hinder to obtain the desired system performance. This paper proposes to regulate the PV system using a Fuzzy PID controller, which adapts to changes in solar irradiance and load oscillations. This characteristic guarantees a constant settling time, which is required to precisely define the period of the MPPT algorithm. In the case of classical linear controllers, the period of the MPPT algorithm is set to the worst case (longest period which generates additional power losses by slowing down the tracking of the optimal operating point. Therefore, the solution proposed in this paper improves the overall system efficiency. Finally, such a solution is validated through simulations in Matlab®.

  4. Fuzzy PID Controllers Using Matlab GUI Based for Real Time DC Motor Speed Control

    Suhas Yadav*1

    2014-01-01

    In this paper, an integrated electronic system has been designed, constructed and tested. Controlling DC (Direct current) Motor drive is design and development of real time MATLAB –GUI based using fuzzy logic controller. First, a controller is designed according to fuzzy rules such that the systems are fundamentally robust. To obtain the globally optimal values, parameters of the fuzzy controller are improved by MATLAB-GUI based FLC and IFLC algorithms optimization model. Comp...

  5. Holistic indices for productivity control assessment, applied to the comparative analysis of PID and fuzzy controllers within an Isasmelt furnace

    Ojeda Sarmiento, Juan Manuel; Fuertes Armengol, José Mª; Griful Ponsati, Eulàlia

    2014-01-01

    This research aims to contribute to the analysis of control performance assessment in extractive metallurgy. Productivity-based indices are proposed in addition to current measuring techniques. Such criteria are employed to compare conventional PID and fuzzy-based controllers in copper smelting. This process is mathematically modeled in order to be simulated. The comparison confirms a better performance of the fuzzy controller in dealing with the molten bath temperature within an Isasmelt fur...

  6. Implementation of ON/OFF and PID controller using TCP Protocol Based on Virtual Instrumentation

    Abhyarthana Bisoyi , Umesh Chandra Pati

    2013-03-01

    Full Text Available LabVIEW(Laboratory Virtual InstrumentEngineering Workbenchisthe softwarewhichgives virtual existence ofhardware, reduces its costand hencetermed as Virtual Instrumentation.Thispaper deals with the implementation ofON/OFFand PID controller for controlling the temperatureof a heating element inside a wooden box with thehelp of LabVIEW. In this software,TransmissionControl Protocol (TCPis used for developing anonline transmission processbetween client andserver. Client has control overthe set point andServer has control over the temperature. Inhardware section, a DataAcquisition (DAQ cardreads temperature from sensor and delivers toServer. With the help of internet protocol,clientprovides the value ofset point according to whichthe control actions aretaken by the server.Thepaper also includes discussions regarding theadvantages and disadvantages of TCP/IP.

  7. Feedback control system based on a remote operated PID controller implemented using mbed NXP LPC1768 development board

    Pricop, Emil; Zamfir, Florin; Paraschiv, Nicolae

    2015-11-01

    Process control is a challenging research topic for both academia and industry for a long time. Controllers evolved from the classical SISO approach to modern fuzzy or neuro-fuzzy embedded devices with networking capabilities, however PID algorithms are still used in the most industrial control loops. In this paper, we focus on the implementation of a PID controller using mbed NXP LPC1768 development board. This board integrates a powerful ARM Cortex- M3 core and has networking capabilities. The implemented controller can be remotely operated by using an Internet connection and a standard Web browser. The main advantages of the proposed embedded system are customizability, easy operation and very low power consumption. The experimental results obtained by using a simulated process are analysed and shows that the implementation can be done with success in industrial applications.

  8. Gyrotron Output Power Stabilization by PID Feedback Control of Heater Current and Anode Voltage

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Ueda, K.

    2014-12-01

    To provide stable output power of a gyrotron during long operation time the power stabilization was achieved by two schemes with PID feedback control of heater current and anode voltage. It was based on the dependence of the output power on both the anode voltage and the beam current and also on the dependence of the beam current on the gun heater current. Both schemes provided decrease of the power standard deviation to 0.3-0.5%. The comparison between parameters of both schemes is discussed in the paper.

  9. Stabilization of Gyrotron Frequency by PID Feedback Control on the Acceleration Voltage

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Tatematsu, Y.; Yamaguchi, Y.; Matsuki, Y.; Fujiwara, T.

    2015-12-01

    The results of frequency stabilization by proportional-integral-derivative (PID) feedback control of acceleration voltage in the 460-GHz Gyrotron FU CW GVI (the official name in Osaka University is Gyrotron FU CW GOI) are presented. The experiment was organized on the basis of the frequency modulation by modulation of acceleration voltage of beam electrons. The frequency stabilization during 10 h experiment was better than 10-6, which is compared with the results of the frequency deviation in free-running gyrotron operation.

  10. New tuning rules for PID controllers based on IMC with minimum IAE for inverse response processes

    Duby Castellanos-Cárdenas

    2015-01-01

    Full Text Available In this paper new tuning rules for Proportional Integral Derivative (PID are presented, which are based on Internal Model Control (IMC. This set of equations minimizes the performance index, in this case, the Integral Absolute Error (IAE. Furthermore, a correlation is proposed in order to calculate the tuning parameter of the method, where a holding oscillation response is obtained regarding changes in the set point. This value represents a stability limit for the IMC method. The overall development is then applied to an Inverse Response System of second order and with dead time.

  11. A Simulation of the COMPASS Equilibrium Field Power Supply PID Controller

    Havlíček, Josef; Beňo, Radek; Stöckel, Jan

    Prague : MATFYZPRESS, 2011 - (Šafránková, J.; Pavlů, J.), s. 221-226 ISBN 978-80-7378-185-9. - (WDS. 2). [WDS 2011 - Annual Conference of Doctoral Students /20./. Prague (CZ), 31.05.2011-03.06.2011] R&D Projects: GA ČR GAP205/11/2470; GA ČR GAP205/11/2341; GA MŠk 7G09042 Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * Power Supply * COMPASS * PID controller Subject RIV: BL - Plasma and Gas Discharge Physics http://www.mff.cuni.cz/veda/konference/wds/proc/proc-contents.php?year=2011

  12. Non-parametric Tuning of PID Controllers A Modified Relay-Feedback-Test Approach

    Boiko, Igor

    2013-01-01

    The relay feedback test (RFT) has become a popular and efficient  tool used in process identification and automatic controller tuning. Non-parametric Tuning of PID Controllers couples new modifications of classical RFT with application-specific optimal tuning rules to form a non-parametric method of test-and-tuning. Test and tuning are coordinated through a set of common parameters so that a PID controller can obtain the desired gain or phase margins in a system exactly, even with unknown process dynamics. The concept of process-specific optimal tuning rules in the nonparametric setup, with corresponding tuning rules for flow, level pressure, and temperature control loops is presented in the text.   Common problems of tuning accuracy based on parametric and non-parametric approaches are addressed. In addition, the text treats the parametric approach to tuning based on the modified RFT approach and the exact model of oscillations in the system under test using the locus of a perturbedrelay system (LPRS) meth...

  13. A novel multi-drive electric vehicle system control based on multi-input multi-output PID controller

    Gasbaoui Brahim

    2012-01-01

    Full Text Available In-wheel-motor drive electric vehicle (EV is an innovative configuration of the modern EV, in which each wheel is driven individually by an electric motor. The classical traction motor control called the Independent Machine Control Structure (IMCS using a PID speed controller presents major inconveniences in modern EV safety, when the proposed control can not ensure stability of the EV with differing road topology and variations of speed. A new approach is proposed for a control of a two-in-wheel-motor drive EV, called the Maximum Control Structure MCS. This is based on a multivariable PID (MIMO-PID strategy, which is employed to estimate the linear speed error of each of the two back driving wheels, when the error of each wheel is taken into account in the other speed control computations. Simulation results show that the new control system presents increased safety for the EVs compared with the IMCS strategy and can maintain the error slip rate within the optimal range, ensuring the stability of the vehicle either in a straight or a curved line.

  14. Stabilization loop of a two axes gimbal system using self-tuning PID type fuzzy controller.

    Abdo, Maher Mahmoud; Vali, Ahmad Reza; Toloei, Ali Reza; Arvan, Mohammad Reza

    2014-03-01

    The application of inertial stabilization system is to stabilize the sensor's line of sight toward a target by isolating the sensor from the disturbances induced by the operating environment. The aim of this paper is to present two axes gimbal system. The gimbals torque relationships are derived using Lagrange equation considering the base angular motion and dynamic mass unbalance. The stabilization loops are constructed with cross coupling unit utilizing proposed fuzzy PID type controller. The overall control system is simulated and validated using MATLAB. Then, the performance of proposed controller is evaluated comparing with conventional PI controller in terms of transient response analysis and quantitative study of error analysis. The simulation results obtained in different conditions prove the efficiency of the proposed fuzzy controller which offers a better response than the classical one, and improves further the transient and steady-state performance. PMID:24461337

  15. Computation of stabilizing PI and PID controllers by using Kronecker summation method

    In this paper, a new method for computation of all stabilizing PI controllers is given. The method is based on the plant model in time domain, and by using the extraordinary feature results from Kronecker sum operation, an explicit equation of control parameters defining the stability boundary in parametric space is obtained. Beyond stabilization, the method is used to shift all poles to a shifted half plane that guarantees a specified settling time of response. The stability regions of PID controllers are given in (kp, ki), (kp, kd) and (ki, kd) plane, respectively. The proposed method is also used to compute all the values of a PI controller stabilizing a control system with uncertain parameters. The proposed method is further extended to determine stability regions of uncertain coefficients of the system. Examples are given to show the benefits of the proposed method.

  16. Calculation verification of startup method for density lock based on PID control

    For the Passive Residual Heat Removal System, basing on the self-equivalence startup process, and adding pump controlling system, the startup method for density lock based on PID control system is advanced, that is, after the valve in PRHRS opening, the pump speed is controlled basing on the temperature changing in density lock, and the cold-hot liquid interface is maintained in the density lock, which ensures the PRHRS depart from the primary loop. According to the one-dimensional equations, the controlling startup process for the density lock is numerically simulated, and it is shown that under the effect of controlling system, the pressure in two loops can become balance gradually to start up the density lock successfully by changing the primary loop flux. The method makes the restrictions less and successful ration bigger for density lock startup. (authors)

  17. A PID Positioning Controller with a Curve Fitting Model Based on RFID Technology

    Young-Long, Chen; Zhi-Rong, Chen.

    2013-04-01

    Full Text Available The global positioning system (GPS) is an important research topic to solve outdoor positioning problems, but GPS is unable to locate objects accurately and precisely indoors. Some available systems apply ultrasound or optical tracking. This paper presents an efficient proportional-integral-derivati [...] ve (PID) controller with curve fitting model for mobile robot localization and position estimation which adopts passive radio frequency identification (RFID) tags in a space. This scheme is based on a mobile robot carries an RFID reader module which reads the installed low-cost passive tags under the floor in a grid-like pattern. The PID controllers increase the efficiency of captured RFID tags and the curve fitting model is used to systematically identify the revolutions per minute (RPM) of the motor. We control and monitor the position of the robot from a remote location through a mobile phone via Wi-Fi and Bluetooth network. Experiment results present that the number of captured RFID tags of our proposed scheme outperforms that of the previous scheme.

