WorldWideScience
1

Kokanee Stock Status and Contribution of Cabinet Gorge Hatchery, Lake Pend Oreille, Idaho, Final Report.  

Energy Technology Data Exchange (ETDEWEB)

Lake Pend Oreille once provided the most popular kokanee Oncorhynchus nerka fishery in northern Idaho. A dramatic decline in the population occurred from the mid-1960s to 1970s. Restoration efforts included construction of the Cabinet Gorge Fish Hatchery to supplement the wild population and restore the fishery. In this study, hatchery-reared age 0 kokanee were stocked into Lake Pend Oreille from 1986 through 1992. Seven experimental stocking strategies for kokanee were tested using five locations and two time periods (early May through early June or late July). In 1985, the age 3 and older kokanee totaled about 0.35 million, but rose to 0.78 million in 1986, was stable, was then followed by a decline in 1990 to 0.53 million, then improved to 1.75 million in 1992. Much of the annual variation in total numbers of kokanee, ranging from 4.5 million to 10.2 million, was due to hatchery stockings of age 0 fish. Standing stocks of kokanee remained stable and ranged from 8 to 10 kg/hectare de spite dramatic changes in density due to age 0 fish. Prior to this study (1985), standing stocks were substantially higher (mean = 13.6 kg/hectare), indicating that the population may be operating below carrying capacity. The authors found survival of age 0 hatchery kokanee by each release season to range from 3% in 1986 to 39% in 1992, while the mean from 1987 through 1992 was 23%. They found significant (P=0.05) differences in survival between years, but they could not detect differences between stocking locations (P>0.71). Their analysis of survival between time (early vs late) and location was weak and inconclusive because after 1989 they had fewer fish to stock and could not repeat testing of some release strategies. They believe some of the variation in survival between release groups each year was due to the length of time between release in the lake and trawling.

Paragamian, Vaugh L.

1994-07-01

2

Kokanee Stock Status and Contribution Cabinet Gorge Hatchery, Lake Pend Oreille, Idaho, 1988 Annual Progress Report.  

Energy Technology Data Exchange (ETDEWEB)

The kokanee Oncorhynchus nerka rehabilitation program for Lake Pend Oreille continued to show progress during 1988. Estimated kokanee abundance in early September was 10.2 million fish. This estimate is 70% higher than 1987 and 140% higher than the populations's low point in 1986. Increased population size over the past two years is the result of two consecutive strong year classes produced from high recruitment of hatchery and wild fry. High recruitment of wild fry in 1988 resulted from good parental escapement (strong year class) in 1987 and relatively high fry survival. Hatchery fry made up 51% of total fry recruitment (73% of total fry biomass), which is the largest contribution since hatchery supplementation began in the 1970s. High hatchery fry abundance resulted from a large release (13 million fry) from Cabinet Gorge Hatchery and excellent fry survival (29%) during their first summer in Lake Pend Oreille. Improved fry release strategies enhanced survival, which doubled from 1987 to 1988 and was ten times higher than survival in 1986. Our research goal is to maintain 30% survival so we are very optimistic, but need to replicate additional years to address annual variability. 27 refs., 24 figs., 3 tabs.

Bowles, Edward C.

1989-02-01

3

Kokanee Impacts Assessment and Monitoring of Lake Pend Oreille and Dworshak Reservoir, Idaho, 1994 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

In an effort to recover the declining kokanee Oncorhynchus nerka kennerlyi population in Lake Pend Oreille, a study was proposed to evaluate the benefits of a higher winter elevation, thus providing more spawning gravel for kokanee. This project was designed to collect and compile baseline information on the kokanee population and potential spawning gravel in Lake Pend Oreille that can be used to help evaluate the effectiveness of future changes in lake level management. We estimated the area of suitable quality spawning gravel at the current winter elevation (625.1 m) and at the proposed winter elevation (626.7 m). Gravels beneath the current winter elevation were generally characterized by a high percentage of fine sediments and a high degree of embeddedness. Of the total gravel available below the proposed elevation of 626.7 m, only 15% was available at current winter elevations. Kokanee population estimates were made with a midwater trawl and hydroacoustic surveys in August and September. September population estimates were 6,760,000 age O, 380,000 age 1 +, 700,000 age 2 +, 990,000 age 3 +, 760,000 age 4 +, and 70,000 age 5 + kokanee. Hydroacoustic surveys run alongside the trawl indicated that hydroacoustics can effectively estimate abundance of kokanee, with the exception of fry, which are too small to be completely distinguishable from opossum shrimp Mysis relicta. Historic estimates of wild kokanee fry indicate that winter elevations higher than 625 m and a stable elevation throughout the winter are positively correlated with kokanee fry abundance and survival.

Fredericks, James P.; Elam, Steve; Maiolie, Melo A.

1995-06-01

4

Kokanee Stock Status and Contribution of Cabinet Gorge Hatchery, Lake Pend Oreille, Idaho, 1987 Annual Progress Report.  

Energy Technology Data Exchange (ETDEWEB)

Estimated kokanee Oncorhynchus nerka abundance in Lake Pend Oreille was 6.01 million during late summer 1987. This estimate is 40% higher than the 1986 estimate and is the second largest population estimate since 1977. Higher abundance is predominantly a result of enhanced fry survival and recruitment. Hatchery-reared fry contribution was 22% of total fry recruitment in 1987, compared to 8% in 1986, and resulted from a fivefold increase in survival. Much of this improvement can be attributed to the large (52 mm) fry produced at Cabinet Gorge Hatchery in 1987 and represents the first measurable contribution of the new hatchery to the kokanee rehabilitation program. Survival of hatchery-reared fry released into Clark Fork River was nearly one-half that of fry released into Sullivan Springs due to poor flow conditions and potentially high predation during migration from Cabinet Gorge Hatchery to Lake Pend Oreille. Wild fry survival was enhanced by early availability of forage (cladocern zooplankton) during fry emergence in late spring. Cladoceran production began three weeks earlier in 1987 than 1986, which resulted from reduced Mysis abundance and earlier thermal stratification of Lake Pend Oreille, which helped segregate cladocerans from mysid predation. Kokanee dry otolith coding was evaluated to provide a reliable long-term mark. Analysis of daily growth increments on otoliths was used successfully in 1987 to differentiate fry from various release sites. The technique will be refined during 1988 to include coding fry otoliths with water temperature fluctuations during hatchery residence. 23 refs., 20 figs., 2 tabs.

Bowles, Edward C.

1988-05-01

5

Effects of the Cabinet Gorge Kokanee Hatchery on Wintering Bald Eagles in the Lower Clark Fork River and Lake Pend, Oreille, Idaho: 1986 Final Report.  

Energy Technology Data Exchange (ETDEWEB)

The abundance and distribution of bald eagles (Haliaeetus leucocephalus) on the lower Clark Fork River, Lake Pend Oreille, and the upper Pend Oreille River, Idaho, were documented during the winters of 1985--86 and 1986--87. Peak counts of bald eagles in weekly aerial censuses were higher in 1985--86 (274) and 1986--87 (429) than previously recorded in mid-winter surveys. Differences in eagle distribution within and between years were apparently responses to changes in prey availability. Eight bald eagles were captured and equipped with radio transmitters in the winter and spring of 1986. Residencies within the study area averaged 13.9 days in 1985--86 and 58.3 days for the four eagles that returned in 1986-87. The eagles exhibited considerable daily movement throughout the study area. After departing the area, one eagle was later sighted approximately 1185 km to the southwest in northern California. Eagle behavioral activity was recorded at time budget sessions at areas of heavy use. Perching in live trees was the most common behavior observed. 34 refs., 39 figs., 17 tabs.

Crenshaw, John G.

1987-12-01

6

Kokanee Impacts Assessment and Monitoring on Lake Pend Oreille, Idaho, Annual Progress Report for October 1995-September 1996.  

Energy Technology Data Exchange (ETDEWEB)

The purpose of this project was to Monitor Lake Pend Oreille's kokanee Oncorhynchus nerka kennerlyi population. Data will serve as a baseline for evaluating the benefits of a higher winter lake level beginning in 1996. We estimated the kokanee population in Lake Pend Oreille using a Hauser-type midwater trawl during August 1995 and September 1996. Population estimates in 1995 were 4.55 million age-0 kokanee, 2.87 million age-1 kokanee, 1.52 million age-2 kokanee, 0.74 million age-3 kokanee, 0.15 million age-4 kokanee, and 42,000 age-5 kokanee. Population estimates in 1996 were 5.42 million age-0 kokanee, 3.57 million age-1 kokanee, 3.17 million age-2 kokanee, 0.67 million age-3 kokanee, 0.44 million age-4 kokanee, and no age-5 kokanee. These were two of the highest total populations of kokanee since trawling began in 1977; largely due to high numbers of young kokanee. The densities of age-4 and 5 kokanee (which make up the bulk of the fishery), however, were the lowest on record in 1995 and average in 1996. We also surveyed traditional shoreline and tributary spawning areas. Counts of kokanee spawning in tributaries during 1995 were relatively consistent with previous years (6,261 kokanee). Counts of spawners along the shorelines reached a new record low of only 74 kokanee; a 93 percent decline from 1994. During December 1996, both counts dropped to their lowest point on record. Only 49 fish were seen spawning along the shorelines, and only 819 fish were seen in tributary streams. These low counts may have been partially due to higher lake levels during the spawning seasons. Higher than normal lake levels made additional gravel available for kokanee spawning in many areas of the lake. Possibly this caused kokanee to spread along the shorelines and reduced the spawner counts. Kokanee fry that had been fin clipped and stocked at the Cabinet Gorge Fish Hatchery Ladder in 1991 and 1992 returned at a rate of 0.27% and 0.14% once they matured. This return rate was much lower than the rate measured for kokanee released at Sullivan Springs. Different size groups of fry were stocked at Sullivan Springs in 1991 and 1992. The largest size group (60 mm total length) returned at the highest rate of 2.1% when they matured. Smaller fry (37 mm and 50 mm total length) returned at a rate of about 1.5%.

Maiolie, Melo A.

1998-09-01

7

Kokanee Stock Status and Contribution of Cabinet Gorge Hatchery, Lake Pend Oreille, Idaho, 1989 Annual Progress Report.  

Energy Technology Data Exchange (ETDEWEB)

The kokanee Oncorhynchus nerka rehabilitation program for Lake Pend Oreille continued to show progress during 1989. Estimated kokanee abundance in late August was 7.71 million fish. Decreased population size is the result of lower hatchery and wild fry recruitment and low age 1+ survival. Lower recruitment of wild fry in 1989 resulted from a smaller parental escapement in 1988 and lower wild fry survival. Six fry release strategies were evaluated in 1989. Two groups were released in Clark Fork River to help improve a spawning run to Cabinet Gorge Hatchery. Survival from the mid-summer release, which was barged down Clark Fork River to avoid low flow problems, was not significantly different from the early release. The final assessment of these release strategies will be evaluated when adults return to Cabinet gorge Hatchery in 1992 and 1993. Fry released to support the Sullivan Springs Creek spawning run also survived will in 1989. Two open-water releases were made during early and mid-summer. 30 refs., 26 figs., 2 tabs.

Hoelscher, Brian

1990-04-01

8

Kokanee Stock Status and Contribution of Cabinet Gorge Hatchery, Lake Pend Oreille, Idaho, 1990 Annual Progress Report.  

Energy Technology Data Exchange (ETDEWEB)

Rehabilitation of kokanee Oncorhynchus nerka in Lake Pend Oreille met with some success in 1990, but unexpected results have raised new questions. Estimated kokanee abundance during late August of 1990 was about 6.9 million fish. This is a decline of 19% from 1989, a continued decrease since 1988. The decreased population was attributed to low stocking of hatchery fry (7.3 million), lower wild fry survival in 1990 (1.5%), and exceptionally poor survival of fish ages 3+ and 4+. Average survival of the older fish was only 11% in 1990 compared to 72% in prior years. Compensatory survival was noted for kokanee ages 1+ and 2+, with an average of 81% in 1990 compared to 44% in 1989. Hatchery fry comprised 47% of the total kokanee fry recruitment in 1990 (80% of fry biomass). This contribution ranked third behind 1988 and 1989 since hatchery supplementation began in the 1970s. Survival of hatchery fry was 20%, the second highest since this investigation began. Findings of 1990 indicate a more comprehensive approach to managing kokanee must take into account predator stockings and predator/prey interaction. An unexpected low adult escapement was responsible for an egg-take of only 5.6 million eggs in 1990, 58% of the previous year, which will limit experimental stocking in 1991. Modification of the fish ladder at the Cabinet Gorge Fish Hatchery to improve adult escapement is strongly recommended to increase egg-take. 27 refs., 28 figs., 6 tabs.

Paragamian, Vaughn L.

1991-03-01

9

75 FR 18203 - City of Seattle; Public Utility District No. 1 of Pend Oreille County; Notice of Settlement...  

Science.gov (United States)

...located on the Pend Oreille River in Pend Oreille County...occupies 616 acres of the Colville National Forest and 313 acres...tributary to the Pend Oreille River. The project also occupies lands within the Colville National Forest. g....

2010-04-09

10

Lake Pend Oreille Predation Research, Annual Report 2002-2003.  

Energy Technology Data Exchange (ETDEWEB)

During August 2002 we conducted a hydroacoustic survey to enumerate pelagic fish >406 mm in Lake Pend Oreille, Idaho. The purpose of this survey was to determine a collective lakewide biomass estimate of pelagic bull trout Salvelinus confluentus, rainbow trout Oncorhynchus mykiss, and lake trout S. namaycush and compare it to pelagic prey (kokanee salmon O. nerka) biomass. By developing hydroacoustic techniques to determine the pelagic predator to prey ratio, we can annually monitor their balance. Hydroacoustic surveys were also performed during December 2002 and February 2003 to investigate the effectiveness of autumn and winter surveys for pelagic predators. The inherent problem associated with hydroacoustic sampling is the inability to directly identify fish species. Therefore, we utilized sonic tracking techniques to describe rainbow trout and lake trout habitat use during our winter hydroacoustic survey to help identify fish targets from the hydroacoustic echograms. During August 2002 we estimated there were 39,044 pelagic fish >406 mm in Lake Pend Oreille (1.84 f/ha). Based on temperature and depth utilization, two distinct groups of pelagic fish >406 mm were located during August; one group was located between 10 and 35 m and the other between 40 and 70 m. The biomass for pelagic fish >406 mm during August 2002 was 73 t (metric ton). This would account for a ratio of 1 kg of pelagic predator for every 2.63 kg of kokanee prey, assuming all pelagic fish >406 mm are predators. During our late fall and winter hydroacoustic surveys, pelagic fish >406 mm were observed at lake depths between 20 and 90 m. During late fall and winter, we tracked three rainbow trout (168 habitat observations) and found that they mostly occupied pelagic areas and predominantly stayed within the top 10 m of the water column. During late fall (one lake trout) and winter (four lake trout), we found that lake trout (184 habitat observations) utilized benthic-nearshore areas 65% of the time and were found in the pelagic area only 35% of the time. Lake trout were found at depths between 10 and 90 m (average was approximately 30 m). Based on hydroacoustic surveys of pelagic fish >406 mm and habitat use of sonic tagged rainbow trout and lake trout during late fall and winter, we conclude that hydroacoustic sampling during those times would be ineffective at acquiring an accurate pelagic predator population estimate and recommend conducting abundance estimates for pelagic predators when Lake Pend Oreille is thermally stratified (i.e. August).

Bassista, Thomas

2004-02-01

11

2001 annual report for the Pend Oreille wetlands wildlife mitigation projects; ANNUAL  

International Nuclear Information System (INIS)

The Pend Oreille Wetlands project consists of two adjacent parcels totaling about 600 acres. The parcels make up the northern boundary of the Kalispel Indian Reservation, and is also adjacent to the Pend Oreille River about 25 miles north of Newport and Albeni Falls Dam (Figure 1). Located in the Selkirk Mountains in Pend Oreille County Washington, the project is situated on an active floodplain, increasing its effectiveness as mitigation for Albeni Falls Dam. The combination of the River, wetlands and the north-south alignment of the valley have resulted in an important migratory waterfowl flyway. Washington Department of Fish and Wildlife and Kalispel Natural Resource Department have designated both project sites as priority habitats. Seven habitat types exist on the project properties and include four wetland habitats (open water, emergent, and scrub-shrub and forested), riparian deciduous forest, upland mixed coniferous forest and floodplain meadow. Importance of the project to wildlife is further documented by the occurrence of an active Bald Eagle nest aerie

12

Habitat Evaluation Procedures (HEP) Report; Kaniksu Unit Pend Oreille National Wildlife Refuge  

Energy Technology Data Exchange (ETDEWEB)

Little Pend Oreille National Wildlife Refuge is proposing to acquire a 706-acre property located in Stevens County, Washington. The new acquisition would be called the Kaniksu Unit. A habitat evaluation was conducted on the property using the Habitat Evaluation Procedures (HEP) methodology (U.S. Fish and Wildlife Service 1980). Evaluation species were black-capped chickadee, mallard, ruffed grouse and white-tailed deer. Life requisites evaluated were food and reproduction for black-capped chickadee, food, cover, and reproduction for mallard, available winter browse for white-tailed deer and fall-to-spring cover for ruffed grouse.

US Fish and Wildlife Service Staff

1999-01-01

13

Assessment of the Fishery Improvement Opportunities on the Pend Oreille River, 1988 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

The purpose of this study is to assess the fishery improvement opportunities on the Box Canyon portion of the Pend Oreille River. This report contains the findings of the first year of the study. Chinook salmon (Oncorhynchus tshawytscha (Walbaum)) and steelhead (Oncorhynchus mykiss (Richardson)) were present in the Pend Oreille River prior to the construction of Grand Coulee Dam. The river also contained native cutthroat trout (Oncorhynchus clarki (Richardson)), bull trout (Salvelinus confluentus (Walbaum)) and mountain whitefish (Prosopium williamsoni (Girard)). Rainbow trout were planted in the river and some grew to lengths in excess of 30 inches. With the construction of Box Canyon Dam, in 1955, the most productive section of the river was inundated. Following the construction of the dam the trout fishery declined and the populations of spiny ray fish and rough fish increased. The objectives of the first year of the study were to determine the relative abundance of each species in the river and sloughs; the population levels in fish in the river and four selected tributaries; fish growth rates; the feeding habits and abundance of preferred prey; the migration patterns; and the total fishing pressure, catch per unit effort, and total harvest by conducting a year-round creel survey. 132 refs.

Barber, Michael R.; Willms, Roger A.; Scholz, Allan T.

1989-10-01

14

Uranium favorability of tertiary sedimentary rocks of the Pend Oreille River valley, Washington  

International Nuclear Information System (INIS)

Tertiary sedimentary rocks in the Pend Oreille River valley were investigated in a regional study to determine the favorability for potential uranium resources of northeastern Washington. This project involved measurement and sampling of surface sections, collection of samples from isolated outcrops, chemical and mineralogical analyses of samples, and examination of available water well logs. The Box Canyon Dam area north of Ione is judged to have very high favorability. Thick-bedded conglomerates interbedded with sandstones and silty sandstones compose the Tiger Formation in this area, and high radioactivity levels are found near the base of the formation. Uranophane is found along fracture surfaces or in veins. Carbonaceous material is present throughout the Tiger Formation in the area. Part of the broad Pend Oreille valley surrounding Cusick, Washington, is an area of high favorability. Potential host rocks in the Tiger Formation, consisting of arkosic sandstones interbedded with radioactive shales, probably extend throughout the subsurface part of this area. Carbonaceous material is present and some samples contain high concentrations of uranium. In addition, several other possible chemical indicators were found. The Tiger-Lost Creek area is rated as having medium favorability. The Tiger Formation contains very hard, poorly sorted granite conglomerate with some beds of arkosic sandstone and silty sandstone. The granite conglomerate was apparently derived from sourglomerate was apparently derived from source rocks having relatively high uranium content. The lower part of the formation is more favorable than the upper part because of the presence of carbonaceous material, anomalously high concentrations of uranium, and other possible chemical indicators. The area west of Ione is judged to have low favorability, because of the very low permeability of the rocks and the very low uranium content

15

Assessment of the Fishery Improvement Opportunities on the Pend Oreille River, 1989 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

The purpose of this study was to assess the fishery improvement opportunities on the Box Canyon portion of the Pend Oreille River. This three year study was initiated as part of the Northwest Power Planning Council's 1987 Columbia River Basin Fish and Wildlife Program. This report contains the findings of the second year of the study. Currently, yellow perch (Perca flavescens (Mitchill)) are the predominant fish species in the river and largemouth bass (Micropterus salmoides (Lacepede)) are the predominant sport fish. The objectives of the second year of the study were to determine: the relative abundance of each species in the river and sloughs; the population levels in five selected tributaries and, if possible, for fish in the river and sloughs; fish growth rates; the feeding habits and abundance of preferred prey; migration patterns; and the total fishing pressure, catch-per-unit-effort, and total harvest by conducting a year-round creel survey. 55 refs., 7 figs., 154 tabs.

Barber, Michael R.; Renberg, Becky L.; Vella, John J.

1990-09-01

16

Resident Fish Planning: Dworshak Reservoir, Lake Roosevelt and Lake Pend Oreille.  

Energy Technology Data Exchange (ETDEWEB)

Research projects are presently being conducted to reduce the amount of uncertainty in how reservoir operations within the Columbia River federal power system affect resident fish. Many of these research projects are being conducted to better define operation strategies being proposed under the Columbia River System Operation Review (SOR). This project provides a basis for understanding the potential effects of different operating strategies being considered under the SOR in reservoir fisheries at Lake Roosevelt, Dworshak Reservoir, and Lake Pend Oreille. The methodological framework used here was adapted from the Regional Assessment of Supplementation Project (RASP), a project framework used for evaluating supplementation strategies for anadromous fish. RASP attempts to diagnose the factors that limit production of fishes and outlines a process that can be followed to systematically reduce uncertainty while achieving the objective. In all three reservoirs concerns exist about protecting sensitive species, particularly bull trout and cutthroat trout. In all three reservoirs a need exists for additional baseline information to provide an adequate understanding of the populations of interest.

Fickeisen, Duane H.; Geist, David R.

1994-01-01

17

Lake Pend Oreille Fishery Recovery Project, 1998-1999 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

The minimum water level of Lake Pend Oreille was raised from 625.1 m to 626.4 m elevation during the winter of 1998-99 in an attempt to recover the impacted kokanee Oncorhynchus nerka fishery. This report covers the third year of testing higher winter levels. Hydroacoustic surveys and mid-water trawling were conducted in the fall of 1999 to assess the kokanee population. We estimated the abundance of each age class of kokanee as: 6.023 million age-0 (wild and hatchery fry), 883,000 age-1, 409,000 age-2, 579,000 age-3, 861,000 age-4, and 87,000 age-5. Wild fry abundance was estimated at 2.57 million fish. These originated from 43.1 million eggs spawned in the wild during the fall of 1998. The survival from wild spawned eggs to wild fry was, therefore, 6.0%. This was lower than the 9.6% survival rate calculated last year but was much higher than the 1.4% calculated in 1995 prior to changing lake levels. To date, years of higher winter lake elevations have out-performed years of full drawdown. Based on data collected during trawl sampling, the total number of eggs laid in the lake in the fall of 1999 was 74.8 million. Mean fecundity per female was 379 eggs. Hatchery personnel collected 22.4 million eggs, leaving 52.4 million eggs to be laid by wild fish in tributary streams and along the lake shoreline. These eggs will be used to assess wild kokanee survival during 2000. Peak counts of spawning kokanee were 3,500 fish on the shoreline and 16,400 fish in tributary streams. This represents only a fraction of the total kokanee spawning population. Opossum shrimp Mysis relicta increased slightly in the southern two sections of the lake but decreased in the northern end. Immature and mature shrimp (excluding young-of-the-year shrimp) densities averaged 302 shrimp/m{sup 2}, down from 426 shrimp/m{sup 2} the previous year. The relatively stable shrimp population was not thought to affect the outcome of the lake level testing.

Maiolie, Melo A.; Ament, William J.; Harryman, Bill (Idaho Department of Fish and Game, Boise, ID)

2001-12-01

18

Assessment of the Fishery Improvement Opportunities on the Pend Oreille River: Recommendations for Fisheries Enhancement: Final Report.  

Energy Technology Data Exchange (ETDEWEB)

This report recommends resident fish substitution projects to partially replace anadromous fish losses caused by construction of Grand Coulee and Chief Joseph Dams. These recommendations involve enhancing the resident fishery in the Pend Oreille River as a substitute for anadromous fish losses. In developing these recommendations we have intentionally attempted to minimize the impact upon the hydroelectric system and anadromous fish recovery plans. In this report we are recommending that the Northwest Power Planning Council direct Bonneville Power Administration to fund the proposed enhancement measures as resident fish substitution projects under the NPPC's Columbia Basin Fish and Wildlife Program. The Pend Oreille River, located in northeast Washington, was historically a free flowing river which supported anadromous steelhead trout and chinook salmon, and large resident cutthroat trout and bull trout. In 1939, Grand Coulee Dam eliminated the anadromous species from the river. In 1955, Box Canyon Dam was constructed, inundating resident trout habitat in the river and creating many back water and slough areas. By the late 1950's the fishery in the reservoir had changed from a quality trout fishery to a warm water fishery, supporting largemouth bass, yellow perch and rough fish (tenth, suckers, squawfish). The object of this study was to examine the existing fishery, identify fishery improvement opportunities and recommend fishery enhancement projects. Three years of baseline data were collected from the Box Canyon portion of the Pend Oreille River to assess population dynamics, growth rates, feeding habits, behavior patterns and factors limiting the fishery. Fishery improvement opportunities were identified based on the results of these data. Relative abundance surveys in the reservoir resulted in the capture of 47,415 fish during the study. The most abundant species in the reservoir were yellow perch, composing 44% of the fish captured. The perch population in the river is stunted and therefore not popular with anglers. Pumpkinseed composed 16% of the total catch, followed by tenth (9%), largemouth bass (8%), mountain whitefish (6%), largescale sucker (5%), northern squawfish (4%) and longnose sucker (3%).

Ashe, Becky L.; Scholz, Allan T.

1992-03-01

19

Genetic Inventory of Bull Trout and Westslope Cutthroat Trout in the Pend Oreille Subbasin, 2002-2003 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

In 2002, the Kalispel Natural Resource Department (KNRD) collected tissue samples for genetic analysis from 280 bull trout and 940 westslope cutthroat. The Washington Department of Fish and Wildlife developed and applied microsatellite DNA screening protocols for the analysis of bull trout at 13 loci and 24 loci for cutthroat trout. This project will continue collection and analysis of additional samples for the next 2 years. At that time, a final annual report will be compiled for the three-year study that will describe the genetic characteristics for bull trout and westslope cutthroat trout. The extent of hybridization of bull trout (with brook trout) and westslope cutthroat trout (with Yellowstone cutthroat trout and rainbow trout) in the Priest Lake and Lower Pend Oreille subbasins will also be examined.

Maroney, Joseph R. (Kalispel Tribe of Indians, Usk, WA); Shaklee, James B.; Young, Sewall F. (Washington Department of Fish and Wildlife, Olympia, WA)

2003-10-01

20

Genetic Inventory of Bull Trout and Westslope Cutthroat Trout in Pend Oreille Subbasin, 2003-2004 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

In 2003, the Kalispel Natural Resource Department (KNRD) collected tissue samples for genetic analysis from 209 bull trout and 1,276 westslope cutthroat. The Washington Department of Fish and Wildlife developed and applied microsatellite DNA screening protocols for the analysis of bull trout at 13 loci and 24 loci for cutthroat trout. This project will continue collection and analysis of additional samples next year. At that time, a final annual report will be compiled for the three-year study that will describe the genetic characteristics for bull trout and westslope cutthroat trout. The extent of hybridization of bull trout (with brook trout) and westslope cutthroat trout (with Yellowstone cutthroat trout and rainbow trout) in the Priest Lake and Lower Pend Oreille subbasins will also be examined.

Olson, Jason; Maroney, Joseph R.; Andersen, Todd (Kalispel Department of Natural Resources, Usk, WA)

2004-11-01

21

Paleomagnetic and mineral magnetic constraints on Zn-Pb ore genesis in the Pend Oreille Mine, Metaline district, Washington, USA  

Science.gov (United States)

Zinc-lead mineralization in the Metaline mining district of northeastern Washington, USA, is hosted by the Cambrian Metaline Formation and is classified into Yellowhead-type (YO) and Josephine-type (JO) ore based on texture and mineralogy. Paleomagnetic results are reported for four Cambrian Metaline Formation sites, one Ordovician Ledbetter slate site, 12 YO and 13 JO (including two breccia sites) mineralization sites in the Pend Oreille Mine, and eight sites from the nearby Cretaceous Kaniksu granite batholith. Thermal and alternating field step demagnetization, saturation isothermal remanence analysis, and synthetic specimen tests show that the remanence in the host carbonates and Zn-Pb mineralization is carried mostly by pseudosingle (PSD) to single domain (SD) pyrrhotite and mostly by PSD to SD magnetite in the Kaniksu granite. Based on thermomagnetic measurements, sphalerite and galena concentrates and tailings from the mine's mill contain hexagonal and monoclimc pyrrhotite. The postfolding characteristic remanent magnetization (ChRM), known thermal data, and paleoarc method of dating suggest that the Zn-Pb mineralization carries a primary chemical remanent magnetization (CRM), and Metaline Formation carbonates a secondary CRM that were acquired during the Middle Jurassic (166 ??6 Ma) during the waning stages of the Nevadan orogeny. A paleomagnetic breccia test favours a solution-collapse origin for the Josephine breccia. Finally, the Kaniksu paleopole is concordant with the North American Cretaceous reference paleopole, suggesting the Kootenay terrane has not been rotated since emplacement of the batholith at ???94 Ma. ?? 2007 NRC Canada.

Pannalal, S.J.; Symons, D.T.A.; Leach, D.L.

2007-01-01

22

Assessment of the Fshery Improvement Opportunities on the Pend Oreille River, 1990 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

The purpose of this study was to assess the fishery improvement opportunities on the Box Canyon portion of the Pend Oreilla River. This three year study was initiated as part of the Northwest Power Planning Council's 1987 Columbia River Basin Fish and Wildlife Program. This report contains the findings of the third and final year of the study. The objectives of the third year of the study were to determine the relative abundance of each species in the river and sloughs; the population levels in five selected tributaries and, if possible, for fish in the river and sloughs; each species growth rate, feeding habits abundance preferred prey, and migration patterns; and the seasonal movement patterns and habitat utilization of largemouth bass. 64 refs., 8 figs., 263., tabs.

Ashe, Becky L.; Lillengreen, Kelly L.; Vella, John J.

1991-03-01

23

Assessment of the Fishery Improvement Opportunities on the Pend Oreille River, Appendices, 1990 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

This report is a compilation of the seven appendices to DOE/BP/39339--4 the annual report for FY 1990. These appendices contain the supporting numerical data for the study. The purpose of this study was to assess the fishery improvement opportunities on the Box Canyon portion of the Pend Oreilla River. This three year study was initiated as part of the Northwest Power Planning Council's 1987 Columbia River Basin Fish and Wildlife Program. This report contains the findings of the third and final year of the study. The objectives of the third year of the study were to determine the relative abundance of each species in the river and sloughs; the population levels in five selected tributaries and, if possible, for fish in the river and sloughs; each species growth rate, feeding habits, abundance of preferred prey, and migration patterns; and the seasonal movement patterns and habitat utilization of largemouth bass.

Ashe, Becky L.; Lillengreen, Kelly L.; Vella, John J.

1991-03-01

24

Kokanee Stock Status and Contribution of Cabinet Gorge Hatchery, Lake Pend Oreille, Idaho, 1991 Annual Progress Report.  

Energy Technology Data Exchange (ETDEWEB)

Initially, rehabilitation of kokanee Oncorhynchus nerka met with apparent success reaching a peak abundance of 10.2 million fishTl988. However, a decline of 47% followed from 1988 through 1991 to 5.4 million fish. The decreased population was attributed to poor recruitment of wild fish, poor egg take, thus, low stocking of hatchery fry (7.3 million in 1990 and 5.0 million in 1991 compared to about 13.0 million in 1981), and poor survival of fish ages 3 and 4 (average survival of the older fish was only 35% in 1990 compared to 72% in prior years but it was 68% in 1991). In addition, standing stocks of kokanee have remained relatively stable (x = 8.6 kg/hectare) since 1986 despite the dramatic changes in density. Prior to this study (1985) standing stocks were substantially higher (x = 13.6 kg/hectare). The kokanee population is probably operating below carrying capacity. Hatchery fry comprised 59% of the total kokanee recruitment in 1991 (93% of fry biomass). This contribution of 1.06 million fry ranked fifth behind 1988 (3.74 million), 1989 (2.25 million), 1982 (1.89 million), and 1990 (1.56 million) since hatchery supplementation began in the 1970s. Survival of hatchery fry was 21% in 1991, the second highest since this investigation began. Two release strategies were tested in 1991 of which the best survival was recorded for the Sullivan Springs release at 23% while the early Clark Fork River release continued to have lowest survival at 18%. Survival of hatchery reared kokanee fry is still below the goal of 30% and it appears that this goal may not be attainable most years. Statistical analysis between number of days from fry release to recapture day and fry survival did not reveal a relationship (P = 0.43). Survival of fry from late releases is higher (P = 0.05) than early releases but no difference (P L 0.71) was detected between stocking locations. Good survival of fry from the Sullivan Springs releases was attributed to large size of kokanee fry (55 mm), warm water temperatures of July, and higher cladoceran densities compared to June. River release Lower survival of the early Clark Fork is attributed to the exceptionally high river flows (1,984 cm /s or 70,000 ft /s) and low density of zooplankton. Age of adult kokanee sampled at Sullivan Springs was 1% age 2, 46% age 3, and 53% age 4. The high proportion of age 3 kokanee resulted in lower average fecundity. Recovery of about 160 fin clipped kokanee at Sullivan Springs provided evidence of imprinting. About 0.4% of the marked kokanee released in 1988 returned to spawn at age 3. This failure of a spawning run to Clark Fork River and low (<0.000l%) returns to the Cabinet Gorge Hatchery is a major concern. Total fishing effort was 460,679 h (220%) or about 12 h/hectare. A sport fishery survey indicated anglers harvested 276,457 fish of which 227,140 were kokanee and 2,157 Gerrard rainbow trout Oncorhynchus mykiss (>610 mm) while an additional 14,800 rainbow trout Oncorhynchus mykiss were released. The harvest of kokanee is at 33% of the management goals, but the harvest of large Gerrard rainbow trout was the best in 15 years.

Paragamian, Vaughn L.

1991-01-01

25

L'oreille, premier instrument de musique ?  

Directory of Open Access Journals (Sweden)

Full Text Available Les instruments de musique nous permettent de fabriquer des sons musicaux, c'est-à-dire des sons désindicialisés (proposés pour eux-mêmes à l'écoute sans assignation à leur cause et articulés les uns aux autres en un système réel ou supposé. Mais la fabrication n'est pas la seule voie de production de tels sons. Ils peuvent aussi simplement être produits par une décision d'écoute - par une oreille a priori capable d'installer cette désindicialisation et cette articulation, autrement dit par l'oreille d'un être parlant. Ce n'est donc pas parce qu'ils font de la musique que les êtres humains ont un « corps harmonique», c'est parce qu'ils ont acquis un corps harmonique (un corps d'être parlant qu'ils peuvent faire et entendre de la musique. Cela pourrait aussi expliquer pourquoi nous pouvons être sourds à certaines formes de musique.Musical instruments allow us to make musical sounds, that is to say, sounds perceived as if they were without an external cause (proposed for themselves and linked to each other in a real or supposed system. But making or manufacturing is not the only way to produce such sounds. They may also simply be produced by a decision on listening - by an ear able of installing these two properties (apparently without an external cause ; linked in a system of musical sounds, ie by the ear of a speaking being. This is not because they make music that human beings have an "harmonic body", it is because they have acquired an harmonic body (body of a speaking being that they can make - or rather produce - and hear music. This could also explain why we can be deaf to some forms of music.

Catherine Kintzler

2011-03-01

26

Pending Problems in QSOs  

Directory of Open Access Journals (Sweden)

Full Text Available Quasars (Quasi Stellar Objects, abbreviated as QSOs are still nowadays, close to half a century after their discovery, objects which are not completely understood. In this brief review a description of the pending problems, inconsistencies and caveats in the QSO's research is presented. The standard paradigm model based on the existence of very massive black holes that are responsible for the QSO's huge luminosities, re-sulting from to their cosmological redshifts, leaves many facts without explanation. There are several obser-vations which lack a clear explanation, for instance: the absence of bright QSOs at low redshifts, a mysteri-ous evolution not properly understood; the inconsistencies of the absorption lines, such as the different structure of the clouds along the QSO's line of sight and their tangential directions; the spatial correlation between QSOs and galaxies; and many others.

Martín López-Corredoira

2011-06-01

27

The economics of pending patents  

OpenAIRE

We provide a treatment of a number of questions pertaining to pending patents - a subject that has so-far mainly been discussed en-passant in the existing literature. We present the underlying institutional and legal framework that governs pending patents and some basic facts related to them. Then, we focus on the strategic considerations of firms in the earliest stage of the patenting process and the interplay with the patent office. This is followed by considering the perspective of the pat...

Koenen, Johannes; Peitz, Martin

2011-01-01

28

Sustaining the natural and economical resources of the Lac Courte Oreilles, Leslie Isham; Jason Weaver  

Energy Technology Data Exchange (ETDEWEB)

The Lac Courte Oreilles Band of Lake Superior Chippewa Indians, located in northwest Wisconsin has developed a project, entitled Sustaining the Natural and Economic Resources of the LCO Ojibwe. This technical report is a summary of the project.

Isham, Leslie; Weaver, Jason

2013-09-30

29

Idaho's Energy Options  

Energy Technology Data Exchange (ETDEWEB)

This report, developed by the Idaho National Laboratory, is provided as an introduction to and an update of the status of technologies for the generation and use of energy. Its purpose is to provide information useful for identifying and evaluating Idaho’s energy options, and for developing and implementing Idaho’s energy direction and policies.

Robert M. Neilson

2006-03-01

30

Idaho Geothermal Commercialization Program. Idaho geothermal handbook  

Energy Technology Data Exchange (ETDEWEB)

The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

Hammer, G.D.; Esposito, L.; Montgomery, M.

1980-03-01

31

Potential impacts of pending residual radioactivity rules  

International Nuclear Information System (INIS)

The purpose of this paper is to present an overview of pending rules governing residual radioactive release criteria and radioactive waste management, and the potential impact of these rules on the Fernald Scrap Metal program. More than 300,000 cubic meters of radioactively contaminated waste will be generated during the dismantlement of three complexes at the Fernald Site over the next year and a half. Under current regulations, as much as 70% (5,000 tons) of steel will be either recycled or re-used in controlled applications. Depending on regulatory developments, the ratios of recycling to burial will range from 100% burial to recycling more than 90% of the waste. The absence of federal rules and regulations for classification of permissible levels of residual radioactivity is one of the most troublesome issues in the nuclear industry. The issue is growing in importance with the approaching end of useful life for many nuclear power generating stations and the planned remediation of the DOE nuclear weapons complex. Federal regulators have been involved in the open-quotes Enhanced rulemakingclose quotes process for over two years. The DOE Fernald site offers a good opportunity for understanding the potential impacts of the pending residual radioactivity regulations due to the maturity of the planned D ampersand D activities, aggressive recycling program, and simple nature of contamination. The Fernald experience may offer a point of departure for many facilities engaged in D ampersand D and waste management

32

17 CFR 9.24 - Petition for stay pending review.  

Science.gov (United States)

...2010-04-01 false Petition for stay pending review. 9.24 Section 9.24 Commodity and Securities Exchanges COMMODITY FUTURES...ACTIONS Initial Procedure With Respect to Appeals § 9.24 Petition for stay pending review. (a) Time...

2010-04-01

33

76 FR 66033 - Plants for Planting Whose Importation Is Not Authorized Pending Pest Risk Analysis; Notice of...  

Science.gov (United States)

...Is Not Authorized Pending Pest Risk Analysis; Notice of Availability of Data...is not authorized pending pest risk analysis. The notice also made available...is not authorized pending pest risk analysis. The notice also made...

2011-10-25

34

78 FR 41908 - Plants for Planting Whose Importation Is Not Authorized Pending Pest Risk Analysis; Notice of...  

Science.gov (United States)

...Is Not Authorized Pending Pest Risk Analysis; Notice of Availability of Data...is not authorized pending pest risk analysis. This action will allow interested...is not authorized pending pest risk analysis. Comments on the notice...

2013-07-12

35

78 FR 26316 - Plants for Planting Whose Importation is Not Authorized Pending Pest Risk Analysis; Notice of...  

Science.gov (United States)

...is Not Authorized Pending Pest Risk Analysis; Notice of Availability of Data...is not authorized pending pest risk analysis. We have prepared data sheets...is not authorized pending pest risk analysis (NAPPRA) in order to...

2013-05-06

36

78 FR 12412 - Generalized System of Preferences (GSP): Notice of Status of Certain Pending Country Practice...  

Science.gov (United States)

...of Certain Pending Country Practice Petitions; Notice of Schedule...Hearing on Certain Country Practice Reviews AGENCY: Office of...SUMMARY: This notice announces (1) the status of pending country practice petitions submitted as...

2013-02-22

37

32 CFR 884.3 - Placing member under restraint pending delivery.  

Science.gov (United States)

...Placing member under restraint pending delivery. 884.3 Section 884.3 National...THE AIR FORCE MILITARY PERSONNEL DELIVERY OF PERSONNEL TO UNITED STATES CIVILIAN...Placing member under restraint pending delivery. Continue restraint...

2010-07-01

38

Idaho: A Portrait  

Science.gov (United States)

Divided into five sections, this site, the companion to Idaho Public Television's show by the same name, is the place for readers to go to learn all about the state: its landscape, history, recreation, and more. The first section, About Idaho, is divided into three subsections, Geology, People (which features interviews with a number of residents), and History. Those who want to find out more about a particular region can click the map in Tour the State to bring up a page of information. Idaho Adventures provides details on recreational activities (skiing, hunting, etc.) and Lewis and Clark's expedition, together with links to relevant sites. Four Photographers' Views offers a handful of breath-taking shots from each photographer, and the Resources section rounds out the site with downloadable wallpaper, a quiz, a list of related links, and more. RealPlayer clips are available throughout the site.

39

Attacks on computers: Congressional hearings and pending legislation  

Energy Technology Data Exchange (ETDEWEB)

During the First Session of the 98th Congress, several days of hearings were held on the activities of computer enthusiasts including the Milwaukee 414s and others. The First Session also saw the introduction in the House of six bills dealing with various aspects and computer crime. A summary of those hearings, along with a summary of the pending computer crime bills, will be presented.

Bailey, D.

1984-01-01

40

College of Idaho Geothermal System, Caldwell, Idaho  

Energy Technology Data Exchange (ETDEWEB)

There appears to be a good potential for a 160{sup 0}F resource at the College of Idaho site. Both existing well data and recent geologic and hydrologic investigations suggest that such a temperature should be available at a depth of approximately 3500 feet. Use of a temperature in the 160{sup 0}F range would not permit a 100% displacement of present natural gas use for space and domestic hot water. Because these systems were typically designed for 200{sup 0}F water or low pressure steam (approx. 220{sup 0}F), the performance of the existing equipment would be less than peak building requirements. However, even without major system modifications (the cost of which would be unreasonable), a geothermal system based on the above resource temperature would be capable of displacing about 78% of current natural gas consumption attributable to space and domestic hot water heating. The system outlined in the report would consist of a 3500 foot production well which would supply geothermal fluid to 12 major buildings on campus. Geothermal water would be passed through heat exchangers in each building. The heat exchangers would deliver heat to the existing heating loops. Most buildings would still require a small amount of input from the existing boiler during the coldest periods of the year. After having passed through the system, the geothermal water would then be injected into a disposal well. This is a key factor in the overall economics of the system. The assumption has been made that a full depth (3550 foot) injection well would be required. It is possible, though unclear at this point, that injection could be accomplished at a shallower depth into a similar aquifer. Since the injection well amounts to 24% of the total system capital cost, this is an important factor.

Rafferty, K.

1984-10-01

41

Genetic and phenotype catalog of native resident trout of the interior Columbia River Basin: FY-99 report: populations of the Pend Oreille, Kettle, and Sanpoil River Basins of Colville National Forest/ fiscal year 1999 report; ANNUAL  

International Nuclear Information System (INIS)

The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project is to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-99 was year two of a five-year project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-99 we worked in collaboration with the Colville National Forest and Kalispel Indian Tribe to catalog populationslispel Indian Tribe to catalog populations in the northeastern corner of Washington State

42

Genetic and Phenotype [Phenotypic] Catalog of Native Resident Trout of the interior Columbia River Basin : FY-99 Report : Populations of the Pend Oreille, Kettle, and Sanpoil River Basins of Colville National Forest.  

Energy Technology Data Exchange (ETDEWEB)

The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project is to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-99 was year two of a five-year project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-99 we worked in collaboration with the Colville National Forest and Kalispel Indian Tribe to catalog populations in the northeastern corner of Washington State.

Trotter, Patrick C.

2001-05-01

43

75 FR 32210 - United States v. Idaho Orthopaedic Society, Timothy Doerr, Jeffrey Hessing, Idaho Sports Medicine...  

Science.gov (United States)

...Idaho Orthopaedic Society, Timothy Doerr, Jeffrey...ISB No. 3628); Consumer Protection Division...Idaho Orthopaedic Society, Timothy Doerr, Jeffrey...the Attorney General, Consumer Protection Division...Idaho Orthopaedic Society, Timothy Doerr,...

2010-06-07

44

26 CFR 301.6863-2 - Collection of jeopardy assessment; stay of sale of seized property pending Tax Court decision.  

Science.gov (United States)

...Collection of jeopardy assessment; stay of sale of seized property pending Tax Court decision. 301.6863-2 Section...Collection of jeopardy assessment; stay of sale of seized property pending Tax Court decision. (a) General...

2010-04-01

45

Debtor education, financial literacy, and pending bankruptcy legislation.  