  18. Silicon microgyroscope temperature prediction and control system based on BP neural network and Fuzzy-PID control method

    Xia, Dunzhu; Kong, Lun; Hu, Yiwei; Ni, Peizhen

    2015-02-01

    We present a novel silicon microgyroscope (SMG) temperature prediction and control system in a narrow space. As the temperature of SMG is closely related to its drive mode frequency and driving voltage, a temperature prediction model can be established based on the BP neural network. The simulation results demonstrate that the established temperature prediction model can estimate the temperature in the range of -40 to 60 °C with an error of less than ±0.05 °C. Then, a temperature control system based on the combination of fuzzy logic controller and the increment PID control method is proposed. The simulation results prove that the Fuzzy-PID controller has a smaller steady state error, less rise time and better robustness than the PID controller. This is validated by experimental results that show the Fuzzy-PID control method can achieve high precision in keeping the SMG temperature stable at 55 °C with an error of less than 0.2 °C. The scale factor can be stabilized at 8.7 mV/°/s with a temperature coefficient of 33 ppm °C-1. ZRO (zero rate output) instability is decreased from 1.10°/s (9.5 mV) to 0.08°/s (0.7 mV) when the temperature control system is implemented over an ambient temperature range of -40 to 60 °C.

  19. Practical Realization Digital PID Controller f or Speed Control o f DC Motor Using Back - EMF Feedback Method

    Prof Vishal Vaidya

    2013-11-01

    Full Text Available his paper describes the speed control of dc motor using back emf method. Among the various techniques for controlling the speed control of dc motor, this method offers relatively simple and cost effective solution. In this method no feedback sensor or extra feedback signal processing circuitry is required. The speed control of dc motor has been achieved using pid controller which is implemented on PIC micro controller and one method is also proposed to achieve better speed control of dc motor.

  20. A PID Positioning Controller with a Curve Fitting Model Based on RFID Technology

    Young-Long Chen

    2013-03-01

    Full Text Available The global positioning system (GPS is an important research topic to solve outdoor positioning problems, but GPSis unable to locate objects accurately and precisely indoors. Some available systems apply ultrasound or opticaltracking. This paper presents an efficient proportional-integral-derivative (PID controller with curve fitting model formobile robot localization and position estimation which adopts passive radio frequency identification (RFID tags ina space. This scheme is based on a mobile robot carries an RFID reader module which reads the installed low-costpassive tags under the floor in a grid-like pattern. The PID controllers increase the efficiency of captured RFID tagsand the curve fitting model is used to systematically identify the revolutions per minute (RPM of the motor. Wecontrol and monitor the position of the robot from a remote location through a mobile phone via Wi-Fi and Bluetoothnetwork. Experiment results present that the number of captured RFID tags of our proposed scheme outperformsthat of the previous scheme.

  1. DESIGN OF PID-PSS WITH GLOBAL SIGNAL INPUT TO DAMP OSCILLATION IN MULTI-MACHINE POWER SYSTEMS

    Zulmiftah Huda; Sasongko Pramono Hadi; Avrin Nur Widiastuti

    2015-01-01

    The stability of the power system has become a main concern in an operating system. Power System Stabilizer (PSS) is a device that can control signal of a generator’s excitation system to damp oscillations in the power system. In this paper, PID controller equipped with PSS with input signal from others generator. PID-PSS was implemented on multi-machine power system, model of Phillips-Heffron scheme is used for the stability analysis that has been widely used as a machine model. Genetics Alg...

  2. A comparison of fuzzy logic and PID controllers to control transmitted power using a TCSC

    SORESHJANI, Mohsen Hosseinzadeh; ABJADI, Navid Reza; KARGAR, Abbas; MARKADEH, Gholamreza Arab

    2014-01-01

    Nowadays, the use of flexible AC transmission systems (FACTS) is an economical and interesting approach to improve power transfer capability. The thyristor-controlled series capacitor, as a member of the FACTS family, can control interrelated parameters with dynamism due to its ability of rapid control and stabilization. Regardless of all of the works in this area, the control of transmitted power through the design of the firing angle controller is still missing. In this paper, first, the op...

  3. Classical controller design techniques for fractional order case.

    Yeroglu, Celaleddin; Tan, Nusret

    2011-07-01

    This paper presents some classical controller design techniques for the fractional order case. New robust lag, lag-lead, PI controller design methods for control systems with a fractional order interval transfer function (FOITF) are proposed using classical design methods with the Bode envelopes of the FOITF. These controllers satisfy the robust performance specifications of the fractional order interval plant. In order to design a classical PID controller, an optimization technique based on fractional order reference model is used. PID controller parameters are obtained using the least squares optimization method. Different PID controller parameters that satisfy stability have been obtained for the same plant. PMID:21497807

  4. Stability of PID-Controlled Linear Time-Delay Feedback Systems

    Martelli, Gianpasquale

    2008-01-01

    The stability of feedback systems consisting of linear time-delay plants and PID controllers has been investigated for many years by means of several methods, of which the Nyquist criterion, a generalization of the Hermite-Biehler Theorem, and the root location method are well known. The main purpose of these researches is to determine the range of controller parameters that allow stability. Explicit and complete expressions of the boundaries of these regions and computation procedures with a finite number of steps are now available only for first-order plants, provided with one time delay. In this note, the same results, based on Pontryagin's studies, are presented for arbitrary-order plants.

  5. Non-Contact Linear Actuator Position Sensor Having a PID-Compensating Controller

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor)

    2001-01-01

    A position sensor or controller generates a response signal in existing armature windings of an actuator and detects the response signal to determine the position of the armature. To generate the response signal, the actuator includes a sensor excitation winding near the armature. Two sensor excitation windings can be provided, above and below the armature, to cancel out z components and thus allow for a variable gap. The sensor excitation winding or windings are supplied with an excitation signal to induce the response signal in the armature windings. The response signal is derived by differentially amplifying and frequency filtering a raw output of the armature windings. The response signal is demodulated to determine position. If a position controller rather than a mere sensor is desired, the position signal can be buffered, PID compensated, amplified, and fed back to the armature windings.

  6. Improved model reduction and tuning of fractional-order PI(?)D(?) controllers for analytical rule extraction with genetic programming.

    Das, Saptarshi; Pan, Indranil; Das, Shantanu; Gupta, Amitava

    2012-03-01

    Genetic algorithm (GA) has been used in this study for a new approach of suboptimal model reduction in the Nyquist plane and optimal time domain tuning of proportional-integral-derivative (PID) and fractional-order (FO) PI(?)D(?) controllers. Simulation studies show that the new Nyquist-based model reduction technique outperforms the conventional H(2)-norm-based reduced parameter modeling technique. With the tuned controller parameters and reduced-order model parameter dataset, optimum tuning rules have been developed with a test-bench of higher-order processes via genetic programming (GP). The GP performs a symbolic regression on the reduced process parameters to evolve a tuning rule which provides the best analytical expression to map the data. The tuning rules are developed for a minimum time domain integral performance index described by a weighted sum of error index and controller effort. From the reported Pareto optimal front of the GP-based optimal rule extraction technique, a trade-off can be made between the complexity of the tuning formulae and the control performance. The efficacy of the single-gene and multi-gene GP-based tuning rules has been compared with the original GA-based control performance for the PID and PI(?)D(?) controllers, handling four different classes of representative higher-order processes. These rules are very useful for process control engineers, as they inherit the power of the GA-based tuning methodology, but can be easily calculated without the requirement for running the computationally intensive GA every time. Three-dimensional plots of the required variation in PID/fractional-order PID (FOPID) controller parameters with reduced process parameters have been shown as a guideline for the operator. Parametric robustness of the reported GP-based tuning rules has also been shown with credible simulation examples. PMID:22036301

  7. PID controller tuning for the first-order-plus-dead-time process model via Hermite-Biehler theorem.

    Roy, Anindo; Iqbal, Kamran

    2005-07-01

    This paper discusses PID stabilization of a first-order-plus-dead-time (FOPDT) process model using the stability framework of the Hermite-Biehler theorem. The FOPDT model approximates many processes in the chemical and petroleum industries. Using a PID controller and first-order Padé approximation for the transport delay, the Hermite-Biehler theorem allows one to analytically study the stability of the closed-loop system. We derive necessary and sufficient conditions for stability and develop an algorithm for selection of stabilizing feedback gains. The results are given in terms of stability bounds that are functions of plant parameters. Sensitivity and disturbance rejection characteristics of the proposed PID controller are studied. The results are compared with established tuning methods such as Ziegler-Nichols, Cohen-Coon, and internal model control. PMID:16082786

  8. Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System.

    Lee, Chengming; Chen, Rongshun

    2015-01-01

    Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID) controller, combining a PID neural network (PIDNN) with fan-power-based optimization in the transient-state temperature response in the time domain, for a server fan cooling system. Because the thermal model of the cooling system is nonlinear and complex, a server mockup system simulating a 1U rack server was constructed and a fan power model was created using a third-order nonlinear curve fit to determine the cooling power consumption by the fan speed control. PIDNN with a time domain criterion is used to tune all online and optimized PID gains. The proposed controller was validated through experiments of step response when the server operated from the low to high power state. The results show that up to 14% of a server's fan cooling power can be saved if the fan control permits a slight temperature response overshoot in the electronic components, which may provide a time-saving strategy for tuning the PID controller to control the server fan speed during low fan power consumption. PMID:26007725

  9. Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System

    Chengming Lee

    2015-05-01

    Full Text Available Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID controller, combining a PID neural network (PIDNN with fan-power-based optimization in the transient-state temperature response in the time domain, for a server fan cooling system. Because the thermal model of the cooling system is nonlinear and complex, a server mockup system simulating a 1U rack server was constructed and a fan power model was created using a third-order nonlinear curve fit to determine the cooling power consumption by the fan speed control. PIDNN with a time domain criterion is used to tune all online and optimized PID gains. The proposed controller was validated through experiments of step response when the server operated from the low to high power state. The results show that up to 14% of a server’s fan cooling power can be saved if the fan control permits a slight temperature response overshoot in the electronic components, which may provide a time-saving strategy for tuning the PID controller to control the server fan speed during low fan power consumption.

  10. Electrical coupling suppression and transient response improvement for a microgyroscope using ascending frequency drive with a 2-DOF PID controller

    In this paper, we demonstrate a novel control strategy for the drive mode of a microgyroscope using ascending frequency drive (AFD) with an AGC-2DOF PID controller, which drives a resonator with a modulation signal not at the resonant frequency and senses the vibration signal at the resonant frequency, thus realizing the isolation between the actual mechanical response and electrical coupling signal. This approach holds the following three advantages: (1) it employs the AFD signal instead of the resonant frequency drive signal to excite the gyroscope in the drive direction, suppressing the electrical coupling from the drive electrode to the sense electrode; (2) it can reduce the noise at low frequency and resonant frequency by shifting flicker noise to the high-frequency part; (3) it can effectively improve the performance of the transient response of the closed-loop control with a 2-DOF (degree of freedom) PID controller compared with the conventional 1-DOF PID. The stability condition of the whole loop is investigated by utilizing the averaging and linearization method. The control approach is applied to drive a lateral tuning fork microgyroscope. Test results show good agreement with the theoretical and simulation results. The non-ideal electrical antiresonance peak is removed and the resonant peak height increases by approximately 10 dB over a 400 Hz span with a flicker noise reduction of 30 dB within 100 Hz using AFD. The percent overshoot is reduced from 36.2% (1DOF PID) to 8.95% (2DOF PID, about 75.3% overshoot suppression) with 15.3% improvement in setting time

  11. PID control of brushless DC motor and robot trajectory planning simulation with MATLAB®/SIMULINK®

    Oguntoyinbo, Oludayo

    2009-01-01

    This report presents a PID model of a brushless dc (BLDC) motor and a robot trajectory planning and simulation. A short description of the brushless dc motor is given. For this work, mathematical models were developed and subsequently used in getting the simulation parameters. The PID model is accomplished with the use of MATLAB®/SIMULINK®. The operational parameters of the specific BLDC motor were modelled using the tuning methods which are used to develop subsequent simulations. The best PI...

  12. Comparison between Conventional PID and Fuzzy Logic Controller for Liquid Flow Control: Performance Evaluation of Fuzzy Logic and PID Controller by Using MATLAB/Simulink

    Gaurav; Amrit Kaur

    2012-01-01

    Measuring the flow of liquids is a critical need in many industrial plants. In recent years, flow control has become a highly multi-disciplinary research activity encompassing theoretical, computational and experimental fluid dynamics. Fuzzy control is based on fuzzy logic-a logical system that is much closer in spirit to human thinking and natural language than traditional logical systems. During the past several years, fuzzy control has emerged as one of the most active and fruitful areas f...

  13. A Novel Fractional-Order PID Controller for Integrated Pressurized Water Reactor Based on Wavelet Kernel Neural Network Algorithm

    Yu-xin Zhao; Xue Du; Geng-lei Xia

    2014-01-01

    This paper presents a novel wavelet kernel neural network (WKNN) with wavelet kernel function. It is applicable in online learning with adaptive parameters and is applied on parameters tuning of fractional-order PID (FOPID) controller, which could handle time delay problem of the complex control system. Combining the wavelet function and the kernel function, the wavelet kernel function is adopted and validated the availability for neural network. Compared to the conservative wavelet neural ne...

  14. A Discrete PID Control System Using Predictors and an Observer for the Influence of a Time Delay

    Y. Hikichi

    2013-02-01

    Full Text Available In this paper, a control system for the influence of a time delay compensation using predictors and a disturbance observer is proposed. The time delay in the controlled plant is one of the serious problems decreasing the control stability. Therefore, many control methods for controlled plants with a time delay have been proposed until now. We proposed an effective control system for influence of time delay by connecting predictors and a disturbance observer to a PID control system. It alleviates the influence of the time delay on the target response and disturbance response.

  15. A robust PID controller based on imperialist competitive algorithm for load-frequency control of power systems.

    Shabani, Hamed; Vahidi, Behrooz; Ebrahimpour, Majid

    2013-01-01

    A new PID controller for resistant differential control against load disturbance is introduced that can be used for load frequency control (LFC) application. Parameters of the controller have been specified by using imperialist competitive algorithm (ICA). Load disturbance, which is due to continuous and rapid changes of small loads, is always a problem for load frequency control of power systems. This paper introduces a new method to overcome this problem that is based on filtering technique which eliminates the effect of this kind of disturbance. The object is frequency regulation in each area of the power system and decreasing of power transfer between control areas, so the parameters of the proposed controller have been specified in a wide range of load changes by means of ICA to achieve the best dynamic response of frequency. To evaluate the effectiveness of the proposed controller, a three-area power system is simulated in MATLAB/SIMULINK. Each area has different generation units, so utilizes controllers with different parameters. Finally a comparison between the proposed controller and two other prevalent PI controllers, optimized by GA and Neural Networks, has been done which represents advantages of this controller over others. PMID:23084664

  16. Fractional PID controllers tuned by evolutionary algorithms for robot trajectory control

    B?NGÜL, Zafer; KARAHAN, O?uzhan

    2011-01-01

    The aim of this paper is to compare the performances of a fractional order proportional integral derivative (FOPID) controller tuned with evolutionary algorithms for robot trajectory control. In order to make this comparison, a 2-degrees-of-freedom planar robot was controlled by a FOPID controller tuned with particle swarm optimization (PSO) and a real coded genetic algorithm (GA). In order to see the effects of the cost functions on the optimum parameters of the FOPID controller, 3 d...

  17. Modeling and Simulation of Control Actuation System with Fuzzy-PID Logic Controlled Brushless Motor Drives for Missiles Glider Applications.

    Muniraj, Murali; Arulmozhiyal, Ramaswamy

    2015-01-01

    A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system. PMID:26613102

  18. Modeling and Simulation of Control Actuation System with Fuzzy-PID Logic Controlled Brushless Motor Drives for Missiles Glider Applications

    Muniraj, Murali; Arulmozhiyal, Ramaswamy

    2015-01-01

    A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system. PMID:26613102

  19. Qualitative vs. quantitative data: Controls on the accuracy of PID field screening in petroleum contamination assessment applications

    The use of photoionization detectors (PIDs) for field screening of soils for volatile organic contaminants has become a standard industry practice. PID screening data is generally utilized as a qualitative basis for selection of samples for laboratory analysis to quantify concentrations of specific contaminants of concern. Both qualitative field screening data and quantitative laboratory analytical data were reviewed for more than 100 hydrogeologic assessment sites in Ohio to evaluate controls on the effectiveness of field screening data. Assessment data evaluated was limited to sites at which the suspected contaminant source was a gasoline underground storage tanks system. In each case, a 10.0 eV (or greater) PID calibrated for benzene was used to screen soils which were analyzed for benzene, toluene, ethylbenzene and xylene (BTEX) by SW 846 method 8020. Controls on field screening which were evaluated for each site included (1) soil classification, (2) soil moisture, (3) weather conditions, (4) background levels, (5) equipment quality, (6) screening methodology, and (7) laboratory QA/QC. Statistical data analysis predictably indicated a general overestimate of total BTEX levels based on field screening (gasoline is approximately 25 weight percent BTEX). However, data locally indicated cases of both significant (i.e., more than an order of magnitude difference) over- and under-estimation of actual BTEX concentrations (i.e., quantitative laboratory data) by field screening data

  20. Neural Network Pid Control of a Distributed Power Generation System Based on Renewable Energy

    Jian Wang; Long-yun Kang; Bing-Gang Cao

    2005-01-01

    This study proposed a new energy control strategy for a distributed power generation system based on renewable. A mathematical model of the system was built based on a vector-controlled induction machine driving a flywheel. The BP Neural network control method was designed in the system in order to regulate DC Bus voltage, which is the object of the system. The experimental results on a wind simulator and flywheel based system verified that proposed energy complementary control can satisfacto...

  1. Real Time Implementation of PID and Fuzzy PD Controllers for DC-Servo Motor Based on Lab View Environment

    Safaa M. Z. Al-Ubaidi

    2012-06-01

    Full Text Available This paper presents an implementation of conventional PID (CPID controller using Ziegler-Nichols rules and fuzzy PD (FPD controller for position servo motor control based on Lab View (Laboratory Virtual Instrument Engineering Workbench Environment through Data Acquisition (DAQ Device PCI- 6521 of National Instrument's and Data Acquisition Accessory Board Model (CB-68LP.CPID controller is perhaps the most well-known and most widely used in industrial applications. However, it has been known that CPID controller generally don’t work well for non-linear systems, higher order and time-delayed linear system and particularly complex and vague system. To overcome these difficulties, this paper proposes to use the FPD controller for a servo motor system instead of CPID. The parameters of servo motor used are completely unknown. The FPD structure has two-input single-output and fairly similar characteristic to its conventional counterpart and provides good performance. Simple rules base are used for FPD (nine rules only. Performance evaluation was carried out via a comparison study for the proposed control scheme and other existing control scheme, such as CPID controller. The critical point for this experiment on position system is a steady state error and settling time.  The performance showing that the FPD has less settling time and zero steady state error over its CPID. The algorithms of FPD and CPID controllers are implemented using PID, Fuzzy Logic and simulation toolkits of the Lab View environment.

  2. Estudio del comportamiento de un Control MPC [Control Predictivo Basado en el Modelo] comparado con un Control PID en una Planta de Temperatura

    Emil Hernández-Arroyo

    2014-07-01

    Full Text Available Presenta un estudio comparativo entre el Control Predictivo basado en el Modelo [MPC] y el control PID, en una planta piloto de temperatura. Se encontró que el control MPC presenta mejor comportamiento, con un tiempo de asentamiento de 1000 segundos y una sobre-elongación de 5 °C, y que el PID presenta un tiempo de asentamiento de 2000 segundos y una sobre-elongación de 40 °C. Simultáneamente, se presenta una forma alternativa para controlar y monitorear en tiempo real la variable temperatura; para ello se dispone de un computador de escritorio que utiliza el software MATLAB 7.1 y la herramienta Real-Time Windows Target.

  3. Controller design for Robotic hand through Electroencephalogram

    Pandelidis P.; Kiriazis N.; Orgianelis K.; Koulios N.

    2016-01-01

    - This paper deals with the designing, the construction and the control of a robotic hand via an electroencephalogram sensor. First a robotic device that is able to mimic a real human hand is constructed. A PID controller is designed in order to improve the performance of the robotic arm for grabbing objects. Furthermore, a novel design approach is presented for controlling the motion of the robotic arm using signals produced from an innovative electroencephalogram sensor that detects the con...

  4. Tuning PID and FOPID Controllers using the Integral Time Absolute Error Criterion

    Maiti, Deepyaman; Acharya, Ayan; Chakraborty, Mithun; Konar, Amit; Janarthanan, Ramadoss

    2008-01-01

    Particle swarm optimization (PSO) is extensively used for real parameter optimization in diverse fields of study. This paper describes an application of PSO to the problem of designing a fractional-order proportional-integral-derivative (FOPID) controller whose parameters comprise proportionality constant, integral constant, derivative constant, integral order (lambda) and derivative order (delta). The presence of five optimizable parameters makes the task of designing a FOPID controller more...

  5. Status of LHD control system design

    The present status of LHD (Large Helical Device) control system design is described, emphasizing on the plasma operation modes, the architecture of the LHD control system, the real-time plasma feedback system with PID or Fuzzy controllers and the construction schedule of the LHD control system. The conceptual and detailed designs are under way taking flexible and reliable operations for physics experiments into account. (author)

  6. Status of LHD control system design

    The present status of LHD (Large Helical Device) control system design is described, emphasizing on the plasma operation modes, the architecture of the LHD control system, the real-time plasma feedback system with PID or Fuzzy controllers and the construction schedule of the LHD control system. The conceptual and designs are under way taking flexible and reliable operations for physics experiments into account. (author)

  7. Design of Controllers for Liquid Level Control

    Augustin Simon,; Elizabeth Varghese

    2015-01-01

    The liquid level control system is commonly used in many process control applications. The aim of the process is to keep the liquid level in the tank at the desired value. The conventional proportional-integral-derivative (PID) controller is simple, reliable and eliminates the error rate but it cannot handle complex problems. Fuzzy logic controllers are rule based systems which simulates human behavior of the process. The fuzzy controller is combined with the PID controller and th...

  8. Application of multi-objective controller to optimal tuning of PID gains for a hydraulic turbine regulating system using adaptive grid particle swam optimization.