Science.gov (United States)

This paper reports on an evaluation of a financial education-training program for residents of New York who had filed for bankruptcy. Over 400 individuals divided into three groups (trained debtors, untrained debtors, and non-debtors) completed identical questionnaires approximately three months apart. Trained debtors took the pretest before training and the post-test after training. Results revealed that trained debtors' financial knowledge increased after training compared with untrained and non-debtors. Trained debtors showed more negative attitudes towards unnecessary spending compared with the other two groups and reported less intention to buy than non-debtors reported. Self-reported behaviors showed significant changes in the desired direction for trained debtors' use of credit cards (i.e. number owned, purchases, and balance amount), paying bills, budgeting, and borrowing from predatory lenders. Implications for pending legislation are discussed. PMID:15968706

Wiener, Richard L; Baron-Donovan, Corinne; Gross, Karen; Block-Lieb, Susan

2005-01-01

46

An IPSN research programme to resolve pending LOCA issues  

International Nuclear Information System (INIS)

Studies performed in IPSN and elsewhere pointed out that high burnup may induce specific effects under LOCA conditions, especially those related with fuel relocation. Uncertainties exist regarding how much these effects might affect the late evolution of the accident transient and the associated safety issues. IPSN estimates that a better knowledge of specific phenomena is required in order to resolve the pending uncertainties related to LOCA criteria. IPSN is preparing the so called APRP-Irradie (High Burnup fuel LOCA) programme. One of the important aspect of this programme is in-pile experiments involving bundle geometries in the PHEBUS facility located at Cadarache, France. A feasibility study for such an experimental programme is underway and should provide soon, a finalized project including cost and schedule aspects. (authors)

47

The Digital Atlas of Idaho  

Science.gov (United States)

The Digital Atlas of Idaho was created in order to convey the "integration of data on geology, hydrology, biology, climatology, and anthropology onto a common digital map base", and is the result of collaboration between Idaho State University, Boise State University, and the Idaho Museum of Natural History. Visitors to the site can view the areas of study on the home page, which include "Geology", "Biology", and "Geography". By scrolling over each area they can see the topics these areas cover. For example scrolling over "Geology" will show a number of topics including "Rocks of Idaho", "Snake River Plain", "Fossils", "Geology Basics", and "Geology of SE Idaho". Users interested in teaching about some of the topics covered by the Digital Atlas should check out the "Teaching Resources" link for lesson plans available for grades K-12. There are also "Digital Exercises", "Charts", "Images", and "Glossaries" to further inform the lessons. Visitors can find such digital exercises as "Butterfly Identification Exercise", "Name That Cloud", and "Geographic Processes and the Visible Landscape".

48

37 CFR 2.27 - Pending trademark application index; access to applications.  

Science.gov (United States)

37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Pending trademark application index; access to applications... 2.27 Section 2.27 Patents, Trademarks, and Copyrights UNITED STATES...

2010-07-01

49

41 CFR 102-42.25 - Who retains custody of gifts and decorations pending disposal?  

Science.gov (United States)

...custody of gifts and decorations pending disposal? 102-42.25 Section 102-42.25 Public Contracts and Property Management Federal... FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 42-UTILIZATION, DONATION, AND DISPOSAL OF FOREIGN...

2010-07-01

50

Analysis of Pending Problems for a Technology Demand of Domestic Operational Nuclear Power Plants  

Energy Technology Data Exchange (ETDEWEB)

Eleven technology fields were chosen, which have a relation with the solution of the pending problems of domestic operational nuclear power plants to manage an efficient operation and safe regulation for domestic nuclear power plants. The progressive background, requirements, and performance on the pending problems, 34, of an operation and regulation for domestic nuclear power plants were analyzed with regard to a risk information application, severe accident, PSR of structural materials, underwater monitoring, operation inspection and a fire protection, an instrument aging, metal integrity and steam generator, human technology and a digital I and C, quality assurance, secondary system and a user reliance and mass communications. KAERI's role is to provide a solution to these pending problems of domestic nuclear power plants. KAERI's technology is to be applicable to the pending problems for domestic nuclear power plants to raise an operational efficiency and an application frequency of nuclear power plants. In the future, a technology treaty between KAERI and KHNP is to be established to solve the pending problems for domestic nuclear power plants. Operation rate of nuclear power plants will also be raised and contribute to the supply of national energy due to this technology treaty.

Koo, Dae Seo; Park, Won Seok; Wi, Myung Hwan; Ha, Jae Joo

2008-01-15

51

76 FR 22361 - Lakeview-Reeder Fuels Reduction, Idaho Panhandle National Forests, Idaho, Bonner County  

Science.gov (United States)

...SUMMARY: The Priest Lake Ranger District of the Idaho Panhandle...availability in the Federal Register. ADDRESSES: Priest Lake Ranger District, 32203 Hwy 57, Priest Lake, Idaho 83856. FOR FURTHER...

2011-04-21

52

UPPER PRIEST ROADLESS AREA, IDAHO.  

Science.gov (United States)

A mineral survey of the Upper Priest Roadless Area in northern Idaho indicates that the roadless area has little promise for the occurrence of metallic mineral or energy resources. Small amounts of zinc, lead, silver, tin, and tungsten were detected in pan concentrates of stream-sediment samples, but these metals probably were derived from weathering of scattered, sparsely mineralized quartz veins common to the region and no resource potential was identified.

Miller, F.K.; Denton, D.K., Jr.

1984-01-01

53

Instrumented remotely operated vehicle for measuring inherent and apparent optical properties of the ocean  

Science.gov (United States)

A deeper understanding of radiative transfer in the ocean will require accurate measurements of inherent optical properties (IOPs) and apparent optical properties (AOPs) simultaneously or near simultaneously in the same water. Toward this goal, we have instrumented a remotely operated vehicle (ROV) with state-of-the-art instruments that measure the beam attenuation, volume absorption, backscattering coefficients, vector and scalar irradiances, temperature, salinity, and undisturbed particle-size distributions and concentrations. The ROV and its instruments are described and data are presented from deployments at Lake Pend Oreille, Idaho; Tongue-of-the-Ocean, Bahamas; and Monterey Bay, California.

Maffione, Robert A.; Dana, David R.; Voss, Jeffrey M.; Frysinger, Glenn S.

1993-12-01

54

Pending templates imprinted polymers-hypothesis, synthesis, adsorption, and chromatographic properties.  

Science.gov (United States)

This is the first time when protein-imprinted polymers are prepared with "pending templates." The polymers were synthesized in the presence of a real sample (chicken egg white), rather than any known commercial proteins. Compared with a simultaneously synthesized nonimprinted control polymer, the polymers show higher adsorption capacity for abundant components (as "pending templates") in the original sample. Chromatography experiments indicated that the columns made of the imprinted polymers could retain abundant species (imprinted) and separate them from those not imprinted. Thus, the sample could be split into dimidiate subfractions with reduced complexities. "Pending template imprinting" suggests a new way to investigate molecular imprinting, especially to dissect, simplify, and analyze complicated samples through a series of polymers just imprinted by the samples per se. PMID:23463587

Yang, Chun; Luan, Xinjie; Zhao, Meifeng; Liu, Guofeng; Wang, Jian; Qu, Qishu; Hu, Xiaoya

2013-05-01

55

77 FR 52310 - Central Idaho Resource Advisory Committee  

Science.gov (United States)

...1206 S. Challis Street, Salmon, Idaho 83467, the September...1206 S. Challis Street, Salmon, Idaho 83467. Please call...1206 S. Challis Street, Salmon, Idaho 83467 or by email...August 23, 2012. Frank V. Guzman, Forest...

2012-08-29

56

77 FR 45575 - Central Idaho Resource Advisory Committee  

Science.gov (United States)

...1206 S. Challis Street, Salmon, Idaho 83467. All comments...1206 S. Challis Street Salmon, Idaho 83467. Please call...1206 S. Challis Street, Salmon, Idaho 83467 or by email...July 25, 2012. Frank V. Guzman, Forest...

2012-08-01

57

Licensing requirements for pending applications for construction permits and manufacturing license  

International Nuclear Information System (INIS)

The TMI-2 Action Plan, NUREG-0660, does not specifically address requirements for construction permit and manufacturing license applications. There are currently pending six construction permit applications for eleven units with light water reactors and one manufacturing license application for eight floating nuclear plants. Staff review of these applications had been suspended since the TMI-2 accident pending the formulation of a policy to appropriately reflect the lessons learned from the accident. The Commission is considering a new rule which will state the TMI-related requirements to be applied to these applications

58

76 FR 44572 - Plants for Planting Whose Importation Is Not Authorized Pending Pest Risk Analysis; Notice of...  

Science.gov (United States)

...not authorized pending pest risk analysis (NAPPRA) in order...not be authorized pending pest risk analysis. In most cases, the...countries that are currently exporting the taxa to the United States...are sufficient to mitigate the risk associated with the...

2011-07-26

59

Subgroup Achievement and Gap Trends: Idaho, 2010  

Science.gov (United States)

This paper profiles the student subgroup achievement and gap trends in Idaho for 2010. Idaho showed improvement in reading and math in grade 8 at the basic, proficient, and advanced levels for Latino and white students, low income students, and boys and girls. The state has also made progress in narrowing achievement gaps between Latino and white…

Center on Education Policy, 2010

2010-01-01

60

Weed hosts Globodera pallida from Idaho  

Science.gov (United States)

The potato cyst nematode, Globodera pallida (PCN), a restricted pest in the USA, was first reported in Bingham and Bonneville counties of Idaho in 2006. The US government and Idaho State Department of Agriculture hope to eradicate it from infested fields. Eradicating PCN will require depriving the n...

61

Global Clock, Physical Time Order and Pending Period Analysis in Multiprocessor Systems  

CERN Document Server

In multiprocessor systems, various problems are treated with Lamport's logical clock and the resultant logical time orders between operations. However, one often needs to face the high complexities caused by the lack of logical time order information in practice. In this paper, we utilize the \\emph{global clock} to infuse the so-called \\emph{pending period} to each operation in a multiprocessor system, where the pending period is a time interval that contains the performed time of the operation. Further, we define the \\emph{physical time order} for any two operations with disjoint pending periods. The physical time order is obeyed by any real execution in multiprocessor systems due to that it is part of the truly happened operation orders restricted by global clock, and it is then proven to be independent and consistent with traditional logical time orders. The above novel yet fundamental concepts enables new effective approaches for analyzing multiprocessor systems, which are named \\emph{pending period analy...

Chen, Yunji; Hu, Weiwu

2009-01-01

62

78 FR 29155 - National Register of Historic Places; Notification of Pending Nominations and Related Actions  

Science.gov (United States)

...National Park Service,1201 Eye St. NW., 8th floor, Washington...13000352 IDAHO Payette County St. John's Church, 350 N. 4th St., Payette, 13000353 NEW JERSEY...Utilization of the Little Missouri River Grasslands MPS), Address...

2013-05-17

63

76 FR 64102 - National Register of Historic Places; Notification of Pending Nominations and Related Actions  

Science.gov (United States)

...Glynn Academy, SE. corner of Egmont & Monck Sts., Brunswick, 11000775 Polk County South Philpot Street Historic District, Roughly bounded by S. Philpot St., East Ave, E. Ware & Park Sts., Cedartown, 11000776 IDAHO Ada County...

2011-10-17

64

Idaho heavy rare earth resources and extraction  

International Nuclear Information System (INIS)

The extensive central Idaho black sand placer deposits are a potential source of rare earth elements, particularly the heavy rare earths that are not prevalent in commercial bastnasite deposits. These placers derive from the Idaho batholith. In this paper the geology, occurrence, and extent of these deposits are reviewed and the diverse mineral assemblages and complex mineral chemical compositions of these sands are described. Niobium, yttrium, tantalum, and thorium are also present in significant concentrations. The results of prior mining practice, including concentration and separation of the heavy mineral, are reviewed. Technical approaches to extraction of rare earths from Idaho black sand concentrations are discussed

65

WATER QUALITY IN LAKE LOWELL, IDAHO  

Science.gov (United States)

Water quality in Lake Lowell (17050114) is suitable for irrigation; recreational use is limited by dense summer algal blooms. Dissolved oxygen concentrations and fecal coliform bacteria counts occasionally exceed Idaho Water Quality Standards for primary contact recreation water...

66

76 FR 17341 - Idaho Roadless Rule  

Science.gov (United States)

...Special Area for the Lake Creek Wild and Scenic...Southwest Idaho Ecogroup Land and Resource Management...River, including Lake Creek. The Record of...River, including Lake Creek, eligible for Wild...National Forest Land and Resource...

2011-03-29

67

Magnetotelluric soundings on the Idaho National Engineering Laboratory facility, Idaho  

International Nuclear Information System (INIS)

The magnetotelluric (MT) method was used as one of several geophysical tools to study part of the Idaho Engineering Laboratory (INEL) facility. The purpose of the geophysical study on INEL was to investigate the facility for a possible site to drill a geothermal exploration well. The initial interpretation of the MT sounding data was done with one-dimensional models consisting of four or five layers, the minimum number required to fit the data. After the test well (INEL-1) was completed, the electric log was used to guide an improved one-dimensional ID interpretation of the MT sounding data. Profile models derived from the well log provided good agreement with velocity models derived from refraction seismic data. A resolution study using generalized inverse techniques shows that the resolution of resistive layers in the lower part of the MT models is poor, as is the definition of a shallow, altered basalt unit. The only major structure observed on the MT data was the faulted contact between the SNRP and basin and range structures on the west. Modeling of the data near this structure with a two-dimensional computer program showed that the MT data near the fault require a model similar to the seismic refraction models and that structure on a deep crustal conductor is also required

68

75 FR 11105 - Kootenai (KNF) and Idaho Panhandle National Forests (IPNF); Montana, Idaho and Washington...  

Science.gov (United States)

...planning rule and how work done on the plan revision...Forest Plan Revision Team, Idaho Panhandle National...revision co-team leader Idaho Panhandle National...Rodriguez, revision co- team leader, Kootenai National...public comment period. Work continued on the...

2010-03-10

69

Dubois Quadrangle, Idaho and Montana  

International Nuclear Information System (INIS)

Within the Dubois Quadrangle (Idaho and Montana), environments favorable for uranium deposits, based on National Uranium Resource Evaluation criteria, occur in the McGowan Creek Formation and within some Tertiary sedimentary basins. The Mississippian McGowan Creek Formation consists of uraniferous, black, siliceous mudstone and chert with minor porous sedimentary channels. In the southern Beaverhead Mountains it has been fractured by a bedding-plane fault, and uranium has been further concentrated by circulating groundwater in the porous channels and brecciated zones, both of which contain about 200 ppM uranium. The northern parts of the Pahsimeroi River, Lemhi River, Medicine Lodge Creek, Horse Prairie, and Sage Creek Basins are considered favorable for sandstone-type uranium deposits. Evidence present includes suitable source rocks such as rhyolitic flow breccia, laharic deposits, or strongly welded tuffs; permeable sediments, including most sandstones and conglomerates, providing they do not contain devitrified glass; suitable reductants such as lignite, pyrite, or low-Eh geothermal water; and uranium occurrences

70

Dillon quadrangle, Montana and Idaho  

International Nuclear Information System (INIS)

All geologic conditions in the Dillon quadrangle (Montana and Idaho) have been thoroughly examined, and, using National Uranium Resource Evaluation criteria, environments are favorable for uranium deposits along fractured zones of Precambrian Y metasediments, in the McGowan Creek Formation, and in some Tertiary sedimentary basins. A 9-m-wide quartz-bearing fractured zone in Precambrian Y quartzites near Gibbonsville contains 175 ppM uranium, probably derived from formerly overlying Challis Volcanics by supergene processes. The Mississippian McGowan Creek Formation consists of uraniferous, black, siliceous mudstone and chert. In the Melrose district it has been fractured by a low-angle fault, and uranium has been further concentrated by circulating ground water in the 2- to 6-m-thick brecciated zones that in outcrop contain 90 to 170 ppM uranium. The Wise River, northern Divide Creek, Jefferson River, Salmon River, Horse Prairie, Beaverhead River, and upper Ruby River Basins are considered favorable for uranium deposits in sandstone. Present are suitable uraniferous source rocks such as the Boulder batholith, rhyolitic flow breccia, laharic deposits, or strongly welded tuffs; permeable sediments, including most sandstones and conglomerates, providing they do not contain devitrified glass; suitable reductants such as lignite, pyrite, or low-Eh geothermal water; and uranium occurrences

71

Idaho National Laboratory Cultural Resource Management Plan  

Energy Technology Data Exchange (ETDEWEB)

As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

Julie Braun Williams

2013-02-01

72

Energy recovery from municipal waste development program for Idaho Falls, Idaho  

Science.gov (United States)

The development of a demonstration facility to show that fluidized-bed technology is a viable means to recover resources from municipal wastes in Idaho Falls is described. The tasks described include: (1) evaluation of the energy market of Idaho Falls to identify potential customers for recovered energy and to determine what form of energy would be economically viable; (2) evaluation of the municipal solid waste of Idaho Falls, determining its approximate composition, heating value, production rates, and seasonal variations; (3) development of a resource recovery facility concept that will be economically attractive to the city and technically feasible; and (4) evaluation of such topics as zoning, legal limitations, and environmental aspects of the facility to determine its compatibility with the city of Idaho Falls.

1981-07-01

73

Licensing requirements for pending applications for construction permits and manufacturing license  

International Nuclear Information System (INIS)

The TMI-2 Action Plan, NUREG-0660, does not specifically address requirements for construction permit and manufacturing license applications. There are currently pending five construction permit applications for ten units with light water reactors and one manufacturing license application for eight floating nuclear plants. Staff review of these applications had been suspended since the TMI-2 accident pending the formulation of a policy to appropriately reflect the lessons learned from the accident. The Commission has approved a new rule (10 CFR 50.34(f)) which states the TMI-related requirements to be applied to these applications. NUREG-0718 Rev. 1 was issued, and has now been revised, to provide guidance that the NRC staff believes should be followed to account for the lessons learned from the TMI-2 accident. NUREG-0718 Rev. 2 is not a substitute for the regulations, and compliance is not a requirement. However, an approach or method different from the guidance contained herein will be accepted only if the substitute approach or method provides an equivalent basis for meeting the requirements

74

DISTRIBUTION OF PHYTOPLANKTON IN IDAHO LAKES  

Science.gov (United States)

This is a data report presenting the species and abundance of phytoplankton in the 13 lakes sampled by the National Eutrophication Survey in the State of Idaho. Results from the calculation of several water quality indices are also included (Nygaard's Trophic State Index, Palmer'...

75

PYROPROCESSING PROGRESS AT IDAHO NATIONAL LABORATORY  

Energy Technology Data Exchange (ETDEWEB)

At the end of May 2007, 830 and 2600 kilograms of EBR-II driver and blanket metal fuel have been treated by a pyroprocess since spent fuel operations began in June 1996. A new metal waste furnace has completed out-of-cell testing and is being installed in the Hot Fuel Examination Facility. Also, ceramic waste process development and qualification is progressing so integrated nuclear fuel separations and high level waste processes will exist at Idaho National Laboratory. These operations have provided important scale-up and performance data on engineering scale operations. Idaho National Laboratory is also increasing their laboratory scale capabilities so new process improvements and new concepts can be tested before implementation at engineering scale. This paper provides an overview of recent achievements and provides the interested reader references for more details.

Solbrig, Chuck; B. R. Westphal; Johnson, T.; Li, S.; Marsden, K.; Goff, K. M.

2007-09-01

76

Idaho Chemical Processing Plant Site Development Plan  

International Nuclear Information System (INIS)

The Idaho Chemical Processing Plant (ICPP) mission is to receive and store spent nuclear fuels and radioactive wastes for disposition for Department of Energy (DOE) in a cost-effective manner that protects the safety of Idaho National Engineering Laboratory (INEL) employees, the public, and the environment by: Developing advanced technologies to process spent nuclear fuel for permanent offsite disposition and to achieve waste minimization. Receiving and storing Navy and other DOE assigned spent nuclear fuels. Managing all wastes in compliance with applicable laws and regulations. Identifying and conducting site remediation consistent with facility transition activities. Seeking out and implementing private sector technology transfer and cooperative development agreements. Prior to April 1992, the ICPP mission included fuel reprocessing. With the recent phaseout of fuel reprocessing, some parts of the ICPP mission have changed. Others have remained the same or increased in scope

77

7 CFR 923.14 - District.  

Science.gov (United States)

...Douglas, Grant, Lincoln, Spokane, Pend Oreille, Stevens, and Ferry. (b) District 2 shall include the counties of Kittitas, Yakima, Klickitat, Benton, Adams, Franklin, Walla Walla, Whitman, Columbia, Garfield and Asotin. [22 FR...

2010-01-01

78

7 CFR 946.103 - Reestablishment of districts.  

Science.gov (United States)

...Grant, Adams, Ferry, Stevens, Pend Oreille, Spokane, Whitman, and Lincoln. (b) District No. 2—the counties of Kittitas, Yakima, Klickitat, Benton, Franklin, Walla Walla, Columbia, Garfield, and Asotin. (c) District No....

2010-01-01

79

SPLAT: Innovative Collaboration in Idaho's Libraries  

OpenAIRE

Libraries face shrinking budgets, increased use, and user demand for trendy resources. This makes it difficult for librarians to find the time to keep current with innovative library trends, such as technological tools and social media developments. The Special Projects Library Action Team (SPLAT) offers a new model for enhancing library services. SPLAT is a group supported by the Idaho Commission for Libraries (ICFL), the state agency responsible for assisting libraries. The members of SP...

Amy Vecchione; Memo Cordova

2011-01-01

80

Idaho Chemical Processing Plant Process Efficiency improvements  

International Nuclear Information System (INIS)

In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond

81

Coordinated Response to Reports of Possible Anthrax Contamination, Idaho, 2001  

OpenAIRE

In 2001, the intentional release of anthrax spores in the eastern United States increased concern about exposure to anthrax nationwide, and residents of Idaho sought assistance. Response from state and local agencies was required, increasing the strain on epidemiologists, laboratorians, and communications personnel. In late 2001, Idaho’s public health communications system handled 133 calls about suspicious powders. For each call, a multiagency bridge call was established, and participants ...

Tengelsen, Leslie; Hudson, Richard; Barnes, Shana; Hahn, Christine

2002-01-01

82

Thickness of surficial sediment at and near the Idaho National Engineering Laboratory, Idaho  

Energy Technology Data Exchange (ETDEWEB)

Thickness of surficial sediment was determined from natural-gamma logs in 333 wells at and near the Idaho National Engineering Laboratory in eastern Idaho to provide reconnaissance data for future site-characterization studies. Surficial sediment, which is defined as the unconsolidated clay, silt, sand, and gravel that overlie the uppermost basalt flow at each well, ranges in thickness from 0 feet in seven wells drilled through basalt outcrops east of the Idaho Chemical Processing Plant to 313 feet in well Site 14 southeast of the Big Lost River sinks. Surficial sediment includes alluvial, lacustrine, eolian, and colluvial deposits that generally accumulated during the past 200 thousand years. Additional thickness data, not included in this report, are available from numerous auger holes and foundation borings at and near most facilities.

Anderson, S.R.; Liszewski, M.J.; Ackerman, D.J.

1996-06-01

83

Thickness of surficial sediment at and near the Idaho National Engineering Laboratory, Idaho  

International Nuclear Information System (INIS)

Thickness of surficial sediment was determined from natural-gamma logs in 333 wells at and near the Idaho National Engineering Laboratory in eastern Idaho to provide reconnaissance data for future site-characterization studies. Surficial sediment, which is defined as the unconsolidated clay, silt, sand, and gravel that overlie the uppermost basalt flow at each well, ranges in thickness from 0 feet in seven wells drilled through basalt outcrops east of the Idaho Chemical Processing Plant to 313 feet in well Site 14 southeast of the Big Lost River sinks. Surficial sediment includes alluvial, lacustrine, eolian, and colluvial deposits that generally accumulated during the past 200 thousand years. Additional thickness data, not included in this report, are available from numerous auger holes and foundation borings at and near most facilities

84

75 FR 9590 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory  

Science.gov (United States)

...Board, Idaho National Laboratory AGENCY: Department...SSAB), Idaho National Laboratory. The Federal Advisory... Update on Fast Flux Test Facility Fuel. Public Participation...SSAB, Idaho National Laboratory, welcomes the...

2010-03-03

85

78 FR 16790 - Approval and Promulgation of State Implementation Plans: Idaho  

Science.gov (United States)

...submitted revisions relate to Idaho's open burning and crop residue disposal requirements...Idaho SIP that relate to Idaho's open burning and crop residue disposal requirements...disproportionate human health or environmental effects, using practicable and...

2013-03-19

86

Confirmatory radiological survey of the BORAX-V turbine building Idaho National Engineering Laboratory, Idaho Falls, Idaho  

International Nuclear Information System (INIS)

An independent assessment of the remediation of the BORAX-V (Boiling Water Reactor Experiment) turbine building at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho, was accomplished by the Oak Ridge National Laboratory Pollutant Assessments Group (ORNL/PAG). The purpose of the assessment was to confirm the site's compliance with applicable Department of Energy guidelines. The assessment included reviews of both the decontamination and decommissioning Plan and data provided from the pre- and post-remedial action surveys and an independent verification survey of the facility. The independent verification survey included determination of background exposure rates and soil concentrations, beta-gamma and gamma radiation scans, smears for detection of removable contamination, and direct measurements for alpha and beta-gamma radiation activity on the basement and mezzanine floors and the building's interior and exterior walls. Soil samples were taken, and beta-gamma and gamma radiation exposure rates were measured on areas adjacent to the building. Results of measurements on building surfaces at this facility were within established contamination guidelines except for elevated beta-gamma radiation levels located on three isolated areas of the basement floor. Following remediation of these areas, ORNL/PAG reviewed the remedial action contractor's report and agreed that remediation was effective in removing the source of the elevated direct radiation. Results of all independent soil analyses for 60Co were below the detection limit. The highest 137Cs analysis result was 4.6 pCi/g; this value is below the INEL site-specific guideline of 10 pCi/g

87

Salmon Supplementation Studies in Idaho Rivers (Idaho Supplementation Studies) : Experimental Design, 1991 Technical Report.  

Energy Technology Data Exchange (ETDEWEB)

The purpose of this study is to help determine the utility of supplementation as a potential recovery tool for decimated stocks of spring and summer chinook salmon in Idaho. The goals are to assess the use of hatchery chinook to restore or augment natural populations, and to evaluate the effects of supplementation on the survival and fitness of existing natural populations.

Bowles, Edward C.; Leitzinger, Eric J.

1991-12-01

88

An Overview of Pending Asylum and Refugee Legislation in the US Congress  

Directory of Open Access Journals (Sweden)

Full Text Available There has been no significant legislation related to the asylum process enacted in Congress in nearly a decade.  In 1996, the Illegal Immigration Reform and Immigration Responsibility Act (IIRIRA became law, rolling back protections for asylum seekers by including a one-year deadline for filing asylum applications, subjecting asylum seekers to “expedited removal” procedures, and expanding the detention of asylum seekers. In 2005, Congress enacted the REAL ID Act, which created additional legal barriers to asylum, including new requirements for proving an asylum claim. During the past several sessions of Congress, bills have been introduced that would make significant changes to the country’s asylum laws and refugee admissions program. This paper provides an overview of the pending legislation and the changes proposed.  This overview is instructive in understanding 1 which members of Congress have demonstrated interest and leadership in refugee and asylum issues; 2 which refugee and asylum reform issues have been of most interest to members of Congress in recent years; 3 the different approaches to refugee and asylum issues by members of Congress who have shown leadership on these issues; and 4 which provisions have been enacted, which have gained traction, and which remain pending without significant movement through the legislative process.While it is difficult to imagine in the current partisan climate how any asylum or refugee legislation could be enacted into law, some legislative provisions have been reintroduced over a number of sessions of Congress and some have a history of bipartisan support.  Legislation focused on a group of particular interest or concern to members of Congress could gain traction.  A more comprehensive legislative approach framed by the need generally to improve the system could be less effective, particularly in the context of the years-long stalemate on comprehensive immigration reform.While legislation is unlikely to pass in the near future, it remains important for members of Congress who believe in the importance a fair, effective, and humane asylum system and refugee resettlement program, to introduce and build support for asylum and refugee legislation. Provisions in bills that have already been introduced, like those in S. 744, are more likely to be included in legislation that is moving through Congress.  In addition, these bills demonstrate the continued interest of members of Congress in asylum and refugee issues and the need for reform. They also provide an important tool for advocates for education and outreach to Congress and the public.  

Melanie Nezer

2014-05-01

89

Secondary cleanup of Idaho Chemical Processing Plant solvent  

International Nuclear Information System (INIS)

Solvent from the Idaho Chemical Processing Plant (ICPP) (operated by Westinghouse Idaho Nuclear Company, Inc.) has been tested to determine the ability of activated alumina to remove secondary degradation products - those degradation products which are not removed by scrubbing with sodium carbonate

90

Southern Idaho Wildlife Mitigation Implementation 2000 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

This report covers calendar year 2000 activities for the Southern Idaho Wildlife Mitigation Implementation project. This project, implemented by Idaho Department of Fish and Game and Shoshone Bannock Tribes wildlife mitigation staff, is designed to protect, enhance and maintain wildlife habitats to mitigate construction losses for Palisades, Anderson Ranch, Black Canyon and Minidoka hydroelectric projects. Additional project information is available in the quarterly reports.

Bottum, Edward; Mikkelsen, Anders

2001-03-01

91

U.S. in the World: Idaho/Bolivia  

Science.gov (United States)

Native Indian heritage, potato growing, gold and silver mining, and geographic similarities link Idaho and Bolivia, although Idaho's economy is booming and Bolivia remains one of the poorest and least developed countries in Latin America. Read about the demographic and health trends, as well as the natural resource issues, in these two places.

Population Reference Bureau

92

EUTROPHICATION INVESTIGATION OF AMERICAN FALLS RESERVOIR, IDAHO. 1968-1969  

Science.gov (United States)

During the 1967 irrigation season, there was a prolonged long period of high temperatures that adversely affected the American Falls Reservoir, Idaho (17040206). The Idaho Public Health Department reported a very heavy algae bloom, resulting in septic conditions in the reservoir...

93

Idaho National Engineering Laboratory site development plan  

International Nuclear Information System (INIS)

This plan briefly describes the 20-year outlook for the Idaho National Engineering Laboratory (INEL). Missions, workloads, worker populations, facilities, land, and other resources necessary to fulfill the 20-year site development vision for the INEL are addressed. In addition, the plan examines factors that could enhance or deter new or expanded missions at the INEL. And finally, the plan discusses specific site development issues facing the INEL, possible solutions, resources required to resolve these issues, and the anticipated impacts if these issues remain unresolved

94

Stratigraphic Architecture of Table Rock, Boise, Idaho  

Science.gov (United States)

In the GEOS 315 â Sedimentology and Stratigraphy course at Boise State University, students conduct field research over a period of 4-5 weeks at Table Rock, a prominent sandstone plateau and popular hiking destination above Boise, ID. Table Rock is composed primarily of nearshore lacustrine sediments deposited along the margins of Mio-Pliocene Lake Idaho. In addition to measuring and correlating stratigraphic sections to describe the facies architecture, students are required to formulate and test an original hypothesis. The primary assessment criteria are field notes, a 4-page research proposal, and a poster presentation summarizing their research results.

Sam Matson

95

Panther Creek, Idaho, Habitat Rehabilitation, Final Report.  

Energy Technology Data Exchange (ETDEWEB)

The purpose of the project was to achieve full chinook salmon and steelhead trout production in the Panther Creek, Idaho, basin. Plans were developed to eliminate the sources of toxic effluent entering Panther Creek. Operation of a cobalt-copper mine since the 1930's has resulted in acid, metal-bearing drainage entering the watershed from underground workings and tailings piles. The report discusses plans for eliminating and/or treating the effluent to rehabilitate the water quality of Panther Creek and allow the reestablishment of salmon and trout spawning runs. (ACR)

Reiser, Dudley W.

1986-01-01

96

Energy Northwest: Alaska, Idaho, Oregon, and Washington  

Energy Technology Data Exchange (ETDEWEB)

The four-state area, one of 10 Federal regions established to streamline Federal operations and encourage Federal-state-local cooperation, includes Alaska, Washington, Oregon, and Idaho. The sources of energy and some energy technology are first reviewed briefly. The physical characteristics and regional developments are identified. Energy reserves, production, imports, facilities, and consumption are examined for the Northwest. The following energy issues are examined: conservation, electric rates, Clean Air Act of 1970, continental shelf development, transmission corridors, centralized electric generation, electric generation mix, electric power planning, environment and safety regulations, water use, electric energy forecasts, and oil tankers. (MCW)

None

1977-10-01

97

Alternatives for long-term management of defense high-level radioactive waste: Idaho Chemical Processing Plant, Idaho Falls, Idaho  

International Nuclear Information System (INIS)

This document presents alternatives for the long-term treatment and disposition of high-level radioactive defense wastes presently stored as solids in bins at the Idaho Chemical Process Plant (ICPP) area of the Idaho National Engineering Laboratory. These defense wastes were generated by defense and test programs as opposed to wastes from commercial nuclear power programs. Presently, all high-level waste produced at the ICPP is converted to a granular solid (calcine) by a calcination process. The calcine is stored in stainless steel bins which in turn are contained in underground, reinforced-concrete vaults. This storage mode has been demonstrated to be safe. Consistent with ERDA policy, alternatives for long-term management of high-level wastes are being evaluated. These methods, using the existing calcine as starting material, are described in the parent document. The document first describes the existing waste management facilities and processes in use at the ICPP (Section 2). The alternatives for disposition and processing are discussed in Section 3. The technology pertaining to the various alternatives being considered for the ICPP waste is described in Section 4. In Section 5, the risks associated with the various alternatives are evaluated. Costs are presented in Section 6, and the costs and risks are evaluated in Section 7

98

Characterizing aquifer hydrogeology and anthropogenic chemical influences on groundwater near the Idaho Chemical Processing Plant, Idaho National Engineering Laboratory, Idaho  

International Nuclear Information System (INIS)

A conceptual model of the Eastern Snake River Plain aquifer in the vicinity of monitoring well USGS-44, downgradient of the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL), was developed by synthesis and comparison of previous work (40 years) and new investigations into local natural hydrogeological conditions and anthropogenic influences. Quantitative tests of the model, and other recommendations are suggested. The ICPP recovered fissionable uranium from spent nuclear fuel rods and disposed of waste fluids by release to the regional aquifer and lithosphere. Environmental impacts were assessed by a monitoring well network. The conceptual model identifies multiple, highly variable, interacting, and transient components, including INEL facilities multiple operations and liquid waste handling, systems; the anisotropic, in homogeneous aquifer; the network of monitoring and production wells, and the intermittent flow of the Big Lost River. Pre anthropogenic natural conditions and early records of anthropogenic activities were sparsely or unreliably documented making reconstruction of natural conditions or early hydrologic impacts impossible or very broad characterizations

99

EG and G Idaho Environmental Protection Implementation Plan (1991)  

International Nuclear Information System (INIS)

This report describes the EG ampersand G Idaho, Inc. strategy for implementation of the Department of Energy (DOE) Order 5400.1 (a DOE-Headquarters directive establishing environmental protection program requirements, authorities, and responsibilities). Preparation of this Environmental Protection Implementation Plan is a requirement of DOE Order 5400.1. Additionally, this report is intended to supplement the Department of Energy -- Field Office Idaho (DOE-ID) Environmental Protection Implementation Plan by detailing EG ampersand G Idaho Environmental Protection Program activities. This report describes the current status of the EG ampersand G Idaho Program, and the strategies for enhancing, as necessary, the current program to meet the requirements of DOE Order 5400.1. Aspects of the Environmental Protection Program included in this report are the assignment of responsibilities to specific EG ampersand G Idaho organizations, a schedule for completion of enhancements, if necessary, and requirements for documentation and reporting. 4 figs., 1 tab

100

Idaho Supplementation Studies : 1993 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

Idaho Supplementation Studies (ISS) will help determine the utility of supplementation as a potential recovery tool for decimated stocks of spring and summer chinook salmon, Oncorhynchus tshawytscha, in Idaho as part of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. The objectives are to: (1) monitor and evaluate the effects of supplementation on presmolt and smolt numbers and spawning escapements of naturally produced salmon; (2) monitor and evaluate changes in natural productivity and genetic composition of target and adjacent populations following supplementation; and (3) determine which supplementation strategies provide the quickest and highest response in natural production without adverse effects on productivity. Field work began in 1991 with the collection of baseline data from treatment and some control streams. Full implementation began in 1992 with baseline data collection on treatment and control streams and releases of supplementation fish into several treatment streams. Field methods included snorkeling to estimate chinook salmon parr populations, PIT tagging summer parr to estimate parr-to-smolt survival, multiple redd counts to estimate spawning escapement and collect carcass information. Screw traps were used to trap and PIT tag outmigrating chinook salmon during the spring and fall outmigration. Weirs were used to trap and enumerate returning adult salmon in select drainages.

Leitzinger, Eric J.; Plaster, Kurtis; Hassemer, Peter

1996-12-01

101

National Uranium Resource Evaluation: Challis Quadrangle, Idaho  

Energy Technology Data Exchange (ETDEWEB)

The geology of the Challis Quadrangle (1/sup 0/ x 2/sup 0/), Idaho, was evaluated to identify environments and delineate areas favorable for the occurrence of uranium deposits. Determination of favorability was based upon criteria developed for the National Uranium Resource Evaluation program. Uranium occurrences were located, sampled, and described. The geology was reconnoitered, and reconnaissance geochemical samples were collected throughout the quadrangle. The geochemical samples, along with 594 samples collected by the US Geological Survey during previous studies of parts of the quadrangle, were analyzed for uranium and other elements. Sites of some geochemistry anomalies indicated by the analyses were investigated and resampled. Selected examples of potentially favorable environments were examined in some detail. Results of the study show three environments to be favorable for uranium deposits. The basal sedimentary rocks of the Eocene Challis Volcanics are favorable for channel-controlled peneconcordant sandstone-type deposits in and near the Stanley uranium district and for non-marine carbonaceous shale deposits in the Ellis area. Rocks of the Cretaceous Idaho batholith in and near the Stanley uranium district are favorable for magmatic-hydrothermal deposits.

Wopat, M.A.; Siegmund, B.L.; Bernardi, M.L.

1982-07-01

102

SPLAT: Innovative Collaboration in Idaho's Libraries  

Directory of Open Access Journals (Sweden)

Full Text Available Libraries face shrinking budgets, increased use, and user demand for trendy resources. This makes it difficult for librarians to find the time to keep current with innovative library trends, such as technological tools and social media developments. The Special Projects Library Action Team (SPLAT offers a new model for enhancing library services. SPLAT is a group supported by the Idaho Commission for Libraries (ICFL, the state agency responsible for assisting libraries. The members of SPLAT are innovation representatives who search and experiment with social media trends and online tools, and share the best ways to integrate them into services at all types of libraries. SPLAT members have developed SPLAT 101, an online class geared towards teaching library staff new Web technologies. Members also present about trends at conferences, blog relevant content, and engage in peer-to-peer education--all meant to demystify and exploit emergent technologies. These efforts have yielded enhanced library services, encouraged changes to policies, and increased positive user experiences. In this article we summarize how SPLAT works, explain how SPLAT has helped Idaho's libraries experiment with evolving services, analyze the success of SPLAT as a model for other states, and discuss future steps.

Amy Vecchione

2011-01-01

103

Contaminant Monitoring Strategy for Henrys Lake, Idaho  

Energy Technology Data Exchange (ETDEWEB)

Henrys Lake, located in southeastern Idaho, is a large, shallow lake (6,600 acres, {approx} 17.1 feet maximum depth) located at 6,472 feet elevation in Fremont Co., Idaho at the headwaters of the Henrys Fork of the Snake River. The upper watershed is comprised of high mountains of the Targhee National Forest and the lakeshore is surrounded by extensive flats and wetlands, which are mostly privately owned. The lake has been dammed since 1922, and the upper 12 feet of the lake waters are allocated for downriver use. Henrys Lake is a naturally productive lake supporting a nationally recognized ''Blue Ribbon'' trout fishery. There is concern that increasing housing development and cattle grazing may accelerate eutrophication and result in winter and early spring fish kills. There has not been a recent thorough assessment of lake water quality. However, the Department of Environmental Quality (DEQ) is currently conducting a study of water quality on Henrys Lake and tributary streams. Septic systems and lawn runoff from housing developments on the north, west, and southwest shores could potentially contribute to the nutrient enrichment of the lake. Many houses are on steep hillsides where runoff from lawns, driveways, etc. drain into wetland flats along the lake or directly into the lake. In addition, seepage from septic systems (drainfields) drain directly into the wetlands enter groundwater areas that seep into the lake. Cattle grazing along the lake margin, riparian areas, and uplands is likely accelerating erosion and nutrient enrichment. Also, cattle grazing along riparian areas likely adds to nutrient enrichment of the lake through subsurface flow and direct runoff. Stream bank and lakeshore erosion may also accelerate eutrophication by increasing the sedimentation of the lake. Approximately nine streams feed the lake (see map), but flows are often severely reduced or completely eliminated due to irrigation diversion. In addition, subsurface flows can occur as a result of severe cattle grazing along riparian areas and deltas. Groundwater and springs also feed the lake, and are likely critical for oxygen supply during winter stratification. During the winter of 1991, Henrys Lake experienced low dissolved oxygen levels resulting in large fish kills. It is thought that thick ice cover combined with an increase in nutrient loads created conditions resulting in poor water quality. The Idaho Department of Health and Welfare, DEQ is currently conducting a study to determine the water quality of Henrys Lake, the sources contributing to its deterioration, and potential remedial actions to correct problem areas.

John S. Irving; R. P. Breckenridge

1992-12-01

104

Soil gas studies along the Trans-Challis fault system near Idaho City, Boise County, Idaho  

Science.gov (United States)

Soil gases were sampled along several traverses that cross the Trans-Challis fault system in central Idaho. Anomalous carbon dioxide, hydrogen, oxygen, hydrocarbon, and sulfur gas concentrations coincide with faults and known mineralized areas. Anomalies in areas not known to be mineralized may reflect undiscovered mineral deposits or concealed faults. Soil gases may be a useful exploration guide for mineral deposits in this terrane.

McCarthy, J.H.; Kiilsgaard, T.H.

2001-01-01

105

Idaho National Engineering Laboratory Waste Management Operations Roadmap Document  

Energy Technology Data Exchange (ETDEWEB)

At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.

Bullock, M.

1992-04-01

106

Idaho National Laboratory Environmental Monitoring Plan  

Energy Technology Data Exchange (ETDEWEB)

This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

Joanne L. Knight

2008-04-01

107

Idaho Chemical Processing Plant failure rate database  

International Nuclear Information System (INIS)

This report represents the first major upgrade to the Idaho Chemical Processing Plant (ICPP) Failure Rate Database. This upgrade incorporates additional site-specific and generic data while improving on the previous data reduction techniques. In addition, due to a change in mission at the ICPP, the status of certain equipment items has changed from operating to standby or off-line. A discussion of how this mission change influenced the relevance of failure data also has been included. This report contains two data sources: the ICPP Failure Rate Database and a generic failure rate database. A discussion is presented on the approaches and assumptions used to develop the data in the ICPP Failure Rate Database. The generic database is included along with a short discussion of its application. A brief discussion of future projects recommended to strengthen and lend credibility to the ICPP Failure Rate Database also is included

108

Idaho Chemical Processing Plant product denitrator upgrade  

International Nuclear Information System (INIS)

The uranium product denitrator at the Idaho Chemical Processing Plant has had serious operating problems since 1970, including inadequate contamintion control, fluidized bed caking, frequent bed heater failure, product overflow plugging, and poor feed control. These problems were minimized through selective redesign and upgrade of the process equipment as part of a process upgrade program completed in March 1981. Following startup and testing of the rebuilt product denitrator, 1044 kg of enriched uranium was processed in three weeks while demonstrating greater reliability, ease of operation, and improved contamination control. To maximize personnel safety in the future, the denitrator vessel should be made critically safe by geometry and process instrumentation isolated from the process for semi-remote operation

109

Mission Need Statement: Idaho Spent Fuel Facility Project  

Energy Technology Data Exchange (ETDEWEB)

Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

Barbara Beller

2007-09-01

110

Geothermal energy in Idaho: site data base and development status  

Energy Technology Data Exchange (ETDEWEB)

The various factors affecting geothermal resource development are summarized for Idaho, including: resource data base, geological description, reservoir characteristics, environmental character, lease and development status, institutional factors, legal aspects, population and market, and development. (MHR)

1979-07-01

111

Idaho National Laboratory FY12 Greenhouse Gas Report  

Energy Technology Data Exchange (ETDEWEB)

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

Kimberly Frerichs

2013-03-01

112

Idaho National Engineering Laboratory installation roadmap assumptions document  

International Nuclear Information System (INIS)

This document is a composite of roadmap assumptions developed for the Idaho National Engineering Laboratory (INEL) by the US Department of Energy Idaho Field Office and subcontractor personnel as a key element in the implementation of the Roadmap Methodology for the INEL Site. The development and identification of these assumptions in an important factor in planning basis development and establishes the planning baseline for all subsequent roadmap analysis at the INEL

113

Geothermal energy in Idaho: site data base and development status  

Energy Technology Data Exchange (ETDEWEB)

A summary of known information about the nature of the resource, its potential for development, and the infrastructure of government which will guide future development is presented. Detailed site specific data regarding the commercialization potential of the proven, potential, and inferred geothermal resource areas in Idaho are included. Leasing and development status, institutional parameters, and a legal overview of geothermal resources in Idaho are given. (MHR)

McClain, D.V.

1979-07-01

114

Tiger Team assessment of the Idaho National Engineering Laboratory  

Energy Technology Data Exchange (ETDEWEB)

This report documents the Tiger Team Assessment of the Idaho National Engineering Laboratory (INEL) located in Idaho Falls, Idaho. INEL is a multiprogram, laboratory site of the US Department of Energy (DOE). Overall site management is provided by the DOE Field Office, Idaho; however, the DOE Field Office, Chicago has responsibility for the Argonne National Laboratory-West facilities and operations through the Argonne Area Office. In addition, the Idaho Branch Office of the Pittsburgh Naval Reactors Office has responsibility for the Naval Reactor Facility (NRF) at the INEL. The assessment included all DOE elements having ongoing program activities at the site except for the NRF. In addition, the Safety and Health Subteam did not review the Westinghouse Idaho Nuclear Company, Inc. facilities and operations. The Tiger Team Assessment was conducted from June 17 to August 2, 1991, under the auspices of the Office of Special Projects, Office of the Assistant Secretary for Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing environmental, safety, and health (ES H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal INEL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors management of ES H/quality assurance programs was conducted.