    Chen, Zhihuan; Yuan, Yanbin; Yuan, Xiaohui; Huang, Yuehua; Li, Xianshan; Li, Wenwu

    2015-05-01

    A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions. PMID:25481821

  9. Position Control of a Pneumatic Muscle Actuator Using RBF Neural Network Tuned PID Controller

    Jie Zhao; Jun Zhong; Jizhuang Fan

    2015-01-01

    Pneumatic Muscle Actuator (PMA) has a broad application prospect in soft robotics. However, PMA has highly nonlinear and hysteretic properties among force, displacement, and pressure, which lead to difficulty in accurate position control. A phenomenological model is developed to portray the hysteretic behavior of PMA. This phenomenological model consists of linear component and hysteretic component force. The latter component is described by Duhem model. An experimental apparatus is built up ...

  10. New Algorithm for the Smoothing Speed Control of Induction Motor in Electric Car based on Self-Tuning Parameter PID-Fuzzy Logic

    Dedid Cahya Happyanto

    2012-05-01

    Full Text Available Driving system of electric car for low speed has a performance of controller that is not easily set up on large span so it does not give a comfort to passengers. The study has been tested in the bumpy road conditions, by providing disturbances in the motor load, it is to describe the condition of the road. To improve the system performance, the speed and torque controller was applied using Field Oriented Control (FOC method. In this method, On-Line Proportional Integral Derivative Fuzzy Logic Controller (PID-FLC is used to give dynamic response to the change of speed and maximum torque on the electric car and this results the smooth movement on every change of car performance both in fast and slow movement when breaking action is taken. Optimization of membership functions in Fuzzy PID controller is required to obtain a new PID parameter values which is done in autotuning in any changes of the input or disturbance. PID parameter tuning in this case using the Ziegler-Nichols method based on frequency response. The mechanism is done by adjusting the PID parameters and the strengthening of the system output. The test results show that the controller Fuzzy Self-Tuning PID appropriate for Electric cars because they have a good response about 0.85% overshoot at to changes in speed and braking of electric cars.

  11. Performance Comparison of Conventional Controller with Fuzzy Logic Controller using Chopper Circuit and Fuzzy Tuned PID Controller

    Mohammed Shoeb Mohiuddin

    2014-01-01

    It is often difficult to develop an accurate mathematical model of DC motor due to unknown load variation, unknown and unavoidable parameter variations or nonlinearities due to saturation temperature variations and system disturbances. Fuzzy logic application can handle such nonlinearities so that the controller design is fundamentally robust which is not possible in conventional controllers. The knowledge base of a fuzzy logic controller (FLC) encapsulates expert knowledge and consists of th...

  12. Neural Network Pid Control of a Distributed Power Generation System Based on Renewable Energy

    Jian Wang

    2005-01-01

    Full Text Available This study proposed a new energy control strategy for a distributed power generation system based on renewable. A mathematical model of the system was built based on a vector-controlled induction machine driving a flywheel. The BP Neural network control method was designed in the system in order to regulate DC Bus voltage, which is the object of the system. The experimental results on a wind simulator and flywheel based system verified that proposed energy complementary control can satisfactorily regulate the power of the storage unit to store and release energy and thus to maintain a steady DC voltage from the distributed power generation system.

  13. Development of ANN model for geothermal district heating system and a novel PID-based control strategy

    This article refers to development of ANN modeling for geothermal district heating systems, and the novel and optimal control strategy for exergy efficiency maximization by using these systems. As a real case study, the geothermal district heating system in Afyonkarahisar (AGDHS), Turkey is considered. Its actual thermal data as of average weekly data are collected in heating seasons during the period 2006–2010 for ANN model and control strategy. In this study, a novel control strategy-based PID controller is proposed to ensure the maximum exergy efficiency via the flow rate control of the AGDHS. ANN model of the AGDHS is used as a test system to demonstrate the effectiveness of the proposed control strategy under various operating conditions. The results of this study show that the network yields a good statistical performance with respect to maximum correlation coefficient (0.9986) with minimum RMSE and MAPE values. Moreover, the proposed PID controller has better control performance compared to the manual control even in the presence of the AGDHS. Energy efficiency and cost saving of the system are increased by 13% by the proposed control strategy. Thus, the proposed control strategy has the potential for creating more comfortable thermal environments for district heating systems. -- Highlights: ► ANN model for a GDHS is developed as a test system, and has a good statistical performance. ► A novel control strategy is used in this test system under various operating conditions. ► Max. exergy efficiency of the AGDHS is ensured by this strategy via the flow rate control. ► The strategy has better control performance compared to the manual control in the AGDHS. ► With the proposed strategy, the exergy efficiency of the system is increased by 13%

  14. Two-Degrees-of-Freedom Robust PID Controllers Tuning Via a Multiobjective Genetic Algorithm

    José Rubén Lagunas-Jiménez; Víctor Moo-Yam; Benjamín Ortíz-Moctezuma

    2014-01-01

    En este artículos e presenta una metodología de diseño de controladores PID (Proporcional, Integral y Derivativo), de dos grados de libertad media nte el planteamiento de un problema de optimización multiobjetivo. Las funciones objetivo propuestas consideran entre otros: respuesta de referencia al escalón, perturbación de carga y robustez ante incertidumbre en el modelado. También se incluye un filtr o para minimizar el ruido de medición y la constante de tiempo se incluye en el vector de var...

  15. Implementation of PID control using Arduino microcontrollers for glucose measurements and micro incubator applications

    Andersson, Hugo; Mattsson, Viktor; Senek, Aleksandar

    2015-01-01

    The task is to build a low-cost thermostat and design necessary elements to perform a study on water mixed glucose-impedance at different temperatures and cell growth in a temperature-controlled incubator housing a magnetic field of up to 3 mT. The incubator was designed in solidworks and made to fit petri dishes of two relevant sizes and necessary wiring. The coils designed to extend across the large of the incubator with six turns and a 4A current to yield a sixth of the required magnetic f...

  16. Chaos suppression on a class of uncertain nonlinear chaotic systems using an optimal H∞ adaptive PID controller

    Highlights: ► This paper proposes a powerful and flexible method for controlling a class of nonlinear chaotic systems. ► This method is incorporated with H-infinity tracking control scheme. ► In the core of proposed method, PSO algorithm is employed to obtaining an optimal performance. - Abstract: This paper introduces an optimal H∞ adaptive PID (OHAPID) control scheme for a class of nonlinear chaotic system in the presence system uncertainties and external disturbances. Based on Lyapunov stability theory, it is shown that the proposed control scheme can guarantee the stability robustness of closed-loop system with H∞ tracking performance. In the core of proposed controller, to achieve an optimal performance of OHAPID, the Particle Swarm Optimization (PSO) algorithm is utilized. To show the feasibility of proposed OHAPID controller, it is applied on the chaotic gyro system. Simulation results demonstrate that it has highly effective in providing an optimal performance.

  17. Predator and Prey Modified Biogeography Based Optimization Approach (PMBBO in Tuning a PID Controller for Nonlinear Systems

    Mohammed Salem

    2014-10-01

    Full Text Available In this paper an enhanced approach based on a modified biogeography optimization with predator and prey behavior (PMBBO is presented. The approach uses several predators with new proposed prey’s movement formula. The potential of using a modified predator and prey model is to increase the diversification along the optimization process so to avoid local optima and reach the optimal solution quickly. The proposed approach is used in tuning the gains of PID controller for nonlinear systems (Mass spring damper and an inverted pendulum and has given remarkable results when compared to genetic algorithm and classical BBO.

  18. Compensation of Actuator’s Saturation by Using Fuzzy Logic and Imperialist Competitive Algorithm in a System with PID Controller

    Abbas Ali Zamani

    2012-07-01

    Full Text Available Physical systems always include constraints and limits. Usually, the limits and constraints, in the control systems, are appeared as temperature and pressure limits or pumps capacity. One of the existing limits in the systems with PID controller is associated with the actuator’s saturation limits. With the saturating of the actuator, the controller’s output and plant’s input will be different and the output signal of controller do not lead the system and their states could not update correctly where this issue makes the system response undesirable. In this paper, by adding a fuzzy compensator that it’s parameters are tuned using imperialist competitive algorithm, the actuator saturation is prevented and the important parameters of the system response, such as setting time and overshoot, are improved.

  19. Tuning fractional PID controllers for a Steward platform based on frequency domain and artificial intelligence methods

    Copot, Cosmin; Zhong, Yu; Ionescu, Clara; Keyser, Robin

    2013-06-01

    In this paper, two methods to tune a fractional-order PI λ D μ controller for a mechatronic system are presented. The first method is based on a genetic algorithm to obtain the parameter values for the fractionalorder PI λ D μ controller by global optimization. The second method used to design the fractional-order PI λ D μ controller relies on an auto-tuning approach by meeting some specifications in the frequency domain. The real-time experiments are conducted using a Steward platform which consists of a table tilted by six servo-motors with a ball on the top of the table. The considered system is a 6 degrees of freedom (d.o.f.) motion platform. The feedback on the position of the ball is obtained from images acquired by a visual sensor mounted above the platform. The fractional-order controllers were implemented and the performances of the steward platform are analyzed.

  20. Two-Degrees-of-Freedom Robust PID Controllers Tuning Via a Multiobjective Genetic Algorithm

    José Rubén Lagunas-Jiménez

    2014-01-01

    Full Text Available En este artículos e presenta una metodología de diseño de controladores PID (Proporcional, Integral y Derivativo, de dos grados de libertad media nte el planteamiento de un problema de optimización multiobjetivo. Las funciones objetivo propuestas consideran entre otros: respuesta de referencia al escalón, perturbación de carga y robustez ante incertidumbre en el modelado. También se incluye un filtr o para minimizar el ruido de medición y la constante de tiempo se incluye en el vector de variables de decisión. El problema de optimización se resuelve con un algoritmo genético.

  1. Disain dan Implementasi Kontrol PID Model Reference Adaptive Control untuk Automatic Safe Landing pada Pesawat UAV Quadcopter

    Teddy Sudewo

    2012-09-01

    Full Text Available Pada fase penerbangan quadcopter, fase landing (pendaratan merupakan fase paling kritis, dimana resiko terjadi kecelakaan paling besar. Permasalahan tersebut muncul karena adanya beberapa kendala, seperti kendala pada struktur rangka pesawat yang kecil, peningkatan beban pada sayap pesawat serta pengaruh angin sehingga menyebabkan pesawat tidak stabil. Pada penelitian tugas akhir ini, didesain suatu sistem kontrol pada UAV quadcopter menggunakan kontrol PID dengan Model Reference Adaptive Control (MRAC. Sistem pengendalian berbasis MRAC menawarkan beberapa kelebihan untuk mengatasi karakteristik plant non-linear salah satunya quadcopter. MRAC merupakan kontrol adaptif dimana performansi keluaran sistem (proses akan mengikuti performansi keluaran model referensinya. Pada tugas akhir ini, model referensi sudah ditentukan diawal dan spesifikasinya tetap sehingga dapat langsung didisain mekanisme adaptasi dari MRAC. Parameter proses θ (a1,a2,b0,b1 diestimasi menggunakan metode Extended Least Square, parameter proses tersebut akan mentuning parameter kontroler (k0,k1,k2,k3 sehingga menghasilkan sinyal kontrol PID. Hasil pengujian menunjukkan bahwa ketika terjadi perubahan parameter pada plant, kontroler mampu memperbaiki respon agar tetap dapat mengikuti model referensinya dan dalam mengatasi gangguan metode adaptasi MRAC memiliki kemampuan yang baik dilihat dari waktu yang dibutuhkan yang relatif singkat.