1991-08-01

115

Tiger Team assessment of the Idaho National Engineering Laboratory  

International Nuclear Information System (INIS)

The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES ampersand H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES ampersand H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG ampersand G Idaho, Inc. (EG ampersand G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES ampersand H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes

116

Tiger Team assessment of the Idaho National Engineering Laboratory  

Energy Technology Data Exchange (ETDEWEB)

The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG G Idaho, Inc. (EG G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes.

Goldberg, Edward S.; Keating, John J.

1991-08-01

117

Tiger Team assessment of the Idaho National Engineering Laboratory  

Energy Technology Data Exchange (ETDEWEB)

The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

1991-08-01

118

Tiger Team assessment of the Idaho National Engineering Laboratory  

International Nuclear Information System (INIS)

The purpose of the Safety and Health (S ampersand H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG ampersand G Idaho, Inc. (EG ampersand G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S ampersand H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety

119

Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana  

International Nuclear Information System (INIS)

This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S ampersand A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S ampersand A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S ampersand A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs

120

Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana  

Energy Technology Data Exchange (ETDEWEB)

This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

1988-09-01

121

Idaho National Laboratory Site Pollution Prevention Plan  

International Nuclear Information System (INIS)

It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Management System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is administratively managed by the INL Site P2 Coordinator. Development and maintenance of this overall INL Site plan is ultimately the responsibility of DOE-ID. This plan is applicable to all INL Site contractors except those at the Naval Reactors Facility

122

Quarternary paleoecology of the Idaho National Engineering Laboratory, Snake River Plain, Idaho  

International Nuclear Information System (INIS)

Plant and animal fossils have been recovered from several different types of sediment at the Idaho National Engineering Laboratory (INEL). Based on woodrat middens and pollen from cave sediments, the Holocene vegetation history has been one of sagebrush (Artemisia spp.) steppe that became increasingly similar to shadscale (Atriplex spp.) steppe, culminating ca. 7000 years ago. A radiocarbon date on snail shells from ''ancient'' Lake Terreton shows that the basin was filled as recently as 700 years ago. Fossils of aquatic organisms were found in aeolian sediments, indicating that lake and stream sediments may be an important source of the aeolian sediment at the INEL

123

Idaho National Laboratory Site Environmental Monitoring Plan  

Energy Technology Data Exchange (ETDEWEB)

This plan provides a high-level summary of environmental monitoring performed by various organizations within and around the Idaho National Laboratory (INL) Site as required by U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and DOE Order 458.1, Radiation Protection of the Public and the Environment, Guide DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, and in accordance with 40 Code of Federal Regulations (CFR) 61, National Emission Standards for Hazardous Air Pollutants. The purpose of these orders is to 1) implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations, and 2) to establish standards and requirements for the operations of DOE and DOE contractors with respect to protection of the environment and members of the public against undue risk from radiation. This plan describes the organizations responsible for conducting environmental monitoring across the INL Site, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. Detailed monitoring procedures, program plans, or other governing documents used by contractors or agencies to implement requirements are referenced in this plan. This plan covers all planned monitoring and environmental surveillance. Nonroutine activities such as special research studies and characterization of individual sites for environmental restoration are outside the scope of this plan.

Jenifer Nordstrom

2014-02-01

124

Migration behavior of pronghorn in southeastern Idaho  

Energy Technology Data Exchange (ETDEWEB)

Fifty-four pronghorn (Antilocapra americana) were radio-collared out of 232 captured on 3 winter ranges in southeastern Idaho. Radioed pronghorn were followed for up to 21 months each, from December 1975 through August 1977. Winter home ranges showed a difference (P < 0.005) in size among valleys the 1st winter and were different in size and location within valleys between years. Snow covered the ground 1 week earlier and lasted 3 weeks longer in 1975 to 1976 than in 1976 to 1977. Spring migration began more than 1 month earlier in 1977 than 1976, and appeared related to loss of snow cover on the winter ranges in both years. Distances that pronghorn migrated in spring 1976 were different among valleys (P < 0.05) but directions were, in general, upward to areas near the heads of the valleys. Summer home ranges of all radioed pronghorn averaged 2033 +- 322 (SE) ha. Yearlings wandered during summer and their home ranges were 2 to 5 times as large as ranges of adults. Fall migration in 1976 began after 1 October and was not prompted by snowfall. Percent moisture in vegetation is suggested as a stimulus for onset of fall migration, and snowfall is suggested as a factor influencing distance migrated and location of winter.

Hoskinson, R.L.; Tester, J.R.

1980-01-01

125

Idaho radionuclide exposure study: Literature review  

Energy Technology Data Exchange (ETDEWEB)

Phosphate ores contain elevated levels of natural radioactivity, some of which is released to the environment during processing or use of solid byproducts. The effect of radionuclides from Idaho phosphate processing operations on the local communities has been the subject of much research and study. The literature is reviewed in this report. Two primary radionuclide pathways to the environment have been studied in detail: (1) airborne release of volatile radionuclides, primarily /sup 210/Po, from calciner stacks at the two elemental phosphorus plants; and (2) use of byproduct slag as an aggregate for construction in Soda Springs and Pocatello. Despite the research, there is still no clear understanding of the population dose from radionuclide emissions, effluents, and solid wastes from phosphate processing plants. Two other potential radionuclide pathways to the environment have been identified: radon exhalation from phosphogypsum and ore piles and contamination of surface and ground waters. Recommendations on further study needed to develop a data base for a complete risk assssment are given in the report.

Baker, E.G.; Freeman, H.D.; Hartley, J.N.

1987-10-01

126

Idaho Operations Office: Technology summary, June 1994  

International Nuclear Information System (INIS)

This document has been prepared by the Department of Energy's (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT ampersand E) activities funded through the Idaho Operations Office. Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. OTD programs are designed to make new, innovative, and more cost-effective technologies available for transfer to DOE environmental restoration and waste management end-users. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD's technology development programs address three major problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention. These problems are not unique to DOE, but are associated with other Federal agency and industry sites as well. Thus, technical solutions developed within OTD programs will benefit DOE, and should have direct applications in outside markets

127

Strontium distribution coefficients of surficial sediment samples from the Idaho National Engineering Laboratory, Idaho  

International Nuclear Information System (INIS)

Strontium distribution coefficients (Kd's) were measured for 20 surficial sediment samples collected from selected sites at the Idaho national Engineering Laboratory (INEL). The measurements were made to help assess the variability of strontium Kd's found at the INEL as part of an ongoing investigation of strontium chemical transport properties of surficial and interbedded sediments at the INEL. The investigation is being conducted by the US Geological Survey and Idaho State University in cooperation with the US Department of Energy. Batch experimental techniques wee used to determine Kd's of surficial sediments using a synthesized aqueous solution representative of wastewater in waste disposal ponds at the INEL. Strontium Kd's of the 20 surficial sediments ranged from 36 ± 1 to 275 ± 6 milliliters per gram. These results indicate significant variability in the strontium sorptive capacities of surficial sediments at the INEL. Some of this variability can be attributed to physical and chemical properties of the sediment itself; however, the remainder of the variability may be due to compositional changes in the equilibrated solutions after being mixed with the sediment

128

40 CFR 81.100 - Eastern Washington-Northern Idaho Interstate Air Quality Control Region.  

Science.gov (United States)

...Washington-Northern Idaho Interstate Air Quality Control Region. 81.100 Section...PURPOSES Designation of Air Quality Control Regions § 81.100 Eastern...Washington-Northern Idaho Interstate Air Quality Control Region. The Eastern...

2010-07-01

129

75 FR 44142 - Determination of Attainment for PM-10; Fort Hall PM-10 Nonattainment Area, Idaho  

Science.gov (United States)

...Determination of Attainment for PM-10; Fort Hall PM-10 Nonattainment Area, Idaho AGENCY: Environmental...is finalizing its determination that the Fort Hall PM-10 nonattainment area on the Fort Hall Indian Reservation in Idaho has attained...

2010-07-28

130

Idaho: basic data for thermal springs and wells as recorded in GEOTHERM, Part A  

Energy Technology Data Exchange (ETDEWEB)

All chemical data for geothermal fluids in Idaho available as of December 1981 is maintained on GEOTHERM, computerized information system. This report presents summaries and sources of records for Idaho. 7 refs. (ACR)

Bliss, J.D.

1983-07-01

131

76 FR 76684 - Idaho: Tentative Approval of State Underground Storage Tank Program  

Science.gov (United States)

...Idaho: Tentative Approval of State Underground Storage Tank Program AGENCY: Environmental...SUMMARY: The State of Idaho has applied for final approval of its Underground Storage Tank (UST) Program under...

2011-12-08

132

77 FR 11750 - Idaho: Final Approval of State Underground Storage Tank Program  

Science.gov (United States)

...Idaho: Final Approval of State Underground Storage Tank Program AGENCY...determination that the State of Idaho's underground storage tank program for petroleum...Tentative Approval of State Underground Storage Tank Program. This...

2012-02-28

133

US DOE Idaho national laboratory reactor decommissioning  

International Nuclear Information System (INIS)

The United States Department of Energy (DOE) primary contractor, CH2M-WG Idaho was awarded the cleanup and deactivation and decommissioning contract in May 2005 for the Idaho National Lab (INL). The scope of this work included dispositioning over 200 Facilities and 3 Reactors Complexes (Engineering Test Reactor (ETR), Materials Test Reactor (MTR) and Power Burst Facility (PBF) Reactor). Two additional reactors were added to the scope of the contract during the period of performance. The Zero Power Physics Reactor (ZPPR) disposition was added under a separate subcontractor with the INL lab contractor and the Experimental Breeder Reactor II (EBR-II) disposition was added through American Recovery and Reinvestment Act (ARRA) Funding. All of the reactors have been removed and disposed of with the exception of EBR-II which is scheduled for disposition approximately March of 2012. A brief synopsis of the 5 reactors is provided. For the purpose of this paper the ZPPR reactor due to its unique design as compared to the other four reactors, and the fact that is was relatively lightly contaminated and irradiated will not be discussed with the other four reactors. The ZPPR reactor was readily accessible and was a relatively non-complex removal as compared to the other reactors. Additionally the EBR-II reactor is currently undergoing D and D and will have limited mention in this paper. Prior to decommissioning the reactors, a risk based closure model was applied. This model exercised through the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), Non-Time Critical Removal Action (NTCRA) Process which evaluated several options. The options included; No further action - maintain as is, long term stewardship and monitoring (mothball), entombment in place and reactor removal. Prior to commencing full scale D and D, hazardous constituents were removed including cadmium, beryllium, sodium (passivated and elemental), PCB oils and electrical components, lead, asbestos and mercury among others. Each reactor required isolation in order to be removed. Due to activated metal within the reactor vessels, dose rates above the cores ranged from 50 R/hr to 1200 R/hr. Subsequent dose rates outside the vessels varied from 60 mR/hr to greater than 50 R/hr. Due to the elevated dose rates, the project team decided to fill the ETR and MTR reactor vessels with grout to a level above the core region to reduce dose. To remove the ETR reactor, access to the support shoes was required. These shoes were encased in the high density concrete biological shield approximately 8' below grade. The project team used explosives to remove the biological shield. The demolition had to be controlled to prevent damaging the reactor vessel and to limit the seismic impact on a nearby operating reactor. Upon completion of the blast, the concrete was removed exposing the support shoes for the vessel. Two reactor buildings (ETR and PBF) had to be removed to accommodate lifting systems for the reactor vessels. Two reactors (PBF and MTR) were removed via mobile cranes, two reactors were sized and removed in pieces (ZPPR and MTR), and ETR reactor, due to its weight, was removed via a twin gantry lifting system

134

National Uranium Resource Evaluation: Pocatello Quadrangle, Idaho  

International Nuclear Information System (INIS)

The Pocatello 10 x 20 Quadrangle, Idaho, was evaluated to identify and delineate areas containing geologic environments favorable for the occurrence of uranium deposits to a depth of 1500 m, using criteria developed for the National Uranium Rrsource Evaluation program. General surface reconnaissance, radiometric traverses, and geochemical sampling were conducted in all accessible geologic environments within the quadrangle, and subsurface data were evaluated. Aerial radiometric data were evaluated, and anomalies located and investigated. Known uranium occurrences were examined in detail and several new occurrences were identified. Environments considered favorable for uranium deposits are Tertiary lignite-type deposits in the southwestern part of the quadrangle. The Albion Range, including the Conner Creek area and the area south and east of the City of Rocks, was identified as an environment favorable for anatectic and vein-type uranium deposits in metamorphic rocks. The City of Rocks area is favorable for pegmatitic uranium deposits. Several areas where low-graded deposits of uranium may be found were designated unfavorable. These are the aplitic segregations of the Almo Pluton and the Tertiary tuffaceous sedimentary rocks of the Salt Lake and Starlight Formations. The thick deposits of the Salt Lake and Starlight Formations in the deep sedimentary basins, pegmatitic and metamorphic environments in buried intrusives, rhyolitic rocks beneath theed intrusives, rhyolitic rocks beneath the basalts of the Snake River Plain, basin and range fault environments, and placer deposits adjacent to the Almo Pluton were unevaluated because of the lack of subsurface data. The area of the Fort Hall Reservation was unevaluated because permission for access was not granted

135

Râhatü’l-?nsân (Pend-Nâme-i Enû?îrvân’?n Türkçe Bir Tercümesi A Turkish Translation of Râhatü’l-?nsân (Pend-Nâme-i Enû?îrvân  

Directory of Open Access Journals (Sweden)

Full Text Available Islamic literatures include many texts on the justice and counsels of Sassanian ruler Nû?îrevân. One of these is a work of Persian Literature which recounts the counsels written on his crown and figures with the titles of “Râhatü’l-insân” or “Pend-nâme-i Enû?îrvân” in some sources. R?za Kul? Han Hidayet states that the text belongs to Bedâyi?-i Belhî; however the identity of the author is disputed. It is also argued that the “?erîf-i ?air,” whose name appears in the introduction to the text edited by Charles Schefer in his work entitled Chrestomathie Persane, is Ebû ?erîf Muhalledi-yi Gurgânî. Râhatü’l-insân has manuscripts in Turkish libraries. This article treats this work and its Turkish prose translation located at Süleymaniye Library, Fatih Section No. 5385 under the title “Pend-i Nû?îrevân-? Âdil.” In this translation, the counsels written on the seventeen slices (küngüre of Nû?îrevân’s crown are given and it is told that this ruler had his crown put up somewhere appropriate every year for the soldiers to read his counsels. The purposes of Nû?îrevân’s counsels are proving a moral education to the public, directing his relations with his people as well as organizing the relations between them. Some of the counsels written on Nû?îrevân’s crown are as follows: “Respect the old and the weak, observe the rights of your parents, consult scholars before you do your business, have a command of your speech, do not betray trust, think before you speak.” The article will also treat some of the differences between the Persian manuscripts of the work and its Turkish translation. The transcription of the Turkish translation will be given. ?slâmî edebiyatlarda Sasani hükümdar? Nû?îrevân’?n adaleti ve nasihatlar?yla ilgili birçok metin yaz?lm??t?r. Bu metinlerden biri Fars Edebiyat?’nda onun tac?n?n üzerinde yaz?l? olan nasihatlar? anlatan ve baz? kaynaklarda Râhatü’l-insân veya Pend-nâme-i Enû?îrvân diye adland?r?lm?? olan?d?r. R?za Kul? Han Hidayet’in Bedâyi?-i Belhî’ye ait oldu?unu belirtti?i metnin ?airi meselesi ihtilafl?d?r. Charles Schefer’in Chrestomathie Persane adl? eserinde ne?retti?i metnin mukaddimesinde ad? geçen “?erîf-i ?air”in Ebû ?erîf Muhalledi-yi Gurgânî oldu?u da iddia edilmektedir. Râhatü’l-insân Türkiye Kütüphanelerinde nüshalar? olan bir eserdir. Bu makalede metin ve onun Süleymaniye Kütüphanesi, Fatih Bölümü, No. 5385’te “Pend-i Nû?îrevân-? Âdil” ad?yla kay?tl? bulunan Türkçe mensur bir tercümesi üzerinde durulacakt?r. Bu tercümede Nû?îrevân’?n tac?n?n onyedi diliminde (küngüre yaz?l? olan nasihatlar s?ralanmakta ve bu âdil hükümdar?n nasihatlar?n? askerlerinin okuyabilmesi için y?lda bir kez tac?n? uygun bir yere ast?rd???ndan bahsedilmektedir. Nû?îrevân’?n nasihatlar?nda amac?n?n insanlar?n? ahlâkî bak?mdan e?itmek, insanlar aras? ili?kileri düzenlemek kadar tebaa ile hükümdar aras? münasebete yön vermek oldu?u da görülmektedir. “?htiyar ve zay?flara hürmet edin, ana baba hakk?n? gözetin, i?lerinizi âlimlere dan??arak yap?n, dilinize hakim olun, emanete h?yanet etmeyin, dü?ündükten sonra konu?un” vb. Nû?îrevân’?n tac?nda kay?tl? olan nasihatlardan baz?lar?d?r. Makalede eserin Farsça nüshalar?yla Türkçe tercümesi aras?ndaki farkl?l?klara da temas edilmeye çal???lacak ve Türkçe tercümenin transkripsiyonlu ?ekline yer verilecektir.

Müjgân ÇAKIR

2012-09-01

136

Industrial application of geothermal energy in Southeast Idaho  

Energy Technology Data Exchange (ETDEWEB)

Those phosphate related and food processing industries in Southeastern Idaho are identified which require large energy inputs and the potential for direct application of geothermal energy is assessed. The total energy demand is given along with that fractional demand that can be satisfied by a geothermal source of known temperature. The potential for geothermal resource development is analyzed by examining the location of known thermal springs and wells, the location of state and federal geothermal exploration leases, and the location of federal and state oil and gas leasing activity in Southeast Idaho. Information is also presented regarding the location of geothermal, oil, and gas exploration wells in Southeast Idaho. The location of state and federal phosphate mining leases is also presented. This information is presented in table and map formats to show the proximity of exploration and development activities to current food and phosphate processing facilities and phosphate mining activities. (MHR)

Batdorf, J.A.; McClain, D.W.; Gross, M.; Simmons, G.M.

1980-02-01

137

Field review of fish habitat improvement projects in central Idaho  

International Nuclear Information System (INIS)

The goal of this field review was to provide information to the Bonneville Power Administration (BPA) regarding previous and ongoing fish habitat improvement projects in central Idaho. On July 14, 1992, the review team met at the Sawtooth National Recreation Area office near Ketchum, Idaho, for a slide presentation illustrating several habitat projects during their construction phases. Following the slide presentation, the review team inspected fish habitat projects that have been implemented in the last several years in the Stanley Basin and adjacent valleys. At each site the habitat project was described to the field team and a brief period for project inspection followed. The review team visited approximately a dozen sites on the Challis, Sawtooth, and Boise National Forests over a period of approximately two and a half days. There are two objectives of this review namely to summarize observations for specific field sites and to provide overview commentary regarding the BPA habitat improvement program in central Idaho

138

77 FR 21581 - Kootenai Tribe of Idaho: Chapter 11-Alcohol Control Act  

Science.gov (United States)

...INTERIOR Bureau of Indian Affairs Kootenai Tribe of Idaho: Chapter 11--Alcohol Control...Alcohol Control Act for the Kootenai Tribe of Idaho. The Act regulates and controls...consumption of liquor within the Kootenai Tribe of Idaho's Reservation. This Act...

2012-04-10

139

Idaho Supplementation Studies, 1991-1992 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

Idaho Supplementation Studies (ISS) will help determine the utility of supplementation as a potential recovery tool for decimated stocks of spring and summer chinook salmon Oncorhynchus tshawytscha in Idaho. The objectives are to monitor and evaluate the effects of supplementation on presmolt and smolt numbers and spawning escapements of naturally produced salmon; monitor and evaluate changes in natural productivity and genetic composition of target and adjacent populations following supplementation and; determine which supplementation strategies (broodstock and release stage) provide the quickest effects on and highest response in natural production without adverse productivity.

Leitzinger, Eric J.; Bowles, Edward C.; Plaster, Kurtis (Idaho Department of Fish and Game, Boise, ID)

1993-10-01

140

Hydrologic testing in wells near the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory  

International Nuclear Information System (INIS)

The Snake River Plain aquifer beneath the INEL is often viewed as a 2-dimensional system, but may actually possess 3-dimensional properties of concern. A straddle-packer system is being used by the State's INEL Oversight Program to isolate specific aquifer intervals and define the 3-dimensional chemical and hydrologic characteristics of the aquifer. The hydrologic test results from wells USGS 44, 45, and 46 near the Idaho Chemical Processing Plant indicate that: (1) Vertical variation in static head is less than 0.3 feed, (2) barometric efficiencies are between 25 and 55 percent, and (3) the system responds to distant pumping as a multi-layered, but interconnected system. 3 refs., 7 figs., 3 tabs

141

Mineralogy of selected sedimentary interbeds at or near the Idaho National Engineering Laboratory, Idaho  

International Nuclear Information System (INIS)

The US Geological Survey's (USGS) Project Office at the Idaho National Engineering Laboratory (INEL) analyzed 66 samples from sedimentary interbed cores during a 38-month period beginning in October 1990 to determine bulk and clay mineralogy. These cores had been collected from 19 sites in the Big Lost River Basin, 2 sites in the Birch Creek Basin, and 1 site in the Mud Lake Basin, and were archived at the USGS lithologic core library at the INEL. Mineralogy data indicate that core samples from the Big Lost River Basin have larger mean and median percentages of quartz, total feldspar, and total clay minerals, but smaller mean and median percentages of calcite than the core samples from the Birch Creek Basin. Core samples from the Mud Lake Basin have abundant quartz, total feldspar, calcite, and total clay minerals. Identification of the mineralogy of the Snake River Plain is needed to aid in the study of the hydrology and geochemistry of subsurface waste disposal

142

Stratigraphy of the unsaturated zone at the Radioactive Waste Management Complex, Idaho National Engineering Laboratory, Idaho  

International Nuclear Information System (INIS)

A complex sequence of layered basalt flows, cinders, and sediment underlies the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory in southeastern Idaho. Wells drilled to 700 feet penetrate a sequence of 10 basalt-flow groups and 7 major sedimentary interbeds that range in age from about 100,000 to 600,000 years old. The 10 flow groups consist of 22 separate lava flows and flow-units. Each flow group is made up of from one to five petrographically similar flows that erupted from common source areas during periods of less than 200 years. Sedimentary interbeds consist of fluvial, lacustrine, and eolian deposits of clay, silt, sand, and gravel that accumulated during periods of volcanic inactivity ranging from thousands to hundreds of thousands of years. Flows and sediment are unsaturated to a depth of about 600 feet. Flows and sediment below a depth of 600 feet are saturated and make up the uppermost part of the Snake River Plain aquifer. The areal extent of flow groups and interbeds was determined from well cuttings, cores, geophysical logs, potassium-argon ages, and geomagnetic properties. Stratigraphic control was provided by four sequential basalt flows near the base of the unsaturated zone that have reversed geomagnetic polarity and high emission of natural gamma radiation compared to other flows. Natural gamma logs were used as a primary correlation tool. Natural-gamma emissions generally are uniform in related, petrographically simi uniform in related, petrographically similar flows and generally increase or decrease between petrographically dissimilar flows of different age and source. 16 refs., 24 figs., 2 tabs

143

Stratigraphy of the unsaturated zone at the radioactive waste management complex, Idaho national Engineering Laboratory, Idaho  

International Nuclear Information System (INIS)

A complex sequence of layered basalt flows, cinders, and sediment underlies the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory in southeastern Idaho. Wells drilled to 700 ft penetrate a sequence of 10 basalt-flow groups and 7 major sedimentary interbeds that range in age from about 100,000 to 600,000 years old. The 10 flow groups consist of 22 separate lava flows and flow-units. Each flow group is made up of from one to five petrographically similar flows that erupted from common source areas during periods of less than 200 years. Sedimentary interbeds consist of fluvial, lacustrine and wind-blown deposits of clay, silt, sand, and gravel that accumulated during periods of volcanic inactivity ranging from thousands to hundreds of thousands of years. Flows and sediment are unsaturated to a depth of about 600 ft. Flows and sediment below a depth of 600 ft are saturated and make up the uppermost part of the Snake River Plain aquifer. The areal extent of flow groups and interbeds was determined from well cuttings, cores, geophysical logs, potassium-argon ages, and geomagnetic properties. Stratigraphical control was provided by four sequential basalt flows near the base of the unsaturated zone that have reversed geomagnetic polarity and high emission of natural gamma radiation compared to other flows. Natural gamma logs were used as a primary correlation tool. Natural-gamma emissions, which are generally uniform in related, petrographicallerally uniform in related, petrographically similar flows, increase or decrease between petrographically dissimilar flows of different age and source. 16 refs., 24 figs., 2 tabs

144

Annual report -- 1992: Environmental surveillance for EG ampersand G Idaho Waste Management Facilities at the Idaho National Engineering Laboratory  

International Nuclear Information System (INIS)

This report describes the 1992 environmental surveillance activities of the Environmental Monitoring Unit of EG ampersand G Idaho, Inc., at EG ampersand G Idaho-operated Waste Management facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are some results of the sampling performed by the Radiological and Environmental Sciences Laboratory and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1992 environmental surveillance data with DOE derived concentration guides, and with data from previous years

145

Program Management Educational Needs of Idaho Business and Marketing Teachers  

Science.gov (United States)

The purpose of this study was to determine the perceived program management professional development needs of Idaho secondary business/marketing teachers (N = 233) in order to guide pre-service curriculum development and in-service training activities. Sixty-two percent (n = 146) of the 233 teachers completed a modified version of Joerger's (2002)…

Kitchel, Allen; Cannon, John; Duncan, Dennis

2009-01-01

146

Successful neural network projects at the Idaho National Engineering Laboratory  

International Nuclear Information System (INIS)

This paper presents recent and current projects at the Idaho National Engineering Laboratory (INEL) that research and apply neural network technology. The projects are summarized in the paper and their direct application to space reactor power and propulsion systems activities is discussed. 9 refs., 10 figs., 3 tabs

147

WARM SPRINGS CREEK GEOTHERMAL STUDY, BLAIN COUNTY IDAHO, 1987  

Science.gov (United States)

In the Warm Springs Creek drainage near Ketchum, Idaho (17040219), a leaking pipeline coveys geothermal water through the valley to heat nearby homes as well as to supply a resorts swimming pool. Several domestic wells in close proximity to this line have exhibited increasing fl...

148

Southern idaho Wildlife Mitigation Implementation 1999 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

This report is for the Southern Idaho Wildlife Mitigation Implementation project. This project, implemented by IDFG and SBT wildlife mitigation staff, is designed to protect, enhance and maintain wildlife habitats to mitigate construction losses for Palisades, Anderson Ranch, Black Canyon and Minidoka hydroelectric projects. Additional project information is available in the quarterly reports.

Bottum, Edward; Mikkelsen, Anders

2000-04-01

149

RILEY CREEK, IDAHO WATER QUALITY STATUS REPORT, 1975-1976  

Science.gov (United States)

The report presents a review of Riley Creek, Idaho (17040212) water quality data collected from September 1975 through September 1976. The creek meets all water quality standards except for total and fecal coliform bacteria. Sources of coliform bacteria include fish hatcheries,...

150

Water information bulletin No. 30 geothermal investigations in Idaho  

Energy Technology Data Exchange (ETDEWEB)

There are 899 thermal water occurrences known in Idaho, including 258 springs and 641 wells having temperatures ranging from 20 to 93/sup 0/C. Fifty-one cities or towns in Idaho containing 30% of the state's population are within 5 km of known geothermal springs or wells. These include several of Idaho's major cities such as Lewiston, Caldwell, Nampa, Boise, Twin Falls, Pocatello, and Idaho Falls. Fourteen sites appear to have subsurface temperatures of 140/sup 0/C or higher according to the several chemical geothermometers applied to thermal water discharges. These include Weiser, Big Creek, White Licks, Vulcan, Roystone, Bonneville, Crane Creek, Cove Creek, Indian Creek, and Deer Creek hot springs, and Raft River, Preston, and Magic Reservoir areas. These sites could be industrial sites, but several are in remote areas away from major transportation and, therefore, would probably be best utilized for electrical power generation using the binary cycle or Magma Max process. Present uses range from space heating to power generation. Six areas are known where commercial greenhouse operations are conducted for growing cut and potted flowers and vegetables. Space heating is substantial in only two places (Boise and Ketchum) although numerous individuals scattered throughout the state make use of thermal water for space heating and private swimming facilities. There are 22 operating resorts using thermal water and two commercial warm-water fish-rearing operations.

Mitchell, J.C.; Johnson, L.L.; Anderson, J.E.; Spencer, S.G.; Sullivan, J.F.

1980-06-01

151

Geospatial Data Curation at the University of Idaho  

Science.gov (United States)

The management and curation of digital geospatial data has become a central concern for many academic libraries. Geospatial data is a complex type of data critical to many different disciplines, and its use has become more expansive in the past decade. The University of Idaho Library maintains a geospatial data repository called the Interactive…

Kenyon, Jeremy; Godfrey, Bruce; Eckwright, Gail Z.

2012-01-01

152

PRIEST LAKE, BONNER COUNTY, IDAHO - DIAGNOSTIC ANALYSIS, 1993-1995  

Science.gov (United States)

This document reports the findings of the baseline water quality studies conducted from March 1993 to September 1995 at Priest Lake in Bonner County, Idaho (17010215). The following conclusions were developed. Open water areas of Upper and Lower Priest Lakes can be classified a...

153

Molecular Characterization of Globodera pallida associated with potato in Idaho  

Science.gov (United States)

Molecular diagnostic methods were used to positively identify a new population of pale potato cyst nematode Globodera pallida (Stone) Behrens. PCR-RFLP of the rDNA ITS region, sequence-specific multiplex PCR, and DNA sequence comparisons all confirmed the identity of the Idaho population as G. palli...

154

DROUGHT RISK MANAGEMENT FOR IRRIGATED POTATO PRODUCTION IN IDAHO  

Science.gov (United States)

Streamflow in much of the western United States originates as snowfall that has accumulated in the mountains during the winter and early spring. During periods of drought, the water supply for a large portion of irrigated cropland in Idaho is at risk of depletion before the growing season ends. In...

155

Idaho National Laboratory Site Long-Term Stewardship Implementation Plan  

Energy Technology Data Exchange (ETDEWEB)

The U.S. Department of Energy has established long-term stewardship programs to protect human health and the environment at sites where residual contamination remains after site cleanup. At the Idaho National Laboratory Site, Comprehensive Environmental Response, Compensation, and Liability Act (CERLA) long-term stewardship activities performed under the aegis of regulatory agreements, the Federal Facility Agreement and Consent Order for the Idaho National Laboratory, and state and federal requirements are administered primarily under the direction of the Idaho Cleanup Project. It represents a subset of all on-going environmental activity at the Idaho National Laboratory Site. This plan provides a listing of applicable CERCLA long-term stewardship requirements and their planned and completed implementation goals. It proffers the Long-Term Stewardship Environmental Data Warehouse for Sitewide management of environmental data. This plan will be updated as needed over time, based on input from the U.S. Department of Energy, its cognizant subcontractors, and other local and regional stakeholders.

B. E. Olaveson

2006-07-27

156

JIM FORD CREEK STUDY, CLEARWATER COUNTY IDAHO. 1979  

Science.gov (United States)

In Water Year 1979, a water quality study was conducted on Jim Ford Creek in Clearwater County, Idaho (17060306) to assess the impact of the City of Weippe and Timberline High School discharges, to assess nonpoint source impacts, and to determine the present water quality of the ...

157

Idaho National Engineering Laboratory decontamination and decommissioning summary  

International Nuclear Information System (INIS)

Topics covered concern the decontamination and decommissioning (D and D) work performed at the Idaho National Engineering Laboratory (INEL) during FY 1979 and include both operations and development projects. Briefly presented are the different types of D and D projects planned and the D and D projects completed. The problems encountered on these projects and the development program recommended are discussed

158

WEISER RIVER STUDY, ADAMS AND WASHINGTON COUNTIES, IDAHO, 1979  

Science.gov (United States)

During the 1979 water year, a water quality study was conducted on the Weiser and Little Weiser Rivers (17050124) in Washington and Adams Counties, Idaho. The study was completed to obtain background information on effluent limitations for the cities of Cambridge and Council and...

159

Assessment of the Geothermal System Near Stanley, Idaho  

Energy Technology Data Exchange (ETDEWEB)

The City of Stanley, Idaho (population 63) is situated in the Salmon River valley of the central Idaho highlands. Due to its location and elevation (6270 feet amsl) it is one of the coldest locales in the continental U.S., on average experiencing frost 290 days of the year as well as 60 days of below zero (oF) temperatures. Because of high snowfall (76 inches on average) and the fact that it is at the terminus of its rural grid, the city also frequently endures extended power outages during the winter. To evaluate its options for reducing heating costs and possible local power generation, the city obtained a rural development grant from the USDA and commissioned a feasibility study through author Roy Mink to determine whether a comprehensive site characterization and/or test drilling program was warranted. Geoscience students and faculty at Idaho State University (ISU), together with scientists from the Idaho Geological Survey (IGS) and Idaho National Laboratory (INL) conducted three field data collection campaigns between June, 2011 and November, 2012 with the assistance of author Beckwith who arranged for food, lodging and local property access throughout the field campaigns. Some of the information collected by ISU and the IGS were compiled by author Mink and Boise State University in a series of progress reports (Makovsky et al., 2011a, b, c, d). This communication summarizes all of the data collected by ISU including data that were compiled as part of the IGS’s effort for the National Geothermal Data System’s (NGDS) data compilation project funded by the Department of Energy and coordinated by the Arizona Geological Survey.

Trent Armstrong; John Welhan; Mike McCurry

2012-06-01

160

Idaho National Laboratory (INL) Sitewide Institutional Controls Plan  

Energy Technology Data Exchange (ETDEWEB)

On November 9, 2002, the U.S. Environmental Protection Agency (EPA), the U.S. Department of Energy (DOE), and the Idaho Department of Environmental Quality approved the Record of Decision Experimental Breeder Reactor-I/Boiling Water Reactor Experiment Area and Miscellaneous Sites, which requires a Sitewide Institutional Controls Plan for the then Idaho National Engineering and Environmental Laboratory (now known as the Idaho National Laboratory). This document, first issued in June 2004, fulfilled that requirement. The revision is needed to provide an update as remedial actions are completed and new areas of concern are found. This Sitewide Institutional Controls Plan is based on guidance in the May 3, 1999, EPA Region 10 Final Policy on the Use of Institutional Controls at Federal Facilities; the September 29, 2000, EPA guidance Institutional Controls: A Site Manager's Guide to Identifying, Evaluating, and Selecting Institutional Controls at Superfund and RCRA Corrective Action Cleanups; and the April 9, 2003, DOE Policy 454.1, "Use of Institutional Controls." These policies establish measures that ensure short- and long-term effectiveness of institutional controls that protect human health and the environment at federal facility sites undergoing remedial action pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and/or corrective action pursuant to the Resource Conservation and Recovery Act (RCRA). The site-specific institutional controls currently in place at the Idaho National Laboratory are documented in this Sitewide Institutional Controls Plan. This plan is being updated, along with the Idaho National Engineering and Environmental Laboratory Comprehensive Facilities and Land Use Plan, to reflect the progress of remedial activities and changes in CERCLA sites.

W. L. Jolley

2006-07-27

161

Geothermal investigations in Idaho: Geothermal resource analysis in Twin Falls County, Idaho:  

Energy Technology Data Exchange (ETDEWEB)

Increased utilization of the geothermal resource in the Twin Falls - Banbury area of southern Idaho has resulted in noticeable declines in the artesian head of the system. In order to determine the nature of the declines, a network of wells was identified for monitoring shut-in pressures and temperatures. In addition, a compilation of data and reconnaissance of the areal geology was undertaken in order to better understand the geologic framework and its relationship to the occurrence of the thermal waters in the system. The results of the monitoring indicate that while water temperatures have remained constant, the system shows a gradual overall decline in artesian pressure superimposed on fluctuations caused by seasonal use of the system. Well testing and the similarity of hydrographs resulting from well monitoring throughout the area suggest that there are no major hydrologic barriers to thermal water movement in the system and that wells are affected by increases and decreases in utilization of nearby wells. 46 refs., 13 figs., 1 tab.

Street, L.V.; DeTar, R.E.

1987-07-01

162

Concentrations of nine trace metals in ground water at the Idaho National Engineering Laboratory, Idaho  

International Nuclear Information System (INIS)

Reconnaissance-level sampling for nine trace metals in ground water was conducted at the Idaho National Engineering Laboatory during June to November 1987. Water samples from 81 wells that tap the Snake River Plain aquifer and that are equipped with dedicated pumps were collected and analyzed for arsenic, barium, beryllium, cadmium, chromium, lead, mercury, selenium and silver; one sample from a discontinuous perched-water zone was collected with a thief sampler and analyzed for beryllium. Methods used to collect the water sample and quality assurance instituted for the sampling program are described in detail. Except for beryllium and chromium, the concentration of the trace metals in water from the 82 wells were less than their respective maximum contaminant level for drinking water established by the US Environmental Protection Agency. The maximum concentration of beryllium was 0.7 ?g/L (micrograms per liter) which is near the reporting level; no maximum contamination level has been established for beryllium. The chromium concentrations in water from wells that tap the Snake River Plain aquifer ranged from less that 1 to 280 ?g/L. Water from 2 of the 81 wells contained 50 ?g/L or more, which is the maximum contamination level for chromium; in water from the 30 production wells, the largest chromium concentration was 20 ?g/L. 13 refs., 3 figs., 2 tabs

163

Estimated Perennial Streams of Idaho and Related Geospatial Datasets  

Science.gov (United States)

The perennial or intermittent status of a stream has bearing on many regulatory requirements. Because of changing technologies over time, cartographic representation of perennial/intermittent status of streams on U.S. Geological Survey (USGS) topographic maps is not always accurate and (or) consistent from one map sheet to another. Idaho Administrative Code defines an intermittent stream as one having a 7-day, 2-year low flow (7Q2) less than 0.1 cubic feet per second. To establish consistency with the Idaho Administrative Code, the USGS developed regional regression equations for Idaho streams for several low-flow statistics, including 7Q2. Using these regression equations, the 7Q2 streamflow may be estimated for naturally flowing streams anywhere in Idaho to help determine perennial/intermittent status of streams. Using these equations in conjunction with a Geographic Information System (GIS) technique known as weighted flow accumulation allows for an automated and continuous estimation of 7Q2 streamflow at all points along a stream, which in turn can be used to determine if a stream is intermittent or perennial according to the Idaho Administrative Code operational definition. The selected regression equations were applied to create continuous grids of 7Q2 estimates for the eight low-flow regression regions of Idaho. By applying the 0.1 ft3/s criterion, the perennial streams have been estimated in each low-flow region. Uncertainty in the estimates is shown by identifying a 'transitional' zone, corresponding to flow estimates of 0.1 ft3/s plus and minus one standard error. Considerable additional uncertainty exists in the model of perennial streams presented in this report. The regression models provide overall estimates based on general trends within each regression region. These models do not include local factors such as a large spring or a losing reach that may greatly affect flows at any given point. Site-specific flow data, assuming a sufficient period of record, generally would be considered to represent flow conditions better at a given site than flow estimates based on regionalized regression models. The geospatial datasets of modeled perennial streams are considered a first-cut estimate, and should not be construed to override site-specific flow data.

Rea, Alan; Skinner, Kenneth D.

2009-01-01

164

U.S. hydropower resource assessment for Idaho  

Energy Technology Data Exchange (ETDEWEB)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Idaho.

Conner, A.M.; Francfort, J.E.

1998-08-01

165

Idaho National Engineering Laboratory installation roadmap document. Revision 1  

Energy Technology Data Exchange (ETDEWEB)

The roadmapping process was initiated by the US Department of Energy`s office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included.

1993-05-30

166

Prehistoric Rock Structures of the Idaho National Laboratory  

Energy Technology Data Exchange (ETDEWEB)

Over the past 13,500 years, human populations have lived in and productively utilized the natural resources offered by the cold desert environment of the northeastern Snake River Plain in eastern Idaho. Within an overall framework of hunting and gathering, groups relied on an intimate familiarity with the natural world and developed a variety of technologies to extract the resources that they needed to survive. Useful items were abundant and found everywhere on the landscape. Even the basaltic terrain and the rocks, themselves, were put to productive use. This paper presents a preliminary classification scheme for rock structures built on the Idaho National Laboratory landscape by prehistoric aboriginal populations, including discussions of the overall architecture of the structures, associated artifact assemblages, and topographic placement. Adopting an ecological perspective, the paper concludes with a discussion of the possible functions of these unique resources for the desert populations that once called the INL home.

Brenda R Pace

2007-04-01

167

Geothermal energy in Idaho: site data base and development status  

Energy Technology Data Exchange (ETDEWEB)

Detailed site specific data regarding the commercialization potential of the proven, potential, and inferred geothermal resource areas in Idaho are presented. To assess the potential for geothermal resource development in Idaho, several kinds of data were obtained. These include information regarding institutional procedures for geothermal development, logistical procedures for utilization, energy needs and forecasted demands, and resource data. Area reports, data sheets, and scenarios were prepared that described possible geothermal development at individual sites. In preparing development projections, the objective was to base them on actual market potential, forecasted growth, and known or inferred resource conditions. To the extent possible, power-on-line dates and energy utilization estimates are realistic projections of the first events. Commercialization projections were based on the assumption that an aggressive development program will prove sufficient known and inferred resources to accomplish the projected event. This report is an estimate of probable energy developable under an aggressive exploration program and is considered extremely conservative. (MHR)

McClain, D.W.

1979-07-01

168

Geothermal development in southwest Idaho: the socioeconomic data base  

Energy Technology Data Exchange (ETDEWEB)

This report inventories, analyzes, and appraises the existing socioeconomic data base for the ten counties in southwest Idaho that would be impacted by any significant geothermal development. The inventory describes key sociological demographic, and economic characteristics, and presents spatial boundaries, housing data, and projections of population and economic activity for the counties. The inventory identifies the significant gaps in the existing data base and makes recommendations for future research.

Spencer,S.G.; Russell, B.F. (eds.)

1979-09-01

169

Geothermal development in southwest Idaho: the socioeconomic data base  

Energy Technology Data Exchange (ETDEWEB)

This report inventories, analyzes, and appraises the exiting socioeconomic data base for the ten counties in southwest Idaho that would be impacted by any significant geothermal development. The inventory describes key sociological demographic, and economic characteristics, and presents spatial boundaries, housing data, and projections of population and economic activity for the counties. The inventory identifies the significant gaps in the existing data base and makes recommendations for future research.

Spencer, S.G.; Russell, B.F.

1979-09-01

170

Augmented Fish Health Monitoring in Idaho, 1992 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

This report documents the progress of Idaho Department of Fish and Game`s fish health monitoring during the past five years and will serve as a completion report for the Augmented Fish Health Monitoring Project. Anadromous fish at twelve IDFG facilities were monitored for various pathogens and organosomatic analyses were performed to anadromous fish prior to their release. A fish disease database has been developed and data is presently being entered. Alternate funding has been secured to continue fish health monitoring.

Munson, A.Douglas

1993-12-01

171

The Idaho Section's Experiences with Hosting Irradiated Food Dinners  

International Nuclear Information System (INIS)

Over the past 15 yr, the Idaho Section of the American Nuclear Society (IANS) has hosted four dinners in which irradiated foods were featured. The purpose of these dinners was to make our members, the community, and the local press aware of the benefits of irradiation technology for preserving and sterilizing food without changing the taste or texture of the food. We would like to share our experiences with the arrangements, publicity, and logistical efforts necessary to host these dinners

172

EG and G Idaho Health Physics Training Program  

International Nuclear Information System (INIS)

Selection, training and qualification program for health physics technicians to be hired at Idaho National Engineering Laboratory is detailed. This program results from compliance with ANSI-N18.1 for selection and training of nuclear power plant personnel to be qualified to appraise any emergency condition and take prompt and effective action. Salary progression charts are also proposed for entry level technician, through journeyman level

173

Salmon Supplementation Studies in Idaho Rivers; Idaho Supplementation Studies, 2000-2001 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

This report summarizes brood year 1999 juvenile production and emigration data and adult return information for 2000 for streams studied by the Nez Perce Tribe for the cooperative Idaho Salmon Supplementation Studies in Idaho Rivers (ISS) project. In order to provide inclusive juvenile data for brood year 1999, we include data on parr, presmolt, smolt and yearling captures. Therefore, our reporting period includes juvenile data collected from April 2000 through June 2001 for parr, presmolts, and smolts and through June 2002 for brood year 1999 yearling emigrants. Data presented in this report include; fish outplant data for treatment streams, snorkel and screw trap estimates of juvenile fish abundance, juvenile emigration profiles, juvenile survival estimates to Lower Granite Dam (LGJ), redd counts, and carcass data. There were no brood year 1999 treatments in Legendary Bear or Fishing Creek. As in previous years, snorkeling methods provided highly variable population estimates. Alternatively, rotary screw traps operated in Lake Creek and the Secesh River provided more precise estimates of juvenile abundance by life history type. Juvenile fish emigration in Lake Creek and the Secesh River peaked during July and August. Juveniles produced in this watershed emigrated primarily at age zero, and apparently reared in downstream habitats before detection as age one or older fish at the Snake and Columbia River dams. Over the course of the ISS study, PIT tag data suggest that smolts typically exhibit the highest relative survival to Lower Granite Dam (LGJ) compared to presmolts and parr, although we observed the opposite trend for brood year 1999 juvenile emigrants from the Secesh River. SURPH2 survival estimates for brood year 1999 Lake Creek parr, presmolt, and smolt PIT tag groups to (LGJ) were 27%, 39%, and 49% respectively, and 14%, 12%, and 5% for the Secesh River. In 2000, we counted 41 redds in Legendary Bear Creek, 4 in Fishing Creek, 5 in Slate Creek, 153 in the Secesh River, and 180 in Lake Creek. We recovered 19 carcasses (11 natural 8 hatchery) in Legendary Bear Creek, one hatchery carcass in Fishing Creek, zero carcasses in Slate Creek, 82 carcasses (19 of unknown origin and 63 natural) in the Secesh River, and 178 carcasses (2 hatchery 176 natural) from Lake Creek. In 2000 the majority (82%) of carcasses were recovered in index spawning reaches. Preliminary analysis of brood year 1997 PIT tag return data for the Secesh River and Lake Creek yields LGJ to Lower Granite Dam (LGD) juvenile to adult survival rates of, 0.00% for parr, 0.20% for presmolts, and 3.13% for smolts. LGJ to LGD juvenile to adult return rates for brood year 1997 Legendary Bear Creek were 2.98% for naturally produced PIT tagged smolts and 0.89% for PIT tagged supplementation smolts. No adults were detected at LGD from brood year 1997 parr released in Fishing Creek.

Beasley, Chris; Tabor, R.A.; Kinzer, Ryan (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2003-04-01

174

Geologic aspects of seismic hazards assessment at the Idaho National Engineering Laboratory, southeastern Idaho  

International Nuclear Information System (INIS)

The Idaho National Engineering Laboratory (INEL), located on the northwestern side of the Eastern Snake River Plain (ESRP), lies in an area influenced by two distinct geologic provinces. The ESRP province is a northeast-trending zone of late Tertiary and Quaternary volcanism which transects the northwest-trending, block-fault mountain ranges of the Basin and Range province. An understanding of the interaction of these two provinces is important for realistic geologic hazards assessment. Of particular importance for seismic hazards analysis is the relationship of volcanic rift zones on the ESRP to basin-and-range faults north of the plain. The Arco Rift Zone, a 20-km-long belt of deformation and volcanism on the plain just west of the INEL, is colinear with the basin-and-range Lost River fault. Recent field studies have demonstrated that Arco Rift Zone deformation is typical of that induced by dike injection in other volcanic rift zones. The deformation is characterized by a predominance of dilational fissuring with less extensive development of faults and grabens. Cumulative vertical displacements over the past 0.6 Ma are an order of magnitude lower than those associated with the Arco Segment of the Lost River fault to the northwest. The evidence suggests that the northeast-directed extension that produces the block fault mountains of the Basin and Range is expressed by dike injection and volcanic rift zone development in the ESRP. Seismicity associated with dike injeESRP. Seismicity associated with dike injection during rift zone development is typically of low magnitude and would represent only minor hazard compared to that associated with the block faulting. Since the ESRP responds to extension in a manner distinct from basin-and-range faulting, it is not appropriate to consider the volcanic rift zones as extensions of basin-and-range faults for seismic hazard analysis

175

Quaternay faulting along the southern Lemhi fault near the Idaho National Engineering Laboratory Southeastern Idaho  

International Nuclear Information System (INIS)

Four exploratory trenches excavated across the Howe and Fallen Springs segments of the southern Lemhi fault in southeastern Idaho provide data to characterize these potential seismic sources. Evidence for up to three surface faulting events is exposed in each trench. Thermoluminescence (TL) and radiocarbon analyses were performed to provide estimates of the timing of each faulting event. The most recent event (MRE) occurred at: (1) about 15,000 to 19,000 years B.P. at the East Canyon trench (southern Howe segment); (2) approximately 17,000 to 24,000 years. B.P. at the Black Canyon site (northern Howe segment); and (3) about 19,000 to 24,000 years B.P. at the Camp Creek trench (southern Fallen Springs segment). A Holocene event is estimated for the Coyote Springs trench (central Fallert Springs segment) based on degree of soil development and correlation of faulted and unfaulted deposits. The oldest Black Canyon event is constrained by a buried soil (Av) horizons with a TL age of 24,700 +/- 3,100 years B.P. Possibly three events occurred at this site between about 17,000 and 24,000 years ago followed by quiescence. Stratigraphic and soil relationships, and TL and 14C dates are consistent with the following preliminary interpretations: (1) the MRE's for the southern segments are older than those for the central Lemhi fault; (2) the Black Canyon site may share rupture events with sites to the north and south as a result of a open-quotes leakyclose quotes segmet of a open-quotes leakyclose quotes segment boundary; (3) temporal clustering of seismic events separated by a long period of quiescence may be evident along the southern Lemhi fault; and (4) Holocene surface rupture is evident along the central part of the Fallert Springs segment but not at its southern end; and (5) the present segmentation model may need to be revised

176

Idaho Habitat and Natural Production Monitoring : Annual Report 1989.  

Energy Technology Data Exchange (ETDEWEB)

Project 83-7 was established under the Northwest Power Planning Council's 1982 Fish and Wildlife Program to monitor natural production of anadromous fish, evaluate Bonneville Power Administration (BPA) habitat improvement projects, and develop a credit record for off-site mitigation projects in Idaho. Project 83-7 is divided into two subprojects: general and intensive monitoring. Primary objectives of the general monitoring subproject (Part 1) are to determine natural production increases due to habitat improvement projects in terms of parr production and to determine natural production status and trends in Idaho. The second objective is accomplished by combining parr density data from monitoring and evaluation of BPA habitat projects and from other Idaho Department of Fish and Game (IDFG) management and research activities. Primary objectives of the intensive monitoring subproject (Part 2) are to determine the number of returning chinook and steelhead adults necessary to achieve optimal smolt production and to develop mitigation accounting based on increases in smolt production. Two locations are being intensively studied to meet these objectives. Field work began in 1987 in the upper Salmon River and Crooked River (South Fork Clearwater River tributary). 22 refs., 10 figs., 17 tabs.

Kiefer, Russell B.; Forster, Katharine A.

1991-01-01

177

Chemical analysis quality assurance at the Idaho Chemical Processing Plant  

International Nuclear Information System (INIS)

The Idaho Chemical Processing Plant (ICPP) is a uranium reprocessing facility operated by Westinghouse Idaho Nuclear Company for the Department of Energy at the Idaho National Engineering Laboratory (INEL). The chemical analysis support required for the plant processes is provided by a chemical analysis staff of 67 chemists, analysts, and support personnel. The documentation and defense of the chemical analysis data at the ICPP has evolved into a complete chemical analysis quality assurance program with training/qualification and requalification, chemical analysis procedures, records management and chemical analysis methods quality control as major elements. The quality assurance procedures are implemented on a central analytical computer system. The individual features provided by the computer system are automatic method selection for process streams, automation of method calculations, automatic assignment of bias and precision estimates at analysis levels to all method results, analyst specific daily requalification or with-method-use requalification, untrained or unqualified analyst method lockout, statistical testing of process stream results for replicate agreement, automatic testing of process results against pre-established operating, safety, or failure limits at varying confidence levels, and automatic transfer and report of analysis data plus the results of all statistical testing to the Production Department

178

Transportation of spent fuel to the Idaho National Engineering Laboratory  

International Nuclear Information System (INIS)

Spent fuel research and development demonstrations and associated transportation activities are being performed for the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) as a part of the storage cask performance testing programs at the Idaho National Engineering Laboratory (INEL). The shipment of spent fuel to the INEL from the Surry Power Station and the Nevada Test Site (NTS) required shipping plans and coordination between DOE, EG and G Idaho, Transnuclear, Inc., (the shipping cask supplier) and Virginia Power (VP) transportation personnel for the VP shipments; included Westinghouse Nevada Operations for the NTS shipments; as well as extensive communication with the corridor states. Similar extensive planning and coordination with DOE; Nuclear Regulatory Commission (NRC); General Public Utilities (GPU) Nuclear Corporation [owner and operator of Three Mile Island Unit 2 (TMI-2)]; EG and G Idaho, Inc.; two railroad companies; and state and city officials were required to initiate the shipments of core debris by railroad from TMI-2 to the INEL

179

Remote inspections at the Idaho National Engineering Laboratory  

International Nuclear Information System (INIS)

The Idaho National Engineering Laboratory (INEL) provides nuclear research, testing, training, and fuel reprocessing for the US Department of Energy. As one of the prime contractors at the INEL, Westinghouse Idaho Nuclear Company (WINCO) operates the Idaho Chemical Processing Plant (ICPP) to reprocess government-owned, spent nuclear fuel. Several of the facilities at the ICPP that support the reprocessing were built in the 1950s and must be upgraded to meet current environmental regulations. Surveillance of these facilities is essential to determine their condition prior to planning or performing the required modifications. In addition to the environmental compliance inspection tasks, remote systems are used for in-service inspection and for permanent installation in facilities to provide continuous surveillance for leak detection, remote operation tasks, and cell integrity information. One example of the remote surveillance technologies being applied at the ICPP is the health physics surveillance system that was designed and implemented for reducing radiation exposure to personnel during construction upgrades. Another inspection system developed was used to inspect the integrity of several underground dry storage wells and determine the condition of both the storage and the fuel canisters stored in them. The team also developed a remote surveillance vehicle for inspection of large, contaminated vaults. In fiscal year 1992, WINCO will start inspections of the ICPP undNCO will start inspections of the ICPP underground liquid waste storage tanks using a remote tank inspection (RTI) robotic system

180

Geothermal Reservoir Temperatures in Southeastern Idaho using Multicomponent Geothermometry  

Energy Technology Data Exchange (ETDEWEB)

Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water within oil and gas test wells that indicate a potential for geothermal development in the area. Although the area exhibits several thermal expressions, the measured geothermal gradients vary substantially (19 – 61 ºC/km) within this area, potentially suggesting a redistribution of heat in the overlying ground water from deeper geothermal reservoirs. We have estimated reservoir temperatures from measured water compositions using an inverse modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. Compositions of a selected group of thermal waters representing southeastern Idaho hot/warm springs and wells were used for the development of temperature estimates. The temperature estimates in the the region varied from moderately warm (59 ºC) to over 175 ºC. Specifically, hot springs near Preston, Idaho resulted in the highest temperature estimates in the region.

Ghanashyam Neupane; Earl D. Mattson; Travis L. McLing; Carl D. Palmer; Robert W. Smith; Thomas R. Wood; Robert K. Podgorney

2015-03-01

181

Steam Reforming Application for Treatment of DOE Sodium-Bearing Tank Wastes at Idaho National Laboratory for Idaho Cleanup Project  

International Nuclear Information System (INIS)

The patented THORR steam reforming waste treatment technology has been selected by the U.S. Department of Energy (DOE) as the technology of choice for treatment of about one million gallons of sodium-bearing waste (SBW) at the Idaho National Laboratory (INL) Site 1. SBW is an acidic waste created primarily from cleanup of the fuel reprocessing equipment at the Idaho Nuclear Technology and Engineering Center (INTEC) at the INL. SBW contains high concentrations of nitric acid and alkali and aluminum nitrates with minor amounts of many inorganic compounds including radionuclides, mainly cesium. The steam reforming process will convert the SBW into dry, solid, carbonate and aluminate minerals supporting a preferred path for disposal as remote handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Project (WIPP). The Idaho Cleanup Project (ICP) will design, build, and operate an Integrated Waste Treatment Unit (IWTU) that will comprise an integrated THORR process system that will utilize dual fluidized bed steam reformers (FBSR) for treatment of the SBW. The IWTU is being constructed at INTEC, immediately east of the New Waste Calcine Facility (NWCF). Detailed design of the IWTU has been completed and DOE has approved the CD-3 detailed design. The State of Idaho has approved the RCRA and construction air permits. Construction of the IWTU started in April 2007 with civil and foundation work. This paper provides a project and process overview o provides a project and process overview of the IWTU and discusses the design and construction status. IWTU equipment and facility designs and bases will be presented. (authors)

182

High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory  

International Nuclear Information System (INIS)

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE's instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department's obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act

183

Lac Courte Oreilles Hydro Dam Assessment  

Energy Technology Data Exchange (ETDEWEB)

The main objective of this project was to investigate upgrading the existing hydro power generating system at the Winter Dam. The tribe would like to produce more energy and receive a fair market power purchase agreement so the dam is no longer a drain on our budget but a contributor to our economy. We contracted Kiser Hydro, LLC Engineering for this project and received an engineering report that includes options for producing more energy with cost effective upgrades to the existing turbines. Included in this project was a negotiation of energy price sales negotiations.

Weaver, Jason [Lac Courte Oreilles; Meyers, Amy [Kiser Hydro

2014-12-31

184

Steam Reforming Application for Treatment of DOE Sodium Bearing Tank Wastes at Idaho National Laboratory for Idaho Cleanup Project  

International Nuclear Information System (INIS)

The patented THORR steam reforming waste treatment technology has been selected by the Department of Energy (DOE) as the technology of choice for treatment of about one million gallons of Sodium Bearing Waste (SBW) at the Idaho National Laboratory (INL). SBW is an acidic waste created primarily from cleanup of the fuel reprocessing equipment at the Idaho Nuclear Technology and Engineering Center (INTEC) at the INL. SBW contains high concentrations of nitric acid and alkali and aluminum nitrates with minor amounts of many inorganic compounds including radionuclides, mainly cesium. The steam reforming process will convert the SBW into dry, solid, carbonate and aluminate minerals supporting a preferred path for disposal as remote handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Project (WIPP). The Idaho Cleanup Project (ICP) will design, build, and operate an Integrated Waste Treatment Unit (IWTU) that will comprise an integrated THORR process system that will utilize dual fluidized bed steam reformers (FBSR) for treatment of the SBW. Design of the IWTU is nearing completion. The IWTU will be constructed at INTEC, immediately east of the New Waste Calcine Facility (NWCF), with planned fabrication and construction to start in early 2007 upon receipt of needed permits and completion of design and engineering. This paper provides a project and process overview of the IWTU and discusses the design and construction status. IWTU equipment a and construction status. IWTU equipment and facility designs and bases will be presented. (authors)

185

Steam Reforming Application for Treatment of DOE Sodium Bearing Tank Wastes at Idaho National Laboratory for Idaho Cleanup Project  

International Nuclear Information System (INIS)

The patented THORR steam reforming waste treatment technology has been selected as the technology of choice for treatment of Sodium Bearing Waste (SBW) at the Idaho National Laboratory (INL) for the Idaho Cleanup Project (ICP). SBW is an acidic tank waste at the Idaho Nuclear Technology and Engineering Center (INTEC) at INL. It consists primarily of waste from decontamination activities and laboratory wastes. SBW contains high concentrations of nitric acid, alkali and aluminum nitrates, with minor amounts of many inorganic compounds including radionuclides, mainly cesium and strontium. The THORR steam reforming process will convert the SBW tank waste feed into a dry, solid, granular product. The THORR technology was selected to treat SBW, in part, because it can provide flexible disposal options to accommodate the final disposition path selected for SBW. THORR can produce a final end-product that will meet anticipated requirements for disposal as Remote-Handled TRU (RH-TRU) waste; and, with modifications, THORR can also produce a final end-product that could be qualified for disposal as High Level Waste (HLW). SBW treatment will be take place within the Integrated Waste Treatment Unit (IWTU), a new facility that will be located at the INTEC. This paper provides an overview of the THORR process chemistry and process equipment being designed for the IWTU. (authors))

186

Completion summary for borehole USGS 136 near the Advanced Test Reactor Complex, Idaho National Laboratory, Idaho  

Science.gov (United States)

In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, cored and completed borehole USGS 136 for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory. The borehole was initially cored to a depth of 1,048 feet (ft) below land surface (BLS) to collect core, open-borehole water samples, and geophysical data. After these data were collected, borehole USGS 136 was cemented and backfilled between 560 and 1,048 ft BLS. The final construction of borehole USGS 136 required that the borehole be reamed to allow for installation of 6-inch (in.) diameter carbon-steel casing and 5-in. diameter stainless-steel screen; the screened monitoring interval was completed between 500 and 551 ft BLS. A dedicated pump and water-level access line were placed to allow for aquifer testing, for collecting periodic water samples, and for measuring water levels. Geophysical and borehole video logs were collected after coring and after the completion of the monitor well. Geophysical logs were examined in conjunction with the borehole core to describe borehole lithology and to identify primary flow paths for groundwater, which occur in intervals of fractured and vesicular basalt. A single-well aquifer test was used to define hydraulic characteristics for borehole USGS 136 in the eastern Snake River Plain aquifer. Specific-capacity, transmissivity, and hydraulic conductivity from the aquifer test were at least 975 gallons per minute per foot, 1.4 × 105 feet squared per day (ft2/d), and 254 feet per day, respectively. The amount of measureable drawdown during the aquifer test was about 0.02 ft. The transmissivity for borehole USGS 136 was in the range of values determined from previous aquifer tests conducted in other wells near the Advanced Test Reactor Complex: 9.5 × 103 to 1.9 × 105 ft2/d. Water samples were analyzed for cations, anions, metals, nutrients, total organic carbon, volatile organic compounds, stable isotopes, and radionuclides. Water samples from borehole USGS 136 indicated that concentrations of tritium, sulfate, and chromium were affected by wastewater disposal practices at the Advanced Test Reactor Complex. Depth-discrete groundwater samples were collected in the open borehole USGS 136 near 965, 710, and 573 ft BLS using a thief sampler; on the basis of selected constituents, deeper groundwater samples showed no influence from wastewater disposal at the Advanced Test Reactor Complex.

Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.

2012-01-01

187

Assessing controls on perched saturated zones beneath the Idaho Nuclear Technology and Engineering Center, Idaho  

Science.gov (United States)

Waste byproducts associated with operations at the Idaho Nuclear Technology and Engineering Center (INTEC) have the potential to contaminate the eastern Snake River Plain (ESRP) aquifer. Recharge to the ESRP aquifer is controlled largely by the alternating stratigraphy of fractured volcanic rocks and sedimentary interbeds within the overlying vadose zone and by the availability of water at the surface. Beneath the INTEC facilities, localized zones of saturation perched on the sedimentary interbeds are of particular concern because they may facilitate accelerated transport of contaminants. The sources and timing of natural and anthropogenic recharge to the perched zones are poorly understood. Simple approaches for quantitative characterization of this complex, variably saturated flow system are needed to assess potential scenarios for contaminant transport under alternative remediation strategies. During 2009-2011, the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, employed data analysis and numerical simulations with a recently developed model of preferential flow to evaluate the sources and quantity of recharge to the perched zones. Piezometer, tensiometer, temperature, precipitation, and stream-discharge data were analyzed, with particular focus on the possibility of contributions to the perched zones from snowmelt and flow in the neighboring Big Lost River (BLR). Analysis of the timing and magnitude of subsurface dynamics indicate that streamflow provides local recharge to the shallow, intermediate, and deep perched saturated zones within 150 m of the BLR; at greater distances from the BLR the influence of streamflow on recharge is unclear. Perched water-level dynamics in most wells analyzed are consistent with findings from previous geochemical analyses, which suggest that a combination of annual snowmelt and anthropogenic sources (for example, leaky pipes and drainage ditches) contribute to recharge of shallow and intermediate perched zones throughout much of INTEC. The source-responsive fluxes model was parameterized to simulate recharge via preferential flow associated with intermittent episodes of streamflow in the BLR. The simulations correspond reasonably well to the observed hydrologic response within the shallow perched zone. Good model performance indicates that source-responsive flow through a limited number of connected fractures contributes substantially to the perched-zone dynamics. The agreement between simulated and observed perched-zone dynamics suggest that the source-responsive fluxes model can provide a valuable tool for quantifying rapid preferential flow processes that may result from different land management scenarios.

Mirus, Benjamin B.; Perkins, Kim S.; Nimmo, John R.

2011-01-01

188

Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria  

Energy Technology Data Exchange (ETDEWEB)

The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

W. Mahlon Heileson

2006-10-01

189

78 FR 20316 - Final Issuance of General NPDES Permits (GP) for Small Suction Dredges in Idaho  

Science.gov (United States)

...Final Issuance of General NPDES Permits (GP) for Small Suction Dredges in Idaho AGENCY: Environmental Protection Agency...IDG-37-0000) to placer mining operations in Idaho for small suction dredges (intake nozzle size of 5 inches in diameter or a...

2013-04-04

190

2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory  

Energy Technology Data Exchange (ETDEWEB)

The 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe the conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operations of the facilities during the 2003 permit year are discussed.

Teresa R. Meachum

2004-02-01

191

2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory  

Energy Technology Data Exchange (ETDEWEB)

The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

Meachum, T.R.; Lewis, M.G.

2003-02-20

192

Idaho National Engineering Laboratory radiological control performance indicator report. Fourth quarterly calendar year 1994  

International Nuclear Information System (INIS)

This document provides a report and analysis of the Radiological Control Program through the fourth quarter of calendar year 1994 (CY-1994) at the Idaho National Engineering Laboratory (INEL) under the direction of Lockheed Idaho Technologies Company (LITCO). The Radiological Performance Indicator Report is provided in accordance with Article 133 of the INEL Radiological Control Manual

193

5 Steps to Food Preservation Program Meets the Needs of Idaho Families  

Science.gov (United States)

University of Idaho FCS Extension Educators in southeastern Idaho developed a five-lesson condensed version of safe food preservation classes, driven by participants' interest to meet the needs of everyday home preservers. A post-test survey revealed that participants took the course to be self-reliant, use their own produce, and be in…

Dye, Lorie; Hoffman, Katie

2014-01-01

194

Plant-parasitic nematodes associated with grapevines, Vitis vinifera, in Washington and Idaho  

Science.gov (United States)

Surveys were conducted in eastern Washington and Idaho to determine the plant-parasitic nematodes associated with wine grape (Vitis vinifera) vineyards. The most commonly encountered plant-parasitic nematodes in eastern Washington and Idaho wine grape vineyards were Meloidogyne hapla, Paratylenchus ...

195

Report of results of the vapor vacuum extraction test at the Radioactive Waste Management Complex (RWMC) on the Idaho National Engineering Laboratory (INEL) in the state of Idaho  

International Nuclear Information System (INIS)

A test-scale vapor vacuum extraction (VVE) system was installed and operated at the Radioactive Waste Management Complex (RWMC) on the Idaho National Engineering Laboratory (INEL), which is west of Idaho Falls, Idaho and is managed by the US Department of Energy Idaho Field Office. The system was constructed for the purpose of demonstrating the feasibility of VVE or vapor venting technology to abate a volatile organic compound (VOC) plume located in the vadose zone below the subsurface disposal area at the complex. To date, the system has been operated for two periods, a two-week test and a four-month test. The purpose of the two-week test was to determine what would be extracted from the borehole and to verify the design of the system to handle what would be extracted

196

Fire, storms, and erosional events in the Idaho batholith  

Science.gov (United States)

In late December 1996, the South Fork Payette River basin in west-central Idaho experienced a prolonged storm that culminated on January 1, 1997, with intense rain on melting snow that triggered slide failures, producing debris flows and sediment-charged floods. Failures occurred in saturated, cohesionless, grussy colluvium derived from weathered Idaho batholith granitic rocks. Many failures along the South Fork Payette River originated in ponderosa pine forests burned in the 1989 stand-replacing Lowman fire. An example is the 0·49 km2 Jughead Creek basin, where a single large colluvial failure produced almost 40% of the total volume eroded from the basin and generated a massive and rapid debris flow. Failures also occurred in steep, unburned, and unforested drainages such as Hopkins Creek. In this south-facing 0·58 km2 basin, 15 colluvial hollows failed, but no single failure produced more than 10% of the total eroded volume. Sediment transport in Hopkins Creek occurred by prolonged sediment-charged sheetflooding. Despite vegetation differences, sediment yields from the geomorphically similar Hopkins Creek (42 000 Mg km-2) and Jughead Creek (44 000 Mg km-2) basins were quite similar. These 1997 erosion events are equivalent to several thousand years of sediment yield at low rates (2·7-30 Mg km2 year-1) measured by short-term sediment trapping and gauging in Idaho batholith watersheds. If similar large events were solely responsible for sediment export, recurrence intervals (RIs) of several hundred years would account for higher sediment yields averaged over 104 year from Idaho batholith watersheds. Dating of small fire-induced sheetflooding events in an early Holocene tributary junction fan of Jughead Creek indicates that frequent small sedimentation events (RI33-80 year) occurred between 7400 and 6600 cal year BP, with an average yield not greatly exceeding 16 Mg km-2 year-1. Compared with the Holocene average, erosion rates during that 800 year period were unusually low, suggesting that sediment yields have not been constant over time, and that climatic variations and related fire regime changes may exert a strong influence on the probability of major erosional events.

Meyer, G. A.; Pierce, J. L.; Wood, S. H.; Jull, A. J. T.

2001-10-01

197

A Virtual Field Trip to a Travertine in Idaho  

Science.gov (United States)

This is the first in a pair of virtual field trips that takes students to localities in the western United States at which travertine, a calcium carbonate mineral, is forming today. This trip is to Fall Creek in southeastern Idaho. Photos and photomicrographs, accompanied by written narrative and thought questions for students, will provide an overview of how travertine is formed, how it occurs at the Fall Creek site, and stimulate a discussion of whether the mineral forming here is really travertine according to mineralogists' accepted definition of the term.

198

Bathymetric map of Coeur D'Alene Lake, Idaho  

Science.gov (United States)

The bathymetry of Coeur d'Alene Lake, Idaho, is illustrated in this report. Water-depth contours were plotted using about 600 depth soundings obtained during the summers of 1989 and 1991. The contoured water depths were used to calculate lake morphometric values such as the volume of water stored in various depth layers. The morphometric values show that the lake has a surface area of 129 square kilometers and a volume of 2.90 cubic kilometers. The lake's maximum depth is 63.7 meters northwest of Driftwood Point. The mean depth is 21.7 meters.

Woods, P.F.; Berenbrock, Charles E.

1994-01-01

199

Robotic applications at the Idaho National Engineering Laboratory  

International Nuclear Information System (INIS)

The Idaho National Engineering Laboratory (INEL) has several programs and projected programs that involve work in hazardous environments. Robotics/remote handling technology is being considered for an active role in these programs. The most appealing aspect of using robotics is in the area of personnel safety. Any task requiring an individual to enter a hazardous or potentially hazardous environment can benefit substantially from robotics by removing the operator from the environment and having him conduct the work remotely. Several INEL programs were evaluated based on their applications for robotics and the results and some conclusions are discussed in this paper. 1 fig

200

Atmospheric Mercury near Salmon Falls Creek Reservoir in Southern Idaho  

Energy Technology Data Exchange (ETDEWEB)

Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were measured over two-week seasonal field campaigns near Salmon Falls Creek Reservoir in south-central Idaho from the summer of 2005 through the fall of 2006 and over the entire summer of 2006 using automated Tekran mercury analyzers. GEM, RGM, and particulate mercury (HgP) were also measured at a secondary site 90 km to the west in southwestern Idaho during the summer of 2006. The study was performed to characterize mercury air concentrations in the southern Idaho area for the first time, estimate mercury dry deposition rates, and investigate the source of observed elevated concentrations. High seasonal variability was observed with the highest GEM (1.91 ± 0.9 ng m-3) and RGM (8.1 ± 5.6 pg m-3) concentrations occurring in the summer and lower values in the winter (1.32 ± 0.3 ng m-3, 3.2 ± 2.9 pg m-3 for GEM, RGM respectively). The summer-average HgP concentrations were generally below detection limit (0.6 ± 1 pg m-3). Seasonally-averaged deposition velocities calculated using a resistance model were 0.034 ± 0.032, 0.043 ± 0.040, 0.00084 ± 0.0017 and 0.00036 ± 0.0011 cm s-1 for GEM (spring, summer, fall, and winter, respectively) and 0.50 ± 0.39, 0.40 ± 0.31, 0.51 ± 0.43 and 0.76 ± 0.57 cm s-1 for RGM. The total annual RGM + GEM dry deposition estimate was calculated to be 11.9 ± 3.3 µg m-2, or about 2/3 of the total (wet + dry) deposition estimate for the area. Periodic elevated short-term GEM (2.2 – 12 ng m-3) and RGM (50 - 150 pg m-3) events were observed primarily during the warm seasons. Back-trajectory modeling and PSCF analysis indicated predominant source directions from the southeast (western Utah, northeastern Nevada) through the southwest (north-central Nevada) with fewer inputs from the northwest (southeastern Oregon and southwestern Idaho).

Michael L. Abbott; Jeffrey J. Einerson

2007-12-01

201

Technical assistance efforts at EG and G Idaho, Inc  

Energy Technology Data Exchange (ETDEWEB)

As part of DOE's geothermal outreach program, EG and G Idaho has been funded since 1977 to provide technical information and assistance to parties interested in the direct applications of geothermal energy. In this time information has been provided to over 1000 requestors and technical assistance and analyses have been supplied to over 250 parties interested in developing geothermal resources. Many of the latter efforts are leading to direct-use projects that use geothermal resources to replace fossil fuels. A few of the more promising projects are discussed.

Engen, I.A.; Toth, W.J.

1981-01-01

202

The Westinghouse Idaho Nuclear Company (WINCO) ALARA Program  

International Nuclear Information System (INIS)

WINCO operates the Idaho Chemical Processing Plant (ICPP) for the Department of Energy. Since 1953 the ICPP has recovered uranium from spent nuclear fuel assemblies, largely from government owned reactors. However in 1992, the mission of the ICPP changed to one of fuel receipt, fuel storage and waste management. WINCO employs approximately 1800 personnel at the ICPP, of which approximately 1000 routinely enter radiation areas. WINCO also contracts construction to perform a variety of radiological work activities. The ALARA committee is made up of representatives from various departments involved in radiological work activities, including the work force. During this presentation, the responsibilities of the ALARA Committee are identified

203

Generalized Test Plan for the Vitrification of Simulated High-Level -Waste Calcine in the Idaho National Laboratory‘s Bench -Scale Cold Crucible Induction Melter  

Energy Technology Data Exchange (ETDEWEB)

This Preliminary Idaho National Laboratory (INL) Test Plan outlines the chronological steps required to initially evaluate the validity of vitrifying INL surrogate (cold) High-Level-Waste (HLW) solid particulate calcine in INL's Cold Crucible Induction Melter (CCIM). Its documentation and publication satisfies interim milestone WP-413-INL-01 of the DOE-EM (via the Office of River Protection) sponsored work package, WP 4.1.3, entitled 'Improved Vitrification' The primary goal of the proposed CCIM testing is to initiate efforts to identify an efficient and effective back-up and risk adverse technology for treating the actual HLW calcine stored at the INL. The calcine's treatment must be completed by 2035 as dictated by a State of Idaho Consent Order. A final report on this surrogate/calcine test in the CCIM will be issued in May 2012-pending next fiscal year funding In particular the plan provides; (1) distinct test objectives, (2) a description of the purpose and scope of planned university contracted pre-screening tests required to optimize the CCIM glass/surrogate calcine formulation, (3) a listing of necessary CCIM equipment modifications and corresponding work control document changes necessary to feed a solid particulate to the CCIM, (4) a description of the class of calcine that will be represented by the surrogate, and (5) a tentative tabulation of the anticipated CCIM testing conditions, testing parameters, sampling requirements and analytical tests. Key FY -11 milestones associated with this CCIM testing effort are also provided. The CCIM test run is scheduled to be conducted in February of 2012 and will involve testing with a surrogate HLW calcine representative of only 13% of the 4,000 m3 of 'hot' calcine residing in 6 INL Bin Sets. The remaining classes of calcine will have to be eventually tested in the CCIM if an operational scale CCIM is to be a feasible option for the actual INL HLW calcine. This remaining calcine's make-up is HLW containing relatively high concentrations of zirconium and aluminum, representative of the cladding material of the reprocessed fuel that generated the calcine. A separate study to define the CCIM testing needs of these other calcine classifications in currently being prepared under a separate work package (WP-0) and will be provided as a milestone report at the end of this fiscal year.

Vince Maio

2011-08-01

204

Generalized Test Plan for the Vitrification of Simulated High-Level -Waste Calcine in the Idaho National Laboratory's Bench -Scale Cold Crucible Induction Melter  

International Nuclear Information System (INIS)

This Preliminary Idaho National Laboratory (INL) Test Plan outlines the chronological steps required to initially evaluate the validity of vitrifying INL surrogate (cold) High-Level-Waste (HLW) solid particulate calcine in INL's Cold Crucible Induction Melter (CCIM). Its documentation and publication satisfies interim milestone WP-413-INL-01 of the DOE-EM (via the Office of River Protection) sponsored work package, WP 4.1.3, entitled 'Improved Vitrification' The primary goal of the proposed CCIM testing is to initiate efforts to identify an efficient and effective back-up and risk adverse technology for treating the actual HLW calcine stored at the INL. The calcine's treatment must be completed by 2035 as dictated by a State of Idaho Consent Order. A final report on this surrogate/calcine test in the CCIM will be issued in May 2012-pending next fiscal year funding In particular the plan provides; (1) distinct test objectives, (2) a description of the purpose and scope of planned university contracted pre-screening tests required to optimize the CCIM glass/surrogate calcine formulation, (3) a listing of necessary CCIM equipment modifications and corresponding work control document changes necessary to feed a solid particulate to the CCIM, (4) a description of the class of calcine that will be represented by the surrogate, and (5) a tentative tabulation of the anticipated CCIM testing conditions, testing parameters, sampling requirements and analytical tests. Key FY -11uirements and analytical tests. Key FY -11 milestones associated with this CCIM testing effort are also provided. The CCIM test run is scheduled to be conducted in February of 2012 and will involve testing with a surrogate HLW calcine representative of only 13% of the 4,000 m3 of 'hot' calcine residing in 6 INL Bin Sets. The remaining classes of calcine will have to be eventually tested in the CCIM if an operational scale CCIM is to be a feasible option for the actual INL HLW calcine. This remaining calcine's make-up is HLW containing relatively high concentrations of zirconium and aluminum, representative of the cladding material of the reprocessed fuel that generated the calcine. A separate study to define the CCIM testing needs of these other calcine classifications in currently being prepared under a separate work package (WP-0) and will be provided as a milestone report at the end of this fiscal year.

205

Biofuels barometer: Crops pending  

International Nuclear Information System (INIS)

The actors and production capacities have changed only little in the biofuel sector from year to another. Nevertheless, it is interesting to take stock of the development of this sector at the end of 2002, so as to update the more complete barometer published in issue 144 of Systemes Solaires. Indeed, European ethanol production grew by 13% and that of bio-diesel by more than 20% in 2001. (authors)

206

Stratigraphy of the unsaturated zone and the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory, Idaho  

Energy Technology Data Exchange (ETDEWEB)

The unsaturated zone and the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory (INEL) are made up of at least 178 basalt-flow groups, 103 sedimentary interbeds, 6 andesite-flow groups, and 4 rhyolite domes. Stratigraphic units identified in 333 wells in this 890-mile{sup 2} area include 121 basalt-flow groups, 102 sedimentary interbeds, 6 andesite-flow groups, and 1 rhyolite dome. Stratigraphic units were identified and correlated using the data from numerous outcrops and 26 continuous cores and 328 natural-gamma logs available in December 1993. Basalt flows make up about 85% of the volume of deposits underlying the area.

Anderson, S.R.; Liszewski, M.J.

1997-08-01

207

Stratigraphy of the unsaturated zone and the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory, Idaho  

International Nuclear Information System (INIS)

The unsaturated zone and the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory (INEL) are made up of at least 178 basalt-flow groups, 103 sedimentary interbeds, 6 andesite-flow groups, and 4 rhyolite domes. Stratigraphic units identified in 333 wells in this 890-mile2 area include 121 basalt-flow groups, 102 sedimentary interbeds, 6 andesite-flow groups, and 1 rhyolite dome. Stratigraphic units were identified and correlated using the data from numerous outcrops and 26 continuous cores and 328 natural-gamma logs available in December 1993. Basalt flows make up about 85% of the volume of deposits underlying the area

208

Lagoon Seepage Testing Procedures for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory Butte County, Idaho April 2014  

Energy Technology Data Exchange (ETDEWEB)

The lagoon seepage testing procedures are documented herein as required by the Wastewater Rules (IDAPA 58.01.16.493). The Wastewater Rules and Wastewater Reuse Permit LA-000141-03 require that the procedure used for performing a seepage test be approved by IDEQ prior to conducting the seepage test. The procedures described herein are based on a seepage testing plan that was developed by J-U-B ENGINEERS, Inc. (J-U-B) and has been accepted by several IDEQ offices for lagoons in Idaho.

Alan Giesbrecht

2014-05-01

209

Idaho field experiment 1981. Volume 2: measurement data  

Energy Technology Data Exchange (ETDEWEB)

The 1981 Idaho Field Experiment was conducted in southeastern Idaho over the upper Snake River Plain. Nine test-day case studies were conducted between July 15 and 30, 1981. Releases of SF/sub 6/ gaseous tracer were made for 8-hour periods from 46m above ground. Tracer was sampled hourly, for 12 sequential hours, at about 100 locations within an area 24km square. Also, a single total integrated sample of about 30 hours duration was collected at approximately 100 sites within an area 48 by 72km square (using 6km spacings). Extensive tower profiles of meteorology at the release point were collected. RAWINSONDES, RABALS and PIBALS were collected at 3 to 5 sites. Horizontal, low-altitude winds were monitored using the INEL MESONET. SF/sub 6/ tracer plume releases were marked with co-located oil fog releases and bi-hourly sequential launches of tetroon pairs. Aerial LIDAR observations of the oil fog plume and airborne samples of SF/sub 6/ were collected. High altitude aerial photographs of daytime plumes were collected. Volume II lists the data in tabular form or cites the special supplemental reports by other participating contractors. While the primary user file and the data archive are maintained on 9 track/1600 cpi magnetic tapes, listings of the individual values are provided for the user who either cannot utilize the tapes or wishes to preview the data. The accuracies and quality of these data are described.

Start, G E; Sagendorf, J F; Ackermann, G R; Cate, J H; Hukari, N F; Dickson, C R

1984-04-01

210

Consultant subcontracting at the Idaho National Engineering Laboratory  

Energy Technology Data Exchange (ETDEWEB)

The Department of Energy (Department), Idaho Operations Office (ID) is responsible for ensuring that its management and operating (M&O) contractors subcontract consultant services in a manner most advantageous to the Department. The objectives of the audit were to determine whether consultant subcontracts were competitively and objectively awarded and whether these subcontracts supported the Idaho National Engineering Laboratory`s (INEL) mission. The audit showed that M&O contractors generally did not award consultant subcontracts competitively and objectively. Also, many of the subcontracts were awarded to former INEL employees, increasing the potential for conflicts of interest. These problems occurred because M&O contractors` internal controls did not ensure that sole source procurements were adequately justified and that potential conflicts of interest were avoided. By not competing consultant subcontracts the Department may not have obtained the most economical consultant services. Further, the fundamental fairness upon which such subcontracts were awarded to former employees was questionable. Additionally, one INEL M&O contractor was subcontracting consultant support services directly for Department Headquarters. This occurred because Headquarters elements and the M&O contractor did not follow Department guidance prohibiting subcontractual support from an M&O contractor directly to Headquarters. As a result, the M&O contractor acted as a procurement agent for Headquarters enabling Headquarters to avoid the more stringent requirements of the Department`s procurement process.

NONE

1995-06-20

211

Outbreak of cryptosporidiosis associated with a splash park - Idaho, 2007.  

Science.gov (United States)

On August 6, 2007, Idaho's Central District Health Department (CDHD) received a complaint of several ill persons with watery diarrhea consistent with cryptosporidiosis after attendance at a municipal splash park on July 26. Cryptosporidium spp. is a protozoan that causes diarrheal illness and has been implicated previously in recreational water illness outbreaks at splash parks. CDHD and the Idaho Department of Health and Welfare (IDHW) initiated an investigation of illness among municipal park visitors who attended reservation-only gatherings at an onsite pavilion July 23-August 10. The investigation revealed five immunofluorescence assay (IFA)-confirmed and 45 clinically compatible cases of cryptosporidiosis among 154 persons interviewed (32% attack rate). Patients were more likely than non-ill park visitors to have been exposed to water from a splash feature (relative risk [RR] = 6.1) [corrected]. Water samples collected from splash features and an adjacent drinking fountain tested positive for Cryptosporidium hominis. This report summarizes the investigation of the outbreak and highlights the importance of splash park design, operation, access to hygiene facilities, and public education in prevention of waterborne cryptosporidiosis and other infectious agents. Educational efforts and enactment of regulations requiring enhanced disinfection technology, exclusion of persons with diarrhea, adequate hygiene facilities, and preconstruction consultation with health departments might decrease the risk for recreational water illness at splash parks. PMID:19521333

2009-06-12

212

The Environmental Compliance Office at the Idaho National Engineering Laboratory  

International Nuclear Information System (INIS)

The Idaho Operations Office of the U.S. Department of Energy (DOE-ID) has established an Environmental Compliance Office (ECO) at the Idaho National Engineering Laboratory (INEL). This office has been formed to ensure that INEL operations and activities are in compliance with all applicable environmental state and federal regulations. The ECO is headed by a DOE-ID manager and consists of several teams, each of which is led by a DOE-ID employee with members from DOE-ID, from INEL government contractors, and from DOE-ID consultants. The teams are (a) the negotiated compliance team, (b) the compliance implementation team (CIT), (c) the permits team, (d) the interagency agreement (IAG) team, (e) the consent order and compliance agreement (COCA) oversight team, and (f) the National Environmental Policy Act (NEPA) team. The last two teams were short term and have already completed their respective assignments. The functions of the teams and the results obtained by each are discussed

213

Applied Physics Research at the Idaho Accelerator Center  

International Nuclear Information System (INIS)

The Idaho Accelerator Center, founded in 1996 and based at Idaho State University, supports research, education, and high technology economic development in the United States. The research center currently has eight electron linear accelerators ranging in energy from 6 to 44 MeV with the latter linear accelerator capable of picosecond pulses, a 2 MeV positive-ion Van de Graaff, a 4 MV Nec tandem Pelletron, and a pulsed-power 8 k A, 10 MeV electron induction accelerator. Current research emphases include, accelerator physics research, accelerator based medical isotope production, active interrogation techniques for homeland security and nuclear nonproliferation applications, non destructive testing and materials science studies in support of industry as well as the development of advanced nuclear fuels, pure and applied radio-biology, and medical physics. This talk will highlight three of these areas including the production of the isotopes 99Tc and 67Cu for medical diagnostics and therapy, as well as two new technologies currently under development for nuclear safeguards and homeland security - namely laser Compton scattering and the polarized photofission of actinides

214

Paleontology of the Idaho National Engineering Laboratory Site  

International Nuclear Information System (INIS)

The primary purposes of our 1977 study were to (1) inventory fossil deposits at the Idaho Naional Engineering Laboratory (INEL) Site and (2) to begin reconstruction of the natural history of the area using fossils discovered during the survey. The Paleozoic sediments at the northwest end of the site produced no fossils of special interest. However, Quaternary (Ice Age) and Holocene sediments contained freshwater and land snails, freshwater, diatoms, sponge spicules, phytoliths, seeds, and some pollen. Woodrat middens near East Butte contained abundant remains of plant species presently growing on the site. Likewise, the vertebrate fossils from a lava tube near East Butte represent species living in southern Idaho today. A 14C date on snail shells from bar deposits south of Test Area North (TAN) indicates that Lake Terreton has filled within the last 1,000 years. A cave formed from a collapsed lava tube, located just southeast of Experimental Breeder Reactor II (EBR II), was determined to be a potential fossil mammal site and worthy of further study

215

Idaho National Laboratory Cultural Resource Management Annual Report FY 2006  

Energy Technology Data Exchange (ETDEWEB)

The Idaho National Laboratory Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human occupation in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The INL Cultural Resource Management Office, staffed by BEA professionals, is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources’ importance in local, regional, and national history. This annual report summarizes activities performed by the INL Cultural Resource Management Office staff during Fiscal Year 2006. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.

Clayton F. Marler; Julie Braun; Hollie Gilbert; Dino Lowrey; Brenda Ringe Pace

2007-04-01

216

Idaho National Laboratory Cultural Resource Management Annual Report FY 2007  

Energy Technology Data Exchange (ETDEWEB)

The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human land use in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources’ importance in local, regional, and national history. This annual report summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2007. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.

Julie Braun; Hollie Gilbert; Dino Lowrey; Clayton Marler; Brenda Pace

2008-03-01

217

MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY  

Energy Technology Data Exchange (ETDEWEB)

Within the Reduced Enrichment for Research and Test Reactors (RERTR) program directed by the US Department of Energy (DOE), UMo fuel-foils are being developed in an effort to realize high density monolithic fuel plates for use in high-flux research and test reactors. Namely, targeted are reactors that are not amenable to Low Enriched Uranium (LEU) fuel conversion via utilization of high density dispersion-based fuels, i.e. 8-9 gU/cc. LEU conversion of reactors having a need for >8-9 gU/cc fuel density will only be possible by way of monolithic fuel forms. The UMo fuel foils under development afford fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. Two primary challenges have been established with respect to UMo monolithic fuel development; namely, fuel element fabrication and in-reactor fuel element performance. Both issues are being addressed concurrently at the Idaho National Laboratory. An overview is provided of the ongoing monolithic UMo fuel development effort at the Idaho National Laboratory (INL); including development of complex/graded fuel foils. Fabrication processes to be discussed include: UMo alloying and casting, foil fabrication via hot rolling, fuel-clad interlayer application via co-rolling and thermal spray processes, clad bonding via Hot Isostatic Pressing (HIP) and Friction Bonding (FB), and fuel plate finishing.

Glenn A. Moore; Francine J. Rice; Nicolas E. Woolstenhulme; W. David SwanK; DeLon C. Haggard; Jan-Fong Jue; Blair H. Park; Steven E. Steffler; N. Pat Hallinan; Michael D. Chapple; Douglas E. Burkes

2008-10-01

218

Geochemistry and stratigraphic correlation of basalt lavas beneath the Idaho Chemical Processing Plant, Idaho National Engineering Laboratory  

Science.gov (United States)

Thirty-nine samples of basaltic core were collected from wells 121 and 123, located approximately 1.8 km apart north and south of the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Samples were collected from depths ranging from 15 to 221 m below land surface for the purpose of establishing stratigraphic correlations between these two wells. Elemental analyses indicate that the basalts consist of three principal chemical types. Two of these types are each represented by a single basalt flow in each well. The third chemical type is represented by many basalt flows and includes a broad range of chemical compositions that is distinguished from the other two types. Basalt flows within the third type were identified by hierarchical K-cluster analysis of 14 representative elements: Fe, Ca, K, Na, Sc, Co, La, Ce, Sm, Eu, Yb, Hf, Ta, and Th. Cluster analyses indicate correlations of basalt flows between wells 121 and 123 at depths of approximately 38-40 m, 125-128 m, 131-137 m, 149-158 m, and 183-198 m. Probable correlations also are indicated for at least seven other depth intervals. Basalt flows in several depth intervals do not correlate on the basis of chemical compositions, thus reflecting possible flow margins in the sequence between the wells. Multi-element chemical data provide a useful method for determining stratigraphic correlations of basalt in the upper 1-2 km of the eastern Snake River Plain.

Reed, M.F.; Bartholomay, R.C.; Hughes, S.S.