  2. High Step up DC-DC Converter with PID Controller for Photovoltaic Applications

    Rakesh Kumar Goudanaikar; Dr. K. Shanmukha Sundar

    2014-01-01

    From the literature survey, it is observed that the need of ac photovoltaic modules in photovoltaic (PV) power-generation market has increased. However, the important aspect is a requirement of a high voltage gain converter for the module’s grid connection through a dc–ac inverter. A high step up dc-dc converter using PI controller is proposed and presented in this paper. Further, the converter proposed in this paper employs a floating active switch, which is designed to isolate the dc curren...

  3. Energy Management System Based on Fuzzy fractional order PID Controller for Transient Stability Improvement in Microgrids with Energy Storage

    Moafi, Milad; Marzband, Mousa; Savaghebi, Mehdi; Guerrero, Josep M.

    2016-01-01

    The need to reduce greenhouse effect using distributed energy resources (DER) has significantly increased in recent years, particularly with the advent of deregulated market. Climate changes causes large swings in output power of renewable resources and the resulting fluctuations in frequency in...... the islanded Microgrid (MG). To increase performance for a wide range of power system operating conditions, an energy management systems (EMS) is proposed based on a fuzzy fractional order PID (FFOPID) controller. It is able to analyze and simulate the dynamic behavior in grid connected MGs. This...... time. Energy storage (ES) is used to improve the system dynamic response, reduce the distortion and provide damping for frequency oscillations caused by renewable resources. ES overload capacity is utilized for rapid initial control of frequency in MG. To achieve this goal, EMS based on fuzzy decision...

  4. High Step up DC-DC Converter with PID Controller for Photovoltaic Applications

    Rakesh Kumar Goudanaikar

    2014-06-01

    Full Text Available From the literature survey, it is observed that the need of ac photovoltaic modules in photovoltaic (PV power-generation market has increased. However, the important aspect is a requirement of a high voltage gain converter for the module’s grid connection through a dc–ac inverter. A high step up dc-dc converter using PI controller is proposed and presented in this paper. Further, the converter proposed in this paper employs a floating active switch, which is designed to isolate the dc current from the PV panel when the ac module is off-grid as well as in the non-operating condition. This isolation will ensure the operation of the internal components without any residential energy being transferred to the output or input terminal,. The PI controller is used in feedback in order to speed-up the response. The converter achieves a high step-up voltage-conversion ratio without extreme duty ratio and the numerous turns-ratios of a coupled inductor. The leakage inductor energy of the coupled inductor is efficiently recycled to the load. The proposed converter model along with PI controller is modeled using SIMULINK and the simulation results are presented in this paper to authenticate the proposed scheme.

  5. Simple PI/PID Controller Tuning Rules for FOPDT Plants with Guaranteed Closed-Loop Stability Margin

    Jan Cvejn

    2011-11-01

    Full Text Available In the paper we present tuning rules for PI and PID controllers and the first order plus dead time (FOPDT process model.The settings respect both performance and stability indices and provide a high degree of robustness for any value of the dead timeparameter. As the performance index we are using the well known modulus optimum criterion, which requires that the amplitudeof the closed-loop frequency response is close to one for low frequencies. This criterion produces simple tuning formulas with veryfavourable properties in time domain. Although optimal values of the parameters are valid for the reference tracking problem, acompensation of the disturbance lag that preserves the stability margin is proposed in the case of the disturbance rejection task.

  6. The Design for the Boiler Drum Level System Based on Immune Control

    GuiLi Yuan

    2012-03-01

    Full Text Available Aiming at multi-disturbance characteristic of drum water level system, control system uses three impulse cascade control strategy. This paper designs three impulse cascade control combined of incomplete differential PID and immune P control, fully using the advantages of artificial immune feedback control and incomplete differential PID. Boiler drum level simulation result shows the cascade control based on immune feedback mechanism, can improve the system dynamic performance. The simulation results also prove the validity of the control strategy.

  7. On the fragility of fractional-order PID controllers for FOPDT processes.

    Padula, Fabrizio; Visioli, Antonio

    2016-01-01

    This paper analyzes the fragility issue of fractional-order proportional-integral-derivative controllers applied to integer first-order plus-dead-time processes. In particular, the effects of the variations of the controller parameters on the achieved control system robustness and performance are investigated. Results show that this kind of controllers is more fragile with respect to the standard proportional-integral-derivative controllers and therefore a significant attention should be paid by the user in their tuning. PMID:26639055

  8. Hybrid fuzzy logic and pid controller based ph neutralization pilot plant

    Naseer, Oumair; Khan, Atif Ali

    2013-01-01

    Use of Control theory within process control industries has changed rapidly due to the increase complexity of instrumentation, real time requirements, minimization of operating costs and highly nonlinear characteristics of chemical process. Previously developed process control technologies which are mostly based on a single controller are not efficient in terms of signal transmission delays, processing power for computational needs and signal to noise ratio. Hybrid controller with efficient s...

  9. Parameter Turning of PID Controller Based on Molecular Beacon DNA Computing

    Yourui Huang; Xiaomin Tian; Jing Wang; Hongping Zhou

    2012-01-01

    Molecular beacon deoxyribonucleic acid computing is new research focus of intelligent control theory in recent years, it is also new bionic algorithm. It is well known that a very important problem how to determine or tune the proportional integral derivative controller parameters, because these parameters have a great influence on the stability and the performance of the control system. Parameter turning of proportional integral derivative controller by using molecular beacon deoxyribonuclei...

  10. An Optimized PID Control Strategy For Active Suspensions Applied To A Half Car Model

    Iyad M. Abuhadrous; Mohammed H. AbuShaban; Mahir B. Sabra

    2013-01-01

    In this paper, we propose a new control strategy for the active control of a hydraulically controlled half-car active suspension system. Our study proposes a special construction of the suspension system where the hydraulic actuator is to be placed in series with the conventional passive one to form a special case of low-frequency active suspension. The full dynamics of the electro-hydraulic servo-valve and hydraulic actuator were employed. Response of proposed control strategy has been teste...

  11. The Design for Feed Water System of Boiler Based on Fuzzy Immune Smith Control

    GuiLi Yuan; JiZhen Liu

    2012-01-01

    Aiming at the uncertainty of model parameters and dominate time delay of the controlled object in feed water system of boiler, combined with improved Smith predictor control method and fuzzy immune PID control method, improved Smith predicting controller based on fuzzy immune is designed.Fuzzy Immune PID controller can self-tune parameters, and has adaptive capacity to the diversification of controlled object parameters. When there is the phenomenon of large delay, the predictor estimates in ...

  12. The Design for the Boiler Drum Level System Based on Immune Control

    GuiLi Yuan; JiZhen Liu

    2012-01-01

    Aiming at multi-disturbance characteristic of drum water level system, control system uses three impulse cascade control strategy. This paper designs three impulse cascade control combined of incomplete differential PID and immune P control, fully using the advantages of artificial immune feedback control and incomplete differential PID. Boiler drum level simulation result shows the cascade control based on immune feedback mechanism, can improve the system dynamic performance. The simulation ...

  13. Design Robust Controller for Rotary Kiln

    Omar D. Hernández-Arboleda

    2013-11-01

    Full Text Available This paper presents the design of a robust controller for a rotary kiln. The designed controller is a combination of a fractional PID and linear quadratic regulator (LQR, these are not used to control the kiln until now, in addition robustness criteria are evaluated (gain margin, phase margin, strength gain, rejecting high frequency noise and sensitivity applied to the entire model (controller-plant, obtaining good results with a frequency range of 0.020 to 90 rad/s, which contributes to the robustness of the system.

  14. PID parameters setting on level control system of steam generator in Qinshan phase II NPP

    Based on SimPort simulation platform of nuclear power plant, a simulation model on the level control system of steam generator in the unit one of Qinshan Phase II NPP was established. Using this model, transient simulation experiments and researches with different conditions were conducted and the setpoints of the level control system were obtained. To level controller, KP, TI and TD are 4.25, 425 s and 10 s respectively. To flow controller, KP is 1.0 and TI is 13 s. These setpoints are in agreement with the actual values and can be referred by engineering technicians. (authors)

  15. Automation of Aircraft Engine Fuel Controls Tests: An Industrial Case Study involving PID Control of a Nozzle Emulator

    Azolibe, Ifeanyi; McGookin, Euan

    2015-01-01

    The test of fuel control systems used on civil aircraft engines is performed with a network of distributed and, by design, isolated systems. The co-ordination of these test systems is performed manually by human operators in order to verify the airworthiness of a fuel control system throughout the products’ lifecycle. The main objective of this study is the automation of an existing network of systems for fuel control tests. The aspect of automation that is considered in this paper is the con...

  16. Implementación de un Laboratorio Virtual para la enseñanza de Controladores PID Implementation of a Virtual Laboratory for teaching PID Controller

    David A Márquez

    2008-01-01

    Full Text Available El objetivo del trabajo es desarrollar un instrumento didáctico, que permita introducir variaciones de los parámetros del controlador para visualizar la influencia que tienen en la estabilidad de los procesos, con la finalidad de impartir enseñanza del control de procesos haciendo uso del computador. En los casos estudiados se fijan primero los valores de los parámetros y luego se deja libertad de insertarlos tanto en el controlador como en el proceso para analizar sus efectos. Las pruebas realizadas visualizan las ventajas y desventajas que el empleo de este tipo de controlador tiene para un proceso en particular. La experiencia obtenida con los estudiantes fue satisfactoria, logrando que los conceptos estudiados quedaran claros, en particular el tipo de variación a realizar en los parámetros del controlador para obtener mejor estabilidad de un sistema de control.The objective of this work is to develop a teaching tool, which allows variations in the parameters of the controller to see the influence they have on the stability of this process, with the aim of teaching process control using the computer. In the cases studied the values of the parameters were first fixed and then the students are allowed to change them both in the controller and in the process, to analyze their effects. The tests conducted showed the advantages and disadvantages of the use of this type of controller in a particular process. The experience gained with the students was satisfactory and the concepts were well understood by the students, in particular the type of changes that need to be introduced to reach stability of the control system.

  17. Parameter Turning of PID Controller Based on Molecular Beacon DNA Computing

    Yourui Huang

    2012-10-01

    Full Text Available Molecular beacon deoxyribonucleic acid computing is new research focus of intelligent control theory in recent years, it is also new bionic algorithm. It is well known that a very important problem how to determine or tune the proportional integral derivative controller parameters, because these parameters have a great influence on the stability and the performance of the control system. Parameter turning of proportional integral derivative controller by using molecular beacon deoxyribonucleic acid computing can avoid system early-ripe and find global optimal solution rapidly. Molecular beacon is a single strand of deoxyribonucleic acid base pairs formed their own part of the hairpin-like fluorescent probes, the use of molecular beacon can readily detect the concentration of deoxyribonucleic acid molecule which matching with it in test tube, the result of detection can decide which need to be copied and which need to be discarded. The molecular beacon deoxyribonucleic acid computing has high reliability and easy operation for proportional integral derivative controller parameter tuning. The result of simulation proves that molecular beacon deoxyribonucleic acid computing algorithm has distinct advantages than traditional algorithm. molecular beacon deoxyribonucleic acid computing is bound to has very great impact on intelligent control in the future.