1997-01-01

219

Preliminary delineation of natural geochemical reactions, Snake River Plain aquifer system, Idaho National Engineering Laboratory and vicinity, Idaho  

Energy Technology Data Exchange (ETDEWEB)

The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, is conducting a study to determine the natural geochemistry of the Snake River Plain aquifer system at the Idaho National Engineering Laboratory (INEL), Idaho. As part of this study, a group of geochemical reactions that partially control the natural chemistry of ground water at the INEL were identified. Mineralogy of the aquifer matrix was determined using X-ray diffraction and thin-section analysis and theoretical stabilities of the minerals were used to identify potential solid-phase reactants and products of the reactions. The reactants and products that have an important contribution to the natural geochemistry include labradorite, olivine, pyroxene, smectite, calcite, ferric oxyhydroxide, and several silica phases. To further identify the reactions, analyses of 22 representative water samples from sites tapping the Snake River Plain aquifer system were used to determine the thermodynamic condition of the ground water relative to the minerals in the framework of the aquifer system. Principal reactions modifying the natural geochemical system include congruent dissolution of olivine, diopside, amorphous silica, and anhydrite; incongruent dissolution of labradorite with calcium montmorillonite as a residual product; precipitation of calcite and ferric oxyhydroxide; and oxidation of ferrous iron to ferric iron. Cation exchange reactions retard the downward movement of heavy, multivalent waste constituents where infiltration ponds are used for waste disposal.

Knobel, L.L.; Bartholomay, R.C.; Orr, B.R.

1997-05-01

220

Albeni Falls Wildlife Management Plan - preliminary environmental assessment  

International Nuclear Information System (INIS)

Bonneville Power Administration (BPA) proposes to fund the development and implementation of the Albeni Falls Wildlife Management Plan. Approved by the Northwest Power Planning Council (Council) in 1990, the project is a cooperative effort with the Interagency Work Group that includes the Idaho Department of Fish and Game (IDFG); United States Fish and Wildlife Service (USFWS); United States Forest Service (USFS); United States Army Corps of Engineers (COE); the Kalispel Tribe; and the Upper Columbia United Tribes (UCUT). The proposed action would enable the Interagency Work Group to protect and enhance a variety of wetland and riparian habitats, restore 28,587 habitat units lost as a result of the construction and operation of Albeni Falls Dam, and implement long-term wildlife management activities at selected sites within the overall study area. This Environmental Assessment (EA) examines the potential environmental effects of protecting and enhancing wildlife habitat in selected portions of a 225,077 hectare (556,160 acre) study area surrounding Lake Pend Oreille in Bonner County, and 7,770 hectare (19,200 acre) area surrounding Spirit and Twin lakes, in Kootenai County, Idaho. Four proposed activities are analyzed: habitat protection; habitat enhancement; operation and maintenance (O ampersand M); and monitoring and evaluation (M ampersand E)

221

Dworshak Dam Impacts Assessment and Fisheries Investigation, 1991-1992 Progress Report.  

Energy Technology Data Exchange (ETDEWEB)

Lake Pend Oreille, 38,000 hectares, is Idaho`s largest natural lake. Fisheries for kokanee Onchorynchus nerka, rainbow trout Onchorynchus mykiss, and bull trout Salvelinus confluentus have gone through major declines over the last 40 years. To date, the decline in kokanee abundance has not been fully explained. Water level management may be the single largest contributing factor to this decline. Two aspects of water level management appear critical. Dropping water level once kokanee spawning has occurred wall correlated with poor fishery harvest five years later (r = -0.71) (alpha = 0.005). Secondly, dropping the water level more than 2 m immediately before spawning leaves wave-washed gravel high on the bank and forces kokanee to spawn in low quality substrates, which again reduces survival. Changes in water level management coincided with the sharp declines in the kokanee fishery during the 1960s. Although the water level has been stabilized once spawning has occurred, the deep drawdowns resulting in poor spawning substrates continues to cause problems for the kokanee population. Recognizing the importance of these two factors gives hope that changes in water management can reverse the 30-year trend of declining kokanee populations before they are lost from the system. The authors recommend an experimental test of higher winter lake elevation for several years to document potential changes in kokanee abundance.

Maiolie, Melo; Elam, Steve

1993-11-01

222

Action Memorandum for the Engineering Test Reactor under the Idaho Cleanup Project  

Energy Technology Data Exchange (ETDEWEB)

This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared adn released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessol. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface.

A. B. Culp

2007-01-26

223

Action Memorandum for Decommissioning the Engineering Test Reactor Complex under the Idaho Cleanup Project  

International Nuclear Information System (INIS)

This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared and released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessel. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface

224

Evaporation Basin Test Reactor Area, Idaho National Engineering Laboratory: Environmental assessment  

International Nuclear Information System (INIS)

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0501, on the construction and operation of the proposed Evaporation Basin at the Test Reactor Area (TRA) at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact

225

Draft programmatic environmental impact statement for management of defense high-level radioactive waste: Idaho Chemical Processing Plant, Idaho Falls, Idaho  

International Nuclear Information System (INIS)

The Idaho Chemical Processing Plant processes irradiated nuclear fuel from test and research reactors for the recovery of fissionable uranium. The waste stream generated, containing radioactive fission products, cladding components, and chemical additives, is converted to a free-flowing granular solid (calcine) by fluidized-bed calcination. The calcine is stored in stainless steel bins located in reinforced concrete vaults built on bedrock and extending above the ground surface. This programmatic environmental impact statement was prepared to assess the full range of environmental impacts that could occur if the present waste management program were followed by implementation of one of the six alternative waste management options described. One of the options is to continue the present program. For each option the process is described and the potential radiological and non-radiological impacts are evaluated. Unavoidable adverse environmental effects are also cited. Program costs for implementation of the six options and to have all operations on a current basis by the year 2003 were estimated

226

Criticality and safeguards at the Idaho Chemical Processing Plant  

International Nuclear Information System (INIS)

Reprocessing of high enriched irradiated reactor fuel at the Idaho Chemical Processing Plant (ICPP) presents significant potential problems to the Criticality Safety (CS) and Safeguards and Security (S and S) Sections. Two major interactions between these sections occurs when irradiated fuel is stored and fuel is dissolved. S and S is assigned the responsibility of maintaining a centralized records and reporting system which provides detailed, timely knowledge of the location, quantity and measurement uncertainties associated with accountable nuclear material, including uranium and plutonium. The Criticality Safety Section uses this information in providing criticality safety evaluations with support analyses, inspection, field surveillance and audits to ensure criticality safety implementation. The interactions of these sections has minimized operational constraints and maximized criticality safeguards controls

227

Environmental cleanup of the Idaho National Laboratory status report  

International Nuclear Information System (INIS)

On May 1, 2005 CH2M-WG Idaho LLC (CWI) began its 7-year, $2.4 billion cleanup of the Idaho National Laboratory Site (INL). When the work is completed in 2012, 3,406,871 liters (900,000 gallons) of sodium-bearing waste will have been treated; 15 high-level waste tanks will have been closed; more than 200 facilities will have been demolished or disposed of, including three reactors, several spent fuel basins, and hot cells; thousands of containers of buried transuranic waste will have been retrieved; more than 8,000 cubic meters (10,464 cubic yards) of contact-handled transuranic waste and more than 500 cubic meters (654 cubic yards) of remote-handled transuranic waste will have been characterized, packaged, and shipped offsite; almost 200 release sites and voluntary consent order tank systems will have been remediated; and 3,278 units of spent fuel will have been moved from wet to dry storage. Since assuming its responsibilities as the Idaho Cleanup Project contractor, CWI has completed its life-cycle project baseline, retrieved transuranic wastes from the pits within the Subsurface Disposal Area, disposed of special nuclear materials previously stored at the site, demolished several contaminated facilities, including the Loss-of-Fluid Test reactor complex at Test Area North, moved hundreds of spent fuel units from wet to safer, dry storage, completed grouting of a legacy spent fuel basin, disposed of tens of thousands of cubic meters of low-level wastes both onsite an meters of low-level wastes both onsite and offsite, closed several contaminated tank systems regulated by the State of Idaho, grouted several high-level waste tanks in preparation for RCRA closure, and made good progress in the design of the Integrated Waste Treatment Unit that will process 3,406,871 liters (900,000 gallons) of sodium-bearing waste in preparation for offsite disposal. Plans for 2007 are even more ambitious: the initiation of construction of the facility to treat sodium-bearing waste, continued removal of buried waste from a number of pits at the Subsurface Disposal Area, closure of additional high-level waste tanks, shipment of remote-handled transuranic waste to the Waste Isolation Pilot Plant, continuation of the onsite and offsite disposal of low-level radioactive wastes, decontamination and decommissioning of the Engineering Test Reactor at the Reactor Technology Complex, and remediation of RCRA-regulated tank systems and release sites. CWI continues to manage potential project challenges and risks associated with the construction of the sodium-bearing waste treatment facility, which is on the critical path for the project; achieving and sustaining necessary production levels in the retrieval of wastes from the Subsurface Disposal Area; and managing other potential project cost risk items. (authors)

228

Mercury contamination in Idaho bald eagles, Haliaeetus leucocephalus.  

Science.gov (United States)

Because mercury contamination is potentially threatening to bald eagle (Haliaeetus leucocephalus) populations, we collected molted feathers at nests to determine the level of contamination in bald eagles in the state of Idaho, USA. Eagle feathers contained measurable amounts of cadmium (Cd), chromium (Cr), selenium (Se), lead (Pb), as well as mercury (Hg). Cadmium, Cr, Se, and Pb levels averaged 0.17, 4.68, 2.02, and 1.29 mg/kg dry weight, respectively, and were at or below concentrations indicated as causing reproductive failure in bald eagles. Mercury contamination was found to be the highest averaging 18.74 mg/kg dry weight. Although a concentration of only 7.5 mg/kg dry weight Hg in bird feathers can cause reduced productivity and even sterility, all of the eagles we sampled bred successfully and the population of bald eagles continues to grow annually throughout the state. PMID:19690789

Bechard, Marc J; Perkins, Dusty N; Kaltenecker, Gregory S; Alsup, Steve

2009-11-01

229

Epidemiologic surveillance. Annual report for Idaho National Engineering Laboratory 1994  

Energy Technology Data Exchange (ETDEWEB)

Epidemiologic surveillance at DOE facilities consists of regular and systematic collection, analysis, and interpretation of data on absences due to illness and injury in the work force. Its purpose is to provide an early warning system for health problems occurring among employees at participating sites. In this annual report, the 1994 morbidity data for the Idaho National Engineering Laboratory are summarized. These analyses focus on absences of 5 or more consecutive workdays occurring among workers aged 17-85 years. They are arranged in five sets of tables that present: (1) the distribution of the labor force by occupational category and pay status; (2) the absences per person, diagnoses per absence, and diagnosis rates for the whole work force; (3) diagnosis rates by type of disease or injury; (4) diagnosis rates by occupational category; and (5) relative risks for specific types of disease or injury by occupational category.

NONE

1994-12-31

230

Teton Dam flood of June 1976, Moreland quadrangle, Idaho  

Science.gov (United States)

The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The aea covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Moreland quadrangle. (Woodard-USGS)

Hubbard, Larry L.; Bartells, John H.

1976-01-01

231

Teton Dam flood of June 1976, Rose quadrangle, Idaho  

Science.gov (United States)

The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Rose quadrangle. (Woodard-USGS)

Bartells, John H.; Hubbard, Larry L.

1976-01-01

232

Teton Dam flood of June 1976, Pingree quadrangle, Idaho  

Science.gov (United States)

The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Pingree quadrangle. (Woodard-USGS)

Hubbard, Larry L.; Bartells, John H.

1976-01-01

233

Teton Dam flood of June 1976, Firth quadrangle, Idaho  

Science.gov (United States)

The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Firth quadrangle. (Woodard-USGS)

Hubbard, Larry L.; Bartells, John H.

1976-01-01

234

Idaho National Engineering Laboratory historical dose evaluation: Volume 1  

International Nuclear Information System (INIS)

The methodology and results are presented for an evaluation of potential radiation doses to a hypothetical individual who may have resided at an offsite location with the highest concentration of airborne radionuclides near the Idaho National Engineering Laboratory (INEL). Volume 1 contains a summary of methods and results. The years of INEL operations from 1952 to 1989 were evaluated. Radiation doses to an adult, child, and infant were estimated for both operational (annual) and episodic (short-term) airborne releases from INEL facilities. Atmospheric dispersion of operational releases was modeled using annual average meteorological conditions. Dispersion of episodic releases was generally modeled using actual hourly wind speed and direction data at the time of release. 50 refs., 23 figs., 10 tabs

235

Idaho National Laboratory Cultural Resource Monitoring Report for FY 2010  

Energy Technology Data Exchange (ETDEWEB)

This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2010 (FY 2010). Throughout the year, thirty-three cultural resource localities were revisited, including somethat were visited more than once, including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-six prehistoric archaeological sites, two historic stage stations, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. The resources that were monitored included seventeen that are routinely visited and sixteen that are located in INL project areas. Although impacts were documented at a few locations and one trespassing incident (albeit sans formal charges) was discovered, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

INL Cultural Resource Management Office

2010-10-01

236

Idaho National Laboratory Cultural Resource Monitoring Report for FY 2009  

Energy Technology Data Exchange (ETDEWEB)

This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2009 (FY 2009). Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-two prehistoric archaeological sites, six historic homesteads, two historic stage stations, two historic trails, and two nuclear resources, including Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2009 to assess project compliance with cultural resource recommendations and monitor the effects of ongoing project activities. Although impacts were documented at a few locations and trespassing citations were issued in one instance, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

Brenda R. Pace; Julie B. Braun

2009-10-01

237

Dry rod consolidation experience at the Idaho National Engineering Laboratory  

International Nuclear Information System (INIS)

Research has been conducted into methods of handling and storing spent nuclear fuel from commercial reactors. Consolidating fuel (that is, removing fuel rods from the fuel assembly and repackaging in a closer spaced array) can reduce the total volume of spent fuel and may reduce the cost of its handling and storage. The Idaho National Engineering Laboratory (INEL) recently completed a U.S. Department of Energy (DOE)-sponsored project to investigate the feasibility of consolidating spent fuel in a hot cell. The consolidation operation was performed in air with the fuel in a horizontal position. The primary objective was to experimentally investigate some of the phenomena associated with dry fuel consolidation. Specific items of interest included quantifying the force required to pull a fuel rod from the assembly; determining fuel rod handling behavior--especially the ''stackability; '' measuring the radiological environment created during the consolidation; and characterizing the waste streams generated during the process

238

Idaho National Engineering Laboratory historical dose evaluation: Volume 2, Appendices  

International Nuclear Information System (INIS)

The methodology and results are presented for an evaluation of potential radiation doses to a hypothetical individual who may have resided at an offsite location with the highest concentration of airborne radionuclides near the Idaho National Engineering Laboratory (INEL). Volume 2 contains more detailed discussions of methods, data, results, assumptions, and citations of reports and reference material. The years of INEL operations from 1952 to 1989 were evaluated. Radiation doses to an adult, child, and infant were estimated for both operational (annual) and episodic (short-term) airborne releases from INEL facilities. Atmospheric dispersion of operational releases was modeled using annual average meteorological conditions. Dispersion of episodic releases was generally modeled using actual hourly wind speed and direction data at the time of release. 270 refs., 57 figs., 100 tabs

239

Weld Tests Conducted by the Idaho National Laboratory  

Energy Technology Data Exchange (ETDEWEB)

During the fiscal year of 2006, the Idaho National Laboratory (INL) performed many tests and work relating to the Mobile Melt-Dilute (MMD) Project components. Tests performed on the Staubli quick disconnect fittings showed promising results, but more tests were needed validate the fittings. Changes were made to the shield plug design—reduced the closure groove weld depth between the top of the canister and the top plate of the shielding plug from 0.5-in to 0.375-in deep. Other changes include a cap to cover the fitting, lifting pintle and welding code citations on the prints. Tests conducted showed stainless steel tubing, with 0.25-in, 0.375-in, and 0.5-in diameters, all with 0.035-in wall thickness, could be pinch seal welded using commercially available resistance welding equipment. Subsequent testing showed that these welds could be real-time inspected with ultrasonic inspection methods.

Larry Zirker; Lance Lauerhass; James Dowalo

2007-02-01

240

Graduate student use of DSNP at Idaho State University  

International Nuclear Information System (INIS)

Several projects were assigned to graduate students at Idaho State University (ISU) involving the dynamic simulator for nuclear power plants (DSNP) computer language. These projects either led, or are intended to lead, to master's degrees in nuclear science. The studies were all performed using the latest version of DSNP installed in Argonne National Laboratory's (ANL's) IBM 3033 computers in Argonne, Illinois. The projects described here were educationally useful in that they provided the following: 1. an engineering learning experience; 2. students had the opportunity to solve the problem of representing physical descriptions and experimental data with numerical simulation; 3. mutually beneficial interaction between the graduate students and ANL scientists; 4. some financial and equipment support for the students; and 5. in one case, the base study for the development of a master's thesis

241

ICPP [Idaho Chemical Processing Plant] environmental monitoring report, CY-1988  

International Nuclear Information System (INIS)

Summarized in this report are the data collected through Environmental Monitoring programs conducted at the Idaho Chemical Processing Plant (ICPP) by the Environmental Engineering (EE) Section of the Nuclear and Industrial Safety (N and IS) Department. The ICPP is responsible for complying with all applicable Federal, State, Local and DOE Rules, Regulations and Orders. Radiological effluent and emissions are regulated by the DOE. The Environmental Protection Agency (EPA) regulates all nonradiological waste resulting from the ICPP operations including all airborne, liquid, and solid waste. The EE subsection completed a Quality Assurance (QA) Plan for Environmental Monitoring activities during the third quarter of 1986. QA activities have resulted in the ICPP's implementation of the Environmental Protection Agency rules and guidelines pertaining to the collection, analyses, and reporting of environmentally related samples. Where no approved methods for analyses existed for radionuclides, currently used methods were submitted for the EPA approval. 33 figs., 14 tabs

242

National Uranium Resource Evaluation: Ashton Quadrangle, Idaho, Montana, and Wyoming  

International Nuclear Information System (INIS)

The Ashton Quadrangle, Idaho, Montana, and Wyoming, was evaluated to identify and delineate areas containing environments favorable for uranium deposits, using criteria developed for the National Uranium Resource Evaluation program. General surface reconnaissance, radiometric traverses, and geochemical sampling were carried out in all geologic environments within the quadrangle. Aerial radiometric data were evaluated, and anomalies were examined in the field. Fourteen uranium occurrences were noted in the study area. Only one environment, the phosphorites of the Permian Phosphoria Formation, is considered favorable for uranium deposition. The unfavorable environments include: limestones, sandstones, coal and carbonaceous shales, volcanics, Precambrian metamorphics, and Tertiary basins. Unevaluated areas include the John D. Rockefeller Jr. Memorial Parkway and Yellowstone and Grand Teton National Parks, where park service regulations prohibit detailed investigations

243

Linac-based photonuclear applications at the Idaho Accelerator Center  

International Nuclear Information System (INIS)

In this paper, current Idaho Accelerator Center (IAC) activities based on the exploitation of high energy bremsstrahlung photons generated by linear electron accelerators will be reviewed. These beams are used to induce photonuclear interactions for a wide variety of applications in materials science, activation analysis, medical research, and nuclear technology. Most of the exploited phenomena are governed by the familiar giant dipole resonance cross section in nuclei. By proper target and converter design, optimization of photon and photoneutron production can be achieved, allowing radiation fields produced with both photons and neutrons to be used for medical isotope production and for fission product transmutation. The latter provides a specific application example that supports long-term fission product waste management. Using high-energy, highpower electron accelerators, we can demonstrate transmutation of radio-toxic, long-lived fission products (LLFP) such as 99Tc and 129I into short lived species. The latest experimental and simulation results will be presented. (author)

244

National Uranium Resource Evaluation: Baker Quadrangle, Oregon and Idaho  

International Nuclear Information System (INIS)

The Baker Quadrangle, Oregon, and Idaho, was evaluated to identify areas containing geologic environments favorable for uranium deposits. The criteria used was developed for the National Uranium Resource Evaluation program. Stream-sediment reconnaissance and detailed surface studies were augmented by subsurface-data interpretion and an aerial radiometric survey. Results indicate that lower Pliocene sedimentary rocks in the Lower Powder River Valley-Virtue Flat basin are favorable characteristics, they remain unevaluated because of lack of subsurface data. Tertiary sandstones, possibly present at depth in the Long and Cascade Valleys, also remain unevaluated due to lack of subsurface data. All remaining environments in the Baker Quadrangle are unfavorable for all classes of uranium deposits

245

RADIOISOTOPE POWER SYSTEM CAPABILITIES AT THE IDAHO NATIONAL LABORATORY (INL)  

Energy Technology Data Exchange (ETDEWEB)

--Idaho National Laboratory’s, Space Nuclear Systems and Technology Division established the resources, equipment and facilities required to provide nuclear-fueled, Radioisotope Power Systems (RPS) to Department of Energy (DOE) Customers. RPSs are designed to convert the heat generated by decay of iridium clad, 238PuO2 fuel pellets into electricity that is used to power missions in remote, harsh environments. Utilization of nuclear fuel requires adherence to governing regulations and the INL provides unique capabilities to safely fuel, test, store, transport and integrate RPSs to supply power—supporting mission needs. Nuclear capabilities encompass RPS fueling, testing, handling, storing, transporting RPS nationally, and space vehicle integration. Activities are performed at the INL and in remote locations such as John F. Kennedy Space Center and Cape Canaveral Air Station to support space missions. This paper will focus on the facility and equipment capabilities primarily offered at the INL, Material and Fuel Complex located in a security-protected, federally owned, industrial area on the remote desert site west of Idaho Falls, ID. Nuclear and non-nuclear facilities house equipment needed to perform required activities such as general purpose heat source (GPHS) module pre-assembly and module assembly using nuclear fuel; RPS receipt and baseline electrical testing, fueling, vibration testing to simulate the launch environment, mass properties testing to measure the mass and compute the moment of inertia, electro-magnetic characterizing to determine potential consequences to the operation of vehicle or scientific instrumentation, and thermal vacuum testing to verify RPS power performance in the vacuum and cold temperatures of space.

Kelly Lively; Stephen Johnson; Eric Clarke

2014-07-01

246

National Uranium Resource Evaluation: Sandpoint Quadrangle, Washington, Idaho, and Montana  

International Nuclear Information System (INIS)

The Sandpoint Quadrangle, Washington, Idaho, and Montana, was evaluated to identify and delineate areas favorable for uranium deposits in accordance with criteria developed for the National Uranium Resource Evaluation. Surface radiometric reconnaissance, geochemical sampling, and reconnaissance airborne radiometric surveying were used for overall evaluation of the quadrangle. Detailed airborne radiometric surveying, geologic mapping, and other types of surface studies were used in suspected favorable areas. Results of the work indicate favorability for Wyoming roll-front type uranium deposits in conglomerates and sandstones of the Tertiary O'Brien Creek and Tiger Formations. Synorogenic plutonic rocks are considered favorable in some areas for authigenic or anatectic deposits, and radioactive postorogenic plutons are favorable for magnetic-hydrothermal deposits. Small areas containing sulfide-bearing metamorphic rocks adjacent to radioactive plutons are favorable for allogenic deposits similar to those at the Midnite Mine 10km southwest of the quadrangle. Uraniferous conglomerates of possible Tertiary age in the southwest corner of the quadrangle may be favorable for sandstone-type uranium deposits. In the Cambrian Metaline Formation, the Josephine Breccia, contains local uranium concentrations and may be favorable for unclassified-type deposits. The overlying Ordovician Ledbetter Slate also contains uranium occurrences and might contain syngenetic or hydrothermal depght contain syngenetic or hydrothermal deposits. Although thorium-rich veins in Precambrian Belt Supergroup metasedimentary rocks in Idaho contain much less uranium than thorium, they may be favorable for polymetallic vein-type uranium deposits. Late Paleozoic and Mesozoic metasedimentary and metavolcanic rocks, nonradioactive plutonic rocks, Tertiary volcanic rocks, and Quaternary deposits are considered unfavorable for uranium deposits

247

Idaho Supplementation Studies : Five Year Report : 1992-1996.  

Energy Technology Data Exchange (ETDEWEB)

In 1991, the Idaho Supplementation Studies (ISS) project was implemented to address critical uncertainties associated with hatchery supplementation of chinook salmon Oncorhynchus tshawytscha populations in Idaho. The project was designed to address questions identified in the Supplementation Technical Work Group (STWG) Five-Year-Workplan (STWG 1988). Two goals of the project were identified: (1) assess the use of hatchery chinook salmon to increase natural populations in the Salmon and Clearwater river drainages, and (2) evaluate the genetic and ecological impacts of hatchery chinook salmon on naturally reproducing chinook salmon populations. Four objectives to achieve these goals were developed: (1) monitor and evaluate the effects of supplementation on presmolt and smolt numbers and spawning escapements of naturally produced fish; (2) monitor and evaluate changes in natural productivity and genetic composition of target and adjacent populations following supplementation; (3) determine which supplementation strategies (broodstock and release stage) provide the quickest and highest response in natural production without adverse effects on productivity; and (4) develop supplementation recommendations. This document reports on the first five years of the long-term portion of the ISS project. Small-scale studies addressing specific hypotheses of the mechanisms of supplementation effects (e.g., competition, dispersal, and behavior) have been completed. Baseline genetic data have also been collected. Because supplementation broodstock development was to occur during the first five years, little evaluation of supplementation is currently possible. Most supplementation adults did not start to return to study streams until 1997. The objectives of this report are to: (1) present baseline data on production and productivity indicators such as adult escapement, redd counts, parr densities, juvenile emigrant estimates, and juvenile survival to Lower Granite Dam (lower Snake River); (2) recommend changes in methodologies and tasks to improve data collection efficiency and utility.

Walters, Jody P.

1999-08-01

248

National uranium resource evaluation: Sandpoint Quadrangle, Washington, Idaho, and Montana  

Energy Technology Data Exchange (ETDEWEB)

The Sandpoint Quadrangle, Washington, Idaho, and Montana, was evaluated to identify and delineate areas favorable for uranium deposits in accordance with criteria developed for the National Uranium Resource Evaluation. Surface radiometric reconnaissance, geochemical sampling, and reconnaissance airborne radiometric surveying were used for overall evaluation of the quadrangle. Detailed airborne radiometric surveying, geologic mapping, and other types of surface studies were used in suspected favorable areas. Results of the work indicate favorability for Wyoming roll-front type uranium deposits in conglomerates and sandstones of the Tertiary O'Brien Creek and Tiger Formations. Synorogenic plutonic rocks are considered favorable in some areas for authigenic or anatectic deposits, and radioactive postorogenic plutons are favorable for magnetic-hydrothermal deposits. Small areas containing sulfide-bearing metamorphic rocks adjacent to radioactive plutons are favorable for allogenic deposits similar to those at the Midnite Mine 10km southwest of the quadrangle. Uraniferous conglomerates of possible Tertiary age in the southwest corner of the quadrangle may be favorable for sandstone-type uranium deposits. In the Cambrian Metaline Formation, the Josephine Breccia, contains local uranium concentrations and may be favorable for unclassified-type deposits. The overlying Ordovician Ledbetter Slate also contains uranium occurrences and might contain syngenetic or hydrothermal deposits. Although thorium-rich veins in Precambrian Belt Supergroup metasedimentary rocks in Idaho contain much less uranium than thorium, they may be favorable for polymetallic vein-type uranium deposits. Late Paleozoic and Mesozoic metasedimentary and metavolcanic rocks, nonradioactive plutonic rocks, Tertiary volcanic rocks, and Quaternary deposits are considered unfavorable for uranium deposits.

Castor, S.B.; Berry, M.R.; Siegmund, B.L.

1982-05-01

249

Steelhead Supplementation in Idaho Rivers : 2001 Project Progress Report.  

Energy Technology Data Exchange (ETDEWEB)

In 2001, Idaho Department of Fish and Game (IDFG) continued an assessment of the Sawtooth Hatchery steelhead Oncorhynchus mykiss stock to reestablish natural populations in Beaver and Frenchman creeks in the upper Salmon River. Crews stocked both streams with 20 pair of hatchery adults, and I estimated the potential smolt production from the 2000 adult outplants. n the Red River drainage, IDFG stocked Dworshak hatchery stock fingerlings and smolts from 1993 to 1999 to assess which life stage produces more progeny when the adults return to spawn. In 2001, IDFG operated the Red River weir to trap adults that returned from these stockings, but none were caught from either group. Wild steelhead populations in the Lochsa and Selway river drainages were assessed and the chinook salmon Oncorhynchus tshawytscha escapement was enumerated in Fish Creek. I estimated that 75 wild adult steelhead and 122 adult chinook salmon returned to Fish Creek in 2001. I estimated that slightly more than 30,000 juvenile steelhead migrated out of Fish Creek. This is the largest number of steelhead to migrate out of Fish Creek in a single year since I began estimating the yearly migration in 1994. Juvenile steelhead densities in Lochsa and Selway tributaries were somewhat higher in 2001 than those observed in 2000. Crews from IDFG collected over 4,800 fin samples from wild steelhead in 74 streams of the Clearwater, Snake, and Salmon river drainages and from five hatchery stocks during the summer of 2000 for a DNA analysis to assess Idaho's steelhead stock structure. The DNA analysis was subcontracted to Dr. Jennifer Nielsen, Alaska Biological Science Center, Anchorage. Her lab developed protocols to use for the analysis in 2001 and is continuing to analyze the samples. Dr. Nielsen plans to have the complete set of wild and hatchery stocks analyzed in 2002.

Byrne, Alan

2002-03-01

250

Idaho Steelhead Monitoring and Evaluation Studies : Annual Progress Report 2007.  

Energy Technology Data Exchange (ETDEWEB)

The goal of Idaho Steelhead Monitoring and Evaluation Studies is to collect monitoring data to evaluate wild and natural steelhead populations in the Clearwater and Salmon river drainages. During 2007, intensive population data were collected in Fish Creek (Lochsa River tributary) and Rapid River (Little Salmon River tributary); extensive data were collected in other selected spawning tributaries. Weirs were operated in Fish Creek and Rapid River to estimate adult escapement and to collect samples for age determination and genetic analysis. Snorkel surveys were conducted in Fish Creek, Rapid River, and Boulder Creek (Little Salmon River tributary) to estimate parr density. Screw traps were operated in Fish Creek, Rapid River, Secesh River, and Big Creek to estimate juvenile emigrant abundance, to tag fish for survival estimation, and to collect samples for age determination and genetic analysis. The estimated wild adult steelhead escapement in Fish Creek was 81 fish and in Rapid River was 32 fish. We estimate that juvenile emigration was 24,127 fish from Fish Creek; 5,632 fish from Rapid River; and 43,674 fish from Big Creek. The Secesh trap was pulled for an extended period due to wildfires, so we did not estimate emigrant abundance for that location. In cooperation with Idaho Supplementation Studies, trap tenders PIT tagged 25,618 steelhead juveniles at 18 screw trap sites in the Clearwater and Salmon river drainages. To estimate age composition, 143 adult steelhead and 5,082 juvenile steelhead scale samples were collected. At the time of this report, 114 adult and 1,642 juvenile samples have been aged. Project personnel collected genetic samples from 122 adults and 839 juveniles. We sent 678 genetic samples to the IDFG Eagle Fish Genetics Laboratory for analysis. Water temperature was recorded at 37 locations in the Clearwater and Salmon river drainages.

Copeland, Timothy; Putnam, Scott

2008-12-01

251

Idaho supplementation studies : five year report : 1992-1996  

International Nuclear Information System (INIS)

In 1991, the Idaho Supplementation Studies (ISS) project was implemented to address critical uncertainties associated with hatchery supplementation of chinook salmon Oncorhynchus tshawytscha populations in Idaho. The project was designed to address questions identified in the Supplementation Technical Work Group (STWG) Five-Year-Workplan (STWG 1988). Two goals of the project were identified: (1) assess the use of hatchery chinook salmon to increase natural populations in the Salmon and Clearwater river drainages, and (2) evaluate the genetic and ecological impacts of hatchery chinook salmon on naturally reproducing chinook salmon populations. Four objectives to achieve these goals were developed: (1) monitor and evaluate the effects of supplementation on presmolt and smolt numbers and spawning escapements of naturally produced fish; (2) monitor and evaluate changes in natural productivity and genetic composition of target and adjacent populations following supplementation; (3) determine which supplementation strategies (broodstock and release stage) provide the quickest and highest response in natural production without adverse effects on productivity; and (4) develop supplementation recommendations. This document reports on the first five years of the long-term portion of the ISS project. Small-scale studies addressing specific hypotheses of the mechanisms of supplementation effects (e.g., competition, dispersal, and behavior) have been completed. Baseline genetic da) have been completed. Baseline genetic data have also been collected. Because supplementation broodstock development was to occur during the first five years, little evaluation of supplementation is currently possible. Most supplementation adults did not start to return to study streams until 1997. The objectives of this report are to: (1) present baseline data on production and productivity indicators such as adult escapement, redd counts, parr densities, juvenile emigrant estimates, and juvenile survival to Lower Granite Dam (lower Snake River); (2) recommend changes in methodologies and tasks to improve data collection efficiency and utility

252

75 FR 58347 - Notice of Central Idaho Resource Advisory Committee Meeting  

Science.gov (United States)

...1206 South Challis Street, Salmon, Idaho. SUPPLEMENTARY INFORMATION...FURTHER INFORMATION CONTACT: Frank V. Guzman, Forest Supervisor and...September 10, 2010. Frank V. Guzman, Forest Supervisor, Salmon-Challis National Forest,...

2010-09-24

253

75 FR 70200 - Notice of Central Idaho Resource Advisory Committee Meeting  

Science.gov (United States)

...1206 South Challis Street, Salmon, Idaho. SUPPLEMENTARY INFORMATION...FURTHER INFORMATION CONTACT: Frank V. Guzman, Forest Supervisor and...Dated: November 1, 2010. Frank V. Guzman, Forest Supervisor, Salmon-Challis National...

2010-11-17

254

Idaho State Briefing Book for low-level radioactive-waste management  

International Nuclear Information System (INIS)

The Idaho State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Idaho. The profile is the result of a survey of NRC licensees in Idaho. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Idaho

255

PLUMMER CREEK AND CHATCOLET LAKE, BENEWAH AND KOOTENAI COUNTIES, IDAHO. WATER QUALITY STATUS REPORT, 1990  

Science.gov (United States)

The Plummer Creek watershed drains a portion of northwestern Beneway County and southwestern Kootenai County, Idaho (17010304) into Chatcolet Lake. Suspended sediment impacts from nonpoint sources were observed at all but 2 stations along Plummer Creek, Little Plummer Creek, and...

256

Air Emission Inventory for the Idaho National Engineering Laboratory: 1992 emissions report  

International Nuclear Information System (INIS)

This report presents the 1992 Air Emission Inventory for the Idaho National Engineering Laboratory. Originally, this report was in response to the Environmental Oversight and Monitoring Agreement in 1989 between the State of Idaho and the Department of Energy Idaho Field Office, and a request from the Idaho Air Quality Bureau. The current purpose of the Air Emission Inventory is to provide the basis for the preparation of the INEL Permit-to-Operate (PTO) an Air Emission Source Application, as required by the recently promulgated Title V regulations of the Clean Air Act. This report includes emissions calculations from 1989 to 1992. The Air Emission Inventory System, an ORACLE-based database system, maintains the emissions inventory

257

78 FR 2359 - Approval and Promulgation of State Implementation Plans: Idaho  

Science.gov (United States)

...relate to Idaho's open burning and crop residue...streamlined permitting process for spot burns...is an informal process open to the public and...administrative process. Specifically...to conduct spot burning and baled...

2013-01-11

258

Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho  

Energy Technology Data Exchange (ETDEWEB)

Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

Glaspey, Douglas J.

2008-01-30

259

A Geyser of Energy Savings in Idaho: Weatherization Assistance Close-Up Fact Sheet  

International Nuclear Information System (INIS)

Idaho demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

260

Augmented Fish Health Monitoring in Idaho, 1989-1990 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

The Idaho augmented fish health monitoring contract DE-A179-87BP65903 was awarded in June 1987 and fully implemented in January 1988. The third annual report of activities serviced under this contract is presented. The prevailing fish health problems in 1989 include persistent infections caused by infectious pancreatic necrosis virus (IPNV), by Myxobolus (Myxosoma) cerebralis, Renibacterium salmoninarum and drug resistant Aeromonas salmonicida at select hatcheries on Idaho's upper Columbia River tributaries. Administrative focus during the year was to fill vacant positions and still maintain the monitoring effort at levels agreed on under contract. Complete diagnostic and inspection services were provided to eleven Idaho anadromous facilities. The present report describes work done to meet contract agreements and summarizes the fish health findings of anadromous stocks reared at and returning to Idaho's facilities during 1989.

Hauck, A. K. (A. Kent)

1990-10-01

261

75 FR 54542 - Special Areas; Roadless Area Conservation; Applicability to the National Forests in Idaho...  

Science.gov (United States)

...River corridor along Lake Creek in the French Creek...Southwest Idaho Ecogroup Land and Resource Management...River, including Lake Creek. The Record of...River, including Lake Creek, eligible for Wild...National Forest Land and Resource...

2010-09-08

262

Analysis and Methane Gas Separations Studies for City of Marsing, Idaho An Idaho National Laboratory Technical Assistance Program Study  

Energy Technology Data Exchange (ETDEWEB)

Introduction and Background Large amounts of methane in well water is a wide spread problem in North America. Methane gas from decaying biomass and oil and gas deposits escape into water wells typically through cracks or faults in otherwise non-porous rock strata producing saturated water systems. This methane saturated water can pose several problems in the delivery of drinking water. The problems range from pumps vapor locking (cavitating), to pump houses exploding. The City of Marsing requested Idaho National Laboratory (INL) to assist with some water analyses as well as to provide some engineering approaches to methane capture through the INL Technical Assistance Program (TAP). There are several engineering approaches to the removal of methane and natural gas from water sources that include gas stripping followed by compression and/or dehydration; membrane gas separators coupled with dehydration processes, membrane water contactors with dehydration processes.

Christopher Orme

2012-08-01

263

Mineralogical correlation of surficial sediment from area drainages with selected sedimentary interbeds at the Idaho National Engineering Laboratory, Idaho  

International Nuclear Information System (INIS)

Ongoing research by the US Geological Survey at the INEL involves investigation of the migration of radioactive elements contained in low-level radioactive waste, hydrologic and geologic factors affecting waste movement, and geochemical factors that influence the chemical composition of the waste. Identification of the mineralogy of the Snake River Plain is needed to aid in the study of the hydrology and geochemistry of subsurface waste disposal. The US Geological Surveys project office at the Idaho National Engineering Laboratory, in cooperation with the US Department of Energy, used mineralogical data to correlate surficial sediment samples from the Big Lost River, Little Lost River, and Birch Greek drainages with selected sedimentary interbed core samples taken from test holes at the RWMC (Radioactive Waste Management Complex), TRA (Test Reactors Area), ICPP (Idaho Chemical Processing Plant), and TAN (Test Area North). Correlating the mineralogy of a particular present-day drainage area with a particular sedimentary interbed provides information on historical source of sediment for interbeds in and near the INEL. Mineralogical data indicate that surficial sediment samples from the Big Lost River drainage contained a larger amount of feldspar and pyroxene and a smaller amount of calcite and dolomite than samples from the Little Lost River and Birch Creek drainages. Mineralogical data from sedimentary interbeds at the RWMC, TRA, and ICPP correlate with surficial sediment of the present-day big Lost River drainage. Mineralogical data from a sedimentary interbed at TAN correlate with surficial sediment of the present-day Birch Creek drainage. 13 refs., 5 figs., 3 tabs

264

Mineralogical correlation of surficial sediment from area drainages with selected sedimentary interbeds at the Idaho National Engineering Laboratory, Idaho  

Energy Technology Data Exchange (ETDEWEB)

Ongoing research by the US Geological Survey at the INEL involves investigation of the migration of radioactive elements contained in low-level radioactive waste, hydrologic and geologic factors affecting waste movement, and geochemical factors that influence the chemical composition of the waste. Identification of the mineralogy of the Snake River Plain is needed to aid in the study of the hydrology and geochemistry of subsurface waste disposal. The US Geological Surveys project office at the Idaho National Engineering Laboratory, in cooperation with the US Department of Energy, used mineralogical data to correlate surficial sediment samples from the Big Lost River, Little Lost River, and Birch Greek drainages with selected sedimentary interbed core samples taken from test holes at the RWMC (Radioactive Waste Management Complex), TRA (Test Reactors Area), ICPP (Idaho Chemical Processing Plant), and TAN (Test Area North). Correlating the mineralogy of a particular present-day drainage area with a particular sedimentary interbed provides information on historical source of sediment for interbeds in and near the INEL. Mineralogical data indicate that surficial sediment samples from the Big Lost River drainage contained a larger amount of feldspar and pyroxene and a smaller amount of calcite and dolomite than samples from the Little Lost River and Birch Creek drainages. Mineralogical data from sedimentary interbeds at the RWMC, TRA, and ICPP correlate with surficial sediment of the present-day big Lost River drainage. Mineralogical data from a sedimentary interbed at TAN correlate with surficial sediment of the present-day Birch Creek drainage. 13 refs., 5 figs., 3 tabs.

Bartholomay, R.C.

1990-08-01

265

Morphological and Molecular Identification of Globodera pallida Associated with Potato in Idaho  

OpenAIRE

The identity of a newly discovered population of pale potato cyst nematode Globodera pallida associated with potato in eastern Idaho was established by morphological and molecular methods. Morphometrics of cysts and second-stage juveniles were generally within the expected ranges for G. pallida with some variations noted. The Idaho population and paratype material from Epworth, Lincolnshire, England, both showed variations in tail shape, with bluntly rounded to finely pointed tail termini. Co...

Skantar, A. M.; Handoo, Z. A.; Carta, L. K.; Chitwood, D. J.

2007-01-01

266

Disposal of VLLW at the Grand View, Idaho, hazardous waste site, USA  

International Nuclear Information System (INIS)

This annex provides a case study of the Grand View, Idaho, hazardous waste site's experience obtaining permit approvals and disposing of very low activity radioactive waste. To date, the Idaho facility has accepted more than 1.3 million t of low activity material. While rare earth processors and other industry facilities have utilized the Grand View site for low activity waste, most waste has been shipped from federal government remediation projects involving large volumes of contaminated soil and debris

267

Idaho National Laboratory's FY11 Greenhouse Gas Report  

Energy Technology Data Exchange (ETDEWEB)

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2011 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho.

Kimberly Frerichs

2012-03-01

268

Environmental resource document for the Idaho National Engineering Laboratory. Volume 1  

Energy Technology Data Exchange (ETDEWEB)

This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

Irving, J.S.

1993-07-01

269

Spatial variability of sedimentary interbed properties near the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory, Idaho  

Science.gov (United States)

The subsurface at the Idaho National Engineering and Environmental Laboratory (INEEL) is complex, comprised primarily of thick, fractured basalt flows interbedded with thinner sedimentary intervals. The unsaturated zone can be as thick as 200 m in the southwestern part of the INEEL. The Vadose Zone Research Park (VZRP), located approximately 10 km southwest of the Idaho Nuclear Technology and Engineering Center (INTEC), was established in 2001 to study the subsurface of a relatively undisturbed part of the INEEL. Waste percolation ponds for the INTEC were relocated to the VZRP due to concerns that perched water within the vadose zone under the original infiltration ponds (located immediately south of the INTEC) could contribute to migration of contaminants to the Snake River Plain aquifer. Knowledge of the spatial distribution of texture and hydraulic properties is important for developing a better understanding of subsurface flow processes within the interbeds, for example, by identifying low permeability layers that could lead to the formation of perched ground-water zones. Because particle-size distributions are easier to measure than hydraulic properties, particle size serves as an analog for determining how the unsaturated hydraulic properties vary both vertically within particular interbeds and laterally within the VZRP. As part of the characterization program for the subsurface at the VZRP, unsaturated and saturated hydraulic properties were measured on 10 core samples from six boreholes. Bulk properties, including particle size, bulk density, particle density, and specific surface area, were determined on material from the same depth intervals as the core samples, with an additional 66 particle- size distributions measured on bulk samples from the same boreholes. From lithologic logs of the 32 boreholes at the VZRP, three relatively thick interbeds (in places up to 10 m thick) were identified at depths of 35, 45, and 55 m below land surface. The 35-m interbed extends laterally over a distance of at least 900 m from the Big Lost River to the new percolation pond area of the VZRP. Most wells within the VZRP were drilled to depths less than 50 m, making it difficult to infer the lateral extent of the 45-m and 55-m interbeds. The 35-m interbed is uniform in texture both vertically and laterally; the 45-m interbed coarsens upward; and the 55-m interbed contains alternating coarse and fine layers. Seventy-one out of 90 samples were silt loams and 9 out of 90 samples were classified as either sandy loams, loamy sands, or sands. The coarsest samples were located within the 45-m and 55-m interbeds of borehole ICPP-SCI-V-215, located near the southeast corner of the new percolation pond area. At the tops of some interbeds, baked-zone intervals were identified by their oxidized color (yellowish red to red) compared to the color of the underlying non-baked material (pale yellow to brown). The average geometric mean particle diameter of baked-zone intervals was only slightly coarser, in some cases, than the underlying non-baked sediment. This is likely due to both depositional differences between the top and bottom of the interbeds and the presence of small basalt clasts in the sediment. Core sample hydraulic properties from baked zones within the different interbeds did not show effects from alteration caused during basalt deposition, but differed mainly by texture. Saturated hydraulic conductivities (Ksat) for the 10 core samples ranged from 10-7 to 10-4 cm/s. Low permeability layers, with Ksat values less than 10-7 cm/s, within the 35-m and 45-m interbeds may cause perched ground-water zones to form beneath the new percolation pond area, leading to the possible lateral movement of water away from the VZRP.

Winfield, Kari A.

2003-01-01

270

Kalispel Resident Fish Project : Annual Report, 2002.  

Energy Technology Data Exchange (ETDEWEB)

In 2002 the Kalispel Natural Resource Department (KNRD) continued monitoring enhancement projects (implemented from 1996 to 1998) for bull trout (Salvelinus confluentus), westslope cutthroat (Oncorhynchus clarki lewisi) and largemouth bass (Micropterus salmoides). Additional baseline fish population and habitat assessments were conducted, in 2002, in tributaries to the Pend Oreille River. Further habitat and fish population enhancement projects were also implemented in 2002.

Andersen, Todd; Olson, Jason

2003-03-01

271

Kalispel Resident Fish Project Annual Report, 2003.  

Energy Technology Data Exchange (ETDEWEB)

In 2003 the Kalispel Natural Resource Department (KNRD) continued monitoring enhancement projects (implemented from 1996 to 1998) for bull trout (Salvelinus confluentus), westslope cutthroat (Oncorhynchus clarki lewisi) and largemouth bass (Micropterus salmoides). Additional baseline fish population and habitat assessments were conducted, in 2003, in tributaries to the Pend Oreille River. Further habitat and fish population enhancement projects were also implemented.

Olson, Jason; Andersen, Todd

2004-04-01

272

Kalispel Resident Fish Project, 2004-2005 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

In 2004 the Kalispel Natural Resource Department (KNRD) implemented a new enhancement monitoring project for bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarki lewisi). Largemouth bass (Micropterus salmoides) enhancement projects were also monitored. Additional baseline fish population and habitat assessments were conducted, in tributaries to the Pend Oreille River.

Olson, Jason; Andersen, Todd

2005-06-01

273

Iodine-129 in the Snake River Plain Aquifer at and Near the Idaho National Laboratory, Idaho, 2003 and 2007  

Science.gov (United States)

From 1953 to 1988, wastewater containing approximately 0.94 curies of iodine-129 (129I) was generated at the Idaho National Laboratory (INL) in southeastern Idaho. Almost all of this wastewater was discharged at or near the Idaho Nuclear Technology and Engineering Center (INTEC) on the INL site. Most of the wastewater was discharged directly into the eastern Snake River Plain aquifer through a deep disposal well until 1984; however, some wastewater also was discharged into unlined infiltration ponds or leaked from distribution systems below the INTEC. In 2003, the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, collected samples for 129I from 36 wells used to monitor the Snake River Plain aquifer, and from one well used to monitor a perched zone at the INTEC. Concentrations of 129I in the aquifer ranged from 0.0000066 +- 0.0000002 to 0.72 +- 0.051 picocuries per liter (pCi/L). Many wells within a 3-mile radius of the INTEC showed decreases of as much as one order of magnitude in concentration from samples collected during 1990-91, and all of the samples had concentrations less than the Environmental Protection Agency's Maximum Contaminant Level (MCL) of 1 pCi/L. The average concentration of 129I in 19 wells sampled during both collection periods decreased from 0.975 pCi/L in 1990-91 to 0.249 pCi/L in 2003. These decreases are attributed to the discontinuation of disposal of 129I in wastewater after 1988 and to dilution and dispersion in the aquifer. Although water from wells sampled in 2003 near the INTEC showed decreases in concentrations of 129I compared with data collected in 1990-91, some wells south and east of the Central Facilities Area, near the site boundary, and south of the INL showed slight increases. These slight increases may be related to variable discharge rates of wastewater that eventually moved to these well locations as a mass of water from a particular disposal period. In 2007, the USGS collected samples for 129I from 36 wells that are used to monitor the aquifer south of INTEC and from 2 wells that are used to monitor perched zones at INTEC. Concentrations of 129I in the eastern Snake River Plain aquifer ranged from 0.000026 +- 0.000002 to 1.16 +- 0.04 pCi/L, and the concentration at one well exceeded the maximum contaminant level (1 pCi/L) for public drinking water supplies. The average concentration of 19 wells sampled in 2003 and 2007 did not differ; however, slight increases and decreases of concentrations in several areas around the INTEC were evident in the aquifer. The decreases are attributed to the discontinued disposal and to dilution and dispersion in the aquifer. The increases may be due to the movement into the aquifer of remnant perched water below the INTEC. In 2007, the USGS also collected samples from 31 zones in 6 wells equipped with multi-level WestbayTM packer sampling systems to help define the vertical distribution of 129I in the aquifer. Concentrations ranged from 0.000011 +- 0.0000005 to 0.0167 +- 0.0007 pCi/L. For three wells, concentrations of 129I between zones varied one to two orders of magnitude. For two wells, concentrations varied for one zone by more than an order of magnitude from the wells' other zones. Similar concentrations were measured from all five zones sampled in one well. All of the 31 zones had concentrations two or more magnitudes below the maximum contaminant level.

Bartholomay, Roy C.

2009-01-01

274

National Uranium Resource Evaluation: Jordan Valley Quadrangle, Oregon and Idaho  

International Nuclear Information System (INIS)

The Jordan Valley Quadrangle, Oregon and Idaho, was evaluated to identify and delineate areas favorable for uranium deposits in accordance with criteria developed for the National Uranium Resource Evaluation. Surface radiometric reconnaissance and geochemical sampling were used for overall evaluation of the quadrangle. Detailed rock sampling, geologic mapping, and examination of uranium deposits and occurrences were performed in areas suspected to be favorable. The northeast part of the McDermitt caldera within the quadrangle is favorable for volcanogenic deposits associated with the ring-fracture zone. The favorable area contains the Aurora uranium deposit, the Bretz mercury mine, and the Cottonwood Creek occurrence. The Triangle Ranch area and the Snake River Plain, both in the northeast part of the quadrangle, have environments that may be favorable for uranium deposits in sandstone but are considered unevaluated due to lack of subsurface data and lack of detailed investigations. Rocks in the remainder of the quadrangle are considered unfavorable for uranium deposits because of low uranium contents, basic to intermediate compositions, or lack of favorable structures

275

The Idaho Chemical Processing Plant Special Nuclear Material vault upgrade  

International Nuclear Information System (INIS)

This document discusses storage space in a Special Nuclear Material (SNM) product storage vault at the Idaho Chemical Processing Plant (ICPP) which has been recently expanded by approximately 175%. This expansion required a minimum of space and funding and resulted in a large increase in net storage capacity. Security for the additional storage is provided by standard intrusion sensors and by a real-time monitoring system, which monitors the weight of the material as it rests on weight sensors (load cells). The monitoring system also feeds weight data to a Safeguards processor which provides further confidence to Safeguards personnel. The Department of Energy requirements for bimonthly inventories for SNM stored in a particular part of this facility have been eliminated because of the guarantees provided by a real-time monitoring system. A higher efficiency has been obtained by using the expensive real estate inside a hardened product storage vault. This project has provided the ICPP with a relatively inexpensive vault upgrade and when product material is placed in this area of the vault the manpower requirements to inventory it will be reduced, resulting in a net reduction in plant worker radiation exposure

276

Great Western Malting Company geothermal project, Pocatello, Idaho. Final report  

Energy Technology Data Exchange (ETDEWEB)

The Great Western Malting Company recently constructed a barley malting facility in Pocatello, Idaho, designed to produce 6.0 million bushels per year of brewing malt. This facility uses natural gas to supply the energy for germination and kilning processes. The escalating cost of natural gas has prompted the company to look at alternate and more economical sources of energy. Trans Energy Systems has investigated the viabiity of using geothermal energy at the new barley processing plant. Preliminary investigations show that a geothermal resource probably exists, and payback on the installation of a system to utilize the resource will occur in under 2 years. The Great Western Malting plant site has geological characteristics which are similar to areas where productive geothermal wells have been established. Geological investigations indicate that resource water temperatures will be in the 150 to 200/sup 0/F range. Geothermal energy of this quality will supply 30 to 98% of the heating requirements currently supplied by natural gas for this malting plant. Trans Energy Systems has analyzed several systems of utilizing the geothermal resource at the Great Western barley malting facility. These systems included: direct use of geothermal water; geothermal energy heating process water through an intermediary heat exchanger; coal or gas boosted geothermal systems; and heat pump boosted geothermal system. The analysis examined the steps that are required to process the grain.

Christensen, N.T.; McGeen, M.A.; Corlett, D.F.; Urmston, R.

1981-12-23

277

Accountability volume measurement at the Idaho Chemical Processing Plant  

International Nuclear Information System (INIS)

The Idaho Chemical Processing Plant (ICPP) is required by DOE Orders and Directives to provide control and accountability for specific nuclear materials present either in storage or process locations. This, along with the protection afforded by physical security measures, provides assurance that nuclear materials are not lost or diverted, and that shippers are credited properly according to the amounts of material received. Control of nuclear materials in solid form (fuel elements and assemblies, plates and other solid forms, and uranium oxide product) requires the ability to identify discrete items. A combination of physical security and tamper-indicating devices (TID's) is also necessary if the material is not self-protected by high levels of radiation. Accountable materials in solution are not identifiable, however, and require sampling and chemical analysis in combination with liquid volume (or mass) measurements to determine the quantities of uranium and its isotope U-235 that enter and leave the ICPP extraction process. These measurements are also required for periodic process inventories, and whenever solution is transferred between certain process areas or into storage. Accurate and appropriate volume measurements are necessary for good accountability and material control, and special measurement and monitoring capabilities exist at the ICPP to insure a high level of accuracy and reliability. This review of measurement systems and techniques is offered to enha systems and techniques is offered to enhance the background knowledge of personnel involved with the execution of standard accountability measurement and transfer procedures

278

Raptors of the Idaho National Engineering Laboratory Site  

International Nuclear Information System (INIS)

From 1974 through 1976 base line data were gathered on the raptors which occur on the Idaho National Engineering Laboratory (INEL) Site. Thirteen species were observed on the INEL Site during the non-breeding seasons. American Rough-legged Hawks, American Kestrels, Golden Eagles, and Prairie Falcons were the most numerous. Marsh Hawks, Ferruginous Hawks, Redtailed Hawks, Swainson's Hawks, Great Horned Owls, Short-eared Owls, Merlins, Cooper's Hawks, the endangered Bald Eagle, and the endangered Peregrine Falcon were all observed on the INEL Site during the nonbreeding seasons although less frequently. American Rough-legged Hawks and American Kestrels were commonly observed in agricultural lands while Prairie Falcons and Golden Eagles were usually seen in areas of native vegetation. Nesting species of raptors on the INEL Site include American Kestrels, and Long-eared Owls. Ferruginous Hawks, Merlins, Prairie Falcons, Red-tailed Hawks, Swainson's Hawks, Golden Eagles, Great Horned Owls, and Burrowing Owls also nest on or near the INEL Site. The nesting ecology of American Kestrels, Long-eared Owls, Prairie Falcons, Red-tailed Hawks, Swainson's Hawks, Golden Eagles, and Great Horned Owls on the INEL Site are summarized in this report. The decline of nesting Ferruginous Hawks, Golden Eagles, and Red-tailed Hawks on and near the INEL Site is discussed

279

Sage grouse on the Idaho National Environmental Research Park  

International Nuclear Information System (INIS)

A comprehensive study of sage grouse (Centrocercus urophasianus) ecology was conducted on the Idaho National Engineering Laboratory (INEL) site between June 1977 and May 1981. Sage grouse used lawns surrounding INEL facilities for feeding and loafing throughot the summer. Mean summer home range was 406 ha for adult female sage grouse and 94 ha for juveniles. Radionuclide concentrations in grouse summering near a liquid radioactive waste disposal area (N = 29) were significantly higher than those in grouse summering near a solid radioactive waste disposal area (N = 14) or control areas (N = 20). Sage grouse moved from 2 to 83 km during seasonal migration. Fall movements from INEL facilities to winter range were slow and meandering. Spring movements of females from leks to summer range were also slow and meandering but male movements appeared rapid and direct. Sage grouse remained in segregated flocks during early summer but the number of mixed sex flocks increased in late summer. Sage grouse occurred in segregated flocks throughout the winter. Both flock type and habitat influenced winter sage grouse flock size. Mean flock size remained relatively constant as winter weather became more severe. Agricultural aras were an important component of sage grouse summer range and were preferred by all sage grouse sex and age classes. Sage grouse winter range was generally characterized by sagebrush stands with 11 to 30% canopy coverage

280

Post Irradiation Capabilities at the Idaho National Laboratory  

Energy Technology Data Exchange (ETDEWEB)

The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States’ ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

Schulthess, J.L.; Robert D. Mariani; Rory Kennedy; Doug Toomer

2011-08-01

281

Post Irradiation Capabilities at the Idaho National Laboratory  

Energy Technology Data Exchange (ETDEWEB)

The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

Schulthess, J.L.

2011-08-01

282

Update on Ultrasonic Thermometry Development at Idaho National Laboratory  

Energy Technology Data Exchange (ETDEWEB)

The Idaho National Laboratory (INL) has initiated an effort to evaluate the viability of using ultrasonic thermometry technology as an improved sensor for detecting temperature during irradiation testing of advanced fuels proposed within the Fuel Cycle Research and Development (FCR&D) program sponsored by the U.S. Department of Energy (US DOE). Ultrasonic thermometers (UTs) work on the principle that the speed at which sound travels through a material (acoustic velocity) is dependent on the temperature of the material. UTs have several advantages over other types of temperature sensors . UTs can be made very small, as the sensor consists only of a small diameter rod which may or may not require a sheath. Measurements may be made up to very high temperature (near the melting point of the sensor material) and, as no electrical insulation is required, shunting effects observed in traditional high temperature thermocouple applications are avoided. Most attractive, however, is the ability to introduce multiple acoustic discontinuities into the sensor, as this enables temperature profiling with a single sensor. The current paper presents initial results from FCR&D UT development efforts. These developments include improved methods for fabricating magnetostrictive transducers and joining them to waveguides, characterization of candidate sensor materials appropriate for use in FCR&D fuels irradiations (both ceramic fuels in inert gas and sodium bonded metallic fuels), enhanced signal processing techniques, and tests to determine potential accuracy and resolution.

Joshua Daw; Joy Rempe; John Crepeau

2012-07-01

283

Wildlife Impact Assessment Palisades Project, Idaho, Final Report.  

Energy Technology Data Exchange (ETDEWEB)

The Habitat Evaluation Procedures were used to evaluate pre- and post-construction habitat conditions of the US Bureau of Reclamation's Palisades Project in eastern Idaho. Eight evaluation species were selected with losses expressed in the number of Habitat Units (HU's). One HU is equivalent to one acre of prime habitat. The evaluation estimated that a loss of 2454 HU's of mule deer habitat, 2276 HU's of mink habitat, 2622 HU's of mallard habitat, 805 HU's of Canada goose habitat, 2331 HU's of ruffed grouse habitat, 5941 and 18,565 HU's for breeding and wintering bald eagles, and 1336 and 704 HU's for forested and scrub-shrub wetland nongame species occurred as a result of the project. The study area currently has 29 active osprey nests located around the reservoir and the mudflats probably provide more feeding habitat for migratory shore birds and waterfowl than was previously available along the river. A comparison of flow conditions on the South Fork of the Snake River below the dam between pre- and post-construction periods also could not substantiate claims that water releases from the dam were causing more Canada goose nest losses than flow in the river prior to construction. 41 refs., 16 figs., 9 tabs.

Sather-Blair, Signe

1985-02-01

284

Idaho National Laboratory Vadose Zone Research Park Geohydrological Monitoring Results  

Energy Technology Data Exchange (ETDEWEB)

Vadose zone lithology, hydrological characterization of interbed sediments, and hydrological data from subsurface monitoring of Idaho Nuclear Technology and Engineering Center wastewater infiltration are presented. Three-dimensional subsurface lithology of the vadose zone beneath the Vadose Zone Research Park is represented in a 2 dimensional (2 D) diagram showing interpolated lithology between monitoring wells. Laboratory-measured values for saturated hydraulic conductivity and porosity are given for three major interbeds, denoted as the B BC interbed (20 to 35 m bls), the C D interbed (40 to 45 m bls), and the DE 1 2 interbed (55 to 65 m bls), along with an overall physical description of the sediments and geologic depositional environments. Pre-operational pore water pressure conditions are presented to show the presence and location of perched water zones before pond discharge at the New Percolation Ponds. Subsurface infiltration conditions during initial high-volume discharge are presented to show water arrival times and arrival sequences. Steady-state conditions are then presented to show formation and locations of perched water zones and recharge sources after several months of discharge to the New Percolation Ponds.

Kristine Baker

2006-01-01

285

Management of TRU waste at the Idaho National Engineering Laboratory  

International Nuclear Information System (INIS)

Since 1970, defense transuranic (TRU) waste has been placed into 20-year retrievable storage at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). A major objective of the U.S. Department of Energy (DOE) Nuclear Waste Management Program is to remove all retrievably stored TRU waste from the INEL. The INEL is currently developing, designing and constructing two facilities to demonstrate methods for retrieving, processing, and/or certifying the INEL stored TRU waste for shipment to, and experimental disposal demonstrations at, the Waste Isolation Pilot Plant (WIPP). Waste retrieval, nondestructive examination of waste containers, and certification of waste containers for shipment to the WIPP will be performed at the stored Waste Examination Pilot Plant (SWEPP). Waste containers that cannot be certified at SWEPP will be treated at the Process Experimental Pilot Plant (PREPP). The primary objective of PREPP is to demonstrate full-scale methods for processing the uncertifiable INEL stored TRU waste into a form that meets the waste acceptance criteria at the WIPP. The initial experimental processing method will consist of lowspeed shredding for waste container opening and waste sizing, a rotary kiln for waste incineration, and waste immobilization by cementing

286

Idaho National Laboratory Cultural Resource Monitoring Report for FY 2008  

Energy Technology Data Exchange (ETDEWEB)

This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2008 (FY 2008). Throughout the year, 45 cultural resource localities were revisited including: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, one butte, twenty-eight prehistoric archaeological sites, three historic homesteads, two historic stage stations, one historic canal construction camp, three historic trails, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2008 to assess project compliance with cultural resource recommendations, confirm the locations of previously recorded cultural resources in relation to project activities, to assess the damage caused by fire-fighting efforts, and to watch for cultural materials during ground disturbing activities. Although impacts were documented at a few locations, no significant adverse effects that would threaten the National Register eligibility of any resource were observed. Monitoring also demonstrated that INL projects generally remain in compliance with recommendations to protect cultural resources

Brenda R. Pace

2009-01-01

287

Photon Activation Analysis at the Idaho Accelerator Center  

International Nuclear Information System (INIS)

Activation methods require minimal sample preparation and provide sufficiently high sensitivity for detecting the vast majority of the elements throughout the periodic table. In this paper we shall discuss photon activation analysis (PAA) at the Idaho Accelerator Center. The process of PAA begins with exposing a sample with photons in the energy range of 10 to 30 MeV. Many nuclides in the sample will become activated and, in turn, these radionuclides will decay by emitting characteristic radiation. These characteristic radiation decays are the telltale signatures for identifying elements which can then be measured with spectrometers such as a high-purity Germanium detector. PAA is not an 'absolute' method, as the samples under investigation must be irradiated along with a reference or calibrating material having a well-known elemental composition. The quantitative evaluation is performed through comparing the two resulting element spectra from the unknown sample and reference material. Besides the obvious advantage of being non-destructive, PAA has minimal contamination issues. Moreover, materials that are difficult to treat chemically, such as certain refractory metals, dusts, ashes, etc., offer no hindrance to the technique of PAA. A further advantage is that PAA is very well suited for investigated minute samples (sub-milligram dust particles) to very large ones (in the multi-kg range). PAA is a robust technique as there are no real limitations concerning the nature no real limitations concerning the nature of material to be studied.

288

Purgeable Organic Compounds in Water At or Near the Idaho National Engineering Laboratory, Idaho, 1992-95  

Energy Technology Data Exchange (ETDEWEB)

Water samples from 54 wells and 6 surface-water sites at or near the Idaho National Engineering Laboratory were analyzed for 63 purgeable organic compounds during 1992-95. The samples were collected and analyzed as a continuation of water-quality studies initiated in 1987 and conducted by the U.S. Geological Survey in cooperation with the U.S. Department of Energy. Water from 53 of the wells comes from the Snake River Plain aquifer. The remaining well was completed in a perched water zone above the Snake River Plain aquifer. Water samples from 23 wells completed in the Snake River Plain aquifer contained detectable concentrations of at least 1 of 14 selected purgeable organic compounds. The most commonly detected compounds were carbon tetrachloride, chloroform, 1,1,1-trichloroethane, and trichloroethylene. The concentrations of most compounds were less than the laboratory reporting levels. The water sample from the perched zone contained detectable concentrations of 18 purgeable organic compounds. This report summarizes concentrations of purgeable organic compounds concentrations of purgeable organic compounds detected in water samples collected during 1992-95. A total of 270 water samples were collected from 54 wells and 6 surface-water sites.

Greene, M.R.; Tucker, B.J.

1998-06-01

289

Petrophysical characteristics of basalt in the vadose zone, Idaho National Engineering Laboratory, Eastern Snake River Plain, Idaho  

International Nuclear Information System (INIS)

We have used a core characterization system to measure bulk densities, porosities, and permeabilities of basalt lavas from the vadose zone at the Idaho National Engineering Laboratory (INEL). At the INEL, basalt lava flows with intercalated alluvial, aeolian, and lacustrine sediments extend to depths of one kilometer or more. Individual lava flows are generally less than 15 meters thick and commonly have vesicular tops and bottoms with massive basalt in their interiors. Petrophysical characterization is essential to an understanding of fluid movement in the vadose zone and in the saturated zone. Many hundreds of closely spaced permeability/porosity/bulk density measurements have defined the variability of these parameters within and between individual basalt flows. Based on geological logging and porosity/permeability measurements made on many hundred feet of core, we feel that a rather sophisticated and rigorous logging program is necessary to characterize these complex and highly variable basaltic flow units. This paper endeavors to provide a petrophysical/geological conceptual model of the Snake River Plain basalts from the vadose zone under the Radioactive Waste Management Complex area at the INEL. We hope that this model will aid in subsequent geotechnical logging in this portion of the Eastern Snake River Plain. 8 refs., 14 figs., 2 tabs

290

Lagoon Seepage Testing Report for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory, Butte County, Idaho  

Energy Technology Data Exchange (ETDEWEB)

J-U-B ENGINEERS, Inc. (J-U-B) performed seepage tests on the CFA Wastewater Lagoons 1, 2, and 3 between August 26th and September 22nd, 2014. The lagoons were tested to satisfy the Idaho Department of Environmental Quality (DEQ) Rules (IDAPA 58.01.16) that require all lagoons be tested at a frequency of every 10 years and the Compliance Activity CA-141-03 in the DEQ Wastewater Reuse Permit for the CFA Sewage Treatment Plant (LA-000141-03). The lagoons were tested to determine if the average seepage rates are less than 0.25 in/day, the maximum seepage rate allowed for lagoons built prior to April 15, 2007. The average seepage rates were estimated for each lagoon and are given in Table-ES1. The average seepage rates for Lagoons 1 and 2 are less than the allowable seepage rate of 0.25 in/day. Lagoon 1 and 2 passed the seepage test and will not have to be tested again until the year 20241. However, the average seepage rate for Lagoon 3 appears to exceed the allowable seepage rate of 0.25 in/day which means the potential source for the excessive leakage should be investigated further.

Bridger Morrison

2014-09-01

291

Evaluation of field sampling and preservation methods for strontium-90 in ground water at the Idaho National Engineering Laboratory, Idaho  

Science.gov (United States)

Water from four wells completed in the Snake River Plain aquifer was sampled as part of the U.S. Geological Survey 's quality assurance program to evaluate the effect of filtration and preservation methods on strontium-90 concentrations in groundwater at the Idaho National Engineering Laboratory. Water from each well was filtered through either a 0.45-micrometer membrane or a 0.1-micrometer membrane filter; unfiltered samples also were collected. Two sets of filtered and two sets of unfiltered samples was preserved in the field with reagent-grade hydrochloric acid and the other set of samples was not acidified. For water from wells with strontium-90 concentrations at or above the reporting level, 94% or more of the strontium-90 is in true solution or in colloidal particles smaller than 0.1 micrometer. These results suggest that within-laboratory reproducibility for strontium-90 in groundwater at the INEL is not significantly affected by changes in filtration and preservation methods used for sample collections. (USGS)

Cecil, L.D.; Knobel, L.L.; Wegner, S.J.; Moore, L.L.

1989-01-01

292

Evaluation of a predictive ground-water solute-transport model at the Idaho National Engineering Laboratory, Idaho  

Science.gov (United States)

Aqueous chemical and radioactive wastes discharged to shallow ponds and to shallow or deep wells on the Idaho National Engineering Laboratory (INEL) since 1952 have affected the quality of the ground water in the underlying Snake River Plain aquifer. The aqueous wastes have created large and laterally dispersed concentration plumes within the aquifer. The waste plumes with the largest areal distribution are those of chloride , tritium, and with high specific conductance values. The data from eight wells drilled near the southern INEL boundary during the summer of 1980 were used to evaluate the accuracy of a predictive modeling study completed in 1973, and to simulate 1980 positions of chloride and tritium plumes. Data interpretation from the drilling program indicates that the hydrogeologic characteristics of the subsurface rocks have marked effects on the regional ground-water flow regimen and, therefore, the movement of aqueous wastes. As expected, the waste plumes projected by the computer model for 1980, extended somewhat further downgradient than indicated by well data due to conservative worst-case assumptions in the model input and inacurate approximations of subsequent waste discharge and aquifer recharge conditions. (USGS)

Lewis, Barney D.; Goldstein, Flora J.

1982-01-01

293

Measurement of unsaturated hydraulic properties and evaluation of property-transfer models for deep sedimentary interbeds, Idaho National Laboratory, Idaho  

Science.gov (United States)

Operations at the Idaho National Laboratory (INL) have the potential to contaminate the underlying Eastern Snake River Plain (ESRP) aquifer. Methods to quantitatively characterize unsaturated flow and recharge to the ESRP aquifer are needed to inform water-resources management decisions at INL. In particular, hydraulic properties are needed to parameterize distributed hydrologic models of unsaturated flow and transport at INL, but these properties are often difficult and costly to obtain for large areas. The unsaturated zone overlying the ESRP aquifer consists of alternating sequences of thick fractured volcanic rocks that can rapidly transmit water flow and thinner sedimentary interbeds that transmit water much more slowly. Consequently, the sedimentary interbeds are of considerable interest because they primarily restrict the vertical movement of water through the unsaturated zone. Previous efforts by the U.S. Geological Survey (USGS) have included extensive laboratory characterization of the sedimentary interbeds and regression analyses to develop property-transfer models, which relate readily available physical properties of the sedimentary interbeds (bulk density, median particle diameter, and uniformity coefficient) to water retention and unsaturated hydraulic conductivity curves.

Perkins, Kimberlie; Johnson, Brittany D.; Mirus, Benjamin B.

2014-01-01

294

Morphological and Molecular Identification of Globodera pallida Associated with Potato in Idaho.  

Science.gov (United States)

The identity of a newly discovered population of pale potato cyst nematode Globodera pallida associated with potato in eastern Idaho was established by morphological and molecular methods. Morphometrics of cysts and second-stage juveniles were generally within the expected ranges for G. pallida with some variations noted. The Idaho population and paratype material from Epworth, Lincolnshire, England, both showed variations in tail shape, with bluntly rounded to finely pointed tail termini. Compared to literature values for the paratypes, second-stage juveniles of the Idaho population had a somewhat shorter mean body length, and cysts had a slightly higher mean distance from the anus to the nearest edge of the fenestra. PCR-RFLP of the rDNA ITS region, sequence-specific multiplex PCR and DNA sequence comparisons all confirmed the identity of the Idaho population as G. pallida. The ITS rDNA sequence of the Idaho isolate was identical to those from York, England, and the Netherlands. Species-specific primers that can positively identify the tobacco cyst nematode Globodera tabacum were also developed, providing a new assay for distinguishing this species from G. pallida and the golden potato cyst nematode Globodera rostochiensis. PMID:19259482

Skantar, A M; Handoo, Z A; Carta, L K; Chitwood, D J

2007-06-01

295

Environmental assessment: Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory  

International Nuclear Information System (INIS)

The U.S. Department of Energy (DOE) proposes to close the Waste Calcining Facility (WCF). The WCF is a surplus DOE facility located at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL). Six facility components in the WCF have been identified as Resource Conservation and Recovery Ace (RCRA)-units in the INEL RCRA Part A application. The WCF is an interim status facility. Consequently, the proposed WCF closure must comply with Idaho Rules and Standards for Hazardous Waste contained in the Idaho Administrative Procedures Act (IDAPA) Section 16.01.05. These state regulations, in addition to prescribing other requirements, incorporate by reference the federal regulations, found at 40 CFR Part 265, that prescribe the requirements for facilities granted interim status pursuant to the RCRA. The purpose of the proposed action is to reduce the risk of radioactive exposure and release of hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce potential risks to human health and the environment, and to comply with the Idaho Hazardous Waste Management Act (HWMA) requirements

296

Environmental assessment: Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory  

Energy Technology Data Exchange (ETDEWEB)

The U.S. Department of Energy (DOE) proposes to close the Waste Calcining Facility (WCF). The WCF is a surplus DOE facility located at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL). Six facility components in the WCF have been identified as Resource Conservation and Recovery Ace (RCRA)-units in the INEL RCRA Part A application. The WCF is an interim status facility. Consequently, the proposed WCF closure must comply with Idaho Rules and Standards for Hazardous Waste contained in the Idaho Administrative Procedures Act (IDAPA) Section 16.01.05. These state regulations, in addition to prescribing other requirements, incorporate by reference the federal regulations, found at 40 CFR Part 265, that prescribe the requirements for facilities granted interim status pursuant to the RCRA. The purpose of the proposed action is to reduce the risk of radioactive exposure and release of hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce potential risks to human health and the environment, and to comply with the Idaho Hazardous Waste Management Act (HWMA) requirements.

NONE

1996-07-01

297

COEUR D'ALENE AND PRIEST LAKES, IDAHO. A COMPARISON OF THE MACROINVERTEBRATE COMMUNITIES OF A TRACE ELEMENTS ENRICHED LAKE AND AN UNCONTAMINATED LAKE IN NORTH IDAHO: THE EFFECTS OF MINE WASTE CONTAM  

Science.gov (United States)

Macroinvertebrates were sampled at 4 depths along several transects in Coeur dAlene Lake, Idaho (17010303), an oligotrophic lake enriched by mine waste trace elements and Priest Lake, Idaho (17010304), an unimpacted oligotrophic lake of similar size, flow, and parent geology. Tax...

298

Post-Irradiation Capabilities at the Idaho National Laboratory  

International Nuclear Information System (INIS)

The US Department of Energy (DOE), Office of Nuclear Energy (NE) oversees the efforts to ensure nuclear energy remains a viable option for the United States of America. A significant portion of these efforts are related to post-irradiation examinations (PIE) of highly activated fuel and materials that are subject to the extreme environment inside a nuclear reactor. As the lead national laboratory for nuclear energy, Idaho National Laboratory (INL) has a rich history, experience, workforce, and capabilities for performing PIE. However, new advances in tools and techniques for performing PIE now enable understanding the performance of fuels and materials at the nano-scale and smaller level. Examination at this level is critical since this is the scale at which irradiation damage occurs. The INL is on course to adopt advanced tools and techniques to develop a comprehensive nuclear fuels and materials characterization capability that is unique in the world. Because INL has extensive PIE capabilities currently in place, a strong foundation exist to build upon as new capabilities are implemented and workload increases. In the recent past, INL has adopted significant capability to perform advanced PIE characterization. Looking forward, INL is planning for the addition of two facilities that will be built to meet the stringent demands of advanced tools and techniques for highly activated fuels and materials characterization. Dubbed the Irradiated Materials Characterization Lae Irradiated Materials Characterization Laboratory (IMCL) and advanced post- irradiation examination capability, these facilities are next generation PIE laboratories designed to perform the PIE work that cannot be performed in current DOE facilities. In addition to physical capabilities, INL has recently added two significant contributors to the Advanced Test Reactor-National Scientific User Facility (ATR-NSUF), Oak Ridge National Laboratory and University of California Berkeley. (author)

299

Post Irradiation Capabilities at the Idaho National Laboratory  

Energy Technology Data Exchange (ETDEWEB)

The U.S. Department of Energy (DOE), Office of Nuclear Energy (NE) oversees the efforts to ensure nuclear energy remains a viable option for the United States. A significant portion of these efforts are related to post-irradiation examinations (PIE) of highly activated fuel and materials that are subject to the extreme environment inside a nuclear reactor. As the lead national laboratory, Idaho National Laboratory (INL) has a rich history, experience, workforce and capabilities for performing PIE. However, new advances in tools and techniques for performing PIE now enable understanding the performance of fuels and materials at the nano-scale and smaller level. Examination at this level is critical since this is the scale at which irradiation damage occurs. The INL is on course to adopt these advanced tools and techniques to develop a comprehensive nuclear fuels and materials characterization capability that is unique in the world. Because INL has extensive PIE capabilities currently in place, a strong foundation exist to build upon as new capabilities are implemented and work load increases. In the recent past, INL has adopted significant capability to perform advanced PIE characterization. Looking forward, INL is planning for the addition of two facilities that will be built to meet the stringent demands of advanced tools and techniques for highly activated fuels and materials characterization. Dubbed the Irradiated Materials Characterization Laboratory (IMCL) and Advanced Post Irradiation Examination Capability , these facilities are next generation PIE laboratories designed to perform the work of PIE that cannot be performed in current DOE facilities. In addition to physical capabilities, INL has recently added two significant contributors to the Advanced Test Reactor-National Scientific User Facility (ATR-NSUF), Oak Ridge National Laboratory and University of California, Berkeley.

J. L. Schulthess; K. E. Rosenberg

2011-05-01

300

Low level waste management at the Idaho National Engineering Laboratory  

International Nuclear Information System (INIS)

EG and G Idaho, Inc. is the lead contractor for the Department of Energy (DOE) National Low-Level Waste Management Program, established in 1979. In this role, the company uses its waste management expertise to provide management and technical direction to support the disposal of low-level waste (LLW) in a manner that protects the environment and the public health and safety while improving efficiency and cost-effectiveness. Program activities are divided into two areas: defense-related and commercial nuclear reactor programs. The defense program was established to develop technology improvements, provide technology transfer, and to ensure a more efficient and uniform system for low-level waste disposal. To achieve the program's goals, it is necessary to improve, document, and, where necessary, develop new methods for waste generation reduction, waste treatment, shallow-land burial, greater confinement disposal, and measures to correct existing site deficiencies. The commercial low-level waste management program provides support to assist the states in developing an effective national low-level waste management system and provides technical assistance for siting of regional commercial LLW disposal sites. The program provides technical and informational support to state officials, low-level waste generators, managers, and facility operators to resolve low-level waste problems and to improve the systems' overall effectiveness. Procedures are developed and documented and made available to commercial users through this program. Additional work is being conducted to demonstrate the stabilization and closure of low-level radioactive waste disposal sites and develop the criteria and procedures for acceptance of such sites by the Department of Energy after closure has been completed

301

Low level waste management at the Idaho National Engineering Laboratory  

International Nuclear Information System (INIS)

EG and G Idaho, Inc. is the lead contractor for the Department of Energy (DOE) National Low Level Waste Management Program, established in 1979. In this role, the company uses its waste management expertise to provide management and technical direction to support the disposal of low-level waste (LLW) in a manner that protects the environment and the public health and safety while improving efficiency and cost-effectiveness. Program activities are divided into two areas: defense-related and commercial nuclear reactor programs. The defense program was established to develop technology improvements, provide technology transfer, and to ensure a more efficient and uniform system for low level waste disposal. To achieve the program's goals, it is necessary to improve, document, and, where necessary, develop new methods for waste generation reduction, waste treatment, shallow-land burial, greater confinement disposal, and measures to correct existing site deficiencies. The commercial low level waste management program provides support to assist the states in developing an effective national low level waste management system and provides technical assistance for siting of regional commercial LLW disposal sites. The program provides technical and informational support to state officials, low level waste generators, managers, and facility operators to resolve low level waste problems and to improve the systems' overall effectiveness. Procedures are developed and documented and ocedures are developed and documented and made available to commercial users through this program. Additional work is being conducted to demonstrate the stabilization and closure of low level radioactive waste disposal sites and develop the criteria and procedures for acceptance of such sites by the Department of Energy after closure has been completed. 7 refs., 6 figs., 1 tab

302

Idaho National Engineering Laboratory High-Level Waste Roadmap  

International Nuclear Information System (INIS)

The Idaho National Engineering Laboratory (INEL) High-Level Waste (HLW) Roadmap takes a strategic look at the entire HLW life-cycle starting with generation, through interim storage, treatment and processing, transportation, and on to final disposal. The roadmap is an issue-based planning approach that compares ''where we are now'' to ''where we want and need to be.'' The INEL has been effectively managing HLW for the last 30 years. Calcining operations are continuing to turn liquid HLW into a more manageable form. Although this document recognizes problems concerning HLW at the INEL, there is no imminent risk to the public or environment. By analyzing the INEL current business operations, pertinent laws and regulations, and committed milestones, the INEL HLW Roadmap has identified eight key issues existing at the INEL that must be resolved in order to reach long-term objectives. These issues are as follows: A. The US Department of Energy (DOE) needs a consistent policy for HLW generation, handling, treatment, storage, and disposal. B. The capability for final disposal of HLW does not exist. C. Adequate processes have not been developed or implemented for immobilization and disposal of INEL HLW. D. HLW storage at the INEL is not adequate in terms of capacity and regulatory requirements. E. Waste streams are generated with limited consideration for waste minimization. F. HLW is not adequately characterized for disposal nor, in some cases, for storage. G. Research and development of all process options for INEL HLW treatment and disposal are not being adequately pursued due to resource limitations. H. HLW transportation methods are not selected or implemented. A root-cause analysis uncovered the underlying causes of each of these issues

303

Idaho National Engineering Laboratory decontamination and decommissioning robotics development program  

International Nuclear Information System (INIS)

As part of the Idaho National Engineering Laboratory (INEL) Robotics Technology Development Program (RTDP) Decontamination ampersand Decommissioning (D ampersand D) robotics program, a task was designed to integrate the plasma arc cutting technology being developed under the Waste Facility Operations (WFO) robotics program into D ampersand D cutting applications. The plasma arc cutting technology is based upon the use of a high energy plasma torch to cut metallic objects. Traditionally, D ampersand D workers removing equipment and processes from a facility have used plasma arc cutting to accomplish this task. The worker is required to don a protective suit to shield from the high electromagnetic energy released from the cutting operation. Additionally, the worker is required to don protective clothing to shield against the radioactive materials and contamination. This protective clothing can become restrictive and cumbersome to work in. Because some of the work areas contain high levels of radiation, the worker is not allowed to dwell in the environment for sustained periods of time. To help alleviate some of the burdens required to accomplish this task, reduce or eliminate the safety hazardous to the worker, and reduce the overall cost of remediation, a program was established though the Office of Technology Development (OTD) to design and develop a robotic system capable of performing cutting operations using a plasma arc torch. Several D ampersand D tasks were identified having potential for use of the plasma arc cutting technology. The tasks listed below were chosen to represent common D ampersand D type activities where the plasma arc cutting technology can be applied

304

Idaho Chemical Processing Plant's Environmental Monitoring Program Plan. Revision 1  

International Nuclear Information System (INIS)

This document describes in one location the environmental monitoring programs as established by the Environmental Engineering (EE) subsection at the Idaho Chemical Processing Plant (ICPP). The EE subsection is charged with developing a total ICPP environmental program, including development and maintenance programs for all environmental monitoring. Environmental monitoring programs have been established to monitor gaseous, liquid, and solid waste discharges. In the future, ground water and surface water run-off will also be monitored. The time periods covered to accomplish these goals include both near-term (CY-1986 to CY-1988) and long-term (CY-1989 to CY-1992). The ICPP program is based first on management systems that have developed over the more than thirty years that the ICPP has operated. Over this period of time, a management philosophy and system have evolved that provide for the review of projects for environmental impacts during the design phase and continued follow-up review before operation. Waste management systems have been developed that assure that any waste stream is sampled and analyzed before being released to the environment. Off gases with the potential for contamination are cleansed by scrubbing and/or filtration prior to release. Liquids are segregated according to their chemical and radioactive composition. Liquid wastes are divided into two streams by an evaporation process: a stream for release to the environment and a concentrated stream that is converted to calcine. The stream released to the environment is discharged to a percolation pond where it infiltrates into the ground. Ordinary solid waste (non-radioactive) is disposed on site (INEL) in a sanitary landfill, and radioactive solid waste is sent to an INEL disposal area where it is compacted and buried. Hazardous wastes are shipped off site to licensed disposal facilities

305

Radiation exposure at the Idaho Chemical Processing Plant  

International Nuclear Information System (INIS)

The Idaho Chemical Processing Plant (ICPP) is one of the few facilities which reprocess nuclear fuel and solidify liquid wastes. This paper summarizes the radiation exposure experience, dose trends, average doses received by workers, work groups receiving the highest doses, and activities which routinely give the highest doses. Because ICPP is a direct-maintenance facility, entry is required into process cells for decontamination and repair of equipment by ''hands-on'' maintenance. This type of operation generally results in higher personnel dose than does a remote-maintenance plant. New buildings and associated processes at ICPP are being designed and built to provide remote-maintenance capabilities in those areas and for equipment known from experience to require high maintenance. The work groups receiving the highest external doses are the maintenance, production and health physics personnel. Individual doses are kept as low as practicable by using pre-job planning and innovative techniques. An administrative guideline of 3 rem/year has been established. While penetrating doses are limiting on an annual basis, the non-penetrating doses are limiting on many jobs. The high non-penetrating fields from unshielded fission products occasionally encountered cause severe dosimetry problems. Internal doses are normally below a few per cent of the limit; however, several workers have received internal doses approaching 50% of the limit. The critical organ is often the lung, it. The critical organ is often the lung, from the inhalation of insoluble particulate activity. Dose assessments are made from in vivo counting whenever possible. Bioassay samples are routinely collected to provide complete internal dosimetry information. Particularly when alpha and beta emitters are encountered, faecal and urine samples are collected and analysed to provide data necessary to evaluate lung doses

306

Late Oligocene OIB-like lavas in northern Idaho  

Science.gov (United States)

The 26.3 to 25.3 Ma Potlatch volcanics in northern Idaho (Kuffman et al., 2006) consist of a suite of basalts, hawaiites, mugearites, benmoreites, trachytes and nepheline trachytes. The volcanic field was erupted on North American cratonic basement well to the northeast of the regional crustal suture with Phanerozoic terranes accreted during the Mesozoic, and predates Columbia River flood basalt activity in the area by 9 million years. The most primitive Potlatch lavas are porphyritic olivine basalts with 6 percent MgO and strongly OIB-like chemical affinities (La/Nb = 0.69 - 0.76, Th/Ta = 0.92 to 1.08, Pb/Ce = 0.029 to 0.033, 87Sr/86Sr = 0.70367 to 0.70476, 206Pb/204Pb = 19.254 to 19.504). Similarly, intermediate and felsic lavas and pyroclastics closely resemble differentiated members of typical sodic ocean island suites, but have additionally been affected by AFC involving small amounts of regional continental crust, which has acted to increase 87Sr/86Sr up to 0.70516. The Potlatch volcanics are geochemically unlike other regional Cenozoic volcanic suites including Eocene Challis rocks, basalts and rhyolites of the John Day Formation and other volcanic fields around the Blue Mountains to the south and southwest, and the later Columbia River basalts. Their occurrence represents a modification to the southward retreat pattern of early to mid-Cenozoic magmatism in northwestern North America. Kauffman, Bush, and Lewis (2006) ID Geol. Surv. Tech. Rep. 06-7, 11 pp.

Stadnik, S.; Wolff, J. A.; Hart, G. L.

2008-12-01

307

Post Irradiation Capabilities at the Idaho National Laboratory  

International Nuclear Information System (INIS)

The U.S. Department of Energy (DOE), Office of Nuclear Energy (NE) oversees the efforts to ensure nuclear energy remains a viable option for the United States. A significant portion of these efforts are related to post-irradiation examinations (PIE) of highly activated fuel and materials that are subject to the extreme environment inside a nuclear reactor. As the lead national laboratory, Idaho National Laboratory (INL) has a rich history, experience, workforce and capabilities for performing PIE. However, new advances in tools and techniques for performing PIE now enable understanding the performance of fuels and materials at the nano-scale and smaller level. Examination at this level is critical since this is the scale at which irradiation damage occurs. The INL is on course to adopt these advanced tools and techniques to develop a comprehensive nuclear fuels and materials characterization capability that is unique in the world. Because INL has extensive PIE capabilities currently in place, a strong foundation exist to build upon as new capabilities are implemented and work load increases. In the recent past, INL has adopted significant capability to perform advanced PIE characterization. Looking forward, INL is planning for the addition of two facilities that will be built to meet the stringent demands of advanced tools and techniques for highly activated fuels and materials characterization. Dubbed the Irradiated Materials Characterization Laboratory (IMCL) and Ad Characterization Laboratory (IMCL) and Advanced Post Irradiation Examination Capability, these facilities are next generation PIE laboratories designed to perform the work of PIE that cannot be performed in current DOE facilities. In addition to physical capabilities, INL has recently added two significant contributors to the Advanced Test Reactor-National Scientific User Facility (ATR-NSUF), Oak Ridge National Laboratory and University of California, Berkeley.

308

The Idaho National Engineering and Environmental Laboratory Source Water Assessment  

Energy Technology Data Exchange (ETDEWEB)

The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 square miles and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL's drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey's Hydrological Unit scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency's Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a this vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL's Source Water Assessment. Of the INEEL's 12 public water systems, three systems rated as low susceptibility (EBR-1, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will protect the INEEL's public water systems yet not too conservative to inhibit the INEEL from carrying out its missions.

Sehlke, G.