  18. Design and Development of Modern Controllers for CANDU Reactor

    The safe and reliable controlling with sufficient accuracy of the nuclear reactor has been a challenging task since its invention. The dilemma of the thesis is to design the modern controllers for the CANDU reactor that not only provide the safe and reliable operation of the reactor but also to control the reactor fast and accurate. The Optimal PID and Fuzzy controllers are focused in this thesis. To design such controllers, the model based designed strategy has been adopted in this thesis. Therefore, a higher order model of CANDU reactor has been developed in this research work. The model is then linearized in order to design the PID controller optimized by Nelder-Mead Algorithm. A modern Fuzzy logic controller is designed using the Mamdani inference engine. Both the controllers are tested, simulated and validated for the step power change and under the reactivity disturbances. A comprehensive performance analysis is conducted and both controllers found extremely robust. (author)

  19. An Adaptive PID Controller for Reinforcement of Carbon Steel:Performance Analysis using MATLAB Simulink

    Sumathi, Ramakrishnan; Usha, Mahalingam

    2012-03-01

    dent on the grain size and percentage of volume fraction recrystallization. In this Paper, a new approach for controlling microstructure development during hot working process by percentage of volume fraction recrystallization is proposed. Here two different methods are employed. One of the approaches is based on the Optimal Control theory and involves the developing of state space models to describe the material behavior and the mechanics of the process. This approach is applied to obtain the desired percentage of volume fraction recrystallization of '1' from an initial value of '0'. The standard Arrehenious equation of 0.3% carbon steel is utilized to obtain an optimal deformation path such that the percentage of volume fraction recrystallization should be 1. The plant model is developed and an appropriate optimality criterion is selected to maintain strain, strain rate and temperature. The state-space model together with an optimality criterion is used to control the percentage of volume fraction recrystallization using Linear Quadrat

  20. Computer-aided control system design

    Control systems are typically implemented using conventional PID controllers, which are then tuned manually during plant commissioning to compensate for interactions between feedback loops. As plants increase in size and complexity, such controllers can fail to provide adequate process regulations. Multivariable methods can be utilized to overcome these limitations. At the Chalk River Nuclear Laboratories, modern control systems are designed and analyzed with the aid of MVPACK, a system of computer programs that appears to the user like a high-level calculator. The software package solves complicated control problems, and provides useful insight into the dynamic response and stability of multivariable systems

  1. A tuning method for robust PID controller during fast transient; Une methode de reglage de correcteur PID robuste pour transitique rapide

    Laroche, E. [Lab. des Sciences de l' Image, de l' Informatique et de la Teledetection, UMR 7005, Pole API, 67 - Illkirch (France); Mendes, E. [Laboratoire de Genie Electrique de Paris, UMR 8507, 91 - Gilf sur Yvette (France); Louis, J.P.; Bonnassieux, Y.; Abou-Kandil, H. [Laboratoire d' Electricite, Signaux et Robotique, UPRESA 8029, 94 - Cachan (France)

    2002-07-01

    In this paper is presented a method for tuning a robust controller well adapted for positioning a load of variable inertia fed by an electric actuator. This method relies on a multi-model pole assignment and minimizes effect of measurement noise. It has been implemented on the benchmark 'fast transitic' located at the LGEP. Thus compared to a classical pole assignment method, the gain of robustness has been shown. The actuator used is an induction machine with flux-oriented control, which is known for its sensitivity to rotor parameter estimation errors. In order to check robustness, a model accounting to this phenomenon is developed and stability margins are computed. (authors)

  2. Genetic Algorithm Based PID tuning for Controlling Paraplegic Humanoid Walking Movement

    Hashim Ali; Ikramullah; Irfan, M.; Mohsin Shahzad; Aftab, M.

    2012-01-01

    Genetic Algorithm (GA) is a very useful tool to search and optimize many engineering and scientific problems. In this paper, a real time enhanced biomedical model of humanoid structure is developed in MSC visual Nastran to assist the paraplegic patient. The complexity of the model is driven by the needs that the model parameters must be estimated for an eventual individual with disability. After the development of humanoid structure an inverse model is designed to estimate the joint torques. ...

  3. An Adaptive PID Controller for Reinforcement of Carbon Steel: Performance Analysis using MATLAB Simulink

    MAHALINGAM Usha; RAMAKRISHNAN Sumathi

    2013-01-01

    The strength of any material is dependenton the grain size and percentage of volume fractionrecrystallization. In this Paper, a new approach forcontrolling microstructure development during hotworking process by percentage of volume fractionrecrystallization is proposed. Here two differentmethods are employed. One of the approaches is basedon the Optimal Control theory and involves thedeveloping of state space models to describe thematerial behavior and the mechanics of the process.This appro...

  4. HYBRID MODELING OF POWER PLANT AND CONTROLLING USING FUZZY P+ID WITH APPLICATION

    Hassen T. Dorrah; Magdy A.S. Aboelela; Marwa M. Abdulmoneim

    2012-01-01

    This paper provides a method one can model manufacturing processes in hybrid systems framework utilizing simple bond graph to determine the flow of events and differential equation models that describe the system dynamics. Controlling of these systems can be easy to develop. “Modeling and Simulation of thermal Power generation Station for power control” will be presented by using hybrid bond graph approach. This work includes the structure and components of the thermal electrical power genera...

  5. Design of Superheated Steam Temperature Control Strategy for Heat-engine Plant

    Huang Quan-Zhen

    2013-01-01

    Full Text Available Superheated steam temperature is a very important monitoring and control parameter for Heat-engine plant, too high or too low temperature will affect the safe operation of the plant and its production efficiency. Superheated steam temperature control system generally contains nonlinearity and parameter instability nad it is difficult to build the precise mathematical model by the traditional control method such as PID, so a PID Superheated Steam Temperature Control System based on BP neural network (BP-NN is designed using the characteristic of self-learning and robustness and combining with conventional PID control algorithm. According to the changes of controlled object parameter, it can automatically adjust the PID parameters using BP neural network by itself. Simulation and actual investment of the factory test show that the designed control system is feasible and the control effect is better.

  6. Penerapan PID Predictive Air-Ratio Controller Pada Mesin Mobil Mitsubishi Tipe 4G63 Untuk Meminimumkan Emisi Gas Buang

    Hendre Angga Prasetya

    2012-09-01

    Full Text Available Seiring dengan adanya perkembangan sistem otomasi dalam dunia otomotif saat ini. dituntut untuk menghasilkan mesin dengan kadar emisi gas buang yang berada diambang batas kewajaran dan hemat bahan bakar sehingga diperlukan suatu sistem terhadap berbagai macam variabel yang mempengaruhi performansi mesin. Untuk menjaga supaya pemakaian bahan bakar pada kondisi optimal dapat diperoleh dengan cara mengatur waktu injeksi bahan bakar. Sistem waktu injeksi bahan bakar ini dipengaruhi oleh kecepatan mesin dan tekanan pada intake manifold. Dengan adanya pengaturan terhadap waktu injeksi bahan bakar akan meningkatkan efektifitas pembakaran yang secara tidak langsung juga mengurangi kadar emisi pada gas buang pada saat kondisi kecepatan stasioner. Pada tugas akhir ini, akan dilakukan penelitian tentang pengaruh waktu pengapian dan waktu injeksi yang diterapkan pada sistem pengaturan injeksi bahan bakar yang diaplikasikan pada mesin Mitsubishi 4G63 untuk mengatur waktu injeksi bahan bakar dan waktu pengapian pada saat mesin dalam kecepatan stasioner. Penelitian ini diujikan pada mesin Mitsubshi 4G63 empat silinder sebagai plant dengan kondisi kecepatan stasioner. Penerapan PID Predictive Air-Ratio Controller memberikan waktu injeksi  yang tepat pada saat kecepatan stasioner sehingga dapat menmaksimalkan perbandingan rasio udara sebesar 14,7 :1 standar performansi mesin .

  7. A new multiobjective performance criterion used in PID tuning optimization algorithms.

    Sahib, Mouayad A; Ahmed, Bestoun S

    2016-01-01

    In PID controller design, an optimization algorithm is commonly employed to search for the optimal controller parameters. The optimization algorithm is based on a specific performance criterion which is defined by an objective or cost function. To this end, different objective functions have been proposed in the literature to optimize the response of the controlled system. These functions include numerous weighted time and frequency domain variables. However, for an optimum desired response it is difficult to select the appropriate objective function or identify the best weight values required to optimize the PID controller design. This paper presents a new time domain performance criterion based on the multiobjective Pareto front solutions. The proposed objective function is tested in the PID controller design for an automatic voltage regulator system (AVR) application using particle swarm optimization algorithm. Simulation results show that the proposed performance criterion can highly improve the PID tuning optimization in comparison with traditional objective functions. PMID:26843978

  8. A new multiobjective performance criterion used in PID tuning optimization algorithms

    Mouayad A. Sahib

    2016-01-01

    Full Text Available In PID controller design, an optimization algorithm is commonly employed to search for the optimal controller parameters. The optimization algorithm is based on a specific performance criterion which is defined by an objective or cost function. To this end, different objective functions have been proposed in the literature to optimize the response of the controlled system. These functions include numerous weighted time and frequency domain variables. However, for an optimum desired response it is difficult to select the appropriate objective function or identify the best weight values required to optimize the PID controller design. This paper presents a new time domain performance criterion based on the multiobjective Pareto front solutions. The proposed objective function is tested in the PID controller design for an automatic voltage regulator system (AVR application using particle swarm optimization algorithm. Simulation results show that the proposed performance criterion can highly improve the PID tuning optimization in comparison with traditional objective functions.

  9. Application of dimensional analysis in systems modeling and control design

    Balaguer, Pedro

    2013-01-01

    Dimensional analysis is an engineering tool that is widely applied to numerous engineering problems, but has only recently been applied to control theory and problems such as identification and model reduction, robust control, adaptive control, and PID control. Application of Dimensional Analysis in Systems Modeling and Control Design provides an introduction to the fundamentals of dimensional analysis for control engineers, and shows how they can exploit the benefits of the technique to theoretical and practical control problems.

  10. DC-DC Converters Using PID Controller and Pulse Width Modulation Technique

    R.Sudha

    2014-01-01

    Full Text Available This paper presents a boost converter along with a flyback converter. The Zero Voltage Switching (ZVS technique is used to achieve soft switching. A bidirectional boost converter is connected with an output module as a Parallel Input Serial Output configuration. The flyback converter with Voltage Doubler Rectifier (VDR acts as an output module. This connection makes a bidirectional boost converter an active clamp circuit which is connected to the output side in order to extend the step up ratio. A converter with active clamp technique is used to recycle the leakage energy, to eliminate voltage spike due to coupled inductors and also to provide a mechanism to achieve ZVS. To overcome the efficiency degradation during light load due to load dependent soft switching of the ZVS, a control method using Pulse Width Modulation (PWM proportional to the load current is used.

  11. Regulación de la temperatura del vapor sobrecalentado en un generador de vapor BKZ-340-140-29M de 100 MW mediante un control PID 2-GdL y filtraje de la medida / Temperature regulation of the steam overheated in a boiler BKZ-340-140-29M of 100 MW using 2-DoF PID control and measure filtering

    Tania, García Martínez; Rafael F., Tanda Martínez; Alberto, Aguado Behar.