2003-03-17

309

An Historiographical Analysis of the Impact of the 1960s on Institutions of Higher Education in Metropolitan Boise, Idaho  

Science.gov (United States)

This dissertation traces the history of three of the colleges in Idaho's Treasure Valley during the 1960s: Boise State University (BSU), the College of Idaho (C of I), and Northwest Nazarene University (NNU). The time period examined in the study begins with the Soviet launch of Sputnik in late 1957 and ends with the deaths of students during…

Andersen, R. Scott

2010-01-01

310

2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory and Associated Documentation  

Energy Technology Data Exchange (ETDEWEB)

The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

Meachum, Teresa Ray; Michael G. Lewis

2003-02-01

311

Idaho K-12 & School Choice Survey: What Do Voters Say about K-12 Education. Polling Paper No. 5  

Science.gov (United States)

The "Idaho K-12 & School Choice Survey" project, commissioned by The Friedman Foundation for Educational Choice and conducted by Braun Research Incorporated (BRI), measures Idaho registered voters' familiarity and views on a range of K-12 education issues and school choice reforms. We report response "levels" and "differences" (we use the term…

DiPerna, Paul

2012-01-01

312

Stratigraphy of the unsaturated zone and uppermost part of the Snake River Plain Aquifer at the Idaho Chemical Processing Plant and Test Reactors Area, Idaho National Engineering Laboratory, Idaho  

International Nuclear Information System (INIS)

A complex sequence of basalt flows and sedimentary interbeds underlies the Idaho Chemical Processing Plant and Test Reactors Area at the Idaho National Engineering Laboratory in eastern Idaho. Wells drilled to a depth of 700 feet penetrate a sequence of 23 basalt-flow groups and 15 to 20 sedimentary interbeds that range in age from 200,000 to 640,000 years. The 23 flow groups consist of about 40 separate basalt flows and flow units. Each flow group is made up of one to three petrographically similar basalt flows that erupted from related source areas during periods of less than 200 years. Sedimentary interbeds consist of fluvial, lacustrine, and eolian deposits of clay, silt, sand, and gravel that accumulated during periods of volcanic inactivity ranging from thousands to hundreds of thousands of years. Multiple flow groups and sedimentary interbeds of similar age and source form seven composite stratigraphic units with distinct upper and lower contacts. Composite units older than 350,000 years were tilted, folded, and fractured by differential subsidence and uplift. Basalt and sediment of this sequence are unsaturated to a depth that ranges from 430 to 480 feet below land surface. Basalt and sediment in the lower part of the sequence are saturated and make up the uppermost part of the Snake River Plain aquifer. Stratigraphic relations in the lowermost part of the aquifer below a depth of 700 feet are uncertain. 23 refs., 22 figs., 1 tabigs., 1 tab

313

Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98  

Energy Technology Data Exchange (ETDEWEB)

The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

Deborah L. Layton; Kimberly Frerichs

2010-07-01

314

2010 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 19)  

Energy Technology Data Exchange (ETDEWEB)

This 2010 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 19) provides water use information (monthly annual average and total annual volume) for production and potable water wells at the Idaho National Laboratory for Calendar Year 2010. It also provides detailed information for new, modified, and abandoned (decommissioned) wells and holes. Five new wells were drilled and completed in the latter part of Calendar Years 2009 and 2010. Two wells were modified in Calendar Year 2010 and 66 wells and boreholes reported as abandoned (decommissioned). Detailed construction information for the new and modified wells, along with abandonment information for older wells, is provided. Location maps are provided if survey information was available. This report is being submitted in accordance with the Water Rights Agreement between the State of Idaho and the United States, for the United States Department of Energy (dated 1990) and the subsequent Partial Decree for Water Right 34-10901 issued June 20, 2003.

Mike Lewis

2011-06-01

315

2011 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 20)  

Energy Technology Data Exchange (ETDEWEB)

This 2011 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 20) provides water use information (monthly annual average and total annual volume) for production and potable water wells at the Idaho National Laboratory for Calendar Year 2011. It also provides detailed information for new, modified, and abandoned (decommissioned) wells and holes. One new well was drilled and completed and one well was modified in Calendar Year 2011. A total of 14 wells and boreholes were reported as decommissioned. Detailed construction information for the new and modified wells is provided. Details are provided for the wells and boreholes that have been decommissioned, and if available, construction diagrams. Location maps are included, provided survey information was available. This report is being submitted in accordance with the Water Rights Agreement between the State of Idaho and the United States, for the United States Department of Energy (dated 1990) and the subsequent Partial Decree for Water Right 34-10901 issued June 20, 2003.

Renee Bowser

2012-06-01

316

Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98  

Energy Technology Data Exchange (ETDEWEB)

The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

Deborah L. Layton; Kimberly Frerichs

2011-12-01

317

Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98  

International Nuclear Information System (INIS)

The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

318

Reference site selection report for the advanced liquid metal reactor at the Idaho National Engineering Laboratory  

Energy Technology Data Exchange (ETDEWEB)

This Reference Site Selection Report was prepared by EG G, Idaho Inc., for General Electric (GE) to provide information for use by the Department of Energy (DOE) in selecting a Safety Test Site for an Advanced Liquid Metal Reactor. Similar Evaluation studies are planned to be conducted at other potential DOE sites. The Power Reactor Innovative Small Module (PRISM) Concept was developed for ALMR by GE. A ALMR Safety Test is planned to be performed on a DOE site to demonstrate features and meet Nuclear Regulatory Commission Requirements. This study considered possible locations at the Idaho National Engineering Laboratory that met the ALMR Prototype Site Selection Methodology and Criteria. Four sites were identified, after further evaluation one site was eliminated. Each of the remaining three sites satisfied the criteria and was graded. The results were relatively close. Thus concluding that the Idaho National Engineering Laboratory is a suitable location for an Advanced Liquid Metal Reactor Safety Test. 23 refs., 13 figs., 9 tabs.

Sivill, R.L.

1990-03-01

319

2013 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 22)  

Energy Technology Data Exchange (ETDEWEB)

This 2013 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 22) provides water use information for production and potable water wells at the Idaho National Laboratory for Calendar Year 2013. It also provides detailed information for new, modified, and decommissioned wells and holes. Two new wells were drilled and completed in Calendar Year 2013. No modifications were performed on any wells. Seven wells were decommissioned in Calendar Year 2013. Detailed construction information for the new and decommissioned wells is provided. Location maps are included, provided survey information was available. This report is being submitted in accordance with the Water Rights Agreement between the State of Idaho and the United States, for the United States Department of Energy (dated 1990) and the subsequent Partial Decree for Water Right 34-10901 issued June 20, 2003.

Mike Lewis

2014-06-01

320

Defining landscapes suitable for restoration of grizzly bears (Ursus arctos) in Idaho  

Science.gov (United States)

Informed management of large carnivores depends on the timely and useful presentation of relevant information. We describe an approach to evaluating carnivore habitat that uses pre-existing qualitative and quantitative information on humans and carnivores to generate coarse-scale maps of habitat suitability, habitat productivity, potential reserves, and areas of potential conflict. We use information pertinent to the contemplated reintroduction of grizzly bears Ursus arctos horribilis into central Idaho to demonstrate our approach. The approach uses measures of human numbers, their estimated distribution, road and trail access, and abundance and quality of bear foods to create standardized indices that are analogues of death and birth rates, respectively; the first subtracted from the second indicates habitat suitability (HS). We calibrate HS to sightings of grizzly bears in two ecosystems in northern Idaho and develop an empirical model from these same sightings based on piece-wise treatment of the variables contained in HS. Depending on whether the empirical model or HS is used, we estimate that there is 14 800 km2 of suitable habitat in two blocks or 37 100 km2 in one block in central Idaho, respectively. Both approaches show suitable habitat in the current Evaluation Area and in an area of southeastern Idaho centered on the Palisades Reservoir. Areas of highly productive habitat are concentrated in northern and western Idaho and in the Palisades area. Future conflicts between humans and bears are most likely to occur on the western and northern margins of suitable habitat in central Idaho, rather than to the east, where opposition to reintroduction of grizzly bears is currently strongest.

Merrill, Troy; Mattson, D.J.; Wright, R.G.; Quigley, Howard B.

1999-01-01

321

Iodine-129 in the eastern Snake River Plain aquifer at and near the Idaho National Laboratory, Idaho, 2010-12  

Science.gov (United States)

From 1953 to 1988, approximately 0.941 curies of iodine-129 (129I) were contained in wastewater generated at the Idaho National Laboratory (INL) with almost all of this wastewater discharged at or near the Idaho Nuclear Technology and Engineering Center (INTEC). Most of the wastewater containing 129I was discharged directly into the eastern Snake River Plain (ESRP) aquifer through a deep disposal well until 1984; lesser quantities also were discharged into unlined infiltration ponds or leaked from distribution systems below the INTEC. During 2010–12, the U.S. Geological Survey in cooperation with the U.S. Department of Energy collected groundwater samples for 129I from 62 wells in the ESRP aquifer to track concentration trends and changes for the carcinogenic radionuclide that has a 15.7 million-year half-life. Concentrations of 129I in the aquifer ranged from 0.0000013±0.0000005 to 1.02±0.04 picocuries per liter (pCi/L), and generally decreased in wells near the INTEC, relative to previous sampling events. The average concentration of 129I in groundwater from 15 wells sampled during four different sample periods decreased from 1.15 pCi/L in 1990–91 to 0.173 pCi/L in 2011–12. All but two wells within a 3-mile radius of the INTEC showed decreases in concentration, and all but one sample had concentrations less than the U.S. Environmental Protection Agency maximum contaminant level of 1 pCi/L. These decreases are attributed to the discontinuation of disposal of 129I in wastewater and to dilution and dispersion in the aquifer. The decreases in 129I concentrations, in areas around INTEC where concentrations increased between 2003 and 2007, were attributed to less recharge near INTEC either from less flow in the Big Lost River or from less local snowmelt and anthropogenic sources. Although wells near INTEC sampled in 2011–12 showed decreases in 129I concentrations compared with previously collected data, some wells south and east of the Central Facilities Area, near the site boundary, and south of the INL showed small increases. These slight increases are attributed to variable discharge rates of wastewater that eventually moved to these well locations as a pulse of water from a particular disposal period. Wells sampled for the first time around the Naval Reactors Facility had 129I concentrations slightly greater than background concentrations in the ESRP aquifer. These concentrations are attributed to possible leakage from landfills at the Naval Reactors Facility or seepage from air emission deposits from INTEC, or both. In 2012, the U.S. Geological Survey collected discrete groundwater samples from 25 zones in 11 wells equipped with multilevel monitoring systems to help define the vertical distribution of 129I in the aquifer. Concentrations ranged from 0.000006±0.000004 to 0.082±0.003 pCi/L. Two new wells completed in 2012 showed variability of up to one order of magnitude of concentrations of 129I among various zones. Two other wells showed similar concentrations of 129I in all three zones sampled. Concentrations were well less than the maximum contaminant level in all zones.

Bartholomay, Roy C.

2013-01-01

322

Development of waste minimization and decontamination technologies at the Idaho Chemical Processing Plant  

International Nuclear Information System (INIS)

Emphasis on the minimization of decontamination secondary waste has increased because of restrictions on the use of hazardous chemicals and Idaho Chemical Processing Plant (ICPP) waste handling issues. The Lockheed Idaho Technologies Co. (LITCO) Decontamination Development Subunit has worked to evaluate and introduce new performed testing, evaluations, development and on-site demonstrations for a number of novel decontamination techniques that have not yet previously been used at the ICPP. This report will include information on decontamination techniques that have recently been evaluated by the Decontamination Development Subunit

323

Idaho National Laboratory Quarterly Event Performance Analysis FY 2013 4th Quarter  

Energy Technology Data Exchange (ETDEWEB)

This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS) as prescribed in DOE Order 232.2 “Occurrence Reporting and Processing of Operations Information” requires a quarterly analysis of events, both reportable and not reportable for the previous twelve months. This report is the analysis of occurrence reports and deficiency reports (including not reportable events) identified at the Idaho National Laboratory (INL) during the period of October 2012 through September 2013.

Lisbeth A. Mitchell

2013-11-01

324

Idaho Habitat/Natural Production Monitoring Part I, 1994 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

A total of 333 stream sections were sampled in 1994 to monitor in chinook salmon and steelhead trout parr populations in Idaho. Percent carry capacity and density estimates were summarized by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon. These data were also summarized by cells and subbasins as defined in Idaho Department of Fish and Game`s 1992-1996 Anadromous Fish Management Plan.

Hall-Griswold, Judy A.; Leitzinger, Eric J.; Petrosky, C.E. (Idaho Department of Fish and Game, Boise, ID

1995-11-01

325

Action Memorandum for General Decommissioning Activities under the Idaho Cleanup Project  

Energy Technology Data Exchange (ETDEWEB)

This Action Memorandum documents the selected alternative to perform general decommissioning activities at the Idaho National Laboratory (INL) under the Idaho Cleanup Project (ICP). Preparation of this Action Memorandum has been performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended by the "Superfund Amendments and Reauthorization Act of 1986", and in accordance with the "National Oil and Hazardous Substances Pollution Contingency Plan". An engineering evaluation/cost analysis (EE/CA) was prepared and released for public comment and evaluated alternatives to accomplish the decommissioning of excess buildings and structures whose missions havve been completed.

S. L. Reno

2006-10-26

326

Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1  

Energy Technology Data Exchange (ETDEWEB)

This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, administration facility, weigh scale, and various staging/storage areas. These facilities were designed and constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the Idaho National Laboratory (INL) facility for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams.

Simonds, J.

2007-11-06

327

Long-term land use future scenarios for the Idaho National Engineering Laboratory  

International Nuclear Information System (INIS)

In order to facilitate decision regarding environmental restoration activities at the Idaho National Engineering Laboratory (INEL), the United States Department of Energy, Idaho Operations Office (DOE-ID) conducted analyses to project reasonable future land use scenarios at the INEL for the next 100 years. The methodology for generating these scenarios included: review of existing DOE plans, policy statements, and mission statements pertaining to the INEL; review of surrounding land use characteristics and county developments policies; solicitation of input from local, county, state and federal planners, policy specialists, environmental professionals, and elected officials; and review of environmental and development constraints at the INEL site that could influence future land use

328

Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96  

International Nuclear Information System (INIS)

The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management

329

Radiochemical and chemical constituents in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1996  

International Nuclear Information System (INIS)

The US Geological Survey and the Idaho Department of Water Resources, in cooperation with the US Department of Energy, sampled 19 sites as part of the fourth round of a long-term project to monitor water quality of the Snake river Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radiochemical and chemical constituents. The samples were collected from nine irrigation wells, three domestic wells, two dairy wells, two springs, one commercial well, one stock well, and one observation well. Two quality-assurance samples also were collected and analyzed. Additional sampling at six sites was done to complete the third round of sampling. None of the radiochemical or chemical constituents exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide- and inorganic-constituent concentrations were greater than their respective reporting levels

330

Cost-time management for environmental restoration activities at the Department of Energy's Idaho National Engineering Laboratory, Idaho Chemical Processing Plant  

International Nuclear Information System (INIS)

Cost-time management methods have been developed by Westinghouse to examine business applications from a cost-time perspective. The initial application of cost-time management within Westinghouse was targeted at reducing cycle time in the manufacturing sector. As a result of the tremendous success of reduced cycle time in manufacturing, Westinghouse initiated application of the management technique to Environmental Restoration activities at its Government Owned Contractor Operated facilities. The Westinghouse initiative was proposed in support of the Department of Energy's goals for cost effective Environmental Restoration activities. This paper describes the application of the cost-time method to Environmental Restoration work currently being performed at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE) by Westinghouse Idaho Nuclear Company (WINCO)

331

Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record  

International Nuclear Information System (INIS)

This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns

332

Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record  

Energy Technology Data Exchange (ETDEWEB)

This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns.

NONE

1997-12-31

333

Radiochemical and chemical constituents in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1996  

Energy Technology Data Exchange (ETDEWEB)

The US Geological Survey and the Idaho Department of Water Resources, in cooperation with the US Department of Energy, sampled 19 sites as part of the fourth round of a long-term project to monitor water quality of the Snake river Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radiochemical and chemical constituents. The samples were collected from nine irrigation wells, three domestic wells, two dairy wells, two springs, one commercial well, one stock well, and one observation well. Two quality-assurance samples also were collected and analyzed. Additional sampling at six sites was done to complete the third round of sampling. None of the radiochemical or chemical constituents exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide- and inorganic-constituent concentrations were greater than their respective reporting levels.

Bartholomay, R.C.; Williams, L.M. [Geological Survey, Idaho Falls, ID (United States); Campbell, L.J. [Idaho Dept. of Water Resources, Boise, ID (United States)

1997-06-01

334

Can Mentors Channeling Youthful Minority and Female Students into Optical Sciences be Funded and Fostered by Use of Mc Leod's Patent-pending Naturoptics?  

Science.gov (United States)

We wish to begin the repair of impaired youthful vision, using methods taught by Roger D. Mc Leod, to his adult associates for their own, restricted, personal use. Certain nations could benefit if we are able extend the development of franchise-protected and pending patent-protected methods around the globe. We prefer concentrating our initial efforts among young minority and female students, particularly those involving some indigenous heritage. This approach will be using applied optics/Naturoptics and other applied mathematics/sciences as corrective and financially motivational driving tools. Funding, accessible without time-consuming red tape, could be from money generated by Naturoptics , at a rate, for initially visually-impaired mentors, who will learn the method, free, as they are repaired. Mentored teaching will earn an equivalent of half the usual rate of 95 per individual initial 25-minute session, provided that there are satisfactory non-disclosure agreements. Improvements are guaranteed, on Snellen charts, or other equivalent vision charts, of one line per session, after the beginning visit, or the session is free. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NES07.C2.3

de Sousa, Beatriz; Ferreira, Nadja; Mc Leod, Roger D.

2007-04-01

335

Summaries of the Idaho National Engineering Laboratory Site ecological studies information meeting held at Idaho Falls, July 10--11, 1975  

International Nuclear Information System (INIS)

Brief summaries are presented for 30 papers that discuss the ecology of plants, wild animals, and birds on the Idaho National Engineering Laboratory site. Eleven of the papers report the results of studies on the diffusion of radioactive wastes in the environment and measurements of the content of various radionuclides in the tissues of animals and plants, soil, waste water leaching ponds, and aquifers. Two papers discuss the diffusion of chemical effluents in the environment

336

Breast Cancer Stage, Surgery, and Survival Statistics for Idaho’s National Breast and Cervical Cancer Early Detection Program Population, 2004–2012  

Science.gov (United States)

Introduction The National Breast and Cervical Cancer Early Detection Program (NBCCEDP) provides access to breast and cervical cancer screening for low-income, uninsured, and underinsured women in all states and US territories. In Idaho, a rural state with very low breast and cervical cancer screening rates, this program is called Women’s Health Check (WHC). The program has been operating continuously since 1997 and served 4,719 enrollees in 2013. The objective of this study was to assess whether disparities existed in cause-specific survival (a net survival measure representing survival of a specified cause of death in the absence of other causes of death) between women screened by WHC and outside WHC and to determine how type of surgery or survival varies with stage at diagnosis. Methods WHC data were linked to Idaho’s central cancer registry to compare stage distribution, type of surgery, and cause-specific survival between women with WHC-linked breast cancer and a comparison group of women whose records did not link to the WHC database (nonlinked breast cancer). Results WHC-linked breast cancer was significantly more likely to be diagnosed at a later stage of disease than nonlinked breast cancer. Because of differences in stage distribution between WHC-linked and nonlinked breast cancers, overall age-standardized, cause-specific breast cancer survival proportions diverged over time, with a 5.1 percentage-point deficit in survival among WHC-linked cases at 5 years of follow-up (83.9% vs 89.0%). Differences in type of surgery and cause-specific survival were attenuated when controlling for stage. Conclusion This study suggests that disparities may exist for Idaho WHC enrollees in the timely diagnosis of breast cancer. To our knowledge, this is the first study to publish comparisons of cause-specific breast cancer survival between NBCCEDP-linked and nonlinked cases. PMID:25789497

Graff, Robert; Moran, Patti; Cariou, Charlene; Bordeaux, Susan

2015-01-01

337

High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Environmental Assessment  

Energy Technology Data Exchange (ETDEWEB)

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE`s instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department`s obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act.

1993-06-01

338

Heavy element radionuclides (Pu, Np, U) and 137Cs in soils collected from the Idaho National Engineering and Environmental Laboratory and other sites in Idaho, Montana, and Wyoming  

International Nuclear Information System (INIS)

The isotopic composition of Pu in soils on and near the Idaho National Engineering and Environmental Laboratory (INEEL) has been determined in order to apportion the sources of the Pu into those derived from stratospheric fallout, regional fallout from the Nevada Test Site (NTS), and facilities on the INEEL site. Soils collected offsite in Idaho, Montana, and Wyoming were collected to further characterize NTS fallout in the region. In addition, measurements of 237Np and 137Cs were used to further identify the source of the Pu from airborne emissions at the Idaho Chemical Processing Plant (ICPP) or fugitive releases from the Subsurface Disposal Area (SDA) in the Radioactive Waste Management Complex (RWMC). There is convincing evidence from this study that 241Am, in excess of that expected from weapons-grade Pu, constituted a part of the buried waste at the SDA that has subsequently been released to the environment. Measurements of 236U in waters from the Snake River Plain aquifer and a soil core near the ICPP suggest that this radionuclide may be a unique interrogator of airborne releases from the ICPP. Neptunium-237 and 238Pu activities in INEEL soils suggest that airborne releases of Pu from the ICPP, over its operating history, may have recently been overestimated

339

Measurement of Sedimentary Interbed Hydraulic Properties and Their Hydrologic Influence near the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory  

Science.gov (United States)

Disposal of wastewater to unlined infiltration ponds near the Idaho Nuclear Technology and Engineering Center (INTEC), formerly known as the Idaho Chemical Processing Plant, at the Idaho National Engineering and Environmental Laboratory (INEEL) has resulted in the formation of perched water bodies in the unsaturated zone (Cecil and others, 1991). The unsaturated zone at INEEL comprises numerous basalt flows interbedded with thinner layers of coarse- to fine-grained sediments and perched ground-water zones exist at various depths associated with massive basalts, basalt-flow contacts, sedimentary interbeds, and sediment-basalt contacts. Perched ground water is believed to result from large infiltration events such as seasonal flow in the Big Lost River and wastewater discharge to infiltration ponds. Evidence from a large-scale tracer experiment conducted in 1999 near the Radioactive Waste Management Complex (RWMC), approximately 13 km from the INTEC, indicates that rapid lateral flow of perched water in the unsaturated zone may be an important factor in contaminant transport at the INEEL (Nimmo and others, 2002b). Because sedimentary interbeds, and possibly baked-zone alterations at sediment-basalt contacts (Cecil and other, 1991) play an important role in the generation of perched water it is important to assess the hydraulic properties of these units.

Perkins, Kim S.

2003-01-01

340

Chemical constituents in water from wells in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho, 1991--93  

International Nuclear Information System (INIS)

The US Geological Survey, in response to a request from the US Department of Energy's Pittsburgh Naval Reactors Office, Idaho Branch Office, sampled 14 wells during 1991--93 as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho. Water samples were analyzed for manmade contaminants and naturally occurring constituents. One hundred sixty-one samples were collected from 10 ground-water monitoring wells and 4 production wells. Twenty-one quality-assurance samples also were collected and analyzed; 2 were blank samples and 19 were replicate samples. The two blank samples contained concentrations of six inorganic constituents that were slightly greater than the laboratory reporting levels (the smallest measured concentration of a constituent that can be reported using a given analytical method). Concentrations of other constituents in the blank samples were less than their respective reporting levels. The 19 replicate samples and their respective primary samples generated 614 pairs of analytical results for a variety of chemical and radiochemical constituents. Of the 614 data pairs, 588 were statistically equivalent at the 95% confidence level; about 96% of the analytical results were in agreement. Two pairs of turbidity measurements were not evaluated because of insufficient information and one primary sample collected in January 1992 contained tentatively identified organic compounds when the replicate sample did not

341

Chemical constituents in water from wells in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho, 1990--91  

International Nuclear Information System (INIS)

The US Geological Survey, in response to a request from the US Department of Energy's Pittsburgh Naval Reactors Office, Idaho Branch Office, sampled 12 wells as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho. Water samples were analyzed for manmade contaminants and naturally occurring constituents. Sixty samples were collected from eight groundwater monitoring wells and four production wells. Ten quality-assurance samples also were collected and analyzed. Most of the samples contained concentrations of total sodium and dissolved anions that exceeded reporting levels. The predominant category of nitrogen-bearing compounds was nitrite plus nitrate as nitrogen. Concentrations of total organic carbon ranged from less than 0.1 to 2.2 milligrams per liter. Total phenols in 52 of 69 samples ranged from 1 to 8 micrograms per liter. Extractable acid and base/neutral organic compounds were detected in water from 16 of 69 samples. Concentrations of dissolved gross alpha- and gross beta-particle radioactivity in all samples exceeded the reporting level. Radium-226 concentrations were greater than the reporting level in 63 of 68 samples

342

Chemical constituents in water from wells in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho, 1991--93  

Energy Technology Data Exchange (ETDEWEB)

The US Geological Survey, in response to a request from the US Department of Energy`s Pittsburgh Naval Reactors Office, Idaho Branch Office, sampled 14 wells during 1991--93 as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho. Water samples were analyzed for manmade contaminants and naturally occurring constituents. One hundred sixty-one samples were collected from 10 ground-water monitoring wells and 4 production wells. Twenty-one quality-assurance samples also were collected and analyzed; 2 were blank samples and 19 were replicate samples. The two blank samples contained concentrations of six inorganic constituents that were slightly greater than the laboratory reporting levels (the smallest measured concentration of a constituent that can be reported using a given analytical method). Concentrations of other constituents in the blank samples were less than their respective reporting levels. The 19 replicate samples and their respective primary samples generated 614 pairs of analytical results for a variety of chemical and radiochemical constituents. Of the 614 data pairs, 588 were statistically equivalent at the 95% confidence level; about 96% of the analytical results were in agreement. Two pairs of turbidity measurements were not evaluated because of insufficient information and one primary sample collected in January 1992 contained tentatively identified organic compounds when the replicate sample did not.

Tucker, B.J.; Knobel, L.L.; Bartholomay, R.C.

1995-11-01

343

Lesser-known European wine grape cultivars in southwestern Idaho: cold hardiness, berry maturity and yield  

Science.gov (United States)

The cold tolerance, phenology, yield and fruit maturity of lesser-known red and white-skinned wine grape cultivars (Vitis vinifera, L.) of European origin were compared to that of ‘Merlot’ and ‘Cabernet Sauvignon’ over two growing seasons in southwestern Idaho. Variability among cultivars was detec...

344

Thermal ground water flow systems in the thrust zone in southeastern Idaho  

Energy Technology Data Exchange (ETDEWEB)

The results of a regional study of thermal and non-thermal ground water flow systems in the thrust zone of southern Idaho and western Wyoming are presented. The study involved hydrogeologic and hydrochemical data collection and interpretation. Particular emphasis was placed on analyzing the role that thrust zones play in controlling the movement of thermal and non-thermal fluids.

Ralston, D.R.

1983-05-01

345

76 FR 5585 - Idaho Irrigation District; Notice of Preliminary Permit Application Accepted for Filing and...  

Science.gov (United States)

...the upper 3.2 miles of the existing Idaho Canal, whose embankment heights within that reach would be increased 1-3 feet to...into the Snake River; (5) a gated overflow spillway to pass flood flows around the powerhouse; (6) a...

2011-02-01

346

Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center  

Energy Technology Data Exchange (ETDEWEB)

This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

M. D. Staiger

2007-06-01

347

Idaho habitat/natural production monitoring: Part 1. Annual report 1995  

International Nuclear Information System (INIS)

The Idaho Department of Fish and Game (IDFG) has been monitoring trends in juvenile spring and summer chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, O. mykiss, populations in the Salmon, Clearwater, and lower Snake River drainages for the past 12 years. This work is the result of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. Project 91-73, Idaho Natural Production Monitoring, consists of two subprojects: General Monitoring and Intensive Monitoring. This report updates and summarizes data through 1995 for the General Parr Monitoring (GPM) database to document status and trends of classes of wild and natural chinook salmon and steelhead trout populations. A total of 281 stream sections were sampled in 1995 to monitor trends in spring and summer chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss parr populations in Idaho. Percent carrying capacity and density estimates were summarized for 1985--1995 by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon, and natural spring and summer chinook salmon. The 1995 data were also summarized by subbasins as defined in Idaho Department of Fish and Game's 1992--1996 Anadromous Fish Management Plan

348

Idaho National Engineering Laboratory, Test Area North, Hangar 629 -- Photographs, written historical and descriptive data  

Energy Technology Data Exchange (ETDEWEB)

The report describes the history of the Idaho National Engineering Laboratory`s Hangar 629. The hangar was built to test the possibility of linking jet engine technology with nuclear power. The history of the project is described along with the development and eventual abandonment of the Flight Engine Test hangar. The report contains historical photographs and architectural drawings.

NONE

1994-12-31

349

IMPACTS OF GEOTHERMAL WATERS ON SELECTED STREAMS IN SOUTHERN IDAHO, 1984-1985  

Science.gov (United States)

Four drainage areas were studies in Southern Idaho (17040212, 17040213) to determine the impact of geothermal discharges on area streams. Areas studied included Big Wood River near Ketchum, Mud Creek near Buhl, Salmon Falls Creek near Castleford, and the Snake River from Twin Fa...

350

Idaho National Engineering Laboratory nonradiological waste management information for 1994 and record to date  

International Nuclear Information System (INIS)

This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1994. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System

351

Idaho Habitat Evaluation for Off-Site Mitigation Record : Annual Report 1988.  

Energy Technology Data Exchange (ETDEWEB)

The Idaho Department of Fish and Game (IDFG) has been monitoring and evaluating existing and proposed habitat improvement projects for steelhead and chinook in the Clearwater and Salmon subbasins since 1984. Projects included in the monitoring are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia Rivers. This monitoring project is also funded under the same authority. A mitigation record is being developed to use actual and potential increases in smolt production as the best measures of benefit from a habitat improvement project. This project is divided into two subprojects: general and intensive monitoring. Primary objectives of the general monitoring subproject are to determine natural production increases due to habitat improvement projects in terms of parr production and to determine natural production status and trends in Idaho. The second objective is accomplished by combining parr density from monitoring and evaluation of BPA habitat projects and from other IDFG management and research activities. The primary objective of the intensive monitoring subproject is to determine the relationships between spawning escapement, parr production, and smolt production in two Idaho streams; the upper Salmon River and Crooked River. Results of the intensive monitoring will be used to estimate mitigation benefits in terms of smolt production and to interpret natural production monitoring in Idaho. 30 refs., 19 figs., 34 tabs.

Idaho. Dept. of Fish and Game.

1990-03-01

352

Idaho Habitat/Natural Production Monitoring Part I, 1995 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

The Idaho Department of Fish and Game (IDFG) has been monitoring trends in juvenile spring and summer chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, O. mykiss, populations in the Salmon, Clearwater, and lower Snake River drainages for the past 12 years. This work is the result of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. Project 91-73, Idaho Natural Production Monitoring, consists of two subprojects: General Monitoring and Intensive Monitoring. This report updates and summarizes data through 1995 for the General Parr Monitoring (GPM) database to document status and trends of classes of wild and natural chinook salmon and steelhead trout populations. A total of 281 stream sections were sampled in 1995 to monitor trends in spring and summer chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss parr populations in Idaho. Percent carrying capacity and density estimates were summarized for 1985--1995 by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon, and natural spring and summer chinook salmon. The 1995 data were also summarized by subbasins as defined in Idaho Department of Fish and Game`s 1992--1996 Anadromous Fish Management Plan.

Hall-Griswold, J.A.; Petrosky, C.E. (Idaho Department of Fish and Game, Boise, ID)

1996-12-01

353

New waste calcining facility/Idaho Chemical Processing Plant remote decontamination facility  

International Nuclear Information System (INIS)

The design features, equipment, and facilities incorporated in the decontamination area of the New Waste Calcining Facility being constructed at the Idaho National Engineering Laboratory (INEL) are described. Special emphasis is centered on those items that will provide the capability to remotely transfer, handle, disassemble, and decontaminate equipment and components from the New Waste Calcining Process Area or other INEL facility

354

WATER QUALITY DATA REPORT, LUCKY PEAK RESERVOIR, IDAHO. JUNE 1965 - JULY 1967  

Science.gov (United States)

In a cooperative program with the U.S. Army Corps of Engineers, Walla Walla District, a water quality study was conducted on Lucky Peak Reservoir, Idaho (17050112), from June 1965 to July 1967. Luck Peak Reservoir is located on the Boise River 10 miles east of Boise, ID and just...

355

Long-term management of high-level defense wastes at the Idaho Chemical Processing Plant  

International Nuclear Information System (INIS)

Plans and technology for the long-term management of existing and future high-level defense wastes generated at the Idaho Chemical Processing Plant are discussed. Current high-level waste management is also reviewed to show the continuity between present and future high-level waste management. 1 ref

356

Morphological and Molecular Identification of Globodera pallida associated with potatoes in Idaho  

Science.gov (United States)

Identity of a new population of pale potato cyst nematode Globodera pallida (Stone, 1973) Behrens, 1975 associated with potatoes in eastern Idaho was established by morphological and molecular methods. Morphometrics of cysts and second-stage juveniles were generally within the expected ranges for G....

357

Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report  

International Nuclear Information System (INIS)

This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources

358

BEDROCK CREEK, NEZ PERCE AND CLEARWATER COUNTIES, IDAHO - WATER QUALITY STATUS REPORT, 1985  

Science.gov (United States)

A water quality monitoring study was conducted on Bedrock Creek (17060306), a third order tributary to the Clearwater River in north-central Idaho. Objectives of the study were to assess water quality of the stream and its major tributary; to document the effects of storm runoff...

359

78 FR 53752 - City of Sandpoint, Idaho; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...  

Science.gov (United States)

...runs along Little Sand Creek, in Bonner County, Idaho...FERC Contact: Robert Bell, Phone No. (202) 502-6062, email: robert.bell@ferc.gov. Qualifying...leading to Little Sand Creek, which is to bypass treatment...in the docket number field to access the...

2013-08-30

360

Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory  

Energy Technology Data Exchange (ETDEWEB)

This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

Michael F. Simpson

2012-03-01

361

WATER QUALITY STATUS REPORT, JIM FORD CREEK, CLEARWATER COUNTY IDAHO. 1986  

Science.gov (United States)

Jim Ford Creek (17060306) is located in the southern part of Clearwater County, in north central Idaho. It is the receiving stream for the City of Weippes municipal effluent. A water quality study was conducted during the low flow period of the summer of 1986 to determine the i...

362

Groundwater level and nitrate concentration trends on Mountain Home Air Force Base, southwestern Idaho  

Science.gov (United States)

Mountain Home Air Force Base in southwestern Idaho draws most of its drinking water from the regional aquifer. The base is located within the State of Idaho's Mountain Home Groundwater Management Area and is adjacent to the State's Cinder Cone Butte Critical Groundwater Area. Both areas were established by the Idaho Department of Water Resources in the early 1980s because of declining water levels in the regional aquifer. The base also is listed by the Idaho Department of Environmental Quality as a nitrate priority area. The U.S. Geological Survey, in cooperation with the U.S. Air Force, began monitoring wells on the base in 1985, and currently monitors 25 wells for water levels and 17 wells for water quality, primarily nutrients. This report provides a summary of water-level and nitrate concentration data collected primarily between 2001 and 2013 and examines trends in those data. A Regional Kendall Test was run to combine results from all wells to determine an overall regional trend in water level. Groundwater levels declined at an average rate of about 1.08 feet per year. Nitrate concentration trends show that 3 wells (18 percent) are increasing in nitrate concentration trend, 3 wells (18 percent) show a decreasing nitrate concentration trend, and 11 wells (64 percent) show no nitrate concentration trend. Six wells (35 percent) currently exceed the U.S. Environmental Protection Agency's maximum contaminant limit of 10 milligrams per liter for nitrate (nitrite plus nitrate, measured as nitrogen).

Williams, Marshall L.

2014-01-01

363

Hydrogeochemical and stream sediment reconnaissance basic data for Wallace Quadrangle, Idaho; Montana  

International Nuclear Information System (INIS)

Field and laboratory data are presented for 1005 water samples from the Wallace Quadrangle, Idaho; Montana. The samples were collected by Los Alamos National Laboratry; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

364

ROCK CREEK, POWER COUNTY, IDAHO. WATER QUALITY STATUS REPORT, 1977-1979  

Science.gov (United States)

A survey was conducted on Rock Creek, Power County, Idaho (17040209) to assess the levels of transported sediment, various chemical and physical parameters, and macroinvertebrate fauna during base and peak flow periods. The survey was initiated in October 1977 and sampling was c...

365

Idaho National Engineering Laboratory nonradiological waste management information for 1994 and record to date  

Energy Technology Data Exchange (ETDEWEB)

This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1994. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

French, D.L.; Lisee, D.J.; Taylor, K.A.

1995-08-01

366

Math and science education programs from the Idaho National Engineering Laboratory  

International Nuclear Information System (INIS)

This booklet reviews math and science education programs at the Idaho National Engineering Laboratory (INEL). The programs can be categorized into six groups: teacher programs; science laboratories for students; student programs; education outreach programs; INEL Public Affairs Office; and programs for college faculty and students

367

LIGHTNING CREEK, PACK RIVER, AND SAND CREEK, BONNER COUNTY, IDAHO - WATER QUALITY SUMMARY, 1978  

Science.gov (United States)

In Water Year 1978, water quality studies were conducted on Lightning Creek, Pack River, and Sand Creek in Bonner County, Idaho (17010214, 17010213) to determine the present status of the streams. Water quality in Lightning Creek was generally very high. No violations of standa...

368

Idaho High-Level Waste and Facilities Disposition, Final Environmental Impact Statement  

International Nuclear Information System (INIS)

This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. After considering comments on the Draft EIS (DOE/EIS-0287D), as well as information on available treatment technologies, DOE and the State of Idaho have identified separate preferred alternatives for waste treatment. DOE's preferred alternative for waste treatment is performance based with the focus on placing the wastes in forms suitable for disposal. Technologies available to meet the performance objectives may be chosen from the action alternatives analyzed in this EIS. The State of Idaho's Preferred Alternative for treating mixed transuranic waste/SBW and calcine is vitrification, with or without calcine separations. Under both the DOE and State of Idaho preferred alternatives, newly generated liquid waste would be segregated after 2005, stored or treated directly and disposed of as low-level, mixed low-level, or transuranic waste depending on its characteristics. The objective of each preferred alternative is to enable compliance with the legal requirement to have INEEL HLW road ready by a target date of 2035. Both DOE and the Sta target date of 2035. Both DOE and the State of Idaho have identified the same preferred alternative for facilities disposition, which is to use performance-based closure methods for existing facilities and to design new facilities consistent with clean closure methods

369

Completion summary for boreholes USGS 140 and USGS 141 near the Advanced Test Reactor Complex, Idaho National Laboratory, Idaho  

Science.gov (United States)

In 2013, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, drilled and constructed boreholes USGS 140 and USGS 141 for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory in southeast Idaho. Borehole USGS 140 initially was cored to collect continuous geologic data, and then re-drilled to complete construction as a monitor well. Borehole USGS 141 was drilled and constructed as a monitor well without coring. Boreholes USGS 140 and USGS 141 are separated by about 375 feet (ft) and have similar geologic layers and hydrologic characteristics based on geophysical and aquifer test data collected. The final construction for boreholes USGS 140 and USGS 141 required 6-inch (in.) diameter carbon-steel well casing and 5-in. diameter stainless-steel well screen; the screened monitoring interval was completed about 50 ft into the eastern Snake River Plain aquifer, between 496 and 546 ft below land surface (BLS) at both sites. Following construction and data collection, dedicated pumps and water-level access lines were placed to allow for aquifer testing, for collecting periodic water samples, and for measuring water levels. Borehole USGS 140 was cored continuously, starting from land surface to a depth of 543 ft BLS. Excluding surface sediment, recovery of basalt and sediment core at borehole USGS 140 was about 98 and 65 percent, respectively. Based on visual inspection of core and geophysical data, about 32 basalt flows and 4 sediment layers were collected from borehole USGS 140 between 34 and 543 ft BLS. Basalt texture for borehole USGS 140 generally was described as aphanitic, phaneritic, and porphyritic; rubble zones and flow mold structure also were described in recovered core material. Sediment layers, starting near 163 ft BLS, generally were composed of fine-grained sand and silt with a lesser amount of clay; however, between 223 and 228 ft BLS, silt with gravel was described. Basalt flows generally ranged in thickness from 3 to 76 ft (average of 14 ft) and varied from highly fractured to dense with high to low vesiculation. Geophysical and borehole video logs were collected during certain stages of the drilling and construction process at boreholes USGS 140 and USGS 141. Geophysical logs were examined synergistically with the core material for borehole USGS 140; additionally, geophysical data were examined to confirm geologic and hydrologic similarities between boreholes USGS 140 and USGS 141 because core was not collected for borehole USGS 141. Geophysical data suggest the occurrence of fractured and (or) vesiculated basalt, dense basalt, and sediment layering in both the saturated and unsaturated zones in borehole USGS 141. Omni-directional density measurements were used to assess the completeness of the grout annular seal behind 6-in. diameter well casing. Furthermore, gyroscopic deviation measurements were used to measure horizontal and vertical displacement at all depths in boreholes USGS 140 and USGS 141. Single-well aquifer tests were done following construction at wells USGS 140 and USGS 141 and data examined after the tests were used to provide estimates of specific-capacity, transmissivity, and hydraulic conductivity. The specific capacity, transmissivity, and hydraulic conductivity for well USGS 140 were estimated at 2,370 gallons per minute per foot [(gal/min)/ft)], 4.06 × 105 feet squared per day (ft2/d), and 740 feet per day (ft/d), respectively. The specific capacity, transmissivity, and hydraulic conductivity for well USGS 141 were estimated at 470 (gal/min)/ft, 5.95 × 104 ft2/d, and 110 ft/d, respectively. Measured flow rates remained relatively constant in well USGS 140 with averages of 23.9 and 23.7 gal/min during the first and second aquifer tests, respectively, and in well USGS 141 with an average of 23.4 gal/min. Water samples were analyzed for cations, anions, metals, nutrients, volatile organic compounds, stable isotopes, and radionuclides. Water samples from both wells indicated th

Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.

2014-01-01

370

Paleomagnetism of Basaltic Lava Flows in Coreholes ICPP 213, ICPP-214, ICPP-215, and USGS 128 Near the Vadose Zone Research Park, Idaho Nuclear Technology and Engineering Center, Idaho National Engineering and Environmental Laboratory, Idaho  

Science.gov (United States)

A paleomagnetic study was conducted on basalt from 41 lava flows represented in about 2,300 ft of core from coreholes ICPP-213, ICPP-214, ICPP-215, and USGS 128. These wells are in the area of the Idaho Nuclear Technology and Engineering Center (INTEC) Vadose Zone Research Park within the Idaho National Engineering and Environmental Laboratory (INEEL). Paleomagnetic measurements were made on 508 samples from the four coreholes, which are compared to each other, and to surface outcrop paleomagnetic data. In general, subhorizontal lines of correlation exist between sediment layers and between basalt layers in the area of the new percolation ponds. Some of the basalt flows and flow sequences are strongly correlative at different depth intervals and represent important stratigraphic unifying elements. Some units pinch out, or thicken or thin even over short separation distances of about 1,500 ft. A more distant correlation of more than 1 mile to corehole USGS 128 is possible for several of the basalt flows, but at greater depth. This is probably due to the broad subsidence of the eastern Snake River Plain centered along its topographic axis located to the south of INEEL. This study shows this most clearly in the oldest portions of the cored sections that have differentially subsided the greatest amount.

Champion, Duane E.; Herman, Theodore C.

2003-01-01

371

78 FR 17632 - Caribou-Targhee National Forest; Idaho and Wyoming; Amendment to the Targhee Revised Forest Plan...  

Science.gov (United States)

...1997 Targhee Revised Forest Plan did not identify...EIS pursuant to the National Environmental Policy...the Idaho counties of Bonneville, Butte, Clark, Fremont...1997 Targhee Revised Forest Plan to incorporate...compliance with the National Environmental...

2013-03-22

372

David Blackwell’s Forty Years in the Idaho Desert, The Foundation for 21st Century Geothermal Research  

Energy Technology Data Exchange (ETDEWEB)

Dr. David Blackwell has had a profound influence on geo-thermal exploration and R&D in Idaho. Forty years have elapsed since the first Southern Methodist University (SMU) temperature logging truck rolled onto the high desert in Southern Idaho, yet even after so much time has elapsed, most recent and ongoing geothermal R&D can trace its roots to the foundational temperature studies led by Dr. Blackwell. We believe that the best way to honor any scientist is to see their work carried forward by others. As this paper demonstrates, it has been an easy task to find a host of Idaho researchers and students eager to contribute to this tribute paper. We organize this paper by ongoing or recent projects that continue to benefit left to Idaho by Dr. David Blackwell.

Travis McLing; Mike McCurry; Cody Cannon; Ghanashyam Neupane; Thomas Wood; Robert Podgorney; John Welhan; Greg Mines; Earl Mattson; Rachel Wood; Carl Palmer

2015-04-01

373

76 FR 34034 - Newspapers Used for Publication of Legal Notices by the Intermountain Region; Utah, Idaho, Nevada...  

Science.gov (United States)

...decisions for Montpelier, Soda Springs and Westside: Idaho State...Cedar City, Escalante, Pine Valley and Powell: Daily Spectrum...Ranger decisions: Humboldt Sun Spring Mountains National Recreation...Heber-Kamas, Pleasant Grove, and Spanish Fork Ranger Districts:...

2011-06-10

374

77 FR 33703 - Newspapers Used for Publication of Legal Notices by the Intermountain Region; Utah, Idaho, Nevada...  

Science.gov (United States)

...decisions for Montpelier, Soda Springs and Westside: Idaho State...Cedar City, Escalante, Pine Valley and Powell: Daily Spectrum...Ranger decisions: Humboldt Sun Spring Mountains National Recreation...Heber-Kamas, Pleasant Grove, and Spanish Fork Ranger Districts:...

2012-06-07

375

78 FR 33799 - Newspapers Used for Publication of Legal Notices by the Intermountain Region; Utah, Idaho, Nevada...  

Science.gov (United States)

...decisions for Montpelier, Soda Springs and Westside: Idaho State...Cedar City, Escalante, Pine Valley and Powell: Daily Spectrum...Ranger decisions: Humboldt Sun Spring Mountains National Recreation...Heber-Kamas, Pleasant Grove, and Spanish Fork Ranger Districts:...

2013-06-05

376

After Action Report:Idaho National Laboratory (INL) 2014 Multiple Facility Beyond Design Basis (BDBE) Evaluated Drill October 21, 2014  

Energy Technology Data Exchange (ETDEWEB)

On October 21, 2014, Idaho National Laboratory (INL), in coordination with local jurisdictions, and Department of Energy (DOE) Idaho Operations Office (DOE ID) conducted an evaluated drill to demonstrate the ability to implement the requirements of DOE O 151.1C, “Comprehensive Emergency Management System” when responding to a beyond design basis event (BDBE) scenario as outlined in the Office of Health, Safety, and Security Operating Experience Level 1 letter (OE-1: 2013-01). The INL contractor, Battelle Energy Alliance, LLC (BEA), in coordination with CH2M-WG Idaho, LLC (CWI), and Idaho Treatment Group LLC (ITG), successfully demonstrated appropriate response measures to mitigate a BDBE event that would impact multiple facilities across the INL while protecting the health and safety of personnel, the environment, and property. Offsite response organizations participated to demonstrate appropriate response measures.

V. Scott Barnes

2014-12-01

377

Combined Active and Passive Solar Space Heating and Solar Hot Water Systems for an Elementary School in Boise, Idaho.  