    2012-12-01

    Full Text Available En este artículo se presenta una mejora del lazo de regulación de la temperatura del vapor sobrecalentado en un generador de vapor BKZ-340-140-29M de 100 MW. El estudio se realiza en la Central Termoeléctrica Máximo Gómez. La propuesta consiste en un controlador PID con una estructura de dos grados [...] de libertad y filtraje de la medida. El diseño, que incluye un criterio de robustez, tiene como objetivo fundamental la atenuación de las perturbaciones de carga producidas por la variación del flujo de vapor. El ruido de medida se resuelve filtrando la salida con un filtro de segundo orden. La ponderación del punto de consigna se utiliza para mejorar los cambios en la referencia. La propuesta se compara con el desempeño del controlador implementado actualmente en el lazo. Los resultados confirman los beneficios del diseño, garantizando así una mejor eficiencia del lazo. Abstract in english In this paper it is presented an improvement of the temperature loop regulation of the steam overheated in a boiler BKZ-340-140-29M of 100 MW. The study is carried out in the Thermoelectric Máximo Gómez. The proposed consists in a two degree of freedom PID control and measure filtering. The design, [...] that include a robust criteria, has like a fundamental objective the load disturbances rejection produced by variation in the steam flow. The measurement noise is solving using filtering process output with a second order filter. The setpoint weighting it is used to improve the setpoint changes. The proposed is compare with the performance of the current implemented controller in the loop. The results confirm the benefits of design, guaranteeing a better efficiency of the loop.

  12. The MICE PID instrumentation system

    The PID instrumentation of the MICE experiment at RAL, to be used to demonstrate muon cooling, is presented. It must provide good PID capabilities, to contribute to a high precision emittance measurement, in a harsh environment with high incoming particle rates, not-uniform fringe magnetic fields and high backgrounds. It is based mainly on a TOF system, CKOV counters and a downstream calorimeter. Design choices for the detector construction will be illustrated. The performances obtained in the first characterization of the MICE muon beamline will be presented. (author)

  13. Further Characterization of 394-GHz Gyrotron FU CW GII with Additional PID Control System for 600-MHz DNP-SSNMR Spectroscopy

    Ueda, Keisuke; Matsuki, Yoh; Fujiwara, Toshimichi; Tatematsu, Yoshinori; Ogawa, Isamu; Idehara, Toshitaka

    2016-04-01

    A 394-GHz gyrotron, FU CW GII, has been designed at the University of Fukui, Japan, for dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) experiments at 600-MHz 1H resonant frequency. After installation at the Institute for Protein Research (IPR), Osaka University, Japan, a PID feedback control system was equipped to regulate the electron gun heater current for stabilization of the electron beam current, which ultimately achieved stabilization of output power when operating in continuous wave (CW) mode. During exploration to further optimize operating conditions, a continuous tuning bandwidth of approximately 1 GHz was observed by varying the operating voltage at a fixed magnetic field. In the frequency range required for positive DNP enhancement, the output power was improved by increasing the magnetic field and the operating voltage from their initial operational settings. In addition, fine tuning of output frequency by varying the cavity cooling water temperature was demonstrated. These operating conditions and ancillary enhancements are expected to contribute to further enhancement of SSNMR signal.

  14. Fractional order differentiation and robust control design crone, h-infinity and motion control

    Sabatier, Jocelyn; Melchior, Pierre; Oustaloup, Alain

    2015-01-01

    This monograph collates the past decade’s work on fractional models and fractional systems in the fields of analysis, robust control and path tracking. Themes such as PID control, robust path tracking design and motion control methodologies involving fractional differentiation are amongst those explored. It juxtaposes recent theoretical results at the forefront in the field, and applications that can be used as exercises that will help the reader to assimilate the proposed methodologies. The first part of the book deals with fractional derivative and fractional model definitions, as well as recent results for stability analysis, fractional model physical interpretation, controllability, and H-infinity norm computation. It also presents a critical point of view on model pseudo-state and “real state”, tackling the problem of fractional model initialization. Readers will find coverage of PID, Fractional PID and robust control in the second part of the book, which rounds off with an extension of H-infinity ...

  15. TOXIRAE PRO PID

    The ToxiRAE Pro PID measures total volatile organic compounds (VOCs) using a photoionization detector (PID). This sensor can be programmed to measure concentrations of a specified compound automatically and has a real time reading of VOC concentrations in parts per million (ppm) ...

  16. Pelvic Inflammatory Disease (PID)

    ... to spread and cause more pain and damage. Causes & Risk Factors How does a woman get PID? There are ... of giving birth, or having a miscarriage, an abortion or a procedure to take ... common. What are the risk factors for PID? The same things that put you ...

  17. PID controller parameters optimization of hydro-turbine governing systems using deterministic-chaotic-mutation evolutionary programming (DCMEP)

    This paper proposes an improved evolutionary programming (EP) method with deterministic mutation factor for on line PID parameters optimization of hydro-turbine governing systems. The mutation factors are usually generated with Gaussian or Cauchy random series in conventional evolutionary programming algorithms. Considering the difficulties of on line optimal parameters settings resulting from nonlinear time-variant hydro-turbine governing systems, this paper introduces deterministic chaos dynamics into the mutation operation of EP and provides a deterministic chaotic mutation evolutionary programming (DCMEP) method. The improved method develops the traditional concept that implements mutation operation with a fixed random distribution using a quasi-random deterministic way to generate the mutation factor. The test result of the two real hydro-turbine governing systems shows that the improved method can optimize the PID parameters efficiently, and the system has the characteristics of stability; low overshoot level and fast response

  18. A Load Frequency Control in an Off-Grid Sustainable Power System Based on a Parameter Adaptive PID-Type Fuzzy Controller

    Ronilaya, Ferdian; Miyauchi, Hajime

    2014-10-01

    This paper presents a new implementation of a parameter adaptive PID-type fuzzy controller (PAPIDfc) for a grid-supporting inverter of battery to alleviate frequency fluctuations in a wind-diesel power system. A variable speed wind turbine that drives a permanent magnet synchronous generator is assumed for demonstrations. The PAPIDfc controller is built from a set of control rules that adopts the droop method and uses only locally measurable frequency signal. The output control signal is determined from the knowledge base and the fuzzy inference. The input-derivative gain and the output-integral gain of the PAPIDfc are tuned online. To ensure safe battery operating limits, we also propose a protection scheme called intelligent battery protection (IBP). Several simulation experiments are performed by using MATLAB®/SimPowersystems™. Next, to verify the scheme's effectiveness, the simulation results are compared with the results of conventional controllers. The results demonstrate the effectiveness of the PAPIDfc scheme to control a grid-supporting inverter of the battery in the reduction of frequency fluctuations.

  19. Simple method of designing centralized PI controllers for multivariable systems based on SSGM.

    Dhanya Ram, V; Chidambaram, M

    2015-05-01

    A method is given to design multivariable PI/PID controllers for stable and unstable multivariable systems. The method needs only the steady state gain matrix (SSGM). The method is based on the static decoupler design followed by SISO PI/PID controllers design and combining the resulted decoupler and the diagonal PI(D) controllers as the centralized controllers. The result of the present method is shown to be equivalent to the empirical method proposed by Davison EJ. Multivariable tuning regulators: the feed-forward and robust control of general servo-mechanism problem. IEEE Trans Autom Control 1976;21:35-41. Three simulation examples are given. The performance of the controllers is compared with that of the reported centralized controller based on the multivariable transfer function matrix. PMID:25530257

  20. Solar control design package

    1978-08-01

    Information used in the evaluation of design of Solar Control's solar heating and cooling system controller and the Solarstat is presented. System performance specifications, design data brochures, and detailed design drawings are presented.

  1. Pelvic Inflammatory Disease (PID)

    ... Vietnamese) Recommend on Facebook Tweet Share Compartir Untreated sexually transmitted diseases (STDs) can cause pelvic inflammatory disease (PID), a ... plain language for individuals with general questions about sexually transmitted diseases. The content here can be syndicated (added to ...

  2. Analysis of the pp-->pp, pid-->pid, and pid-->pp Scattering Data

    Arndt, Richard; Oh, Chang-Heon; Strakovsky, Igor; Workman, Ron

    1997-01-01

    A combined analysis of the main reactions of the two-baryon system (pp-->pp, pid-->pid, and pid-->pp) over the sqrt{s} interval from pion threshold to 2.4 GeV has been completed. The overall phase in pid-->pp has now been determined. The combined analysis has resulted in an improved fit to the pid elastic and pid-->pp databases.

  3. A Neuro-Inspired Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost FPGAs

    Anton Civit-Balcells

    2012-03-01

    Full Text Available In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN, which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control.

  4. Desain Sistem Kendali Rotary Pendulum Dengan Sliding-PID

    Muntari Muntari

    2013-09-01

    Full Text Available Kebanyakan sistem kontrol yang ada di dunia nyata adalah sistem nonlinier sehingga sulit untuk dikenda-likan. Rotary pendulum adalah sistem yang mensimulasikan sebuah mekanisme kontrol untuk mengatur permasalahan kestabilan. Permasalahan utama dalam desain sistem kendali untuk rotary pendulum adalah menstabilkan batang pendul-um di daerah ekuilibrium pada arm yang digerakkan oleh motor. Pada penelitian ini dilakukan perancangan sistem kendali dengan menggunakan kendali PID dan Sliding-PID. Sliding-PID merupakan gabungan antara Sliding Mode Con-troller dan PID controller. Pemodelan sistem dilakukan dengan Simulink Matlab yang berdasarkan persamaan kine-matika dan dinamika dari sistem. Berdasarkan penelitian ini, dapat disimpulkan bahwa penggunaan kendali Sliding-PID menghasilkan respon yang lebih baik dibandingkan dengan kendali PID. Hal tersebut dapat ditunjukkan dengan nilai maksimum overshoot pada kendali Sliding-PID (0% untuk sudut dan sudut lebih kecil daripada kendali PID (9.4664% untuk sudut dan 7.7107% untuk sudut . Sedangkan waktu yang diperlukan untuk seluruh sistem rotary pendulum (untuk menstabilkan sudut dan sudut dengan kendali Sliding-PID (5.8591 detik lebih besar jika dibandingkan dengan kendali PID (0.5190 detik. Selain itu steady state error dari kendali Sliding-PID (4.94% lebih besar daripada kendali PID (4.81%.

  5. Control system design guide

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  6. An Approach to PID Method

    KAERI has developing a scenario by PID method. PID method makes it easy to find the influence relationship between processes but difficult to trace major influences due to the complication of the diagram. To overcome the complication of the diagram, it is essential to develop a computer system for the effective display of PID. Therefore, the research of PID is carried out two ways of the construction of a full PID and the development of PID system. First of all, methodologies are established for the development of the full PID and computer system. Based on the methodologies, a model PID on Reference Scenario is constructed by the integration of sub-PIDs which are produced from the sub-scenarios of Reference Scenario and a PID Input Tool is developed for the production of PID in computer system. Especially, it seems that PID Input Tool makes it effective to construct various PIDs without errors. Though some additional works are needed to improve the quality of PID system, PID module will be loaded at the CYPRUS in the future and play a role to improve the confidence in the safety assessment of the repository

  7. H∞-Controller Design Methods Applied to One Joint of a Flexible Industrial Manipulator

    Axelsson, Patrik; Helmersson, Anders; Norrlöf, Mikael

    2014-01-01

    Control of a flexible joint of an industrial manipulator using H∞ design methods is presented. The considered design methods are i) mixed-H∞ design, and ii) H∞ loop shaping design. Two different controller configurations are examined: one uses only the actuator position, while the other uses the actuator position and the acceleration of end-effector. The four resulting controllers are compared to a standard PID controller where only the actuator position is measured. The choices of the weight...