Science.gov (United States)

Amity Elementary School in Boise, Idaho, features a solar space heating and domestic hot water system along with an earth covering to accommodate the passive aspects of energy conservation. (Author/MLF)

Smull, Neil A.; Armstrong, Gerald L.

1979-01-01

378

Chlorofluorocarbons, Sulfur Hexafluoride, and Dissolved Permanent Gases in Ground Water from Selected Sites In and Near the Idaho National Engineering and Environmental Laboratory, Idaho, 1994 - 1997  

Energy Technology Data Exchange (ETDEWEB)

From July 1994 through May 1997, the U.S. Geological Survey, in cooperations with the Department of Energy, sampled 86 wells completed in the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory (INEEL). The wells were sampled for a variety of constituents including one- and two-carbon halocarbons. Concentrations of dichlorodifluoromethane (CFC-12), trichlorofluoromethane (CFC-11), and trichlorotrifluororoethane (CFC-113) were determined. The data will be used to evaluate the ages of ground waters at INEEL. The ages of the ground water will be used to determine recharge rates, residence time, and travel time of water in the Snake River Plain aquifer in and near INEEL. The chromatograms of 139 ground waters are presented showing a large number of halomethanes, haloethanes, and haloethenes present in the ground waters underlying the INEEL. The chromatograms can be used to qualitatively evaluate a large number of contaminants at parts per trillion to parts per billion concentrations. The data can be used to study temporal and spatial distribution of contaminants in the Snake River Plain aquifer. Representative compressed chromatograms for all ground waters sampled in this study are available on two 3.5-inch high density computer disks. The data and the program required to decompress the data can be obtained from the U.S. Geological Survey office at Idaho Falls, Idaho. Sulfur hexafluoride (SF6) concentrations were measured in selected wells to determine the feasibility of using this environmental tracer as an age dating tool of ground water. Concentrations of dissolved nitrogen, argon, carbon dioxide, oxygen, and methane were measured in 79 ground waters. Concentrations of dissolved permanent gases are tabulated and will be used to evaluate the temperature of recharge of ground water in and near the INEEL.

Busenberg, E.; Plummer, L.N.; Bartholomay, R.C.; Wayland, J.E.

1998-08-01

379

Simulation of water-surface elevations for a hypothetical 100-year peak flow in Birch Creek at the Idaho National Engineering and Environmental Laboratory, Idaho  

International Nuclear Information System (INIS)

Delineation of areas at the Idaho National Engineering and Environmental Laboratory that would be inundated by a 100-year peak flow in Birch Creek is needed by the US Department of Energy to fulfill flood-plain regulatory requirements. Birch Creek flows southward about 40 miles through an alluvium-filled valley onto the northern part of the Idaho National Engineering and Environmental laboratory site on the eastern Snake River Plain. The lower 10-mile reach of Birch Creek that ends in Birch Creek Playa near several Idaho National Engineering and Environmental Laboratory facilities is of particular concern. Twenty-six channel cross sections were surveyed to develop and apply a hydraulic model to simulate water-surface elevations for a hypothetical 100-year peak flow in Birch Creek. Model simulation of the 100-year peak flow (700 cubic feet per second) in reaches upstream from State Highway 22 indicated that flow was confined within channels even when all flow was routed to one channel. Where the highway crosses Birch Creek, about 315 cubic feet per second of water was estimated to move downstream--115 cubic feet per second through a culvert and 200 cubic feet per second over the highway. Simulated water-surface elevation at this crossing was 0.8 foot higher than the elevation of the highway. The remaining 385 cubic feet per second flowed southwestward in a trench along the north side of the highway. Flow also was simulated with the culvert removed. The exact location of flood boundaries on Birch Creek could not be determined because of the highly braided channel and the many anthropogenic features (such as the trench, highway, and diversion channels) in the study area that affect flood hydraulics and flow. Because flood boundaries could not be located exactly, only a generalized flood-prone map was developed

380

Constraints on the formation of the Bitterroot Lobe of the Idaho Batholith, Idaho and Montana, from U-Pb zircon geochronology and feldspar Pb isotopic data  

International Nuclear Information System (INIS)

This paper reports on zircons from tonalite emplaced along the western periphery of the Bitterroot Lobe of the Idaho Batholith yield an almost concordant age of 94 ± 1.4 Ma; monozogranite and granodiorite plutons along the northern edge of the lobe yield ages of 75 to 71 ma. The volumetrically more dominant plutons in the central and western parts of the lobe were emplaced between 59 and 54 Ma. Upper intercept data, combined with Pb isotopic data from feldspars, confirm that the magmas of the Bitterroot Lobe were derived mainly from an early Proterozoic lower continental crust

381

Chemical Constituents in Ground Water from 39 Selected Sites with an Evaluation of Associated Quality Assurance Data, Idaho National Engineering and Environmental Laboratory and Vicinity, Idaho  

Energy Technology Data Exchange (ETDEWEB)

This report presents a compilation of water-quality data along with an evaluation of associated quality assurance data collected during 1990-94 from the Snake River Plain aquifer and two springs located in areas that provide recharge to the Snake River Plain aquifer. The data were collected as part of the continuing hydrogeologic investigation at the Idaho National Engineering and Environmental Laboratory (INEEL). This report is the third in a series of four reports and presents data collected to quantitatively assess the natural geochemical system at the INEEL. Ground-water quality data - collected during 1990-94 from 39 locations in the eastern Snake River Plain - are presented.

L. L. Knobel; R. C. Bartholomay; B. J. Tucker; L. M. Williams; L. D. Cecil

1999-08-01

382

Cost estimate of grouting the proposed test pits at Idaho National Engineering Laboratory using the ORNL-recommended grouts  

International Nuclear Information System (INIS)

EG and G Idaho will construct three experimental pits to simulate the TRU waste trenches at Idaho National Engineering Laboratory (INEL). Two of these pits will be grouted and then one will be destructively examined as soon as the grout cures and the other will be monitored for 10 years. Oak Ridge National Laboratory (ORNL) is evaluating grouts and will recommend a grout to EG and G Idaho to reduce the permeability of the pit, fill the large voids, and encapsulate the waste. A previous ORNL report (ORNL/TM-9881) discusses the grouts evaluated and the grout recommended based on those evaluations. This report evaluates the economics of grouting the experimental pits. The cost of double grouting two of the EG and G Idaho design pits at the Idaho National Engineering Laboratory using lance injection was estimated to be $100,000. Jet grouting the same two pits was estimated to cost $85,000. Both should be tried as part of the test EG and G Idaho is conducting

383

Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center  

Energy Technology Data Exchange (ETDEWEB)

A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

M. D. Staiger

1999-06-01

384

Idaho National Engineering Laboratory site environmental report for calendar year 1995  

International Nuclear Information System (INIS)

This report presents a compilation of data collected in 1995 for the routine environmental surveillance programs conducted on and around the Idaho National Engineering Laboratory (INEL). During 1995, the offsite surveillance program was conducted by the Environmental Science and Research Foundation. Onsite surveillance was performed by Lockheed Idaho Technologies Company (LITCO). Ground-water monitoring, both on and offsite, was performed by the US Geological Survey (USGS). This report also presents summaries of facility effluent monitoring data collected by INEL contractors. This report, prepared in accordance with the requirements in DOE Order 5400.1, is not intended to cover the numerous special environmental research programs being conducted at the INEL by the Foundation, LITCO, USGS, and others

385

Idaho National Engineering and Environmental Laboratory site environmental report for calendar year 1997  

International Nuclear Information System (INIS)

To verify that exposures resulting from operations at Department of Energy (DOE) nuclear facilities remain very small, each site at which nuclear activities are conducted operates an environmental surveillance program to monitor the air, water and any other pathway whereby radionuclides from operations might conceivably reach workers and members of the public. Environmental surveillance and monitoring results are reported annually to the DOE-Headquarters. This report presents a compilation of data collected in 1997 for the routine environmental surveillance programs conducted on and around the Idaho National Engineering and Environmental Laboratory (INEEL). The results of the various monitoring programs for 1997 indicated that radioactivity from the INEEL operations could generally not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEEL. Although some radioactive materials were discharged during INEEL operations, concentrations in the offsite environment and doses to the surrounding population were far less than state of Idaho and federal health protection guidelines

386

Pyrochemical treatment of Idaho Chemical Processing Plant high-level waste calcine  

International Nuclear Information System (INIS)

The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering Laboratory (INEL), has reprocessed irradiated nuclear fuels for the US Department of Energy (DOE) since 1951 to recover uranium, krypton-85, and isolated fission products for interim treatment and immobilization. The acidic radioactive high-level liquid waste (HLLW) is routinely stored in stainless steel tanks and then, since 1963, calcined to form a dry granular solid. The resulting high-level waste (HLW) calcine is stored in seismically hardened stainless steel bins that are housed in underground concrete vaults. A research and development program has been established to determine the feasibility of treating ICPP HLW calcine using pyrochemical technology.This technology is described

387

The status of soil mapping for the Idaho National Engineering Laboratory  

Energy Technology Data Exchange (ETDEWEB)

This report discusses the production of a revised version of the general soil map of the 2304-km{sup 2} (890-mi{sup 2}) Idaho National Engineering Laboratory (INEL) site in southeastern Idaho and the production of a geographic information system (GIS) soil map and supporting database. The revised general soil map replaces an INEL soil map produced in 1978 and incorporates the most current information on INEL soils. The general soil map delineates large soil associations based on National Resources Conservation Services [formerly the Soil Conservation Service (SCS)] principles of soil mapping. The GIS map incorporates detailed information that could not be presented on the general soil map and is linked to a database that contains the soil map unit descriptions, surficial geology codes, and other pertinent information.

Olson, G.L.; Lee, R.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Jeppesen, D.J. [Department of Interior, Idaho Falls, ID (United States)

1995-01-01

388

Environmental surveillance for Waste Management Facilities at the Idaho National Engineering Laboratory. Annual report 1994  

Energy Technology Data Exchange (ETDEWEB)

This report describes calendar year 1994 environmental surveillance activities of Environmental Monitoring of Lockheed Martin Idaho Technologies, performed at Waste Management Facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are results of the sampling performed by the Radiological Environmental Surveillance Program, INEL Environmental Surveillance Program, and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1994 environmental surveillance data with US Department of Energy derived concentration guides and with data from previous years.

Wright, K.C.; Wilhelmsen, R.N.; Borsella, B.W.; Miles, M.

1995-08-01

389

Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center  

Energy Technology Data Exchange (ETDEWEB)

A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.

S. Setiniyaz, T.A. Forest, K. Chouffani, Y. Kim, A. Freyberger

2012-07-01

390

The status of soil mapping for the Idaho National Engineering Laboratory  

International Nuclear Information System (INIS)

This report discusses the production of a revised version of the general soil map of the 2304-km2 (890-mi2) Idaho National Engineering Laboratory (INEL) site in southeastern Idaho and the production of a geographic information system (GIS) soil map and supporting database. The revised general soil map replaces an INEL soil map produced in 1978 and incorporates the most current information on INEL soils. The general soil map delineates large soil associations based on National Resources Conservation Services [formerly the Soil Conservation Service (SCS)] principles of soil mapping. The GIS map incorporates detailed information that could not be presented on the general soil map and is linked to a database that contains the soil map unit descriptions, surficial geology codes, and other pertinent information

391

Transuranic-waste program at EG and G Idaho, Inc. Annual technical report  

International Nuclear Information System (INIS)

This report summarizes the objectives and accomplishments of Transuranic (TRU) Waste Program conducted at EG and G Idaho, Inc., during FY 1982. The TRU Waste Program included: (1) Preparation of a revised draft of the Recommendation of a Long-Term Strategy (RLTS) document; (2) Preparation of environmental documentation, including a technical report, Environmental and Other Evaluations of Alternatives for Management of Defense Transuranic Waste at the Idaho National Engineering Laboratory, IDO-10103, as well as two environmental evaluations; (3) Preparation of a certification plan and procedures; (4) A nondestructive examination (NDE) project, which includes development of real-time radiography for waste certification, and container integrity equipment for waste container certification; (5) Development of an assay system; (6) Completion of a conceptual design for the Stored Waste Examination Pilot Plant (SWEPP) and SWEPP Support; and (7) Gas-generation analyses and tests. These TRU waste projects were funded at $1640K

392

Environmental surveillance for Waste Management Facilities at the Idaho National Engineering Laboratory. Annual report 1994  

International Nuclear Information System (INIS)

This report describes calendar year 1994 environmental surveillance activities of Environmental Monitoring of Lockheed Martin Idaho Technologies, performed at Waste Management Facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are results of the sampling performed by the Radiological Environmental Surveillance Program, INEL Environmental Surveillance Program, and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1994 environmental surveillance data with US Department of Energy derived concentration guides and with data from previous years

393

The enhanced variance propagation code for the Idaho Chemical Processing Plant  

International Nuclear Information System (INIS)

The Variance Propagation (VP) Code was developed by the Los Alamos National Laboratory's Safeguard's Systems Group to provide off-line variance propagation and systems analysis for nuclear material processing facilities. The code can also be used as a tool in the design and evaluation of material accounting systems. In this regard , the VP code was enhanced to incorporate a model of the material accountability measurements used in the Idaho Chemical Processing Plant operated by the Westinghouse Idaho Nuclear Company. Inputs to the code were structured to account for the dissolves/headend process, the waste streams, process performed to determine the sensitivity of measurement and sampling errors to the overall material balance error. We determined that the material balance error is very sensitive to changes in the sampling errors. 3 refs

394

Management of radioactive liquid waste at the Idaho Chemical Processing Plant  

International Nuclear Information System (INIS)

Highly radioactive liquid wastes (HLLW) are routinely produced during spent nuclear fuel processing at the Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering Laboratory (INEL). This paper discusses the processes and safe practices for management of the radioactive process waste streams, which processes include collection, concentration, interim storage, calcination to granular solids, and long-term intermediate storage. Over four million gallons of HLLW have been converted to a recoverable granular solid form through waste liquid injection into a high-temperature, fluidized bed wherein the wastes are converted to their respective solid oxides. The development of a glass ceramic solid for the long-term permanent disposal of the high level waste (HLW) solids is also described

395

1996 LMITCO environmental monitoring program report for the Idaho National Engineering and Environmental Laboratory  

Energy Technology Data Exchange (ETDEWEB)

This report describes the calendar year 1996 environmental surveillance and compliance monitoring activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory (INEEL). Results of sampling performed by the Radiological Environmental Surveillance, Site Environmental Surveillance, Drinking Water, Effluent Monitoring, Storm Water Monitoring, Groundwater Monitoring, and Special Request Monitoring Programs are included in this report. The primary purposes of the surveillance and monitoring activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1996 data with program-specific regulatory guidelines and past data to evaluate trends.

NONE

1997-09-01

396

1996 LMITCO environmental monitoring program report for the Idaho National Engineering and Environmental Laboratory  

International Nuclear Information System (INIS)

This report describes the calendar year 1996 environmental surveillance and compliance monitoring activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory (INEEL). Results of sampling performed by the Radiological Environmental Surveillance, Site Environmental Surveillance, Drinking Water, Effluent Monitoring, Storm Water Monitoring, Groundwater Monitoring, and Special Request Monitoring Programs are included in this report. The primary purposes of the surveillance and monitoring activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1996 data with program-specific regulatory guidelines and past data to evaluate trends

397

Air Emission Inventory for the Idaho National Engineering Laboratory, 1993 emissions report  

Energy Technology Data Exchange (ETDEWEB)

This report presents the 1993 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The purpose of the Air Emission Inventory is to commence the preparation of the permit to operate application for the INEL, as required by the recently promulgated Title V regulations of the Clean Air Act. The report describes the emission inventory process and all of the sources at the INEL and provides emissions estimates for both mobile and stationary sources.

1994-06-01

398

Replacement of the Idaho National Engineering Laboratory Health Physics Instrumentation Laboratory  

International Nuclear Information System (INIS)

The DOE-Idaho Operations Office (DOE-ID) has prepared an environmental assessment (EA) on the replacement of the Idaho National Engineering Laboratory Health Physics Instrumentation Laboratory at the Idaho National Engineering Laboratory (INEL). The purpose of this project is to replace the existing Health Physics Instrumentation Laboratory (HPIL) with a new facility to provide a safe environment for maintaining and calibrating radiation detection instruments used at the Idaho National Engineering Laboratory. The existing HPIL facility provides portable health physics monitoring instrumentation and direct reading dosimetry procurement, maintenance and calibration of radiation detection instruments, and research and development support-services to the INEL and others. However, the existing facility was not originally designed for laboratory activities and does not provide an adequate, safe environment for calibration activities. The EA examined the potential environmental impacts of the proposed action and evaluated reasonable alternatives, including the no action alternative in accordance with the Council on Environmental Quality (CEQ) Regulations (40 CFR Parts 1500-1508). Based on the environmental analysis in the attached EA, the proposed action will not have a significant effect on the human environment within the meaning of the National Environmental Policy Act (NEPA) and 40 CFR Parts 1508.18 and 1508.27. The selected action (the proposed alternative) is composed of the following elements, each described or evaluated in the attached EA on the pages referenced. The proposed action is expected to begin in 1997 and will be completed within three years: design and construction of a new facility at the Central Facility Area of the INEL; operation of the facility, including instrument receipt, inspections and repairs, precision testing and calibration, and storage and issuance. The selected action will result in no significant environmental impacts

399

Engineering study of stored waste retrieval at Idaho National Engineering Laboratory  

International Nuclear Information System (INIS)

A large quantity of transuranic waste is currently stored at the Transuranic Storage Area (TSA) at the Idaho National Engineering Laboratory. It is anticipated that a Slagging Pyrolysis Incinerator (SPI) will be constructed near the TSA to process this waste. The study described identifies design criter, provides a preliminary conceptual system design and performs engineering analyses of various strategies for retrieving waste from the TSA and delivering it to the SPI

400

2003 Idaho National Engineering and Environmental Laboratory Annual Illness and Injury Surveillance Report  

Energy Technology Data Exchange (ETDEWEB)

Annual Illness and Injury Surveillance Program report for 2003 for Idaho National Lab. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

2007-05-23

401

Idaho National Engineering Laboratory waste area groups 1--7 and 10 Technology Logic Diagram  

International Nuclear Information System (INIS)

The Technology Logic Diagram was developed to provide technical alternatives for environmental restoration projects at the Idaho National Engineering Laboratory. The diagram (three volumes) documents suggested solutions to the characterization, retrieval, and treatment phases of cleanup activities at contaminated sites within 8 of the laboratory's 10 waste area groups. Contaminated sites at the laboratory's Naval Reactor Facility and Argonne National Laboratory-West are not included in this diagram

402

Inventories and properties of ICPP [Idaho Chemical Processing Plant] calcined high-level waste  

International Nuclear Information System (INIS)

The physical, chemical and radioactive properties are summarized for calcined high-level radioactive waste generated at the Idaho Chemical Processing Plant resulting from reprocessing of irradiated defense nuclear fuels. Most of the data presented has been collected from reports published in the open literature. Projections of future waste volumes are presented, as are the properties of a potential immobilized waste form. 47 refs., 8 figs., 21 tabs

403

Potential for utilizing geothermal energy for space heating in re-constructed Sugar City, Idaho  

Energy Technology Data Exchange (ETDEWEB)

A preliminary overview is presented of the potential application of geothermal energy space-heating uses for Sugar City, Idaho, a town recently devastated by the Teton Dam collapse. The feasibility of planning the reconstruction to include a central heating system to supply all the space heating, and possibly some of the industrial heat is analyzed. The use of geothermal energy to fuel such a system is discussed in detail, with information supplied, principally for comparison on the use of other fuels. (MHR)

Kunze, J.F.; Lofthouse, J.H.; Stoker, R.C.

1977-01-01

404

Geologic factors pertinent to the proposed A. J. Wiley Hydroelectric Project No. 2845, Bliss, Idaho  

Science.gov (United States)

The A.J. Wiley Hydroelectric Project is a proposal by the Idaho Power Company to develop hydroelectricity near Bliss, Idaho, by building a dam on the Snake River (fig. 1). The proposed dam would impound a narrow reservoir as deep as 85 feet in a free-flowing reach of the river that extends from the upper reach of water impounded by the Bliss Dam to the foot of the Lower Salmon Falls Dam, nearly 8 miles farther upstream. The proposed dam would be built in three sections: a spillway section and a powerhouse (intake) section to be constructed of concrete in the right-handed part, and an embankment section to be constructed as a zoned-fill of selected earth materials in the left-hand part. (Right and left are to be understood in the sense of looking downstream.) In August, 1979, the Idaho Power Company was granted a 3-year permit (Project No. 2845) by the Federal Energy Regulatory Commission (FERC) to make site investigations and environmental studies in the project area. A year later, on August 26, 1980, the company applied to FERC for a license to construct the project. On October 8, 1980, as explained in a letter by William W. Lindsay, Director of the Office of Electric Power Regulation, the company was given 90 days to correct certain deficiencies in the application. Because several of the deficiencies identified by Mr. Lindsay pertain to geologic aspects of the project, his letter is attached to this report as Appendix A. Hereafter in this report, the deficiencies listed by Mr. Lindsay are identified by the numerical entries in his letter. The Idaho Power Company is referred to as the applicant.

Malde, Harold E.

1981-01-01

405

Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report  

International Nuclear Information System (INIS)

This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs)

406

Air Emission Inventory for the Idaho National Engineering Laboratory, 1993 emissions report  

International Nuclear Information System (INIS)

This report presents the 1993 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The purpose of the Air Emission Inventory is to commence the preparation of the permit to operate application for the INEL, as required by the recently promulgated Title V regulations of the Clean Air Act. The report describes the emission inventory process and all of the sources at the INEL and provides emissions estimates for both mobile and stationary sources

407

Wood fired steam generation system for the University of Idaho district heating system  

International Nuclear Information System (INIS)

This paper is a general overview of the project to convert the University of Idaho's Power Plant from natural gas to wood waste as a primary fuel source. It includes the history and background of the project; the economic analysis used to select the combustion system; a general description of the plant and a more detailed description of the fuel and the combustor/gasifier; and discussion of some of the problems encountered

408

University of Idaho Water of the West Initiative: Development of a sustainable, interdisciplinary water resources program  

Science.gov (United States)

Recently, an interdisciplinary group of faculty from the University of Idaho was awarded a major internal grant for their project "Water of the West (WoW)" to launch an interdisciplinary Water Resources Graduate Education Program. This Water Resources program will facilitate research and education to influence both the scientific understanding of the resource and how it is managed, and advance the decision-making processes that are the means to address competing societal values. By educating students to integrate environmental sciences, socio-economic, and political issues, the WoW project advances the University's land grant mission to promote economic and social development in the state of Idaho. This will be accomplished through novel experiential interdisciplinary education activities; creation of interdisciplinary research efforts among water resources faculty; and focusing on urgent regional problems with an approach that will involve and provide information to local communities. The Water Resources Program will integrate physical and biological sciences, social science, law, policy and engineering to address problems associated with stewardship of our scarce water resources. As part of the WoW project, faculty will: (1) develop an integrative problem-solving framework; (2) develop activities to broaden WR education; (3) collaborate with the College of Law to offer a concurrent J.D. degree, (4) develop a virtual system of watersheds for teaching and research, and (5) attract graduate students for team-based education. The new program involves 50 faculty from six colleges and thirteen departments across the university. This university-wide initiative is strengthened by collaboration with the Idaho Water Resources Research Institute, and participation from off-campus Centers in Idaho Falls, Boise, Twin Falls, and Coeur d'Alene. We hope this presentation will attract university faculty, water resources professionals, and others for stimulating discussions on interdisciplinary approaches in water resources education.

Boll, J.; Cosens, B.; Fiedler, F.; Link, T.; Wilson, P.; Harris, C.; Tuller, M.; Johnson, G.; Kennedy, B.

2006-12-01

409

Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report  

Energy Technology Data Exchange (ETDEWEB)

This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs).

NONE

1996-06-01

410

Procedures for use of, and drill cores and cuttings available for study at, the Lithologic Core Storage Library, Idaho National Engineering Laboratory, Idaho  

International Nuclear Information System (INIS)

In 1990, the US Geological Survey, in cooperation with the US Department of Energy, Idaho Operations Office, established the Lithologic Core Storage Library at the Idaho National Engineering Laboratory (INEL). The facility was established to consolidate, catalog, and permanently store nonradioactive drill cores and cuttings from investigations of the subsurface conducted at the INEL, and to provide a location for researchers to examine, sample, and test these materials. The facility is open by appointment to researchers for examination, sampling, and testing of cores and cuttings. This report describes the facility and cores and cuttings stored at the facility. Descriptions of cores and cuttings include the well names, well locations, and depth intervals available. Most cores and cuttings stored at the facility were drilled at or near the INEL, on the eastern Snake River Plain; however, two cores drilled on the western Snake River Plain are stored for comparative studies. Basalt, rhyolite, sedimentary interbeds, and surficial sediments compose the majority of cores and cuttings, most of which are continuous from land surface to their total depth. The deepest core stored at the facility was drilled to 5,000 feet below land surface. This report describes procedures and researchers' responsibilities for access to the facility, and examination, sampling, and return of materials

411

Technology Evaluations Related to Mercury, Technetium, and Chloride in Treatment of Wastes at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory  

Energy Technology Data Exchange (ETDEWEB)

The Idaho High-Level Waste and Facility Disposition Environmental Impact Statement defines alternative for treating and disposing of wastes stored at the Idaho Nuclear Technology and Engineering Center. Development is required for several technologies under consideration for treatment of these wastes. This report contains evaluations of whether specific treatment is needed and if so, by what methods, to remove mercury, technetium, and chlorides in proposed Environmental Impact Statement treatment processes. The evaluations of mercury include a review of regulatory requirements that would apply to mercury wastes in separations processes, an evaluation of the sensitivity of mercury flowrates and concentrations to changes in separations processing schemes and conditions, test results from laboratory-scale experiments of precipitation of mercury by sulfide precipitation agents from the TRUEX carbonate wash effluent, and evaluations of methods to remove mercury from New Waste Calcining Facility liquid and gaseous streams. The evaluation of technetium relates to the need for technetium removal and alternative methods to remove technetium from streams in separations processes. The need for removal of chlorides from New Waste Calcining Facility scrub solution is also evaluated.

C. M. Barnes; D. D. Taylor; S. C. Ashworth; J. B. Bosley; D. R. Haefner

1999-10-01

412

Idaho HWMA/RCRA Closure Plan for Idaho Nuclear Technology and Engineering Center Tanks WM-182 and WM-183 - Rev. 2  

Energy Technology Data Exchange (ETDEWEB)

This document presents the plan for the closure of the Idaho Nuclear Technology and Engineering Center Tank Farm Facility tanks WM-182 and WM-183 in accordance with Idaho Hazardous Waste Management Act/Resource Conservation and Recovery Act interim status closure requirements. Closure of these two tanks is the first in a series of closures leading to the final closure of the eleven 300,000-gal tanks in the Tank Farm Facility. As such, closure of tanks WM-182 and WM-183 will serve as a proof-of-process demonstration of the waste removal, decontamination, and sampling techniques for the closure of the remaining Tank Farm Facility tanks. Such an approach is required because of the complexity and uniqueness of the Tank Farm Facility closure. This plan describes the closure units, objectives, and compliance strategy as well as the operational history and current status of the tanks. Decontamination, closure activities, and sampling and analysis will be performed with the goal of achieving clean closure of the tanks. Coordination with other regulatory requirements, such as U.S. Department of Energy closure requirements, is also discussed.

Evans, Susan Kay; unknown

2000-12-01

413

Procedures for use of, and drill cores and cuttings available for study at, the Lithologic Core Storage Library, Idaho National Engineering Laboratory, Idaho  

Energy Technology Data Exchange (ETDEWEB)

In 1990, the US Geological Survey, in cooperation with the US Department of Energy, Idaho Operations Office, established the Lithologic Core Storage Library at the Idaho National Engineering Laboratory (INEL). The facility was established to consolidate, catalog, and permanently store nonradioactive drill cores and cuttings from investigations of the subsurface conducted at the INEL, and to provide a location for researchers to examine, sample, and test these materials. The facility is open by appointment to researchers for examination, sampling, and testing of cores and cuttings. This report describes the facility and cores and cuttings stored at the facility. Descriptions of cores and cuttings include the well names, well locations, and depth intervals available. Most cores and cuttings stored at the facility were drilled at or near the INEL, on the eastern Snake River Plain; however, two cores drilled on the western Snake River Plain are stored for comparative studies. Basalt, rhyolite, sedimentary interbeds, and surficial sediments compose the majority of cores and cuttings, most of which are continuous from land surface to their total depth. The deepest core stored at the facility was drilled to 5,000 feet below land surface. This report describes procedures and researchers` responsibilities for access to the facility, and examination, sampling, and return of materials.

Davis, L.C.; Hannula, S.R.; Bowers, B.

1997-03-01

414

Technology Evaluations Related to Mercury, Technetium, and Chloride in Treatment of Wastes at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory  

International Nuclear Information System (INIS)

The Idaho High-Level Waste and Facility Disposition Environmental Impact Statement defines alternative for treating and disposing of wastes stored at the Idaho Nuclear Technology and Engineering Center. Development is required for several technologies under consideration for treatment of these wastes. This report contains evaluations of whether specific treatment is needed and if so, by what methods, to remove mercury, technetium, and chlorides in proposed Environmental Impact Statement treatment processes. The evaluations of mercury include a review of regulatory requirements that would apply to mercury wastes in separations processes, an evaluation of the sensitivity of mercury flowrates and concentrations to changes in separations processing schemes and conditions, test results from laboratory-scale experiments of precipitation of mercury by sulfide precipitation agents from the TRUEX carbonate wash effluent, and evaluations of methods to remove mercury from New Waste Calcining Facility liquid and gaseous streams. The evaluation of technetium relates to the need for technetium removal and alternative methods to remove technetium from streams in separations processes. The need for removal of chlorides from New Waste Calcining Facility scrub solution is also evaluated

415

Idaho Nuclear Technology and Engineering Center (INTEC) (formerly ICPP) ash reutilization study  

Energy Technology Data Exchange (ETDEWEB)

Since 1984, the coal-fired plant at the Idaho Nuclear Technology and Engineering Center (INTEC, formerly Idaho Chemical Processing Plant) has been generating fly ash at a rate of approximately 1,000 tons per year. This ash is hydrated and placed in an ash bury pit near the coal-fired plant. The existing ash bury pit will be full in less than 1 year at its present rate of use. A conceptual design to build a new ash bury pit was completed, and the new pit is estimated to cost $1.7 million. This report evaluates ash reutilization alternatives that propose to eliminate this waste stream and save the $1.7 million required to build a new pit. The alternatives include using ash for landfill day cover, concrete admixture, flowable fill, soil stabilization, waste remediation, and carbon recovery technology. Both physical and chemical testing, under the guidance of the American Society for Testing and Materials, have been performed on ash from the existing pit and from different steps within the facility`s processes. The test results have been evaluated, compared to commercial ash, and are discussed as they relate to reutilization alternatives. This study recommends that the ash be used in flowable fill concrete for Deactivation and Demolition work at the Idaho National Engineering and Environmental Laboratory.

Langenwalter, T.; Pettet, M.; Ochoa, R.; Jensen, S.

1998-05-01

416

131I concentrations in air, milk and antelope thyroids in southeastern Idaho  

International Nuclear Information System (INIS)

Iodine-131 concentrations were determined in air, milk, and antelope (Antilocapra americana) thyroids from southeastern Idaho during 1972-77. Samples were collected in the vicinity of the Idaho National Engineering Laboratory Site which has 17 operating nuclear reactors, a fuel reprocessing plant, and a nuclear waste management facility. Samples were also collected from control areas. During the study, fallout occurred from five People's Republic of China above-ground nuclear weapon detonations. All 131I detected in air and milk samples was attributed to fallout from the Chinese nuclear tests. 131I was detected in low-volume air samples following only one of the five detonations while 131I was detected in milk following four of the detonations. 131I occurred in antelope thyroids during all five of the fallout periods and following at least one atmospheric release from facilities at the Idaho National Engineering Laboratory Site. Thyroids were the most sensitive indicators of 131I in the environment followed by milk and then air. Maximum concentrations in thyroids, milk, and air were 400, 20 and 4 times higher respectively than their respective detection limits. (author)

417

Idaho National Engineering Laboratory materials in inventory natural and enriched uranium management and storage costs  

International Nuclear Information System (INIS)

On July 13, 1994, the Office of Environmental Management (EM) was requested to develop a planning process that would result in management policies for dealing with nuclear materials in inventory. In response to this request, EM launched the Materials In Inventory (MIN) Initiative. A Headquarters Working Group was established to develop the broad policy framework for developing MIN management policies. MIN activities cover essentially all nuclear materials within the DOE complex, including such items as spent nuclear fuel, depleted uranium, plutonium, natural and enriched uranium, and other materials. In August 1995, a report discussing the natural and enriched uranium portion of the Initiative for the Idaho National Engineering Laboratory (INEL) was published. That report, 'Idaho National Engineering Laboratory Materials-in-Inventory, Natural and Enriched Uranium'.' identified MIN under the control of Lockheed Idaho Technologies Company at the INEL. Later, additional information related to the costs associated with the storage of MIN materials was requested to supplement this report. This report provides the cost information for storing, disposing, or consolidating the natural and enriched uranium portion of the MIN materials at the INEL. The information consists of eight specific tables which detail present management costs and estimated costs of future activities

418

Idaho National Engineering and Environmental Laboratory radiological control performance indicator report -- Second quarter, calendar year 1998  

Energy Technology Data Exchange (ETDEWEB)

This document provides a report and an analysis of the Radiological Control Program through the second quarter of Calendar Year 1998 (CY-98) for Lockheed Martin Idaho Technologies Company (LMITCO). LMITCO is the prime contractor at the Idaho National Engineering and Environmental Laboratory (INEEL). This Performance Indicator Report is provided in accordance with Article 133 of the INEEL Radiological Control Manual. The INEEL collective occupational radiation deep dose is 30.757 person-rem year to date, compared to a year to date goal of 47.0 person-rem. Overall, the site dose goal has been reduced. This is mainly due to work scope reductions at the Idaho Nuclear Technologies and Engineering Center (INTEC). However, due to unforeseen increases in shipments to the Radioactive Waste Management Complex, their goal has been raised to 9.60 person-rem to accommodate the increase in dose. The RWMC increase results in an increase to the LMITCO goal to 100.76f person-rem. The goal is not plotted in a linear fashion since work scope varies from quarter to quarter.

Hinckley, F.L.

1998-08-01

419

Notes from the field: cryptosporidiosis associated with consumption of unpasteurized goat milk - idaho, 2014.  

Science.gov (United States)

On August 27, 2014, the Idaho Department of Health and Welfare's Division of Public Health (DPH) was notified of two cases of cryptosporidiosis in siblings aged goat milk produced at a dairy licensed by the Idaho State Department of Agriculture (ISDA) and purchased at a retail store. Milk produced before August 18, the date of illness onset, was unavailable for testing from retail stores, the household, or the dairy. Samples of raw goat milk produced on August 18, 21, 25, and 28, taken from one opened container from the siblings' household, one unopened container from the retailer, and two unopened containers from the dairy, all tested positive for Cryptosporidium by real-time polymerase chain reaction (PCR) at a commercial laboratory. On August 30, ISDA placed a hold order on all raw milk sales from the producer. ISDA and SWDH issued press releases advising persons not to consume the raw milk; SWDH issued a medical alert, and Idaho's Central District Health Department issued an advisory to health care providers about the outbreak. PMID:25719684

Rosenthal, Mariana; Pedersen, Randi; Leibsle, Scott; Hill, Vincent; Carter, Kris; Roellig, Dawn M

2015-02-27

420

Draft environmental assessment -- Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory  

Energy Technology Data Exchange (ETDEWEB)

The DOE-Idaho Operations Office has prepared an environmental assessment (EA) to analyze the environmental impacts of closing the Waste Calcining Facility (WCF) at the Idaho National Engineering Laboratory (INEL). The purpose of the action is to reduce the risk of radioactive exposure and release of radioactive and hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce these risks to human health and the environment and to comply with Resource Conservation and Recovery Act requirements. The WCF closure project is described in the DOE Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement (Programmatic EIS). DOE determined in the Programmatic EIS Record of Decision (ROD) that certain actions would be implemented and other actions deferred. The EA examined the potential environmental impacts of the proposed action and evaluated reasonable alternatives, including the no action alternative in accordance with the Council on Environmental Quality Regulations. Based on the analysis in the EA, the action will not have a significant effect on the human environment.

Braun, J.B.; Irving, J.S.; Staley, C.S.; Stanley, N.

1996-04-01

421

Incineration of DOE offsite mixed waste at the Idaho National Engineering and Environmental Laboratory  

International Nuclear Information System (INIS)

The Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering and Environmental Laboratory (INEEL) is one of three incinerators in the US Department of Energy (DOE) Complex capable of incinerating mixed low-level waste (MLLW). WERF has received MLLW from offsite generators and is scheduled to receive more. The State of Idaho supports receipt of offsite MLLW waste at the WERF incinerator within the requirements established in the (INEEL) Site Treatment Plan (STP). The incinerator is operating as a Resource Conservation and Recovery Act (RCRA) Interim Status Facility, with a RCRA Part B permit application currently being reviewed by the State of Idaho. Offsite MLLW received from other DOE facilities are currently being incinerated at WERF at no charge to the generator. Residues associated with the incineration of offsite MLLW waste that meet the Envirocare of Utah waste acceptance criteria are sent to that facility for treatment and/or disposal. WERF is contributing to the treatment and reduction of MLLW in the DOE Complex

422

Idaho Nuclear Technology and Engineering Center (INTEC) (formerly ICPP) ash reutilization study  

International Nuclear Information System (INIS)

Since 1984, the coal-fired plant at the Idaho Nuclear Technology and Engineering Center (INTEC, formerly Idaho Chemical Processing Plant) has been generating fly ash at a rate of approximately 1,000 tons per year. This ash is hydrated and placed in an ash bury pit near the coal-fired plant. The existing ash bury pit will be full in less than 1 year at its present rate of use. A conceptual design to build a new ash bury pit was completed, and the new pit is estimated to cost $1.7 million. This report evaluates ash reutilization alternatives that propose to eliminate this waste stream and save the $1.7 million required to build a new pit. The alternatives include using ash for landfill day cover, concrete admixture, flowable fill, soil stabilization, waste remediation, and carbon recovery technology. Both physical and chemical testing, under the guidance of the American Society for Testing and Materials, have been performed on ash from the existing pit and from different steps within the facility's processes. The test results have been evaluated, compared to commercial ash, and are discussed as they relate to reutilization alternatives. This study recommends that the ash be used in flowable fill concrete for Deactivation and Demolition work at the Idaho National Engineering and Environmental Laboratory

423

Cultural Resource Investigations for the Remote Handled Low Level Waste Facility at the Idaho National Laboratory  

Energy Technology Data Exchange (ETDEWEB)

The U. S. Department of Energy, Idaho Operations Office is considering options for construction of a facility for disposal of Idaho National Laboratory (INL) generated remote-handled low-level waste. Initial screening has resulted in the identification of two recommended alternative locations for this new facility: one near the Advanced Test Reactor (ATR) Complex and one near the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility (ICDF). In April and May of 2010, the INL Cultural Resource Management Office conducted archival searches, intensive archaeological field surveys, and initial coordination with the Shoshone-Bannock Tribes to identify cultural resources that may be adversely affected by new construction within either one of these candidate locations. This investigation showed that construction within the location near the ATR Complex may impact one historic homestead and several historic canals and ditches that are potentially eligible for nomination to the National Register of Historic Places. No resources judged to be of National Register significance were identified in the candidate location near the ICDF. Generalized tribal concerns regarding protection of natural resources were also documented in both locations. This report outlines recommendations for protective measures to help ensure that the impacts of construction on the identified resources are not adverse.

Brenda R. Pace; Hollie Gilbert; Julie Braun Williams; Clayton Marler; Dino Lowrey; Cameron Brizzee

2010-06-01

424

1980 environmental-monitoring-program report for Idaho National Engineering Laboratory Site  

International Nuclear Information System (INIS)

This report presents the offsite data collected in 1980 for the routine environmental monitoring program conducted by the Department of Energy's Radiological and Environmental Sciences Laboratory (RESL/ID) at the Idaho National Engineering Laboratory (INEL) Site. The purpose of this routine program is to monitor radioactive and nonradioactive materials resulting from INEL Site operations which may reach the surrounding offsite environment and population. This report is prepared in accordance with the Department of Energy requirements DOE Order 5480.1 (ERDAM 0513) and is not intended to cover the numerous special environmental research programs being conducted at the INEL by the RESL/ID and others. The results of the various monitoring programs for 1980 indicated that radioactivity from the Idaho National Engineering Laboratory (INEL) Site operations could not, with the exception of Sb-125 in air, be distinguished from worldwide fallout and natural radioactivity in the region surrounding the Site. Although some radioactive materials were discharged during Site operations, concentrations and doses to the surrounding population were of no health consequence and were far less than the State of Idaho and the Federal Government health protection guidelines. This report describes the air, water, and foodstuff samples routinely collected at INEL boundary locations and at locations distant from the INEL Site. The report also compares and evaluates the significance of the samplnd evaluates the significance of the sample results

425

Reference site selection report for the advanced liquid metal reactor at the Idaho National Engineering Laboratory  

International Nuclear Information System (INIS)

This Reference Site Selection Report was prepared by EG ampersand G, Idaho Inc., for General Electric (GE) to provide information for use by the Department of Energy (DOE) in selecting a Safety Test Site for an Advanced Liquid Metal Reactor. Similar Evaluation studies are planned to be conducted at other potential DOE sites. The Power Reactor Innovative Small Module (PRISM) Concept was developed for ALMR by GE. A ALMR Safety Test is planned to be performed on a DOE site to demonstrate features and meet Nuclear Regulatory Commission Requirements. This study considered possible locations at the Idaho National Engineering Laboratory that met the ALMR Prototype Site Selection Methodology and Criteria. Four sites were identified, after further evaluation one site was eliminated. Each of the remaining three sites satisfied the criteria and was graded. The results were relatively close. Thus concluding that the Idaho National Engineering Laboratory is a suitable location for an Advanced Liquid Metal Reactor Safety Test. 23 refs., 13 figs., 9 tabs

426

Constructing effective nucleon-nucleon interaction on the basis of the Idaho potential  

International Nuclear Information System (INIS)

An effective nucleon-nucleon interaction at an energy of 200 MeV is constructed for the Idaho nucleon-nucleon potential obtained on the basis of the theory of spontaneous chiral-symmetry breaking. This interaction approximates the nonlocal t matrix obtained for free nucleon-nucleon scattering from a solution to the Lippmann-Schwinger equation for the Idaho potential. The exact and approximated t matrices for the Paris potential, Idaho potential, and the von Geramb Hamburg potential are compared. The effective potential obtained in the way outlined above is used to calculate the inelastic scattering of 200-MeV polarized protons that is accompanied by the excitation of the 2+ level at 4.44 MeV and the 1+ level at 15.11 MeV in the 12C nucleus and the 6- level at 14.1 MeV in the 28Si nucleus. The results are compared with the results of the calculations on the basis of the Paris potential

427

GIS INTERNET MAP SERVICE FOR DISPLAYING SELENIUM CONTAMINATION DATA IN THE SOUTHEASTERN IDAHO PHOSPHATE MINING RESOURCE AREA  

Energy Technology Data Exchange (ETDEWEB)

Selenium is present in waste rock/overburden that is removed during phosphate mining in southeastern Idaho. Waste rock piles or rock used during reclamation can be a source of selenium (and other metals) to streams and vegetation. Some instances (in 1996) of selenium toxicity in grazing sheep and horses caused public health and environmental concerns, leading to Idaho Department of Environmental Quality (DEQ) involvement. The Selenium Information System Project is a collaboration among the DEQ, the United States Forest Service (USFS), the Bureau of Land Management (BLM), the Idaho Mining Association (IMA), Idaho State University (ISU), and the Idaho National Laboratory (INL)2. The Selenium Information System is a centralized data repository for southeastern Idaho selenium data. The data repository combines information that was previously in numerous agency, mining company, and consultants’ databases and web sites. These data include selenium concentrations in soil, water, sediment, vegetation and other environmental media, as well as comprehensive mine information. The Idaho DEQ spearheaded a selenium area-wide investigation through voluntary agreements with the mining companies and interagency participants. The Selenium Information System contains the results of that area-wide investigation, and many other background documents. As studies are conducted and remedial action decisions are made the resulting data and documentation will be stored within the information system. Potential users of the information system are agency officials, students, lawmakers, mining company personnel, teachers, researchers, and the general public. The system, available from a central website, consists of a database that contains the area-wide sampling information and an ESRI ArcIMS map server. The user can easily acquire information pertaining to the area-wide study as well as the final area-wide report. Future work on this project includes creating custom tools to increase the simplicity of the website and increasing the amount of information available from site-specific studies at 15 mines.

Roger Mayes; Sera White; Randy Lee

2005-04-01

428

The Idaho cobalt belt, northwestern United States — A metamorphosed Proterozoic exhalative ore district  

Science.gov (United States)

In the Idaho cobalt belt, originally exhalative, stratiform mineralization within the Proterozoic Yellow-jacket Formation has become increasingly coarse-grained and remobilized toward the northwest in the direction of increasing regional metamorphic grade. The Idaho cobalt belt is located about 40 km west of Salmon, Idaho in the northwestern United States. The most important deposit in the district is the Blackbird mine which produced copper-cobalt ore sporadically from the early 1900's until about 1960. The Iron Creek deposit at the southeast end of the belt has undergone greenschist fades, biotite zone metamorphism; zones of disseminated, veinlet and massive sulfides lie more or less parallel to bedding of quartzites and phyllites. The main ore minerals are chalcopyrite and cobaltiferous pyrite. Toward the northwest at the Blackpine mine, remobilization has concentrated most of the mineralization into relatively thin concordant and discordant veins containing chalcopyrite, pyrite and arsenopyrite. The cobalt is reported to occur within arsenopyrite. Further northwest at the Blackbird mine where the Yellowjacket formation has been metamorphosed to the lower amphibolite facies, zones of disseminated and coarse-grained vein ores lie approximately along the same stratigraphic zone. Chalcopyrite, cobaltite, arsenopyrite, pyrite and pyrrhotite are the dominant ore minerals. Up to 0.22 oz. Au/ton was present in some of the ore. In addition, tourmaline-bearing sedimentary rocks (tourmalinites) are associated with some of the Blackbird ores. The Salmon Canyon deposit at the northwest end of the belt has undergon