  8. Study on Design of Control Module and Fuzzy Control System

    Performance of control unit is improved by introduction of fuzzy control theory and compensation for input of control unit as FLC(Fuzzy Logic Controller). Here, FLC drives thermal control system by linguistic rule-base. Hence, In case of using compensative PID control unit, it doesn't need to revise or compensate for PID control unit. Consequently, this study shows proof that control system which implements H/W module and then uses fuzzy algorism in this system is stable and has reliable performance

  9. Galvanometer control system design of aerial camera motion compensation

    Qiao, Mingrui; Cao, Jianzhong; Wang, Huawei; Guo, Yunzeng; Hu, Changchang; Tang, Hong; Niu, Yuefeng

    2015-10-01

    Aerial cameras exist the image motion on the flight. The image motion has seriously affected the image quality, making the image edge blurred and gray scale loss. According to the actual application situation, when high quality and high precision are required, the image motion compensation (IMC) should be adopted. This paper designs galvanometer control system of IMC. The voice coil motor as the actuator has a simple structure, fast dynamic response and high positioning accuracy. Double-loop feedback is also used. PI arithmetic and Hall sensors are used at the current feedback. Fuzzy-PID arithmetic and optical encoder are used at the speed feedback. Compared to conventional PID control arithmetic, the simulation results show that the control system has fast response and high control accuracy.

  10. Control room design

    Westinghouse is designing a modern, two loop 600 megawatt electrical nuclear power plant. It's name is the AP600 with the AP designation meaning Advanced Passive. The plant design requires no motive power to operate the safety systems after their initiation. Besides the passive features in AP600, the plant includes major enhancements in the design of the Instrumentation and Control (I ampersand C), and the Operations and Control Centers (Main Control Room, Remote Control Room, Maintenance Centers, etc.) Design improvements keep the I ampersand C and Control Rooms off the critical construction path. Maintainability, operability, flexibility, and reliability are also included in the total design process with the goal of enhancing the man-machine interface. This paper provides the overview of the I ampersand C for the AP600 plant and presents the conceptual design for the Main Control Room

  11. Analysis and design of hybrid control systems

    Malmborg, J.

    1998-05-01

    Different aspects of hybrid control systems are treated: analysis, simulation, design and implementation. A systematic methodology using extended Lyapunov theory for design of hybrid systems is developed. The methodology is based on conventional control designs in separate regions together with a switching strategy. Dynamics are not well defined if the control design methods lead to fast mode switching. The dynamics depend on the salient features of the implementation of the mode switches. A theorem for the stability of second order switching together with the resulting dynamics is derived. The dynamics on an intersection of two sliding sets are defined for two relays working on different time scales. The current simulation packages have problems modeling and simulating hybrid systems. It is shown how fast mode switches can be found before or during simulation. The necessary analysis work is a very small overhead for a modern simulation tool. To get some experience from practical problems with hybrid control the switching strategy is implemented in two different software environments. In one of them a time-optimal controller is added to an existing PID controller on a commercial control system. Successful experiments with this hybrid controller shows the practical use of the method 78 refs, 51 figs, 2 tabs

  12. New Design of Control and Experimental System of Windy Flap

    Yu, Shanen; Wang, Jiajun; Chen, Zhangping; Sun, Weihua

    Experiments associated with control principle for automation major generally are based on MATLAB simulation, and they are not combined very well with the control objects. The experimental system aims to meets the teaching and studying requirements, provide experimental platform for learning the principle of automatic control, MCU, embedded system, etc. The main research contents contains design of angular surveying, control & drive module, and PC software. MPU6050 was used for angular surveying, PID control algorithm was used to control the flap go to the target angular, PC software was used for display, analysis, and processing.

  13. Design of intelligent controllers for exothermal processes

    Nagarajan, Ramachandran; Yaacob, Sazali

    2001-10-01

    Chemical Industries such as resin or soap manufacturing industries have reaction systems which work with at least two chemicals. Mixing of chemicals even at room temperature can create the process of exothermic reaction. This processes produces a sudden increase of heat energy within the mixture. The quantity of heat and the dynamics of heat generation are unknown, unpredictable and time varying. Proper control of heat has to be accomplished in order to achieve a high quality of product. Uncontrolled or poorly controlled heat causes another unusable product and the process may damage materials and systems and even human being may be harmed. Controlling of heat due to exothermic reaction cannot be achieved using conventional control methods such as PID control, identification and control etc. All of the conventional methods require at least approximate mathematical model of the exothermic process. Modeling an exothermal process is yet to be properly conceived. This paper discusses a design methodology for controlling such a process. A pilot plant of a reaction system has been constructed and utilized for designing and incorporating the proposed fuzzy logic based intelligent controller. Both the conventional and then an adaptive form of fuzzy logic control were used in testing the performance. The test results ensure the effectiveness of controllers in controlling exothermic heat.

  14. The Design for Feed Water System of Boiler Based on Fuzzy Immune Smith Control

    GuiLi Yuan

    2012-01-01

    Full Text Available Aiming at the uncertainty of model parameters and dominate time delay of the controlled object in feed water system of boiler, combined with improved Smith predictor control method and fuzzy immune PID control method, improved Smith predicting controller based on fuzzy immune is designed.Fuzzy Immune PID controller can self-tune parameters, and has adaptive capacity to the diversification of controlled object parameters. When there is the phenomenon of large delay, the predictor estimates in advance the dynamic characteristics of the process under basic disturbance, so that regulator takes action ahead of time to reduce the overshoot. The designed controller is applied to the feed water cascade control system, and is simulated by Matlab under different operating conditions. Simulation results show that the designed control system has strong adaptive ability to the diversification of model parameters. And its stability, accuracy are superior to that of conventional Smith control system. The effectiveness of this designed controller has been confirmed.

  15. Locking IR and UV diode lasers to a visible laser using a LabVIEW PID controller on a Fabry-Perot signal

    Kwolek, J M; Goodman, D S; Smith, W W

    2015-01-01

    Simultaneous laser locking of IR and UV lasers to a visible reference laser is demonstrated via a Fabry-Perot cavity. LabVIEW is used to analyze the input and an internal PID algorithm converts the Fabry-Perot signal to an analog locking feedback signal. The locking program stabilized both lasers to a long term stability of less than 12 MHz, with the lab-built IR laser undergoing signi?cant improvement in frequency stabilization. The results of this study demonstrate the viability of a simple computer-controlled, non temperature-stabilized Fabry-Perot locking scheme for our applications, laser cooling of Ca+ ions, and its use in other applications with similar modest frequency stabilization requirements.

  16. Implementación de un controlador PID mediante RNA para el control de motores D.C de robots moviles diferenciales

    Germán A. Hernández Millán

    2012-01-01

    Full Text Available Dado que no siempre es posible conocer con exactitud la función de transferencia de todo sistema se hace necesario utilizar herramientas diferentes a las tradicionalmente conocidas para desarrollar el control. Una de estas herramientas son las redes neuronales. Estas no necesitan conocer de manera directa el comportamiento de cada uno de los componentes del sistema para emularlo. Lo único que necesitan son datos para aprender el comportamiento deseado del sistema. En este artículo se demuestra que las redes neuronales pueden emular el comportamiento de un controlador PID para controlar los perfiles de velocidad de los motores de tracción un robot móvil tipo diferencial.

  17. An optimal fuzzy PID power system stabilizer for single machine infinite bus system

    This study represents a design of an optimal fuzzy Proportional Integral Derivative (PID) power system stabilizer for single machine infinite bus power system. The aim of the control is to enhance the stability and to improve the dynamic response of the single machine infinite bus power system operating at different conditions. Speed deviation and acceleration of synchronous machine are chosen as the input signals to the fuzzy controllers. These variables take significant effects on damping of the generator shaft mechanical oscillations. The three parameters of PID controller are computed using the fuzzy membership functions depending on these variables. The inference mechanism of the fuzzy PID controller is represented by three (7x7) decision tables. The controller is simulated for implementing of the study. The simulations are performed under different operating conditions. Also a mechanical disturbance which has square wave waveform and 0,5 magnitude is injected to system from Tm input point during 0,5 s. Simulation results also are compared with conventional power system stabilizer, PID power system stabilizer and fuzzy power system stabilizer in order to show effectiveness of the proposed controller. Key Words: Power system stabilizer, fuzzy PID controller, single-machine infinite-bus model, fuzzy logic

  18. Control room design

    To control a 1300 megawatt nuclear power plant, about 15000 plant parameters must be collected together to control and operate the plant. The control room design therefore is of particular importance. The main design criteria are: Required functions of the power plant process - Level of Automation - Ergonomics - Available Technology. Extensive analysis has resulted in a control room design method. This ensures that an objective solution will be reached. Resulting from this methodical approach are: 1. Scope, position and appearance of the instrumentation. 2. Scope, position and appearance of the operator controls. Process analysis dictates what instrumentation and operator controls are needed. The priority and importance of the control and instrumentation (this we define as the utilisation areas), dictates the rough layout of the control room. (orig./RW)

  19. Designing Genetic Feedback Controllers.

    Harris, Andreas W K; Dolan, James A; Kelly, Ciarán L; Anderson, James; Papachristodoulou, Antonis

    2015-08-01

    By incorporating feedback around systems we wish to manipulate, it is possible to improve their performance and robustness properties to meet pre-specified design objectives. For decades control engineers have been successfully implementing feedback controllers for complex mechanical and electrical systems such as aircraft and sports cars. Natural biological systems use feedback extensively for regulation and adaptation but apart from the most basic designs, there is no systematic framework for designing feedback controllers in Synthetic Biology. In this paper we describe how classical approaches from linear control theory can be used to close the loop. This includes the design of genetic circuits using feedback control and the presentation of a biological phase lag controller. PMID:26390502

  20. Improvement of Transient Voltage Responses using an Additional PID-loop on ANFIS-based Composite Controller-SVC (CC-SVC) to Control Chaos and Voltage Collapse in Power Systems

    Ginarsa, I. Made; Soeprijanto, Adi; Purnomo, Mauridhi Hery; Syafaruddin, Mauridhi Hery; Hiyama, Takashi

    Chaos and voltage collapse are qualitative behaviors in power systems that exist due to lack of reactive power in critical loading. These phenomena are deeply explored using both detailed and approximate models in this paper. The ANFIS-based CC-SVC with an additional PID-loop was proposed to control these problems and to improve transient response of the detailed model. The main function of the PID-loop was to increase the minimum voltage and to decrease the settling time at transient response. The ANFIS-based method was chosen because its computational complexity was more efficient than Mamdani fuzzy logic controller. Therefore the convergence of training processes was more rapidly achieved by the ANFIS-based method. The load voltage was held to the setting value by adjusting the SVC susceptance properly. From the experimental results, the PID-loop was an effective controller which achieved good simulation result for the reactive load, the minimum voltage increased and the settling time decreased at the values of j0.12pu, 0.9435pu and 7.01s, respectively.